Uncertainty Estimation

Frank Noé and John D. Chodera

As only a finite quantity of data can be collected
for the construction of Markov state models,
the parameters characterizing the model and any
properties computed from it will always be statis-
tically uncertain. This chapter is concerned with
the quantification of this statistical uncertainty,
and its use in validation of model quality and pre-
diction of properties using the model. In the fol-
lowing sections we proceed along Refs. [2, 7, 11]
which should be used for reference purposes.

Uncertainties in Transition
Matrix Elements

5.1

We first consider the uncertainty in the transition
matrix T(7) itself estimated from a finite quan-
tity of data. It may be the case that the uncertainty
in individual elements 7;;(7) may be of interest,
in which case standard errors or confidence inter-
vals of these estimates may be sufficient tools to
quantify the uncertainty.

For a transition matrix estimated without the
detailed balance constraint, the expectation and
variance of individual elements follow from well-
known properties of the distribution of stochastic
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matrices [1]. These uncertainties do, however, de-
pend on the choice of prior used in modeling the
full posterior for the transition matrix (Sect. 4.4).
Under a uniform prior, the expectation and vari-
ance of an individual element 7;; is given by,

cij+1

BiTj) = =T (5.1)
Var(T, ] = it DU +m — (e + D)
T (e )+ D
_ =1y 52
ci+n+1

where ¢;; and ¢; are the elements and row sums,
respectively, of the observed count matrix C°
(Sect. 4.2).

To see the effect that the choice of prior has on
the computed uncertainties, consider a trajectory
of a given molecular system which is analyzed
with two different state space discretizations. As-
sume one discretization uses n = 10 states, and
the other n = 1000. Assume that a lag time t has
been chosen which is identical and long enough
to provide Markov models with small discretiza-
tion error for both n (as suggested in Sect. 4.7).
With a uniform prior (¢;; = c?}’s), the posterior
expectation T; j would be different for the two
discretizations: While in the n = 10 case we can
get a distinct transition matrix estimation, in the
n = 1000 case, most ¢;; are probably zero and
¢i < n, such that the expectation value would be
biased towards the uninformative 7;; ~ 1/n £
1/n matrix, and many observed transitions would
be needed to overcome this bias. This behavior is
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undesirable. Thus, for uncertainty estimation it is
suggested to use a prior which allows the obser-
vation data to have more impact also in the low-
data regime.

On the other hand, the “null prior” [10] de-
fined by

cf’;“’r—>—1 Vi, jef{l,...,n}, (5.3)

leans to the other extreme. Under the null prior,
the expectation and the variance of the marginal-
ized posterior for a single 7;; become,
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i
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Thus, with a null prior, the expectation value is
located at the likelihood maximum. Both expec-
tation value and variance are independent of the
number of discretization bins used. The variance
of any 7;; asymptotically decays with the number
of transitions out of the state i, which is expected
for sampling expectations from the central limit
theorem.

5.2 Uncertainties in Computed
Properties

In practice, one is often not primarily interested

in the uncertainties of the transition matrix ele-

ments themselves, but rather in the uncertainties
in properties computed from the transition matrix.

Here, we review two different approaches for this

purpose.

o Linear error perturbation [4, 12, 13]. Here,
the transition matrix posterior distribution is
approximated by a multivariate Gaussian, and
the property of interest—taken to be a func-
tion of the transition matrix or its eigenval-
ues and eigenvectors—is approximated by a
first-order Taylor expansion about the center

of this Gaussian. This results in a Gaussian
distribution of the property of interest, with a
mean and a covariance matrix that can be com-
puted in terms of the count matrix C. This ap-
proach has the advantage that error estimates
and their rates of reduction for different sam-
pling strategies can be computed through a di-
rect procedure. As a result, it is convenient
for situations where uncertainty estimates are
used as part of an adaptive sampling proce-
dure [4, 8, 9, 13]. The disadvantage of this ap-
proach is that the Gaussian approximation of
the transition matrix posterior in only asymp-
totically correct, and can easily break down
when few counts have been observed. In the
low-data regime, the resulting Gaussian distri-
bution for the property of interest often gives
substantial probability to unphysical or mean-
ingless values, such as when transition matrix
elements T;; are allowed to assume values out-
side the range [0, 1]). Moreover, the property
of interest is approximated linearly which can
introduce a significant error when this prop-
erty is nonlinear.

Markov chain Monte Carlo (MCMC) sam-
pling of transition matrices [2, 6, 7]. Here,
transition matrices are sampled from the pos-
terior distribution, and the property of inter-
est is computed for each of these and stored as
samples from the posterior distribution of the
property. This approach requires that the sam-
pling procedure be run sufficiently long that
good estimates of standard deviations or con-
fidence intervals of the posterior distribution
of the property of interest can be computed,
which may be time-consuming. The advantage
of this approach is that no assumptions are
made concerning the functional form of the
distribution or the property being computed.
Furthermore, this approach can be straightfor-
wardly applied to any function or property of
transition matrices, including complex proper-
ties such as transition path distributions [10]
without deriving the expressions necessary for
the linear error perturbation analysis—often
a cumbersome task. However, for large state
spaces, the transition matrix T may grow so
large as to make this procedure impractical.
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5.3  Linear Error Propagation

We start again with the posterior distribution of
row-stochastic transition matrices without the de-
tailed balance constraint, given by Eq. (4.10).
Defining a new matrix U,

U=[u;j]=[cij + 1], (5.6)
and wusing that the posterior probability
p(T | C°P%) implicitly contains the prior proba-
bilities Eq. (4.10) can be rewritten as:

]_[]_[ 7 (5.7

p(T|C) = p(T|C)

such that

Ty~ [ [ Dirui) (5.8)
i

where Dir(er) denotes the Dirichlet distribution,

and 0 ~ Dir(a) implies that 6 is drawn from the

distribution

p@® oo (5.9)

Based on well-established properties of this dis-
tribution, and using the abbreviation u; = Zj Uij,
the moments of p(T | C) can be directly com-
puted,

Ujj Cij +1

[]E(T)]ij = = =

U; ci+n

j7
uij —1 Cij
(argmaxp(T|C))ij = — -

uij—n Cj

~»
Nl

uij (Ui —uij)
u?(ui + 1)
T;;(1 - T;j)
(u; +1)
Ti;(1 = Tij)
ci+n—1"
—UjjUik
u?(ui + 1)

Var(Tyj) =

Cov(Tj;, Tix) Vji#k
Next, we determine how the uncertainties

given by the variances and covariances of the

transition matrix elements propagate onto uncer-

tainties of functions derived from transition ma-
trices, such as eigenvalues. If we do not have con-
straints between different rows, such as are im-
posed by detailed balance, the rows can be treated
as independent random vectors, and thus,

Cov(Tij, T) =0, i #L. (5.10)
We can thus define a covariance matrix X @ sep-
arately for each row i as,

3 = Cov(T;;. Ti)

— [u;8 ki — uiinixl
uiz(u,'-l-l) i0jkUij ijui

1 _ - -
T
= —[8juTij — T T ].
Ci
where § is the Kronecker delta. Alternatively, we
can write the covariance matrix ¥ ) in vector no-

tation,

> —

o s w0

- L[diag(Ti*) -

Ci

Ti*(Ti*)T]-

In the limit of many observed transition counts,
the covariance for the Dirichlet processes scales
approximately with the inverse of the total num-
ber of counts in a row, ¢;.

With a sufficient number of counts ¢; in each
row i, the Dirichlet process resembles a multi-
variate Gaussian distribution, and we can approx-
imate it as such using the mean and variance com-
puted above,

T;. ~Normal(’i‘i*, Z(i)). (5.11)
This approximate distribution is used in a Gaus-
sian error propagation for linear functions of the
transition matrix. Let us assume that we are inter-
ested in computing the statistical error of a scalar
functions f(T) : R"*" — R. The first order Tay-
lor approximation is given by:

A 0 ~
MOESIOEDY a—f'wj —T;j).
ij T
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Since the uncertainty in the rows of T contribute
independently to the uncertainty in f, we define
a sensitivity vector s for each row separately

5 3le

that measures the sensitivity of the scalar func-
tion with respect to changes in the transition ma-
trix elements. Then, with the function for the er-
ror propagation, we get

f=rM
obtaining an approximation for the variance in f,

Var(f) = Cov(f, f) = Z(S(i))TE(i)S(i).
i
or, more general, for the covariances between dif-
ferent scalar functions f, and g

Cov(f.g) =Y _(sLf1V)" X Ds[g]?.

i

where s[ f 19 and s[g](i) refer to the sensitivi-
ties of f and g respectively. The limitation of
this approach is that it does not work well in sit-
uations where the Transition matrix distribution
is far from Gaussian (especially in the situation
of little data). Furthermore, the more nonlinear a
given function of interest is in terms of 7;;, the
more the estimated uncertainty on this function
might be wrong.

5.3.1 Example: Eigenvalues

As an example, we consider the computation of
statistical error in a particular eigenvalue A of
the transition matrix T using the linear error prop-
agation scheme, closely following the approach
described in Refs. [4, 13].

We start from the eigenvalue decomposition of
the transition matrix T, omitting the dependence
on the lag time 7,

A=PTVY

where ¥ = [¥,...,¥,] is the right eigenvec-
tor matrix, @ = [¢1,...,¢n]T =¥ is the
left eigenvector matrix, and A = diag(};) is

(5.12)

the diagonal matrix of eigenvalues. For the kth
eigenvalue-eigenvector pair, we have,

T k k
2 = (6®) Ty ® = 3 07,y ),

i,j

We wish to compute the statistical error of the
eigenvalues A% via linear error perturbation. In
general, both the eigenvalues and eigenvectors si-
multaneously depend on perturbations in the ele-
ments of T in a complex way. To first order, the
partial derivatives of the eigenvalues with respect
to the transition matrix elements is given by the
inner product of left and right eigenvectors,

(5.13)

This expression for the eigenvalue sensitivity
may be combined with Eq. (5.11) in order to yield
the linear perturbation result,

k
i=1 a,b
_ i Z¢~(k)¢(k) (Z Uia (Ui — Uia)
D\ WD
—UjqUj
s > altib >¢<k>1/,<k)‘
a b;éa (ul D
5.4 Sampling Transition Matrices

Without Detailed Balance
Constraint

In a full Bayesian approach, we sample the pos-
terior distribution,

p(T 1O xpMpCIH=[]T7 (.14

i,j

where we recall that the total count matrix C =
Cobs 4 CPrior g discussed in Chap. 4, makes the
use of different priors straightforward. If the only
constraint of T is that it is a stochastic matrix, but
we do not expect that T fulfills detailed balance,
we can view Eq. (5.14) as a product of Dirich-
let distributions, one for each row (see Eq. (5.7)).
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We are then faced with the problem of sampling
random variables from the distribution,

Ti* ~Dir(u,-*). (515)

A fast way to generate Dirichlet-distributed ran-
dom variables is to draw n independent samples
Y1, ..., yn from univariate Gamma distributions,
each with density,

Cij —y;

j ¢
I'(cij + n’

(5.16)

yj ~Gamma(c;; +1,1) =

j=1,...

, 1,

and then obtain the 7;; by normalization of each
row,

Yi
Tii= —=—. (5.17)
Y ZZ: 1Yk
Repeating this procedure independently for every
row i = 1,...,n will generate a statistically inde-

pendent sample of T from distribution (5.14).

5.5 Sampling the Reversible

Transition Matrix Distribution

No similarly simple approach to direct generation
of statistically independent samples of the distri-
bution (5.14) exists when the transition matrix T
is further constrained to satisfy that the transition
matrices fulfill detailed balance. To include the
detailed balance constraints, we consider sam-
pling Eq. (5.14) using the Metropolis-Hastings
algorithm, where we propose a change to the
transition matrix, T — T’. This proposal is ac-
cepted with probability given by the Metropolis-
Hastings criterion,

p(I' = 1) p(T'|C)
p(T—T) p(TIC)
_ p(T' > p(CIT)

p(T—T) p(CIT)

Pacc =

/€ij

_p(T—>T) I, 7%
- o
p(T—T)T],; T

(5.18)

This scheme requires efficient schemes to gener-
ate proposals T — T’ that maintain the detailed
balance constraint and are likely to be accepted,

as well as a method of efficiently computing
the ratio of transition probabilities p(T" — T)/
p(T — T’) for each proposal. Such a scheme was
worked out in detail in Ref. [7], and we summa-
rize the resulting method as Algorithm 2.

Example I Every 2 x 2 transition matrix is re-
versible. To see this, we can compute the station-
ary distribution from the dominant eigenvector,

. ( 121 Ti2 )
Tio+To Tio+ T )’

(5.19)

from which we can see that detailed balance is
always fulfilled,

T T\,

T To=7—-""T =mT.
T2+ T T+ 1Ty

(5.20)
Indeed, for 2 x 2 matrices the nonreversible tran-
sition matrix sampling scheme (Sect. 5.4) gener-

w1 Ty =

ates the same distribution as the reversible tran-
sition matrix sampling scheme in Algorithm 2.
See Fig. 5.1B for an illustration of this sampling
scheme applied to a 2 x 2 matrix.

Example 2 Figure 5.2 illustrates how the distri-
bution of a 3 x 3 transition matrix differs between
the nonreversible (panels B, E, H) and reversible
(panels C, F, I) cases. For the matrix studied here,
the distribution of reversible matrices is slightly
narrower.

5.5.1 Sampling with Fixed Stationary

Distribution

In some cases, the stationary distribution, &, may
be known exactly or to very small statistical er-
ror. For example, an efficient equilibrium simula-
tion scheme (such as parallel tempering or meta-
dynamics) or a Monte Carlo method may have
generated a very precise estimate of & by simu-
lating a perturbed system or one with unphysical
dynamics. It may be useful to incorporate this in-
formation about w when inferring the posterior
distribution of transition matrices, since it may
significantly reduce the uncertainty.
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Algorithm 2 Metropolis Monte Carlo sampling of reversible stochastic matrices

Input: Transition count matrix C € Ni*". Number of samples N.

Output: Ensemble of reversible transition matrices, T, ...
= (cij +¢ji)/Qmey Cik + cki)Vi, j € (1, ..., m).

1. Initialize 7,

,Tn.

2. Compute 7 as stationary distribution of T by solving 7@ = 7 OTO

3.Fork=1...N

3.1. Generate uniform random variables: 1, rp ~ Uniform[O, 1]

32. T® .= k=D
3.3.If (r] < 0.5) Reversible Element Shift:
3.3.1. Generate uniform random variables:

.. (k) ” (k) (k)
i,je{l,...,n}, Ae|:max =T,;”, = (k)T” T” .
(k) 2 p)_ T 2 (k) )
— — L 1 __
T =T =~ A) 44 T(k) A T+ m A\ cis
3 3 2 pacc c— J ii J
o N . ® ® &) (k) (k)
(T +(T;;0)? T; T; T;
k)
<Tﬂ ‘ﬁAyﬁ
x J
(k)
Tji

3.3.3.If (r2 < pace):

set T =T/ V4 a1 =1V — A
and T(k) T(k b An(k) fr® T/.(f’ =T — ax®
else Node Shift:
3.3.4. Generate uniform random variables: i € (1,...,n), ¢ € |:O, W]

®) \ Cii
. —Dci—cii l—a(1-T.")
313.5. Pacc := a(” +ci Cll)<T)”
ii

3.3.6.If 2 < pace:

For all j #1i, set T(k) T(k b,
(k) k)

SetT;" =1~ Zj;él Y

3.3.7. Update stationary distribution:
: ® . o
For all j ;él set 77; ni(k_')+&(1—ni(k_'>)'
(k)
Set JT =1-=2 ;47 .

To do this, we first note that the two types of
Monte Carlo proposals utilized in Algorithm 2
above for sampling reversible transition matrices.
One type of proposal (reversible element shifts)
changes m, while the other preserves m (node
shift). We can suggest a straightforward modifica-
tion of the T-sampling algorithm that will ensure
7 is constrained to some specified value during
the sampling procedure.

We first give an algorithm to construct an ini-
tial transition matrix T® with a specified sta-
tionary distribution & from a given count ma-

trix C (Algorithm 3), and then use this to initial-
ize a Monte Carlo transition matrix sampling al-
gorithm that preserves the stationary distribution
(Algorithm 4).

5.6 Full Bayesian Approach with

Uncertainty in the Observables

Suppose we are interested in some experiment-
ally-measurable function of state A(x). An ex-
periment may be able to measure an expecta-
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Fig. 5.1 Illustration of sampling of transition probabil-
ity matrices for the observation C = (g 120) and a uniform
prior. Panels (a), (b), and (c) show the probability distri-
bution on the off-diagonal matrix elements. The color en-
codes the probability density, with blue = 0 and red = 1.
Each density was scaled such that its maximum is equal
to 1. (a) Analytic density of stochastic matrices. (b) Sam-

tion (A) or correlation functions (A(0)A(¢)), and
we would like to compute the corresponding
properties from the Markov model constructed
from a molecular simulation and decide whether
they agree with experiment to within statistical
uncertainty, or if a prediction from the model
is sufficiently precise to be useful. The previ-
ous framework for sampling transition matrices
can be used in the following manner: (i) Assign
the state-averaged value of the observable, a; =
f s; dxu(x)A(x), to each discrete state. (ii) Gen-
erate an ensemble of T-matrices according to the
sampling scheme described above. (iii) Calcu-
late the desired expectation or correlation func-
tion for each T-matrix using the discrete vector
a = [a;]. This approach involves several approx-
imations that each deserve discussion. Here, we
want to generalize the approach by eliminating
one important approximation—that the values a;

(b) Ti2

(=}
(=}
[N
e
'S
=4
(=)
=}
%

pled density of stochastic matrices (these matrices auto-
matically fulfill detailed balance). (¢) Stationary probabil-
ity of the first state 7r;. When sampling with respect to a
fixed stationary probability distribution 7 *, the ensemble
is fixed to the line 751 = Tio7ry /(1 — 7{). (d) Sampled
and exact density of 77, of reversible matrices with fixed
stationary distribution 7* = (0.5, 0.5)

are known exactly without statistical error them-
selves.

In a typical simulation scenario, the average a;
is itself calculated by a statistical sample. When
a simulation trajectory X, is available, then typi-
cally the time average

5 = > Xi (X)) A(Xy)

i = 5.21
Zt Xi(Xt) ( )

is employed, where y; is the indicator function of
state i. The estimate a; may in fact have signif-
icant statistical error because the number of un-
correlated samples of x; inside any state i is fi-
nite, and possibly rather small. In order to esti-
mate the distribution of expectation or correlation
functions of A due to both, the statistical uncer-
tainty of T and the statistical uncertainty of d;, we
propose a full Bayesian approach using a Gibbs



68

F. Noé and J.D. Chodera

"
—
-

(a)

(d
| u
(€3] T31 ()

Fig. 5.2 Visualization of the probability density of tran-

821
sition matrices for the count matrix C°P = (2 10 %) and
236
a uniform prior. Different two-dimensional joint marginal

distributions are shown in the rows. The analytic and sam-
pled distributions for stochastic matrices are shown in

sampling scheme, here illustrated for the expec-
tation E[A] (Algorithm 5).

While the transition matrix T® can be sam-
pled using the framework described in the pre-
vious sections, an approach to sample a®) intro-
duced in Ref. [2] is described subsequently.

5.6.1 Sampling State Expectations a*)

Consider the expectation of some molecular ob-
servable A(x) computed from Eq. (5.21). Tem-
porally sequential samples A; = A(x;) collected
with a temporal resolution of the Markov time
T are subsequently presumed to be uncorrelated.

; | . | .
T12 (b) T12 (c) T12
| . | .
~ ~
-
T21 (e) T21
| .
[azl
Ll -

T21

T32

T31 i) T31

columns 1 and 2, respectively. Column 3 shows the sam-
pled distribution for stochastic matrices fulfilling detailed
balance. Note how the peaks are more sharply peaked
when the detailed balance constraint is imposed (col-
umn 3) compared to the corresponding transition matrices
without detailed balance constraint (column 2)

We also assume that the set of samples A(x;) for
those configurations X, appearing in state i are
collected in the set {A,, }fr\:: | in the remainder of
this section, generally abbreviated as {A,,}.
Because only a finite number of samples N are
collected for each state, there will be a degree of
uncertainty in this estimate. Unlike the problem
of inferring the transition matrix elements, how-
ever, we cannot write an exact expression for the
probability of observing a single sample A,, in
terms of a simple parametric form, since its prob-
ability distribution may be arbitrarily complex,

1
piAm) = — / dx8(An — A1), (5.22)

i
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Algorithm 3 Generation of an initial transition matrix T given count matrix C and a specified
stationary distribution 7

Input: Stationary distribution 7 and transition count matrix C.
Output: Transition matrix T that has stationary distribution .
1. Define Y € R™" as:

TiCij TjCji . .
Yij = P) SYTEREE) s
0 i=j.

2. Define X € R"*" as:
o:miax{zx,.k},
X
_1% i,
3. Define T e R"*" ag

x,‘j

Dok Xk

O _
T =

Algorithm 4 Metropolis-Hastings Monte Carlo sampling of reversible stochastic matrices with prob-
ability distribution of stationary distributions p (i)

Input: Transition count matrix C € Ngxn. Number of samples n1, ny. Stationary distribution p ()
Output: Ensemble of reversible transition matrices, Ty, ..., Ty.

1.Fork=1...n

1.1. Draw £ ® from p(mr)

1.2. Initialize T using Algorithm 3.

13.Forli=1...n,

1.3.1. Use reversible element shift from Algorithm 2 to update the transition matrix.

Algorithm S Gibbs sampler for the joint estimation of p(E[A])
l.Fork=1...N
1.1. Sample observables
a® ~paa|x).
1.2. Sample transition matrix
T ~ p(T|x,) = p(T| C).
1.3. Compute 7 as the stationary distribution of T®) such that
[z ©1" = [TO) [ ©1T.
1.3. Generate a sample of the expectation value:

n
A® = Z al.(k)ni(k).
i=1
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Despite this, the central limit theorem states that
the behavior of g; approaches a normal distri-
bution (generally very rapidly) as the number of
samples N increases. We will therefore make the
assumption that p;(A,,) is normal—that is, we
assume the distribution can be characterized by

mean ; and variance al.z,

Ay ~ Normal (;, oiz) (5.23)

where the normal distribution implies the proba-
bility density for A,, is approximated by

Pi(Am; pi, o)

_ 1
= (271)_1/201. lexp|:——2(Am - u,-)zj|.
20;
(5.24)

While this may seem like a drastic assumption,
it turns out this approximation allows us to do a
surprisingly good job of inferring the distribution
of the error in 8a; = a; — (A); even for a small
number of samples from each state, and gener-
ally gives an overestimate of the error (which is
arguably less dangerous than an underestimate)
for smaller sample sizes. While the validity of
this approximation is illustrated in a subsequent
example, we continue below to develop the rami-
fications of this approximation.

Consider the sample mean estimator for (A);,

Apy. (5.25)

=
1
z| -
M=

Il
MR

m

The asymptotic variance of i, which provides a
good estimate of the statistical uncertainty in [ in
the large-sample limit, is given as a simple con-
sequence of the central limit theorem,

4 = E[ (4~ Elj1)’]
&2

:VarAm G- (5.26)
N N

where the unbiased estimator for the variance
= Var A, is given by

E—Z(A f)*

(5.27)

Suppose we now assume the distribution of A
from state i is normal (Eq. (5.24)),

Alp, 0% ~Normal(p, 0%).  (5.28)
Were this to be a reasonable model, we could
model the timeseries of the observable A; =
A(x;) by the hierarchical process:

s¢ls¢—1, T ~ Bernoulli(Ty, 1, ..., Ts,_;n),

(5.29)

Ailhg,, 0 Al ~ Normal (s, , Az,)

Here, the notation Bernoulli(srq, ..., 7y) denotes
a Bernoulli scheme where discrete outcome n
has associated probability m, of being selected.
We will demonstrate below how this model does
in fact recapitulate the expected behavior in the
limit where there are sufficient samples from each
state.

We choose the (improper) Jeffreys prior [5],

p(/.L, 02) x o2 (5.30)

because it satisfies intuitively reasonable repa-
rameterization [5] and information-theoretic [3]
invariance principles. Note that this prior is uni-
form in (u, logo).

The posterior is then given by

p(. 0 | {An})

[

n=1

m| .o }p(u,oz)

N
1
—(N+2) 2
X o GXP[_F Z(Am—,u) :|
m=1
(5.31)

Rewriting in terms of the sample statistics (& and

62, we obtain

p(w.0? | {An})
1 N
acf*N+%exp:—5;5[§:<Am-—ﬁf

m=1
+N@—m1}
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p(u 1 {A )

-2

Fig.5.3 Approach to normality for marginal distribution
of the mean p(u|{A,,}). For fixed /i and 62, the marginal
posterior distribution of p (red), a scaled and shifted Stu-
dent t-distribution, rapidly approaches the normal distribu-
tion (black) expected from asymptotic statistics. The PDF
is shown for sample sizes of N =5 (the broadest), 10, 20,
and 30

1
—(N+2) ~2
xo exp{—zaz[(N— Dé

+ N — 1)?] } (5.32)
The posterior has marginal distributions
o {Am} ~Inv—x?(N — 1,62,

(5.33)

A}~ ty-1 (i, 6/N)

where o2 is distributed according to scaled in-
verse chi-square distribution with N — 1 de-
grees of freedom, and p according to Student’s
t-distribution with N — 1 degrees of freedom
that has been shifted to be centered about i and
whose width has been scaled by 62/N.

As can be seen in Fig. 5.3, as the number of
degrees of freedom increases, the marginal poste-
rior for u approaches the normal distribution with
the asymptotic behavior expected from standard
frequentest analysis for the standard error of the
mean, namely

1 — N(@, 6%/N). (5.34)

At low sample counts, the t-distribution is lower
and wider than the normal distribution, meaning
that confidence intervals computed from this dis-
tribution will be somewhat larger than those of

the corresponding normal estimate for small sam-
ples. In some sense, this partly compensates for
&2 being a poor estimate of the true variance for
small sample sizes, which would naturally lead
to underestimates of the statistical uncertainty.
In any case, this is also far from the asymptotic
limit where the normal distribution with variance
62/ N is expected to model the uncertainty well.
The posterior can also be decomposed as

p(w.o? | {Am})

=p(| o (A} P(0? | {An}).  (5.39)

This readily suggests a two-step sampling scheme
for generating uncorrelated samples of (11, c2),
in which we first sample o' from its marginal dis-
tribution, and then p from its distribution condi-
tional on o2

o {Am} ~Inv—x?(N — 1,62,
(5.36)
wlo?, {An} ~N(it, 0% /N).

Alternatively, if the scaled inverse-chi-square
distribution is not available, the xz—distribution
(among others) can be used to sample o2:

(N =1D(6%/0%) [ {An} ~ x> (N =1) (537)

where the first argument is the shape parameter
and the second argument is the scale parameter.

5.6.2 lllustration of Fully Bayesian

Sampling Scheme

Using the sampling procedures described previ-
ously, we are now equipped with a scheme to
sample from the joint posterior describing our
confidence in that a Markov model characterized
by a transition matrix T and state expectations
ri, i =1,..., M, produced the observed trajec-
tory data. Using a set of models sampled from
this posterior, we can characterize the statisti-
cal component of the uncertainty as it propagates
into equilibrium averages, non-equilibrium relax-
ations, and (non-)equilibrium correlation mea-
surements computed from the Markov model. To
ensure the correctness of this procedure, however,
we first test its ability to correctly characterize the
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posterior distribution for a finite-size sample from
a true Markovian model system.

How can we test a Bayesian posterior distri-
bution? One of the more powerful features of a
Bayesian model is its ability to provide confi-
dence intervals that correctly reflect the level of
certainty that the true value will lie within it. For
example, if the experiment were to be repeated
many times, the true value of the parameter be-
ing estimated should fall within the confidence
interval for a 95 % confidence level 95 % of the
time. As an illustrative example, consider a bi-
ased coin where the probability of turning heads
is 6. From an observed sample of N coin flips,
we can estimate 6 using a Binomial model for
the number of coin flips that turn up heads and
a conjugate Beta Jeffreys prior [3, 5]. Each time
we run an experiment and generate a new inde-
pendent collection of N samples, we get a differ-
ent posterior estimate for 6, and a different confi-
dence interval (Fig. 5.4, top). If we run many tri-
als and record what fraction of the time the true
(unknown) value of 6 falls within the confidence
interval estimated from that trial, we can see if
our model is correct. If correct, the observed con-
fidence level should match the desired confidence
level (Fig. 5.4, bottom right). Deviation from par-
ity means that the posterior is either two broad
or too narrow, and that the statistical uncertainty
is being either over- or underestimated (Fig. 5.4,
bottom left).

We performed a similar test on a three-state
model system, using a model (reversible, row-
stochastic) transition matrix for one Markov time
is given by

0.86207 0.12931 0.00862
0.15625 0.83333 0.01041
0.00199 0.00199 0.99602
(5.38)
Each state is characterized by a mean value of the
observable A(x), fixed to 3, 2, and 1 for the first,
second, and third states, respectively. The equilib-
rium populations are & ~ [0.16250.13450.7031].
Simulation from this model involves a stochas-
tic transition according to the transition element
T;; followed by observation of the value of A(x)
sampled i.i.d. from the current state’s probabil-

T(1) =

p(6 1 D)

0.28 0.3 0.32 0.34

actual confidence level

desired confidence level

Fig. 5.4 Testing the posterior for inference of a biased
coin flip experiment. Top: Posterior distribution for infer-
ring the probability of heads, 6, for a biased coin from a
sequence of N = 1000 coin flips (dark line) with 95 %
symmetric confidence interval about the mean (shaded
area). The true probability of heads is 0.3 (vertical thick
line). Posteriors from five different experiments are shown
as dotted lines. Bottom left: Desired and actual confidence
levels for an idealized normal posterior distribution that
either overestimates (upper left curves) or underestimates
(bottom right curves) the true posterior variance by dif-
ferent degrees. Bottom right: Desired and actual confi-
dence levels for the Binomial-Beta posterior for the coin
flip problem depicted in upper panel. Error bars show
95 % confidence intervals estimates from 1000 indepen-
dent experimental trials. For inference, we use a likeli-
hood function such that the observed number of heads
is Ng|6 ~ Binomial(Ny, N,6) and conjugate Jeffreys
prior [3, 5] 8 ~ Beta(1/2, 1/2) which produces posterior
0|Ng ~ Beta(Ny +1/2, Nt 4 1/2) along with constraint
Ny +Nr=N

ity distribution p;(A). Multiple independent re-
alizations of this process were carried out, and
subjected to the Bayesian inference procedure
for transition matrices and observables described
above. The nonequilibrium relaxation (A) ,, from
the initial condition pg = [100] in which all den-
sity is concentrated in state 1, as well as the au-
tocorrelation function (A(0)A(¢)), is shown in
Fig. 5.5.

With the means of p;(A) within each state
fixed as above, we considered models for p;(A)
that were either normal or exponential, using the
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100
time/t
Fig. 5.5 Observables for three-state model system. Top:
Relaxation of (A(t)),, (solid line) from initial distribu-
tion po = [100] to equilibrium expectation (A) (dash-
dotted line). Bottom: Equilibrium autocorrelation function
(A(0)A(1)) (solid line) to (A)? (dash-dotted line). The es-
timates of both (A(#)),, and (A(0)A(¢)) at 50 timesteps
(red vertical line) were assessed in the validation tests de-
scribed here

probability density functions:

pi(A) = @m) o exp[—%m — mz]
20:

1

normal

pi(A) = u; texpl—A/uil,

A >0. exponential

While the normal output distribution for p;(A)
corresponds to the hierarchical Bayesian model
that forms the basis for our approach, the expo-
nential distribution is significantly different, and
represents a challenging test case.

Figure 5.6 depicts the resulting uncertainty
estimates for both normal (top) and exponen-
tial (bottom) densities for the observable A. In
both cases, the confidence intervals are underes-
timated for short trajectory lengths (1 000 steps)
where, in many realizations, few samples are ob-

X=y
o <A>
08 . <A(t)>p

. <AQ)A®W)>

0.6

0.4

observed fraction

0.2

0.8

0.6

0.4

observed fraction

0.2

0

0 02 04 06 08 0 02 04

06 0.8 0 02 04 06 08 1

confidence interval

Fig.5.6 Confidence interval tests for model system. Top:
Expected and observed confidence intervals for three-state
system with normal distribution for observable A with
unit variance for simulations of length 1 000 (left), 10 000
(middle), and 100000 (right) steps. Confidence intervals
were estimated from generating 10000 samples from the
Bayesian posterior. Estimates of the fraction of observed
times the true value was within the confidence interval es-

timated from the Bayesian posterior were computed from
generating 1000 independent experimental realizations.
The resulting curves are shown for the equilibrium esti-
mate (A) (red), nonequilibrium relaxation (A),, (green),
and the equilibrium correlation function (A(0)A(r))
(blue). Bottom: Same as top, except an exponential dis-
tribution with the same mean was used for the probability
of observing a particular value of A within each state



74

F. Noé and J.D. Chodera

served in one or more states, so that the vari-
ance is underestimated or the effective asymp-
totic limit has not yet been reached. As the sim-
ulation length is increased to 10000 or 100000
steps so that it is much more likely there are
a sufficient number of samples in each state to
reach the asymptotic limit, however, the confi-
dence intervals predicted by the Bayesian pos-
terior become quite good. For the exponential
model for observing values of A (which might
be the case in, say, fluorescence lifetimes), we
observe similar behavior. Except for what ap-
pears to be a slight, consistent underestimation of
(A(t))p, (much less than half a standard devia-
tion) there appears to be excellent agreement be-
tween the expected and observed confidence in-
tervals, confirming that this method is expected
to be a useful approach to modeling statistical un-
certainties in equilibrium and kinetic observables.
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