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10.1 Introduction

Continuous-wave electron spin resonance (cw-
ESR) experiments combined with site-directed
spin labeling (SDSL) techniques are a rich source
of information about the local structure and
dynamics of biomolecules in native-like environ-
ments [6, 10, 16]. Partly owing to its high sensi-
tivity and the relative ease with which biomole-
cules can be systematically labeled at almost any
desired location (e.g., by introducing cysteine
mutations in proteins), ESR plays an increasingly
important role in studies of proteins [26], nucleic
acids [27], and membrane systems [37]. An ex-
citing aspect of cw-ESR is the extreme sensitiv-
ity of the technique to the details of the dynam-
ical processes occurring at the molecular level.
Cw-ESR spectra are sensitive to dynamics over
a broad range of time scales, from hundreds of
picoseconds to tens of nanoseconds, depending
on the strength of the constant magnetic field or
the corresponding microwave frequency. While
the slower end of this temporal range is routinely
covered by lower fields/frequencies, like the most
commonly used X-band, the faster end has re-
cently become accessible as a result of vigorous
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developments in high-field/high-frequency ESR
[5, 13, 20]. However, despite the great progress
with the experimental cw-ESR and SDSL tech-
niques, the development of a comprehensive set
of theoretical methods able to account quanti-
tatively for all the spectral features in terms of
atomic models remains challenging.

A qualitative interpretation of cw-ESR spec-
tra is relatively straightforward when the over-
all purpose of an experimental investigation is
to delineate broad structural features of a pro-
tein. For instance, secondary structural elements
can be mapped out by systematically scanning
the protein by SDSL, and comparing the result-
ing spectra. Information about the overall posi-
tion of the subunits of a membrane protein rela-
tive to the lipid bilayer can also be obtained with
the aid of additional water- or membrane-soluble
paramagnetic agents. The situation is very differ-
ent when detailed structural and dynamic infor-
mation about a system is sought, and the spe-
cific features of the spectral line shapes need
to be properly interpreted. In this case, under-
standing the link between the conformational dy-
namics of the spin label and the observed spec-
tra becomes of paramount importance. Unam-
biguously inferring the underlying molecular pro-
cesses from spectra is difficult, however, even
when using high-field/high-frequency ESR. The
task becomes particularly challenging for spin-
labeled biomolecules because they undergo com-
plex motions occurring over a multitude of over-
lapping time scales. The internal dynamics of the
spectroscopic reporter, i.e., the spin label, adds
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another layer of complexity that must also be ac-
counted for.

Currently, the most established theoretical/
computational method for quantifying cw-ESR
spectra is based on the stochastic Liouville equa-
tion (SLE). Spectral line shapes are simulated by
generating a matrix representation for the Liou-
ville operator corresponding to the relevant spin
dynamics coupled to the hypothesized stochastic
processes [19, 46]. Among the various stochastic
models, most sophisticated are the MOMD (mi-
croscopic order macroscopic disorder) [38] and
SRLS (slowly relaxing local structure) [40, 41]
models, in which the dynamics of the spin la-
bel relative to the magnetic fields applied in the
laboratory is described as a collection of nested
rotational transformations evolving in a diffusive
manner (see Sect. 10.2.2). The necessary matrix
diagonalization and simulation of cw-ESR spec-
tra is done in a very efficient way by the SLE
numerical solver—a suite of programs for sim-
ulating and fitting slow-motional ESR spectra—
developed in the laboratory of Jack Freed [7]. The
outcome of an SLE analysis is typically a small
set of phenomenological parameters associated
with the rate and the range of motion of the spin
label in some local mean-field potential. In prac-
tice it is necessary to keep the internal structure
of the phenomenological stochastic model rela-
tively simple to maintain the size of the problems
within approachable numerical limits for the SLE
solver. To avoid this issue, an alternative route is
to bypass the construction of SLE altogether and
simulate cw-ESR spectra directly from stochastic
trajectories [14, 15, 17, 44, 52, 55]. The most im-
portant limitation of such phenomenological ap-
proaches, which thwarts developing insight about
the molecular factors reported by the details of
the spectra, remains the difficulty to understand
the correspondence between the fitted mean-field
parameters of the stochastic model and the under-
lying atomistic motions.

In this regard, all-atom molecular dynamics
(MD) simulations with explicit solvent offer, per-
haps, one of the most promising approaches for
calculating cw-ESR spectra directly without ex-
tra assumptions about phenomenological mod-
els [4, 12, 30, 53]. In principle, MD simula-
tions provide a “virtual route” to unambiguously

link the atomistic dynamics to the experimen-
tally observed cw-ESR spectra. Such an approach
is, after all, routinely used to analyze and in-
terpret results from nuclear magnetic resonance
(NMR) [34]. However, a straightforward all-atom
MD strategy for calculating ESR spectra remains
challenging, even with current computational re-
sources [47, 48]. The reason for this is both
simple and complex. In NMR, the spin of the
nuclei are only weakly coupled to their surround-
ing, therefore most magnetic relaxation coeffi-
cients can be calculated accurately from nanosec-
ond trajectories using Redfield theory [43], which
follows from time-dependent perturbation theory
in quantum mechanics carried to second order.
In contrast, the coupling of an electron spin to
its environment is almost three orders of magni-
tude stronger than the coupling of nuclear spins.
As a result, in most ESR experiments with spin-
labeled macromolecules a perturbative treatment
is not applicable. For this reason, the quantal de-
grees of freedom must be propagated for hun-
dreds of nanoseconds to calculate spectra with a
reasonable resolution of detail. Paradoxically, all
issues of statistical convergence are not immedi-
ately resolved even when one trajectory is suffi-
ciently long to allow the spin label to explore all
accessible configurations and lose its correlation.
The problem is that a large number of indepen-
dent “samples” are necessary for a reliable esti-
mate of the ESR spectrum. To clarify this point,
it is useful to consider that the effective error of
an ensemble average normally goes as σ 2/

√
N ,

where N is the number of independent samples
and σ 2 is the intrinsic variance of the signal.
When the averaging process is carried out from
a trajectory of total length T the number of inde-
pendent samples is typically understood as T /τc,
where τc is the correlation time. In the case of
biomolecular ESR, τc can be on the order of tens
or hundreds of nanoseconds, which does not cor-
respond to exceedingly long trajectories with cur-
rent standards. However, due to the strong cou-
pling of the electron spin to the orientation of
the nitroxide label, the effective σ 2 of cw-ESR
spectra in the presence of such slow motions is
very large. As a consequence, small changes in
one classical trajectory of length T can lead to
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considerable variations in the resulting spectrum.
For this reason, one needs a very large N to get a
reliable spectrum. If the averaging process is car-
ried out from an ensemble, then a large number
of sample trajectories is required. Alternatively,
if the averaging process is carried out from a sin-
gle trajectory then the latter has to be much longer
than a single correlation time.

With the aim of establishing a flexible compu-
tational formalism for simulating cw-ESR spec-
tra, we have developed a framework that cir-
cumvents these difficulties. Relevant informa-
tion about the spin-label dynamics is first ex-
tracted from (relatively short) MD trajectories
and mapped onto a Markov state model (MSM).
Extremely long and computationally inexpen-
sive stochastic state-hoping trajectories are then
generated, while global tumbling of the macro-
molecule can be incorporated via a rotational dif-
fusion model. Finally, the quantal degrees of free-
dom can be propagated along these trajectories
to calculate cw-ESR spectra accurately [47–49].
The feasibility of this approach was demonstrated
in Ref. [50], where it was successfully applied to
the simulation of multifrequency spectra of spin-
labeled T4 Lysozyme [56]. In this chapter, we re-
view the main theoretical and practical elements
of the method.

10.2 General Overview

Before discussing the details of the approach, we
start by giving a quick overview of the problem.
To this end, we first introduce the quantum me-
chanical aspect of the problem (Sect. 10.2.1),
then look at various models of the classical
molecular motion (Sect. 10.2.2), and finally com-
bine the two by illustrating the effect of molecular
tumbling on cw-ESR spectra (Sect. 10.2.3). This
structure reflects the overall organization of the
chapter: Sect. 10.3 is concerned with the MSM
modeling of the classical dynamics of a protein-
attached spin label, Sect. 10.4 presents the details
of the quantal spin dynamics, and Sect. 10.5 dis-
cusses the combination of the two aspects. Sim-
ulations of multifrequency cw-ESR spectra of

spin-labeled T4 Lysozyme (Sect. 10.5.3) demon-
strate the power of this novel methodology in
practical applications.

10.2.1 The Nitroxide Spin Hamiltonian

Cw-ESR spectroscopy consists in measuring the
transverse magnetization from a bulk system in
which nitroxide spin labels have been introduced.
A nitroxide has an unpaired electron of spin S =
1/2 and a nitrogen nucleus with spin I = 1 (for
14N) or I = 1/2 (for 15N). The spin Hamiltonian
of the nitroxide spin label, accounting for the in-
teractions of the electron and nuclear spins, is

Ĥ (t) = |γe|
[
B · G(t) · Ŝ + Î · A(t) · Ŝ

]
(10.1)

in units of angular frequency. (Bold letters are
used to denote vectors and matrices in phys-
ical space, Hilbert space operators are indi-
cated with a caret.) Here, γe = −1.76086 ×
10−2 rad ns−1 G−1 is the electron gyromagnetic
ratio, Ŝ and Î are the electron and nuclear spin
operators, A is the hyperfine tensor (expressed in
units of magnetic field) and

G(t) ≡ g(t)/ge (10.2)

is the electronic g tensor, g, divided by the free
electron g-factor, ge = 2.0023193. The electron
Zeeman interaction and the electron-nucleus hy-
perfine interaction are explicitly accounted for in
the Hamiltonian (10.1). In contrast, the nuclear
Zeeman and quadrupolar (in the case of I = 1)
interactions have been neglected.

To a very good approximation, the coupling
tensors G and A are diagonal in the same nitro-
xide-fixed coordinate frame N. The standard
choice of axes in N with respect to the nitrox-
ide structure is shown in Fig. 10.1. Typical mag-
netic tensor values for nitroxide spin labels on
biomolecules are

gN = diag(2.008,2.006,2.0022),

AN = diag(5.0,5.0,37.0) Gauss.
(10.3)

In this picture, the explicit time dependence of
the magnetic tensors in (10.1) is due to the clas-
sical rotational dynamics of the coordinate sys-
tem N with respect to the stationary laboratory
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Fig. 10.1 The direction of the principle axes in the co-
ordinate system N attached to the nitroxide ring. The x

direction is along the N−O bond, the z direction is per-
pendicular to the ring, and the y direction is such that a
right-handed system of axes is formed

frame L, in which the constant magnetic field B =
(0,0,B) is applied.1 Since the spins are quan-
tized along B all the vector and tensor compo-
nents in the Hamiltonian are with respect to L.

The dynamics that cw-ESR experiments aim
to probe leaves its mark on the spin dynam-
ics described above by modulating the compo-
nents GL

ij and AL
ij (i, j = x, y, z) of the Zeeman

and hyperfine magnetic tensors in the laboratory
frame. Since these tensors remain unchanged in
a coordinate system fixed on the nitroxide (cf.
Fig. 10.1), the molecular motion is encoded in
the form of rotation matrices RLN(t) that trans-
form the tensor components from the N to the L
system of axes according to

GL
ij (t) =

∑

k=x,y,z

RLN
ik (t)GN

kkR
LN
jk (t),

AL
ij (t) =

∑

k

RLN
ik (t)AN

kkR
LN
jk (t).

(10.4)

The time dependence of the transformation ma-
trices is due to the dynamics of the nitroxide,
as well as the global and internal dynamics of

1Although not rigorously correct, the assumption that
the classical dynamics is completely uninfluenced by the
states of the quantum system is typically an excellent ap-
proximation for room-temperature magnetic resonance.
One minor inconvenience is that the equilibrium popu-
lation of the states of the spin system corresponds to an
infinite temperature. This, however, affects only the longi-
tudinal magnetization but not the transverse magnetization
whose evolution is calculated.

the molecule to which the spin label is cova-
lently attached. Different motional models as-
sumed for these dynamical modes result in dif-
ferent sequences RLN(t), as discussed next.

10.2.2 Stochastic Models of Molecular
Motion

The transformation from the nitroxide-fixed to
the laboratory system of coordinate axes can
be achieved as a sequence of nested rotational
transformations. For example, the MOMD model
mentioned in Sect. 10.1 can be illustrated sche-
matically as

L
powder−−−−→ M

restricted
diffusion−−−−−→ S

fixed−−→ N. (10.5)

Here S refers to the system of coordinate axes
fixed on the spin label and M to the coordinate
system attached to the macromolecule (e.g., pro-
tein) to which the spin label is covalently bonded.
The model (10.5) represents the dynamics of the
spin label with respect to the protein as restricted
rotational diffusion. The coordinate system S at-
tached to the spin label is defined by the princi-
ple axes of its diffusion tensor. In general, these
axes do not need to overlap with the principle
axes of the magnetic tensors, defining the coordi-
nate frame N. The model (10.5) can therefore ac-
count for the possibility that the nitroxide frame
N has a fixed, time-independent orientation with
respect to S. In addition to the spin-label dynam-
ics relative to the protein, in (10.5) the protein is
allowed to be randomly orientated with respect to
the laboratory frame. This would be the case for
a large, relatively immobilized macromolecule in
solution or a frozen (powder) sample.2

Clearly, more complex motional models can
be constructed by combining independent or cou-
pled nested rotations. Very attractive, however, is

2A time-dependent or constant rotation matrix is associ-
ated with each successive transformation in a motional
model like (10.5). The matrix for the net transformation
from L to N, to be employed in (10.4), is obtained as
the product of the successive rotation matrices: RLN(t) =
RLMRMS(t)RSN.
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the alternative to forgo completely any stochastic
model, and use the time-dependent dynamics of
N relative to L extracted directly from atomistic
MD simulations. This approach has been pursued
by many [4, 8, 12, 22, 30, 53], following the
pioneering work of Steinhoff and Hubbell from
more than a decade and a half ago [52]. In this
approach, the time-dependent rotation matrices
RLN(t) can be obtained directly from the snap-
shots of the classical MD simulations, which can
be represented as

L
MD

simulation−−−−−→ N. (10.6)

Although MD simulations of a spin-labeled
macromolecule are expected to offer insight into
the detailed dynamics of the spin label and its en-
vironment, there are important shortcomings to
such an approach. In particular, extremely long
trajectories are needed to sample the global tum-
bling of the macromolecule in solution. Without
proper sampling of this relatively simple motion,
the MD trajectories will not reflect the experi-
mental situation realistically and cw-ESR spec-
tra simulated from them will fail to reproduce the
observed spectra. Thus, for the quantitative com-
parison of simulated and recorded spectra, it be-
comes necessary to be able to directly account
for rotational diffusion by relying on a stochas-
tic model. This can be achieved by modeling the
dynamics of the coordinate frame N with respect
to the macromolecule with atomistic MD simu-
lations, while generating the dynamics of M rela-
tive to L using a stochastic model of isotropic or
anisotropic rotational diffusion:3

L
rotational
diffusion−−−−−→ M

MD
trajectories−−−−−−→ N. (10.7)

3Splitting the molecular motion according to (10.7) as-
sumes that the overall molecular tumbling and the motion
of the spin label with respect to the global molecular frame
are independent [23]. Clearly, this approximation may
break in some cases, e.g., when an internal structural re-
arrangement changes the overall structure—and hence the
rotational diffusion tensor—of the whole molecule. Nev-
ertheless, in many instances with spin-labeled biomacro-
molecules the approximation of decoupled global and in-
ternal motions is well justified.

Cw-ESR spectra simulated from such a combi-
nation of stochastic rotational diffusion and MD
trajectories were presented in Refs. [47, 49]. Es-
sentially the same approach has been used by De-
Sensi et al. [12].

Even as MD simulations become more and
more routine, the demand on the number and du-
ration of the MD trajectories may become rapidly
wasteful and inefficient when the purpose is to
insert these into the model (10.7). In particular,
the spin dynamics must be propagated over mul-
tiple molecular correlation times to explore all
the possible orientations and yield a converged
ESR spectrum. For this reason, it is important
to develop alternative stochastic models able to
provide a realistic “mimic” of the long-time dy-
namics of the spin label relative to the protein.
When this dynamics is dominated by rotameric
isomerization, the intermittent nature of the tran-
sitions between the various rotamers suggests that
a Markov state model (MSM) shall provide an
ideal framework to encode the internal spin-label
dynamics available from MD simulations. Once
its parameters have been properly estimated, the
so-constructed MSM allows for the generation of
computationally inexpensive and arbitrarily long
stochastic trajectories. Combining the MSM dy-
namics with a diffusive model of the tumbling of
the protein, cw-ESR spectra can be simulated in
time domain according to the scheme:

L
rotational
diffusion−−−−−→ M

MSM
trajectories−−−−−−→ N. (10.8)

Such simulations were performed in Refs. [49,
50].

10.2.3 Isotropic and Anisotropic
Rotational Diffusion

To illustrate the impact of rotational diffusion on
cw-ESR spectra, we consider the motional model

L
rotational
diffusion−−−−−→ M

fixed−−→ N, (10.9)

which describes a spin label rigidly tethered to
a biological macromolecule tumbling in solution.
For concreteness, let us take a double-helical B-
DNA consisting of 20 base pairs (Fig. 10.2, left),
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Fig. 10.2 Left: Double-helical B-DNA containing 20
base pairs and labeled with a single nitroxide spin label.
Right: Nitroxide spin label (balls and thin sticks) cova-
lently attached to the cytosine nucleotide (thick sticks) of
DNA or RNA [9]

one cytosine base of which is labeled with a ni-
troxide spin label (Fig. 10.2, right) [9]. From
the labeling geometry, the z axis of the nitroxide
frame (defined in Fig. 10.1) is seen to be perpen-
dicular to the plane of the base and collinear with
the helix axis of the DNA. Choosing the z axis
of the macromolecular coordinate system as the
helix axis, and taking into account the symmetry
of the double helix under rotation about this axis,
we can take the two coordinate systems M and N
to be identical.

In general, a 3 × 3 diffusion tensor needs to
be specified for the tumbling of the molecular
frame M with respect to the laboratory system
of axes L. With the above choice of the coor-
dinate axes on the macromolecule the diffusion
tensor is expected to be diagonal and of the form
D = diag(D⊥,D⊥,D‖), where D‖ and D⊥ are
the diffusion coefficients for rotation about direc-
tions, respectively, parallel and perpendicular to
the helix axis. Since the length of the double helix
(≈70 Å) is several times larger than its diameter
(≈20 Å), we expect to have D‖ > D⊥.

Simulations of cw-ESR spectra at two differ-
ent magnetic fields (B = 0.35 and B = 3.4 Tesla)
for the spin-labeled B-DNA tumbling in solu-

Fig. 10.3 Experimental X-band cw-ESR spectrum
(green) and spectra calculated at two different magnetic
fields (A) B = 0.35 T and (B) B = 3.4 T. At each field,
three different tumbling rates with the following rotational
diffusion tensors are compared: D = diag(10,10,10) ×
106 s−1 (blue), D = diag(10,10,40) × 106 s−1 (black),
and D = diag(25,25,40) × 106 s−1 (red). For visual
purposes the three spectra are systematically shifted in
the vertical direction, which corresponds to the spectral
intensity (in arbitrary units)

tion are presented in Fig. 10.3. (For further de-
tails about the geometry and the simulation pa-
rameters the reader is referred to Ref. [51].)
The bottom spectrum (blue), simulated using
D = diag(10,10,10) × 106 rad2/s, corresponds
to isotropic rotational diffusion expected from a
spherical macromolecule. The spectrum in the
middle (black), simulated using D = diag(10,10,

40) × 106 rad2/s, takes into account the faster
diffusion of the elongated DNA molecule about
its helix axes. In fact, it compares very well
with the experimental spectrum (green) on top
of which it is overlaid. Notice, however, that the
two spectra (black and blue) at B = 0.35 T—the
magnetic field most commonly used in studies
of biomacromolecules—are indistinguishable in
these two cases. For the spin labeling geometry
considered in this example, cw-ESR experiments
at the higher field of B = 3.4 T are necessary
to pick up the elongated shape of the molecule.
The (red) spectrum at the top in Figs. 10.3A
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Fig. 10.4 Left: Nitroxide spin label R1 (balls and thin
sticks) covalently bonded to the cysteine amino acid (thick
sticks) of a protein. Right: T4 Lysozyme (T4L) labeled
with R1 at positions 72 and 131. The former is located on
a long α-helix, whereas the latter is on a short α-helix. At

both sites the spin labels are at the surface of the protein
nicely exposed to the solvent, i.e., solvent-exposed helix
surface (SEHS) spin labels. In experiments the labels are
present one at a time

and B, simulated using D = diag(25,25,40) ×
106 rad2/s, is intended to illustrate the effect
of shortening the length of the DNA double he-
lix. Keeping the diffusion coefficient for rotation
about the helix axis the same as in the (black)
spectrum in the middle, we have increased the
rate of diffusion about the perpendicular axis
from 10 to 25×106 rad2/s. In this case, the spec-
tra at both fields are sufficiently different from the
spectra simulated using D = diag(10,10,40) ×
106 rad2/s (black in Fig. 10.3), showing the sen-
sitivity of the experiments to the length of the
DNA double helix.

The simulations in Fig. 10.3 rest on the as-
sumption that the only motion experienced by
the spin label is anisotropic rotational diffusion.
In reality, other motions—like the libration of
the base to which the spin label is covalently
attached—are expected to take place in addition
to the global molecular tumbling. However, it
should be clear from the presented evidence that
the internal motions can be unambiguously in-
ferred from the experimental spectra only if the
effect of the global motion is carefully accounted
for along the lines illustrated in Fig. 10.3.

10.3 MSM of Spin-Label Dynamics

In this section, we observe that the internal dy-
namics of a solvent-exposed spin label on the sur-
face of a protein is dominated by the isomeriza-

tion of its linker (Sect. 10.3.1). Such motion is
perfectly suited for modeling by MSMs that can
be subsequently used to simulate cw-ESR spec-
tra according to the model (10.8). The construc-
tion of MSMs of the spin-label dynamics from
MD trajectories is illustrated in Sect. 10.3.2 for
two spin labels at solvent-exposed positions on
the protein T4 Lysozyme. Multifrequency spec-
tra for these two positions will be considered in
Sect. 10.5.3.

10.3.1 Side Chain Isomerization as
Intermittent Dynamics

The covalent attachment of the spin label in
Fig. 10.2 to the cytosine base of DNA lacks any
rotatable bonds. Hence, its internal dynamics is
expected to be tightly coupled to the internal dy-
namics of the entire DNA fragment. The situation
is different for ESR studies of proteins, in which
the spin label referred to as R1 is most commonly
used [10, 16]. This nitroxide spin label is cova-
lently bonded to the side chain of the amino acid
cysteine through a linker consisting of five se-
quential chemical bonds (Fig. 10.4, left). In prin-
ciple, rotations around each one of these bonds
are sterically permitted, which should allow for
rich internal spin label dynamics largely indepen-
dent from the dynamics of the protein backbone.



122 D. Sezer and B. Roux

Fig. 10.5 Isomerization dynamics of the nitroxide spin label R1 at position 72 on T4 Lysozyme

Because of the additional complexity intro-
duced by the internal freedom of R1 and other
similar spin labels attached to proteins, exten-
sive efforts have been dedicated to elucidate the
microscopic factors affecting their conformation
and dynamics. Particularly informative are the
experimental studies with the well-characterized
protein T4 Lysozyme (T4L). A wealth of re-
sults, ranging from X-ray crystallography of spin-
labeled T4L [18, 21, 31], to X-band [11, 35,
36] or multifrequency [33, 56] cw-ESR experi-
ments, are now available. From those studies, two
positions—72 and 131—situated in the middle
of, respectively, a long and a short helix, have
emerged as prototypical solvent-exposed helix
surface (SEHS) sites (Fig. 10.4, right). The dy-
namics of R1 at these positions has been ratio-
nalized in terms of the “χ4/χ5 model” for SEHS
sites [10, 11], which assumes that the internal mo-
tion of R1 is largely limited to rotations about
the last two dihedrals of the side chain. Accord-
ing to this model, the remaining dihedrals are ef-
fectively “locked”: the χ3 disulfide torsion is op-
posed by a large energy barrier [25], while the χ1

and χ2 torsions of the cysteine side chain are hin-
dered by the formation of a hydrogen bond be-
tween the sulfur atom of R1 and the backbone

amide [36] or Cα [10]. Such sulphur-backbone
contacts are indeed observed in a number of X-
ray crystal structures of T4L with spin labels
[18, 21, 31], in support for the χ4/χ5 model. Fur-
thermore, the χ4/χ5 model offers an atomistic ra-
tionalization of the fitting parameters of the diffu-
sional models MOMD and SRLS, which can pro-
duce simulated spectra in quantitative agreement
with experiments [56].

According to the current understanding, 72R1
and 131R1 in T4L are believed to exemplify the
internal R1 dynamics at SEHS sites in maximum
isolation. The differences in the X-band cw-ESR
spectra at these two positions are thought to re-
flect the effect of backbone motion on the mobil-
ity of the spin label side chain [11]. Nevertheless,
a number of issues remain. For instance, the spin
label is partly disordered and unresolved in sev-
eral X-ray structures [18], suggesting that mul-
tiple conformations are energetically accessible.
Therefore, in spite of the large amount of data
available, a definitive characterization of the spin
label dynamics at SEHS sites at the atomic level
has not been achieved.

The values of the spin label dihedral an-
gles during an atomistic simulation of T4L la-
beled at position 72 are shown in Fig. 10.5. The



10 Markov State and Diffusive Stochastic Models in Electron Spin Resonance 123

Table 10.1 Information about the two sets of MD simulations of spin-labeled T4 Lysozyme

72R1 (set 1) 131R1 (set 2)

Number of independent trajectories 18 (χ1, χ2, χ3)a 54 (χ1, χ2, χ3, χ4)a

Duration of single trajectory 32.3 ns 12.7 ns

Total simulation time (analyzed)b 581 (563) ns 686 (632) ns

aIn each independent trajectory of a given set the spin label was initialized to be in a different rotameric state by
restraining the dihedral angles given in the parenthesis to their canonical values. The number of different rotamers was
determined using the multiplicity of the dihedral angles, χ1:3, χ2:3, χ3:2, χ4:3
bThe first 1 ns of every trajectory was treated as equilibration period and not analyzed

time traces of these angles do seem to undergo
jump like dynamics between different discrete
states, exemplifying intermittent internal dynam-
ics. Thus, the transitions between the rotameric
conformations of the spin label side chain should
be amenable to modeling by MSMs.

Before embarking on a rigorous MSM model-
ing, a few observations about the internal isomer-
ization dynamics of the protein spin label can be
made on the basis of the time traces in Fig. 10.5.
First, the lifetimes of the states corresponding to
the different values that the five torsions preferen-
tially adopt show great variation. At one extreme
is the disulfide dihedral angle χ3, which has un-
dergone a single transition from χ3 ≈ −90◦ to
χ3 ≈ +90◦ during the entire simulation of 50 ns.
At the other extreme is the dihedral angle closest
to the nitroxide ring, χ5, which has moved several
times between the values χ5 ≈ −90◦, χ5 ≈ +90◦
and χ5 ≈ 0◦. Second, χ1 and χ2—the dihedral
angles closest to the protein backbone—are seen
to undergo a transition every 5 to 10 ns. As a re-
sult, χ2 has visited the three canonical values of
±60◦ and 180◦, even if only a few times. Sim-
ilarly, χ1 has exchanged between two of these
canonical values a few times.4 Third, in many
of the transitions χ1 and χ2 seem to flip simul-
taneously in a concerted manner. Occasionally,
all the four dihedral angles, with the exception
of χ3, are seen to undergo concerted transitions.
Furthermore, the rate of isomerization of a given

4In protein crystal structures the side chain of cysteine is
very rarely seen to adopt a conformation with χ1 ≈ +60◦
when located on α helices since this places the cysteine
sulfur atom in unfavorable steric contact with the back-
bone atoms of the helix.

dihedral appears to depend on the values adopted
by all the other dihedral angles. (This is perhaps
most clearly seen for χ5.) Hence, it is not justified
to assume that the dynamics of the torsion angles
is independent [54]. Instead, the conformation of
the entire spin label side chain has to be consid-
ered when trying to identify the states of the in-
termittent motion and the rates of exchange be-
tween them. In the light of these observations we
now turn to the systematic construction of MSMs
for the dynamics of R1 at positions 72 and 131 in
T4L.

10.3.2 MSM from MD Trajectories

Extensive all-atom MD simulations of fully-
solvated spin-labeled T4L were performed for the
two SEHS positions of interest—72 and 131—
with the purpose of mapping the R1 isomer-
ization dynamics from the MD trajectories to
MSMs. To enhance the sampling of the possi-
ble spin-label conformations several independent
trajectories were generated starting from different
R1 conformations. Information about the number
and duration of the trajectories is summarized in
Table 10.1.

To proceed with building MSMs of the spin-
label dynamics relative to the protein from the
MD simulations, a set of observables, called or-
der parameters, has to be selected among the
large collection of variables contained in the tra-
jectories. Here, we assume that the dihedral an-
gles of the spin label side chain constitute an ad-
equate set of order parameters—a natural choice
based on physical insight about the system. Then,
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the five-dimensional space of the order parame-
ters is divided into 120 regions5 (microstates) us-
ing K-means clustering [24]. At this point, it is
hoped that if the microstates are chosen to be nar-
row enough, such that intrastate relaxation is fast,
the kinetics of jumping out of a microstate will be
approximately Markovian.

More formally, let X(t) be a random vari-
able indicating the state of an N -state Markov
chain model at time t . The probabilities pi(t) =
P{X(t) = i}, to observe the chain in state i at
time t , form a (row) vector 〈p(t)| = [pi(t)],
whose evolution is governed by the Master equa-
tion

ṗj (t) =
N∑

i=1

pi(t)Kij . (10.10)

Here, a derivative with respect to time has been
denoted with a dot. The matrix K = [Kij ] is re-
ferred to as the “rate matrix”. Its off-diagonal en-
tries are larger or equal to zero. For a conservative
process, its diagonal elements are negative and
given as Kii = −∑

j 
=i Kij . They are directly re-
lated to the lifetime [39]

νi = −1/Kii (10.11)

of each state. The stationary probability distribu-
tion of the chain 〈π |, is the left eigenvector of
K with eigenvalue zero, i.e., 〈π |K = 0. A sys-
tem in thermal equilibrium satisfies the detailed
balance condition πiKij = πjKji , which implies
that K can be transformed to a symmetric form
by a similarity transformation with the diagonal
matrix D = [√πiδij ]. Thus all the eigenvalues of
K are real. When written as −1/τi , the nonzero
eigenvalues give the relaxation time scales τi

of the stochastic dynamics generated by K (cf.
Eq. (10.12)). Note that, in general, τi 
= νi .

If the observed time series were generated
from a continuous-time Markov chain, one could
easily estimate the rate matrix by counting the
number of i → j jumps and the total time spent

5The observation that, considering the multiplicity of its
dihedral angles, the R1 side chain can adopt 108 different
rotameric states motivated the choice of number of mi-
crostates.

in state i, i.e., lifetime νi . This is not possible
when the trajectories of the order parameters are
coming from MD simulations, since the short-
time dynamics of the order parameters are not
necessarily Markovian. For instance, the time-
series of the spin-label torsion angles in Fig. 10.5
contain “spurious” transitions back and forth be-
tween states i and j before a “real” transition oc-
curs. This would lead to an unreliable estimate of
K from the MD trajectories. This problem is par-
tially alleviated by observing the system only at
instances separated by a long enough time inter-
val τ—referred to as lag time—such that the dy-
namics is more likely to appear memoryless from
one observation to the next. Such an approach,
however, leads to a discretization of the time axis,
thus deviating from the continuous-time Markov
chain model (10.10). By counting the number of
times the chain in state i goes to state j after
time τ , a transition probability matrix, T (τ), with
matrix elements Tij (τ ) = P{Xt+τ = j | Xt = i}
can be estimated. This matrix determines the evo-
lution of the state probabilities for times spaced
by τ : 〈p(t + τ)| = 〈p(t)|T (τ).

To further reduce the miscounting of very
short-lived excursions in the values of the torsion
angles as genuine transition events between dis-
tinct conformational states, the time series of the
spin label dihedral angles were analyzed with a
hidden Markov model. The latter allows for the
observed dihedral angle values to be dispersed
about the values defining the state of the MSM ac-
cording to a distribution with a mean and a stan-
dard deviation. In this sense, what is analyzed are
the values of the dihedral angles “emitted” from a
rotameric state that is not directly accessible (i.e.,
hidden). The mean values of the observed torsion
angles in each state as well as the state-to-state
jump probabilities were inferred in an iterative
manner using the Viterbi algorithm [42]. Detailed
description of the followed procedure is available
in Ref. [49].

Ideally, if the modeled process is indeed
Markovian, the transition matrices estimated us-
ing different lag times should be consistent in the
sense that T (τ1)T (τ2) = T (τ1 + τ2). If the under-
lying process being observed at discrete instances
in time is in fact a continuous-time Markov chain
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Fig. 10.6 Relaxation time
scales calculated according
to (10.12) using the
eigenvalues of T (τ)

estimated from the data at
various lag times τ . The
thick black curves
correspond to 2τ . τi ’s that
fall under these curves are
essentially zero and are
poorly estimated

with rate matrix K , the relation T (τ) = exp(τK)

should hold. This implies that the eigenvalues
λT

i (τ ) of T (τ) are related to the eigenvalues λK
i

of K through λT
i (τ ) = exp(τλK

i ). Therefore, the
relaxation time scales of the MSM are

τi = − 1

λK
i

= − τ

lnλT
i (τ )

. (10.12)

Equation (10.12) is a necessary, although not
sufficient, condition for the matrices T (τ) esti-
mated using different lag times τ to describe a
genuinely Markovian process. If the relaxation
time scales τi calculated from the eigenvalues of
such T (τ) are not independent of τ , it is cer-
tain that the process is not Markovian. To as-
sess the Markovian nature of the estimated pro-
cess corresponding to the isomerization of the
spin label R1 at positions 72 and 131, the anal-
ysis of the dihedral time series using the Viterbi
algorithm was repeated for several different lag
times τ , ranging from 100 to 800 ps. The relax-
ation time scales obtained from the estimated mi-
crostate transition matrices according to (10.12)
are shown in Fig. 10.6. The fact that the lines are
approximately horizontal (i.e., independent of the
lag time) indicates that, on time scales larger than
the lag time, the time series for dihedral dynam-
ics of both 72R1 and 131R1 are faithfully mod-
eled by MSMs of jumps between 120 discrete
states. Further analysis is limited to the transi-
tion probability matrices for the shortest lag time,
τ = 100 ps.

The choice of microstates based on K-means
clustering is purely geometrical. Using the mi-
crostate transition probability matrix the mi-
crostates can be lumped into several groups of

kinetic significance (macrostates). The resulting
macrostates are intended to correspond to the
rarely exchanging, metastable conformations of
the spin label, and in the end, it is the Markovian
kinetics among the macrostates that constitutes
a model of the slow spin-label dynamics relative
to the protein. The degree of lumping, which de-
termines the final number of macrostates, is de-
cided on the basis of the desired temporal resolu-
tion (which is related to the width of the cw-ESR
spectrum, as discussed in Sect. 10.5.2).

The final MSMs constructed for 72R1 and
131R1 on T4L contained 37 and 38 (macro)states,
respectively (Table 10.2). It is important to note
that a critical ingredient of the MSMs at this
stage is the usage of pre-averaged magnetic ten-
sors of the spin labels associated with the Marko-
vian macrostates (see Sects. 10.5.1 and 10.5.2).
At both sites, the slowest relaxation times (τ1 �
100 ns) are related to transitions of the disulfide
torsion angle between its two stable conforma-
tions χ3 ≈ −90◦ (m) and χ3 ≈ +90◦ (p). The
exact numerical values of τ1, as well as the rel-
ative populations of the m and p conformations
are not expected to be accurately estimated by
the constructed MSM due to the small number
of such transitions observed in the free simula-
tions (Table 10.2). To determine accurately the
m:p ratio, the free energy difference between two
Markovian states on the opposite side of the χ3

torsion was calculated using umbrella sampling
simulations [45]. This resulted in 27 % m—73 %
p for 72R1, and 55 % m—45 % p for 131R1 (Ta-
ble 10.2) [50].

The spin-label conformations of the most pop-
ulated five states of the MSMs of 72R1 and
131R1 are presented in Fig. 10.7. In spite of the
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Table 10.2 Number of transitions between the m and p conformations observed in all the MD trajectories and the
number of Markov states assigned to those conformations

site number of transitions number of states m:pa

m → p p → m m p total

72R1 2 1 18 19 37 27:73

131R1 1 1 19 19 38 55:45

aThe m:p ratio (%) is determined from independent restrained simulations

Fig. 10.7 The most populated five conformations of
72R1 (A), and 131R1 (B) are colored as indicated. The
rotameric states of the neighboring side chains when in-
teracting with R1 are not necessarily the same as the ones
shown here. (C) The amino acid sequence of T4L. Stars

indicate the spin labeled sites and arrows point between
the i ± 3 and i ± 4 positions. Residues with which R1
interacts are colored red and blue for 72 and 131, respec-
tively

variation of χ4 and χ5, as well as χ1, χ2, and χ3,
across the most populated states of 72R1, the ni-
troxide ring appears to be rather well localized
(Fig. 10.7A). In contrast, the conformations cor-
responding to the first five most populated states
of 131R1 are dispersed (Fig. 10.7B). In the simu-
lations the spin label adopts a multiplicity of con-
formations, many of which tend to interconvert
on time scales relevant for cw-ESR experiments.
When the exchanges are slow, the states appear
to be stabilized by a range of polar and non-
polar interactions with neighboring amino acids
(Fig. 10.7C) frequently involving the nitroxide
ring.

The MSMs of spin-label dynamics at posi-
tions 72 and 131 in T4L constructed from the
MD simulations can be used in the model (10.8)
to simulate cw-ESR spectra. The results of such

simulations are compared with experiments in
Sect. 10.5.3. In the next section we describe the
procedure for simulating cw-ESR spectra from
trajectories of the spin-label dynamics.

10.4 Numerical Simulation of
cw-ESR Spectra

Cw-ESR experiments are performed under the
presence of a strong constant magnetic field and
a weak microwave (mw) magnetic field applied
continuously in a direction perpendicular to the
constant field. Subjecting the sample to these ex-
ternal magnetic fields leads to detectable bulk
magnetization. Cw-ESR experiments measure
the component of the magnetization perpendic-
ular to the constant magnetic field—transverse
component; the longitudinal component along
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the direction of the constant magnetic field is
not detected. For the sufficiently weak mw fields
typically employed, the cw spectrum is identi-
cal to the Fourier transform of a free induction
decay (FID) [1], where FID refers to the decay
of the transverse magnetization in the absence
of any mw field. In FID the electron spins are
first flipped to the transverse plane using a ninety-
degree mw pulse after which the oscillating field
is switched off. Hence, at the beginning of the
decay, the longitudinal magnetization is equal to
zero while the transverse magnetization can be
taken to be equal to one. During an FID the spins
evolve only under the action of the constant mag-
netic field and the observed decay of the trans-
verse magnetization results from the decoherence
of the spins. In magnetic resonance the time scale
of this decay is known as T2. In contrast, the
time scale on which the longitudinal magnetiza-
tion builds up is referred to as T1. At sufficiently
strong magnetic fields and for motionally broad-
ened cw-ESR spectra, which are our main inter-
est, T2 is much shorter than T1 (e.g., nanosec-
onds versus microseconds). Therefore, it is safe
to assume that by the time the transverse mag-
netization has decayed to zero the longitudinal
magnetization has remained at its initial value
of zero. This constitutes the high-field approxi-
mation whose implications will become apparent
below (see Sect. 10.4.1).

Because there is no mw field during the FID
evolution, in numerical work aiming to calcu-
late cw-ESR spectra it is preferable to simulate
the FID and compute its Fourier transform. With
M+(t) denoting the bulk transverse magnetiza-
tion after a ninety-degree pulse, the spectrum is
the (one-sided) Fourier transform

S (ω) =
∫ ∞

0
M+(t)e−iωt dt. (10.13)

Due to the way a cw experiment is actually
performed—which is different than recording an
FID—the spectrum is in fact the derivative of
S (ω) with respect to ω. Differentiating (10.13),
a derivative-mode cw-ESR spectrum is readily
found to be

dS (ω)

dω
= −i

∫ ∞

0
tM+(t)e−iωt dt. (10.14)

Using two channels both the real and imagi-
nary parts of this spectrum can be recorded. In
practice, however, only the real part is reported.
All the calculated cw-ESR spectra shown in this
chapter correspond to the real part of (10.14), ob-
tained by taking the discrete Fourier transform of
tM+(t) numerically. Because it follows the de-
cay of M+(t) in time, the presented approach
constitutes a simulation in time domain (in con-
trast to the frequency-domain methodology based
on the SLE).

10.4.1 The Nitroxide Density Matrix

To calculate the macroscopic transverse magne-
tization appearing in (10.14), the microscopic
magnetizations, M+(t), from all the possible ran-
dom trajectories that a nitroxide spin label in
the solution may undergo need to be averaged.
Denoting this ensemble averaging with angular
brackets we have

M+(t) = 〈
M+(t)

〉
. (10.15)

Assuming a dilute solution of non-interacting
free radicals, the state of each electron-nuclear
spin system on one nitroxide can be described by
a density operator. With ρ(t) denoting the density
matrix associated with one stochastic trajectory
of an individual spin label, microscopic trans-
verse and longitudinal magnetizations can be cal-
culated as follows:6

M+(t) = Tr
{
ρ(t)Ŝ+

}
and

Mz(t) = Tr
{
ρ(t)Ŝz

}
.

(10.16)

6Since the absolute value of the cw-ESR measurement de-
pends on instrumental factors and is not relevant for our
purposes, proportionality constants relating the magneti-
zations and the respective spin operators have been ne-
glected in (10.16).
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In these expressions, Ŝ+ and Ŝz are spin-1/2 op-
erators7 and Tr denotes a trace. The density op-
erator lives in the outer product of the electron
and nuclear spin Hilbert spaces. For easier ac-
cess to the microscopic magnetizations in (10.16)
it can be written as a sum of Kronecker prod-
ucts between the spin-1/2 matrices and matrices
ρκ with the dimensionality of the nuclear-spin
Hilbert space:8

ρ(t) = ρ+(t)Ŝ− + ρ−(t)Ŝ+ + 2ρz(t)Ŝz

+ ρ0(t)Ŝ0

=
[
ρ0 + ρz ρ−

ρ+ ρ0 − ρz

]
. (10.17)

Thus, ρ is represented by a 6 × 6 matrix (for
14N) or a 4 × 4 matrix (for 15N). Using (10.17)
in (10.16) it is straightforward to deduce that

M+(t) = Tr
{
ρ+(t)

}
and

Mz(t) = Tr
{
ρz(t)

}
,

(10.18)

where the trace in these expressions is only over
the nuclear spin degrees of freedom.

To calculate the microscopic magnetization
M+(t) along a given dynamical trajectory we
need to be able to follow numerically the evolu-
tion of the density matrix starting from the ap-
propriate initial conditions. To this end, we recall
that the density matrix evolves according to the
Liouville-von Neumann equation

ρ̇(t) = −i
[
Ĥ (t), ρ(t)

]
, (10.19)

7These are

Ŝ0 =
[

1 0
0 1

]
, Ŝ+ =

[
0 1
0 0

]
,

Ŝ− =
[

0 0
1 0

]
, Ŝz = 1

2

[
1 0
0 −1

]
.

8In principle, the submatrix ρ0 in (10.17) contains the
3 × 3 or 2 × 2 identity matrix I0 along its main diago-
nal. However, the part proportional to the identity matrix
is neither affected by the relaxation or the coherent evo-
lution nor does it affect the evolution of the rest of the
density matrix. Hence, ρ0 can be taken as traceless.

where Ĥ (t) is the Hamiltonian (10.1) of the spin
system (in units of angular frequency) and [·, ·]
denotes a commutator. The initial conditions for
an FID can be obtained from (10.18). These are
the identity matrix for ρ+(0) and the zero matrix
for ρz(0).

In analogy to (10.17), the ESR spin Hamilto-
nian can be written as

Ĥ (t) = 2Hz(t)Ŝz + H+(t)Ŝ− + H−(t)Ŝ+,

(10.20)
where the matrices Hκ have the dimensionality
of the Hilbert space of the nuclear spin. Substi-
tuting the expansions (10.17) and (10.20) into the
equation of motion (10.19), and equating the co-
efficients of Ŝ− on both sides of the equality leads
to the evolution law

ρ̇+(t) = i
{
Hz(t), ρ+(t)

} − i
{
H+(t), ρz(t)

}

− i
[
H+(t), ρ0(t)

]
, (10.21)

where {·, ·} denotes an anticommutator. At this
point, it is convenient to invoke the high-field ap-
proximation, which amounts to assuming that ρz

and ρ0 remain zero throughout the times we fol-
low the evolution of ρ+.9 As a result, (10.21) sim-
plifies to

ρ̇+(t) = i
{
Hz(t), ρ+(t)

}
. (10.22)

Hence, ρ+(t) is the only part of the full density
matrix that needs to be considered and Hz(t) is
the only part of the Hamiltonian that needs to be
calculated at every time step. From (10.1),

Hz(t) = |γe|
[
BGL

zz(t) + aL(t) · Î
]
/2, (10.23)

where GL
zz(t) is the respective component of the

rescaled Zeeman tensor in the laboratory frame,
and the components of aL are defined in terms of
the components of the hyperfine tensor as

aLi (t) ≡ AL
iz(t). (10.24)

9As mentioned above, the justification lies in the fact that
the time scale T1—on which ρz and ρ0 build up—depends
on motions at the time scale of the Larmor precession
and is much longer than the time scale T2—on which ρ+
decays—dominated by slow motions. The high field ap-
proximation automatically excludes the possibility to ac-
count for the contribution of T1 processes to T2 relaxation
using Eq. (10.22).
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Table 10.3 Magnetic fields, corresponding Larmor frequencies,a microwave bands,b and time scales of precessionc

B/T 0.12 0.34 1.21 3.39 6.07 9.2

fe/GHz 3.4 (S) 9.5 (X) 34 (Q) 95 (W) 170 (G) 260 (J)

τ0/ps 47 17 4.7 1.7 0.95 0.61

afe = ω0/2π

bIn parenthesis
cτ0 = 1/ω0

10.4.2 Propagation of the Quantum
Spin System

Each electron spin in the ensemble undergoes a
precession about the applied constant magnetic
field B with average angular frequency, known as
the Larmor frequency of the electron spin, equal
to [32]

ω0 ≡ −γeBG0, (10.25)

where G0 = Tr{G}/3. Table 10.3 contains the fre-
quencies and time scales of precession for sev-
eral different magnetic fields of experimental in-
terest. When following the time evolution of the
density matrix with the purpose of calculating
M+(t), it proves convenient to work in a coor-
dinate system rotating about the laboratory z-axis
with the electron Larmor frequency. In this ro-
tating frame (denoted with a prime) the opera-
tors Ŝ0 and Ŝz remain unchanged whereas Ŝ+
and Ŝ− acquire a phase: Ŝ′± = Ŝ±e±iω0t . Hence,
from (10.17), the density matrix in the rotating
frame becomes ρ′(t) = ρ′+(t)Ŝ− + ρ′−(t)Ŝ+ +
2ρz(t)Ŝz + ρ0(t)Ŝ0, where

ρ±(t) = ρ′±(t)e±iω0t . (10.26)

Using this last relation in (10.18) yields the trans-
verse magnetization10

M+(t) = Tr
{
ρ′+(t)

}
eiω0t = M ′+(t)eiω0t .

(10.27)

10The numerical advantages associated with working in
the rotating frame are apparent from (10.27), where the
transverse magnetization M+(t) consists of a rapidly os-
cillating “carrier” wave whose amplitude is modulated
by the slowly changing “signal” M ′+(t). Thus, following
M+(t) numerically would require an integration time step
sufficient to resolve the fast oscillations on the time scale
of the Larmor precession (cf. Table 10.3). In contrast, cal-
culating the slowly changing M ′+(t) numerically allows us
to take time steps larger by several orders of magnitude.

Substituting (10.27) in the expression for the
spectrum (10.13), we find

S (ω − ω0) =
∫ ∞

0

〈
M ′+(t)

〉
e−iωt dt. (10.28)

Hence, taking the Fourier transform of the ensem-
ble-average of the slowly varying M ′+(t) pro-
duces the desired experimental cw-ESR spectrum
but with the origin shifted to the Larmor fre-
quency ω0.

Since M ′+ is defined as the trace of ρ′+ the lat-
ter needs to be evolved numerically. From (10.22)
and (10.26) it is straightforward to conclude that

ρ̇′+(t) = i
{
Hz(t), ρ

′+(t)
} − iω0ρ

′+(t)

= i
{
V (t), ρ′+(t)

}
, (10.29)

where

V (t) ≡ Hz(t) − ω0/2

= |γe|
[
BG′L

zz(t) + aL(t) · Î
]
/2. (10.30)

In the last equality of (10.30) we have introduced
the traceless coupling tensor G′ obtained by sub-
tracting G0 from the diagonal entries of the Zee-
man tensor G: G′ ≡ G − G0E.

The numerical evolution of ρ′+(t) according to
(10.29) over a short time step �t can be achieved
as11

ρ′+(t + �t) = U(t,�t)ρ′+(t)U(t,�t) (10.31)

after introducing the short-time propagator

11Note that the same propagator matrix acts on both sides
of ρ′+ in this equation, which is different from the propa-
gation of the density matrix ρ in the full Hilbert space. The
source of the difference lies in replacing the commutator
in (10.19) by an anticommutator in (10.22).
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U(t,�t) ≡ ei�tV (t)

= ei�t |γe|BG′L
zz(t)/2ei�t |γe|aL(t)·Î/2,

(10.32)

which needs to be calculated from the instanta-
neous values of the magnetic tensors in the labo-
ratory frame at every integration time step. (How
to efficiently compute U(t,�t) was described in
Ref. [48].)

The resulting computational framework is
summarized by the following steps:

(i) To represent the dynamics of the classi-
cal degrees of freedom, a stochastic trajec-
tory combining continuous rotational diffu-
sion together with an MSM according to the
model (10.8) is propagated, generating the
time series RLN(t) = RLM(t)RMN(t) sam-
pled at the time step �t .

(ii) At every time step the instantaneous val-
ues of the magnetic tensors in the labora-
tory frame are calculated according to (10.4)
and used to obtain the short-time propaga-
tor (10.32). (It should be noted that these
correspond to the magnetic tensors averaged
over the fast librations of the spin label as-
signed to a given Markovian macrostate, as
described in Sects. 10.5.1 and 10.5.2).

(iii) The QM density matrix, ρ+(t), is evolved
along a single stochastic trajectory accord-
ing to (10.31) and a microscopic magneti-
zation M ′+(t) is calculated from its trace at
every time step �t .

(iv) A large number of such trajectory-specific
magnetization time series, calculated by
generating different realizations of the
stochastic trajectories, are generated and
added together to obtain the ensemble-
averaged macroscopic magnetization in the
rotating frame, 〈M ′+(t)〉.

(v) The magnetization is Fourier transformed to
obtain a shifted version of the desired cw-
ESR spectrum centered at the origin instead
of the Larmor frequency ω0, as given by
Eq. (10.28).

10.5 MSMs in Service of cw-ESR of
Biomolecules

In this section, the classical molecular dynam-
ics described in Sect. 10.3 and the quantum spin
dynamics of Sect. 10.4 are integrated with the
purpose of calculating cw-ESR spectra from MD
simulations. The methodology is applied to T4
Lysozyme in Sect. 10.5.3, for which multifre-
quency cw-ESR spectra from 72R1 and 131R1
are available. Before presenting this application,
however, we start in Sect. 10.5.1 by analyzing the
results of a simple analytical model designed to
illustrate the influence of motional time scales on
the spectral line shape. This analysis helps pro-
vide a deeper understanding of the sensitivity and
demands of cw-ESR on the time scales and dura-
tion of the classical molecular motions, which is
discussed in Sect. 10.5.2.

10.5.1 Coupling Between Markov State
Dynamics and Spin Relaxation

Rather than treating the problem in full gen-
erality, the effect of MSM relaxation rates on
the spectrum will first be illustrated through the
simplest possible example of coupling between
a two-state MSM and a two-level spin system.
This situation, known as chemical exchange, does
arise naturally in magnetic resonance, especially
NMR. In our case, it can be reached after a few
simplifying assumptions.

For the sake of simplicity, we consider a spin
label system in which the electron spin is not cou-
pled to any nuclear spin (unlike a real nitroxide
spin label). This leaves us with an ensemble of
independent spin-1/2 systems. In this case, the
coherence matrix ρ+(t) becomes a scalar, which
is in fact equal to M+(t) (cf. (10.18)). Also, the
hyperfine contribution to Hz(t) in (10.23) is not
present so Hz(t) = |γe|BGL

zz(t)/2 is also a scalar.
With these simplifications the evolution equation
(10.22) reduces to

Ṁ+(t) = i|γe|BGL
zz(t)M+(t) = iω(t)M+(t),

(10.33)
where the last equality defines the precession fre-
quency ω(t).
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To incorporate molecular motion, we assume
that the molecules to which the spins are attached
can exist in two different conformations that ex-
change in a random manner via a hopping pro-
cess. The conformations are taken to be magneti-
cally distinguishable in the sense that the preces-
sion frequency ω(t) in (10.33) is equal to ω1 in
one of the conformations and to ω2 in the other,
with ω1 
= ω2. If k+ denotes the probability of
transition from state 1 to 2 per unit time and k−
denotes the probability of transition from state 2
to 1 per unit time, the rate matrix for this two-
state MSM is

K =
[−k+ k+

k− −k−

]
. (10.34)

Using matrix notation, the Master equation
(10.10) can be written as

〈
ṗ(t)

∣∣ = 〈
p(t)

∣∣K, (10.35)

where 〈p(t)| = [p1(t),p2(t)], and p1 and p2 are
the probabilities for the chain to be in states 1
and 2, respectively. The left eigenvector of K

with eigenvalue zero is the equilibrium (row)
vector 〈π | = [π1,π2]. The corresponding right
eigenvector is the (column) vector |1〉 = [1,1]�.
The only non-zero eigenvalue of K is −k, where
k ≡ k+ + k− is the sole relaxation time scale in
this problem. (For comparison, the lifetimes of
the two states are ν1 = 1/k+ and ν2 = 1/k−, ac-
cording to (10.11).)

In cw-ESR one detects the transverse magne-
tization M+(t) of the whole ensemble and not
the probabilities of the two states. Let M1 and
M2 denote the transverse magnetizations of the
molecules in the two conformations weighted
by the respective probabilities p1 and p2. In
terms of the weighted magnetization (row) vec-
tor 〈M(t)| = [M1(t),M2(t)], the magnetization
averaged over the ensemble of molecules is
M+(t) = M1(t) + M2(t) = 〈M(t)|1〉. As has
been shown already by Anderson [2] and Kubo
[28, 29], the evolution of the probability weighted
magnetization vector is given by the joint dynam-
ics of oscillatory motion (10.33) and exchange
between the two states (10.35):

〈
Ṁ(t)

∣∣ = 〈
M(t)

∣∣(iΩ + K). (10.36)

Here, K is the transition rate matrix from (10.34)
and

Ω =
[
ω1 0
0 ω2

]
(10.37)

is a matrix containing the state-dependent preces-
sion frequencies along its main diagonal. For an
equilibrated ensemble of spins with unit trans-
verse magnetization the appropriate initial con-
dition is 〈M(0)| = 〈π |. From (10.13), the cw-
ESR spectrum is the Laplace transform of the
transverse magnetization evaluated at iω. Taking
the Laplace transform of both sides of the Kubo-
Anderson equation (10.36), using the initial con-
dition of 〈M(t)|, and taking an inner product with
|1〉, leads to the following expression for the spec-
trum: S (ω) = 〈π |(iω− iΩ −K)−1|1〉. Differen-
tiation with respect to ω, in analogy with (10.14),
yields the derivative spectrum

dS (ω)

dω
= −i〈π |(iω − iΩ − K)−2|1〉. (10.38)

As a numerical example, we choose ω1 = 30,
ω2 = 60 and k+ = k/3, k− = 2k/3, where the pa-
rameter k allows us to vary the exchange rates
from slow to fast. This choice of k+ and k− im-
plies that π1 = 2/3 and π2 = 1/3 due to de-
tailed balance. The calculated derivative spectra
with the relaxation rate k ranging from 10 to 60
are shown in Fig. 10.8. For clarity, only the real
parts of the complex spectra are plotted. From
the figure, it is seen that for the slow exchange
rate (k = 10) the spectrum consists of two lines
centered at the two precession frequencies. The
different intensity of the lines reflects differences
in the equilibrium probabilities of the two con-
formations. When the exchange rate increases
(k = 15) the centers of the two lines approach
each other. At the same time the lines get broader.
The approach and broadening of the lines leads
to their eventual merger with further increase in
the exchange rate (k = 30). After that point, the
spectrum consists of only one line. Upon further
speed up of the exchange (k = 60) the center of
the single line shifts and its width decreases. For
even faster rates of exchange (not shown) there is
only one very narrow line centered at the average
frequency π1ω1 + π2ω2, which is equal to 40 in
our numerical example.
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Fig. 10.8 Derivative spectra simulated using Eq. (10.38)
with (from bottom to top) k = 10, 15, 30, 60. For clarity,
the spectra are shifted along the vertical axis, which cor-
responds to the intensity of the spectrum in arbitrary units

In summary, this simple example illustrates
that for motions with rates much faster than the
spectral width, W = |ω1 − ω2|, the spectrum re-
flects the average of the magnetic properties. In
contrast, for motions with rates much slower than
the spectral width the magnetic properties do not
experience averaging due to the dynamics. For in-
termediate exchange rates the spectral line shape
is complex and its detailed structure shows great
sensitivity to the rate of exchange. It is exactly
in this motional regime that explicit simulations
with stochastic models become necessary for the
proper interpretation of the experimental situa-
tion. All the spectra in Fig. 10.3, for example, fall
in this regime.

10.5.2 Time Scales of the cw-ESR
Experiment

The width of the cw-ESR spectrum depends on
the field at which the experiment is performed.
For B = 0.35 T the hyperfine contribution to the
propagator U(t,�t) in (10.32) dominates over
the Zeeman contribution. Thus, at X-band the
width is determined by the Azz component of
the hyperfine tensor as W ≈ 2Azz ≈ 90 G. When

the strength of the magnetic field is increased to
B = 3.4 T, the anisotropy of the g tensor (multi-
plied by the field) is comparable to 2Azz. Hence,
the Zeeman and hyperfine interactions contribute
almost equally to the spectral width, yielding
W ≈ 180 G. At even higher fields, the spectral
width is completely dominated by the anisotropy
of the g tensor, which increases linearly with the
field strength. Hence, for B = 6.1 T the spectral
width can be estimated as W ≈ 320 G.

The relationship between a signal and its
Fourier transform implies that the width of a cw-
ESR spectrum, W , is inversely proportional to
the maximum time step, �t , with which the clas-
sical dynamics should be followed: �t = 2π/W .
A similar inverse proportionality holds between
the total duration of a dynamical trajectory, T ,
and the desired resolution of the cw-ESR spec-
trum, �ω: T = 2π/�ω. When the frequency
axis is reported in units of magnetic field, like in
Fig. 10.3, the conversion between magnetic field
and angular frequency given in (10.25) needs to
be employed. With γe as given under Eq. (10.1)
and G0 ≈ 1, from g in (10.3) and the definition
(10.2), we conclude that 1 Gauss corresponds to
a time scale of roughly 360 ns.

Using this conversion factor and the spectral
widths estimated above, it can be deduced that
for the simulation of cw-ESR spectra at X-band,
the magnetization should be known roughly every
�t � 4 ns. The maximum allowable time step de-
creases to �t � 2 ns for W-band and �t � 1 ns
for G-band spectra. These estimates of �t reflect
the temporal resolution with which the FID of the
transverse magnetization needs to be known. In
the simulation of cw-ESR spectra according to
the motional model (10.8), the time step of the
numerical integration has to be small enough to
faithfully follow not only the FID but the rota-
tional and MSM dynamics as well. Thus, the sim-
ulated stochastic process may impose additional
demands on the temporal resolution, further re-
ducing the values of �t .

An extreme example of the discrepancy be-
tween the �t required to follow the decay of the
magnetization and the time step of the classical
dynamics emerges in the approach (10.6), since
the trajectories coming from atomistic MD sim-
ulations are typically sampled about every δt =
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1 ps. In principle, one could use every snapshot
from the trajectories and integrate the spin dy-
namics with this time step according to (10.31).
However, the above estimates of �t indicate that
such an approach is unnecessary and wasteful.
One option is to decimate the MD trajectories and
use snapshots separated by about a thousand steps
[12, 53]. An alternative that we prefer, which fol-
lows from the simple example in Sect. 10.5.1 and
can be justified rigorously [48, 49], is to aver-
age the magnetic tensors over a time window �t

(�t � δt) along each MD trajectory.
For the motional model (10.8), the same logic

allows us to pre-average the magnetic tensors
over the fast librations of the spin label, visible in
the time-traces of its dihedral angles in Fig. 10.5.
Using the fragments of the MD trajectories as-
signed to a given Markovian (macro)state, the
magnetic tensors were averaged over the dynam-
ics of N relative to M for each state. Such pre-
averaging not only reduces the effective diagonal
values of the magnetic tensors in the nitroxide-
fixed frame (cf. (10.3)), but also leads to nitrox-
ide frames which have state-dependent orienta-
tion relative to the protein frame. In fact, the state-
dependent “nitroxide frame” calculated in this
way is different for the g and A tensors since their
anisotropies average differently.

The conversion between magnetic field and
time implies that a for a spectral resolution of
�ω ≈ 1 G the FID has to be followed for T ≈
360 ns, which gives the necessary duration of a
single stochastic trajectory. For spectra broad-
ened by the molecular motion, like the ones
shown in Fig. 10.3, a less fine resolution should
be sufficient, thus bringing T down by a factor
of 3 to 4 (T ≈ 90–120 ns). The time scale T im-
plied by the spectral resolution should be com-
pared with the relaxation time scale τ1 � 100 ns
associated with the rare transition of the disul-
fide dihedral angle χ3 between the two stable
conformations m and p (Sect. 10.3.2). Since τ1

falls beyond the time scale relevant for cw-ESR
experiments at X-band and especially at higher
frequencies, we conclude that its precise value
is immaterial for the calculation of such spectra.
The example in Sect. 10.5.1 implies that cw-ESR
spectra can be simulated as a linear superposition

Table 10.4 Tumbling time scales, τD = 1/6D, associ-
ated with diffusion coefficients D

D/106 s−1 10 18 25 40

τD /ns 17 9.3 6.7 4.2

of the separate contributions from the m and p
conformations of the spin label R1 weighted by
their relative populations. This justifies the use of
umbrella sampling to determine the populations
of the m and p states (Sect. 10.3.2), without any
knowledge about the rate of their interconversion.

The considerations in the previous paragraphs
suggest that cw-ESR experiments are very sen-
sitive to motions in the time window of about
2–50 ns, which constitutes the middle of the es-
timated spectral time scale. Additional dynam-
ics falling outside this time window are expected
to have a lesser effect on the spectral line shape
and be largely inaccessible on the background
of the 2–50 ns motions. The time scales corre-
sponding to the DNA tumbling rates used in the
spectral simulations of Fig. 10.3 are compiled in
Table 10.4. Clearly, they all fall in the window
where the cw-ESR spectra are expected to be
strongly affected. The additional diffusion coeffi-
cient in Table 10.4, with τD = 9.3 ns, corresponds
to the tumbling of the protein T4 Lysozyme in so-
lution. On the basis of this time scale, we expect
that the rotational diffusion of the protein has to
be explicitly taken into account for quantitative
simulation of cw-ESR spectra from spin-labeled
T4 Lysozyme, to be examined in Sect. 10.5.3.

Let us use the developed intuition to rational-
ize the qualitative differences between the spec-
tra shown in Fig. 10.3. As already mentioned,
at X-band the effect of the g tensor is negligi-
ble and the spectral line shape is heavily domi-
nated by the hyperfine tensor. Since A is an ax-
ial tensor, any differences in the rate of mix-
ing of its components AN

xx = AN
yy by the rota-

tional diffusion of the macromolecule is incon-
sequential. This is the reason the spectra simu-
lated using D‖ = 40 × 106 rad2/s (black) and
D‖ = 10 × 106 rad2/s (blue) appear identical at
B = 0.34 T (Fig. 10.3A). In contrast, spectra at
B = 0.34 T are strongly influenced by differences
in the rate of mixing between the AN

xx = AN
yy
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components of the hyperfine tensor and AN
zz, as

illustrated by the spectra in Fig. 10.3A simulated
using D⊥ = 10 × 106 rad2/s (black) and D⊥ =
25 × 106 rad2/s (red). At W-band, the g-tensor
anisotropy influences the spectral line shape as
much as the hyperfine tensor. Because the g ten-
sor of the nitroxide distinguishes between all the
three directions of the coordinate axes, the high-
field spectra are sensitive to the rates of mixing
induced by both D‖ and D⊥, as clearly seen in
Fig. 10.3B.

By dwelling further on the spectra of Fig. 10.3
we hope to have convinced the reader that cw-
ESR spectra are very sensitive to both the di-
rectionality and the magnitude of the molecular
motions (reflecting the local structure) when they
fall in the spectral time scale of the experiment.
When the dynamics is either faster or slower than
the spectral time scale, the spectrum still carries
information about the average magnetic proper-
ties or the populations of the slowly exchanging
conformations, as demonstrated by the example
in Sect. 10.5.1. Therefore, quantitative compari-
son with cw-ESR spectra at several different fre-
quencies, from X- to W- to G-band, should pro-
vide an unprecedented check on the structural and
dynamical aspects of the internal spin-label dy-
namics captured by the MD simulations of T4
Lysozyme.

10.5.3 Multifrequency cw-ESR Spectra
of Spin-Labeled T4 Lysozyme

Although the MSMs of the spin label R1 at posi-
tions 72 and 131 on T4L were constructed on the
basis of the time-series of the five spin label tor-
sion angles (Sect. 10.3.2), the influence of the en-
vironment is implicitly incorporated in two ways.
First, the electrostatic and van der Waals interac-
tions with the protein and the solvent molecules
dictate which rotameric states of the spin label are
populated and to what extent. Due to the internal
flexibility and amphiphilic nature of the spin la-
bel, the populations of its conformations are sen-
sitive to the subtle balance between various in-
teractions, and are hard to predict on the basis
of simplified steric and hydrodynamic arguments

[47, 54]. Second, explicit protein and solvent dy-
namics on time scales up to about 100 ps was
used to calculate pre-averaged magnetic tensors
for each of the states of the MSMs, as described
in Sect. 10.5.2. Therefore, in addition to the ex-
change between the rotamers, the rattling of the
nitroxide in the solvent cage and the local ther-
mal fluctuations of the protein backbone (as op-
posed to larger scale conformational changes, e.g.
partial unfolding of the helices, etc.), are implic-
itly accounted for in the spectral simulations pre-
sented next.

Cw-ESR spectra for 72R1 and 131R1 in
T4 Lysozyme were calculated for three differ-
ent magnetic field strengths—0.33 T, 3.4 T and
6.1 T—according to the motional model (10.8).
Isotropic rotational diffusion with diffusion con-
stant D = 18 × 106 rad/s (Table 10.4) was used
to account for the global tumbling of the protein.
In Figs. 10.9 and 10.10, the spectra calculated by
using separately the m and p subblocks of the es-
timated transition probability matrices are shown
on the left, and the final spectra obtained by lin-
early mixing the FID decays of the m and p states
are shown on the right. For the three fields, the
spectra from the m and p conformations of 131R1
are quite similar to each other and to the exper-
imental spectra, with the difference increasing
slightly with the increase of the field (Fig. 10.10).
The agreement between the calculated and the
experimental spectra is remarkably good over the
entire field range. In the case of 72R1, the m and
p contributions to the spectra are markedly differ-
ent, with the latter being consistently more simi-
lar to the experimental spectrum for all the three
field strengths (Fig. 10.9). At 0.33 T (9 GHz), the
p component by itself is basically identical to the
experimental spectrum, whereas adding 27 % of
the m component is essential for the good agree-
ment at the two higher fields.

By changing the ESR frequency from 9 GHz
to 170 GHz the time window of sensitivity of
the experiment is changed by about an order of
magnitude. Also, whereas at 9 GHz the spec-
trum is dominated by the hyperfine tensor, at
95 GHz the contribution of the g tensor be-
comes more significant, and eventually domi-
nates at 170 GHz. Therefore, the quantitative
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Fig. 10.9 Experimental
spectra of 72R1 at 22 ◦C
(black). Left: Calculated
spectra of conformations m
(blue) and p (red); Right:
Spectra calculated by
mixing the m and p
conformations in the
specified ratio (green).
Simulation parameters
given in Ref. [50]

agreement of the calculated spectra with exper-
iment over the 9–170 GHz range is strongly sug-
gestive that the dynamics of the spin label in the
computer simulations is quite similar to the real
underlying dynamics.

A unique dynamical model cannot be inferred
on the basis of 9 GHz spectra alone. Multifre-
quency ESR analysis attempts to address this is-
sue by placing additional restrictions on the na-
ture of the microscopic dynamics. The constraints
presented by multifrequency spectra are impor-
tant, e.g., a single diffusional MOMD model is
unable to simultaneously fit both the low and high
frequency spectra from T4L [3, 33]. Achieving a
simultaneous agreement is challenging even for
state-of-the-art fitting approaches based on the
SRLS model, which also raise the question of
uniqueness of fit, even with the additional restric-
tions imposed by multifrequency cw-ESR [56].
It is notable that the present results, which have
yielded spectra in excellent agreement with ex-

periment at three different frequencies, were gen-
erated from a single microscopic model without
any fitting parameters or ad hoc empirical ad-
justement of the model.

10.6 Summary and Future Outlook

A novel methodological framework was elabo-
rated for the purpose of simulating cw-ESR spec-
tra of spin labeled proteins from all-atom MD
trajectories [49]. Within this framework, the in-
formation from multiple independent MD tra-
jectories is employed to construct an MSM of
the R1 dynamics in the space of its five dihe-
dral angles. Using the transition probability ma-
trix of the MSM determined from the MD simu-
lations, long stochastic trajectories including ro-
tational diffusion are generated to simulate real-
istic cw-ESR spectra [48]. This framework was
used to study the conformations and dynamics of



136 D. Sezer and B. Roux

Fig. 10.10 Experimental
spectra of 131R1 at 22 ◦C
(black). Left: Calculated
spectra of conformations m
(blue) and p (red); Right:
Spectra calculated by
mixing the m and p
conformations in the
specified ratio (green).
Simulation parameters
given in Ref. [50]

the spin label R1 at positions 72 and 131 in T4
Lysozyme. For the first time, very good agree-
ment with multifrequency cw-ESR experiments
at three different magnetic field strengths was ob-
tained. The atomically-detailed picture of the spin
label emerging from the MD simulations helps to
unify spectroscopic and crystallographic data and
provides useful insight into their molecular ori-
gins.

The MSMs constructed from the MD simu-
lations can be viewed as a natural extension of
the multicomponent SRLS model, in which the
spin label dynamics is modeled as a linear super-
position of several independent motional modes,
each characterized by a microscopic ordering po-
tential and a rotational diffusion tensor. It is our
hope that the overall perspective developed from
the MD simulations can help design better mo-
tional models tailored to the specific spin label
and biomolecule to which it is attached. Going
beyond a universal, generic stochastic model is

expected to be of crucial importance, given the
extensive applications of SDSL to diverse bio-
logical systems and the increased availability of
high-field ESR.

Accurate calculations of multifrequency cw-
ESR spectra by mapping MD trajectories onto
MSMs are extremely challenging because they
require that a whole host of molecular motions
be accounted for correctly, not only in terms of
their amplitudes and resulting equilibrium pop-
ulations, but also in terms of their dynamical
timescales. While the observables from many ex-
perimental methods (e.g. FRET, NMR, hydrogen
exchange) are often dominated by one or a few
relaxation modes, multifrequency cw-ESR spec-
tra provides perhaps one of the rare applications
of the methodology where a large fraction of the
set of eigenvalues and eigenvectors of the MSM
rate matrix is truly put to the test. In this context,
the present success in quantitatively reproduc-
ing experimental multifrequency cw-ESR spec-
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tra, achieved without any empirical adjustment, is
truly remarkable. From a broader perspective, the
ESR/MSM methodology elaborated here offers a
powerful route to test and validate the ability of
existing force fields to reproduce both structural
and dynamical aspects of the molecular motions
as reported by the spin label. It will be of great in-
terest to carry out additional ESR/MSM simula-
tions to cover a range of experimental conditions
(e.g., temperature, viscosity) to further test their
ability to predict cw-ESR spectra under different
conditions.
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