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Gregory R. Bowman

The main purpose of this chapter is to provide a
practical guide to building Markov models, with
an emphasis on partitioning a molecule’s confor-
mational space into a valid set of states. This pro-
cess is often referred to as constructing a state de-
composition.

2.1 The Big Picture

The ideal state decomposition method would per-
form a truly kinetic clustering of a data set to ac-
curately resolve the barriers between metastable
states. Unfortunately, there is no simple means to
calculate the average transition time between two
arbitrary conformations.

One alternative would be to build states based
purely on geometric criteria. However, this ap-
proach turns out to be inadequate because there
is no physical reason that the locations of free
energy barriers should correlate with geometric
criteria. For example, two conformations with a
5 Å RMSD could fall within the same free energy
basin if they only differ by pivoting of a hinge
motion while another pair of conformations sep-
arated by the same distance could fall in differ-
ent basins if they differ by strand pairings in a
beta sheet. Mistakenly grouping together confor-
mations that are not within the same free energy
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basin can create states with large internal free en-
ergy barriers. Such states will violate the Markov
property because a system that enters the state on
one side of the barrier will behave differently than
one that enters on the other side, thereby intro-
ducing history dependence. Higher order Markov
chains could be used to capture this history de-
pendence, however, doing so greatly increases the
number of parameters that must be determined,
making it harder to obtain sufficient statistics.
Moreover, people generally do not have nearly
as well developed an intuition for processes with
history dependence as we do for Markov models,
so higher order models would provide less under-
standing.

At present, the most common approach for
building MSMs is a two-stage process exploiting
both geometry and kinetics [1–6]. In this two-
stage approach, one uses a kinetically-relevant
geometric clustering to create a starting point for
a more purely kinetic clustering. By kinetically-
relevant, I simply mean a clustering that only
groups conformations together if the system can
transition between them quickly relative to tran-
sitions between clusters.

The objective of the first stage is to cre-
ate small volume elements in conformational
space—called microstates—that are essentially
the same structure using a geometric clustering.
The motivation for starting with such a clustering
follows that employed in the study of probability
distribution functions, where one recognizes that
the probability of a single point is vanishingly
small and, therefore, works with small volume
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elements instead. At this stage, one would like to
go out of their way to divide phase space as finely
as possible to ensure that no microstate contains
large free energy barriers. However, this objec-
tive is counterbalanced by the need to maintain
sufficient statistics for each state such that tran-
sition probabilities between each pair of states
can be estimated accurately. Given a set of mi-
crostates that meets these requirements, the tran-
sition probability between a pair of states can be
calculated numerically by counting the number
of times a simulation started in one of them and
ended in the other because now two simulations
have a finite probability of entering the same vol-
ume element. As discussed shortly, there are a
number of ways to create and validate microstate
models. Such models are excellent for making
a quantitative connection with experiments be-
cause of their high resolution. However, they are
often difficult to understand because they typi-
cally have tens of thousands of states.

To make a more understandable model, one
can perform a kinetic clustering of a kinetically-
relevant set of microstates to form larger aggre-
gates—called macrostates—that correspond to
free energy basins. One objective of this type
of coarse-graining is to create mesoscale mod-
els that are still quantitative but are much more
compact than the initial microstate model. These
models may still be too complex to understand,
however, the reduced state space makes them
much easier to work with. A second objective
is to coarse-grain the model so much that one
can actually understand it. Often, these models
will only be qualitatively correct—no longer able
to make a quantitative connection with experi-
ment. However, such extreme coarse-grainings
are excellent for gaining an intuition for a system
and generating new hypotheses to be tested with
higher resolution models and, ultimately, with ex-
periments.

To summarize, the key steps for building an
MSM are
1. Choose an appropriate distance metric and

cluster your simulation data into microstates.
2. Test the kinetic relevance of this clustering

and choose an appropriate lag time (or obser-
vation interval) based on the Markov time of

the model (smallest lag time that gives Marko-
vian behavior).

3. Estimate the microstate model’s transition
probability matrix.

4. Coarse-grain the model to create either quan-
titative mesoscale models or qualitative mod-
els for guiding one’s intuition.

5. Use the qualitative models to understand your
system and the microstate or mesoscale mod-
els to model experiments.
Following is an explanation of the various al-

ternatives for each of these steps. Throughout this
discussion, a model refers to a transition proba-
bility matrix and one or more representative con-
formations from each state.

2.2 Clustering to Generate
Microstates

The major objective of this step is to construct
a kinetically-relevant clustering using geometric
criteria. Such a clustering should only group to-
gether conformations the system can jump be-
tween rapidly. Many clusterings may satisfy this
requirement, so there is not necessarily a single
right answer. The resulting microstate model can
then be used for making a quantitative connection
with experiment or as a starting point for kinetic
clustering.

Some of the key choices for this step are which
distance metric to use, which clustering algorithm
to use, how many clusters to generate, and which
data to cluster.

2.2.1 Choosing a Distance Metric

It should come as no surprise that creating a
kinetically-relevant clustering is best achieved
with a kinetically-relevant distance metric. In par-
ticular, it is necessary for conformations sepa-
rated by small distances to interconvert rapidly.
Any distance metric that satisfies this requirement
is sufficient given infinite data—i.e. the ability
to create an infinitude of infinitely small states.
However, one can typically make far better use
of finite data by employing distance metrics that
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best capture the relevant dynamics. For exam-
ple, the opening angle may be a good choice for
studying the opening and closing of a hinged-
protein [7].

In leu of an obvious problem specific metric,
the root-mean-square deviation (RMSD) between
atoms is often a reasonable choice for protein dy-
namics [1, 2, 6]. Large RMSDs are hard to in-
terpret, but two conformations separated by only
a few Å are likely to interconvert rapidly. For
extremely detailed models, the all-atom RMSD
may be useful—though one must be careful about
symmetry issues, like the invariance of Phe to a
180 degree flip. Basing the RMSD on α-carbons
or all backbone heavy atoms is often sufficient
though.

2.2.2 Choosing a Clustering Algorithm

Here, we briefly review a number of the cluster-
ing algorithms currently in use and their relative
merits. There are many other options and there is
great value in assessing their relative merits [5, 8].
For the purposes of this review, however, I hope
only to describe a few of the most common op-
tions with the intent that this analysis will serve
as a guide for evaluating other options.

2.2.2.1 k-Centers Clustering
In k-centers clustering, one tries to create a set of
clusters with approximately equal radii by opti-
mizing the objective function

min
σ

max
i

d
(
xi, σ (xi)

)
(2.1)

where σ(x) is a function that maps a conforma-
tion (x) to the nearest cluster center and d(x, y) is
the distance between two conformations x and y.
The minimization occurs over all clusterings (σ )
with k states and the max is taken over all con-
formations in the dataset. The radius of a cluster
is just the maximum distance between any data
point in that cluster and the cluster’s center.

One advantage of k-centers is that it divides
up conformational space more evenly than other
algorithms by ensuring that states have similar

radii [9, 10]. Intuitively, one can think of this al-
gorithm as creating clusters with approximately
equal volumes. However, one must take care not
to take this too literally as very small variations
in the radii of clusters in high-dimensional spaces
can give rise to huge variations in their volumes.
Having a more or less even division of conforma-
tional space into microstates is of value because it
helps avoid situations where some regions are un-
necessarily divided into an excess of states while
other regions are not sufficiently broken-up to
avoid large internal free energy barriers. Proper-
ties of the model, like the slowest relaxation time,
should also be insensitive to the exact clustering
as long as one purposefully over-divides confor-
mational space into a large number of states.

Another advantage of k-centers is that there
is an extremely fast, deterministic approximation
to this algorithm [9, 10]. This approximate algo-
rithm has an O(kN) runtime, where k is the num-
ber of clusters and N is the number of conforma-
tions being sampled, so it is applicable to even
extremely large data sets. This algorithm works
as follows (Fig. 2.1):
1. Choose an arbitrary point as the initial clus-

ter center and assume all other data points are
initially in that cluster (Fig. 2.1A).

2. Calculate the distance from every other data
point to the current cluster center.

3. Select the furthest point from any existing
cluster center as the next cluster center
(Fig. 2.1B).

4. Calculate the distance from every data point
to this new cluster center and reassign any of
them that are closer to the new center than
their previous cluster center to the new cluster
(Fig. 2.1B).

5. Repeat steps 3 and 4 until some cutoff criteri-
on—like the number of clusters or maximum
size of any cluster—is reached (Fig. 2.1C).
The most appropriate cutoff criterion depends

on the process of interest. For example, creat-
ing clusters until each state has a radius of less
than 3 Å RMSD is often an appropriate starting
point for protein folding, where the relevant con-
formational space is huge and a rather coarse par-
titioning will do. For more subtle conformational
changes where there is a small space and more
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Fig. 2.1 An example of k-centers clustering of a set of
data points (squares). (A) First, a random data point (white
star) is chosen as the initial cluster center and all data
points are assigned to it (white squares). (B) Next, the data
point furthest from the previous cluster center is chosen as
the next cluster center (black star). All the data points that

are closer to the new cluster center than any existing center
are assigned to the new center (black squares). (C) The al-
gorithm continues choosing the data point that is furthest
from any existing center (in this case the gray star) and
assigning data points that are closer to it to the new center
(gray squares)

detail is required, a cutoff of 1 Å may be a better
starting place.

One disadvantage of k-centers is that build-
ing a viable set of microstates with this algo-
rithm often requires creating a large number of
clusters. For example, modeling the folding of a
35 residue variant of the villin headpiece—one
of the smallest known proteins—still required
10,000 states [11]. As a result, one needs a great
deal of sampling to ensure adequate statistics
for each state. The large number of states also
leads to large microstate transition matrices that
can be computationally demanding to work with.
A more ideal algorithm would use kinetic crite-
ria to have larger or smaller states as needed to
accurately capture the underlying landscape. Fi-
nally, the “centers” created by k-centers are not
necessarily anywhere near the geometric center
of the cluster. Instead, they are often on the pe-
riphery of the cluster because the approximate
algorithm presented here is always choosing the
data point furthest from all the existing clus-
ter centers as the next one and, therefore, is bi-
ased towards choosing data points at the very
edge of the space sampled (Fig. 2.1). Thus, the
cluster centers are not necessarily representa-
tive of the data assigned to them. One must use
other strategies to identify representative con-
formations for a cluster created with k-centers,
like drawing a few random conformations from
it.

2.2.2.2 k-Medoids Clustering
The k- medoids algorithm minimizes the average
distance between data points and the center they
are assigned to by optimizing

1

N

∑

i

d
(
xi, σ (xi)

)2 (2.2)

where N is the number of data points, σ(x) is
a function that maps a conformation (x) to the
nearest cluster center, and d(x, y) is the distance
between two conformations x and y.

The k-medoids algorithm is very similar to k-
means but with the important difference that only
data points can be cluster centers. In k-means, the
cluster center is the average of all the data points
belonging to that cluster. However, taking the av-
erage of a number of protein conformations does
not make physical sense as it can easily lead to
unphysical behavior like steric clashes and ex-
tremely unlikely bond lengths/angles. Thus, k-
medoids is preferable.

One advantage of k-medoids over k-centers
is that k-medoids tends to create clusters with
a more equal number of samples. For exam-
ple, if a data set has a densely sampled region
and a sparsely sampled region, then k-medoids
will tend to place more clusters in the densely
sampled region. This feature is useful in that it
helps avoid states with too few counts to make
statistically reliable estimates of the transition
probabilities to other states. However, k-medoids
may also over-divide some regions of confor-
mational space and under-divide others. For in-
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Fig. 2.2 An example of k-medoids clustering of a set of
data points (squares). (A) First, the user decides how many
clusters to construct (in this case k = 3). Then k random
data points are chosen as initial cluster centers (the three
stars). All data points are then assigned to the closest cen-
ter (as indicated by the color coding). (B) Next, a random
data point in each cluster is proposed as a new cluster cen-
ter (circles). (C) If the newly proposed center is closer on
average to all the data points in the cluster than the pre-
vious center, then it is chosen as the new center for that

cluster (as in the black and white clusters). Otherwise, the
newly proposed center is rejected and the previous cen-
ter is kept (as in the gray cluster). Finally, all the data
points are reassigned to their closest center. Note that this
is an extremely contrived example. Usually there will not
be such a clear distinction between clusters, the number
of clusters will be unclear, and the initial cluster centers
may end up being very close to one another, requiring a
number of iterations of updating before convergence to a
reasonable set of centers

stance, in protein folding, k-medoids is likely to
create many clusters in the folded ensemble and
very few clusters in more sparsely populated un-
folded regions. Therefore, one will get essentially
redundant clusters in the folded ensemble while
mistakenly grouping together kinetically distinct
unfolded conformations into states that violate
the Markov assumption. However, this problem
may not arise for other processes, like conforma-
tional changes, where the relevant regions of con-
formational space may be more evenly sampled.

The k-medoids algorithm works as follows
(Fig. 2.2):
1. Randomly choose k conformations as the ini-

tial cluster centers (Fig. 2.2A).
2. Assign each data point to the closest center.
3. For each cluster C, propose a random data

point z ∈ C as the new center (Fig. 2.2B) and
evaluate the change using

∑

xi∈C

d(xi, z)
2 (2.3)

If the newly proposed center reduces the ob-
jective function compared to the previous cen-
ter, then replace the current cluster center
with z (Fig. 2.2C).

4. Repeat steps 2 and 3 for a specified number of
iterations or until the algorithm converges to a
stable result.

To speedup the algorithm further, it is common
to propose a number of possible new centers for
each cluster during step 2.

One advantage of k-medoids is that the result-
ing centers are actually representative of the data
assigned to them because they lie at the center of
the cluster. A disadvantage is that the number of
clusters must be chosen a priori, compared to k-
centers where it is possible to choose a physically
meaningful criterion for determining the number
of states.

2.2.2.3 Hybrid k-Centers/k-Medoids
Clustering

A hybrid approach has been developed to strike a
balance between the strengths and weaknesses of
the k-centers and k-medoids algorithms [4]. This
algorithm simultaneously optimizes the objective
functions for both k-centers (Eq. (2.1)) and k-
medoids (Eq. (2.2)) as follows:
1. Perform an approximate k-centers clustering,

as in Sect. 2.2.2.1.
2. Update the centers with a number of iterations

of the k-medoids update step (Steps 2 and 3 of
the k-medoids algorithm in Sect. 2.2.2.2), re-
jecting any proposed moves that increase the
k-centers objective function in Eq. (2.1).
This hybrid approach appears to be a good,

general purpose method for building microstate
models. For example, like k-centers, this method
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still gives a more even discretization of confor-
mational space than a pure k-medoids cluster-
ing and one can specify a physically meaning-
ful criterion for determining the number of states
to create. The k-medoids update step also results
in cluster centers that are representative of the
data assigned to them. More importantly, using
this update step shifts the centers to the densest
regions of conformational space within a state,
leading to better resolution of the boundaries be-
tween states. As a result, this algorithm yields
shorter Markov times with fewer states. Having
fewer states means each one has better statis-
tics and less data is required to parameterize the
model.

There is still room for improving upon this
hybrid approach though. For instance, this algo-
rithm still tries to avoid states with large internal
barriers by creating a large number of clusters.
As discussed previously, parameterizing models
with more states requires more data to obtain suf-
ficient statistics and large transition matrices can
be challenging to work with.

2.2.3 Subsampling

One final question that deserves some consider-
ation is which data to cluster. In an ideal case,
where one could perform a purely kinetic cluster-
ing of simulation data, the answer to this ques-
tion would be simple: cluster all the data. How-
ever, using all the data is not always optimal when
starting off with a geometric clustering. For ex-
ample, an RMSD-based k-centers clustering will
select every structural outlier as a cluster cen-
ter before starting to subdivide the well-sampled
regions of conformational space. There are also
practical limitations, like the number of confor-
mations that can be stored in memory on typical
computers.

Using a subsample of ones data to define a set
of microstates can lead to better models because
this strategy reduces the impact of outliers [11].
Put another way, clustering a subsample of one’s
data focuses the cluster centers on the better
sampled regions of conformational space. After
defining a state space based on a subsample of the

data, one can then assign all the data to these mi-
crostates, thereby obtaining more statistics. Out-
liers will then be absorbed into the closest clus-
ter, where they will have little impact on the qual-
ity of the model. For protein folding—which typ-
ically occurs on time scales of a microsecond
or longer—a fruitful procedure has been to store
conformations every 1 ns, cluster conformations
sampled at a 10 ns interval, and then assign all the
data to the resulting microstates.

2.3 Estimating Transition Matrices

In theory, estimating a transition matrix should
just be a matter of counting. The first step is
to assign data to clusters, which we will num-
ber from 0 to n − 1. Now each trajectory can
be thought of as a series of microstate assign-
ments rather than as a series of conformations.
The number of transitions between each pair of
states can then be counted and stored as a tran-
sition count matrix (C), where Cij is the num-
ber of transitions observed from state i to state j .
With infinite data, one could just use the maxi-
mum likelihood estimate for the transition prob-
ability between each pair of states to convert the
transition count matrix into a transition probabil-
ity matrix (T ). That is,

Tij (τ ) = Cij∑
k Cik

(2.4)

where τ is the lag time of the model. However, in
practice, estimating transition matrices is compli-
cated by a number of issues, like finite sampling
and imperfections in microstate definitions.

2.3.1 Counting Transitions

Counting transitions sounds like a simple task,
but there are actually a variety of options that
must be considered. First of all, one must choose
a lag time at which the model satisfies the Markov
assumption—as discussed in the next section.
Choosing an appropriate lag time actually re-
quires estimating transition matrices at a variety
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Fig. 2.3 An example of the two methods of counting
transitions, assuming a 4-step lag time. Each panel shows
a trajectory as a series of state indices (i.e. assuming the
states have been numbered from 0 to n−1). The top panel
shows how the first three transitions would be counted us-
ing the sliding window approach (brackets). All three tran-
sitions are from state 0 to 2. The bottom panel shows how
to ensure independent counts. The three transitions (indi-
cated with brackets) are from state 0 to 2, from state 2 to 2,
and from state 2 to 1

of lag times, so we will cover the process of esti-
mating these matrices first.

In an ideal case, where one has an excess of
data relative to the slowest relaxation time in the
system, one could simply look at independent
transitions at the lag time (τ ). That is, one could
look at the state indices at an interval of τ . As
shown in Fig. 2.3, one could then count transi-
tions as σ(0) → σ(τ), σ(τ) → σ(2τ), σ(2τ) →
σ(3τ). . . where σ(t) is the state index of the sim-
ulation at time t . However, with finite data, this
can lead to imprecise estimates of transition prob-
abilities due to model uncertainty.

Practically, it is often useful to use a sliding
window approach. In this approach, one assumes
conformations were sampled at a regular inter-
val Δ, where Δ < τ . For example, one could
store conformations every 100 ps and have a lag
time of 10 ns. As shown in Fig. 2.3, one could
then count transitions as σ(0) → σ(τ), σ(Δ) →
σ(Δ + τ), σ(2Δ) → σ(2Δ + τ). . . where σ(t)

is the state index of the simulation at time t . The
sliding window approach will give a more pre-
cise estimate of transition probabilities but will
lead to underestimates of model uncertainty (see
Sects. 4.1 and 5.1).

The sliding window approach is recommended
for estimating maximum likelihood transition
matrices as precisely as possible. Counting in-

dependent transitions should be used when esti-
mating model uncertainty.

2.3.2 Detailed Balance

Another major issue is satisfying detailed bal-
ance—also called microscopic reversibility. That
is, every time there is a transition from state i

to j , there should also be a compensating transi-
tion from state j to i. Without this property, one
would get source and sink states that would pre-
vent the model from accurately describing long
time scale behavior.

Poorly sampled microstates are one issue that
can break detailed balance. In particular, some
states may have a single transition into or out
of them. A simple maximum likelihood estimate
of transition probabilities would then turn these
states into sources or sinks. Therefore, it is often
useful to trim off these states [4, 12, 13].

One must also satisfy detailed balance be-
tween every pair of states. One simple way of en-
forcing detailed balance is to assume that every
time there is a transition from state i to j , there
must be a corresponding transition from state j to
i. The maximum likelihood estimate of the num-
ber of transitions from state i to j is then

Ĉij (τ ) = Cij + Cji

2
(2.5)

where Ĉij is an estimate of the reversible counts
from state i to j and Cij are the number of transi-
tions actually observed. This method is perfectly
valid if one has true equilibrium sampling. Fur-
thermore, it is extremely robust in the sense that
this algorithm will always give an estimate of
the transition probability matrix that is consis-
tent with the original data. However, if one has
limited data, as is often the case, then one’s esti-
mate of the transition probability matrix will be
extremely biased towards the starting conditions
of their simulations. For example, the equilibrium
probability of each state will just be proportional
to the number of data points in it.

One alternative is to use maximum likelihood
methods that try to estimate the reversible tran-
sition probability matrix that is most likely to
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have given rise to the observed data [4, 5, 11].
These methods will be described in more detail in
Sect. 4.6. Here, I will just note that these methods
are extremely powerful when they work. How-
ever, at present, they often fail to converge or
converge on transition probability matrices that
over-emphasize the importance of poorly sam-
pled states.

2.3.3 Ergodicity

One final point is that a valid MSM must be er-
godic. That is, the network of states must be fully
connected. Physically, this means that it is pos-
sible to reach any state from an arbitrarily cho-
sen starting state. Disconnected components can
arise when different initial conformations are em-
ployed and sufficient sampling is not obtained to
observe mixing (or overlap) between simulations
started from different structures. When this hap-
pens, it is impossible to determine the relative
equilibrium probabilities of disconnected compo-
nents or the probabilities of transitions between
them. Two possible solutions are (1) to discard all
but one of the components (typically the largest
one) [4, 12, 13] or (2) to collect more data until
the network of states becomes completely con-
nected.

2.4 Model Validation and Lag Time
Selection

Before drawing any conclusions from a model, it
is crucial to test whether or not it is kinetically-
relevant and to choose an appropriate lag time.
The dynamics of a perfectly specified system,
including solvent degrees of freedom and every
atom’s velocity, is certainly Markovian because
the next conformation is simply a determinis-
tic function of the system’s current state. How-
ever, even microstate models effectively coarse-
grain the system. For example, conformations are
grouped together and water degrees of freedom
are often ignored. Therefore, both microstate
models and coarse-grainings thereof may only be

Markovian at longer time scales, if at all. As dis-
cussed previously, large internal barriers can lead
to models that violate the Markov assumption.

2.4.1 Tests Based on the
Chapman-Kolmogorov Equation

Many tests of model validity make use of the
Chapman-Kolmogorov equation

T (nτ) = T (τ)n (2.6)

where n is an integer number of steps, each one
lag time τ in length. This equation captures the
fact that taking n steps with an MSM with a lag
time of τ should be equivalent to an MSM with a
lag time of nτ .

Plotting the relaxation time scales of a mod-
el—also called its implied time scales—as a func-
tion of the lag time is one use of the Chapman-
Kolmogorov equation that provides some model
validation and a means of choosing an appropri-
ate lag time [14]. As will be discussed in more
detail in Sect. 3.2, the relaxation times of a model
are a function of the eigenvalues of its transition
probability matrix

ti = − τ

lnλi

(2.7)

where ti is a relaxation time, τ is the lag time,
and λi is an eigenvalue. Based on the Chapman-
Kolmogorov equation, the relaxation times for a
Markov model with a lag time of nτ should be
the same as those for a Markov model with a lag
time of τ

ti = − nτ

lnλi,T (nτ)

= − nτ

lnλn
i,T (τ)

= − nτ

n lnλi,T (τ)

= − τ

lnλi,T (τ)

(2.8)

where λi,T (τ) is an eigenvalue of T (τ). Therefore,
examining a plot of the relaxation timescales as a
function of the lag time should give an indica-
tion of when a model starts to satisfy the Markov
assumption, if at all. Beyond the Markov time
(the smallest lag time that gives Markovian be-
havior), the relaxation time scales should be level,
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Fig. 2.4 An example relaxation timescale (or implied
timescale) plot with a Markov time of ∼2 ns. Data comes
from Ref. [15]

as shown in Fig. 2.4. If the relaxation time scales
never level-off, then it is likely that one or more
states have large internal barriers and a new state
decomposition is necessary, and possibly more
data as well. Unfortunately, this is a rather sub-
jective test, particularly when dealing with finite
statistics.

One can also go beyond plots of the relaxation
timescales and test the Chapman-Kolmogorov
equation on a state by state basis [5]. More de-
tails on this approach are given in Sect. 4.8.

2.4.2 Correlation Function Tests

Comparing correlation functions from the raw
data and an MSM is one alternative to Chapman-
Kolmogorov-based tests when one has suffi-
ciently long simulations. To calculate correla-
tion functions for a single long trajectory, one
first calculates some property of interest for each
snapshot—like the RMSD to a crystal structure—
and then calculates

c(t) = 〈
θ(0)θ(t)

〉
(2.9)

where θ(t) is the observable at time t .
One can also calculate a (normalized) correla-

tion function for an MSM using

c(n) =
∑N

i=1 λn
i (θ · φi )

2

∑N
i=1 (θ · φi )

2
(2.10)

where n is the number of steps (t/τ ), N is the
number of states, θ is a vector of observables for
each state, and φi is the ith left eigenvector [16].
Unfortunately, this test cannot be used if you only
have short simulations. One needs at least one
long simulation compared to the relaxation time
of the model to calculate the reference correlation
function.

2.5 Coarse-Graining to Generate
Macrostates

As discussed in Sect. 2.1, there are a number of
advantages to coarse-graining microstate models
by merging rapidly mixing microstates into larger
macrostates. First of all, one can sometimes build
mesoscale models that are just as quantitatively
predictive as the original microstate model but are
far more compact. Secondly, one can build mod-
els with few enough states that they are compre-
hendible and can be used to gain an intuition for
a system and generate hypotheses, though they
may no longer be quantitatively predictive.

Two major questions have to be addressed
to build these coarse-grained models. First, how
should one determine which microstates to merge
together? Secondly, how many macrostates
should one build?

Here, we review a number of methods that
have been developed to answer these questions.

2.5.1 PCCA

Perron Cluster Cluster Analysis (PCCA) uses
the eigenspectrum of a transition probability ma-
trix to construct coarse-grained models [17, 18].
This method derives its name from the Perron-
Frobenius theorem, which states that a real square
matrix with positive entries (e.g. a transition
probability matrix) has a unique largest real
eigenvalue and that the corresponding eigenvec-
tor has strictly positive components. The term
Perron Cluster refers to a set of eigenvalues clus-
tered near the largest eigenvalue and separated
from the rest of the eigenspectrum by a reason-
able gap. As discussed shortly, the eigenvectors



16 G.R. Bowman

Fig. 2.5 Two simple models demonstrating the power
and pitfalls of PCCA. (A) A simple model with well-
sampled transitions. Each of the nine microstates has
1,000 self-transitions. Each thick line corresponds to 100
transitions and the medium weight lines correspond to 10
transitions. This model can be coarse-grained into three
macrostates consisting of microstates 0–2 (black outline),
3–5 (gray outline), and 6–8 (dotted outline). Panels (B)
and (C) show the second and third eigenvectors of this
simple model, respectively. Open circles are used for
eigenvector components that are less than or equal to zero
and filled circles are used for components that are greater

than zero. (D) The same simple model with two poorly
sampled transitions (noise) added between states 2–3 and
states 5–6. These transitions have only a single count.
Their presence barely changes the model’s eigenvectors.
However, they alter the sign structure of the second eigen-
vector (panel (E)) and, therefore, PCCA finds the wrong
coarse-graining into three macrostates: microstates 0–2
(black outline), 3 (gray outline) and 4–8 (dotted outline).
Panels (B) and (C) show the second and third eigenvectors
of the simple model from panel (D), respectively. If you
try this model on your own computer, note that your re-
sults may vary slightly due to the symmetry of the system

corresponding to the Perron Cluster can be used
to coarse-grain an MSM.

We begin with a discussion of PCCA because
it highlights many of the issues that must be con-
sidered when coarse-graining MSMs. PCCA was
also one of the first methods for coarse-graining
MSMs and, therefore, provided at least some of
the intellectual inspiration for many of the other
methods. However, the other methods presented
here are likely to perform better than PCCA,
which does not provide a numerically robust clus-
tering.

As discussed previously, the eigenvalues of
a transition probability matrix can be converted
into time scales. The corresponding eigenvectors
describe what transitions are occurring on each
of these time scales [17]. The largest eigenvalue
(λ1) is always 1 for a model that is connected
and obeys detailed balance. The components of
the corresponding eigenvector are proportional to

the equilibrium populations of each state. The re-
maining eigenvalues (λn < λn−1 < · · · < λ2 < 1)
are real-valued and can be converted into time
scales using Eq. (2.7). The corresponding right
eigenvector describes what is happening on this
time scale. That is, states with negative eigen-
vector components are interconverting with states
with positive components and the magnitude of
these components is proportional to the state’s de-
gree of participation. The left eigenvectors con-
tain the same information but weighted by the
equilibrium population of each state.

In PCCA, one starts off with all microstates
merged into a single macrostate and then it-
eratively breaks the most kinetically diverse
macrostate into two smaller states based on
the next slowest right eigenvector [17, 18]. As
an example, let’s consider the model shown in
Fig. 2.5A. By eye, it is clear this model can be
divided into 3 macrostates: one containing mi-
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crostates 0–2, one containing microstates 3–5,
and one containing microstates 6–8. To find these
states with PCCA, one would begin by using the
second eigenvector (ψ2, Fig. 2.5B) to split the
microstates into one group with components less
than or equal to zero (open circles in Fig. 2.5B)
and one group with components greater than zero
(filled circles in Fig. 2.5B). This splitting would
give rise to two macrostates, one containing mi-
crostates 0–5 and another containing microstates
6–8. Next, PCCA chooses the group with the
greatest spread in eigenvector components and
uses the next slowest eigenvector (ψ3) to divide
this group in two. In this example, PCCA would
select the group containing microstates 0–5 be-
cause it has states with components of ψ2 ranging
from about −0.4 to 0, whereas the other group
only has states with components of about 0.4.
Using ψ3, PCCA would then split this group
into two smaller groups containing microstates
0–2 and 3–5, respectively. This second split gives
us the natural grouping into three macrostates
we can see by eye, demonstrating the utility of
this automated procedure. Further iterations of
this algorithm could then be used to create more
macrostates.

One attractive feature of this algorithm is that
it provides a natural way to choose how many
states to construct. If the system of interest has a
well defined set of free energy basins—i.e. with
large barriers between them and significantly
smaller barriers within them—then the system
will exhibit a separation of time scales. That is,
there should be a Perron Cluster of eigenvalues
near 1 that are separated from the rest of the
eigenvalue spectrum by a reasonable gap. For ex-
ample, the eigenvalues of our simple model from
Fig. 2.5A are 1.0, 0.997, 0.992, 0.752, 0.750,
0.750, 0.750, 0.746, 0.735. There is a clear gap
between the third and fourth eigenvalues of this
model, and this gap would become even clearer
after converting the eigenvalues into time scales.
This gap indicates a separation of time scales that
permits a three state macrostate model to cap-
ture the slowest relaxation time scales of the sys-
tem. In general, if there is a gap after the nth
eigenvalue (counting the eigenvalue of 1), then
one should be able to construct a reasonable

macrostate model with n states. Unfortunately,
many real world systems do not have a clear sep-
aration of time scales. Instead, they have a con-
tinuum of eigenvalues. In such cases, the number
of macrostates is best seen as an adjustable pa-
rameter one can vary depending on the properties
of the model they are interested in.

One major limitation of PCCA is that it can
suffer from propagation of error when not all
microstates participate strongly in each eigen-
mode [19]. For example, in the simple model
from Fig. 2.5A, microstates 3–5 have zero com-
ponents in the second eigenvector, indicating they
do not participate in the slowest relaxation pro-
cess. This simple model is purposefully very
clean, so all three of these microstates were
placed in the same group during the first splitting
PCCA performed based on the second eigenvec-
tor. However, in real world scenarios, one rarely
gets states with eigenvector components of ex-
actly zero because of factors like poorly sampled
transitions. States that do not participate strongly
in a given eigenmode (i.e. have eigenvector com-
ponents that are nearly zero) will be assigned
to macrostates rather arbitrarily, leading to com-
pounding error as more eigenvectors are consid-
ered. For example, the simple model in Fig. 2.5D
is the same as the one we’ve used so far but with
the addition of two noisy transitions with only a
single count between states 2–3 and states 5–6. In
the second eigenvector of this model, microstates
3–5 have very small magnitude eigenvector com-
ponents with different signs (Fig. 2.5E). There-
fore, splitting this model into two groups based
on the second eigenvector gives one set contain-
ing microstates 0–3 and another containing mi-
crostates 4–8. Despite the fact that microstates
3–5 should form a single macrostate, they have
already been split apart at this early stage. As
PCCA considers more eigenvectors, it will prop-
agate this error. In more complicated models, new
errors can also be introduced at each stage due to
weakly participating states. Unfortunately, there
is often a continuum of eigenvector components,
so there is currently no clear way to separate
weakly participating states from strongly partici-
pating ones and deal with the weakly participat-
ing ones separately.
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A number of heuristic methods have been in-
troduced to fix this problem but none are entirely
satisfactory [1]. For example, intuitively, a par-
titioning into metastable states should maximize
the self-transition probability of each state. Do-
ing so is equivalent to minimizing the transition
rates between states, or placing the boundaries
between states along the largest free energy bar-
riers. Therefore, one can try to correct for the er-
rors introduced during PCCA by doing a simu-
lated annealing procedure to maximize the total
metastability (Q) of the model

Q =
∑

n

Tii (2.11)

where n is the number of macrostates and Tii

is the self-transition probability for state i. In
such a procedure, one tries randomly assign-
ing microstates to new macrostates and each
proposed move is accepted or rejected accord-
ing to a Monte Carlo criterion. That is, moves
that increase the metastability are always ac-
cepted and moves that reduce it are only ac-
cepted with some small probability. This pro-
cedure often works for simple models but be-
comes intractable for real world models because
it can converge on non-sensical results or even
completely fail to converge to a stable solu-
tion.

PCCA is also prone to handle poorly sam-
pled states and transitions improperly because
it does not account for statistical uncertainty in
a model [21]. For example, it is common for
the clustering algorithms described in Sect. 2.2
to make conformations that are geometric out-
liers into their own microstates [11]. These states
will have very few transitions to other states
and, therefore, will appear to be separated from
them by large free energy barriers. As a re-
sult, PCCA will often make these poorly sam-
pled microstates into singleton macrostates—i.e.
macrostates containing a single microstate. Hu-
man examination of these states, however, of-
ten reveals that they are unlikely to be physically
meaningful.

2.5.2 PCCA+

PCCA+ is a more robust version of PCCA that
avoids the pitfall of propagation of error [19, 20].
This improvement is accomplished by consider-
ing the relevant eigenvectors simultaneously in-
stead of sequentially. More specifically, PCCA+
tries to find a set of indicator functions that best
reproduces the n slowest dynamical eigenvectors.
For example, to construct a three-state macrostate
model for the simple model in Fig. 2.5D, PCCA+
would consider the second and third eigenvec-
tors simultaneously. PCCA+ would then fit these
eigenvectors with three step functions: one that is
1 in states 0–2 and 0 elsewhere, a second that is 1
in states 3–5 and 0 elsewhere, and a third that is 1
in states 6–8 and 0 elsewhere. The details of how
this optimization is achieved are very similar to
spectral clustering and are described in Ref. [19].

While PCCA+ does not suffer from the propa-
gation of error that occurs in PCCA, this method
still relies on a maximum likelihood estimate
of the transition probability matrix. Therefore,
PCCA+ still tends to create singleton macrostates.
Furthermore, PCCA+ can require quite a bit of
memory, so creating mesoscale models is often
computationally intractable.

2.5.3 SHC

Super-level-set hierarchical clustering (SHC) tries
to deal with model uncertainty by treating low
population states differently from high popula-
tion ones [22]. Inspired by developments in topo-
logical data analysis, SHC first divides all the
microstates into sets with similar populations
(called level-sets) [23]. PCCA or PCCA+ is then
used to divide each set into macrostates. Finally,
overlap between the macrostates at each level
is used to stitch these models together. Typi-
cally, PCCA(+) is not applied to the least pop-
ulated states. Instead, these are just lumped into
the macrostate they transition to most quickly,
thereby avoiding creating singleton macrostates.

One added benefit of this approach is that the
hierarchy of models SHC creates can give insight
into the hierarchy of free energy basins that actu-
ally exist in the underlying free energy landscape.
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For example, macrostates from the most popu-
lated level correspond to the deepest free energy
basins. Some of the macrostates at less populated
levels simply correspond to the same macrostates
that are present at more populated levels. How-
ever, some reflect less populated intermediates
between these deeper minima and can provide in-
sight into how the system transitions between the
most populated free energy basins.

SHC could benefit greatly from a more formal
justification. One philosophical short coming is
that SHC was inspired by methods that make use
of density level sets (sets of data with approx-
imately equal densities). However, as discussed
earlier, estimating densities in high-dimensional
spaces is extremely difficult. A more formal jus-
tification for breaking the microstates into levels
would be preferable. One practical implication of
this short-coming is that there is no clear way to
define the level sets a priori. Instead, one must
make a rather arbitrary choice and then try vary-
ing the density level sets to check for robustness.
Therefore, SHC requires more computation than
a single application of PCCA or PCCA+. A more
formal justification for this method could pro-
vide insight into how to choose the density level
sets and make this an extremely powerful method
though. New work on framing SHC in terms of
a Nystrom expansion of the transition probabil-
ity matrix may provide such a formal justifica-
tion.

2.5.4 BACE

More recently, a Bayesian agglomerative clus-
tering engine (BACE) has been developed for
dealing with uncertainty in a more automated
fashion [21]. BACE exploits the observation that
rapidly mixing states should also be kinetically
similar—that is, they should have similar transi-
tion probabilities—to determine which states to
lump together. The algorithm works by iteratively
merging the most kinetically similar states, as
judged by a Bayes factor for determining how
likely the transitions observed for each state are

to have come from the same underlying distribu-
tion

ln
P(different|C)

P (same|C)
≈ ĈiD(pi‖q) + ĈjD(pj‖q)

(2.12)

where P(different|C) is the probability the counts
(C) from states i and j came from different un-
derlying probability distributions and P(same|C)

is the probability they came from the same dis-
tribution, Ĉi is the number of counts originat-
ing in state i, D(pi‖q) = ∑

k pik ln pik

qk
is the

relative entropy between probability distribution
pi and q , pi is a vector of maximum likeli-
hood transition probabilities from state i, and

q = Ĉipi+Ĉj pj

Ĉi+Ĉj

is the vector of expected transi-

tion probabilities from combining states i and
j . Deriving this expression involves integrating
over all possible transition probability distribu-
tions out of each state, so the method naturally
takes into account uncertainty in the microstate
model’s transition probability matrix.

In addition to outperforming many other meth-
ods, BACE has an appealing information theo-
retic interpretation and provides a way to deter-
mine which levels of the hierarchy of models it
creates are most deserving of further analysis.
Specifically, Eq. (2.12) is identical to the Jensen-
Shannon divergence, a popular measure from in-
formation theory [24]. Therefore, BACE can be
interpreted as creating the coarse-graining that re-
tains the maximum information about the original
model’s kinetics. The BACE Bayes factor also
provides a means to determine how many states
to create. One can simply monitor the Bayes fac-
tor as one merges states and watch for dramatic
jumps. Models preceding these jumps are particu-
larly deserving of further analysis because further
coarse-graining greatly reduces the model qual-
ity.

Fully characterizing the strengths and weak-
nesses of BACE compared to other methods
will require further application of this method.
BACE is probably extremely useful for build-
ing mesoscale models because it can build them
quickly and accurately. However, it may be
less useful for building extremely coarse-grained
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models. The fewer the states one requests from
BACE, the more iterations it must run and the
longer the algorithm takes to complete. BACE
could also suffer from propagation of error, as
seen in PCCA, as a mistake early on will never
be corrected later.

2.6 Recommended Protocol

At present, one of the most robust and widely
used—but not necessarily optimal!—protocols
for modeling proteins and other biomolecules is:
1. Cluster a simulation data set with the hybrid

k-centers/k-medoids algorithm based on the
RMSD between backbone heavy atoms, en-
suring that every cluster has a radius on the
order of a few Å.

2. Validate the kinetic relevance of this cluster-
ing and choose an appropriate lag time based
on the model’s relaxation time scales (or im-
plied time scales) as a function of the lag time.
For each lag time, estimate the transition ma-
trices by:
a. Removing states that only have one transi-

tion with any other state.
b. Counting transitions using a sliding win-

dow and assuming that for every transition
from state i to j , there is a corresponding
transition from j to i.

3. Use the transition probability matrix at the de-
sired lag time and representative conforma-
tions from each state to model experiments.

4. Coarse-grain the model with PCCA+ to gain
an intuition for the system. Make sure to test
how quantitative the coarse-grained model
is by examining how closely the macrostate
model’s relaxation times agree with the mi-
crostate model.

2.7 Advanced Topics and Future
Directions

Before moving on to the next chapter, I would
like to briefly review a number of advanced top-
ics and list some of the future directions that
could lead to more effective methods for building
MSMs.

2.7.1 Seeding

In seeding, one uses an inexpensive method to
choose a variety of starting conformations for
simulations that will later be used to build an
MSM [25]. Intuitively, seeding allows one to
explore a wider swath of conformational space
more quickly than would be possible by start-
ing every simulation from a single conformation,
like a crystal structure. Ideally, one would like
to find the greatest possible variety of relevant
conformations. One way of doing this is to use
generalized ensemble simulations like replica ex-
change to quickly explore conformational space
and then use random conformations from these
simulations as starting points for constant tem-
perature simulations. This procedure helps focus
the starting conformations on thermodynamically
relevant regions of phase space. Less thermody-
namically relevant conformations should quickly
relax to more populated regions of conforma-
tional space.

When using seeding, one must be careful to
ensure that the resulting model is connected. Sim-
ulations started from conformations that are too
kinetically distant from any of the other starting
points may never overlap with the rest of the tra-
jectories, making it impossible to determine tran-
sition rates between them or their relative equilib-
rium populations.

2.7.2 Cores

Fluctuations at the tops of barriers between states
can lead to recrossing events where the system
appears to rapidly jump back and forth between
the start and end state [26]. These recrossing
events can lead to over-estimates of the transi-
tion rates between states if they are not dealt with
properly.

Cores are one way of reducing the affect of
recrossing [16, 27]. The basic idea is to define a
core region within each state, leaving a no-man’s
land between each pair of states. Transitions are
only counted when a trajectory leaves the core of
one state and enters the core of another. A trajec-
tory that makes an excursion into no-man’s land
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but then returns to the core it started in before en-
tering the core of any other state is said never to
have left its initial state.

2.7.3 Comparing Multiple Sequences

In addition to providing insight into a single sys-
tem, MSMs are also a powerful way of comparing
different systems. For instance, in protein folding,
there is great interest in comparing slight varia-
tions of a single protein and how the mutations
that distinguish them change properties like the
folding rate or stability of the native state. For this
to be possible, it is essential that a common state
space be used. For example, one can construct a
common microstate space by clustering two pro-
tein sequences using a set of atoms that they share
in common [28]. Properties like the equilibrium
populations of a set of states or the transition rates
between them can then be compared between the
two systems.

2.7.4 Open Challenges

MSM methods are sufficiently well developed
to pursue many exciting applications. However,
there is still a great deal of room for further
methodological improvements. Here, I list just a
few of them.
1. As discussed previously, one would ideally

like to build MSMs using a truly kinetic dis-
tance metric from the beginning. New cluster-
ing methods or distance metrics that better re-
flect a system’s kinetics would be of tremen-
dous value.

2. Many of the methods for validating MSMs
and choosing important parameters, like the
lag time, are very subjective. Quantitative ap-
proaches to model validation would allow for
more automatic model construction.

3. More robust methods for estimating transition
matrices that satisfy detailed balance would
also be useful. Current methods are either too
biased or too unreliable.

4. There is still a need for more efficient and ac-
curate coarse-graining methods.
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