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Abstract Face detection has been considered as one of the most active areas of
research due to its wide range of applications in computer vision and digital image
processing technology. In order to build a robust face detection system, several cues,
such as motion, shape, color, and texture have been considered. Among available
cues, color is one of the most effective ones due to its computational efficiency,
high discriminative power, as well as robustness against geometrical transform. This
chapter investigates the role of skin color cue in automatic face detection systems.
General overview of existing face detection techniques and skin pixel classifica-
tion solutions are provided. Further, illumination adaptation strategies for skin color
detection are discussed to overcome the sensitivity of skin color analysis against illu-
mination variation. Finally, two case studies are presented to provide more realistic
view of contribution of skin color cue in face detection frameworks.

1 Introduction

Face detection refers to a task of processing image/videodata in order to determine the
position/scale of any faces in them [31]. With recent advancement in digital imaging
devices and multimedia technologies, face detection has received a significant deal
of attention from the research communities due to its wide range of applications from
video surveillance system, human-computer interface (HCI), to face image database
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management. For instance, a successful solution to the face detection problem is
potentially useful for user scenarios such as:

1. Surveillance cameras have been widely deployed in many strategic places to
ensure public safety by monitoring criminal and terrorist activities. As a result,
efforts have been made on the implementation of an intelligent system that
performs monitoring task automatically without human intervention. Such task
requires a preliminary operation that locates faces within the video scene, fol-
lowedbyother surveillanceoperations, such as face tracking andgait recognition.

2. Asmobile phones become increasingly powerful in terms of processing resource
and data capacity, security of the data stored in them such as contact information
and confidential documents becomes very important. The conventional way of
protecting such sensitive data is to have thempassword protected.However, latest
mobile phones started to offer face recognition technology as a more secure and
convenient security means since it provides distinctive print to get access while
the user does not need to memorize passwords. To this end, an user can take a
still image of himself/herself for identification through the image sensor. The
detection of face region in captured image data is an essential initialization stage
to complete user verification.

The importance of face detection cannot be overemphasized in the aforementioned
applications since they operate under an assumption that faces are already accu-
rately located in the given image or in the image sequence prior to main processing
operation. In the literature, numerous strategies have been proposed; however, face
detection is still considered to be challenging since faces are non-rigid objects and
vary substantially in shape, color, and texture [75]. Key technical challenges involved
in face detection problem include:

• Pose Variation: face object varies significantly depending on its relative position
between camera-face (from frontal views to different angles of side and tilt views)

• Imaging Condition: the variation of illumination condition (e.g. color temperature
of light source) and camera characteristic (e.g. sensor spectral sensitivity) affects
the appearance of color or texture of face region.

• Occlusions: complete face region might not be fully visible to camera, and some
facial feature might be hidden by other object

Progress has been made to solve these problems by using different aspects of facial
characteristics including geometric relationships between facial features (e.g. eyes,
nose, and mouth), skin color, facial texture patterns, and so forth. Although many
different cues have been utilized in the face detection system, skin color cue is one of
the most effective ones due to its robustness towards geometric changes (e.g. scaling
and rotation) and computational efficiency.

In this chapter, we investigate the role of skin color cue in automatic face detec-
tion systems. First we provide general overview of face detection techniques with
emphasis on use of color information (Sect. 2). In Sect. 3, we provide review of var-
ious color representation and skin pixel classification methodologies based on color
information. In addition, illumination adaptation strategies for skin color detection is



Contribution of Skin Color Cue in Face Detection Applications 369

discussed. In Sects. 4 and 5, we introduce two case studies of skin color cue usage in
face detection framework. By presenting two distinct use cases of color information
in facial analysis, the effectiveness of color cue in terms of detection performance
and computational efficiency is emphasized. Additionally, the influence of stable
color representation on face detection performance is addressed by applying color
constancy algorithms prior to skin color detection process. Finally, conclusions are
drawn in Sect. 6.

2 Face Detection and Color Cue

Face detection problem has received tremendous research interests since the 1970s
due to its importance in computer vision applications such as human identification
and tracking, human-computer interaction, and content-based image retrieval. For
instance, the recognition of a face in visual data typically involves three main stages
(Fig. 1), where the detection of face region is an essential initialization step for face
alignment (i.e. registration) that any subsequent operations are directly influenced
by its accuracy [81].

The purpose of face detection is to process still images or image sequences to find
the location(s) and the size(s) of any faces in them [31]. Although face detection is
a trivial task for humans, it is very challenging to build a stable automatic solution
since face patterns significantly vary under different facial poses/expressions, occlu-
sion conditions, and imaging condition (e.g. illumination condition, sensor char-
acteristics). Various face detection algorithms have been proposed [31, 75, 79], but
achieving highly accurate detection performance while maintaining reasonable com-
putational costs still remains to be a challenging issue.

In general, existing face detection methods are grouped into the two main cate-
gories [31]: (i) feature-based approach, (ii) image-based approach. In feature-based
approach [33, 48, 54, 58, 72], explicit face features (e.g. eyes, mouth, nose and face
contour) are extracted, then relationships between them (such as geometric and mor-
phologic relationships) are used to determine the existence of the face. For instance,
Sobottka and Pitas [72] proposed a two-stage face detection framework to locate face
regions in color image. The first stage is dedicated to segment face-like regions by
skin color analysis using hue and saturation information inHSVcolorspace, followed
by shape analysis using ellipse fitting. Afterwards, grayscale information of detected
face-like regions are examined to verify them by locating eye and mouth features.

Fig. 1 Block diagram of a generic face recognition system
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Extending the feature-based approach, Hsu et al. [33] localized face candidates from
color image using skin color cue in YCbCr colorspace and constructed eye, mouth,
face boundary maps to verify each face candidate. The methods in this category
are advantageous due to their relatively simple implementation and high detection
accuracy in uncluttered backgrounds. In particular, skin color cue is exceptionally
popular and successful in feature-based approach due to its simplicity and high dis-
crimination power. Some of these methods remain very popular nowadays in certain
applications such as mobile phone applications. However, they tend to have difficul-
ties in dealing with challenging imaging conditions such as varying illumination and
complex background, as well as low resolution images containing multiple faces.

Alternatively, image-based approach [9, 13, 67, 80] uses machine learning tech-
niques to capture unique and implicit face features, treating the face detection prob-
lem as a binary classification problem to discriminate between face and non-face.
Often, methods in this category require tremendous amount of time and training
data to construct a stable face detection system. However, in recent years, the rapid
advancement in digital data storage and digital computing resources has made the
image-based approaches feasible to many real-life applications and they become
extremely popular due to their enhanced robustness and superior performance against
challenging conditions compared to feature-based approaches.

One of themost representativeworks in image-based approach is theViola-Jones’s
face detection framework [67], aHaar-like feature based frontal face detection system
for grayscale images. The Haar-like feature represents the differences in grayscale
between two or more adjacent rectangular regions in the image, characterizing local
texture information. In Viola-Jones framework, AdaBoost learning algorithm is used
to handle following three fundamental problems: (i) learning effective features from
a large Haar-like feature set, (ii) constructing weak classifiers, each of which is based
on one of the selected features, (iii) boosting the weak classifiers to construct a strong
classifier. The authors applied the integral image technique for fast computation of
Haar-like features under varying scale and location, achieving real-time operation1.
However, the simplicity of Haar-like features inViola-Jones face detector causes lim-
ited performance under many complications, such as illumination variation. More
recent approaches address this problem by using an alternative texture feature called
Local Binary Pattern (LBP), which is introduced byOjala et al. [50] to offer enhanced
discriminative power and tolerance towards illumination variation. The LBP descrip-
tor encodes the relative gray value differences from a 3×3 neighborhood of an image
patch as demonstrated in Fig. 2. By taking the center pixel as a threshold value, every
neighboring pixel is compared against the threshold to produce a 8-bit string, and
then binary string is converted to decimal label according to assigned weights. Many
variants of LBP features are considered thereafter, such as LBP Histogram [26],
Improved Local Binary Pattern (ILBP) [35], Multi-Block LBP (MB-LBP) [80], and
Co-occurrence of LBP (CoLBP) [47].

1 The term real-time implies the capability to process image frames with a rate close to the examined
sequence frame rate. In [67], real-time requirement is defined to be approximately 15 frames per
second for 384x288 image.
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Fig. 2 Example of basic LBP feature computation

Although considerable progress has been made in aforementioned image-based
face detection methodologies, the main emphasis has been placed on exploiting var-
ious grayscale texture patterns. A few recent researches [12, 25] have shown that
color cue could provide complementary information to further enhance the perfor-
mance of image-based approaches. Specifically, color information could potentially
enhance the performance in following two aspects: (i) using skin color information,
one may effectively reduce the search regions for potential face candidates by iden-
tifying skin color regions and performing subsequent texture analysis on detected
skin region only, hence avoiding heavy computations caused by exhaustive scan of
the entire image, (ii) color is a pixel-based cue which can be processed regardless of
spatial arrangement, hence, it offers computational efficiency as well as robustness
against geometric transformation such as scaling, rotation, and partial occlusion.

Overall, color can be applied in face detection systems, either as a primary or
a complementary feature to locate faces along with shape, texture, and motion. In
feature-based approach, which is suitable for resource constrained systems, color
provides visual cue to focus attention in the scene by identifying a set of skin-
colored regions that may contain face objects. It is followed by subsequent feature
analysis where each skin-colored region is analyzed using facial geometry informa-
tion. In image-based approach, faster and more accurate exhaustive face search can
be achieved by using skin color modality with the purpose of guiding the search.
Typical examples of each face detection approach and use of color cue are described
in Sects. 4 and 5. Since accurate classification between skin and non-skin pixel is
a key element for reliable implementation of face detection systems, in Sect. 3, we
provide extensive review of existing skin color classification methodologies.

3 Skin Color Detection

Color is an effective cue for identifying regions of interest/objects in the image
data. For visual contents of natural scene, a widely accepted assumption is that
the color corresponds to a few categories have the most perceptual impact on the
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human visual system [76]. Researches indicate that skin tones, blue sky, and green
foliage constitute such basic classes and belong to a group of color termed memory
colors. Among memory colors, skin color has been regarded as the most important
ones due to its importance in human social interaction and its dominant usage in
image/video analysis. The application of skin color analysis is not only limited to face
detection system, which is the main focus of this chapter, but also includes content-
based image retrieval system, human-computer interaction domain, and memory
color enhancement system.

Skin color analysis in face detection framework involves a pixel-wise classifica-
tion to discriminate skin and non-skin pixels in color images. Therefore, skin color
detection process can be seen as a binary classification problem that a certain color
pixel c = [c1, c2, c3]T is mapped to an output label y ∈ {ws, wn}, where ws and wn

represent skin and non-skin classes respectively.
Detection of skin color is considerably challenging not only because it is sensitive

to varying illumination conditions and camera characteristics, but also it should be
able to handle individual differences caused by ethnicity, age, and gender. Skin color
detection involves two important sub-problems: (i) selection of a suitable color repre-
sentation to perform classification (discussed in Sect. 3.1), (ii) selection of modeling
scheme to represent skin color distribution (discussed in Sect. 3.2).

3.1 Color Representation

An appropriate representation of color signal is crucial in detection of skin pixels.
An ideal colorspace for skin color analysis is assumed to: (i) minimize the overlap
between skin and non-skin color distributions in the given colorspace, (ii) provide
robustness against varying illumination condition, (iii) provide separability between
luminance and chrominance information. Several colorspaces, such as RGB [36, 61],
normalized RGB [4, 6, 23, 59], YCbCr [7, 29, 33, 62], HSV [30, 49, 55], CIELAB
[78] andCIELUV [74], have been used in skin color detection. In this section, wewill
focus on most widely used colorspaces in the image processing research, including
RGB, normalized RGB, YCbCr, and HSV.

3.1.1 RGB and Normalized RGB

RGB is a fundamental way of representing color signal which is originated from
cathode ray tube (CRT) display. The RGB model (Fig. 3) is represented by a
3-dimensional cube with R, G, and B at the corners on each axis. RGB is most domi-
nantly used representation for processing and storing of digital image data. Therefore,
it has been used in many skin color detection researches [36, 51, 61]. However, its
poor separability between luminance and chromaticity information, and its highly
sensitive nature against illumination variation are main limitations for skin color
analysis purpose. Rather than original RGB format, its normalized variant is consid-
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Fig. 3 RGB cube and HSV hexcone representations

ered to bemore robust in skin color detection since it reduces the dependency of each
component to illumination changes2 [38]. Normalized RGB representation can be
obtained by normalizing RGB values by their intensity (I = R + G + B):

r = R

R + G + B
, g = G

R + G + B
, b = B

R + G + B
(1)

where each RGB primaries are given in linear RGB3. Because r + g + b = 1, no
information is lost if only two elements are considered.

3.1.2 YCbCr

YCbCr is the Rec. 601 international standard (see 2) for studio quality component
digital video. In YCbCr, color is represented by luma(Y), computed as a weighted
sum of nonlinear (gamma-corrected) RGB ,and two chroma components Cr and Cb
that are formed by subtracting luma value from R and B components. The Rec. 601
specifies 8 bit (i.e. 0–255) coding of YCbCr. All three Y, Cb, and Cr components
have reserved ranges to provide footroom and headroom for signal processing as
follows:

2 Under the white illumination condition with Lambertian reflection assumption, normalized RGB
is invariant to illumination direction and illumination intensity [21]
3 Linear RGB implies that it is linear to the physical intensity, whereas nonlinear RGB is non-linear
to intensity. Such nonlinearity is introduced to RGB signal by gamma correction process in order
to compensate a nonlinear response of CRT display devices.
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⎧
⎪⎨

⎪⎩

Y ′ = 16 + (65.738R′ + 129.057G ′ + 25.064B ′)
Cb = 128 + (−37.945R′ − 74.494G ′ + 112.439B ′)
Cr = 128 + (112.439R′ − 94.154G ′ − 18.285B ′)

(2)

where R′, G ′, B ′ ∈ [0, 1] are gamma-correctedRGBprimaries.YCbCr is dominantly
used in compression applications since it reduces the redundancy in RGB color sig-
nals and represents the color with statistically independent components. The explicit
separation of luminance and chrominance components and its wide adoption in
image/video compression standards makes YCbCr popular for skin color analysis
[7, 29, 33, 62].

3.1.3 HSV

The HSV coordinate system, originally proposed by Smith [57], defines color by:
(i) Hue(H)—the property of a color related to the dominant wavelength in a mixed
light wave, (ii) Saturation(S)—the amount of white light mixed with color that varies
from gray through pastel to saturated colors, (iii) Value(V)—the property according
to which an area appears to exhibit more or less light that varies from black to white.
The HSV representation corresponds more closely to the human perception of color
than aforementioned ones since it is derived from the intuitive appeal of the artist’s
tint, shade, and tone. The set of equations used to transform a point in the RGB to
the HSV coordinate system ([H, S, V ] ∈ [0, 1], [R′, G ′, B ′] ∈ [0, 1]) is given as
follows4:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = 1
6 ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 + (M − B ′)/C ,if M = R′, m = G ′

1 − (M − G ′)/C ,if M = R′, m �= G ′

1 + (M − R′)/C ,if M = G ′, m = B ′

3 − (M − B ′)/C ,if M = G ′, m �= B ′

3 + (M − G ′)/C ,if M = B ′, m = R′

5 − (M − R′)/C ,if M = B ′, m �= R′

S = C/M (if C=0, then H = undefined)

V = M

,

⎧
⎪⎨

⎪⎩

M = max(R′, G ′, B ′)
m = min(R′, G ′, B ′)
C = M − m

(3)

The HSV colorspace is traditionally shown as a hexcone model Fig. 3b and, in
fact, HSV hexcone is a projection of the RGB cube along the gray-scale line. In
hexcone model, H is represented as the angle and S corresponds to the horizontal
distance from the vertical axis. V varies along the vertical axis with V = 0 being

4 It is noteworthy to mention that the original literature [57] does not clearly indicate whether linear
or nonlinear RGB is used in conversion. Although there is such an ambiguity, we use nonlinear
RGB in this paper, which is implicit in image processing applications [52].
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Fig. 4 Distribution of skin color pixel from Compaq dataset [36] in a H-S plane of original HSV
colorspace, b Cartesian representation of H-S plane

black, and V = 1 being white. When S = 0, color is a gray value. When S = 1,
color is on the boundary of hexcone. The greater the S, the farther the color is from
white/gray/black. Adjusting the hue varies the color from red at H = 0, through
green at H = 1/3, blue at H = 2/3, and back to red at H = 0. When S = 0, or
V = 0, (along the achromatic axis) the color is grayscale and H is undefined.

Two chromatic components, H and S, are known to be less variant to changes
of illumination direction and illumination intensity [20], and thus HSV is a reliable
colorspace for skin color detection. However, one should be careful in exploiting
HSV space for skin color analysis since manipulation of H involves circular statistics
as H is an angular measure [27]. As can be seen in Fig. 4a, the cyclic nature of H
component disallows use of a color distribution model which requires a compact
cluster, e.g. a single Gaussian model, since it generates two separate clusters on both
sides of H axis. To address this issue, polar coordinate system of H-S space can be
represented in Cartesian coordinates X-Y as follows [4]:

X = S cos(2π H), Y = S sin(2π H) (4)

where H, S ∈ [0, 1] and X, Y ∈ [−1, 1]. Here, X component can be regarded as
a horizontal projection of color vector representing a pixel in H-S space, while Y
component can be regarded as a vertical projection of color vector representing a
pixel in H-S space. In the Cartesian representation of H-S space (Fig. 4b), skin color
distribution forms a tightly distributed cluster.

3.2 Skin Color Distribution Model

Skin color distribution model defines a decision rule to discriminate between skin
and non-skin pixels in given colorspace. To detect skin color pixel, a multitude
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Fig. 5 Classification of skin color detection approaches

of solutions merge from two distinct categories (Fig. 5). The first type of method-
ologies use a static color classification rule and can be further divided into three
sub-classes depending on the classifier type: (i) piecewise boundary model [7, 23,
30, 42], (ii) non-parametric skin distribution model [4, 36, 77], (iii) parametric skin
distribution model [45, 73, 74]. However, static skin color classification methods
are typically very sensitive to imaging conditions, e.g. skin color of same individual
varies depending on the color temperature of light source (e.g. incandescent, flu-
orescent, and sunlight) as well as the characteristics of image acquisition devices
(e.g. sensor spectral sensitivity and embedded white balancing algorithm). There-
fore, it requires appropriate adaptation schemes to maintain stable performance in
real-world environments. The dynamic approaches address such problematic cases
either by pre-processing given input image to alleviate the influence of imaging con-
dition on color description or by dynamically updating color classification model
according to imaging condition.

Since skin color typically forms a small cluster in the colorspace, one of the easiest
methods to build a skin color classifier is to explicitly define fixed decision bound-
aries of skin regions. Single or multiple ranges of threshold values for each color
component are defined and the image pixel values that fall within these pre-defined
ranges are defined as skin pixels. Piecewise boundary model has been exploited in
various colorspaces and Table1 presents some representative examples.

Non-parametric skin color modeling methods estimate the probability of a color
value to be a skin by defining a model that has no dependency on a parameter. The
most representativemethods in this class is Jones and Rehg’smethod [36] which uses
a 2D or 3D color histogram to represent the distribution of skin color in colorspace.
Under this approach, the given colorspace is quantized into a number of histogram
bins and each histogram bin stores the likelihood that a given color belongs to the
skin. Jones andRehg built two 3DRGBhistogrammodels for skin and non-skin from
Compaq database [36] which contains around 12K web images. Given skin and non-
skin histograms, the probability that a given color belongs to skin and non-skin class
is defined as:
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Table 1 Commonly used piecewise boundary models for skin color detection

Authors (Colorspace) Skin color classification rule

Kovac et al. [42] (RGB) Uniform daylight illumination
R > 95, G > 40, B > 20, Max(R, G, B) −
Min(R, G, B) < 15, |R − G| > 15, R > G, R > B
Flashlight or daylight lateral illumination
R > 220, G > 210, B > 170, |R − G| ≤ 15, B < R, B <

G a

Gomez&Morales [23] (nRGB) r
g > 1.185, rb

(r+g+b)2
> 0.107, rg

(r+g+b)2
> 0.112 b

Chai&Ngan [7] (CbCr) 77 ≤ Cb ≤ 127, 133 ≤ Cr ≤ 173 c

Herodotou et al. [30] (HSV) 0.94 ≤ H ≤ 1 or 0 ≤ H ≤ 0.14, 0.2 ≤ S, 0.35 ≤ V d

p(c|ws) = s(c)
Total skin pixel count

, p(c|wn) = n(c)
Total non-skin pixel count

(5)

where s(c) is the pixel count in the color bin c of the skin histogram, n(c) is the pixel
count in the color bin c of the non-skin histogram. For skin pixel detection, we need
to estimate p(ws |c)—a probability of observing skin pixel given a c color vector.
To compute this probability, the Bayesian rule is applied using the given conditional
probabilities of skin and non-skin:

p(ws |c) = p(c|ws)p(ws)

p(c|ws)p(ws) + p(c|wn)p(wn)
(6)

Instead of calculating the exact value of p(ws |c), the ratio between p(ws |c) and
p(wn|c) can be compared (i.e. likelihood ratio test) for classification as follows:

c ∈ ws ,if
p(ws |c)
p(wn|c) > K

⇒ if
p(ws |c)
p(wn|c) = p(c|ws)p(ws)

p(c|wn)p(wn)
> K (7)

⇒ if
p(c|ws)

p(c|wn)
> θ ,where θ = K × p(wn)

p(ws)

where θ is an adjustable threshold that controls the trade-off between true positive
(TP) and false positive (FP) rates (See 13 for definitions of TP and FP).

The third categories in static approaches are parametric skin colormodelingmeth-
ods where color classification rule is derived from parameterized distributions. The
parametric models have the advantage over the non-parametric ones that they require
smaller amount of training data and storage space. Key problems for parametric skin
color modeling are to find the best model and to estimate its parameters. The most
popular solutions include single Gaussian model (SGM) [73], Gaussian mixture
model (GMM) [24, 32, 74], and elliptical model [45].
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Under controlled environment, skin colors of different subject cluster in a small
region in the colorspace and hence, the distribution can be represented by SGM [73].
A multivariate Gaussian distribution of a d-dimensional color vector c is defined as:

G(c;μ, �) = 1

(2π)d/2|�|1/2 exp

[

− (c − μ)T �−1(c − μ)

2

]

(8)

whereμ is themean vector and� is the covariancematrix of the normally distributed
color vector c. The model parameters are estimated from the training data using the
following equations:

μ = 1

n

n∑

i=1

ci , � = 1

n − 1

n∑

i=1

(ci − μ)(ci − μ)T (9)

Either the G(c;μ, �) probability or theMahalanobis distance from the c color vector
to the mean vector μ, given the covariance matrix �, can be used to measure the
similarity of the pixel with the skin color.

Although SGM has been a successful model to represent skin color distribution,
the assumption of SGM requires a single cluster which smoothly varies around the
mean. However, such an assumption often causes intolerable error in skin/non-skin
discrimination since different modes (due to skin color types and varying illumi-
nation conditions) can co-exist within the skin cluster. Therefore, Yang and Ahuja
introduced the GMM model [74] to represent more complex shaped distribution.
The GMM probability density function (pdf) can be defined as a weighted sum of
Gaussians:

p(c;αi ,μi , �i ) =
N∑

i=1

αi Gi (c;μi , �i ) (10)

where N is the number of mixture components, αi is the weight of i-th component
(αi > 0,

∑N
i=1 αi = 1), Gi is a Gaussian pdf with parameters μi and �i . The

parameters of a GMM are approximated from the training data via the iterative
expectation-maximization (EM) technique [11].

Lee and Yoo [45] claimed that SGM is not accurate enough to approximate the
skin color distribution because of the asymmetry of the skin cluster with respect to its
density peak. They proposed an elliptical boundarymodel based on their observations
that the skin cluster is approximately elliptic in shape. The elliptical boundary model
is defined as:

�(c) = (c − φ)T �−1(c − φ) (11)

φ and � are two model parameters to be estimated from training data:
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φ = 1

n

n∑

i=1

ci , � = 1

N

n∑

i=1

fi (ci − μ)(ci − μ)T , μ = 1

N

n∑

i=1

n fi ci (12)

where n is the number of distinctive training color vectors ci of the training skin
pixels, fi is the number of skin samples of color vector ci , and N is the total number
of samples (N = ∑n

i=1 n fi ). An input pixel c is classified as skin if �(c) < θ where
θ is a threshold value.

3.3 Comparison and Discussion of Skin Color Distribution Models
and Color Representations

Comparative assessment of skin color detection methods in different color repre-
sentations has been discussed in many literatures [8, 41, 51, 53, 60, 63, 64], but
they report different results mainly due to their different experimental conditions
(e.g. selection of training/testing datasets). In this section, we will highlight some
general conclusions derived from existing researches. Typically, the performance of
skin color detection is measured using true positive rate (TPR) and false positive rate
(FPR), defined as follows:

T P =number of correctly identified skin pixels

total number of skin pixels

F P =number of falsely identified non-skin pixels as skin pixels

total number of non-skin pixels
(13)

Most classification methods have an adjustable threshold parameter that controls the
classifier decision boundary. As a result, each threshold value produces a pair of FP
and TP values, generating a receiver operating characteristics (ROC) curve which
demonstrates the relationship between TP and FP in different threshold values. For
comparative evaluation of different classifiers, ROC performance is often summa-
rized by a single scalar value, the area under ROC curve (AUC). AUC is known to
be a fairly reliable performance measure of the classifier [14]. Since the AUC is a
subregion of the unit square, its value lies between 0 and 1, and larger AUC value
implies better classification performance.

A piecewise boundary model has fixed decision boundary parameters and hence,
the corresponding ROC plots have only one point. Its boundary parameter values
differ from one colorspace to another and one illumination to another. Although
methods in this category are computationally fast, in general, they suffer from high
FP rates. For example, Phung et al. [51] indicated that piecewise boundary classifier
in CbCr space [7] achieves 92% TP at 28 FP on Edith Cowan University (ECU)
dataset [51] (consists of 4K color images from web or taken with digital camera,
containing skin pixels), while both 3D SGM classifier of skin/non-skin (YCbCr) and
Bayesian classifier with 3D histogram (RGB) achieves higher than 95% TP at the
same FP.
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The Gaussian distribution based classifiers, e.g. SGM and GMM, and an ellip-
tical model classifier have been widely used for skin color analysis since they
generalize well with small amount of training data. In order to compare the
performance of SGMandGMM,Caetano et al. [6] conducted comparative evaluation
in normalized-rg colorspace using a dataset of 800 images from various ethnic groups
(publicly not available). The authors noted that: i) GMMgenerally outperforms SGM
for FP rates higher than 10%,while bothmodels yield similar performance for lowFP
rates, ii) detection performance remains unchanged except minor fluctuations when
increasing mixture components for GMM from 2 to 8. Fu et al. [18] performed sim-
ilar comparative assessment of both Gaussian classifiers using Compaq dataset [36]
and confirmed that increasing mixture components doesn’t provide significant per-
formance improvement for n > 5 in four representative colorspaces (RGB, YCbCr,
HSV, and normalized RGB). This is due to an overfitting issue, implying that a
classifier describes training sample well but is not flexible enough to describe gen-
eral samples. Moreover, using GMM is slower during classification since multiple
Gaussian components must be computed to obtain the probability of a single color
value. Therefore, one should be careful in selecting appropriate number of mixture
components.

The performance of the representative non-parametricmethod, Bayesian classifier
with 3D histogram [36], has been compared with other parametric approaches in [36,
51]. The histogram technique in 3D RGB color space achieved 90% TP (14.2 FP)
on Compaq database, slightly outperforming GMM or SGM in terms of detection
accuracy. But it requires a very large training dataset to get a good classification rate,
as well as higher storage space. For example, a 3D RGB histogram with 256 bins per
channel requires more than 16 millions entries. To address this issue, some literature
presented color bin quantization method to reduce color cube size. Jones and Rehg
[36] compared the use of different numbers of histogram bins (2563, 323, 163) and
found that 323 histogram performed best, particularly when small amount of training
data was used.

Often, skin detection methods solely based on color cue in Sect. 3.2 (summa-
rized in Table2) are not sufficient for distinguishing between skin regions and skin-
colored background regions. In order to minimize false acceptance of skin-colored
background objects as skin regions, textural and spatial properties of skin pixels
can be exploited [10, 40, 69]. Such methods generally rely on the facts that skin
texture is smoother than other skin similar areas. For example, Wang et al. [69] ini-
tially generated a skin map via pixel-wise color analysis, then carried out texture
analysis using Gray-Level Co-occurrence Matrices (GLCM) features to refine the
original skin map (i.e. remove false positives). Khan et al. [40] proposed a system-
atic approach employing spatial context in conjunction with color cue for robust
skin pixel detection. At first, a foreground histogram of probable skin colors and a
background histogram of the non-skin colors are generated using skin pixel samples
in the input image extracted via a face detector. These histograms are used to com-
pute foreground/background weights per pixel, representing the probability of each
pixel being skin or non-skin. Subsequently, spatial context is taken into account by
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Table 2 Summary of various skin color detection methods (In characteristic column, + and −
represents pros and cons respectively)

Category Method Characteristic

Piecewise boundary Chai (YCbCr) [7], Gomez
(normalized RGB) [23],
Herodotou (HSV) [30],
Kovac (RGB) [42]

+ Simple implementation
− Limited flexibility due to fixed
threshold and high false positive
rate

Non-parametric Brown’s self organizingmap
(SOM) [4], Jones’s Bayesian
approach with 3D histogram
[36], Zarit’s lookup table
(LUT) [77]

+ Higher detection accuracy and
less dependency on choice of col-
orspace
−Require larger amount of training
data and storage compared to para-
metric solutions

Parametric Single GaussianModel [73],
Gaussian Mixture Model
[24, 32, 74], Lee’s elliptical
model [45]

+ Better generalization with less
training data
− Potential long training delay (for
mixture model) and high depen-
dency on choice of colorspace

applying the graph-cut based segmentation on basis of computed weights, producing
segmented skin regions of reduced false positives.

Selection of the best colorspace for skin classification is a very challenging task.
This problemhas been analyzed in numerous literatureswith various combinations of
skin color distribution models and training/testing datasets. In general, effectiveness
of specific color representation in skin color detection can bemeasured based on their
separability between skin and non-skin pixels, and robustness towards illumination
variation. However, there is no single best colorspace that is clearly superior to others
in all images and often only marginal improvement can be achieved by choice of
colorspace.

The effectiveness of colorspace is also dependent on selection of skin color distri-
bution model. For example, non-parametric models, such as histogram-based Bayes
classifier are less sensitive to colorspace selection compared to parametric model-
ing schemes, such as SGM and GMM [1, 38, 65]. Some literatures indicate that
transforming 3D colorspace to 2D by discarding the luminance component may
enhance skin detection performance since chrominance components aremore impor-
tant cue for determination of skin color. However, elimination of luminance com-
ponent should be avoided since it decreases classification performance [1, 38, 53],
and therefore, is not recommended unless one wants to have faster solution (due to
dimensionality reduction) at the cost of classification accuracy.

3.4 Illumination Adaptation for Skin Color Detection

Most of the skin color detection methodologies presented in Sect. 3.2 remain sta-
ble only to slight variation in illumination since the appearance of color is heavily
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dependent on the illumination condition under which the object is viewed. In order to
maintain reliable performance over a wide range of illumination conditions, several
illumination adaptation schemes have been proposed, which can be subdivided into
two main approaches [38]: (i) Dynamic model adaptation: by updating trained skin
color models dynamically according to the illumination and imaging conditions, (ii)
Color constancy: by pre-processing an input image to produce a transformed version
of the input as if the scene is rendered under standard illumination condition.

3.4.1 Dynamic Adaptation of Skin Color Model

Dynamic model adaptation approaches usually depend on the results of high-level
vision tasks such as face detection and tracking to improve skin color detection
performance. Sigal et al. [55] introduced a video-based dynamic adaptation scheme
using a second-order Markovmodel to predict the transition of skin color model over
time. Initially, they trained a non-parametric skin color classifierwithRGBhistogram
using Compaq database in offline. This pre-trained model is used to segment the skin
color region of the first frame of the input image sequence for tracking purpose. Then
skin mask from the first frame is used to re-estimate histogram for skin and non-skin
for subsequent frames. In particular, the time varying pattern of skin color distribution
in colorspace is parameterized by affine transformations: translation, rotation, and
scaling. From the comparative analysis against Jones and Rehg’s static histogram
approach [36], the authors reported enhanced skin segmentation accuracy in 17 out
of 21 testing video sequences (containing illumination conditions ranging fromwhite
to non-white light sources, and shadows).

It is possible to adapt the skin color model even for single images, given that input
image contains human face regions and they can be accurately located [3, 17, 39, 40,
78]. Zeng and Luo [78] presented an image-dependent skin color detection frame-
work, where an elliptical skin color model trained offline in CIELAB colorspace, is
adapted for the input image using a face detector. Skin pixels of given input image
is extracted from the face region located by a Viola-Jones face detector [67] and a
pre-trained elliptical skin color model is shifted towards the mean value of collected
skin samples. During the model shift, the detection boundary threshold is tightened
in order to effectively reduce false positives. Kawulok [39] also proposed a sys-
tematic solution, which dynamically updates a non-parametric skin color model by
exploiting skin samples obtained from Support Vector Machine (SVM) based face
detection module. The author noted that by applying the face detector in conjunction
with Jones and Rehg’s non-parametric method [36], the detection error rate (i.e. sum
of false positive rate and false negative rate) is decreased from 26% to 15 on ECU
dataset [51] compared to the absence of the face detection operation. Aforementioned
adaptation schemes taking advantage of skin samples extracted from face detectors
are not only effective on varying illumination conditions but also beneficial on deal-
ing with the skin color difference between individuals under constant illumination.
Pre-trained color model tends to be more general than one estimated on basis of a
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present face, thereby fine-tuning the pre-trained model matching to an individual
presented in the given image leads to reduction of false skin detections.

Sun [61] proposed an adaptive scheme without deploying additional high-level
analysis. Initially, a global non-parametric skin color model [36] is trained in RGB
colorspace and potential skin pixels are extracted from the input image via the global
model. Then, pixels which are very likely to be skin are identified from initially
extracted skin pixels using an accumulated histogram of skin likelihood ratio. For
identified skin samples, a local GMM color model is constructed using K-mean
clustering. Finally the globally trained skin model and the local skin model are
linearly combined to produce afinal adaptivemodel. Theperformance of this adaptive
scheme depends on the number of selected skin pixel samples and the weighting
factors for combining two models. The author indicated that it outperforms Jones
andRehg’smethod [36] onCompaq dataset in terms of detection accuracy, especially
in the range of low false positive rate. This approach can be considered as a cost-
effective alternative to aforementioned face detection based solutions, but it may not
as accurate as them since it only makes use of color feature during adaptation.

Overall, the effectiveness of the dynamic skin color model adaptation depends on
the validity of assumptions behind the adaptation criteria. The adaptation schemes
generally use a general skin model obtained from a representative image set and then
fine-tune it into an image specific model.

3.4.2 Color Constancy

Color constancy method attempts to minimize the effect of illumination and imaging
condition by preprocessing the input image, instead of adjusting skin color classifica-
tion model. Color constancy is the ability of human visual system HVS to recognize
object color regardless of the illumination conditions. The aim of computational
color constancy algorithm is to compensate the effect of the scene illuminant (i.e.
light source) on the recorded image in order to recover underlying color of object
[22]. Typically, color constancy algorithms can be viewed as a two-stage operation
where the first step estimates the characteristics of scene illuminant from the image
data, followed by the second step that applies correction on the image to generate a
new image of the scene as if it were taken under a canonical (or reference) illuminant5

(Fig. 6).

General formulation of color constancy
Let’s consider an image acquisition device equipped with a lens that focuses light
from a scene onto an array of sensors. If we assume the spectral power distribution
(SPD) of the scene illuminant is constant, the illuminant can be specified by its SPD,
E(λ), which describes the energy per second at each wavelength λ ∈ R. The light is
reflected from surfaces of objects to be imaged and focused onto the sensor array. The

5 For image reproduction applications, the canonical illuminant is often defined as an illuminant
for which the camera sensor is balanced [2].
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Fig. 6 Overview of color constancy procedure (Sample image is taken from [19])

property of light reflected froman object toward location x of the sensor is determined
by the surface spectral reflectance, S(x, λ). Here, x ∈ Z

2 denotes the spatial position
on the 2D sensor array at which the object is imaged. The light arriving at each
location x on the sensor array is described by the function E(λ)S(x, λ).

Now, we assume that there are p-distinct classes of sensors at each location x.
Typical digital camera devices sample the light by Red, Green, and Blue sensors
(i.e. p = 3). We denote the sensor spectral sensitivity of the k-th color channel as
ρk(λ) ((k ∈ {R, G, B})). According to Lambertian reflection model6, these spectral
functions are translated into the RGB values I(x) = [IR(x), IG(x), IB(x)]T within
the sensor as follows:

Ik(x) =
∫

ω

ρk(λ)E(λ)S(x, λ)dλ (14)

where the integral is taken over the entire visible spectrum ω (wavelength of approx-
imately from 400 nm to 700). Eq. (14) shows that the responses induced in a camera
sensor depend on the spectral characteristics of the illuminant and the surface. Essen-
tially, color constancy problem can be posed as recovering an estimate of illuminant
spectra E(λ) or its projection on the RGB space

e = [eR, eG , eB]T =
∫

ω

ρ(λ)E(λ)dλ (15)

from given sensor responses I(x).
Without prior knowledge, the estimation of e is an under-constrained problem.

In practice, color constancy algorithms rely on various assumptions on statistical
properties of the illuminants, and surface reflectance properties to estimate e. Once
the illuminant is estimated, then all colors in the input image, taken under an unknown
illuminant, are transformed to colors as they appear under the canonical illuminant.
Each pixel of the image under an unknown illuminant Iu = [I u

R, I u
G , I u

B]T can be
mapped to the corresponding pixel of the image under a canonical illuminant Ic =

6 Lambertian reflection model explains the relationship between the surface reflectance and color
image formation for flat, matte surfaces. Although this model does not hold true for all materials,
it provides a good approximation in general, and thus widely used in design of tractable color
constancy solutions
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[I c
R, I c

G , I c
B]T by a transformation matrix, Du,c : R3 → R

3

Ic = Du,cIu (16)

Most existing algorithms make use of a diagonal matrix for this transformation.
The diagonal model maps the image taken under an unknown illuminant to another
simply by treating each channel independently:

Ic = Du,cIu ⇒
⎛

⎝
I c

R
I c
G

I c
B

⎞

⎠ =
⎛

⎝
dR 0 0
0 dB 0
0 0 dG

⎞

⎠

⎛

⎝
I u

R
I u
G

I u
B

⎞

⎠ (17)

where diagonal entries of Du,c can be computed as:

dk = ek

/{√

3(e2R + e2G + e2B)
}

(18)

Thismodel is derived from theVonKries hypothesis [43] that human color constancy
is an independent gain regulation of the three cone signals, through three different
gain coefficients.

Representative color constancy algorithms
Various color constancy algorithms have been proposed in the literatures [22], and
they can be categorized into two main groups: (i) static approach : estimates the
illuminant solely based on the content of a single image with certain assumptions on
general nature of color images, (ii) learning approach : requires training data in order
to build a statistical model prior to estimation of the scene illuminant. Among avail-
able solutions, static approaches, such as Grayworld [5], White Patch [44], Shades
of Gray [15], and Gray Edge [71] have been widely used in practical applications
due to their simple implementation and fast execution speed. The most widely used
Grayworld (GW) algorithm [5] assumes that the average reflectance in a scene is
gray (i.e. achromatic) under a neutral illuminant, and thus any deviation from gray
is caused by the effects of the illuminant. Hence, the RGB value of the illuminant
in the image I, e = [eR, eG , eB]T , can be estimated by computing the average pixel
value:

∫

x
I(x)dx = ke (19)

where I(x) is RGB value of the two-dimensional spatial coordinates x ∈ Z
2, and k

is a multiplicative constant. Another popular algorithm, the White Patch (WP) [44]
assumes that a surface with perfect reflectance property7 exists in the scene, and the
color of the perfect reflectance is the color of the scene illuminant:

7 A surface with perfect reflectance property reflects the incoming light in the entire visible spectral
range (between wavelengths of about 400 and 700 nm of the electromagnetic spectrum)
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max
x

I(x) =
[
max

x
IR(x),max

x
IG(x),max

x
IB(x)

]T = ke (20)

Finlayson and Trezzi [15] demonstrated that GW and WP are two different instanti-
ations of a more general color constancy algorithm based on the Minkowski norm.
This method is called Shades of Gray (SoG) and is computed by:

[∫

(I(x))pdx
](1/p)

= ke (21)

where p is the Minkowski norm. For p = 1, the equation is equivalent to the GW
assumption, while for p = ∞, it is equivalent to color constancy byWP. The authors
investigated the performance of the illuminant estimation with various p values and
reported that the best results are obtained with a Minkowski norm of p = 6 across
many dataset.

Aforementioned methods (GW, WP, and SoG) use only RGB pixel values to
estimate the illuminant of an image, completely ignoring other information. More
recently, Weijer et al. [71] extended pixel based color constancy methods to incorpo-
rate derivative information, which resulted in the Gray Edge (GE) algorithm. Gray
edge is based on the hypothesis that the average of the reflectance differences in a
scene is achromatic. Under Gray Edge assumption, the color of light source can be
computed from the average color derivative in the image given by:

[∫

|Iσ
x (x)|pdx

](1/p)

= ke (22)

where subscript x indicates the spatial derivative, and Iσ is a convolution of the image
I with a Gaussian smoothing filter G with standard deviation σ .

It is worthwhile to note that due to under-constrained nature of illumination esti-
mation problem, no single color constancy method is superior to others in all images
and it may yield suboptimal result when its underlying assumption doesn’t hold
true. Aforementioned methods assume that the scene is lit by a single illuminant;
although in reality this assumption is often violated due to the presence of multi-
ple illuminants. Furthermore, assumptions on scene statistics may not be correct for
given input image. For example, the underlying assumption of GW algorithm fails
when the image contains dominant colors in the scene (e.g. image of forest, or ocean),
since the average color won’t be gray. In such cases, the application of GW algorithm
will result in under or over-compensated scene. Such problems can be addressed by
exploiting more advanced solution, such as the one based on extensive training data
or complex assumptions. However, in general, aforementioned four color constancy
algorithms are known to yield acceptable performance at low computational cost,
and thus are suitable for practical face detection systems [12].
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4 Case Study 1 : Use of Skin Color Cue in Image-Based Face
Detection System

In this section, we demonstrate a case study of usage of color cue in the prac-
tical face detection system. A face detection framework exploiting a representa-
tive image-based approach is designed and a skin color classification module is
integrated into the system to provide complementary information. In order to reduce
the effect of scene illumination on detection performance, illumination compensa-
tion is performed on the input color image prior to facial analysis. The overview of
the proposed framework is illustrated in Fig. 7.

For this study, we exploit the Boosting based face detection framework with LBP
feature due to its superior performance in real-life face detection applications.Among
LBP variants, MBLBP [80] is selected since: (i) MBLBP feature is an advanced ver-
sion of the original LBP feature with high discriminative power, capable of extracting
not only local texture as the original LBP, but also larger-scale structure information,
(ii) Computation of MBLBP feature can be very fast by using integral image. Conse-
quently, this particular case study allows us to demonstrate the contribution of skin
color cue within state-of-the-art texture-based face detection framework. To build
MBLBP based detector, we adopted the training procedure and design of Zhang et
al.’s framework in [80] (More detail is provided in Sect. 4.1.3).

Following two experiments have been conducted for the performance evaluation.

1. The effectiveness of skin color cue in terms of improving detection accuracy
and computational efficiency of the texture based facial analysis is evaluated by
comparing two scenarios:

Fig. 7 Overview of the proposed image-based face detection pipeline exploiting MBLBP feature
and skin color cue
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• Texture feature only pipeline : Face detection is carried out without exploiting
color information to measure the performance of the detector solely based on
grayscale texture. To facilitate this scenario, illumination compensation and
skin color classification blocks are disabled and all remaining operations are
performed in grayscale domain.

• Hybrid pipeline (color feature in conjunction with texture) : Skin color
classification block is enabled, and the binary skin map is generated from
input color image to identify skin pixels.

2. The importance of stable color representation in face detection analysis is demon-
strated. Several representative color constancymethods are applied to color input
image to eliminate the color bias caused by non-standard illumination condition.
Then, comparative assessment is done by comparing detection accuracy with
illumination compensation enabled and disabled.

4.1 Proposed Face Detection Framework

The proposed face detection framework consists of three main components: (i) illu-
mination compensation, (ii) skin color classification, (iii) MBLBP feature based face
detection module. In this section, brief overview of each component is provided.

4.1.1 Illumination Compensation

Illumination compensation module allows the face detection framework to maintain
stable performance over wide range of illumination conditions. In this module, the
input RGB color images X : R2 → R

3 is processed by color constancy algorithm to
produce the corrected RGB image I : R2 → R

3. In this experiment, we make use of
four representation color constancy algorithms: Grayworld, White Patch, Shades of
Gray, andGray Edge. They are cost-effective algorithmswith simple implementation
and thus, suitable for practical image processing applications.

4.1.2 Skin Color Classification

For the corrected color image I : R
2 → R

3, skin color classification mod-
ule performs a pixel-wise binary classification and generates a binary skin map,
s Map : R

2 → R, where s Map(x) = 1 if I (x) ∈ ws , while s Map(x) = 0 if
I (x) ∈ wn (x ∈ Z

2 is two-dimensional spatial coordinates in the image). In order to
perform classification (online), statistical color models are constructed using train-
ing skin/non-skin samples (offline). In our experiment, GMM models are derived
to represent both skin and non-skin color distributions and the likelihood ratio test
is applied to classify each pixel into skin/non-skin class. In other words, p(c|ws)



Contribution of Skin Color Cue in Face Detection Applications 389

Fig. 8 Overview of skin color classifier training process

and p(c|wn) are directly computed from given skin and non-skin Gaussian models,
and p(c|ws )

p(c|wn)
is compared with a threshold value for classification as described in 7.

GMM is selected due to following reasons: (i) it generalizeswell with relatively small
number of training samples, (ii) compared to other parametric models, it provides
more reliable means to represent multi-modal distribution of human skin color under
varying illumination.

Skin Classifier Training/Testing
We examined a GMM based Bayesian skin classifier with various combinations
of mixture components and colorspaces to identify its optimal configuration. Skin
color classifiers are trained in five commonly used colorspaces in skin color analysis,
including RGB, normalized RGB, YCbCr, HSV, and Cartesian-HSV (denoted as
cHSV). For each colorspace, we examined up to fourGaussianmixtures for skin/non-
skin pair, allowing us to test 20 combinations in total8. In order to train GMMmodels
of skin and non-skin color distributions, a dataset of 1923 images (1014 containing
human skin pixels, 909 without human skin pixels) are collected from world wide
web. The skin subset contains images of Asian (311 images), Caucasian (319), and
Dark skin group (384), while the non-skin subset contains images of art/illustrations
(233), Natural Scene (558), and Product (118). All collected images are in JPEG
format with sRGB 8-bit representation, and uniform in spatial resolution as 1024 ×
768 (both landscape/portrait format) to ensure each image has almost equivalent
contribution in total training pool. For training, skin and non-skin pixels in training
data are converted to each colorspace and GMM parameters are estimated by EM
algorithm along with k-mean clustering initialization, adopting a recommendation
from [74] (Fig. 8).

The skin pixel classification performance was tested on 2000 color images from
Compaq database [36], containing skin color pixels from various ethnic backgrounds

8 Assigning more mixture components for non-skin class than skin class is beneficial due to less
compact shape of non-skin sample distribution. However, we found that performance gain from
having more components for non-skin class is marginal and thus we maintain the same number of
components for both classes in this experiment.
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Table 3 The AUC index of skin color classification performance of 20 combinations

Number ofmixtures Colorspace
RGB HSV YCbCr cHSV nRGB

1 0.8901 0.8723 0.8901 0.8868 0.8513
2 0.8967 0.8991 0.8928 0.8979 0.8772
3 0.8956 0.8932 0.8955 0.8970 0.8788
4 0.8961 0.8923 0.8967 0.8996 0.8713

and illumination conditions. This database is used for validation since it is one of
the most frequently used benchmark databases from research community with pre-
defined groudtruth information. Images in Compaq database are given in JPG or
GIF file format with sRGB 8-bit representation. Detection performance of various
experimental configurations are compared in AUC measure (Table3).

Following observations are made from this experiment:

1. The normalized RGB provides the worst classification power among five col-
orspaces since luminance component is lost during its transformation from 3D to
2D, implying that discarding luminance component should be avoided to achieve
highly accurate skin color classification.

2. GMM outperforms SGM in all five colorspaces, and particularly in HSV col-
orspaces where skin color distribution doesn’t form a compact cluster. In gen-
eral, increasing mixture components results in high classification performance
upto certain number of components before overfitting occurs (e.g. for HSV col-
orspace, having more than two mixture components degrades detection perfor-
mance). We observed that the best skin detection performance can be achieved
by using Cartesian HSV colorspace with four mixture components for both skin
and non-skinGMMmodels. Therefore, it is selected as ourmain trained classifier
model and used throughout subsequent sections.

4.1.3 MBLBP Feature Based Face Detection System

This section briefly describes the MBLBP feature based detection system which
contains all remaining modules in Fig. 7 except aforementioned two modules. Simi-
larly to Viola-Jones’s framework [67], the proposed framework performs exhaustive
search on the input image to determine the existence of the face. This requires the
grayscale version of input, which can be obtained by converting input image I from
RGB to YCbCr and retaining only Y channel. Instead of scanning whole image for
face search, the proposed system uses the generated binary skin mask s Map to nar-
row down search region. Adopting the strategy from [12], particular sub-window
is examined during face search, only if it contains sufficient number of skin color
pixels. LetWk is the kth sub-windowexamined during iterativewindow scan to deter-
mine whether this sub-window is face image or not. MBLBP based face/non-face
classification is carried out only if:
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∑
x∈Wk

s Map(x)

wk × hk
≥ L (23)

where wk and hk are the width and height of window Wk , respectively, and L is the
threshold for minimum skin pixel count. For our testing dataset, we found L = 0.4
yields satisfactory results.

MBLBP based face detector training
To train MBLBP based face detector, 9916 gray scale face images in 24× 24 pixels
are collected by combining Viola and Jones dataset and Ole Jensen dataset [34].
These face images contain large variations including but not limited to pose, facial
expression, and illumination conditions. The baseline size (24×24 pixels) is applied
directly to training as in [67]. Furthermore, more than 100K of negative training
image patches are extracted from 2,000 high resolution non-face images collected
from theweb. For consistency, the negative image patches are resized to the same size
as face image patches. From the entire set, 7,916 face images and 10,000 non-face
images are randomly extracted to train classifier, and another independent 2,000 face
images and 10,000 non-face images are randomly selected for validation.

The face detector is trained aiming for high detection accuracy of approximately
97% detection rate. To achieve this, the stage classifiers are trained to have higher
than 99% true positive rate (TPR) on validation dataset. In addition, a pre-assigned
false positive rate (FPR) is achieved on validation dataset by adjusting the number of
features and threshold for each stage. For fast processing, only a small number of fea-
tures are used in the initial stage allowing a relatively high FPR (around 50%). Each
succeeding stage is designed to use increased number of features to reduce FPR by
around 10% from its prior stage. The number of stages is increased until the desired
overall performance is achieved. Overall, the face detector achieves 96.9% TPR and
7.94x10−6 FPR on validation dataset. This particular TPR and FPR configuration is
chosen adopting general practice from the literatures9. GentleBoost machine learn-
ing algorithm is used to train the classifier due to its exceptional performance among
the variants of Boosting algorithm [46].

4.2 Experimental Results

In order to evaluate the proposed face detection method, we have chosen the Bao
color face database [16]. The Bao database is chosen due to following two reasons:
(i) it represents real-life scenarios by containing wide variety of images, includ-
ing faces of various ethnic groups (Asian, Caucasian, and Dark skin group), poses
(frontal and non-frontal), illumination conditions (indoor and outdoor), and image

9 Viola and Jones [67] indicate that around 1× 10−6 of FPR is a common value for practical uses.
However, it is extremely difficult to achieve the precise value and generally it is acceptable if FPR
is within the same magnitude. For instance, Jun and Kim [37] achieves 96% TPR at 2.56 × 10−6

FPR, and Louis and Plataniotis [47] achieves 92.27% TPR at 6.2 × 10−6 FPR
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Fig. 9 Example of
groundtruth face box gen-
eration (Sample image is
taken from [16])

resolutions (from 57×85 to 1836×1190), (ii) it is publicly available database which
is widely used for evaluation of face detector [12, 68]. All images in this dataset are
provided in 8-bit JPEG format and we used 117 images containing a single face
and 220 images containing multiple faces, examining a total of 1360 faces. Since
the original Bao database does not contain the groundtruth information for the face
locations, we manually generated groundtruth by locating a rectangle using the eye
locations (Fig. 9). The correctness of face detection hypothesis is evaluated based
on the groundtruth and the following two criterions [70]: (i) the Euclidean distance
between the hypothesis face box center and groundtruth face box center must be
within 30% of the groundtruth width, (ii) the detection hypothesis width must be
within 50% of the groundtruth width.

In Fig. 10, the Free Receiver Operator Characteristic (FROC) is illustrated to
compare two detection pipelines:MBLBP texture only pipeline (denoted asMBLBP)
and hybrid of texture and color pipeline (denoted asMBLBP SS). FROC is similar to
ROC except it plots the detection rate (DR) versus number of false positive detections
instead of false positive rates. As can be seen, by incorporating color information, the
proposed MBLBP feature based face detection yields enhanced detection accuracy
over almost entire range of number of false positive (nFP). Since the texture only
pipeline discards the chrominance information, it will generate false positive if the
scene contains a background object of face-like texture pattern. By using skin color
information, such false positives can be successfully filtered out during face search.
The degree of improvement is approximately 1% increase in TP from 93% to 94
at nFP of 40. In Fig. 11, the detection results of both pipelines are compared on
three samples images from Bao database, containing various skin types in indoor
and outdoor lighting conditions. The figures demonstrate that all false positives have
been successfully eliminated by exploiting skin color cue.

To compare computational complexity of both pipelines, we measure the total
number of scanned sub-windows during face search for all images in Bao dataset.
The number of scanned sub-windows is an important cue for computational speed,
since only a subset of sub-windows which are sufficiently populated with skin color
pixels are scanned for hybrid pipeline while all sub-windows have to be scanned for
texture only pipeline. In addition, we measure the total execution time to process
all 337 images in Bao dataset to evaluate computational speed in real MATLAB
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Fig. 10 FROC of face detection result on Bao dataset using MBLBP texture only pipeline and
hybrid pipeline

Table 4 Computational complexity comparison between two pipelines

MBLBP-texture Hybrid

Total number of scanned sub-window during exhaustive search 43387629 9150270
Total processing delay (in seconds) 62930 14286

implementation10. Experimental results are obtained on Core 2 Duo 3.0 GHz CPU
with 4GB RAM running Windows 7 operating system. Although there is software
overhead in MATLAB implementation, the obtained results are proportional to the
number of scanned windows, as shown in Table4. In hybrid pipeline, only 2.75%
of total execution delay (i.e. 393s out of 14286s) accounts for skin color detection,
while more than 95% of delay accounts for texture analysis, demonstrating compu-
tational efficiency of color analysis. Overall, hybrid pipeline not only allows us to
enhance detection accuracy by removing false positives with non-skin color, but also
significantly reduces computational complexity.

10 Instead of measuring average number of scanned window and execution time per frame, we
measured the sum of them, since test images in Bao database vary in spatial resolutions
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Fig. 11 Detection results of the proposed face detector for sample images from the Bao database
[16]: upper images are obtained with MBLBP texture only pipeline whereas lower images are
obtained with hybrid pipeline

Effectiveness of color constancy solution is evaluated in two different aspects
that: (i) color constancy algorithm is applied to images under abnormal lighting con-
dition and its impact on face detection performance is analyzed, (ii) color constancy
algorithm is applied to images under generic lighting condition (e.g. images from
standard image database) and its impact on face detection performance is analyzed.
Such analysis allows us to identify color constancy solutions that improves detection
performance on images under challenging illumination condition while providing
comparable performance on general images.

Figure12 presents a sample image rendered under indoor lighting with yellow
cast, and adjusted images using four color constancy algorithms. The skin pixels of
each image are manually extracted, and their RGB values are converted to HSV and
plotted in the H-S plane. As can be seen, the skin color distribution of the origi-
nal image is slightly biased towards yellow hue than the one under normal lighting
condition (Refer to Table1 for commonly accepted hue values for skin color). Con-
sequently, skin color classifier fails to detect most of skin pixels in the scene, which
eventually results in face localization error. By applying color constancy algorithm,
the reliability of skin color classification is improved (e.g. with GW, SoG, and WP
algorithms), allowing subsequent texture analysis to be performed in detected skin
region. However, Fig. 12b shows that failure of illumination compensation may lead
to even severe color distortion on skin pixels. It demonstrates that the performance
of color constancy is image dependent and thus, to obtain meaningful measure of
algorithm accuracy, average performance over a set of images should be assessed.
In Fig. 13, the effectiveness of color constancy algorithms are evaluated on Bao
database. Experimental results indicate that applying color constancy algorithms on
large-scale image dataset generally yields comparable or slightly higher detection
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Fig. 12 Skin color pixel distribution in H-S plane and skin pixel detection results on a sample
image taken from Color Checker Dataset [19] : a Original image, b–e images processed by GE,
GW, SoG, and WP color constancy algorithms, respectively

performance, except for the GW algorithm, where DR drops significantly by approx-
imately 5%. It implies that redundant illumination compensation on images under
generic illumination conditionmay deteriorate face detection performance and there-
fore algorithm should be carefully validated over a wide variety of images to build
robust real-world solution.
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Fig. 13 FROC of face detection result on Bao dataset using hybrid pipeline with various illumina-
tion compensation methods

5 Case Study 2 : Use of Skin Color Cue in Feature-Based Face
Detection System

In Sect. 4, we have demonstrated that color provides complementary information to
reduce falsely detected faces, while minimizing face search delay in image-based
face detection system. However, the aforementioned detection system has two major
limitations: (i) evenwith complementary color information, it is still found to be com-
putationally intensive due to exhaustive search process, (ii) its performance drops
significantly when face is not frontal upright since training of system is done with
frontal upright faces. Several advanced face detection methodologies have been pro-
posed to achieve rotation invariant detection by cascading N pose specific detectors
in parallel [66], but often such system exhibits increased complexity, fails to meet
real-time requirements.

In this section, we demonstrate another example of face detection system, where
aforementioned limitations of image-based approaches are addressed by using
feature-based face detection approach in conjunction with color analysis. As men-
tioned earlier, color is an attribute that is invariant to rotation and scaling, and there-
fore, such property can be exploited to improve the robustness of face detection



Contribution of Skin Color Cue in Face Detection Applications 397

Fig. 14 Overview of feature-based face detection pipeline exploiting skin color cue

system towards rotated face. The workflow of the proposed face-detection algorithm
presented in Fig. 14 can be summarized as follows:

• Illumination compensation is performed on the input color image to reduce the
effect of prevailing illumination, followed by skin pixel classification to extract
skin-like pixels

• By utilizing a series of binary morphological operations, face candidate regions
are formed from detected skin pixels

• Each face candidate regions are verified through several analysis to determine
whether if corresponding region is a face or not

5.1 Proposed Face Detection Framework

5.1.1 Face Candidate Identification

We start by extracting skin pixels using the GMM based classifier in Cartesian HSV
colorspace outlined earlier in Sect. 4.1.2. Once all of the pixels have been classified
by generating binary skin map, s Map : R2 → R, a series of binary morphological
operations are subsequently applied to s Map to refine the extracted skin region.
Morphological operation simplifies image data by eliminating detail smaller than
the structuring element while preserving their global structural information [28].

We utilize two morphological operations in series: morphological closing fol-
lowed by morphological opening. Both operations are carried out with a disk-shaped
structuring element of radius 3, which provide a good balance between noise reduc-
tion and structural detail preservation. Essentially, closing an image with a disk
shape smoothes contour; eliminates small holes; and fills gaps within the objects,
while opening an image with a disk shape eliminates small islands and sharp peaks.
Consequently, object boundaries are smoothen out and small artifacts are effectively
removed, achieving semantically meaningful segmentation. Subsequently, cluster
of connected pixels are obtained from the refined binary image through connected
component labelling to generate set of face candidates to be verified individually.
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5.1.2 Face Verification

The input to face verification mechanism may contain objects other than the facial
areas, such as other part of human body or skin-colored background objects. The
verification module exploits general characteristics of human face region to distin-
guish actual face from a set of candidates. More specifically, we consider following
criteria in sequential manner to verify face candidates:

1. Region Size : Any candidate regions of insignificant size are discarded from
further verification by imposing minimum size constraint. Clusters of area less
than 0.5% of the image dimension are eliminated since such small regions
generally don’t correspond to actual face region if image was captured from
reasonable distance.

2. Aspect Ratio : Given the geometry of the human face, it is reasonable to expect
that the ratio of height to width falls within a specific range. If the dimensions
of a candidate object satisfy the commonly accepted dimensions of the human
face, then it can be classified as a facial area.
To examine aspect ratio, each face candidate region F is approximated by the
best-fit ellipse using statisticalmoments [58]. The ellipse is represented by a state
parameter s = (xF , yF , θF , aF , bF ), where (xF , yF ) is the center of ellipse, θF

is the angle of major axis of the ellipse with the horizontal axis, aF and bF

are the length of minor and major axis of the ellipse (Fig. 15). The parameters
are obtained by finding an ellipse that has same normalized central moment as
the candidate region. Initially, (xF , yF ) is defined as the centroid of the region
F . The normalized second central moments of the region F can be computed
(p + q = 2, p ≥ 0, q ≥ 0):

μp,q(F) = μp,q(F) · (1/μ0,0(F)
)(p+q+2)/2 (24)

where μp,q(F) is the central moment of the region F , defined as:

Fig. 15 Face candidate region represented by ellipse: aOriginal image, bBinary skinmap of image
a, c Ellipse matched to face candidate region
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μp,q(F) =
∑

(i, j)∈F

(i − xF )p · ( j − yF )q (25)

The orientation θF of the major axis (θF ∈ [−π/2, π/2]) can be found from the
central moments:

θF = 1

2
arctan

(
2 · μ1,1(F)

μ2,0(F) − μ0,2(F)

)

(26)

The length of minor and major axis, aF and bF can be computed as:

aF = 2
√

(λ1/|F |) , bF = 2
√

(λ2/|F |) (27)

where |F | is number of pixels in region F , and

λ1 =
√

(μ2,0(F) + μ0,2(F))/2 −
√

4μ1,1(F)2 + (μ2,0(F) − μ0,2(F))2

(28)

λ2 =
√

(μ2,0(F) + μ0,2(F))/2 +
√

4μ1,1(F)2 + (μ2,0(F) − μ0,2(F))2

On the basis of the computed ellipse parameter, the candidate regions with the
aspect ratio bR/aR in the interval of [1.0, 3.0] are retained as face regions.

3. Template Matching : The final stage of verification involves template match-
ing where pixel intensity comparison between the pre-defined template face and
the grayscale face candidate region is performed. The cross correlation is used
as a similarity measure between the template and the face candidate. The tem-
plate face is obtained by averaging frontal face image from CMU-PIE (Carnegie
Mellon University Pose, Illumination, and Expression) dataset [56]. Initially,
each remaining face candidate region is extracted from grayscale image using
the binary mask from previous stage (Any holes within the binary mask are filled
to retain eye and mouth features—Fig. 16c). The resultant image is transformed
to grayscale for matching (Fig. 16d). Then grayscale template image T is aligned
with considered candidate region (Fig. 16e) by: (i) resizing T according to the
length ofminor andmajor axis (aR, bR) estimated from previous stage, (ii) rotat-
ing by θR prior to place it on the centroid of the candidate region. Finally cross
correlation is evaluated between aligned template and considered face candidate
region. In our experiment, the cross correlation threshold is set to 0.6.

5.2 Experimental Result

Weapplied the scheme outlined in Sect. 5.1 to locate face region in images taken from
Bao database. Figure17 shows the procedure used to detect faces in a scene where
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Fig. 16 Overview of template matching process

Fig. 17 Face detection sequence: a Original image, b Binary skin map obtained from skin color
classification, c potential face candidates identified after morphological operations on binary skin
map, d Final detection result after verification

three faces are successfully detectedwhile other regions classified as skin are rejected
from the verification stage. In particular, this example demonstrates the effectiveness
of proposed feature-based detection solution in dealingwithwider range of face poses
than the detector outlined in Sect. 4, where the former successfully located face of
almost 90◦ rotated.

Another strength of this feature-based detection system is its computational speed.
Compared to the image-based solution outlined in Sect. 4 which requires exhaustive
scanning of the image, the runtime of this solution is much faster since verification
only takes place for identified face candidate regions. For example, the MATLAB
implementation of the feature-based detection system took only 2146 seconds to
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process all 337 images from Bao dataset in the same system environment used in
Sect. 4 (Table5). It is worthwhile to point out that direct comparison of processing
speedmay not bemeaningful asMATLAB implementations are not optimized. How-
ever, given the computational complexity of underlying workflow, it is reasonable
to assume that feature-based face detection system is much faster even in real-world
implementation. Figure18 illustrates the robustness of the proposed scheme for faces
of different ethnicity under various lighting conditions, including indoor and outdoor.

Although the proposed detector yields encouraging results, there are certain types
of challenging condition that limit the performance of the system.

• The detector becomes unstable if other part of body (e.g. neck or hand) is placed
in contact with a face (Fig. 19a), or if face overlaps with other skin-colored region
(e.g. background objects or other faces) in the line of camera’s sight (Fig. 19b).
In this case, it’s unable to separate each object into distinct clusters during face

Table 5 Performance comparison between two face detection systems outlined in Sects. 4 and 5
on 337 images of Bao dataset

Face detection method No. FP Detection rate (%) Processing delay (s)

Hybrid method in Sect. 4 64 94.6 14286
Feature-based method in Sect. 5 318 78.3 2146

Fig. 18 Examples of the successful detection of faces with different skin colors and poses
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Fig. 19 Examples of the failed detection of faces

candidate identification and verify them individually. This particular scenario often
results in generation of false positives or false negatives.

• Template matching tends to be highly tolerable to false positives (e.g. skin-colored
background objects, and other part of skin-colored body) and thus, often fails to
properly filters out other part of bodies with skin color. (Fig 19c)

Due to aforementioned limitations, face detection system introduced in this section
yields suboptimal detection accuracy compared to image-based approach from the
last section (See Table5). Therefore, there exists a tradeoff between computational
efficiency and detection accuracy. Following modification can be considered in order
to enhance the detection performance of the feature-based detector:

• The true positive rate can be improved by properly segmenting face regions when
face is presented in contact with other skin area, or presented in front of skin-
colored background during face candidate identification stage. This requires use
of other modalities, such as shape or texture, since color cue itself is not sufficient
to distinguish between them.

• The number of false positives can be decreased by introducing more constraints
into verification stage. For example, [30, 58] impose pose angle constraints that if
the vertical orientation of face region is beyond commonly accepted interval, the
corresponding region is rejected as non-face.

6 Conclusion

The face plays a crucial role in our human social interaction; face conveys people’s
identity and facial expression can be used as an important means of communication.
Therefore, it is not surprising that human facial analysis has been considered as one
of the most active areas of research in digital image processing and computer vision
applications. While detection of faces is one of the basic tasks for human, it is not
trivial task in computer vision, since faces have a high degree of variation in shape,
color, and texture depending on imaging condition. In order to build a reliable and
robust face detection system, several cues, such as motion, shape, color, and texture
have been taken into account. Among available cues, color cue is advantageous due to
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its low computational complexity, high discriminative power, and robustness against
geometrical transformation under stable illumination condition.

This chapter addressed several frequently encountered issues when using skin
color as a feature for face detection, such as: (i) selection of the suitable color repre-
sentation (i.e. colorspace) to perform color classification, (ii) selection of modeling
scheme to represent the skin color distribution, (iii) dealing with its dependence
to the illumination condition, (iv) how to apply skin color classification results in
high-level analysis system.

Following conclusions can be drawn from this chapter:

1. Skin color analysis for face detection application involves a pixel-wise classi-
fication to discriminate skin and non-skin pixels. In order to select an optimal
combination of color representation and skin color modeling scheme, the desired
performance requirements (in terms of accuracy and processing speed), the avail-
able computational resources, as well as the amount of data available for training
should be considered.

2. Color constancy algorithms can improve skin pixel classification performance by
compensating the effect of scene illuminant in the recorded image and reveal-
ing the underlying color of object. In this chapter, we mainly reviewed low-
complexity solutions, suitable to be deployed as a pre-processor for face detec-
tion framework. Experimentation performed on standard color face database
demonstrates that face detection accuracy can be enhanced by applying them
prior to skin color analysis.

3. Skin color cue can be utilized in face detection system in following two ways: (i)
In image-based face detection approach, the faster and more accurate exhaustive
face search can be achieved by using skin color with the purpose of guiding
the search. Pixel-level classification of skin and non-skin is sufficient for this
purpose, (ii) In feature-based face detection approach, color provides visual cue
to focus attention in the sceneby identifying a set of skin-colored regions thatmay
contain face objects. Typically, local spatial context of skin pixel distribution is
considered after skin color classification by exploitingmorphological operations
and connected component analysis.

References

1. Albiol A, Torres L, Delp E (2001) Optimum color spaces for skin detection. In: Proceedings
of international conference on image processing, Thessaloniki, vol 1, pp 122–124

2. BarnardK,CardeiV, FuntB (2002)Acomparison of computational color constancy algorithms.
I: methodology and experiments with synthesized data. IEEE Trans Image Process 11(9):972–
984

3. Bilal S, Akmeliawati R, Salami M, Shafie A (2012) Dynamic approach for real-time skin
detection. J Real-Time Image Process pp 1–15

4. Brown D, Craw I, Lewthwaite J (2001) A SOM based approach to skin detection with applica-
tion in real time systems. In: Proceedings of the British machine vision conference, University
of Manchester, UK, pp 491-500



404 D. Lee et al.

5. Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst
310(1):1–26

6. Caetano T, Olabarriaga S, Barone D (2002) Performance evaluation of single and multiple-
Gaussian models for skin color modeling. In: Proceedings XV Brazilian symposium on com-
puter graphics and image processing, Brazil, 275–282

7. Chai D, Ngan KN (1998) Locating facial region of a head-and-shoulders color image. In:
Proceedings of the international Conference on face and gesture recognition, pp 124–129

8. Chaves-Gonz+-lez JM, Vega-Rodr+-guez MA, G+-mez-Pulido JA, S+-nchez-P+-rez JM,
(2010) Detecting skin in face recognition systems: a colour spaces study. Digital Sig Proc
20(3):806–823

9. Chen HY, Huang CL, Fu CM (2008) Hybrid-boost learning for multi-pose face detection and
facial expression recognition. Pattern Recogn 41(3):1173–1185

10. Conci A, Nunes E, Pantrigo JJ, Sánchez A (2008) Comparing color and texture-based algo-
rithms for human skin detection. In: Computer interaction 5:166–173

11. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
EM algorithm. J R Stat Soc, Series B 39(1):1–38

12. Erdem C, Ulukaya S, Karaali A, ErdemA (2011) Combining Haar feature and skin color based
classifiers for face detection. In: IEEE international conference on acoustics, speech and signal
processing, pp 1497–1500

13. Fasel I, Fortenberry B,Movellan J (2005) A generative framework for real time object detection
and classification. Comput Vis Image Underst 98(1):182–210

14. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874
15. FinlaysonGD,Trezzi E (2004) Shades ofGray andColourConstancy. In: Twelfth color imaging

conference: color science and engineering systems, technologies, and applications, pp 37–41
16. Frischholz R (2008) Bao face database at the face detection homepage. http://www.

facedetection.com. Accessed 07 Dec 2012
17. Fritsch J, Lang S, Kleinehagenbrock M, Fink G, Sagerer G (2002) Improving adaptive skin

color segmentation by incorporating results from face detection. In: Proceedings of the IEEE
international workshop on robot and human interactive communication, pp 337–343

18. Fu Z, Yang J, Hu W, Tan T (2004) Mixture clustering using multidimensional histograms for
skin detection. In: Proceedings international conference on pattern recognition, vol 4. Brighton,
549–552

19. Gehler P, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited.
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/colour/. In: IEEE conference on com-
puter vision and pattern recognition, pp 1–8

20. Gevers T, Smeulders AW (1999) Color-based object recognition. Pattern Recognit 32(3):453–
464

21. Gevers T, Gijsenij A, van de Weijer J, Geusebroek JM (2012) Pixel-based photometric invari-
ance, Wiley Inc., pp 47–68

22. Gijsenij A, Gevers T, van de Weijer J (2011) Computational color constancy: survey and
experiments. IEEE Trans Image Process 20(9):2475–2489

23. Gomez G, Morales EF (2002) Automatic feature construction and a simple rule induction
algorithm for skin detection. In: Proceedings of the ICML workshop on machine learning in
computer vision, pp 31–38

24. Greenspan H, Goldberger J, Eshet I (2001) Mixture model for face-color modeling and seg-
mentation. Pattern Recogn Lett 22(14):1525–1536

25. Hadid A, Pietikäinen M (2006) A hybrid approach to face detection under unconstrained
environments. In: International conference on pattern recognition, vol 1:227–230

26. Hadid A, Pietikäinen M, Ahonen T (2004) A discriminative feature space for detecting and
recognizing faces. In: Proceedings IEEE Conference on computer vision and pattern recogni-
tion, vol 2, pp II-797–II-804

27. Hanbury A (2003) Circular statistics applied to colour images. In: Proceedings of the computer
vision winter workshop, Valtice, pp 55–60

http://www.facedetection.com
http://www.facedetection.com
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/colour/.


Contribution of Skin Color Cue in Face Detection Applications 405

28. Haralick R, Shapiro L (1992) Computer and robot vision, addison-wesley longman publishing
Co Inc, 1st edn. vol 1, Boston

29. Hassanpour R, Shahbahrami A, Wong S (2008) Adaptive Gaussian mixture model for skin
color segmentation. Eng Technol 31(July):1–6

30. Herodotou N, Plataniotis KN, Venetsanopoulos AN (2000) Image Processing Techniques for
Multimedia Processing. In: Guan L, Kung SY, Larsen J (eds) Multimedia image and video
processing. CRC Press, chap 5:97–130

31. HjelmåsE, LowBK (2001) Face detection: a survey. ComputVis ImageUnderst 83(3):236–274
32. Hossain MF, Shamsi M, Alsharif MR, Zoroofi RA, Yamashita K (2012) Automatic facial skin

detection using gaussian mixture model under varying illumination. Int J Innov Comput I
8(2):1135–1144

33. Hsu RL, Abdel-Mottaleb M, Jain A (2002) Face detection in color images. IEEE Trans Pattern
Anal Mach Intell 24(5):696–706

34. Jensen OH (2008) Implementing the viola-jones face detection algorithm. Technical university
of Denmark, department of informatics and mathematical modeling, master’s thesis, Denmark

35. Jin H, Liu Q, Lu H, Tong X (2004) Face detection using improved LBP under bayesian frame-
work. In: Proceeding of the international conference on image and graphics, pp 306–309

36. Jones MJ, Rehg JM (2002) Statistical color models with application to skin detection. Int J
Comput Vision 46(1):81–96

37. Jun B, Kim D (2012) Robust face detection using local gradient patterns and evidence accu-
mulation. Pattern Recognit 45(9):3304–3316

38. Kakumanu P, Makrogiannis S, Bourbakis N (2007) A survey of skin-color modeling and
detection methods. Pattern Recognit 40(3):1106–1122

39. Kawulok M (2008) Dynamic skin detection in color images for sign language recognition.
In: Elmoataz A, Lezoray O, Nouboud F, Mammass D (eds) ICISP Lecture notes in computer
science, vol 5099. Springer, France, 112–119

40. Khan R, Hanbury A, Sablatnig R, Stöttinger J, Khan F, Khan F (2012 a) Systematic skin
segmentation: merging spatial and non-spatial data. Multimed tools appl pp 1–25

41. Khan R, Hanbury A, Stöttinger J, Bais A (2012 b) Color based skin classification. Pattern
Recognit Lett 33(2):157–163

42. Kovac J, Peer P, Solina F (2003) Human skin color clustering for face detection. In: The IEEE
region 8 EUROCON 2003 computer tool, vol 2:144–148

43. von Kries J (1970) Influence of adaptation on the effects produced by luminous stimuli. In:
MacAdam D (ed) Sources of color science, MIT Press, pp 109–119

44. Land EH (1977) The retinex theory of color vision. Sci Am 237(6):108–128
45. Lee JY, Yoo SI (2002) An elliptical boundary model for skin color detection. In: Proceedings

international conference on imaging science, systems, and technology. pp 81–96
46. Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection.

In: Proceedings international confrence on image processing, vol 1, pp 900–903
47. LouisW, Plataniotis KN (2011) Co-occurrence of local binary patterns features for frontal face

detection in surveillance applications. EURASIP J Image Video Proces 2011
48. Moon H, Chellappa R, Rosenfeld A (2002) Optimal edge-based shape detection. IEEE Trans

Image Process 11(11):1209–1227
49. Naji SA, Zainuddin R, JalabHA (2012) Skin segmentation based onmulti pixel color clustering

models. Digital Sig Process 22(6):933–940
50. Ojala T, Pietik+inen M, Harwood D, (1996) A comparative study of texture measures with

classification based on featured distributions. Pattern Recognit 29(1):51–59
51. Phung S, Bouzerdoum SA, Chai SD (2005) Skin segmentation using color pixel classification:

analysis and comparison. IEEE Trans Pattern Anal Mach Intell 27(1):148–154
52. Plataniotis KN, Venetsanopoulos AN (2000) Color image processing and applications.

Springer-Verlag, New York
53. Schmugge SJ, Jayaram S, Shin MC, Tsap LV (2007) Objective evaluation of approaches of

skin detection using ROC analysis. Comput Vis Image Underst 108:41–51



406 D. Lee et al.

54. Schwartz WR, Gopalan R, Chellappa R, Davis LS (2009) Robust human detection under
occlusion by integrating face and person detectors. In: Proceedings international conference
on advances in biometrics, pp 970–979

55. Sigal L, Sclaroff S, Athitsos V (2004) Skin color-based video segmentation under time-varying
illumination. IEEE Trans Pattern Anal Mach Intell 26(7):862–877

56. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE
Trans Pattern Anal Mach Intell 25(12):1615–1618

57. Smith AR (1978) Color gamut transform pairs. SIGGRAPH Comput Graph 12(3):12–19
58. Sobottka K, Pitas I (1996) Extraction of facial regions and features using color and shape

information. In: Proceedings international conference of pattern recognition, pp 421–425
59. Soriano M, Martinkauppi B, Huovinen S, Laaksonen M (2000) Skin detection in video under

changing illumination conditions. In: Procedings international conference on pattern recogni-
tion, vol 1:839–842

60. Störring M (2004) Computer vision and human skin colour: a Ph.D. Computer vision and
media technology laboratory. Dissertation, Aalborg University

61. Sun HM (2010) Skin detection for single images using dynamic skin color modeling. Pattern
Recognit 43(4):1413–1420

62. Terrillon JC, David M, Akamatsu S (1998) Automatic detection of human faces in natural
scene images by use of a skin color model and of invariant moments. In: Proceedings IEEE
international conference on automatic face and gesture recognition, pp 112–117

63. Terrillon JC, Shirazi M, Fukamachi H, Akamatsu S (2000) Comparative performance of dif-
ferent skin chrominance models and chrominance spaces for the automatic detection of human
faces in color images. In: Proceedings of the IEEE international conference on automatic face
and gesture recognition, pp 54–61

64. Terrillon JC, Pilpre A, Niwa Y, Yamamoto K (2003) Analysis of a large set of color spaces for
skin pixel detection in color images. In: Internationa Conference on quality control by artificial
vision, vol 5132, pp 433–446

65. Vezhnevets V, Sazonov V, Andreeva A (2003) A survey on pixel-based skin color detection
techniques. In: Proceedings of the GRAPHICON-2003, pp 85–92

66. Viola M, Jones MJ, Viola P (2003) Fast multi-view face detection. In: Proceedings of the
computer vision and pattern recognition

67. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57(2):137–154
68. Wang X, Xu H, Wang H, Li H (2008) Robust real-time face detection with skin color detection

and the modified census transform. In: International confrence on information and automation,
pp 590–595

69. Wang X, Zhang X, Yao J (2011) Skin color detection under complex background. In: Inter-
national conference on mechatronic science, electric engineering and computer (MEC), pp
1985–1988

70. Wei Z,DongY, Zhao F,BaiH (2012) Face detection based onmulti-scale enhanced local texture
feature sets. In: IEEE International conference on acoustics, speech and signal processing, pp
953–956

71. van de Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image
Process 16(9):2207–2214

72. Yang G, Huang TS (1994) Human face detection in a complex background. Pattern Recognit
27(1):53–63

73. Yang J, Lu W, Waibel A (1997) Skin-color modeling and adaptation. In: Proceedings of the
Asian conference on computer vision-volume II, Springer-Verlag, pp 687–694

74. Yang MH, Ahuja N (1999) Gaussian mixture model for human skin color and its applications
in image and video databases. In: Proceedings of the SPIE, pp 458–466

75. Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans
Pattern Anal Mach Intell 24(1):34–58

76. Yendrikhovskij SN, Blommaert FJJ, de RidderH (1999) Color reproduction and the naturalness
constraint. Color Res Appl 24(1):52–67



Contribution of Skin Color Cue in Face Detection Applications 407

77. Zarit BD, Super BJ, Quek FKH (1999) Comparison of five color models in skin pixel classi-
fication. In: Proceedings of the International workshop on recognition, analysis, and tracking
of faces and gestures in real-time systems, pp 58–63

78. Zeng H, Luo R (2012) A newmethod for skin color enhancement. In: Proceedings of the SPIE,
vol 8292. pp 82,920K.1–9

79. Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech Rep MSR-TR-
2010-66, Microsoft Research

80. Zhang L, Chu R, Xiang S, Liao S, Li S (2007) Face detection based on Multi-Block LBP Rep-
resentation. In: Advances in biometrics, lecture notes in computer science, vol 4642. Springer-
Verlag, pp 11–18

81. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey.
ACM Comput Surv 35(4):399–458


	12 Contribution of Skin Color Cue in Face Detection Applications
	1 Introduction
	2 Face Detection and Color Cue
	3 Skin Color Detection
	3.1 Color Representation
	3.2 Skin Color Distribution Model
	3.3 Comparison and Discussion of Skin Color Distribution Models and Color Representations
	3.4 Illumination Adaptation for Skin Color Detection

	4 Case Study 1 : Use of Skin Color Cue in Image-Based Face Detection System
	4.1 Proposed Face Detection Framework
	4.2 Experimental Results

	5 Case Study 2 : Use of Skin Color Cue in Feature-Based Face Detection System
	5.1 Proposed Face Detection Framework
	5.2 Experimental Result

	6 Conclusion
	References


