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3.1 Continuous Molecular
Dynamics

A variety of simulation models that all yield the
same stationary properties, but have different dy-
namical behaviors, are available to study a given
molecular model. The choice of the dynamical
model must therefore be guided by both a desire
to mimic the relevant physics for the system of
interest (such as whether the system is allowed
to exchange energy with an external heat bath
during the course of dynamical evolution), bal-
anced with computational convenience (e.g. the
use of a stochastic thermostat in place of explic-
itly simulating a large external reservoir) [8]. Go-
ing into the details of these models is beyond
the scope of the present study, and therefore we
will simply state the minimal physical proper-
ties that we expect the dynamical model to obey.
In the following we pursue the theoretical out-
line from Ref. [31] (Sects. 3.1–3.7) and Ref. [37]
(Sects. 3.1–3.8) which should both be used for
reference purposes.

Consider a state space Ω which contains all
dynamical variables needed to describe the in-
stantaneous state of the system. Ω may be dis-
crete or continuous, and we treat the more gen-
eral continuous case here. For molecular systems,
Ω usually contains both positions and velocities
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of the species of interest and surrounding bath
particles. x(t) ∈ Ω will denote the state of the
system at time t . The dynamical process consid-
ered is (x(t))t∈T , T ⊂ R0+, which is continuous
in space, and may be either time-continuous (for
theoretical investigations) or time-discrete (when
considering time-stepping schemes for computa-
tional purposes). For the rest of the article, the dy-
namical process will also be denoted by x(t) for
the sake of simplicity; we assume that x(t) has
the following properties:
1. x(t) is a Markov process in the full state space

Ω , i.e. the instantaneous change of the sys-
tem (dx(t)/dt in time-continuous dynamics
and x(t + �t) in time-discrete dynamics with
time step �t), is calculated based on x(t)

alone and does not require the previous his-
tory. In addition, we assume that the process
is time-homogeneous, such that the transition
probability density p(x,y; τ) for x,y ∈ Ω and
τ ∈R0+ is well-defined:

p(x,A; τ) = P
[
x(t + τ) ∈ A

∣∣ x(t) = x
]

(3.1)

i.e. the probability that a trajectory started at
time t from the point x ∈ Ω will be in set
A at time t + τ . Such a transition probabil-
ity density for the diffusion process in a one-
dimensional potential is depicted in Fig. 3.1b.
Whenever p(x,A; τ) has an absolutely con-
tinuous probability density p(x,y; τ) it is
given by integrating the transition probability
density over region A:
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p(x,A; τ) = P
[
x(t + τ) ∈ A

∣∣ x(t) = x
]

(3.2)

=
∫

A

dyp(x,y; τ). (3.3)

2. x(t) is ergodic, i.e., the process x(t) is ape-
riodic, the space Ω does not have two or
more subsets that are dynamically discon-
nected, and for t → ∞ each state x will be
visited infinitely often. The running average
of a function f : Ω → R

d then is given by
a unique stationary density μ(x) in the sense
that for almost every initial state x we have

lim
T →∞

1

T

∫ T

0
dt f

(
x(t)

) =
∫

Ω

dxf (x)μ(x),

that is, the fraction of time that the system
spends in any of its states during an infinitely
long trajectory is given by the stationary den-
sity (invariant measure) μ(x) : Ω → R0+
with

∫
Ω

dxμ(x) = 1, where the stationarity
of the density means that

∫

A

dxμ(x) =
∫

Ω

dxp(x,A; τ)μ(x),

which takes the simpler form

μ(y) =
∫

Ω

dxp(x,y; τ)μ(x),

whenever the transition probability has a den-
sity. We assume that this stationary density
μ is unique. In cases relevant for molecular
dynamics the stationary density always corre-
sponds to the equilibrium probability density
for some associated thermodynamic ensemble
(e.g. NVT, NpT). For molecular dynamics at
constant temperature T , the dynamics above
yield a stationary density μ(x) that is a func-
tion of T , namely the Boltzmann distribution

μ(x) = Z(β)−1 exp
(−βH(x)

)
(3.4)

with Hamiltonian H(x) and β = 1/kBT where
kB is the Boltzmann constant and kBT is the
thermal energy. Z(β) = ∫

dx exp(−βH(x))

is the partition function. By means of illustra-
tion, Fig. 3.1a shows the stationary density
μ(x) for a diffusion process on a potential
with high barriers.

3. x(t) is reversible, i.e., p(x,y; τ) fulfills the
condition of detailed balance:

μ(x)p(x,y; τ) = μ(y)p(y,x; τ), (3.5)

i.e., in equilibrium, the fraction of systems
transitioning from x to y per time is the same
as the fraction of systems transitioning from
y to x. Note that this “reversibility” is a more
general concept than the time-reversibility of
the dynamical equations e.g. encountered in
Hamiltonian dynamics. For example, Brown-
ian dynamics on some potential are reversible
as they fulfill Eq. (3.5), but are not time-
reversible in the same sense as Hamiltonian
dynamics are, due to the stochasticity of indi-
vidual realizations. Although detailed balance
is not essential for the construction of Markov
models, we will subsequently assume detailed
balance as this allows much more profound
analytical statements to be made, and just
comment on generalizations here and there.
The rationale is that one typically expects de-
tailed balance to be fulfilled in equilibrium
molecular dynamics based on a simple phys-
ical argument: For dynamics that have no
detailed balance, there exists a set of states
which form a loop in state space which is tra-
versed in one direction with higher probabil-
ity than in the reverse direction. This means
that one could design a machine which uses
this preference of direction in order to produce
work. However, a system in equilibrium is
driven only by thermal energy, and conversion
of pure thermal energy into work contradicts
the second law of thermodynamics. Thus, this
argument concludes that equilibrium molecu-
lar dynamics must be reversible and fulfill de-
tailed balance. Despite the popularity of this
argument there are dynamical processes used
in molecular dynamics that do not satisfy de-
tailed balance in the above sense. Langevin
molecular dynamics may be the most promi-
nent example. However, the Langevin process
exhibits an extended detailed balance [18]

μ(x)p(x,y; τ) = μ(Ay)p(Ay,Ax; τ),

where A is the linear operation that flips the
sign of the momenta in the state x. This prop-
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Fig. 3.1 (a) Potential energy function with four
metastable states and corresponding stationary density
μ(x). (b) Density plot of the transfer operator for a simple
diffusion-in-potential dynamics defined on the range Ω =
[0,100], black and red indicates high transition probabil-
ity, white zero transition probability. Of particular interest
is the nearly block-diagonal structure, where the transi-
tion density is large within blocks allowing rapid transi-
tions within metastable basins, and small or nearly zero
for jumps between different metastable basins. (c) The

four dominant eigenfunctions of the transfer operator,
ψ1, . . . ,ψ4, which indicate the associated dynamical pro-
cesses. The first eigenfunction is associated to the station-
ary process, the second to a transition between A + B ↔
C +D and the third and fourth eigenfunction to transitions
between A ↔ B and C ↔ D, respectively. (d) The four
dominant eigenfunctions of the transfer operator weighted
with the stationary density, φ1, . . . , φ4. (e) Eigenvalues of
the transfer operator, The gap between the four metastable
processes (λi ≈ 1) and the fast processes is clearly visible
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erty allows to reproduce the results for pro-
cesses with detailed balance to this case, see
remarks below.
The above conditions do not place overly bur-

densome restrictions on the choices of dynami-
cal models used to describe equilibrium dynam-
ics. Many stochastic thermostats are consistent
with the above assumptions, e.g. Hybrid Monte
Carlo [14, 37], overdamped Langevin (also called
Brownian or Smoluchowski) dynamics [15, 16],
and stepwise-thermalized Hamiltonian dynam-
ics [42]. When simulating solvated systems, a
weak friction or collision rate can be used; this
can often be selected in a manner that is phys-
ically motivated by the heat conductivity of the
material of interest and the system size [1].

We note that the use of finite-timestep inte-
grators for these models of dynamics can some-
times be problematic, as the phase space density
sampled can differ from the density desired. Gen-
erally, integrators based on symplectic Hamilto-
nian integrators (such as velocity Verlet [42]) of-
fer greater stability for our purposes.

While technically, a Markov model analysis
can be constructed for any choice of dynami-
cal model, it must be noted that several popu-
lar dynamical schemes violate the assumptions
above, and using them means that one is (cur-
rently) doing so without a solid theoretical ba-
sis, e.g. regarding the boundedness of the dis-
cretization error analyzed in Sect. 3.3 below. For
example, Nosé-Hoover and Berendsen are either
not ergodic or do not generate the correct sta-
tionary distribution for the desired ensemble [10].
Energy-conserving Hamiltonian dynamics on one
hand may well be ergodic regarding the projected
volume measure on the energy surface but this in-
variant measure is not unique, and on the other
hand it is not ergodic wrt. the equilibrium proba-
bility density for some associated thermodynamic
ensemble of interest.

3.2 Transfer Operator Approach
and the Dominant Spectrum

At this point we shift from focusing on the evo-
lution of individual trajectories to the time evo-
lution of an ensemble density. Consider an en-

semble of molecular systems at a point in time t ,
distributed in state space Ω according to a proba-
bility density pt(x) that is different from the sta-
tionary density μ(x). If we now wait for some
time τ , the probability distribution of the ensem-
ble will have changed because each system copy
undergoes transitions in state space according
to the transition probability density p(x,y; τ).
The change of the probability density pt (x) to
pt+τ (x) can be described with the action of a con-
tinuous operator. From a physical point of view,
it seems straightforward to define the propagator
Q(τ ) as follows:

pt+τ (y) = Q(τ ) ◦ pt(y) (3.6)

=
∫

Ω

dxp(x,y; τ)pt (x). (3.7)

Applying Q(τ ) to a probability density pt(x) will
result in a modified probability density pt+τ (x)

that is more similar to the stationary density μ(x),
to which the ensemble must relax after infinite
time. An equivalent description is provided by the
transfer operator T (τ ) [36, 37], which has nicer
properties from a mathematical point of view.
T (τ ) is defined as [35, 36, 39]:

ut+τ (y) = T (τ ) ◦ ut (y) (3.8)

= 1

μ(y)

∫

Ω

dxp(x,y; τ)μ(x)ut (x).

(3.9)

T (τ ) does not propagate probability densities,
but instead functions ut (x) that differ from prob-
ability densities by a factor of the stationary den-
sity μ(x), i.e.:

pt(x) = μ(x)ut (x). (3.10)

The relationship between the two densities and
operators is shown in the scheme below:

pt
Q(τ )−→ pt+τ probability densities

↓ ·μ−1 ↑ ·μ
ut

T (τ )−→ ut+τ densities in μ-weighted space

It is important to note that Q and T in fact do
not only propagate probability densities but gen-
eral functions f : Ω → R. Since both operators
have the property to conserve positivity and mass,
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a probability density is always transported into a
probability density.

Alternatively to Q and T which describe the
transport of densities exactly by a chosen time-
discretization τ , one could investigate the den-
sity transport with a time-continuous operator L
called generator which is the continuous basis of
rate matrices that are frequently used in physical
chemistry [5, 40, 41] and is related to the Fokker-
Planck equation [22, 36]. Here, we do not inves-
tigate L in detail, but only point out that the ex-
istence of a generator implies that we have

T (τ ) = exp(τL ), (3.11)

with L acting on the same μ-weighted space
as T , while Q(τ ) = exp(τL) for L acting on
the unweighted densities/functions. The so-called
semigroup-property (3.11) implies that T (τ ) and
L have the same eigenvectors, while the eigen-
values λ of T (τ ) and the eigenvalues η of L
are related via λ = exp(τη). This is of importance
since most of the following considerations using
T (τ ) can be generalized to L .

Equation (3.9) is a formal definition. When the
particular kind of dynamics is known it can be
written in a more specific form [37]. However,
the general form (3.9) is sufficient for the present
analysis. The continuous operators have the fol-
lowing general properties:
• Both Q(τ ) and T (τ ) fulfill the Chapman–

Kolmogorov Equation

pt+kτ (x) = [
Q(τ )

]k ◦ pt (x), (3.12)

ut+kτ (x) = [
T (τ )

]k ◦ ut (x) (3.13)

where [T (τ )]k refers to the k-fold application
of the operator, i.e. Q(τ ) and T (τ ) can be
used to propagate the evolution of the dynam-
ics to arbitrarily long times t + kτ .

• We consider the two operators on the Hilbert
space of square integrable functions. More
specifically, we work with two Hilbert spaces,
one with unweighted functions,

L2 =
{
u : Ω → C :

‖u‖2
2 =

∫

Ω

dx
∣
∣u(x)

∣
∣2

< ∞
}
,

in which we consider Q, the other with μ-
weighted functions

L2
μ =

{
u : Ω →C:

‖u‖2
2,μ =

∫

Ω

dx
∣∣u(x)

∣∣2
μ(x) < ∞

}
,

where we consider T . These spaces come
with the following two scalar products

〈u,v〉 =
∫

Ω

dxu(x)∗v(x),

〈u,v〉μ =
∫

Ω

dxu(x)∗v(x)μ(x),

where the star indicates complex conjugation.
• Q(τ ) has eigenfunctions φi(x) and associated

eigenvalues λi (see Figs. 3.1c and e):

Q(τ ) ◦ φi(x) = λiφi(x), (3.14)

while T (τ ) has eigenfunctions ψi(x) with the
same corresponding eigenvalues:

T (τ ) ◦ ψi(x) = λiψi(x). (3.15)

When the dynamics are reversible, all eigen-
values λi are real-valued and lie in the interval
−1 < λi ≤ 1 [36, 37] (this is only true in L2

μ

and not in the other function spaces). More-
over, the two types of eigenfunctions are re-
lated by a factor of the stationary density μ(x):

φi(x) = μ(x)ψi(x), (3.16)

and their lengths are defined by the normaliza-
tion condition that the scalar product is unity
for all corresponding eigenfunctions:

〈φi,ψi〉 = 〈ψi,ψi〉μ = 1

for all i = 1 . . .m. Due to reversibility, non-
corresponding eigenfunctions are orthogonal:

〈φi,ψj 〉 = 0

for all i �= j . When T (τ ) is approximated by a
reversible transition matrix on a discrete state
space, φi(x) and ψi(x) are approximated by
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the left and right eigenvectors of that transi-
tion matrix, respectively (compare Figs. 3.1c
and d).

• In general the spectrum of the two opera-
tors contains a continuous part, called the es-
sential spectrum, and a discrete part, called
the discrete spectrum that contains only iso-
lated eigenvalues [19]. The essential spectral
radius 0 ≤ r ≤ 1 is the minimal value such
that for all elements λ of the essential spec-
trum we have |λ| ≤ r . In all of the follow-
ing we assume that the essential spectral ra-
dius is bounded away from 1 in L2

μ, that is,
0 ≤ r < 1. Then, every element λ of the spec-
trum with |λ| > r is in the discrete spectrum,
i.e., is an isolated eigenvalue for which an
eigenvector exists. Our assumption is not al-
ways satisfied but is a condition on the dynam-
ics: For example, for deterministic Hamilto-
nian systems it is r = 1, while for Langevin
dynamics with periodic boundary conditions
or with fast enough growing potential at infin-
ity, we have r = 0. In the following, we as-
sume r < 1 and ignore the essential spectrum;
we only consider a finite number of m isolated,
dominant eigenvalue/eigenfunction pairs and
sort them by non-ascending eigenvalue, i.e.
λ1 = 1 > λ2 ≥ λ3 ≥ · · · ≥ λm, with r < |λm|.
In addition we assume that the largest eigen-
value λ = 1 is simple so that μ is the only in-
variant measure.

• The eigenfunction associated with the largest
eigenvalue λ = 1 corresponds to the stationary
distribution μ(x) (see Fig. 3.1d, top):

Q(τ ) ◦ μ(x) = μ(x) = φ1(x), (3.17)

and the corresponding eigenfunction of T (τ ))
is a constant function on all state space Ω (see
Fig. 3.1c, top):

T (τ ) ◦ 1 = 1 = ψ1(x), (3.18)

due to the relationship φ1(x) = μ(x)ψ1(x) =
μ(x).

To see the significance of the other eigen-
value/eigenfunction pairs, we exploit that the dy-
namics can be decomposed exactly into a super-
position of m individual slow dynamical pro-
cesses and the remaining fast processes. For

T (τ ), this yields:

ut+kτ (x) = Tslow(kτ ) ◦ ut (x)

+ Tfast(kτ ) ◦ ut (x) (3.19)

=
m∑

i=1

λk
i 〈ut ,φi〉ψi(x)

+ Tfast(kτ ) ◦ ut (x) (3.20)

=
m∑

i=1

λk
i 〈ut ,ψi〉μψi(x)

+ Tfast(kτ ) ◦ ut (x). (3.21)

Here, Tslow is the dominant, or slowly-
decaying part consisting of the m slowest pro-
cesses with λi ≥ λm, while Tfast contains all (in-
finitely many) fast processes that are usually not
of interest and which decay with geometric rate
at least as fast as |λm+1|k :

‖Tfast(kτ ) ◦ ut‖2
2,μ

‖ut‖2
2,μ

≤ |λm+1|k.

This decomposition requires that subspaces Tslow

and Tfast are orthogonal, which is a consequence
of detailed balance. This decomposition permits
a compelling physical interpretation: The slow
dynamics are a superposition of dynamical pro-
cesses, each of which can be associated to one
eigenfunction ψi (or φi ) and a corresponding
eigenvalue λi (see Figs. 3.1c–e). These processes
decay with increasing time index k. In the long-
time limit where k → ∞, only the first term with
λ1 = 1 remains, recovering to the stationary dis-
tribution φ1(x) = μ(x). All other terms corre-
spond to processes with eigenvalues λi < 1 and
decay over time, thus the associated eigenfunc-
tions correspond to processes that decay under
the action of the dynamics and represent the dy-
namical rearrangements taking place while the
ensemble relaxes towards the equilibrium distri-
bution. The closer λi is to 1, the slower the corre-
sponding process decays; conversely, the closer it
is to 0, the faster.

Thus the λi for i = 2, . . . ,m each correspond
to a physical timescale, indicating how quickly
the process decays or transports density toward
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equilibrium (see Fig. 3.1e):

ti = − τ

lnλi

, (3.22)

which is often called the ith implied timescale
[8, 42]. Thus, Eq. (3.19) can be rewritten in terms
of implied timescales as:

ut+kτ (x) = 1 +
m∑

i=2

exp

(
−kτ

ti

)
〈ut ,ψi〉μψi(x)

+ Tfast(kτ ) ◦ ut (x). (3.23)

This implies that when there are gaps amongst
the first m eigenvalues, the system has dynami-
cal processes acting simultaneously on different
timescales. For example, a system with two-state
kinetics would have λ1 = 1, λ2 ≈ 1 and λ3 � λ2

(t3 � t2), while a system with a clear involvement
of an additional kinetic intermediate would have
λ3 ∼ λ2 (t3 ∼ t2).

In Fig. 3.1, the second process, ψ2, corre-
sponds to the slow (λ2 = 0.9944) exchange be-
tween basins A + B and basins C + D, as re-
flected by the opposite signs of the elements
of ψ2 in these regions (Fig. 3.1c). The next-
slowest processes are the A ↔ B transition and
then the C ↔ D transition, while the subsequent
eigenvalues are clearly separated from the domi-
nant spectrum and correspond to much faster lo-
cal diffusion processes. The three slowest pro-
cesses effectively partition the dynamics into four
metastable states corresponding to basins A, B ,
C and D, which are indicated by the different
sign structures of the eigenfunctions (Fig. 3.1c).
The metastable states can be calculated from
the eigenfunction structure, e.g. using the PCCA
method [11, 12, 32].

Of special interest is the slowest relaxation
time, t2. This timescale identifies the worst case
global equilibration or decorrelation time of the
system; no structural observable can relax more
slowly than this timescale. Thus, if one desires to
calculate an expectation value E(a) of an observ-
able a(x) which has a non-negligible overlap with
the second eigenfunction, 〈a,ψ2〉 > 0, a straight-
forward single-run MD trajectory would need to
be many times t2 in length in order to compute an
unbiased estimate of E(a).

3.3 Discretization of State Space

While molecular dynamics in full continuous
state space Ω is Markovian by construction,
the term Markov State Model (MSM) or shortly
Markov model is due to the fact that in practice,
state space must be somehow discretized in order
to obtain a computationally tractable description
of the dynamics as it has first been introduced
in [35]. The Markov model then consists of the
partitioning of state space used together with the
transition matrix modeling the jump process of
the observed trajectory projected onto these dis-
crete states. However, this jump process (Fig. 3.2)
is no longer Markovian, as the information where
the continuous process would be within the local
discrete state is lost in the course of discretiza-
tion. The jump statistics generated by the projec-
tion, however, defines a Markov process on the
discrete state space associated with the partition.
Modeling the long-time statistics of the original
process with this discrete state space Markov pro-
cess is an approximation, i.e., it involves a dis-
cretization error. In the current section, this dis-
cretization error is analyzed and it is shown what
needs to be done in order to keep it small.

The discretization error is a systematic error
of a Markov model since it causes a determinis-
tic deviation of the Markov model dynamics from
the true dynamics that persists even when the sta-
tistical error is excluded by excessive sampling.
In order to focus on this effect alone, it is assumed
in this section that the statistical estimation error
is zero, i.e., transition probabilities between dis-
crete states can be calculated exactly. The results
suggest that the discretization error of a Markov
model can be made small enough for the MSM
to be useful in accurately describing the relax-
ation kinetics, even for very large and complex
molecular systems. This approach is illustrated in
Fig. 3.3.

In practical use, the Markov model is not
obtained by actually discretizing the continuous
propagator. Rather, one defines a discretization of
state space and then estimates the corresponding
discretized transfer operator from a finite quantity
of simulation data, such as several long or many
short MD trajectories that transition between the
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Fig. 3.2 Scheme: The true continuous dynamics (dashed
line) is projected onto the discrete state space. MSMs ap-
proximate the resulting jump process by a Markov jump
process

Fig. 3.3 Illustration of our approach: The continuous dy-
namics is highly nonlinear and has many scales. It is rep-
resented by the linear propagator T , whose discretiza-
tion yields a finite-dimensional transition matrix that rep-
resents the Markov State Model (MSM). If the discretiza-
tion error is small enough, the Markov chain or jump pro-
cess induced by the MSM is a good approximation of the
dominant timescales of the original continuous dynamics

discrete states. The statistical estimation error in-
volved in this estimation will be discussed in the
subsequent chapters; the rest of the current chap-
ter focuses only on the approximation error due
to discretization of the transfer operator.

Here we consider a discretization of state
space Ω into n sets. In practice, this discretiza-
tion is often a simple partition with sharp bound-
aries, but in some cases it may be desirable to
discretize Ω into fuzzy sets [46]. We can de-
scribe both cases by defining membership func-
tions χi(x) that quantify the probability of point
x to belong to set i [47] which have the property∑n

i=1 χi(x) = 1. We will concentrate on a crisp

partitioning with step functions:

χi(x) = χ
crisp
i (x) =

{
1 x ∈ Si,

0 x /∈ Si.
(3.24)

Here we have used n sets S = {S1, . . . , Sn}
which entirely partition state space (

⋃n
i=1 Si =

Ω) and have no overlap (Si ∩ Sj = ∅ for all
i �= j ). A typical example of such a crisp parti-
tioning is a Voronoi tessellation [45], where one
defines n centers x̄i , i = 1 . . . n, and set Si is the
union of all points x ∈ Ω which are closer to x̄i

than to any other center using some distance met-
ric (illustrated in Figs. 3.4b and c). Note that such
a discretization may be restricted to some subset
of the degrees of freedom, e.g. in MD one often
ignores velocities and solvent coordinates when
discretizing.

The stationary probability πi to be in set i is
then given by the full stationary density as:

πi =
∫

x∈Si

dxμ(x),

and the local stationary density μi(x) restricted
to set i (see Fig. 3.4b) is given by

μi(x) =
{

μ(x)
πi

x ∈ Si,

0 x /∈ Si.
(3.25)

These properties are local, i.e. they do not re-
quire information about the full state space.

3.4 Transition Matrix

Together with the discretization, the Markov
model is defined by the row-stochastic transi-
tion probability matrix, T(τ ) ∈ R

n×n, which is
the discrete approximation of the transfer opera-
tor described in Sect. 3.2 via:

Tij (τ ) = 〈χj , (T (τ ) ◦ χi)〉μ
〈χi,χi〉μ (3.26)

Physically, each element Tij (τ ) represents the
time-stationary probability to find the system in
state j at time t + τ given that it was in state i at
time t . By definition of the conditional probabil-
ity, this is equal to:
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Fig. 3.4 Crisp state space discretization illustrated on a
one-dimensional two-well and a two-dimensional three-
well potential. (a) Two-well potential (black) and station-
ary distribution μ(x) (red). (b) Characteristic functions
v1(x) = χ1(x), v2(x) = χ2(x) (black and red). This dis-

cretization has the corresponding local densities μ1(x),
μ2(x) (blue and yellow), see Eq. (3.25). (c) Three-well po-
tential (black contours indicate the isopotential lines) with
a crisp partitioning into three states using a Voronoi parti-
tion with the centers denoted (+)

Tij (τ ) = P
[
x(t + τ) ∈ Sj

∣∣ x(t) ∈ Si

]
(3.27)

= P[x(t + τ) ∈ Sj ∩ x(t) ∈ Si]
P[x(t) ∈ Si] (3.28)

=
∫
Si

dxμi(x)p(x, Sj ; τ)
∫

x dxμi(x)
, (3.29)

where we have used Eq. (3.2). Note that in
this case the integrals run over individual sets
and only need the local equilibrium distributions
μi(x) as weights. This is a very powerful fea-
ture: In order to estimate transition probabilities,
we do not need any information about the global
equilibrium distribution of the system, and the
dynamical information needed extends only over
time τ . In principle, the full dynamical informa-
tion of the discretized system can be obtained
by initiating trajectories of length τ out of each
state i as long as we draw the starting points of
these simulations from a local equilibrium den-
sity μi(x) [24, 37, 47].

The transition matrix can also be written in
terms of correlation functions [42]:

Tij (τ ) = E[χi(x(t))χj (x(t + τ))]
E[χi(x(t))] = ccorr

ij (τ )

πi

,

(3.30)

where the unconditional transition probability
ccorr
ij (τ ) = πiTij (τ ) is an equilibrium time cor-

relation function which is normalized such that∑
i,j ccorr

ij (τ ) = 1. For dynamics fulfilling de-
tailed balance, the correlation matrix is symmet-
ric (ccorr

ij (τ ) = ccorr
ji (τ )).

Since the transition matrix T(τ ) is a discretiza-
tion of the transfer operator T [35, 36, 36, 37]
(Sect. 3.2), we can relate the functions that are
transported by T (functions ut in Eq. (3.8)) to
column vectors that are multiplied to the matrix
from the right while the probability densities pt

(Eq. (3.10)) correspond to row vectors that are
multiplied to the matrix from the left. Suppose
that p(t) ∈R

n is a column vector whose elements
denote the probability, or population, to be within
any set j ∈ {1, . . . , n} at time t . After time τ , the
probabilities will have changed according to:

pj (t + τ) =
n∑

i=1

pi(t)Tij (τ ), (3.31)

or in matrix form:

pT (t + τ) = pT (t)T(τ ) (3.32)

Note that an alternative convention often used
in the literature is to write T(τ ) as a column-
stochastic matrix, obtained by taking the trans-
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pose of the row-stochastic transition matrix de-
fined here.

The stationary probabilities of discrete states,
πi , yield the unique discrete stationary distribu-
tion of T:

πT = πT T(τ ). (3.33)

All equations encountered so far are con-
cerned with the discrete state space given by the
partition sets, i.e., pT (t) and pT (t + τ) are proba-
bility distribution on the discrete state space. The
probability distribution on the continuous state
space related to pT (t) is

ut (x) =
∑

i

pi(t)χi(x).

If we propagate ut with the true dynamics for
time τ , we get ut+τ = T (τ ) ◦ ut . However, ut+τ

and pT (t + τ) will no longer be perfectly related
as above, i.e., we will only have

ut+τ (x) ≈
∑

i

pi(t + τ)χi(x).

We wish now to understand the error involved
with this approximation. Moreover, we wish to
model the system kinetics on long timescales by
approximating the true dynamics with a Markov
chain on the discrete state space of n states. Us-
ing T(τ ) as a Markov model predicts that for
later times, t + kτ , the probability distribution
will evolve as:

pT (t + kτ) = pT (t)Tk(τ ), (3.34)

on the discrete state space which can only approx-
imate the true distribution,

ut+kτ = (
T (τ )

)k ◦ ut ,

that would have been produced by the continuous
transfer operator, as Eq. (3.34) is the result of a
state space discretization. The discretization error
involved in this approximation thus depends on
how this discretization is chosen and is analyzed
in detail below. A description alternative to that
of transition matrices quite common in chemical
physics is using rate matrices and Master equa-
tions [5, 24, 26, 40, 41, 48].

3.5 Discretization Error and
Non-Markovianity

The Markov model T(τ ) is indeed a model in the
sense that it only approximates the long-time dy-
namics based on a discretization of state space,
making the dynamical equation (3.34) approxi-
mate. Here we analyze the approximation quality
of Markov models in detail and obtain a descrip-
tion that reveals which properties the state space
discretization and the lag time τ must fulfill in
order to obtain a good model.

Previous works have mainly discussed the
quality of a Markov model in terms of its “Marko-
vianity” and introduced tests of Markovianity of
the process x(t) projected onto the discrete state
space. The space-continuous dynamics x(t) de-
scribed in Sect. 3.1 is, by definition, Markovian
in full state space Ω and it can thus be exactly de-
scribed by a linear operator, such as the transfer
operator T (τ ) defined in Eq. (3.8). The prob-
lem lies in the fact that by performing a state
space discretization, continuous states x ∈ Ω are
grouped into discrete states si (Sect. 3.3), thus
“erasing” information of the exact location within
these states and “projecting” a continuous trajec-
tory x(t) onto a discrete trajectory s(t) = s(x(t)).
This jump process, s(t), is not Markovian, but
Markov models attempt to approximate s(t) with
a Markov chain.

Thus, non-Markovianity occurs when the full
state space resolution is reduced by mapping the
continuous dynamics onto a reduced space. In
Markov models of molecular dynamics, this re-
duction consists usually of both neglect of de-
grees of freedom and discretization of the re-
solved degrees of freedom. Markov models typi-
cally only use atom positions, thus the velocities
are projected out [9, 32]. So far, Markov models
have also neglected solvent degrees of freedom
and have only used the solute coordinates [9, 33],
and the effect of this was studied in detail in [23].
Indeed, it may be necessary to incorporate sol-
vent coordinates in situations where the solvent
molecules are involved in slow processes that are
not easily detected in the solute coordinates [25].
Often, Markov models are also based on distance
metrics that only involve a subset of the solute
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Fig. 3.5 Illustration of the discretization error by com-
paring the dynamics of the diffusion in a double well po-
tential (a, e) (see Supplementary Information for setup)
at time steps 0 (b), 250 (c), 500 (d) with the pre-
dictions of a Markov model parametrized with a too
short lag time τ = 250 at the corresponding times 0 (f),
250 (g), 500 (h). (b, c, d) show the true density pt (x)

(solid black line) and the probabilities associated with

the two discrete states left and right of the dashed line.
The numbers in (f, g, h) are the discrete state prob-
abilities pi(t + kτ) predicted by the Markov model
while the solid black line shows the hypothetical den-
sity pi(t + kτ)μi(x) that inherently assumed by the
Markov model by using the discrete state probabilities
to correspondingly weight the local stationary densi-
ties

atoms, such as RMSD between heavy atom or al-
pha carbon coordinates [4, 9, 33], or backbone
dihedral angles [5, 32]. Possibly the strongest ap-
proximation is caused by clustering or lumping
sets of coordinates in the selected coordinate sub-
space into discrete states [4, 5, 9, 26, 33]. For-
mally, all of these operations aggregate sets of
points in continuous state space Ω into discrete
states, and the question to be addressed is what is
the magnitude of the discretization error caused
by treating the non-Markovian jump process be-
tween these sets as a Markov chain.

Consider the diffusive dynamics model de-
picted in Fig. 3.5a and let us follow the evolu-
tion of the dynamics given that we start from
a local equilibrium in basin A (Fig. 3.5b), ei-
ther with the exact dynamics, or with the Markov
model dynamics on the discrete state space A

and B . After a step τ , both dynamics have trans-
ported a fraction of 0.1 of the ensemble to B . The
true dynamics resolves the fact that much of this
is still located near the saddle point (Fig. 3.5c).
The Markov model cannot resolve local densi-
ties within its discrete states, which is equivalent
to assuming that for the next step the ensemble
has already equilibrated within the discrete state
(Fig. 3.5g). This difference affects the discrete
state (basin) probabilities at time 2τ : In the true
dynamics, a significant part of the 0.1 fraction can
cross back to A as it is still near the saddle point,
while this is not the case in the Markov model
where the 0.1 fraction is assumed to be relaxed
to states mostly around the minimum (Compare
Figs. 3.5d and h). As a result, the probability to
be in state B is higher in the Markov model than
in the true dynamics. The difference between the
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Markov model dynamics and the true dynamics
is thus a result of discretization, because the dis-
cretized model can no longer resolve deviations
from local equilibrium density μi(x) within the
discrete state.

This picture suggests the discretization error to
have two properties: (a) the finer the discretiza-
tion, the smaller the discretization error is, and
(b) when increasing the coarse-graining time, or
time resolution, of our model, τ , the errors for any
fixed point in time t should diminish, because we
have less often made the approximation of impos-
ing local equilibrium.

3.6 Quantifying the Discretization
Error

In order to quantify the discretization error, we
will exploit the fact that the construction of a
Markov State Model can be related to a projec-
tion of the transfer operator T (τ ). This projec-
tion, denoted Q, is the orthogonal projection with
respect to the scalar product 〈·, ·〉μ onto a finite
dimensional space D spanned by a given basis
q1, . . . , qn, e.g., for qi = χi being the characteris-
tic functions from (3.24) that are associated with
a crisp partitioning of the state space. For a gen-
eral function u, Qu is the best possible represen-
tation of u in the space D. In general, it can be
calculated [32, 37, 40] that the projected propa-
gation operator, that is, the best representation of
the propagator T in our space D, has the form
QT (τ )Q. It can be represented by the matrix
T(τ ) = T (τ)M−1 with

Tij (τ ) = 〈qj , (T (τ ) ◦ qi)〉μ
〈qi, qi〉μ ,

Mij = 〈qj , qi〉μ
〈qi, qi〉μ .

(3.35)

If we choose qi = χi being the characteristic
functions from (3.24) that are associated with
a crisp partitioning of the state space into sets
S1, . . . , Sn, we find M = Id because of orthog-
onality of the characteristic functions. Moreover,
in this case, as calculated in (3.29)

T(τ )ij = Tij (τ ) = P
[
x(t + τ) ∈ Sj

∣∣ x(t) ∈ Si

]
.

This means that this MSM transition matrix can
be interpreted as the projection of the transfer
operator with Q being the projection onto the
discretization basis. Together with Fig. 3.5 this
suggests a practical measure to quantify the dis-
cretization error. Densities, eigenfunctions or any
other function f (x) of the continuous state x, are
approximated by its best-approximations f̂ (x) =
Qf (x) within the space spanned by the dis-
cretization basis q1, . . . , qn. In the case of a crisp
partitioning of state space, functions f (x) are ap-
proximated through the discretization S1, . . . , Sn

by step functions f̂ (x) that are constant within
the discrete states:

f̂ (x) = Qf (x) =
n∑

i=1

aiχi(x) (3.36)

where the coefficients are given by the projection
weighted by the probability of each state:

ai = 〈f,χi〉μ
〈1, χi〉μ =

∫
Si

dxμ(x)f (x)
∫
Si

dxμ(x)
. (3.37)

The approximation error that is caused by the
discretization is then defined as the μ-weighted
Euclidean norm ‖ · ‖μ,2 of the difference between
discretized and original function:

δf ≡ ∥∥f (x) − f̂ (x)
∥∥

μ,2 (3.38)

=
(∫

Ω

dxμ(x)
(
f (x) − f̂ (x)

)2
)1/2

. (3.39)

The projection allows the comparison between
true and Markov model dynamics to be made
exactly as suggested by Fig. 3.5: In both cases
we start with an arbitrary initial density pro-
jected onto discrete states, Qp0(x), then trans-
port this density either with the true or with the
Markov model dynamics for some time kτ . Sub-
sequently, the densities is again projected onto
discrete states by Q and then compared:
• The true dynamics transports the initial den-

sity Qp0(x) to [T (τ )]kQp0(x)

• The Markov model dynamics transports the
initial density Qp0(x) to QT (τ )Qp0(x) in
one step and to Q[T (τ )Q]kp0(x) in k steps
using the identity for projections Q ◦ Q = Q.
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• Projecting both densities to local densities and
comparing yields the difference

ε(k) = ∥∥Q
[
T (τ )

]k
Qp0(x)

− Q
[
T (τ )Q

]k
p0(x)

∥∥
μ,2 (3.40)

= ∥∥[
Q

[
T (τ )

]k
Q

− Q
[
T (τ )Q

]k]
p0(x)

∥∥
μ,2. (3.41)

In order to remove the dependency on the initial
distribution p0(x), we assume the worst case: the
maximal possible value of ε(k) amongst all pos-
sible p0(x) is given by the operator-2-norm of
the error matrix [Q[T (τ )]kQ − Q[T (τ )Q]k],
where ‖A‖μ,2 ≡ max‖x‖=1 ‖Ax‖μ,2 [17], thus
the Markov model error is defined as:

E(k) := ∥∥Q
[
T (τ )

]k
Q − Q

[
T (τ )Q

]k∥∥
μ,2,

(3.42)
which measures the maximum possible differ-
ence between the true probability density at time
kτ and the probability density predicted by the
Markov model at the same time.

In order to quantify this error, we declare our
explicit interest in the m slowest processes with
eigenvalues 1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm. Gen-
erally, m ≤ n, i.e. we are interested in less pro-
cesses than the number of n eigenvectors that a
Markov model with n states has. We define the
following two quantities:
• δi := ‖ψi(x) − Qψi(x)‖μ,2 is the eigenfunc-

tion approximation error, quantifying the er-
ror of approximating the true continuous
eigenfunctions of the transfer operator, ψi (see
Fig. 3.6 for illustration), for all i ∈ {1, . . . ,m}.
δ := maxi δi is the largest approximation error
amongst these first m eigenfunctions

• η(τ) := λm+1(τ )

λ2(τ )
is the spectral error, the er-

ror due to neglecting the fast subspace of the
transfer operator, which decays to 0 with in-
creasing lag time: limτ→∞ η(τ) = 0.

The general statement is that the Markov model
error E(k) can be proven [36] to be bounded from
above by the following expression:

E(k) ≤ min
{
2,

[
mδ + η(τ)

][
a(δ) + b(τ)

]}
λk

2
(3.43)

Fig. 3.6 Illustration of the eigenfunction approximation
error δ2 on the slow transition in the diffusion in a dou-
ble well (top, black line). The slowest eigenfunction is
shown in the lower four panels (black), along with the step
approximations (green) of the partitions (vertical black
lines) at x = 50; x = 40; x = 10,20, . . . ,80,90; and
x = 40,45,50,55,60. The eigenfunction approximation
error δ2 is shown as red area and its norm is printed

with

a(δ) = √
m(k − 1)δ, (3.44)

b(τ) = η(τ)

1 − η(τ)

(
1 − η(τ)k−1). (3.45)

This implies two observations:
1. For long times, the overall error decays to zero

with λk
2, where 0 < λ2 < 1, thus the station-

ary distribution (recovered as k → ∞) is al-
ways correctly modeled, even if the kinetics
are badly approximated.

2. The error during the kinetically interesting
timescales consists of a product whose terms
contain separately the discretization error and
spectral error. Thus, the overall error can be
diminished by choosing a discretization basis
q1, . . . , qn that approximates the slow eigen-
functions well, and using a large lag time τ .
For a crisp partitioning this implies that the
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discretization has to be fine enough to trace
the slow eigenfunctions well.

Depending on the ratio λm+1(τ )/λ2(τ ), the de-
cay of the spectral error η(τ) with τ might be
slow. It is thus interesting to consider a special
case of discretization that yields n = m and δ = 0.
This would be achieved by a Markov model that
uses a fuzzy partition with membership functions
q1, . . . , qn derived from the first m eigenfunc-
tions ψ1, . . . ,ψm [24]. In this case, the space
spanned by q1, . . . , qn would equal the domi-
nant eigenspace and hence the projection error
would be δ = 0. From a more practical point of
view, this situation can be approached by using
a Markov model with n > m states located such
that they discretize the first m eigenfunctions with
a vanishing discretization error, and then declar-
ing that we are only interested in these m slow-
est relaxation processes. In this case we do not
need to rely on the upper bound of the error from
Eq. (3.43), but directly get the important result
E(k) = 0.

In other words, a Markov model can approx-
imate the kinetics of slow processes arbitrarily
well, provided the discretization can be made suf-
ficiently fine or improved in a way that contin-
ues to minimize the eigenfunction approxima-
tion error. This observation can be rationalized by
Eq. (3.19) which shows that the dynamics of the
transfer operator can be exactly decomposed into
a superposition of slow and fast processes.

An important consequence of the δ-depend-
ence of the error is that the best partition is not
necessarily metastable. Previous work [9, 9, 20,
32, 36, 42] has focused on the construction of
partitions with high metastability (defined as the
trace of the transition matrix T(τ )), e.g. the two-
state partition shown in Fig. 3.6b). This approach
was based on the idea that the discretized dynam-
ics must be approximately Markovian if the sys-
tem remained in each partition sufficiently long to
approximately lose memory [9]. While it can be
shown that if a system has m metastable sets with
λm � λm+1, then the most metastable partition
into n = m sets also minimizes the discretization
error [36, 36], the expression for the discretiza-
tion error given here has two further profound
ramifications: First, even in the case where there

exists a strong separation of timescales so the sys-
tem has clearly m metastable sets, the discretiza-
tion error can be reduced even further by splitting
the metastable partition into a total of n > m sets
which are not metastable. And second, even in the
absence of a strong separation of timescales, the
discretization error can be made arbitrarily small
by making the partition finer, especially in tran-
sition regions, where the eigenfunctions change
most rapidly (see Fig. 3.6b).

Figure 3.7 illustrates the Markov model dis-
cretization error on a two-dimensional three-well
example where two slow processes are of inter-
est. The left panels show a metastable partition
with 3 sets. As seen in Fig. 3.7d, the discretiza-
tion errors |ψ2 −Qψ2|(x) and |ψ3 −Qψ3|(x) are
large near the transition regions, where the eigen-
functions ψ2(x) and ψ3(x) change rapidly, lead-
ing to a large discretization error. Using a random
partition (Fig. 3.7, third column) makes the situ-
ation worse, but increasing the number of states
reduces the discretization error (Fig. 3.7, fourth
column), thereby increasing the quality of the
Markov model. When states are chosen such as to
well approximate the eigenfunctions, a very small
error can be obtained with few sets (Fig. 3.7, sec-
ond column).

These results suggest that an adaptive dis-
cretization algorithm may be constructed which
minimizes the E(k) error. Such an algorithm
could iteratively modify the definitions of dis-
cretization sets as suggested previously [9], but
instead of maximizing metastability it would
minimize the E(k) error which can be evalu-
ated by comparing eigenvector approximations
on a coarse discretization compared to a refer-
ence evaluated on a finer discretization [36].

One of the most intriguing insights from both
Eq. (3.19) and the results of the discretization er-
ror is that if, for a given system, only the slowest
dynamical processes are of interest, it is sufficient
to discretize the state space such that the first
few eigenvectors are well represented (in terms
of small approximation errors δi ). For example,
if one is interested in processes on timescales t∗
or slower, then the number m of eigenfunctions
that need to be resolved is equal to the number of
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Fig. 3.7 Illustration of the eigenfunction approximation
errors δ2 and δ3 on the two slowest processes in a two-
dimensional three-well diffusion model (see Supplemen-
tary Information for model details). The columns from
left to right show different state space discretizations with
white lines as state boundaries: (i) 3 states with maxi-
mum metastability, (ii) the metastable states were further
subdivided manually into 13 states to better resolve the

transition region, resulting in a partition where no indi-
vidual state is metastable, (iii)/(iv) Voronoi partition using
25/100 randomly chosen centers, respectively. (a) Poten-
tial, (b) The exact eigenfunctions of the slow processes,
ψ2(x) and ψ3(x), (c) The approximation of eigenfunctions
with discrete states, Qψ2(x) and Qψ3(x), (d) Approxima-
tion errors |ψ2 − Qψ2|(x) and |ψ3 − Qψ3|(x). The error
norms δ2 and δ3 are given
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implied timescales with ti ≥ t∗. Due to the per-
fect decoupling of processes for reversible dy-
namics in the eigenfunctions (see Eqs. (3.20)–
(3.21)), no gap after these first m timescales of
interest is needed. Note that the quality of the
Markov model does not depend on the dimen-
sionality of the simulated system, i.e. the number
of atoms. Thus, if only the slowest process of the
system is of interest (such as the folding process
in a two-state folder), only a one-dimensional pa-
rameter, namely the level of the dominant eigen-
function, needs to be approximated with the clus-
tering, even if the system is huge. This opens a
way to discretize state spaces of very large molec-
ular systems.

3.7 Approximation of Eigenvalues
and Timescales by Markov
Models

One of the most interesting kinetic properties of
molecular systems are the intrinsic timescales of
the system. They can be both experimentally ac-
cessed via relaxation or correlation functions that
are measurable with various spectroscopic tech-
niques [2, 5, 20, 28], but can also be directly
calculated from the Markov model eigenvalues
as implied timescales, Eq. (3.22). Thus, we in-
vestigate the question how well the dominant
eigenvalues λi are approximated by the Markov
model, which immediately results in estimates for
how accurately a Markov model may reproduce
the implied timescales of the original dynam-
ics. Consider the first m eigenvalues of T (τ ),
1 = λ1(τ ) > λ2(τ ) ≥ · · · ≥ λm(τ), and let 1 =
λ̂1(τ ) > λ̂2(τ ) ≥ · · · ≥ λ̂m(τ ) denote the associ-
ated eigenvalues of the Markov model T(τ ). The
rigorous mathematical estimate from [13] states
that

max
j=1,...,m

∣∣λj (τ ) − λ̂j (τ )
∣∣ ≤ (m − 1)λ2(τ )δ2,

(3.46)
where δ is again the maximum discretization er-
ror of the first m eigenfunctions, showing that the
eigenvalues are well reproduced when the dis-
cretization well traces these eigenfunctions. In

particular if we are only interested in the eigen-
value of the slowest process, λ2(τ ), which is of-
ten experimentally reported via the slowest relax-
ation time of the system, t2, the following esti-
mate of the approximation error can be given:

|λ2(τ ) − λ̂2(τ )|
|λ2(τ )| ≤ δ2

2 . (3.47)

As λ2(τ ) corresponds to a slow process, we
can make the restriction λ2(τ ) > 0. Moreover,
the discretization error of Markov models based
on full partitions of state space is such that the
eigenvalues are always underestimated [13], thus
λ2(τ ) − λ̂2(τ ) > 0. Using Eq. (3.22), we thus ob-
tain the estimate for the discretization error of the
largest implied timescale and the corresponding
smallest implied rate, k2 = t−1

2 :

t̂−1
2 − t−1

2 = k̂2 − k2 ≤ −τ−1 ln
(
1 − δ2

2

)
, (3.48)

which implies that for either δ2 → 0+ or τ → ∞,
the error in the largest implied timescale or small-
est implied rate tends to zero. Moreover, since
λ2(τ ) → 0 for τ → ∞, this is also true for the
other processes:

lim
τ→∞

|λj (τ ) − λ̂j (τ )|
|λj (τ )| = 0, (3.49)

and also

lim
δ→0

|λj (τ ) − λ̂j (τ )|
|λj (τ )| = 0, (3.50)

which means that the error of the implied time-
scales also vanishes for either sufficiently long
lag times τ or for sufficiently fine discretiza-
tion. This fact has been empirically observed in
many previous studies [2, 5, 9, 26, 32, 33, 42],
but can now be understood in detail in terms of
the discretization error. It is worth noting that
observing convergence of the slowest implied
timescales in τ is not a test of Markovianity.
While Markovian dynamics implies constancy of
implied timescales in τ [32, 42], the reverse is not
true and would require the eigenvectors to be con-
stant as well. However, observing the lag time-
dependence of the implied timescales is a useful
approach to choose a lag time τ at which T(τ )



3 Markov Model Theory 39

Fig. 3.8 Convergence of the slowest implied timescale
t2 = −τ/ lnλ2(τ ) of the diffusion in a double-well
potential depending on the MSM discretization. The
metastable partition (black, solid) has greater error than
non-metastable partitions (blue, green) with more states
that better trace the change of the slow eigenfunction near
the transition state

shall be calculated, but this model needs to be val-
idated subsequently (see Chapter Estimation and
Validation).

Figure 3.8 shows the slowest implied timescale
t2 for the diffusion in a two-well potential (see
Fig. 3.6) with discretizations shown in Fig. 3.6.
The two-state partition at x = 50 requires a lag
time of ≈ 2000 steps in order to reach an error of
<3 % with respect to the true implied timescale,
which is somewhat slower than t2 itself. When
the two-state partition is distorted by shifting the
discretization border to x = 40, this quality is
not reached before the process itself has relaxed.
Thus, in this system two states are not sufficient
to build a Markov model that is at the same time
precise and has a time resolution good enough to
trace the decay of the slowest process. By using
more states and particularly a finer discretization
of the transition region, the same approximation
quality is obtained with only τ ≈ 1500 (blue) and
τ ≈ 500 steps (green).

Figure 3.9 shows the two slowest implied
timescales t2, t3 for the diffusion in a two-
dimensional three-well potential with discretiza-
tions shown in Fig. 3.7a. The metastable 3-state
partition requires a lag time of ≈ 1000 steps in

Fig. 3.9 Implied timescales for the two slowest processes
in the two-dimensional three-well diffusion model (see
Fig. 3.7a for potential and Supplementary Information for
details). The colors black, red, yellow, green correspond
to the four choices of discrete states shown in columns 1
to 4 of Fig. 3.7. A fine discretization of the transition re-
gion clearly gives the best approximation to the timescales
at small lag times

order to reach an error of <3 % with respect
to the true implied timescale, which is some-
what shorter than the slow but longer than the
fast timescale, while refining the discretization
near the transition states achieves the same pre-
cision with τ ≈ 200 using only 12 states. A k-
means clustering with k = 25 is worse than the
metastable partition, as some clusters cross over
the transition region and fail to resolve the slow
eigenfunctions. Increasing the number of clusters
to k = 100 improves the result significantly, but is
still worse than the 12 states that have been man-
ually chosen so as to well resolve the transition
region. This suggests that excellent MSMs could
be built with rather few states when an adaptive
algorithm that more finely partitions the transi-
tion region is employed.

Note that the estimate (3.46) bounds the max-
imal eigenvalue error for the dominant eigenval-
ues by the maximal projection error of the domi-
nant eigenfunction. In [34], it is also shown that if
u is a selected, maybe non-dominant eigenfunc-
tions for an eigenvalue λ(τ) and δ = ‖u−Qu‖ is
its discretization error, the associated MSM will
inherit an eigenvalue λ̂(τ ) with

∣∣λ(τ) − ˆλ(τ)
∣∣ ≤ 2λ2(τ )δ (3.51)

if δ = ‖u − Qu‖ ≤ 3/4. That is, it is also pos-
sible to approximate selected timescales well by
choosing the discretization such that it traces the
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associated eigenfunctions well without having to
take all slower eigenfunctions into account [34].

3.8 An Alternative Set-Oriented
Projection

In the last sections, we have derived an interpre-
tation of Markov models as projections of the
transfer operator T (τ ) and connected their dis-
cretization error in terms of density propagation
and in terms of eigenvalue and timescale approx-
imation to projection errors. Estimates for these
quality measures show that the discretization ba-
sis should be chosen such that it traces the slow
eigenfunctions well. For a crisp partitioning this
means that the eigenfunctions should be well ap-
proximated by step-functions induced by the sets
S1, . . . , Sn. On the other hand, the results are
not restricted to projections onto step-functions.
Theoretically, one could choose an arbitrary dis-
cretization basis q1, . . . , qn for constructing the
Markov model, see [40], and the corresponding
MSM matrix would formally be given by T(τ ) =
T (τ)M−1 (3.35). In praxis, the basis q1, . . . , qn

has be chosen such that it leads to interpretable
matrices T (τ) and M in terms of transition prob-
abilities between sets. Otherwise, one will not
be able compute estimates for these matrices and
thus for the resulting Markov model. For a crisp
partitioning S1, . . . , Sn and the associated char-
acteristic functions χ1, . . . , χn we have this prop-
erty

Tij (τ ) = P
[
x(t +τ) ∈ Sj

∣∣ x(t) ∈ Si

]
, M = Id.

The drawback of this method is that coarse parti-
tionings always lead to coarse step-functions that
might not approximate the eigenfunctions well.
Therefore, a refinement might be necessary in re-
gions where the slow eigenfunctions are varying
strongly.

In this section, we will show how to derive
another set-oriented discretization basis where a
rather coarse partitioning does not lead to a coarse
discretization basis. The main idea goes back to
[32, 37, 40]: simply decrease the size of the sets
S1, . . . , Sn on which the constancy of the dis-
cretization basis in enforced. Of course, the re-
sulting sets do not cover the whole state space

and hence do not form a crisp partitioning any-
more. We will call such sets core sets in the fol-
lowing and denote them by C1, . . . ,Cn in order to
distinguish from a crisp partitioning S1, . . . , Sn.

The two questions that we have to answer are
(a) how these core sets induce a discretization
basis that approximates the slow eigenfunctions
well, and (b) how to interpret the transition proba-
bilities between the core sets to calculate the tran-
sition matrices T (τ) and M with respect to this
basis. The idea is to attach a fuzzy partitioning to
the core sets that is connected to the dynamics of
the process itself. For every core set Ci we define
the so called committor function

qi(x) = P
[
x(σ ) ∈ Ci

∣∣ x(0) = x
]
, (3.52)

where σ is the first time one of the core sets is
entered by the process.

That is, qi(x) is the probability that the pro-
cess will hit the set Ci next rather than the other
core sets when being started in point x. From the
definition it follows that [27, 40]

qi(x) = 1 for all x ∈ Ci,

qi(x) = 0 for all x ∈ Cj , j �= i,
∑

i

qi(x) = 1 for all x.

The advantage of taking committor functions
as discretization basis is that the core sets, on
which the committor functions equal to char-
acteristic functions, do not have to cover the
whole state space. It is allowed to have a region
C = Ω \ ⋃

j Cj that is not partitioned and where
the values of the committor functions can con-
tinuously vary between 0 and 1. This means that
the part of state space can be shrinked, where the
slow eigenfunctions need to be similar to step-
functions. Moreover, it has been shown in [34]
that the approximation of the slow eigenfunc-
tions by the committors inside of the fuzzy re-
gion C is accurate if the region C is left by the
process quickly enough. Being more precise, this
approximation error is dominated by the ratio of
the expected time the process needs to leave the
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region C and the implied timescale that is asso-
ciated with the target eigenfunction. We will see
that it is computationally very suitable that this is
the main constraint on C.

Beside the good approximation of the slow
eigenfunctions, the committor discretization has
another advantage. We can calculate the Markov
model from transition probabilities between the
core sets without having to compute the commit-
tor functions explicitly. It is shown in [32, 37, 40]
that for the committor basis we can interpret the
matrices T (τ) and M as follows:

Define x+(t) as the index of the core set that
is hit next after time t , and x−(t) as the index of
the core set that the process has visited last before
time t , then

Mij = P
[
x+(t) = j

∣∣ x−(t) = i
]
,

and

Tij (τ ) = P
[
x+(t + τ) = j

∣∣ x−(t) = i
]
.

Note that this can be interpreted in terms of a
transition behavior. If we interpret Tij (τ ) as the
probability that a transition occurs from index i at
time t to index j at time t + τ , then we say a tran-
sition has occurred if the process was in core set
i at time t or at least came last from this set and
after a time-step τ it was in core set j or at least
went next to this set afterwards. Figure 3.10 il-
lustrates this interpretation. As mentioned above,
these transition probabilities can be directly esti-
mated from realizations without having to com-
pute the committor functions.

The effect on the approximation of the slowest
eigenfunction can be seen in Fig. 3.11.

Computationally, there is an important insight.
Assume a crisp partitioning of state space into n

sets S1, . . . , Sn is given. Now, a committor dis-
cretization would allow to avoid a part of state
space from being discretized, as long as the pro-
cess leaves this part typically much faster than
the interesting timescales. On the one hand, these
parts of state space exactly correspond to re-
gions where the slow eigenfunctions are varying
strongly. So starting from the crisp partitioning
we can benefit most by simply ignoring this part
of state space and treating the remaining sets as
core sets. On the other hand, removing such part
of state space, where the process does not spend
a lot of time in, does not effect the computational
effort in order to generate transitions with respect
to the crisp partitioning or the resulting core sets
as in Fig. 3.10. Summarizing, one can always en-
hance a model based on a crisp partitioning by
simply declaring a part of state space as not be-

Fig. 3.10 Counting a transition in the sense of T12(τ ) for
a crisp partitioning (left hand side) and for core sets (right
hand side) that do not cover the whole state space

Fig. 3.11 The benefit of removing a part of state space
that is typically left quickly by the process. On the left
hand side: step-function approximation of the first non-

trivial eigenfunction. Right hand side: committor approx-
imation of the same eigenfunction
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longing to the discretization anymore, as long as
this part of state space is usually left quickly by
the process, and computationally one can get this
enhancement for free.

Let us illustrate this feature by an example. We
consider again a diffusion in the potential that is
illustrated in Fig. 3.12. Now, Fig. 3.13 shows an
optimal crisp partitioning into 9 sets, where every
well of the potential falls into another partitioning
set. Moreover, it shows the core set discretization
where only a part of the transition region between
the wells was excluded from the crisp discretiza-
tion.

The approximation by a step-function is too
coarse while removing the transition region and
shrinking the size of the sets leads to a smoother

Fig. 3.12 Example: diffusion in this multi-well potential

and better interpolation of the eigenfunction. As
we discussed in the previous sections, this has a
direct impact on the approximation quality of the
associated Markov model. For example, the fol-
lowing table shows the implied timescales ti of
the original Markov process and the approxima-
tions by the crisp partitioning and the enhanced
core set MSM.

t2 t3 t4 t5

original 17.5267 3.1701 0.9804 0.4524
core sets 17.3298 3.1332 0.9690 0.4430
crisp partition 16.5478 2.9073 0.8941 0.4006

As expected, the approximation quality in
terms of timescale approximation could be in-
creased by simply removing a small part of state
space from the discretization. The same enhance-
ment is achieved with respect to the density
propagation error E(k) (3.42). Figure 3.14 com-
pares the resulting error for the crisp partitioning
(black) and the core set discretization (blue) and
increasing k.

E(k) := ∥∥Q
[
T (τ )

]k
Q − Q

[
T (τ )Q

]k∥∥
μ,2.

Fig. 3.13 A metastable
crisp partitioning into 9
sets (left), and the derived
core set discretization by
removing the transition
region between the wells
(right)

Fig. 3.14 Density
propagation error E(k)

over k. Black: crisp
partitioning. Blue: core sets
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