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Abstract The von Kries model is widely employed to describe the color variation
between two pictures portraying the same scene but captured under two different
lights. Simple but effective, this model has been proved to be a good approxima-
tion of such a color variation and it underpins several color constancy algorithms.
Here we present three recent research results: an efficient histogram-based method
to estimate the parameters of the von Kries model, and two theoretical advances, that
clarify the dependency of these parameters on the physical cues of the varied lights
and on the photometric properties of the camera used for the acquisition. We illus-
trate many applications of these results: color correction, illuminant invariant image
retrieval, estimation of color temperature and intensity of a light, and photometric
characterization of a device. We also include a wide set of experiments carried out
on public datasets, in order to allow the reproducibility and the verification of the
results, and to enable further comparisons with other approaches.

Keywords Color and light · von Kries model · Estimation of the von Kries
coefficients · Dependence of the von Kries model on light and device · Planck’s
andWien’s lights · Color correction · Illuminant invariant image retrieval · Intensity
and Color temperature of a light · Device photometric characterization

1 Introduction

Color is one of the most important features in many Computer Vision fields such
as image retrieval and indexing [48], object and scene recognition [53], image seg-
mentation [49], and object tracking [39]. Although color is robust to many image
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geometric distortions, e.g. changes of image size and/or orientation, and to noise, its
use in practical applications is often limited by its strong sensitivity to the light. In
fact, we experience that the same scene viewed under two different lights produces
two different pictures. This is because the color of an image depends on the spectral
profile of the light illuminating the scene, on the spectral reflectivity and geometry
of the materials composing the scene, and on the device used for the acquisition.
Features like colors, luminance, magnitude and orientation of the edges, which are
commonly used to describe the visual appearance of a scene, remarkably change
when the light varies. As a consequence, many algorithms for image classification
and/or object recognition, that are based on these features (e.g. [38, 40]), do not work
in case of illuminant variations [53]. Understanding how the colors of a picture vary
across the illumination of the imaged scene is a crucial task to develop a recognition
and/or retrieval system insensitive to light conditions.

In the human visual system, the color illuminant invariance is achieved by a chro-
matic adaptation mechanism named color constancy: it detects and removes possible
chromatic dominants and illuminant incidents from the observed scene, so that the
same scene under different illuminants is perceived as the same entity [54]. Although
color constancy has been intensively investigated in the past decades, it remains still
an unsolved problem [10, 24]. In the last years, many methods for simulating this
human capability have been developed [2, 21–23, 25, 29, 33]. A recent survey on
the main approaches is presented in [28], while a comparison of the most used color
constancy algorithms can be found in [5, 6]. Advantages and disadvantages in using
some of these methods are addressed in [1].

The von Kries model is widely used to describe the color variation between images
or image regions due to an illuminant change. It relies on three main assumptions:
(i) the lights under which the images (or regions) are acquired are spatially uniform
across the scene; (ii) the materials composing the imaged scene are Lambertian;
(iii) the device used for capturing the images is narrow-band, or the spectral sensi-
tivities of its sensors do not overlap. Hypothesis (i) constraints the spectral power
distribution of the light to be homogeneous across the scene. Hypothesis (ii) holds for
a lot ofwidemattematerials, which appear equally bright from all viewing directions.
Finally, hypothesis (iii) is generally satisfied by the most cameras. Otherwise, the
camera sensitivities can be sharpened by a linear transform [7, 19], in order to fulfill
the requirements of (iii). Under these conditions, the von Kries model approximates
the color change between the input images with a linear diagonal map, that rescales
independently the color responses of the two pictures. Usually, the von Kries map
is defined over the RGB color space, where the parameters of this model, called the
von Kries coefficients, are the three scale factors that interrelate the red, green and
blue responses of the input images. Despite its simplicity, the von Kries model has
been proved to be a successful approximation of the illuminant change [17, 18] and
it underpins many color constancy and color correction algorithms, e.g. [4, 9, 23,
29, 34, 35]. This success justifies the attention we dedicate to the von Kries model
in this chapter, where we present three research studies, which have been dealt with
in [35–37].
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The work in [35] proposes a novel efficient method to estimate the parameters of
the vonKries map possibly relating two images or two image regions. The estimation
of the von Kries coefficients is carried out by the most popular color constancy algo-
rithms, e.g. [11, 14, 20, 23, 33] in two steps: first, they compute the illuminants under
which the input images or regions have been captured and codify them as 3D vectors;
second, they estimate the vonKries coefficients as the ratios between the components
of the illuminants. The approach in [35] strongly differs from these methods because
it does not require any estimation or knowledge of the illuminants. It namely defines
a von Kries model based measure of dissimilarity between the color distributions of
the inputs, and derives the von Kries coefficients by minimizing this dissimilarity.
The technique in [35] is invariant to many image distortions, like image rescaling, in-
plane rotation, translation and skew, and it shows impressive performances in terms
of computational charge, execution time, and accuracy on color correction, also in
comparison with other methods, as shown from the experiments reported here.

The works in [36, 37] present some theoretical advances, that clarify the relation-
ships of the von Kries parameters with the physical cues of the light (i.e. color tem-
perature and intensity) and with the photometric properties of the device used for the
image acquisition (i.e. the camera spectral sensitivities). To the best of our knowledge,
the mathematical results discussed in these papers have been never proposed before.

The paper in [37] presents an empirical analysis of pictures or regions depicting
the same scene or object under different Planck’s lights, i.e. lights behaving like a
black-body radiator. The experiments carried out in [37] lead to two main results.
First, a color change produced by varying two Planck’s lights is well approximated
by a von Kries map. Such a result is not surprising, as it is in line with [18]. Second,
the coefficients of the von Kries approximation are not independent to each other:
they namely form 3D points belonging to a ruled surface, named von Kries surface,
and parametrized by the color temperatures and intensities of the varied lights. The
mathematical equation of the von Kries surface puts on evidence the relationship
between the von Kries coefficients and the physical cues of the varied lights, and it is
used in [37] to estimate the color temperature and intensity of an illuminant, given a
set of images captured under that illuminants and a von Kries surface. Since in [37]
there are no geometric distortions between the differently illuminated images (or
regions) considered in the experiments, estimation of the von Kries approximation
is performed by a best-fit technique, that computes the von Kries coefficients as
the slope of the best line interpolating the pairs of pixel-wise correspondent color
responses.

The work in [36] deals with changes of Wien’s illuminants, that are a special case
of Planck’s lights. As in [37], and according to [18], an empirical study shows that
the von Kries model is a valid approximation for the color changes due to a variation
of Wien’s lights. Then the authors derive a mathematical equation interrelating the
von Kries coefficients and the spectral sensitivities of the acquisition device. This
equation reveals a direct proportionality between two 2D vectors: the first one is
defined by the von Kries coefficients, while the second one by the wavelengths
at which the RGB sensors of the device is maximally sensitive. This relationship
allows to discover the relationship of the von Kries parameters with the photometric
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Table 1 Chapter outline

Topic Short description Sections

Generalities Introduction; 1
Derivation of the linear model for color variation; 2
Derivation of the von Kries model

Result 1 Estimation of the von Kries model 3
with Application to 4
Color Correction and
Illuminant invariant image retrieval

Result 2 Dependency of the von Kries model on
the physical cues of the illuminants; 5
von Kries surfaces;
Application to estimation of
Color temperature and Intensity of an
Illuminant.

Result 3 Dependency of the von Kries model
on the photometric properties of the
acquisition device;
Applications to 6
Device characterization and to
Illuminant invariant image representation

Conclusions Final remarks 7

properties of the acquiring camera, and thus to prime information about the sensor
sensitivities from the von Kries maps relating pairs of images linked by a variation of
Wien’s illuminants. In the experiments reported in [36], estimation of the von Kries
approximation was done by the approach of [35].

We notice that the hypotheses of Planck’s and Wien’s lights of the works [36, 37]
do not compromise the generality of the results, because the most illuminants satisfy
Planck’s or Wien’s law.

In the description of the works [35–37] provided in this chapter, we added more
experiments and more comparisons with other approaches than those reported in the
papers mentioned above. In particular, the method of [35] has been tested on three
additional databases [8, 16, 45] and it has been compared with other techniques,
listed in [13]. The experiments carried out in [37] have been repeated by estimating
the von Kries approximation through the method [35], and a new measure for the
accuracy on the von Kries approximation has been introduced (the Hilbert–Schmidt
inner product of Sect. 5.2).

The overall organization of the Chapter is reported in Table1.

2 Linear Color Changes

In the RGB color space, the response of a camera to the light reflected from a point
x in a scene is coded in a triplet p(x) = (p0(x), p1(x), p2(x)), where
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pi (x) =
∫

�

E(λ)S(λ, x)Fi (λ) dλ i = 0, 1, 2. (1)

In Eq. (1), λ is the wavelength of the light illuminating the scene, E its spectral
power distribution, S the reflectance distribution function of the illuminated surface
containing x , and Fi is the i-th spectral sensitivity function of the sensor. The integral
ranges over the visible spectrum, i.e. � = 4 [380, 780]nm. The values of p0(x),
p1(x), p2(x) are the red, green and blue color responses of the camera sensors at
point x .

For a wide range of matte surfaces, which appear equally bright from all viewing
directions, the reflectance distribution function is well approximated by the Lam-
bertian photometric reflection model [44]. In this case, the surface reflectance can
be expressed by a linear combination of three basis functions Sk(λ) with weights
σk(x), k = 0, 1, 2, so that Eq. (1) can be re-written as follows [42]:

p(x)T = Wσ(x)T (2)

where σ(x) = (σ0(x), σ1(x), σ2(x)), the superscript T indicates the transpose of the
previous vector, and W is the 3 × 3 matrix with entry

Wki =
∫

�

E(λ)Sk(λ)Fi (λ)dλ, k, i = 0, 1, 2.

The response p′(x) = (p′
0(x), p′

1(x), p′
2(x)) captured under an illuminant with

spectral power E ′ is then given by p′(x)T = W ′σ(x)T . Since the σ(x)’s do not
depend on the illumination, the responses p(x) and p′(x) are related by the linear
transform

p(x)T = W [W ′]−1p′(x)T . (3)

Here we assume that W ′ is not singular, so that Eq. (3) makes sense. In the following
we indicate the i j-th element of W [W ′]−1 by αi j .

3 The von Kries Model

The von Kries (or diagonal) model approximates the color change in Eq. (3) by a
linear diagonal map, that rescales independently the color channels by real strictly
positive factors, named von Kries coefficients.

Despite its simplicity, the von Kries model has been proved to approximate well
a color changes due to an illuminant variation [15, 17, 18], especially for narrow-
band sensors and for cameras with non-overlapping spectral sensitivities. Moreover,
when the device does not satisfy these requirements, its spectral sensitivities can be
sharpened by a linear transform [7, 19], so that the von Kries model still holds.
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In the following, we derive the vonKries approximation for a narrow-band camera
(Sect. 3.1) and for a device with non-overlapping spectral sensitivities (Sect. 3.2). In
addition, we discuss a case in which the von Kries model can approximate also a
color change due to a device changing (Sect. 3.3).

3.1 Narrow-Band Sensors

The spectral sensitivity functions of a narrow-band camera can be approximated
by the Dirac delta, i.e. for each i = 0, 1, 2, Fi (λ) = fiδ(λ − λi ), where fi is a
strictly positive real number and λi is the wavelength at which the sensor maximally
responds.

Under this assumption, from Eq. (1), for each i = 0, 1, 2 we have

pi (x) = E(λi )S(λi , x)F(λi ) and p′
i (x) = E ′(λi )S(λi , x)F(λi )

and thus

pi (x) = E(λi )

E ′(λi )
p′

i (x) ∀ i = 0, 1, 2. (4)

This means that the change of illuminant mapping p(x) onto p′(x) is a linear diag-
onal transform that rescales each channel independently. The von Kries coefficients
are the rescaling factors αi , i.e. the non null elements αi i of W [W ′]−1:

αi := αi i = E(λi )

E ′(λi )
∀ i = 0, 1, 2. (5)

3.2 Non Overlapping Sensitivity Functions

Let I and I ′ be two pictures of a same scene imaged under different light conditions.
Since the content of I and I ′ is the same,we assume a scene-independent illumination
model [52] such that

E(λ)Fk(λ) =
2∑

j=0

αk j E ′(λ)Fj (λ). (6)

Now, let us suppose that the device used for the image acquisition hasnon overlapping
sensitivity functions. This means that for each i, j with i �= j , Fi (λ)Fj (λ) = 0 for
any λ. Generally, the spectral sensitivities are real-valued positive functions with
a compact support in Ω (see Fig. 1 for an example). Therefore non-overlapping
sensitivities have non intersecting supports. We prove that under this assumption,
the von Kries model still holds, i.e. matrix W [W ′]−1 is diagonal.
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Fig. 1 BARNARD2002:
spectral sensitivities for the
camera Sony DCX-930 used
for the image acquisition of
the database [8]
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From Eq. (6) we have that

∫
�

E(λ)S(λ, x)Fk(λ) dλ =
2∑

j=0

αk j

∫
�

E ′(λ)S(λ, x)Fj (λ) dλ. (7)

i.e. the linear dependency between the responses of a camera under different illumi-
nants is still described by Eq. (3). From Eq. (7) we have that

[E(λ)Fk(λ) −
2∑

j=0

αk j E ′(λ)Fj (λ)]2 = 0. (8)

By minimizing (8) with respect to αk j and by using the sensitivity non-overlap
hypothesis we get the von Kries model. In fact, suppose that k = 0. The derivative of
the Eq. (8) with respect to α00 is

0 = −E ′(λ)F0(λ)[E(λ)F0(λ) −
2∑

j=0

α0 j E ′(λ)Fj (λ)].

Thanks to the non-overlapping hypothesis, and by supposing that E ′(λ) �= 0 for
each λ in the support of F0, we have that

E(λ)F0(λ) − α00E ′(λ)F0(λ) = 0. (9)

By integrating Eq. (9) with respect to λ over Ω , and by solving with respect to
α00, we have that
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α00 =
∫
�

E(λ)F0(λ)dλ∫
�

E ′(λ)F0(λ)dλ
. (10)

Since E , E ′ and F0 are not identically null, α00 is well defined add α00 �= 0.
Now, we prove that α0 j = 0 for any j �= 0. From Eq. (9) we have that

E(λ)F0(λ) = α00E ′(λ)F0(λ).

Putting this expression of E(λ)F0(λ) into Eq. (8) with k = 0, yields

0 = [α01E ′(λ)F1(λ)]2 + [α02E ′(λ)F2(λ)]2 + 2α01α02E ′(λ)2F1(λ)F2(λ).

Since the functions F1 and F2 do not overlap, the last term at left is null, and

[α01E ′(λ)F1(λ)]2 + [α02E ′(λ)F2(λ)]2 = 0.

By integrating this equation over λ we have that

α2
01

∫
�

[E ′(λ)F1(λ)]2dλ + α2
02

∫
�

[E ′(λ)F2(λ)]2dλ = 0, (11)

and since E ′, E , F0, F1, are not identically zero, we have that α01 = α02 = 0. By
repeating the same procedure for k = 1, 2, we obtain the von Kries model.

We remark that Eq. (9) has been derived by supposing that E ′(λ) differs from zero
for any λ in the compact support of F0(λ). This allows us to remove themultiplicative
term E ′(λ)F0(λ) and leads us to Eq. (9). This hypothesis is reliable, because the
spectral power distribution of the most illuminants is not null in the visible spectrum.
However, in case of lights with null energy in some wavelengths of the support of
F0, Eq. (9) is replaced by

E ′(λ)E(λ)[F0(λ)]2 − α00[E ′(λ)]2[F0(λ)]2 = 0.

The derivation of the von Kries model can be then carried out as before.

3.3 Changing Device

A color variation between two images of the same scene can be produced also by
changing the acquisition device. Mathematically turns into changing the sensitivity
function Fi in Eq. (1). Here we discuss a case in which the color variation generated
by a device change can be described by the von Kries model.

Without loss of generality, we can assume that the sensors are narrow bands.
Otherwise, we can apply the sharpening proposed in [18] or [7]. Under this assump-
tion, the sensitivities of the cameras used for acquiring the images under exam are
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approximated by the Dirac delta, i.e.

Fi (λ) = f γ

i δ(λ − λi ) (12)

where parameter f γ is a characteristic of the cameras.
Herewemodel the change of the camera as a variation of the parameterγ ,whilewe

suppose that the wavelength λi remains the same. Therefore the sensitivity functions
changes from Eq. (12) to the following Equation:

F ′
i (λ) = f γ ∗

i δ(λ − λi ). (13)

Consequently, the camera responses are

pi (x) = f γ

i E(λi )S(λi , x) and p′
i (x) = f γ ∗

i E(λi )S(λi , x)

and thus, therefore the diagonal linear model still holds, but in this case, the von
Kries coefficients αi depends not only on the spectral power distribution, but also on
the device photometric cues:

αi = f γ

i E(λi )

f γ ∗
i E(λi )

, ∀ i = 0, 1, 2. (14)

4 Estimating the von Kries Map

The color correction of an image onto another consists into borrow the colors of the
first image on the second one. When the color variation is caused by a change of
illuminant, and the hypotheses of the von Kries model are satisfied, the color trans-
form between the two pictures is determined by the von Kries map. This equalizes
their colors, so that the first picture appears as it would be taken under the illuminant
of the second one. Estimating the von Kries coefficients is thus an important task to
achieve color correction between images different by illuminants.

The most methods performing color correction between re-illuminated images or
regions compute the von Kries coefficients by estimating the illuminants σ and
σ ′ under which the images to be corrected have been taken. These illuminants
are expressed as RGB vectors, and the von Kries coefficients are determined as
the ratios between the components of the varied illuminants. Therefore, estimat-
ing the von Kries map turns into estimating the image illuminants. Some examples
of these techniques are the low-level statistical based methods as Gray-World and
Scale-by-Max [11, 33, 55], the gamut approaches [4, 14, 20, 23, 29, 56], and the
Bayesian or statistical methods [26, 41, 47, 50].

The method proposed in [35], we investigate here, differs from these techniques,
because it does not require the computation of the illuminants σ and σ ′, but it esti-
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mates the vonKries coefficients bymatching the color histograms of the input images
or regions, as explained in Sect. 4.1. Histograms provide a good compact represen-
tation of the image colors and, after normalization, they guarantee invariance with
respect to affine distortions, like changes of size and/or in-plane orientation.

As matter as fact, the method in [35] is not the only one that computes the von
Kriesmap bymatching histograms. The histogram comparison is in fact adopted also
by the methods described in [9, 34], but their computational complexities are higher
than that of the method in [35]. In particular, the work in [9] considers the logarithms
of the RGB responses, so that a change in illumination turns into a shift of these
logarithmic responses. In this framework, the von Kries map becomes a translation,
whose parameters are derived from the convolution between the distributions of
the logarithmic responses, with computation complexity O(N log(N )), where N
is the color quantization of the histograms. The method in [34] derives the von
Kries coefficients by a variational technique, that minimizes the Euclidean distance
between the piecewise inverse of the cumulative color histograms of the input images
or regions. This algorithm is linear with the quantizations N and M of the color
histograms and of the piecewise inversions of the cumulative histograms respectively,
so that its complexity is O(N + M). Differently from the approach of [34], the
algorithm in [35] requires the user just to set up the value of N and its complexity is
O(N ).

The method presented in [35] is described in detail in Sect. 4.1. Experiments
on the accuracy and an analysis of the algorithm complexity and dependency on
color quantization are addressed in Sects. 4.2 and 4.3 respectively. Finally, Sect. 4.4
illustrates an application of this method to illuminant invariant image retrieval.

4.1 Histogram-Based Estimation of the von Kries Map

As in [35], we assume that the illuminant varies uniformly over the pictures. We
describe the color of an image I by the distributions of the values of the three
channels red, green, blue. Each distribution is represented by a histogram of N bins,
where N ranges over {1,…, 256}. Hence, the color feature of an image is represented
by a triplet H := (H0, H1, H2) of histograms. We refer to H as color histograms,
whereas we name its components channel histograms.

Let I0 and I1 be two color images, with I1 being a possibly rescaled, rotated,
translated, skewed, and differently illuminated version of I0. Let H0 and H1 denote
the color histograms of I0 and I1 respectively. Let Hi

0 and Hi
1 be the i-th component

of H0 and H1 respectively. Here fter, to ensure invariance to image rescaling, we
assume that each channel Hi

j histogram is normalized so that
∑N

x=1 Hi
j (x) = 1.

The channel histograms of two images which differ by illumination are stretched
to each other by the von Kries model, so that
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x∑
k=1

Hi
1(k) =

αi x∑
k=1

Hi
0(k) ∀ i = 0, 1, 2. (15)

We note that, as the data are discrete, the value αi x is cast to an integer ranging
over {1, …, 256}.

The estimate of the parameters αi ’s consists of two phases. First, for each x in
{1, …, 256} we compute the point y in {1, …, 256} such that

x∑
k=1

Hi
0(k) =

y∑
k=1

Hi
1(k). (16)

Second, we compute the coefficient αi as the slope of the best line fitting the pairs
(x, y).

The procedure to compute the correspondences (x, y) satisfying Eq. (16) is imple-
mented by the Algorithm 1 and more details are presented in [35]. To make the
estimate robust to possible noise affecting the image and to color quantization, the
contribution of each pair (x, y) is weighted by a positive real number M , that is
defined as function of the difference

∑x
k=1 Hi

0(k) − ∑y
k=1 Hi

1(k).
The estimate of the best lineA := y = αx could be adversely affected by the pixel

saturation, that occurswhen the incident light at a pixel causes themaximum response
(256) of a color channel. To overcome this problem, and to make our estimate robust
as much as possible to saturation noise, the pairs (x, y) with x = 256 or y = 256
are discarded from the fitting procedure.

A least-square method is used to define the best line fitting the pairs (x, y). More
precisely, the value of αi is estimated by minimizing with respect to α the following
functional, that is called in [35] divergence:

dα(Hi
0, Hi

1) :=
∑

k

Mkd((xk, yk),A )2 =
∑

k

Mk

α2 + 1
(αxk − yk)

2. (17)

Here (xk, yk) and Mk indicate the k-th pair satisfying Eq. (16) and its weight respec-
tively, while d((xk, yk),A ) is the Euclidean distance between the point (xk, yk) and
the line A .

We observe that:

1. dα(Hi
0, Hi

1) = 0 ⇔ Hi
0(αz) = Hi

1(z), for each z in {1, …, N};
2. dα(Hi

0, Hi
1) = d 1

α
(Hi

1, Hi
0).

These properties imply that dα is a measure of dissimilarity (divergence) between
the channel histograms stretched each to other. In particular, if dα is zero, than the
two histograms are stretched to each other.

Finally we notice that, when no changes of size or in-plane orientation occur, the
diagonal map between two images I0 and I can be estimated by finding, for each
color channel, the best line fitting the pairs of sensory responses (pi , p′

i ) at the i-th
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pixels of I0 and I respectively, as proposed in [37]. The histogram-based approach
in [35] basically applies a least square method in the space of the color histograms.
Using histograms makes the estimate of the illuminant change insensitive to image
distortions, like rescaling, translating, skewing, and/or rotating.

Algorithm 1 Computing the correspondences between the bins of two channel his-
tograms, according to the von Kries Model
Initialization:
Define R0 := ∑x

k=1 Hi
0(k), R1 := ∑y

k=1 Hi
1(k);

Compute the bin x and y of Hi
0 and Hi

2 respectively, such that R0 > 0 and R1 > 0;
Set M := min(R0, R1) and L := {list of the pairs (x, y, M)}, initially empty.

Iterations:
while (x < 255 or y < 255) do
Push (x, y, M) into L ;
if (M = R0) then

while (M < R1) do
x ← x + 1;
R0 ← R0 − M and R1 ← R1 − M ;
M ← min(R0, R1);

end while
end if
if (M = R1) then

while (M < R0) do
y ← y + 1;
R0 ← R0 − M and R1 ← R1 − M ;
M ← min(R0, R1);

end while
end if

end while

Figure2 shows a synthetic example of pictures related by a von Kries map along
with the color correction provided by the method described in [35]. The red channel
of the image (a) has been rescaled by 0.5, while the other channels are unchanged.
The re-illuminated image is shown in (b). Figure3 shows the red histograms of (a)
and (b) and highlights the correspondence between two bins. In particular, we note
that the green regions in the two histograms have the same areas. The von Kries map
estimated by [35] provides a very satisfactory color correction of image (b) onto
image (a), as displayed in Fig. 2c.

4.2 Accuracy on the Estimate

The accuracy on the estimate of the von Kries map possibly relating two images or
two image regions has been measured in [35] in terms of color correction. In the
following, we report the experiments carried out on four real-world public databases
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Fig. 2 a A picture; b a re-illuminated version of (a); c the color correction of (b) onto (a) provided
by the method [35]. Pictures (a) and (c) are highly similar

Fig. 3 Histograms of the responses of the red channels of the pictures shown in Fig. 2a, b: the red
channel of the first picture has been synthetically rescaled by 0.5. The two red histograms are thus
stretched to each other. The method [35] allows to estimate the stretching parameters, and hence to
correct the images as they would be taken under the same light. The green parts highlighted on the
histograms have the same area, therefore the bin x = 128 in the first histogram is mapped on the
bin y = 64 of the second one

(ALOI [27], Outex [45], BARNARD [8], UEA Dataset [16]). Some examples of
pictures from these datasets are shown in Fig. 4 (first and second images in each
row).

Each database consists of a set of images (references) taken under a reference
illuminant and a set of re-illuminated versions of them (test images). For all the
databases, we evaluate the accuracy on the estimation of the the von Kries map K by

A := 1 − L1(I, K (I0)). (18)
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Fig. 4 Examples of color correction output by the approach in [35] for the four databases used in
the experiments reported in Sect. 4.2: a ALOI, b Outex; c BARNARD; d UEA. In each row, from
left to right: an image, a re-illuminated version of it, and the color correction of the second one onto
the first one. The images in (d) have been captured by the same camera

Here I indicates a test image and I0 its correspondent reference,while L1(I, K (I0))
is the L1 distance computed on the RGB space between I and the color correction
K (I0) of I0 determined by the estimated K . This distance has been normalized to
range over [0,1]. Therefore, the closer to 1 A is, the better our estimate is. To quantify
the benefit of our estimate, we compare the accuracy in Eq. (18) with

A0 := 1 − L1(I, I0). (19)

The value of A0 measures the similarity of the reference to the test image when
no color enhancement is applied.
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The transform K gives the color correction of I0 with respect to the reference I :
in fact, K (I0) is the image I0 as it would be taken under the same illuminant of I .

We notice that this performance evaluation does not consider possible geomet-
ric image changes, like rescaling, in-plane rotation, or skew. In fact, the similarity
between two color corrected images is defined as a pixel-wise distance between the
image colors.

In case of a pair of images related by an illuminant change and by geometric
distortions, we measure the accuracy of the color correction by the L1 distance
between their color histograms. In particular, we compute the distanceH0 between
the color histograms of I and I0 before the color correction

H0 = 1 − L1(H0, H), (20)

and the distanceH between the color histograms H and HK of I and K (I0) respec-
tively:

H = 1 − L1(H, HK). (21)

Examples of color correction output by the algorithm we described are shown in
Fig. 4 for each database used here (third image in each row).

4.2.1 ALOI

ALOI [27] (http://staff.science.uva.nl/~aloi/) collects 110,250 images of 1,000
objects acquired under different conditions. For each object, the frontal view has
been taken under 12 different light conditions, produced by varying the color tem-
perature of 5 lamps illuminating the scene. The lamp voltage was controlled to be
Vj = j ×0.047V with j ∈ {110, 120, 130, 140, 150, 160, 170, 180, 190, 230, 250}.
For each pair of illuminants (Vj , Vk) with j �= k, we consider the images captured
with lamp voltage Vj as references and those captured with voltage Vk as tests.

Figure5 shows the obtained results: for each pair (Vj , Vk), the plot shows the
accuracies (a) A0 and (b) A averaged over the test images.

We observe that, for j = 140, the accuracy A is lower than for the other lamp
voltages. This is because the voltage V140 determines a high increment of the light
intensity and therefore a large number of saturated pixels, making the performances
worse.

The mean value of A0 averaged on all the pairs (Vj , Vk) is 0.9913, while that of
A is 0.9961 by the approach in [35]. For each pair of images (Ii , I j ) representing
a same scene taken under the illuminants with voltages Vi and Vj respectively, we
compute the parameters (α0, α1, α2) of the illuminant change K mapping Ii onto I j .
In principle, these parameters should be equal to those of the map K ′ relating another
pair (I ′

i , I ′
j ) captured under the same pair of illuminants. In practice, since the von

Kries model is only an approximation of the illuminant variation, the parameters
of K and K ′ generally differ. In Fig. 6 we report the mean values of the von Kries

http://staff.science.uva.nl/~aloi/
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Table 2 Outex: accuracies A0 and A for three different illuminant changes

Illuminant change A0 A

From INCA to HORIZON 0.94659 0.97221
From INCA to TL84 0.94494 0.98414
From TL84 to HORIZON 0.90718 0.97677
Mean 0.93290 0.97771

coefficients versus the reference set. The error bar is the standard deviation of the
estimates from their mean value.

4.2.2 Outex Dataset

The Outex database [45] (http://www.outex.oulu.fi/) includes different image sets
for empirical evaluation of texture classification and segmentation algorithms. In
this work we extract the test set named Outex_TC_00014: this consists of three sets
of 1360 texture images viewed under the illuminants INCA, TL84 and HORIZON
with color temperature 2856, 4100 and 2300K respectively.

The accuracies A0 and A are stored in Table2, where three changes of lights have
been considered: from INCA to HORIZON, from INCA to TL84, from TL84 to
HORIZON. As expected, A is greater than A0.

4.2.3 BARNARD

The real-world image dataset [8] (http://www.cs.sfu.ca/~colour/), that we refer as
BARNARD, is composed by 321 pictures grouped in 30 categories. Each category
contains a reference image taken under an incandescent light Sylvania 50MR16Q
(reference illuminant) and a number (from 2 to 11) of relighted versions of it (test
images) under different lights. Themean values of the accuracies A0 and A are shown
in Fig. 7. On average, A0 is 0.9447, and A is 0.9805.

4.2.4 UEA Dataset

The UEA Dataset [16] (http://www.uea.ac.uk/cmp/research/) comprises 28 design
patterns, each captured under 3 illuminants with four different cameras. The illumi-
nants are indicated by Ill A (tungsten filament light, with color temperature 2865K),
Ill D65 (simulated daylight, with color temperature 6500K), and Ill TL84 (fluo-
rescent tube, with color temperature 4100K). We notice that the images taken by
different cameras differ not only for their colors, but also for size and orientation.
In fact, different sensors have different resolution and orientation. In this case, the

http://www.outex.oulu.fi/
http://www.cs.sfu.ca/~colour/
http://www.uea.ac.uk/cmp/research/
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Fig. 5 ALOI: accuracy a A0 and b A (see Eqs. (19) and (18)) for the different pairs of reference
and test sets. The x and y axes display the lamp voltages (×0.047V) of the illuminants used in
ALOI. The right axis shows the correspondence between the colors of the plots and the values of
the accuracies
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Fig. 6 ALOI: estimates of the von Kries coefficients

Fig. 7 BARNARD:
accuracies A0 (Eq.19) and
A (Eq.18) for the different
illuminants
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accuracy on the color correction cannot be measured by the Eqs. (18) and (19), but
it is evaluated by the histogram distances defined in Eqs. (20) and (21).

The results are reported in Table3. For each pair of cameras (i, j) and for each
illuminant pair (σ, σ ′) we compute the von Kries map relating every image acquired
by i under σ and the correspondent image acquired by j under σ ′, and the accuracies
H0 andH on the color correction of the first image onto the second one. On average,
the L1 distance between the color histograms before the color correction is 0.0043,
while it is 0.0029 after the color correction.
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Table 3 UEA Dataset: Accuracies H0 and H respectively (a) before and (b) after the color
correction.

Camera 1 2 3 4

(a) Accuracy H0

1 0.99756 0.99643 0.99487 0.99634
2 0.99643 0.99636 0.99459 0.99644
3 0.99487 0.99459 0.99463 0.99458
4 0.99634 0.99644 0.99458 0.99655

(b) Accuracy H

1 0.99859 0.99745 0.99588 0.99783
2 0.99742 0.99738 0.99565 0.99744
3 0.99691 0.99664 0.99669 0.99709
4 0.99712 0.99693 0.99541 0.99782

4.3 Algorithm Complexity and Accuracy versus
Color Quantization

The approach presented in [35] has a linear complexity with respect to the number of
image pixels, and to the color quantization N . Therefore, it is very efficient in terms
of computational charge: the execution time requested to estimate the von Kries
coefficients for a pair of images of size 150 × 200 is less than 40ms on a standard
Pentium4 CPU Intel® CoreTM i7-870 2.93GHz, for N = 256.

The color quantization is a user input. The experiments carried out on both syn-
thetic and real-world databases [35] show that the accuracy on the color correction
decreases by decreasing the number of bins used to represent the color distributions.
Figure8 reports the mean value of the accuracy on color correction for the database
ALOI for different values of N and for the twelve illuminants of the database: the
best performances are obtained for N = 256.

4.4 An Application: Illuminant Invariant Image Retrieval

The illuminant invariant image recognition problem is stated as follows: let us con-
sider a set of known images (references) and let I be an unknown image (query).
The problem consists into find the reference I0 that displays the same (possibly re-
illuminated) content of the query, i.e. the reference that visually is the most similar
to the query.

The illuminant invariant recognition technique described in [35] relies on the
estimate of the von Kries transform possibly linking a reference and a test image.
Following [35], we compute the von Kries maps that borrow the colors of each
reference onto those of the query, and we associate a dissimilarity score to each of
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these transforms. The solution Ir is the image reference whose von Kries transform
K (I0) has the minimum score from I .

The dissimilarity score is defined in terms of the divergence in Eq. (17) between
the color histograms H and Hr of I and Ir respectively:

δ =
∑

i

dαi (Hi , Hi
r ). (22)

where αi are the von Kries coefficients we estimate. The solution of the image
recognition problem is given by the image Ir of D such that the score defined by
Eq. (22) is minimum.

As pointed out in [35], due to the dependency of the divergence in Eq. (17) on
the von Kries coefficients, δ is not a metric because it does not satisfy the triangu-
lar inequality. Nevertheless, it is a query-sensitive dissimilarity measure, because it
depends on the query [3].

In the following, we say that a query I is correctly recognized if the reference
image Ir of D minimizing the score in Eq. (22) is a re-illuminated version of I .

We test the accuracy of this algorithm for the illuminant invariant image retrieval
on two real-world databases ALOI and UEA, that we have still described in
Sects. 4.2.1 and 4.2.4. We choose the first one, because it contains a large number of
images under different illuminants, and the second one because it includes images
acquired under different lights and by different devices. Moreofer, UEA database
has been used in [13] to measure the performances of a novel illuminant- and device
invariant image recognition algorithm, with which we compare our results.

We evaluate the recognition performances of our approach by the average match
percentile (AMP) defined as the ratio (averaged over the test images)

AMP = Q − rank

Q − 1
, (23)

Fig. 8 ALOI: mean accuracy
versus the illuminants for
different color quantizations
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Fig. 9 ALOI: AMP index for the different illuminants. The x and y axes display the lamp voltages
(×0.047V) of the illuminants used in ALOI

where Q is the number of reference images and rank is the position of the correct
object in the list of the models sorted by visual similarity.

In the experiments reported in the next subsections and carried out on ALOI [27]
and UEA [16], we consider a color quantization with 256 bins. As well as in the
case of color correction, a coarser quantization produces worse results [35] in image
retrieval.

4.4.1 ALOI

Each set of images captured under an illuminant with voltage Vj have been matched
against each set of images captured under another illuminant with voltage Vk , k �= j .
The resulting AMP is shown in Fig. 9: in all the cases, the AMP is very high (0.9999
on average). The worst AMP has been obtained for the images taken under the lamps
with voltage 140 × 0.047V: in fact, these pictures contain a high percentage of
saturated pixels and, as highlighted in Sect. 4.2.1, the accuracy on the von Kries map
estimate is lower than in the other cases.

4.4.2 UEA Dataset

We use UEA Dataset to measure how the accuracy of the illuminant invariant image
retrieval algorithm changes across (1) illuminant and device variations; (2) illuminant
variations; and (3) device variations. The results have been also compared with the
techniques described in [13].
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Table 4 UEA dataset: AMP by varying the cameras and the illuminants by using the method in
[35]

Cam. 1 Cam. 2 Cam. 3 Cam. 4

Cam. 1 0.9903 0.9830 0.9320 0.9725
Cam. 2 0.9784 0.9517 0.9178 0.9580
Cam. 3 0.8391 0.8363 0.9985 0.8727
Cam. 4 0.9688 0.9483 0.9606 0.9938

Results across Illuminant and Device Variation—For each pair (c, σ ) of camera
c and illuminant σ we take the images captured by c under σ as references and we
match them with the images captured by a camera c∗ under an illuminant σ ∗. We
repeat the experiments by varying all the cameras and the illuminants. When (c, σ )

and (c∗, σ ∗) coincide, we do not make any comparison, because in this case the
references coincide with the tests. Table4 reports the AMP averaged with respect the
illuminants and the cameras.

Results across Illuminant Variation—Table5 shows the AMP obtained by com-
paring images taken by the same camera under different illuminants. In these exper-
iments, we fix a pair (c, σ ), we take the images captured by c under σ as references
and we match them with the images captured by c under an illuminant σ ∗ different
from σ .

In Table6 these AMP’s are broken down by illuminants and compared with the
AMP’s output by using the histogram equalization method (HE) and the GrayWorld
color balancing (GW), both described in [13]. The same results are broken down by
camera in Table7.

Table 5 UEAdataset—AMP for the four cameras and for the three illuminants (taken as references)

Camera Ill A Ill D65 Ill TL84 Mean AMP

1 0.9914 0.9848 0.9947 0.9903
2 0.9405 0.9550 0.9597 0.9517
3 0.9967 0.9987 1.0000 0.9985
4 0.9914 0.9921 0.9980 0.9938

The fifth column shows for each camera the AMP index averaged on the illuminants

Table 6 UEA dataset—AMP broken down by illuminant

Method Ill A Ill D65 Ill TL84 Mean AMP

GW [13] 0.9008 0.9528 0.9653 0.9396
HE [13] 0.9525 0.9823 0.9873 0.9672
Method [35] 0.9800 0.9827 0.9881 0.9836

For instance the column Ill A reports the AMP averaged over the cameras when the illuminant Ill
A is chosen as reference. In row “Method [35]” the AMP’s are the mean values of the columns of
Table5
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Table 7 UEA dataset—AMP broken down by camera

Method Camera 1 Camera 2 Camera 3 Camera 4 Mean AMP

GW [13] 0.9623 0.8159 0.9912 0.9890 0.9386
HE [13] 0.9925 0.9235 0.9691 0.9837 0.9672
Method [35] 0.9903 0.9517 0.9985 0.9938 0.9836

For instance the column ’Camera 1’ reports the AMP averaged over the three illuminants when
images captured by the same camera are matched. The values in the row “Method [35]” are those
already reported in the last column of Table5

Table 8 UEA dataset—AMP across a change of device

Method Camera 1 Camera 2 Camera 3 Camera 4 Mean AMP

GW [13] 0.9581 0.8992 0.9367 0.9750 0.9423
HE [13] 0.9816 0.9234 0.9362 0.9899 0.9578
Method [35] 0.9810 0.9652 0.8769 0.9586 0.9454

The images acquired with one camera under a fixed light are used as references, while the images
captured under the same light by the other cameras are used as test images. ThemeanAMP averaged
on the cameras is reported in the last column

Results across Device Variation—Table8 shows the AMP’s for GW, HE, and for
themethod in [35] across a change of device: the images acquired by a camera c under
a fixed illuminant σ are used as references, and matched with the images acquired
by the other cameras under σ . The values reported in Table8 are averaged over the
reference illuminants. The results obtained by the approach in [35] are better than
those achieved by GW and HE just for Camera 1 and Camera 2. For Camera 3 and
Camera 4 HE performs better. On average, the results of our approach are very close
to those output by GW, while HE outputs a higher AMP. More detailed results are
reported in Table9.

We note that when the illuminant changes, but the device is fixed, the method
proposed in [35] outperforms GW and HE. On the contrary, HE provides better
results than the approach in [35] and GW when the camera varies. This is because
the von Kries model poorly describes a change of camera. In Sect. 3 we discussed a
possiblemathematicalmodel for approximating a device variation, based on a change
of the γ factor. However, this approximation does not take into account a possible
shift of the wavelength at which a sensor maximally responds, resulting in a too
coarse approximation of the variation of the sensitivity functions. On the contrary,
HE does not consider any model for approximating the illuminant change, but it
defines a new image representation that is illuminant- and (in many cases) device-
independent. The main idea of HE relies on the following observation, empirically
proved in [13] across a wide range of illuminant and devices: while changing the
illuminant and the recording device leads to significant color variations, the rank
orderings of the color responses is in general preserved. The desired invariant image
description is hence obtained by a histogram equalization method that takes into
account the rank ordering constancy. However, the gap between the results provided
by [35] and HE is small.
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Table 9 UEA dataset—AMP across a change of device and illuminant when the von Kries model
is used

Cam. 1 Ill A Ill D65 Ill TL84 Cam. 2 Ill A Ill D65 Ill TL84
Cam. 1 Cam. 1

Ill A 1.0000 0.9868 0.9960 Ill A 0.9947 0.9735 0.9868
Ill D65 0.9723 1.0000 0.9974 Ill D65 0.9458 1.0000 0.9960
Ill TL84 0.9947 0.9947 1.0000 Ill TL84 0.9723 0.9788 0.9987

Cam. 1 Ill A Ill D65 Ill TL84 Cam. 1 Ill A Ill D65 Ill TL84
Cam. 3 Cam. 4

Ill A 0.9206 0.9497 0.9286 Ill A 0.9788 0.9431 0.9484
Ill D65 0.9101 0.9577 0.9445 Ill D65 0.9894 0.9934 0.9828
Ill TL84 0.9008 0.9445 0.9312 Ill TL84 0.9775 0.9683 0.9709

Cam. 2 Ill A Ill D65 Ill TL84 Cam. 2 Ill A Ill D65 Ill TL84
Cam. 1 Cam. 2

Ill A 0.9828 0.9431 0.9616 Ill A 1.0000 0.9286 0.9524
Ill D65 0.9577 0.9987 0.9854 Ill D65 0.9101 1.0000 1.0000
Ill TL84 0.9828 0.9934 1.0000 Ill TL84 0.9193 1.0000 1.0000

Cam. 2 Ill A Ill D65 Ill TL84 Cam. 2 Ill A Ill D65 Ill TL84
Cam. 3 Cam. 4

Ill A 0.8297 0.8796 0.8664 Ill A 0.9140 0.8929 0.8915
Ill D65 0.9325 0.9537 0.9471 Ill D65 0.9828 0.9921 0.9696
Ill TL84 0.9352 0.9550 0.9616 Ill TL84 0.9974 0.9921 0.9894

Cam. 3 Ill A Ill D65 Ill TL84 Cam. 3 Ill A Ill D65 Ill TL84
Cam. 1 Cam. 2

Ill A 0.8320 0.8651 0.8505 Ill A 0.8003 0.8638 0.8783
Ill D65 0.8214 0.8942 0.8651 Ill D65 0.8095 0.8612 0.8704
Ill TL84 0.7500 0.8334 0.8399 Ill TL84 0.7593 0.8241 0.8598

Cam. 3 Ill A Ill D65 Ill TL84 Cam. 3 Ill A Ill D65 Ill TL84
Cam. 3 Cam. 4

Ill A 1.0000 0.9960 0.9974 Ill A 0.8796 0.8704 0.8730
Ill D65 0.9987 1.0000 0.9987 Ill D65 0.8928 0.8769 0.8796
Ill TL84 1.0000 1.0000 1.0000 Ill TL84 0.8505 0.8558 0.8743

Cam. 4 Ill A Ill D65 Ill TL84 Cam. 4 Ill A Ill D65 Ill TL84
Cam. 1 Cam. 2

Ill A 0.9696 0.9828 0.9934 Ill A 0.8690 0.9921 0.9974
Ill D65 0.9259 0.9788 0.9894 Ill D65 0.8638 0.9921 0.9947
Ill TL84 0.9272 0.9643 0.9881 Ill TL84 0.8466 0.9828 0.9960

Cam. 4 Ill A Ill D65 Ill TL84 Cam. 4 Ill A Ill D65 Ill TL84
Cam. 3 Cam. 4

Ill A 0.9259 0.9683 0.9445 Ill A 1.0000 0.9894 0.9934
Ill D65 0.9537 0.9775 0.9749 Ill D65 0.9868 1.0000 0.9974
Ill TL84 0.9577 0.9709 0.9723 Ill TL84 0.9974 0.9987 1.0000

“Cam.” stands for “Camera”
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5 von Kries Model: Dependence on Light

In this Section, we analyze the dependence of the von Kries coefficients on the
physical cues of the varied lights (i.e. color temperature and intensity). According to
the work [37] result is obtained from an empirical analysis of pictures imaged under
Planck’s lights, i.e. illuminants satisfying Planck’s law. As pointed out in Sect. 1, this
assumption does not compromise the generality of the presented results, because
many lights fulfill Planck’s law.

The empirical analysis proposed in [37] lead us to two main results: (i) we verify
that the von Kries map well approximates a change of colors due to a change of
Planck’s light; (ii) Planck’s law constraints the 3D points whose components are
the von Kries coefficients, to lye on a ruled surface, called von Kries surface and
parametrized by the physical properties of the light. The approximated equation of
the von Kries surface, we derive following [37], reveals the relationship of the von
Kries coefficients with the color temperature and intensity of the illuminants.

In Sect. 5.1, we describe Planck’s law and the Bradford transform, that is com-
monly used tomodel a color change due to a Planck’s illuminant variation. In Sect. 5.2
we discuss the result (i), where—differently from [37]—the von Kries approxima-
tions have been computed by the method in [35]. In Sect. 5.3 we illustrate the result
(ii), and finally in Sect. 5.4 we explain how the von Kries surfaces can be used for
estimating the color temperature and intensity illuminant of an image.

5.1 Planck’s Lights and Bradford Transform

A Planck’s illuminant is a light satisfying Planck’s law, i.e. its spectral power distri-
bution is analytically expressed by the following formula:

E(λ, T, I ) = Jc1λ
−5

(
e

c2
T λ − 1

)−1
. (24)

In Eq. (24), variables λ, J and T denote respectively the wavelength, the intensity
and the color temperature of the illuminant. The terms c1 and c2 are constants (c1 =
3.74183 · 10−16Wm2 and c2 = 1.4388 · 10−2 Km, with W = Watt, m = meter, K =
Degree Kelvin).

The intensity J describes the illuminant brightness, while the color temperature
measures the illuminant hue in Degrees Kelvin. For instance, the sun light at sunrise
or at sunset has a color temperature between 2000 and 3000K, while the color
temperature of a candle flame ranges over [1850, 1930]K.

Usually, the color of a Planck’s light is codified as the 2D vector of its chro-
maticities in the CIE XYZ color space. The chromaticities of the most Planck’s
illuminants have been tabulated empirically [30, 31], and approximated formulas
are also available [43].
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The Bradford transform [32, 57] is commonly used to model a color change due
to a variation of two Planck’s illuminants σ and σ ′. This transform relates the XYZ
coordinates [X, Y, Z ] and [X ′, Y ′, Z ′] of the responses p and p′ by the linear map

[X ′, Y ′, Z ′]T = M DM−1[X, Y, Z ]T , (25)

where M is the Bradford matrix and D is a diagonal matrix encoding the relationship
between the colorimetric properties (color temperatures and intensities) of σ and σ ′.

Bradfordmatrix has been obtained empirically fromLam’s experiments described
in [32]:

M =
⎡
⎣ 0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367
0.0389 −0.0685 1.0296

⎤
⎦ and D = Yσ

Yσ ′

⎡
⎢⎣

xσ

yσ

yσ ′
xσ ′ 0 0

0 1 0
0 0 1−xσ −yσ

yσ

yσ ′
1−xσ ′−yσ ′

⎤
⎥⎦

where [xσ , yσ ] and [xσ ′ , yσ ′ ] are the chromaticities of the color temperatures of σ

and σ ′ respectively. Yσ and Yσ ′ are the Y coordinates of the white reference of the
illuminants σ and σ ′ respectively.

In the RGB space, the Bradford transform at an image pixel x can be re-written
as follows:

p′T (x) = C M DM−1C−1pT (x) := BpT (x), (26)

where C is the 3×3 matrix mapping the XYZ coordinates into the RGB coordinates
and B := C M DM−1C−1.

5.2 von Kries Approximation of a Bradford Transform

The illuminants of the images in the databases Outex and UEA are Planck’s lights.
Therefore, the color variation relating correspondent pixels of re-illuminated images
of these test sets can be expressed by the Eq. (26).

According to [17], the experiments reported inSect. 4.2 onOutex andUEADataset
showed that the von Kries model provides a good approximation of these illuminant
changes, being the accuracy on the color correction very high. Therefore, the matrix
B in Eq. (26) and the diagonal matrix K = diag(α0, α1, α2) representing the von
Kries approximation of the Bradford transform described by B must be similar. We
quantify the similarity between K and B on a synthetic dataset, as proposed in [37].

Our synthetic database is built up by re-illuminating the images of Outex by a
set T of Bradford transforms. More precisely, for each illuminant σ of the database
(i.e. σ = INCA, TL84, HORIZON), we considered 36 Bradford transforms, each
mapping σ onto a Planck’s illuminant with color temperature Tσ ′ = 2500 + t500K
(and t = 0, . . . , 8) and intensity Jσ ′ = (0.5 + i0.5)Jσ (and i = 0, . . . , 3). Since
for the database Outex there are no information about the intensity Jσ of the source
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illuminants σ , the Bradford transforms of T simply rescales Jσ by the parameters
0.5, 1.0, 1.5, 2.0.

We re-illuminated each image I of Outex by the Bradford transforms of T , then
for each re-lighted version I ′ of I , we estimate the von Kries map approximating
the correspondent Planck’s change ofT , and finally we correct the colors of I ′ onto
the colors of I . Analogously to the results obtained in Sect. 4.2, the accuracy of the
color correction on this synthetic database is very high: in fact, the mean values of
A0 and A are 0.78423 and 0.97770 respectively.

These results imply that the matrix B and K are quite similar, i.e.

B := C M DM−1C−1 	 K . (27)

If C M DM−1C−1 = K , then K and D represent the same endomorphism over the
RGB color space with respect to two different bases of R3. However, since the von
Kries model is just an approximation of a color variation, the equality B = K is
never satisfied.

In this Chapter, we measure the difference between B and K by the Hilbert–
Schmidt inner product between matrices, defined as

〈K , B〉 :=
∑

i

〈K ei , Bei 〉,

where {ei }i=0,1,2 is the standard canonical basis forR3. It is easy to verify that 〈K , B〉
is the trace of the matrix product K · B. We normalize the Hilbert–Schmidt inner
product as follows:

〈K , B〉norm = 〈K , B〉[∑
i, j K 2

i j

∑
i j B2

i j

]0.5 (28)

where Ki j and Bi j indicate the element i j of K and B respectively. Thus 〈K , B〉norm

ranges over [-1, 1]. The closer the module of the Hilbert–Schmidt distance (28) is to
1, more accurate the approximation represented by the diagonal matrix K is.

For the synthetic database considered here, theHilbert–Schmidt distance averaged
on the number of Bradford transforms is 0.9587. This value shows that the matrices
B and K are really close to each other.

In [37], the authors model the non-perfect equality of the matrices K and B by
the Equation

K = H B (29)

where H is a 3×3 non singular matrix. As matter as fact, H is really close to the
identity matrix: in the synthetic experiments presented here, the mean values of the
diagonal elements is 0.92, while that of the non diagonal entries is about 0.02.We also
notice that in our synthetic test we do not control the pixel saturation phenomenon,



122 M. Lecca

that some Bradford transforms ofT may generate, especially when the gap of color
temperature and the intensity scale factor are greater than 3000Kand 1.5 respectively.

5.3 von Kries Surface

According to [37], the experiments reported in Sect. 5.2 show that, for a fixed camera,
the coefficients of a von Kries approximation of a change of Planck’s illuminants are
not independent to each other, but they belong to a ruled surface, parametrized by the
color temperature and intensity of the varied lights. This surface is named von Kries
surface, and its mathematical equation puts on evidence the relationship between the
von Kries coefficients and the photometric cues of the light (see Fig. 10). Moreover,
in order to understand how the von Kries coefficients vary across the devices, we
considered the pairs of images from UEA dataset captured by different cameras,
but related by the same Planck’s illuminant variation. As in [37], we discovered
that different devices produce different von Kries surfaces. Therefore the von Kries
surfaces can be used to characterize a device.

Let us give some mathematical details to prime the mathematical equation of a
von Kries surface.

Let σ and σ ′ be two Planck’s lights, having respectively intensities Jσ and Jσ ′ ,
and color temperatures Tσ and Tσ ′ . Let τ be the Planck illuminant change mapping
σ onto σ ′ and let K be its von Kries approximation. In particular, we have that τ

maps Tσ onto Tσ ′ and Jσ onto Jσ ′ .
The von Kries surface relative to σ is defined by the following Equations:

αi = αi (Tσ ′ , Jσ ′), i = 0, 1, 2 (30)

where the αi ’s are the von Kries coefficients of K .

Fig. 10 Synthetic database
(from Outex): von Kries
surface for the illuminant
INCA. The color temperature
ranges over [2500, 6500K],
the intensity has been rescaled
by 0.5, 1.0, 1.5, 2.0. The plot
shows that the von Kries coef-
ficients are non independent
to each other
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By combining Eqs. (26) and (29), we get αi = Yσ

Yσ ′ α
∗
i (Tσ ′), for all i = 0, 1, 2,

whereα∗
0 ,α

∗
1 andα∗

2 define the vonKries approximation of the transform τ ∗ thatmaps
the color temperature Tσ onto the color temperature Tσ ′ , while leaves unchanged the
light intensity Jσ . By observing that Yσ

Yσ ′ = Jσ

Jσ ′ , we have that

αi = Jσ

Jσ ′
α∗

i (Tσ ′). (31)

From the Eq. (29), we have that

α∗
i (Tσ ′) =

2∑
j=0

hi j b
∗
j i (Tσ ′), i = 0, 1, 2 (32)

where hi j is the i j-th element of H and b∗
j i is the i j-th element of the matrix B∗

associated to the linear transform τ ∗. Therefore we have that

αi (Jσ ′ , Tσ ′) = Jσ

Jσ ′

2∑
j=0

hi j b
∗
i i (Tσ ′). (33)

Equation (33) makes evident the relationship between the von Kries coefficients
and the photometric cues of the illuminants σ and σ ′. Equation (33) describes a ruled
surface depending on the intensity and on the color temperature of σ ′. Varying dis-
cretely the intensity and the color temperature of the source illuminant σ produces
a sheaves of such surfaces. Therefore, each illuminant σ defines a von Kries surface
S , that is completely determinedby theEquationα∗(T ′

σ )= (α∗
0(T

′
σ ), α∗

1(T
′
σ ), α∗

2(T
′
σ )),

as each point on S is a rescaled version of a point onto α∗(T ′
σ ). As a consequence,

a set of Bradford transforms changing σ to another Planck’s light with different color
temperature suffice to estimate the von Kries surface relative to σ , while changes of
intensity are not needed.

As output from our experiments, since the von Kries coefficients depend on the
device, the von Kries surface relative to any illuminant σ differs from device to
device.

5.4 An Application: Estimating Color Temperature and Intensity
from a von Kries Surface

Here we briefly discuss how the von Kries surfaces can be used to the estimate of
the color temperature and the intensity of an illuminant. This estimation is a crucial
task for many imaging applications, as for instance [46, 51].

Let σ be a Planck’s illuminant with known color temperature Tσ and intensity Jσ .
LetS the vonKries surface of a camera c with respect to the source illuminant σ . Let
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I and I ′ two pictures depicting the same scene captured by c under the illuminants
σ and σ ′ respectively, where σ ′ is supposed to be Planckian.

We determine the color temperature Tσ ′ and the intensity Jσ ′ of σ ′ from the von
Kries surfaceS as follows. First, we estimate the vonKries coefficients β0, β1, β2 of
the von Kries map relating I and I ′. Then, we compute the triplet (α0, α1, α2) on the
von Kries map having the minimum Euclidean distance from (β0, β1, β2). Finally,
we compute the color temperature and intensity correspondent to (α0, α1, α2) as the
actual color temperature and intensity of σ ′.

Here we report the case study presented in [37], where the authors considered
the image pairs (I, I ′), with I being an Outex picture imaged under TL84, and with
I ′ being the same picture captured under INCA or HORIZON. Figures11a, b show
the von Kries surface S relative to TL84. The coefficients of the von Kries map
transforming (a) TL84 onto INCA and (b) TL84 onto HORIZON respectively are
displayed over the von Kries surface in green: these estimates determine a range of
color temperatures and intensities. The color temperature of INCAweestimate ranges
over [3000, 4000]K, but the 70% about of the estimates are closer to 3000K than to
4000K. The variability range of the estimates of the color temperature of HORIZON
is [2000, 4000]K, with the most part of the data (about the 90%) in [2000, 3000K].
Similarly, the estimated von Kries coefficients determine a variability range for the
intensity, with the 99% of the estimates between 1.0 and 1.25 for INCA and between
0.75 and 1.0 for HORIZON.

The accuracy on these estimates is close to the actual value of the color temper-
atures and intensities of INCA and HORIZON, but it could be further refined by
considering a finer grid of color temperatures in the computation of the von Kries
surface and by restricting the search for the triplet minimizing the Euclidean distance
with the surface to the ranges found before. Nevertheless, in general, obtaining an
accurate estimate of these photometric parameters is a hard problem [51], also when
calibrated images are used [22].

6 von Kries Model: Dependence on Device

In Sect. 5, we observed that von Kries surfaces can be used to characterize a sensor,
but their equation does not reveal the relationships of the von Kries coefficients with
the camera photometric cues. This dependence has been investigated in the work
in [36], that we describe in this Section.

Wien’s law holds for Planck’s lights with color temperature varying over [2000,
10500]K, and their spectral power distribution is approximated by Wien’s law. Fol-
lowing the work in [36], we combine the Wien’s law with the von Kries model
(Sect. 6.1), and we show that—as well as for Planck’s lights—the coefficients of
the von Kries approximation of a change of Wien’s illuminants are not independent
to each other (Sect. 6.2). Then we derive a mathematical equation linking the von
Kries coefficients to the spectral sensitivities of the device. Since spectral sensitiv-
ities are often not reported in the technical manuals of the most cameras, and their
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Fig. 11 Outex: estimates of the color temperature and of the intensity for the illuminants a INCA
and b HORIZON by using the von Kries surface with respect to TL84. Adapted from [37]

estimation requires that the camera and an image calibration target are available,
this equation proposes an alternative way to estimate these data. In fact, it allows to
recover the sensor spectral cues directly from the parameters of a Wien’s illuminant
variation, and thus to characterize a camera from a set of image pairs depicting the



126 M. Lecca

same scene and related by a light change (Sect. 6.3). This von Kries model based
camera characterization applies to the work in [19], where an illuminant invariant
image representation, which requires to known the camera spectral sensitivities is
calculated (Sect. 6.4).

6.1 von Kries Model under Wien’s Law

Wien’s law is a special case of Planck’s law: it holds for Planck’s light whose color
temperature ranges over [2000, 10500]K. In this interval, e− c2

T λ 	 (e
c2
T λ − 1)−1, so

that the spectral power distribution of a Wien’s light is

E(λ, T, I ) = Jc1λ
−5e− c2

T λ . (34)

Variables λ, J and T , and the constant terms c1 and c2 has the same meaning
described in Sect. 5.1 for Eq. (24). Daylight, direct sunlight, candle lights and many
fluorescent lights satisfy Wien’s law in Eq. (34).

Similarly to the case of Planck’s lights, any change of Wien’s illuminant can be
described by the Bradford transform in Eq. (25), that is well approximated by the von
Kries model. In Sect. 5.2, we show that the accuracy on color correction provided by
themethod in [35] for Planck’s illuminants is very high: the same holds for variations
of Wien’s lights. Further tests can be found in [36].

Themathematical expression of the spectral power distribution of aWien’s illumi-
nant allows to recover an interesting relationship between the von Kries coefficients
and the photometric properties of the camera used for the image acquisition. Here
we describe the mathematical study presented in [36].

Without loss of generality, we assume that the camera is narrow-band. Therefore,
by Eq. (34) we have that

pi (x) = E(λi )S(λi , x)F(λi ) = Jc1λ
−5
i e

− c2
T λi S(λi , x)Fi .

Let us now consider the chromaticities at an image pixel x , i.e. the ratios pk (x)
pi (x)

for
any k �= i , k, i = 0, 1, 2, and pi (x) �= 0. We have that

pk(x)

pi (x)
=

( λi

λk

)5 Fk S(λk, x)

Fi S(λi , x)
e
− c2

T

(
1
λk

− 1
λi

)

and thus for each pk(x) �= 0

log
pk(x)

pi (x)
= log

[( λi

λk

)5 Fk S(λk, x)

Fi S(λi , x)

]
− c2

T

( 1

λk
− 1

λi

)
. (35)
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By Eq. (35), the log-chromaticity log pk (x)
pi (x)

is expressed as the sum of two terms:
the first one depends just on the reflectance function and on some properties of the
camera, while the second one depends just on the color temperatures T and T ′, and
on the wavelength λk and λ j at which the kth and the i th sensors maximally respond.
If p′(x) is the response of the same camera at a pixel x under a different Wien’s
illuminant with color temperature T ′, we have that

log
pk(x)

pi (x)
− log

p′
k(x)

p′
i (x)

= c2
( 1

T
− 1

T ′
)( 1

λk
− 1

λi

)
. (36)

By the von Kries model, pk(x) = αk p′
k(x) (k = 0, 1, 2), and thus

[
log

αk

αi
, log

α j

αi

]
= c2

(
1

T
− 1

T ′

)[
1

λk
− 1

λi
,
1

λ j
− 1

λi

]
. (37)

Equation (37) leads us to two main issues, that we discuss in the next Subsections.

6.2 von Kries Coefficients are Constrained by Wien’s Law

As for Planck’s lights, the coefficients of a von Kries map approximating a Wien’s
illuminant change are not independent to each other. More precisely, from Eq. (37)
we get the following Equations:

⎧⎪⎨
⎪⎩

αk = e
c2

(
1
T − 1

T ′
)(

1
λk

− 1
λi

)
αi

α j = e
c2

(
1
T − 1

T ′
)(

1
λ j

− 1
λi

)
αi

(38)

Equation (38) show that the von Kries coefficients αk and α j are linearly propor-
tional to αi through a constant that depends on the camera photometric cues and on
the color temperatures of the varied illuminants.

Moreover, we observe that when the source and target illuminants have the same
color temperature, i.e. T = T ′, thenαk = αi = α j . Of course, the left termofEq. (37)
is zero. This implies that the illuminant variation is just an intensity variation, and
the von Kries coefficients correspond to the scale factors between the intensities of
the source and target lights.

The linear dependency between the von Kries coefficients expressed by Eq. (38)
is generally not perfectly satisfied in the real-world use cases, i.e. the ratios αk

αi
and

αk
α j

are not constant. This is due to two main reasons. First of all, the images are
affected by noise, as for instance pixel saturation. Secondly, the Dirac delta is just a
rough approximation of the spectral sensitivities of a camera.



128 M. Lecca

6.3 Device Characterization Through von Kries Maps

Equation (37) states that the von Kries log-chromaticity vector α and the camera
sensitivity vector λ

α :=
[
log

αk

αi
, log

α j

αi

]
λ :=

[ 1

λk
− 1

λi
,
1

λ j
− 1

λi

]

are parallel. Following [36], we observe that the versor

u := α

‖ α ‖ (39)

and the vector λ defines the same line in R2, because

u = ± λ

‖ λ ‖ (40)

Versor u does not depend on the physical properties of the light (i.e. intensity and
color temperature), apart from its sign that is determined by the ratio

1
T − 1

T ′∣∣∣ 1T − 1
T ′

∣∣∣
.

The versors u and λ

‖λ‖ can be expressed as

u = (cos θ, sin θ) and
λ

‖ λ ‖ = (cos θ∗, sin θ∗) (41)

where θ and θ∗ are respectively the angle between u and the x-axis and the angle
between λ and the x-axis.

From Eq. (40), we have that

θ = θ∗ + nπ, n ∈ Z, (42)

i.e. knowing the von Kries map that approximates a change of Wien’s illuminants
allows to recover the parameter θ∗ that describes a photometric characteristic of the
acquisition device.

The variations of Planck’s lights has been used in Sect. 5.3 to characterize a device
through its von Kries surfaces. Here the approximation of the variations of Wien’s
illuminants with the von Kries model allows to characterize the camera through an
estimate θ of the parameters θ∗. Different devices can have different values of θ∗ and,
according to this fact, for anyfixed illuminant change τ , the vonKries approximations
of τ produced by these devices can differ to each other. However, we remark that the
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estimate in Eq. (42) differs from the actual value of θ∗ by nπ , where n is an integer
number.

We observe that generally θ∗ �= nπ for any n in Z. In fact, if θ∗ = nπ , θ∗ should
be parallel to the x-axis, and consequently we should have a camera with λ j = λk ,
that in practice does not happen for RGB devices. Analogously, we exclude the case
θ∗ = 0.5π + nπ , that implies λk = λi .

As pointed out in Sect. 6.2, for intensity changes the vector α is null and thus such
light variations are inadequate to estimate θ∗. For the same reason, slight changes of
color temperature are also inappropriate. A general recommendation to get a reliable
estimate, is to consider illuminant changes where at least one of the components of
α is out of the range (0.90, 1.10) [36].

In principle, the estimate of u can be done alsowhen a single image I and the color
temperature T of the illuminant under which it has been taken are known. Namely,
in this case, we synthetically generate a second image I ′ by re-illuminating I with
a Bradford transform that changes T and then estimate the vector α. Nevertheless,
due to the presence of many sources of noise like a large number of saturated pixels
and/or high percentages of black pixels, it is recommendable to consider a set of
images and then estimate α by a statistical analysis of the data.

Asmatter as fact, since theDirac delta are just a poor approximation of the spectral
sensitivities of a camera, and since the images are often affected by noise (e.g. pixel
saturation), the estimation of the angle θ∗ from the von Kries coefficients is generally
intractable. What is feasible is to estimate a variability range of θ∗, as shown in the
experiments on the databases Outex [45] and FUNT1998 [24], illustrated in the next
Subsections.

6.3.1 Outex

Here we consider the dataset Outex [45]. In particular, we estimate θ∗ from the
image pairs related by the following three illuminant changes: (a) from INCA to
HORIZON; (b) from INCA to TL84; (c) from TL84 to HORIZON. The distributions
of the estimates θ are displayed in Fig. 12: they show a peak close to their mean
values, with a standard deviation equal to 0.22 (about 10◦). The mean values of u
are reported in Table10.

6.3.2 FUNT1998

In this Section we describe the experiments carried out on the database [24] used in
[36]. Here we refer to this database as FUNT1998.

The dataset FUNT1998 [24] contains 55 images of 11 objects taken under
5 different Wien’s illuminants and the spectral sensitivities of the camera used
for image acquisition (a Sony DXC-930) are available and displayed in Fig. 1. By
approximating each spectral sensitivity with a Dirac delta centered in the wave-
length at which the sensitivity is maximum, the direction of λ is θ∗ = −0.9675 rad.
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Fig. 12 Real-world experiments: distributions of the direction u

Table 10 Outex: versors u for three illuminant changes

Illuminant change u

From INCA to HORIZON (0.5974; −0.8019)
From INCA to TL84 (0.8183; −0.5747)
From TL84 to HORIZON (0.7306; −0.6828)

Adapted from [36]

We compare this value with that output by the von Kries based estimation described
before.

First of all, we consider the illuminant variation relating the image pairs taken
under the following illuminant pairs: (halogen, syl-cwf), (halogen, mb-5000), (halo-
gen, mb-5000+3202) and (halogen, ph-ulm). For each transform τ interrelating two
illuminants, we compute the versor u from the von Kries approximation of τ . The
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Table 11 FUNT1998: estimates of the von Kries coefficients for different illuminant pairs

Illuminant Change α0 α1 α2

from halogen to

mb-5000 (2.274 ± 0.231) (1.259 ± 0.129) (0.651 ± 0.268)
mb-5000+3202 (5.427 ± 1.099) (1.939 ± 0.329) (0.509 ± 0.081)
ph-ulm (1.196 ± 0.233) (0.952 ± 0.184) (0.931 ± 0.181)
syl-cwf (1.379 ± 0.223) (1.064 ± 0.165) (0.607 ± 0.165)

Adapted from [36]

Table 12 FUNT1998: estimates of the direction of λ

Illuminant change from halogen to θ ± 
θ

mb-5000 −0.8427 ± 0.0668
mb-5000+3202 −0.9184 ± 0.0589
syl-cwf −1.1355 ± 0.1099

Adapted from [36]

mean values of the von Kries coefficients (averaged on the number of image pairs)
along with their standard deviations as error are displayed in Table11.

On FUNT1998, the error on the estimate of the vonKries coefficients is quite high.
Nevertheless, the accuracy on the color correction is good:whenno color correction is
performed, the mean accuracy A0 is about 0.9682, while A is 0.9884. Since the color
change from halogen to ph-ulm is close to the identity map, it cannot be employed to
estimate θ∗, because the log-chromaticities are null. Consequently, we just consider
the illuminants syl-cwf, mb-5000 and mb-5000+3202. The estimates of θ∗ are listed
in Table 12: the value of θ is the mean value of the estimates of u averaged over the
11 image pairs of FUNT1998, and the error is the standard deviation of the estimates
from their mean value. The mean value of θ across the changes of illuminants is
−0.9655 ± 0.1487 rad.

6.4 An Application: Intrinsic Image Computation

In this Section, we explain how the estimate of θ∗ has been used in [36] to obtain
the illuminant invariant image representation proposed in [19]. This intrinsic image
is computed in [19] by observing that the log-chromaticity vector

χ(x) =
[
log

pk(x)

pi (x)
, log

p j (x)

pi (x)

]
(43)

belongs to a line with direction

λ =
[ 1

λk
− 1

λi
,
1

λ j
− 1

λi

]
. (44)



132 M. Lecca

Let λ⊥ be the 2D vector orthogonal to λ. The intrinsic image of [19] is obtained
by projecting the vector χ(x) onto λ, for each pixel x of the input color picture.
The intrinsic image (that is a one-channel image) is invariant to changes of Wien’s
illuminants. In fact, for each x

〈χ(x), λ⊥〉 = log
[( λi

λk

)5 Fk S(λk, x)

Fi S(λi , x)

]( 1

λk
− 1

λi

)

+ log
[( λi

λ j

)5 Fj S(λ j , x)

Fi S(λi , x)

]( 1

λ j
− 1

λi

)

and this value does not depend on the illuminant.
Unfortunately, the value of λ is generally unknown, because often the technical

manuals of the most cameras do not report this information. When the camera or an
image of a calibration target are available [12], the estimation of the camera sensitivity
function is straightforward. However, in many applications, as for instance retrieving
from the net pictures that are visually similar to an example, there are no information
about the acquisition devices.

In order to overcome this lack, the work in [36] observes that the 2D versor u is
parallel to λ and the scalar product 〈α⊥, χ(x)〉 is also invariant to variation ofWien’s
illuminants for each pixel x . To avoid possible ambiguities due to the sign of u, the
authors of [36] define a canonical orientation, for instance we require—as suggested
above—that the basis {uτ , (uτ )⊥} for R2 is positively oriented.

6.4.1 Quasi-Intrinsic Image: Tests

Versor u differs from λ for the module and for the sign. According to [36], we
call quasi-intrinsic image the illuminant invariant image representation obtained by
using u instead of λ to distinguish it from the intrinsic image of the work [19].
Thus, the quasi-intrinsic image differs from that proposed in [15] by a multiplicative
factor. As the intrinsic image, quasi-intrinsic images of pictures related by a Wien’s
illuminant change are equal. Here we report the empirical analysis carried out in
[36] to show that two quasi-intrinsic images computed from two images of the same
scene captured under different Wien’s lights are similar. Similarity between two
quasi-intrinsic images is defined as the L1 distance between their values.

Table 13 reports the similarity measures for the database Outex. The values are
averaged across the number of images and normalized to range over [0, 1]. Since the
estimates of u of Table 10 are very close to each other, we obtained similar distances
for all the cases.
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Table 13 Outex: the first column reports three illuminant changes; for each of them, the second col-
umn reports the mean L1 RGB distances dRG B between the re-illuminated images; the third, fourth,
and fifth columns report themean L1 distances dqi between the quasi-intrinsic images, computed by
using three different estimates of u⊥: (a) u⊥ = (0.5747,−0.8183), (b) u⊥ = (0.8019; −0.5974),
(c) u⊥ = (0.6828; −0.7306)

Illuminant change dRG B dqi (a) dqi (b) dqi (c)

From INCA to HORIZON 0.0534 0.0113 0.0108 0.0112
From INCA to TL84 0.0551 0.0131 0.0145 0.0143
From HORIZON to TL84 0.0928 0.0248 0.0251 0.0252

7 Conclusions

This Chapter investigated the von Kries model, that is commonly used to approxi-
mate the color change occurring between two images depicting the same scene, but
captured under different lights. Three main issues, recently published in [35–37],
have been addressed: estimation of the parameters of the von Kries model, and two
theoretical studies, that reveals the dependency of the von Kries coefficients on the
physical properties of the light and on the photometric cues of the camera. These
results have been discussed in details, and many applications have been proposed.
The experiments reported in the Chapter have been carried out on synthetic and real-
world databases, all freely available, in order to allow the reproducibility and the
verification of the results, and further comparisons with other approaches.
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