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Computer simulations are a powerful way of un-
derstanding molecular systems, especially those
that are difficult to probe experimentally. How-
ever, to fully realize their potential, we need
methods that can provide understanding, make
a quantitative connection with experiment, and
drive efficient simulations.

The main purpose of this book is to introduce
Markov state models (MSMs) and demonstrate
that they meet all three of these requirements. In
short, MSMs are network models that provide a
map of the free energy landscape that ultimately
determines a molecule’s structure and dynamics.
These maps can be used to understand a system,
predict experiments, or decide where to run new
simulations to refine the map. Protein folding and
function will often be used to illustrate the prin-
ciples in this book as these problems have largely
driven the development of MSMs; however, the
methods are equally applicable to other molecu-
lar systems and possibly entirely different prob-
lems. Whether you are an experimentalist inter-
ested in understanding a bit of theory and how it
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could complement your work or a theorist seek-
ing to understand the details of these methods, we
hope this book will be useful to you.

This introduction provides a brief overview of
the background leading to the development of
MSMs, what MSMs are, and the contents of this
book.

1.1 Background

Molecular systems are exquisitely sensitive to
atomistic details—for example, a single point
mutation can have dramatic effects on protein
folding or function—a complete understanding
would require atomically detailed models that
capture both the thermodynamics and kinetics of
the system of interest. There are many power-
ful experimental methods for probing the struc-
ture and dynamics of molecular systems but, cur-
rently, none can provide a complete understand-
ing of a system.

Structural biologists have developed a range
of methods for building atomically detailed mod-
els of proteins and other molecules; however, we
are far more limited when it comes to dynamics.
For example, when monitoring the relaxation of
an ensemble of unfolded proteins back to the na-
tive state, one typically sees simple behavior that
can be fit well by a single or double exponential.
By Occam’s razor, it is difficult to justify explain-
ing such data with anything more complicated
than a two- or three-state model. To push beyond
these extremely coarse models, one has to be-
gin making perturbations like mutations or trying
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to incorporate other experimental data. However,
the sensitivity of many molecular processes to
atomistic changes makes interpreting the effects
of perturbations difficult and combining different
types of experimental data is also nontrivial—for
example, how does one weight the relative contri-
butions of two different types of data to a model?
As a result, while there are certainly many oppor-
tunities in these directions, there is currently no
clear path to building atomically detailed mod-
els for the entirety of a system from experimental
data alone.

An alternative is to develop computer mod-
els that can complement experiment by providing
an unambiguous description of a system’s atomic
motions. Ideally, these models could be validated
by comparison to existing experimental data. One
could then delve into the rich structural and ki-
netic information the model would provide to ex-
plain the origins of experimental results and gen-
erate hypotheses to guide the design of new ex-
periments.

Atomistic molecular dynamics simulations are
one powerful tool for achieving this vision. In
these simulations, one iteratively evaluates the
force each atom experiences due to the other
atoms in the system, calculates where each atom
will be some small timestep in the future, and fi-
nally updates their positions.

Unfortunately, it is extremely challenging to
reach biologically relevant timescales in a molec-
ular dynamics simulation, much less to obtain
sufficient statistics to accurately characterize a
system’s behavior. The large forces and small
length scales involved in such simulations ne-
cessitate a very small timestep—typically on the
order of a femtosecond, or 10−15 seconds. One
must then build up, about one femtosecond at
a time, to the microseconds, milliseconds, and
seconds timescales where many of the molecular
processes of interest typically occur. Simulating a
single millisecond on a typical desktop computer
could easily take hundreds of years and is still es-
sentially intractable with large computer clusters,
though some progress has been made with dis-
tributed computing and specialized hardware.

Many advanced methods have been developed
to overcome this gap between biological and sim-
ulation timescales but none is a magic bullet.

For example, generalized ensemble methods—
like replica exchange—allow a simulation to per-
form a random walk in temperature space. The
hope is that at low temperatures the simulation
will slowly explore the landscape of interest but
that at high temperatures the system can easily
jump to new regions of conformational space.
Such methods are extremely powerful for small
systems where energetic barriers dominate but
can actually perform worse than conventional
molecular dynamics for more complicated sys-
tems where entropic barriers dominate because
these will become even more insurmountable at
high temperatures. Coarse-graining can also pro-
vide reasonable speedups by reducing the number
of pairwise interactions that must be calculated.
However, there is always the danger that the de-
grees of freedom one coarse-grains out are actu-
ally important, in which case the coarse-grained
simulation is of no value.

Even if these advanced methods could access
arbitrarily long timescales, the issue of how to
extract understanding from them would still re-
main. One cannot simply report what happened
in a simulation because molecular processes like
protein folding are inherently stochastic, so the
exact sequence of events in one simulation is ex-
tremely unlikely to appear in a second trajectory.

One common analysis method is to project the
free energy landscape onto order parameters but,
once again, this is not a general solution. Projec-
tions of the free energy surface are really only
valid if the order parameters chosen are truly re-
action coordinates for the process of interest—i.e.
they accurately reflect progression from reactants
to products. In a very few cases, it is clear what
the reaction coordinates are. For example, the ala-
nine dipeptide only has two degrees of freedom,
so it is perfectly legitimate to project the system’s
free energy landscape onto these order parame-
ters. However, for processes like protein folding
that occur in extremely high-dimensional spaces,
finding a reaction coordinate is not so simple. Re-
searchers often project free energy surfaces for
proteins onto popular order parameters, like the
number of native contacts or the RMSD to a
known crystal structure, but one can find drasti-
cally different landscapes by choosing different
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order parameters Therefore, these methods often
do not provide clear and consistent models of
molecular processes.

Clustering the conformations sampled with
a set of simulations based on some geometric
criterion—like the RMSD between conformat-
ions—is a less biased approach but is still not
completely satisfactory. One major advantage of
clustering is that it is less biased than projections
since no reaction coordinate has to be assumed a
priori. Furthermore, once the data has been clus-
tered, many analyses can be performed easily. For
example, comparison of the relative amounts of
time spent in different clusters gives information
about their relative free energies. One can also
attempt to estimate the transition rates between
clusters from the number of transitions observed
between them and then begin looking at the most
probable pathways between arbitrary start and
end points. However, many important questions
remain. For example, how many clusters are nec-
essary and where, exactly, should the boundaries
between them lie? Given two different cluster-
ings, which one is better? Does a given clustering
contain useful information? As will be discussed
in more detail later, many problems can also arise
when trying to estimate kinetic parameters from
these models.

1.2 Markov State Models

A Markov model consists of a network of confor-
mational states and a transition probability ma-
trix describing the chances of jumping from one
state to another in some small time interval. Many
readers will recognize them as discrete time mas-
ter equation models. Importantly, the states in an
MSM are defined based on kinetic criteria rather
than geometric criteria. Therefore, it is possible to
accurately identify the boundaries between free
energy basins and model dynamic processes like
the relaxation to equilibrium.

A Markov model is a coarse-graining of a
system’s dynamics that reflects the underlying
free energy landscape that determine’s the sys-
tem’s structure and dynamics. Intuitively, it is
often useful to think of the states in a Markov

model as corresponding to free energy minima.
However, as discussed in the next few chapters,
this is not always necessarily true. Nonetheless,
Markov models can provide important insights
into a molecule because we have a much better in-
tuition for states and rates (or, equivalently, tran-
sition probabilities) then we do for the large num-
bers of three dimensional structures generated by
MD simulations.

The states and rates picture also provides a
natural means to make a quantitative connection
with experiments. For example, it is often possi-
ble to calculate an experimental observable (like
the distance between two probes) for each state.
A set of initial conditions can then be prepared by
populating a subset of states and the relaxation
to equilibrium can be modeled using the transi-
tion probabilities between states. This dynamics
can be projected onto the experimental observ-
able and the resulting signal can be compared to
experiment.

Finally, adaptive sampling methods leverage
Markov models to direct efficient simulations.
In adaptive sampling, one iteratively run simula-
tions, builds a Markov model, and then uses the
current model to decide where to spawn new sim-
ulations to improve the model. Such methods can
lead to tremendous improvements in computa-
tional efficiency compared to simply running one
long simulation and waiting for it to gather statis-
tics on the entirety of conformational space.

1.3 Outline of This Book

The remainder of this book can be divided into
two sections. The first section, which includes
Chaps. 2 through 7, presents the theoretical foun-
dations of Markov state models. The second sec-
tion, which includes Chaps. 8 through 10, focuses
on a number of exciting applications of Markov
models that serve to demonstrate the value of this
approach. Below, we briefly review the contents
of each chapter.

Chapter 2 provides a more thorough overview
of Markov state models and how they are con-
structed. This discussion includes a description of
the key steps for building an MSM and some of
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the options available for each stage of the model
building process. An important theme is that there
is no single right way to perform many of these
steps. Therefore, it is valuable to have some un-
derstanding of the tradeoffs between the available
options.

Chapter 3 lays the theoretical foundation of
MSMs. As indicated by the name, Markov mod-
els assume that the current discrete state of the
system is sufficient to know the probabilities of
jumping to any other state in the next time inter-
val, without having to know the previous history.
While the Markov assumption may be correct for
the dynamics in the full-dimensional phase space,
it cannot be exactly correct for the discrete parti-
tion of state space used for the MSM. The asso-
ciated error, i.e. the difference of the MSM ki-
netics from the exact kinetics is a discretization
error. Fortunately, we do not depend on a leap
of faith when constructing MSMs. As a result
of thorough mathematical work, especially dur-
ing the last couple of years, the MSM discretiza-
tion error is now well understood and can even be
quantitatively bounded. Chapter 3 describes the
nature of this error in the absence of additional
statistical error, derives properties that a “good”
partition of state space must fulfill, and suggests
advanced approaches for MSM construction that
go beyond simple state decomposition by cluster-
ing.

In practice, constructing MSMs progresses by
defining a partitioning of conformational space
into states and subsequently testing and possibly
refining it. In order to do so, the MD trajectory
data must be mapped on the discrete state space
partitioning, and the MSM transition matrix must
be estimated. Chapter 4 describes this step in de-
tail and derives statistically optimal estimators for
the transition matrix given a dataset and a state
space partitioning. Subsequently, practical tests
are described to assess the quality of the esti-
mated MSM. It is these tests that will report on
success or failure of the MSM to be a consistent
kinetic model, and appropriate steps can be taken,
e.g. by refining the state space partitioning used.

Since an MSM is estimated from a finite
amount of MD trajectory data, the associated
transition matrix and all properties computed

from it will involve statistical uncertainty. Clearly,
this is an issue for any model of the equilib-
rium or kinetic properties that is built from com-
puter simulations—not just MSMs. Fortunately,
for MSMs we now have a very complete theory
that allows us to quantify these statistical errors
from the number of transitions observed between
the discrete sub-states. Chapter 5 attempts to give
an overview of these methods and then goes into
detail with Bayesian methods to sample the statis-
tical uncertainties of transition matrices, and any
quantity computed from them. Importantly, one
can use estimates of uncertainties from an exist-
ing MSM to decide where to run new simulations
in order to refine the model as efficiently as possi-
ble. Such methods are called adaptive sampling.

Chapter 6 gives an overview of some of the
most useful analyses that can be performed with
a valid Markov model. Three aspects are dis-
cussed and illustrated using a toy model of pro-
tein folding. First, we describe the significance
of eigenvalues and eigenvectors of MSM transi-
tion matrices. Eigenvalues are related to the relax-
ation timescales of kinetic processes, and eigen-
vectors indicate the associated structural changes.
Consequently, the eigenvectors associated with
the slowest relaxation timescales can be used to
find the metastable states of the molecular system
studied. Secondly, the ability to associate relax-
ation timescales with structural changes via the
eigenvalue-eigenvector duality is arguably one of
the main advantages of MSMs over many other
approaches to analyze MD simulation data. It per-
mits one to uniquely assign structural transition
events to experimentally measurable timescales,
which makes MSMs a very valuable tool for
quantitatively comparing simulation and experi-
ment. We can go further and quantitatively pre-
dict the relaxation or correlation functions mea-
sured by kinetic experiments using three ingredi-
ents: the MSM eigenvalues, eigenvectors and the
mean value of the spectroscopic observable for
each discrete state. Chapter 6 describes the asso-
ciated theory.

Finally, MSMs allow us to compute complex
kinetic quantities that may not be directly exper-
imentally accessible. One example is the ensem-
ble of transition pathways and the transition state
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Fig. 1.1 Overview of the
chapters in this book

ensemble. Given an MSM, both can be easily
computed with transition path theory. Chapter 6
gives an introduction to transition path theory and
illustrates it on the folding of the Pin WW pep-
tide.

Chapter 7 is a theoretical chapter that goes
into more detail on transition path theory. While
transition path theory was originally derived for
continuous Markov processes, this chapter fo-
cuses on its use in conjunction with MSMs and
illustrates it using a simple example—a random
walk in a two-dimensional maze. The basic math-
ematical quantities needed for computing tran-
sition pathways are defined and the equations
for computing them from transition matrices are
given. Furthermore, an approach to efficiently
generate samples of reactive trajectories is intro-
duced.

MSMs meet all three of the requirements laid
out at the beginning of this chapter: provid-
ing understanding, making a quantitative con-
nection with experiment, and driving efficient
simulations. The subsequent application chap-
ters will show that MSMs have already proven
consistent with existing experimental data for
a variety of molecular processes, allowed re-
searchers to better understand—and sometimes

even reinterpret—existing data, and led to new
hypotheses that have been borne out in subse-
quent experiments.

Chapter 8 describes the application of Markov
models to the protein folding problem and the
new insights this has provided. This problem has
two major components. First, how can we pre-
dict the structure of a protein from its sequence?
And, second what is the sequence of events that
allows a protein to fold? Besides showing how
Markov models address both of these issues, this
chapter will discuss how MSMs have allowed re-
searchers to study much larger and slower sys-
tems than would otherwise be possible.

Chapter 9 summarizes recent work on using
Markov models to understand how proteins bind
small molecules. This application has important
implications for drug design and our understand-
ing of signaling within cells. It also presents
an interesting methodological challenge because
it is non-trivial to move from studying single-
body problems (like protein folding, where all
the atoms in the system of interest are covalently
linked together) to multi-body problems.

Chapter 10 discusses how Markov models can
be used to connect with new experimental tech-
niques, like electron spin resonance. An impor-
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tant emphasis is the impressive degree of agree-
ment between simulation and experiment that one
can achieve.

Since the construction, validation and analy-
sis of MSMs is a nontrivial task, the existence of
software that can support the user in these tasks
is crucial. Chapter 11 provides an overview of ex-
isting MSM software packages and their current
capabilities. Clearly, these packages are rapidly
evolving and thus this chapter is just meant as a
starting point. Therefore, links are provided to the

manuals and tutorials of the software packages
described.

Figure 1.1 provides an overview of the chap-
ters of this book. For readers who decide not to
follow the sequence of chapters in the book, we
indicate the dependencies between chapters from
the viewpoint of a practically oriented reader that
is unfamiliar with MSMs. Theoretically inclined
readers may start with the theory sections. Read-
ers familiar with MSMs may read the book chap-
ters in any sequence.


	Chapter 1: Introduction and Overview of This Book
	1.1 Background
	1.2 Markov State Models
	1.3 Outline of This Book


