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9.1 Introduction

Molecular recognition is the process by which
macromolecules selectively interact. Virtually all
biological phenomena depend in some way on
specific molecular recognition, and thus an un-
derstanding of the process is of central impor-
tance in the study of biology. One critically im-
portant factor is that proteins exist as a statis-
tical ensemble of conformers, which are transi-
tory excited-states (having higher free energy) in
the protein in normal solvated conditions; how-
ever, these excited states can become preferred
upon binding, by shifting the equilibrium distri-
bution towards them. For example, a thermally-
accessible conformer that is 2 kBT higher in free
energy would exist in just 13 % of the molecules
in solution (according to Boltzmann probability),
yet upon binding could become the most favored
state.

There are two popular models aiming to ex-
plain the mechanisms of molecular recognition
based on a dual dynamic mechanism: “induced-
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Fig. 9.1 Conformational selection (R1–R2) v.s. induced
fit (R3–R4). A schematic diagram for the two popular
binding mechanisms are displayed

fit” (see reaction R4–R3 in Fig. 9.1) and “con-
formational selection” (see reaction R1–R2 in
Fig. 9.1). In the induced fit model introduced by
Koshland [1], the apo protein only exists in the
unbound form and the interactions with the lig-
and induce the protein to reach the bound state.
In the conformational selection model [2–8], the
protein’s intrinsic dynamics may lead it to sam-
ple not only the unbound state but also the mi-
nor bound state. The ligand may then selectively
bind to the pre-existing bound conformation and
further increase its population. These two models
are not mutually exclusive and both mechanisms
may play a role as binding and folding are both
search processes over a rugged free energy sur-
face. For example, by binding to protein A, pro-
tein B may be stabilized in an excited conforma-
tion B* which can facilitate binding to other pro-
teins or ligands determining a cellular signaling
cascade.

Many molecular recognition processes involve
significant conformational changes of one or both
binding partners. For example, Periplasmic Bind-
ing Proteins (PBPs) can undergo a large-scale
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hinge bending motion between two domains from
an open to a closed state upon substrate bind-
ing [9–12]. In these systems, the interplay be-
tween protein structure and dynamics upon sub-
strate binding may ultimately determine the bind-
ing mechanisms. Computer modeling has been
shown to be a valuable approach to comple-
ment experimental techniques to reveal the chem-
ical details of molecular recognition mechanisms.
Markov state models (MSMs) are kinetic net-
work models that hold great potential for under-
standing the mechanisms of molecular recogni-
tion events from computer simulations.

Although MSMs have been successfully ap-
plied to study conformational dynamics of one-
body systems such as a single protein or RNA
[13–17], constructing MSMs to investigate the
protein-ligand binding process is challenging be-
cause the ligand dynamics normally occurs on
two significantly different timescales due to its
interactions with the protein. In particular, a lig-
and’s dynamics tend to be very slow when inter-
acting with a protein, but ligands typically diffuse
very quickly in solution. Therefore, the standard
methods for constructing MSMs through a uni-
form clustering at a single resolution are often
insufficient for properly describing ligand bind-
ing. In this chapter, we will review some re-
cent progress on constructing MSMs for two-
body systems associated with large conforma-
tional changes where the ligand dynamics occurs
at a mixture of different resolutions.

9.2 Methodology

9.2.1 Projected Dynamics MSMs

The use of reaction coordinates to project the
high dimensional space of a molecular systems
into a small dimensional space has been used for
many years, especially in the setting of biased dy-
namics [18]. These biased dynamics schemes of-
fer the advantage of speeding up the global dy-
namics provided that the reaction coordinates is a
good one (no other degree of freedom is slower).
A good reaction coordinate also provides a way
to compute realistic energetic maps of the phe-
nomena.

A different approach is to use MSM to ana-
lyze a set of unbiased trajectories using a low
dimensional space to build the Markov model.
In this case, the reaction coordinate does not
have to be perfect as the dynamics is only pro-
jected into this space but the kinetics are well re-
covered provided that the runs are long enough.
This is the approach for instance of Ref. [19], in
which the binding pathway of a small molecule
is constructed by using a simple reaction coordi-
nate, the three-dimensional position of one of its
atoms.

9.2.2 Automated Methods for
Constructing MSMs for
One-Body Systems

In many studies, MSMs are constructed by group-
ing conformations into a number of metastable
states and then counting the transitions between
these states without projecting the dynamics onto
certain reaction coordinates. Automated methods
based on a splitting-and-lumping scheme have
been developed to construct MSMs for one-body
systems [20, 21]. Since these methods have been
discussed in detail in other chapters, we briefly
review the general procedure here: first, a ge-
ometric clustering is applied to divide the MD
conformations into a large number of small clus-
ters. This assumes that conformations within the
same cluster are kinetically similar because of
their structural similarity. Next, clusters that can
interconvert quickly are grouped together into
the same metastable state to construct an MSM
model. Finally, we can calculate thermodynamic
and kinetic properties of interest if the model is
Markovian.

9.2.3 Constructing MSMs for
Two-Body Systems

The above splitting-and-lumping algorithm for
one-body systems is often unideal for two-body
systems because the dynamics in these systems
occur at a mixture of different timescales due to
the interactions between the binding partners (see
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Fig. 9.2 The spatial positions visited by diffusion of Ben-
zamidine show clearly few metastable states, but only a
MSM analysis of the trajectories can recover the free en-

ergy profile in three-dimension (here projected in two di-
mensions for clarity). These figures are adapted from [19]

Fig. 9.5). For example, the ligand diffuses freely
in the solvent in the un-bound state. While in
the bound state, the ligand forms stable interac-
tions with the protein and its dynamics is slow
and strongly correlated with the protein confor-
mation. A kinetically-relevant, uniform cluster-
ing at a single resolution as in the splitting-and-
lumping algorithm is often difficult to achieve for
these two-body systems. If the resolution of the
clustering is too low, one cannot split enough in
the region where the ligand binds to the protein.
On the other hand, if the clustering resolution is
too high, there may not be a sufficient number
of conformations in each cluster in the unbound
region (e.g. many clusters in the unbound region
end up containing a single conformation).

In order to address this issue, Silva et al. [22]
have performed independent clustering at two
different resolutions: a high-resolution clustering
(or larger number of clusters) on conformations
where the ligand binds to the protein and a low-
resolution clustering (or smaller number of clus-
ters) on conformations where the ligand diffuses
in solution. Kinetic lumping was then used within
each region to generate a set of metastable states.
Finally, the two sets of metastable states were
combined into a single MSM. In this algorithm, a
hard distance cut-off (5 Å between the ligand and
protein) is set to separate the fast and slow motion
regions for the ligand. This algorithm was shown
to be useful for dealing with protein-ligand bind-
ing systems, but it may introduce errors on the

boundary between the two regions due to the hard
distance separation.

9.3 Example Trypsin-Benzamidine
Binding

In this section, we use the molecular recogni-
tion process of trypsin-benzamine as an exem-
plary case of rigid binding. In Ref. [19], a ki-
netic model for the binding process of serine pro-
tease beta-trypsin inhibitor benzamidine was ob-
tained from extensive high-throughput all-atom
MD simulations using the ACEMD [23] soft-
ware on the GPUGRID distributed computing
network [24].

The analysis of 495 trajectories of free dif-
fusion of benzamidine around trypsin each of
100 ns of length lead to 187 trajectories (37 %)
which successfully recovered the bound pose in
the binding pocket with an RMSD compared to
the crystal structure of less than 2 Å. Several clus-
ters of benzamidine on the surface of trypsin can
be observed in Fig. 9.2, which indicates a rather
more complex pathway of binding than expected
instead of a of simple pathway directly from the
bulk. Some trajectories reach the bound crystal-
lographic pose just after 10–15 ns of simulation
while some reach the binding pocket only after
90 ns, but the majority of the trajectories do not
enter the binding site within 100 ns, as should
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Fig. 9.3 Main binding modes for benzamidine on trypsin.
(a) The encounter of the ligand with the protein, (b) bind-
ing to two secondary binding sites, (c) exchange between
the secondary binding sites, (d) final pathway of binding

into the catalytic site, which shows a curious rolling of the
ligand on the surface of the protein as the most probable
path. These figures are adapted from [19]

be expected in such a short time frame. Never-
theless, these simulations provide enough data to
carry out a detailed quantitative analysis of the
binding pathway.

An aggregate of 50 microseconds of trajectory
data have been used to construct a MSM of the
binding process of benzamidine to trypsin. The
MSM was built using the three-dimensional reac-
tion coordinate defined by the coordinates of the
C7-atom of benzamidine (Fig. 9.2). A projection
in two dimensions of the energetic profile is also
shown highlighting the secondary and the main
binding sites (Fig. 9.2). This surface is recovered
directly by solving the stationary distribution of
the MSM. Using a formula derived in [19], it is
possible to compute directly from the energetic
map the standard free energy of binding of the
ligand of approximately 5.2 kcal/mol compared
to an experimental one of 6.2 kcal/mol. A kinetic
model can also be built to measure on and off
rates which compare well with experiments [19].

An analysis of the slowest eigenvectors of the
MSM also allows the reconstruction of the bind-
ing pathway. Considering the slowest modes, we

see transitions from site S0 to S1 (Fig. 9.3a)
and collectively from sites S0/S1 to sites S3/S4
(Fig. 9.3b), corresponding to the diffusion of the
ligand from bulk to the first structural contact
with the protein. At a slower timescale, there are
transitions between sites S2 and S3 (Fig. 9.3c).
Site S2 is a secondary binding pocket but not di-
rectly involved in the binding pathway. Finally,
the rate-limiting step of the process is the transi-
tion to the bound site S4 (Fig. 9.3d) and preferen-
tially coming from S3 interestingly rolling on the
surface of the protein.

The case of Trypsin-Benzamidine represents a
best case scenario where both the ligand and pro-
tein are relatively inflexible. While the method-
ology is not limited to this case, more flexible
ligands would require substantially more time
to bind. Conformational changes in the protein
could also forbid binding all-together until cer-
tain loops open. All these factors imply that while
the current methodology is very promising, more
work is necessary in order to efficiently resolve
complex molecular recognition processes.
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9.4 Example LAO Protein Binding

In this section, we use the Lysine-, Arginine-,
Ornithine-binding (LAO) protein as an example
to demonstrate the power of MSMs for studying
protein-ligand binding mechanisms. The LAO
protein is one of the Periplasmic Binding Proteins
(PBPs), which is an attractive class of systems for
studying the mechanisms of molecular recogni-
tion events [25, 26]. With more than 100 crys-
tal structures available, different PBPs can bind
to a large variety of substrates including amino
acids, sugars, small peptides, etc. However, all
PBPs share similar tertiary structures containing
two globular domains connected by a hinge re-
gion with the binding site at the domain-domain
interface. They can undergo a large-scale hinge
bending motion from an open to a closed state
upon ligand binding (see Fig. 9.4). These features
make PBPs a good model system to investigate
the coupling between ligand binding and protein
conformational changes.

MD simulations have shown that the ligand
dynamics in the LAO system indeed displays a
mixture of different timescales. Silva et al. [22]
performed a set of sixty-five 200-ns MD simula-
tions of the ligand Arginine binding to the LAO
protein. From these simulations, they calculated
the ligand rotational autocorrelation functions for
three conformational states: unbound state, en-
counter complex, and bound state. As shown in
Fig. 9.5, the ligand can rotate quickly when it un-
dergoes free diffusion in the solvent, but the lig-
and rotation is largely restrained when it binds
to the protein. Therefore, when they later con-
structed MSMs from these MD simulations, they
performed structural clustering at two different
resolutions in the “splitting” stage of the splitting-
and-lumping algorithm. In the low-resolution (or
fewer clusters) region, the dynamics of the ligand
is fast, so that only the center of mass motion of
the ligand is considered. In the high-resolution (or
more clusters) region, the dynamics of the ligand
is constrained due to its strong interactions with
the protein, so that motions of all ligand heavy
atoms are considered. Finally, they performed ki-
netic lumping at each region to generate a set of

Fig. 9.4 The Lysine-, Arginine-, Ornithine-binding
(LAO) Protein undergoes large domain displacement from
the open (left, PDB id: 2LAO) to the closed (right, PDB
id: 1LAF) state upon the binding of Arginine (sticks). This
figure is reproduced from [22]

metastable states, and combine them into a sin-
gle 54-state MSM. This MSM is shown to repro-
duce the structure of the bound state, experimen-
tal binding free energy, and association rate with
reasonable accuracy [22].

MSMs [22] suggest a two-step binding mech-
anism for the LAO protein with a number of in-
termediate states and parallel binding pathways
(see the ten most probable binding pathways pre-
dicted by the MSM as shown in Fig. 9.6). In the
first step, the ligand binds to the protein to form
an encounter complex. In the encounter com-
plex state, the protein is partially closed and only
weakly interacts with the ligand. RMSD analy-
sis shows that the structure of individual protein
domains in the encounter complex is very sim-
ilar to those in the unbound and bound X-ray
structures (with RMSD mostly <2 Å). Therefore
the conformational change from either unbound
or bound state to the encounter complex confor-
mation may be achieved through domain rigid
body rotations. All major pathways pass through
the encounter complex state, which serves as a
gatekeeper for binding. This process is dominated
by conformational selection. In the second step,
the protein-ligand interactions induce conforma-
tional changes to reach the bound state.
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Fig. 9.5 A figure demonstrating the challenge for con-
structing kinetic network models for two-body systems
where the ligand dynamics occur at a mixture of differ-
ent timescales as shown by the rotational autocorrelation
functions of the ligand in the LAO protein system. The de-
cay of ligand rotational autocorrelation functions is much
faster in the unbound state (inside hexagon in right panel

and bottom of the left panel) than the encounter com-
plex (inside dashed circle in right panel and middle of
the left panel) and the bound state (in binding pocket in
right panel and top of the left panel). On the right panel,
a schematic figure illustrates the ligand positions in differ-
ent states. This figure is reproduced from [22]

Fig. 9.6 Ten highest flux
binding pathways from the
unbound states (left) to the
bound state (right) of the
LAO protein are
superimposed. The arrow
sizes are proportional to
the flux. State numbers and
their equilibrium
population calculated from
a 54-state Markov State
Model are also shown. This
figure is reproduced
from [22]

9.5 Discussion and Future
Perspective

One major advantage of MSMs is that they can
dissect atomistic details of molecular recognition.
For instance, Silva et al. [22] have observed roles

for both conformational selection and induced fit
in LAO binding, as well as an encounter com-
plex intermediate state. Recent NMR studies by
Tang et al. [27] have also suggested the duality
of conformational selection and induced fit for
the binding of PBPs. Using NMR with param-
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agnetic relaxation enhancement (PRE), they have
identified a minor (5 %) partially closed form in
equilibrium with the major open form for another
PDB, the maltose-binding protein [27]. Based on
these observations, they proposed that this par-
tially closed state may be available for the bind-
ing of the ligand through conformational selec-
tion and this binding could then facilitate the tran-
sition to the bound state via the induced fit mech-
anism. This model was proposed mainly based on
experiments in the absence of the ligand. MSMs
have the advantage that they can directly ob-
serve the interplay between protein conforma-
tional changes and ligand dynamics from simula-
tions of ligand binding at atomic resolution. The
other main advantage of MSMs is that they can
help bridge the timescale gap between the experi-
ments and atomistic MD simulations. For many
two-body systems such as protein-ligand bind-
ing and protein-protein interactions, the associa-
tion timescales (millisecond or longer) would be
too long to be reached by straightforward atom-
istic MD simulations. MSMs built from many
independent microsecond simulations, however,
have already proven capable of capturing protein-
folding events that occur at tens of milliseconds
timescales [16]. They can thus likely be applied to
study slow protein-ligand binding events too. For
the LAO protein discussed above, the timescale is
fast enough to observe multiple binding and un-
binding events within our sixty-five 200-ns simu-
lations. Even for this case, it would still be chal-
lenging to extract a complete picture of the bind-
ing mechanism from a single long simulation, be-
cause one would need this single simulation to be
at least tens of microseconds long so that many
binding/unbinding transitions occur (the average
transition time from the unbound to the bound
state is 2 microseconds). While such a trajectory
could be run, scaling to study even slower events
(i.e. at millisecond timescales) would not be pos-
sible.

In the future, new algorithms are needed for
better integrating different timescales of ligand
dynamics when constructing the kinetic network
models. Silva et al. [22] used a hard distance cut-
off (5 Å between the ligand and protein) to sep-
arate the slow and fast motion regions for the

ligand, and then performed independent kinetic
lumping for each before recombining the two sets
of metastable states into a single MSM. As we
discussed above, this algorithm may introduce er-
rors on the boundary between the two regions due
to this sharp distance cut-off. One potential way
to avoid this problem is to directly integrate the
geometric “splitting” and kinetic “lumping” steps
during model construction. This may require the
consideration of both the structural similarity
and the kinetic connectivity when performing
the clustering. Moreover, kinetic network models
containing nodes at transition states could also
greatly aid in understanding the mechanisms of
molecular recognition events, even though these
models are no longer Markovian. They are par-
ticularly useful for systems where sufficient sam-
pling can already be achieved by straightforward
MD simulations.
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