
Chapter 7
Nonlinear Chemistry

Abstract The sensational aspects of quantum theory, from the wave-particle na-
ture of electrons to Schrödinger’s cat, are the artefacts that result from describing
nonlinear systems by linear differential equations. As linear waves are dispersive, a
wave model of the electron is still being rejected, whereas a nonlinear wave model is
shown to account for electronic behaviour in all conceivable situations. This chapter
introduces the distinction between linear and nonlinear systems with examples from
hydrodynamics and mechanics and applied to the wave mechanics of wave packets,
solitons, electrons and lattice phonons. Special topics for discussion include the mo-
tion of free electrons, the fine-structure parameter, electron diffraction, photoelectric
and Compton effects, X-ray diffraction, metallic conduction, superconductivity and
elementary covalent interaction. A new innovation, introduced here, is recognition
of the quantum potential as a nonlinearity parameter that enables a seamless transi-
tion between classical and non-classical systems.

7.1 Introduction

It has been argued [1] that because complex phenomena are so ubiquitous in Nature
the common concepts, characteristic of nonlinear behaviour, are not discipline de-
pendent but pertain equally well to problems in physics, chemistry, biology and en-
gineering. Although the general validity of this perception is readily demonstrated,
the value of mathematical models that describe nonlinear behaviour has not been
recognized to a significant extent in chemistry.

To highlight the chemical relevance of the nonlinearity paradigms developed
elsewhere there is no better starting point than the analysis of electronic behaviour,
which underpins all of chemistry.

Most electron models, from Lorentz [2] to the present have stumbled on the prob-
lem of non-dispersal. Despite the early realization, first verbalized by Stoney in
1891, that an electron features an indivisible unit charge, it has been argued repeat-
edly that it should blow up under coulombic repulsion. The standard response has
been to reduce the electron to a zero-dimensional point object. The problems asso-
ciated with this as a physical model are infinitely worse; with infinite gravitational
and electrostatic fields.
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More recent analyses of nonlinear waves led to renewed interest in wave mod-
els of elementary particles, including electrons, in quantum field theory. Nonlinear
waves are different, not because they are non-oscillatory, but also because their ve-
locity is amplitude dependent. For linear waves the speed is always independent of
amplitude. Any two solutions of a linear equation can be added together to form
a new solution. This, so-called, superposition principle enables the solution of es-
sentially any linear problem. Fourier transformation, for instance, depends on such
superposition of solutions. In contrast, different solutions of a nonlinear equation
cannot be added together to form another solution. A nonlinear problem can there-
fore not be reduced to smaller solvable problems and without a general analytic
approach they are more difficult to solve.

7.2 Wave Model of the Electron

To specify the kinematics of a macroscopic system it is traditionally decomposed
into elementary components of rectilinear, rotational and oscillatory motion, de-
scribed by a set of linear classical equations. In Hamilton–Jacobi theory, aimed at
a unified description of many-particle systems, characteristic moving surfaces are
shown to propagate through space in the same manner as wave fronts of constant
phase [3, p. 487]. It is therefore possible, even in classical mechanics, to recognize a
duality of particle-like and wave-like aspects in the motion of macroscopic objects.
This conclusion has no implication on the physical structure of the moving object
and it is generally conceded that a particulate description is the more appropriate.

The same duality applies to microscopic systems, but in this case the wave na-
ture predominates. Mathematically the only instance where wave and particle de-
scriptions are equally valid is in the case of geometrical optics. Again, this dual
formalism does not confer particle nature to physical waves or vice versa. On de-
scribing wave motion in Hamilton–Jacobi formalism, which is the basis of wave
mechanics [3, p. 490], the appearance of particle-like behaviour must be anticipated,
without implying that the wave is a point particle.

As commonly conceived a wave is theoretically of infinite extent and a particle
has no extent. In this sense the two alternative descriptions of an electron commonly
defined as either a particle or a wave are equally unrealistic. Maybe it is for this rea-
son that the Copenhagen notion of an entity with both wave and particle properties
is generally more readily accepted. This compromise hints at an object of finite size,
widely, but vaguely, rationalized as a wave packet.

The unrealistic wave-particle model of the electron has an interesting history that
dates back to the 19th century and Faraday’s electrochemical research. It was found
that a chemical equivalent of any substance reacts with a fundamental quantity of
electricity, F . Interpreted as an electrochemical equivalent it amounts to a charge of
e = F/L per atom, where L is Avogadro’s number. Observation of discrete parti-
cles with the same elementary charge during radioactive decay confirmed that elec-
tric charge is not indefinitely divisible but occurs as discrete units, now known as
electrons.
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Assuming that the electrostatic charge carried by an electron of rest mass m, is
spread over a spherical volume of radius r0, i.e. mc2 = e2/4πε0r0, the electron is
defined as a sphere of mass m and radius r0 that carries a unit of electric charge. This
so-called “classical” radius of the electron is confirmed in scattering experiments.

7.2.1 Wave Mechanics

The simplest example of a linear wave is the so-called sinusoidal wave

φ(x, t) = a sin(kx ± ωt)

where a is the amplitude, k and ω, wave number and angular frequency, are related
to the wavelength λ and frequency ν by k = 2π/λ, ω = 2πν. The ± sign specifies
waves progressing to the left and right respectively. The speed of the wave is given
by v = ω/k. If the velocity of the wave is independent of k and ω, these may be
eliminated by differentiation to give

∂2φ

∂t2
= c2 ∂2φ

∂x2
(c = constant), (7.1)

the general wave equation in one dimension. Except for electromagnetic waves in
vacuum, all waves in nature show some deviation from (7.1).

Equation (7.1) is linear, which means that if both φ1 and φ2 are solutions, then
the superposition φ(x, t) = φ1(x, t) + φ2(x, t) is also a solution of (7.1). For linear
waves, it is more convenient to use superposition of complex functions

φ(x, t) = a(k) exp
[
i(kx − ωt)

]
.

The most elementary linear wave is the harmonic wave for which a is independent
of k.

The requirement that φ(x, t) satisfies a linear wave equation depends on the
functional relationship between k and ω, known as a dispersion relation. If this
relationship is nonlinear the wave is dispersive. The phase velocity is defined as
vϕ = ω/k and describes how a surface of constant phase moves. The group velocity
vg = dω/dk shows how fast the bulk of the wave propagates.

Given some initial data φ(x,0) = f (x) it is possible to calculate φ(x, t) for
all t [4]. Even though the initial data may not have harmonic form, it may be repre-
sented by a Fourier integral

φ(x,0) = 1√
2π

∫ ∞

−∞
a(k)eikxdk

where

a(k) = 1√
2π

∫ ∞

−∞
φ(x,0)e−ikxdx.
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Fig. 7.1 Wave train defined
by the superposition of two
harmonic waves

For a linear system, ω = ω(k), so a solution for all t ≥ 0 is

φ(x, t) = 1√
2π

∫ ∞

−∞
a(k)ei[kx−ω(k)t]dk.

However, in practice neither of these integrals can be evaluated in terms of elemen-
tary functions.

Dispersion

The general form of a harmonic wave is conveniently defined as

ϕ = ae2πi(kx−νt)

in terms of an amplitude a, wave number k = 1/λ and frequency ν. The real part of
a complex wave is represented by

ϕ = a cos 2π(kx − νt)

and for simplicity we consider the combination of two such waves with equal am-
plitudes and nearly equal frequencies [5]. The total disturbance is given by

Φ = a cos 2π(k1x − ν1t) + a cos 2π(k2x − ν2t)

= 2a cos 2π
[
(k1 + k2)x/2 − (ν1 + ν2)t/2

]

× cos 2π
[
(k1 − k2)x/2 − (ν1 − ν2)t/2

]
. (7.2)

The first cosine factor represents a wave, very similar to the original waves with
frequency and wavelength at the average of those of the original waves and it moves
with a velocity of (ν1 + ν2)/(k1 + k2). For electromagnetic waves this is the same
as the velocity of the initial waves, c = ν1/k1 = ν2/k2. The second cosine factor
changes more slowly with respect to x and t and may be regarded as a varying
amplitude. The resultant is a wave of approximately the same wavelength and fre-
quency, but with an amplitude that changes with both time and distance. In Fig. 7.1
the outer profile represents the second cosine term in (7.2).

The dotted profile is the reflection of this curve in the x-axis. The actual distur-
bance Φ lies somewhere between these two boundaries, cutting the x-axis at regular
intervals, and touching alternately the upper and lower profiles. Since the velocity
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of the two component waves are the same, the wave train moves steadily forward
without change in shape.

If the velocities of the component waves are not the same, ν1/k1 �= ν2/k2, the
profiles move with a speed (ν1 − ν2)/(k1 − k2), which is different from that of the
more rapidly moving oscillating part, whose speed is (ν1 + ν2)/(k1 + k2). In other
words the individual waves advance through the profile, gradually increasing and
then decreasing their amplitude, as they give place to other succeeding waves. This
phenomenon is strikingly illustrated by a wave on the seashore which may look
large when it is some distance away from the shore, but gradually reduces in height
as it moves in, and may even disappear before it is sufficiently close to break.

This situation arises whenever the velocity of the waves, i.e. their wave veloc-
ity vϕ , is not constant, but depends on the frequency. This phenomenon is known
as dispersion. The actual velocity of the profiles is known as the group veloc-
ity, vg . It follows that if the two components are not too different, vϕ = ν/k, and
vg = (ν1 − ν2)/(k1 − k2) = dν

dk
. In terms of the wavelength

vg = dν

d(1/λ)
= −λ2 dν

dλ
or

vg = dν

dk
= d(kvϕ)

dk
= vϕ + k

dvϕ

dk
= vϕ − λ

dvϕ

dλ
.

Wave Packets

The wave train of Fig. 7.1, even apart from the problem of dispersion, is not suitable
as an electron model. It may be improved by the superposition of more waves, se-
lected so as to produce a large amplitude over a small region of space and nowhere
else. Such an accumulation of waves is known as a wave packet. It may be con-
structed by forming the integral

∫ k0+�k

k0−�k

a exp
[
i(kx − ωt)

]
dk = Φ(x, t)

assuming that the wave numbers of the component waves form a continuous distri-
bution. Noting that ω and k are functionally related the integral may be evaluated
as [6]:

Φ =
∫ k0+�k

k0−�k

eik(x−x0)dk = 2 sin
�k(x − x0)

(x − x0)
eik0(x−x0). (7.3)

Plotted as a function of (x − x0) the real part looks like the curve shown in Fig. 7.2.
The amplitude of oscillation is seen to reach a maximum at x = x0, and goes to zero
where x − x0 = π/�k. After that it is a rapidly decreasing oscillatory function.

The wave packet moves with the group velocity defined as vg = dω/dk, which
may be interpreted as the velocity of an electron as defined by the matter-wave
model of de Broglie.
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Fig. 7.2 Wave packet
obtained by the superposition
of harmonic waves over a
limited wavelength range

7.2.2 Matter Waves

The demonstration that Hamilton–Jacobi theory favours a wave model for motion at
the sub-atomic level is in line with the notion that matter in all its forms is a mani-
festation of space-time curvature. According to this point of view elementary matter
does not appear as massive point particles in a void, but rather as local geometri-
cal distortions of some featureless continuous medium, traditionally known as the
aether. Such distortions are generated by the curving of 4D space-time and occur as
persistent wave-like objects, much like the eddies on a fluid in turbulent flow.

In contrast, the aether before curvature may be likened to a fluid in laminar flow.
This state is well known to represent an ideal isoteric and unstable system, which
develops turbulence on the slightest disturbance. It is noted that the two contrasting
states of flow are distinguished as linear and nonlinear systems respectively.

The most efficient way of describing material motion is in terms of differential
equations, which may also be divided into linear and nonlinear equations [7]. This
distinction depends on the order and degree of the differential equation. The order of
an equation is defined as the order of the highest-ordered derivative in the equation.
For instance

d2y

dx2
+ 2b

(
dy

dx

)3

+ y = 0 (7.4)

is a second-order equation.
The degree of an ordinary differential equation is the algebraic degree in the

highest-order derivative in the equation. The equation

(
d2y

dx2

)3

+ d2y

dx2

(
dy

dx

)4

− x4y = sinx

is of degree three, because in as far as the second derivative alone is concerned, the
equation is a cubic. Equation (7.4) is of degree one.
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An equation is said to be linear if each term of the equation is either linear in
all the dependent variables and their various derivatives or does not contain any of
them. Otherwise the equation is nonlinear. The term y

dy
dx

is of degree two in y and its
derivative together and is therefore nonlinear. Every linear equation is of degree one.

The equation

x2 d2y

dx2
+ x

dy

dx
+ (

x2 − n2)y = 4x3

is linear in y. The manner in which the independent variable enters the equation has
nothing to do with the property of nonlinearity.

Mathematically, the essential difference between linear and nonlinear equations
exists therein that any two solutions of a linear equation can be added together to
form a new solution [1]. In contrast two solutions of a nonlinear equation cannot be
added together to form another solution. Superposition fails. For this reason there is
no general analytic approach for solving typical nonlinear equations. Applied math-
ematicians therefore tend to describe physical systems as far as possible with linear
differential equations. On dealing with essential nonlinear behaviour this approach
is an oversimplification that may obscure the actual characteristics of a system.

The traditional handling of matter waves suffers from precisely this defect. The
discussion that follows initially treats the problem linearly, with the constant aware-
ness that the final analysis presents a nonlinear problem.

The more daunting prospect in all of this is to persuade the next generation of
chemists not to dismiss nonlinear effects as insignificant second-order perturbations.
A spectacularly popular recent textbook [8], aimed at senior undergraduates, intro-
duces quantum theory by way of five postulates, featured as

. . . the bedrock on which the theory is built.

The first of these postulates declares:

Any superposition of state vectors is also a state vector.

Whoever graduates under this paradigm with the added conviction that [9]:

Quantum theory is the deepest explanation known to science. . . There is
no other.

would, understandably have little patience with arguments about nonlinearity.

De Broglie Waves

The wave model of an electron originated in de Broglie’s work which associated a
frequency with an electron at rest according to the quantum relation

E = mc2 = hν

that defines the electron as a standing wave

ψ = ψ0e
−2πiνt , (x = 0).
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From a relatively moving frame of reference the energy and momentum of the elec-
tron is observed as [10]

p′ = mvβ, E′ = mc2β, β = (
1 − v2/c2)− 1

2

to define a running wave

ψ ′ = ψ0e
2πiνt ′ = ψ0 exp

[
2πiν

(
vx/c2 − t

)
β
]
,

which is of the form

ψ = ψ0e
2πi(x/λ−νt).

It follows that

ν′ = νβ = mc2β/h = E′/h,

λ′ = c2/βvν = h/βmv = h/p′,

the famous de Broglie definition of matter waves. The phase velocity of the de
Broglie wave

vϕ = v′/β ′ = E′/p′ = c2/v > c.

The group velocity

vg = dν

d(1/λ)
= dE

dp
,

i.e. vg = d

dp

(
p2c2 + m2c4) 1

2 ,

= 1
2E

(
2pc2) = pc2/E,

= mvc2/mc2 = v,

the velocity of the electron. The de Broglie wavelength corresponds to the oscilla-
tory function of Fig. 7.2.

The only remaining inconsistency of the de Broglie wave model of an elec-
tron is that linear wave packets change their shape and flow apart in time. That
is, with the exception of the harmonic-oscillator wave packet, originally proposed
by Schrödinger [11] as a wave-mechanical model of an electron.

In order to avoid the problem of dispersion Louis de Broglie [12] proposed a
double-solution formulation of wave mechanics by associating a particle with the
singular points of a differential wave equation. As a linear equation cannot have
singular solutions [7] the particle was postulated as described, more specifically, by
a nonlinear solution. This singular solution, characteristic of the nonlinear region
that represents the particle, is not a special case of the general wave equation, but
tangent to that in the boundary surface. Despite some sporadic efforts, this proposal
has not led to the formulation of a convincing nonlinear wave equation.
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Schrödinger Waves

Wave mechanics, by definition, originated in Schrödinger’s famous equations, com-
monly formulated in time-dependent and time-independent forms as:

∂Ψ

∂t
= i�

2m

(∇2 + V
)
Ψ, (7.5)

∇2ψ + 2m

�2
(E − V )ψ = 0 (7.6)

with potential energy, V , independent of time. As explained in the previous chapter
these equations do not account for spin, which is only defined in four-dimensional
space-time. It was however, shown by Dirac [13] how to linearize the time-
dependent Hamiltonian of (7.5) by the introduction of Pauli matrices as coefficients
and in this way to add the spin as an additional variable.

An incisive quantum-mechanical analysis of electron structure, based on Dirac’s
equation, was published in a series of papers by Schrödinger [14–16] in 1930–31.

Each coordinate of an electron, which refers to the centre of mass of a charge
cloud, was shown to be specified by the sum of two terms. The first of these terms
changes continuously with time and describes the linear motion at the group velocity
of a wave packet, which in size corresponds to the de Broglie wavelength (λdB =
h/px) of the electron. The second term specifies a smaller high-frequency periodic
component that represents a small amplitude trembling motion1 superimposed on
the linear motion of the charge cloud. The average periodic displacement in a given
direction amounts to λC/4π , where λC = h/mc is the Compton wavelength of the
electron. In this interpretation λC clearly specifies the wavelength of a spherical
standing wave within the de Broglie profile. Trembling motion at the speed of light
about a mean position represents a contribution of �/(2mc) ·mc = �/2 to the angular
momentum, naturally interpreted as electron spin.

In the case of the hydrogen atom trembling motion is shown not to distort the
spectroscopic fine structure appreciably. The maximum perturbation without a seri-
ous effect, estimated as the ratio between 2λC/4π and the Bohr radius a0, amounts
to

f = h

2πmc
· 4π2me2

h2
= e2

�c
= α,

the fine-structure constant. We note that the ratio of λC to λdB = 2πa0 also yields

λC

λdB

= h

mc
· 2πme2

h2
= α.

This conclusion seems to indicate a natural equilibrium condition characteristic of
non-dispersive wave packets; a proposition to be discussed later on.

1Zitterbewegung.
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At an early stage Schrödinger identified [16] an essential difference between
quantum and relativity theories in that the time variable in the former is not treated
on the same footing with the space coordinates, as required by the Lorentz transfor-
mation

(
x′, y′, z′, t ′

) = F(x, y, z, t)

of special relativity. In our view this problem arises from the formulation of a wave
equation in three dimensions by the separation of space and time coordinates. The
only obvious remedy lies in the 4D quaternion solution of d’Alembert’s equation
for matter waves.

On subsequent reconsideration Schrödinger [17] concluded that the concept of
position had to be given up in microphysics because there was nothing in reality
that corresponded to it. However, as a possible alternative the position of an electron
could arguably be considered as specified by the centre-of-mass coordinate of a
soliton.

Zitterbewegung Several authors [18–21] have commented on the meaning and
interpretation of Zitterbewegung (zbw) with respect to the internal structure of an
electron, in all cases treating the electron as a point particle.

Hestenes [21] examined the derivation of the zbw by reformulation of Dirac’s
equation in terms of a Clifford algebra, closely related to standard hypercomplex
quaternion formalism. It is shown in particular that

. . . the complex phase factor in the electron wave function can be associ-
ated directly with zbw. . . ,

that

. . . the spin was “smuggled” into the Dirac theory. . . ,

that the quaternion tensor J

. . . expresses the total angular momentum of the electron as the sum of an
orbital angular momentum p × x and a spin angular momentum S. . . ,

that

. . . the electron moves with the speed of light, as in Schroedinger’s original
zbw model. . . ,

and finally, that

. . . the spin angular momentum can be regarded as the angular momentum
of zbw fluctuations.

Sporadic interest in Zitterbewegung has not managed to provide a simple physi-
cal explanation of the phenomenon. Most commentators (e.g. [19, 22]) return to the
original characterization as arising from the mixing of positive and negative energy
states in Dirac theory. Alternatively [20] it is considered “. . . an unobservable math-
ematical curiosity. . . ” or [21] “. . . a physical interpretation for the complex phase
factor. . . ”.
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It is less common for authors to interpret the appearance of Compton and de
Broglie wavelengths in a single construct as the attribute of a real matter wave.
From a purely mathematical point of view such a wave is readily formulated as the
superposition of two complementary waves. The associated physical model is more
difficult to describe.

7.2.3 Two-Wave Models

A notable effort to address the problem in terms of de Broglie’s double-solution
model for elementary matter is due to Elbaz [23]. Using both alternative expressions
for the rest energy of a matter wave, E0 = hν0 = m0c

2, it was demonstrated to
be associated with an amplitude function of Compton wavelength (λC = h/mc)

and a wave function with de Broglie wavelength (λdB = h/mv). The combination
u(x, t) · ψ(x, t), where

u(x, t) = exp
[
2πi(x/λC − νCt)

]
,

ψ(x, t) = exp
[
2πi(νt − x/λdB)

]

describes a standing wave packet, characterized by a pair of waves that move in
opposite directions [24].

The amplitudes u and ψ are related by the equations

1

c2

∂2u

∂t2
− ∇2u −

(
m0c

�

)
u = 0, (7.7)

1

c2

∂2ψ

∂t2
− ∇2ψ +

(
m0c

�

)
ψ = 0, (7.8)

1

c2

∂u

∂t
· ∂ψ

∂t
− ∇u · ∇ψ = 0. (7.9)

Equations (7.7) and (7.8) can be formally regarded as the equations for brady-
onic and tachyonic components respectively with the invariant interaction condi-
tion (7.9). As stated [25]:

The u-function planewave solutions have a wavelength equal to the Comp-
ton wavelength λ = h/mc, a phase velocity equal to the particle velocity
v, and a group velocity c2/v, while the quantum mechanical ψ -function
planewave solutions have a wavelength equal to the de Broglie wavelength
λB = h/mv, a phase velocity c2/v and a group velocity v.

From another perspective the situation is described [26] as the trapping of a time-
like bradyon (v < c) and a space-like tachyon (v > c) in a relativistic invariant way.
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An equivalent standing wave, generated by the superposition of a pair of con-
verging and diverging spherical waves,

Φ = A

r
eiωt

{
eikr − e−ikr

}

= Φ0e
iωt sin(kr)/r

was proposed by Wolff [27] as an electron model in which the wavelength of the sine
function h/γmc = λC and of the exponential oscillator h/γmv = λdB , as perceived
from a relatively moving frame of reference, as before. This model is mathemati-
cally closely related to the wave packet (7.2) obtained by the integration of linearly
superimposed harmonic waves as shown in Fig. 7.2.

The common factor in this variety of presentations is the attempted modifica-
tion of a Schrödinger wave packet to produce the equivalent of a nonlinear wave
packet [28] that involves an internal spectrum of matter waves with the appearance
of a stable extended massive particle in motion.

All of these models are mathematically feasible, but none of them describes the
origin of the component waves in physically meaningful form.

7.2.4 Fine-Structure Parameter

The appearance of the fine-structure constant as the ratio of Compton and de Broglie
wavelengths should be examined more closely in the search for a convincing wave
description of an electron. In the context of the Bohr model the relativistic mass
of an orbiting electron, seen from the nucleus, with respect to the rest mass, m0, is
given by

m = m0√
1 − v2/c2

= m0√
1 − α2

.

Noting that

α2 =
(

e2

�c

)2

, E1 = −me4

2�2
,

α2 = −2E1/
(
mc2).

Hence

2E1/
(
mc2) = (m0/m)2 − 1,

2E1 = c2(m2
0/m − m

)
,

E1 � −1

2
(�m)c2.
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The increase in relativistic mass represents a proportional decrease in the potential
energy that stabilizes the system at − 1

2e2/r , in esu. This is the same argument that
explains nuclear binding energy as a mass defect. The same explanation holds in
the Bohmian interpretation [29, 30] of quantum theory, which argues that an atomic
stationary state occurs when the potential energy of an electron at rest, is balanced
by the quantum potential [31]:

Vq = −�
2∇2R

2mR
.

For the hydrogen atom in the ground state, R(r) = Ne−r/a0 and hence,

d2R

dr2
= N

a2
0

e−r/a0,

such that Vq = �
2/2ma2

0 . In general

Vq = �
2

2mr2
,

and the quantum force on the electron:

Fq = ∂Vq

∂r
= − �

2

mr3
,

whereas the electrostatic force, in electrostatic units (4πε0 = 1), F = e2/r2. These
forces are in balance when

�
2

mr3
= e2

r
; r = �

2

me2
= a0,

the Bohr radius. This means that V = Vq at r = a0/2, halfway between proton and
electron.

Transition of an electron with n > 1 to a lower unoccupied energy level by emis-
sion of a photon with energy hν and spin �, is anticipated. However, in the 1s state
of minimum action, with quantum number l = 0, there is no orbital angular mo-
mentum to transfer in stimulating photon emission and the ground state remains
stable. The calculation does not imply different velocities for the electron at dif-
ferent energy levels—only a quantized change in de Broglie wavelength. The mass-
energy difference amounts to exchange of a (virtual) photon in the form of a standing
wave between the charge centres. With the classical radius of the electron defined
as r0 = e2/mc2 it is noted that

r0

a0
= me4

m�2c2
=

(
e2

�c

)2

= α2

where a0 is the Bohr radius.
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In terms of the Compton wavelength λC = h/mc it follows that:

αλC = 2πe2

mc2
= 2πr0,

λC

α
= 2π�2

me2
= 2πa0 = λdB.

From this result the parameter α′ = v/c for the freely moving electron with λdB =
h/mv is defined, more appropriately as α′ = λC/λdB .

Now define λZ = 2πr0. Whereas the wavelength λdB = λC/α represents a
wavepacket with group velocity vg < c, the phase velocity vφ > c is associated
with the Zitterbewegung of wavelength λZ = α · λC ; vgvφ = c2 [32].

The Wave Model Common sense dictates that an electron must have extension
and so eliminates the particle model and supports Schrödinger’s interpretation [11]
of an electron as a wave structure, further developed by Madelung [33] and Tak-
abayasi [34], in hydrodynamic analogy, as an indivisible flexible charge. The inter-
nal wave structure of the electron is observed as high-frequency Zitterbewegung, at
Compton wavelength, while the macroscopic effects in an electromagnetic field are
fixed by the spread of a wave packet, conveniently defined as a de Broglie wave-
length. A wave packet is formally described by the superposition of converging and
diverging spherical waves. The generation of such waves will have to be examined
in more detail. The fine-structure parameter is associated with this wave nature of
an electron.

Trapped in the field of a proton the de Broglie wavelength is quantized to avoid
self-destruction, such that

λC

λdB

= αn = e2

n�c
.

For an effective charge separation of rn, the ratio αn may be considered the ratio
of two energies:

e2

n�c
=

[
e2

rn
· 1

hν

]

an electrostatic and a quantum-mechanical factor. The constant c = λ/τ describes
the virtual photon that occurs as a standing wave (nλ = 2πrn) between the charge
centres. The balance between the classical coulombic attraction and the quantum-
mechanical repulsion (the quantum potential) now defines the fine-structure con-
stant with a value, fixed by the de Broglie wavelength of the virtual photon.

In a strong field the size of an electronic wavepacket may be compressed below
the Compton radius to an absolute minimum of λZ , which describes the minimum
size to which an electron may be compressed, measuring r0 = λZ/2π , for an elec-
tron defined as an electric charge −e distributed over a sphere of radius r0. The
classically measured value of r0 = e2/m0c

2 is retrieved from this relationship.

Discussion The fine-structure parameter is a dimensionless variable that de-
scribes the wave structure of an elementary charge in space. It has been interpreted



7.3 Nonlinear Systems 131

as the ratio of wavelengths, charges, energies or radial distances:

α = λC/λdB = e2/�c = e2/a0hν = √
r0/a0.

The quantity qP = √
�c � √

137e is known as the Planck charge.
Without the benefit of dimensional analysis it is not obvious which of these ra-

tios is the most fundamental. However, the parameter λC/λdB which refers to any
electron and assumes special values in special quantum states, provides the simplest
definition. We note that the approximate value of 1/α � 137 is numerically purely
accidental and without physical significance. Should the value of α be dictated by a
more fundamental consideration, it can only be the general curvature of space-time.

There is nothing mysterious about α. It is the parameter that describes the shape
of an electronic wave packet of wavelength λdB , made up of elementary waves of
length λC . The dimensionless ratio varies as a function of electric field strength.
In the field of a proton, in the H atom, the “constant” value of α is fixed by the
quantized ground state.

The mystique that surrounds α derives from the fact that it is a dimensionless
number such as π or the golden ratio τ , in both cases the ratio of two lengths. Its
intrinsic relationship with the electromagnetic field is even less of a mystery as it
depends on the wave properties of the field’s source.

7.3 Nonlinear Systems

As described by Dodd et al. [4] in a wave system, driven or pumped with energy
through some mechanism, for example a rotation, a background flow or a heat gra-
dient, potential energy is made available to the waves.

. . . the system may become unstable under the influence of the background
energy flow when some parameter passes through a critical value.

In hydrodynamics turbulence is said to occur.

At the critical value the initial stationary state becomes unstable—a bifur-
cation occurs as the unstable state moves to another stable state

This statement precisely describes Schrödinger’s proposed resonance mechanism to
explain ‘quantum jumps’ [35]. The way in which nonlinear motion differs from lin-
ear wave motion is not because it is non-oscillatory wave motion, but also because
its velocity is amplitude dependent. For linear waves the speed is always indepen-
dent of amplitude.

Coherent nonlinear systems have been identified in nature on scales ranging from
108 to 10−9 m—seventeen orders of magnitude [1]. The largest example is the fa-
mous red spot on Jupiter, with a diameter equal to the distance from the earth to the
moon. The structures identified as eddies in globular clusters [36] could measure
light years across. At the other extreme are the charge-density waves in a cleaved
surface of a tantalum disulphide crystal. We now propose that the structure of an
electron with an estimated diameter of 10−15 m is of the same type, known as a
soliton.
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To substantiate this conjecture it will be necessary to demonstrate that nonlin-
ear wave equations can be found to improve on the electronic wave models of
Schrödinger and Dirac, which are based on linear equations. The demonstration that
elementary particles correspond to classical solitons [37] lends credibility to this
proposal. By way of introduction the anomalous stability of the wave-mechanical
oscillator, described by Bohm [6, p. 307], is examined in more detail in comparison
with shallow-water waves.

7.3.1 Hydrodynamic Analogy

Some insight is gained into the behaviour of harmonic-oscillator wave packets by
comparison with the properties of waves on water [38]. By the principle of super-
position a general wave on deep water in a narrow channel is formed by adding
together many plane-wave solutions. As the elementary components with different
wave numbers will propagate at different group velocities the general solution will
change its form, or disperse as it moves. In shallow water the long wave components,
which travel faster than the short wave components, cannot develop and dispersion
effects become negligible. The resulting non-dispersive wave packet is known as a
solitary wave.

The shallow water wave is no longer described by a linear differential equation
and the superposition principle no longer applies. The restricted depth of the channel
is seen to introduce a boundary condition that leads to the formation of nonlinear
non-dispersive wave packets.

7.3.2 Schrödinger Oscillator

Schrödinger harmonic-oscillator waves differ from the more general solutions for all
other systems in a similar way because of the more restrictive boundary condition.

The motion of a simple plane pendulum is described by a nonlinear differential
equation [1]:

d2θ(t)

dt2
+ g

l
sin θ(t) = 0

where θ is the angular displacement of the pendulum from the vertical,
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l is the length of the arm and g is the acceleration due to gravity. For small displace-
ment sin θ ∼ θ and the resulting linear equation has the familiar solution

θ(t) = 1

ω

(
dθ

dt

)

0
sinωt + θ0 cosωt

where ω = √
g/l. Wave-mechanical analysis of the harmonic oscillator, considered

within this approximation, also exhibits approximate linear behaviour, but enters the
nonlinear regime for large displacement.

Noting that the natural dispersion of all other matter-wave packets arises from
the invariable use of the superposition principle, excites the reasonable suspicion
that the idealized linearity of Schrödinger’s equation does not apply to real physical
systems. In fact, it is widely recognized that most systems are inherently nonlinear,
but that most nonlinear problems are essentially inaccessible to analytic methods.
Without fast computers there hence was the tendency of resorting to linear approxi-
mations wherever feasible. At the same time constant efforts were made to simulate
expected nonlinear behaviour by other means. Related to this problem it was pointed
out [39]:

. . . that physical theory is unduly dominated by the use of point-particle
abstractions, yet no physicist truly believes in the reality of a point particle.

We now look for a nonlinear model to provide a more realistic description of elec-
tron structure and behaviour at the same time.

The amazing reality is that the correct nonlinear behaviour of the oscillator was
described in detail by Schrödinger in 1926 [11], but, to his annoyance, remained
unrecognized by his contemporaries and imitators. He demonstrated that a group
of proper harmonic vibrations of high quantum number n and relatively small
quantum-number differences represents a particle-like object, oscillating with the
frequency ν0. This was achieved by singling out a relatively small group of nor-
malized proper vibrations in the neighbourhood of n = A2/2, A 
 1, finally result-
ing in

ψ = exp
[ 1

4A2 − 1
2 (x−A cos 2πν0t)

2] cos
[
πν0t +(A sin 2πν0t)

(
x− 1

2A cos 2πν0t
)]
.

(7.10)
The first exponential factor represents a relatively tall and narrow hump, with the
form of a Gaussian error curve at position

x = A cos 2πν0t. (7.11)

According to (7.11) this narrow hump behaves like a particle of mass m in linear
oscillation, and with energy

2π2a2ν2
0m = 1

2A2hν

where n is the average quantum number of the select group.
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The second cosine factor in (7.10), which varies rapidly with x and t resem-
bles the central wave packet of Fig. 7.2. The number and breadth of the oscilla-
tions vary with time. The wavelets are most numerous and narrowest at the central
point x = ±A, where this second factor is independent of x: cos, sin 2πν0t = ±1,0.
However, the entire extension of the wave group remains constant. The variability
of the “corrugation” depends on the velocity. The wave group remains compact
and does not spread out. This behaviour is ascribed to the use of discrete harmonic
components rather than a continuum of such. It will become apparent later on that
Schrödinger had discovered the nonlinear soliton structure for an electron in 1926.2

In three dimensions the spatial wave group moves round harmonic ellipses, as
represented by the wave mechanics of the hydrogen atom, on half-integral quantum
levels—the first demonstration of quantum spin.

7.3.3 Korteweg–de Vries Equation

Solitary waves were first observed in a shallow narrow canal by the Scottish engi-
neer John Scott Russell in 1834. He noticed how the wave that was generated by the
motion of a horse-drawn barge kept on moving as the boat came to a sudden stop. He
followed this unusual wave on horseback for a long distance and subsequently man-
aged to generate and study similar waves on other canals and experimental tanks.
One point of interest was the nondispersive nature of the solitary wave as it moved
over the surface of the water without disturbance.

A mathematical model to account for Scott Russell’s observation was published
years later by Korteweg and de Vries, two Dutch scientists [41] who derived a differ-
ential equation that governs the propagation of waves along the surface of a narrow
canal, generally known as the KdV equation,

∂u

∂t
− 6u

∂u

∂x
+ ∂3u

∂x3
= 0.

The nonlinear second term and the third dispersion term describe opposing effects.
When these terms are in balance the equation describes a solitary wave that moves
without change in shape. The effect is illustrated graphically in Fig. 7.3(a). The non-
linear wave, about to break, combines with the dispersive wave, about to dissipate,
to generate a persistent solitary wave.

It was shown that the equation has a solution of the form

u(x, t) = 2κ2 sech2 κ(x − ct + δ)

2At an even earlier date Schrödinger was the first to recognize the phase invariance of electronic
motion [40] that subsequently developed into modern gauge theory, the basis of elementary-particle
physics, but rarely attributed to the seminal source.
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Fig. 7.3 (a) Formation of a
solitary wave as the balance
of nonlinear and dispersive
components. (b) Generation
of solitons by numerical
solution of KdV equation.
(c) Collision of two unequal
solitons

with arbitrary δ and c = 4κ2, describing a hump-like shape as described by Scott
Russell and moving at constant velocity without change in shape. As the velocity is
amplitude dependent it follows that a taller wave moves faster than a small one.

7.3.4 Solitons

Numerical solutions of the KdV equation were studied by Zabusky and Kruskal [42].
Starting from a normalized (u = 1) periodic initial condition, u(x,0) = cosπx, de-
veloping as cosπ(x − ut), the first two terms of KdV dominate and u steepens with
time, as in Fig. 7.3(a), in regions where it has negative slope. As the third term
gains importance and balances the nonlinearity it prevents the formation of a dis-
continuity. Instead, small wavelength oscillations develop and grow in amplitude,
assuming a shape like that of an individual solitary-wave solution. Eventually these
solitons move apart (Fig. 7.3(b)) and may interact with one another as they follow
the cycles forced by the periodic boundary condition. They reappear virtually unaf-
fected in size or shape—they pass through one another without losing their identity
(Fig. 7.3(c)). This soliton behaviour does not depend on the boundary condition.
Simulations in which u → 0 as x → ∞ show that as a faster taller wave overtakes a
smaller one they pass through one another as before.

The linearized version of KdV3

ut + ux + uxxx = 0

3It is customary to use the notation ut ≡ ∂u/∂t , uxx ≡ ∂2u/∂x2, etc. in writing nonlinear wave
equations.
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Fig. 7.4 Diagrams to
illustrate the nonlinear
deformation of a wave form

is dispersive, with ω = k − k3. It is the uxxx term that introduces dispersive effects
into the dispersionless equation: ut + ux = 0. To model the effect of a nonlinear
term we next consider the equation

ut + (u + 1)ux = 0.

It can be solved [4] with the initial condition

u(x,0) = f (x) =
⎧
⎨

⎩

u0x 0 < 1,

u0(2 − x) 1 < x < 2,

0 x < 0;x > 2.

The gradient on the left slowly decreases with time while the gradient on the right
changes from negative to positive as shown in the series of diagrams in Fig. 7.4. This
behaviour is understood intuitively by noting that, since larger values of u travel
faster than smaller values, the apex of the triangle overtakes all the lower points.
The wave breaks.

Many nonlinear equations have localized solitary wave solutions, but not all of
these are solitons, which have the special property of maintaining their identity
through numerous interactions. A much smaller number of equations, among them
the nonlinear Schrödinger equation (NLS) and the sine-Gordon equation (sG), have
soliton solutions of the KdV type and are of special importance in the present con-
text.

7.3.5 Soliton Eigenvalues

It is of special importance for understanding the soliton structure of electrons to note
that the KdV equation, usually abbreviated in the form

ut − 6uux + uxxx = 0, (7.12)

is associated with the eigenvalue Schrödinger equation

ψxx + (λ − u)ψ = 0

where λ is independent of time and where u changes with time according to the
KdV equation. This conclusion was reached by inverse transformation solution4 of

4This procedure is analyzed in detail by Toda [43].
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the KdV equation [44]. The eigenvalue equation

−ψxx + uψ = λψ

is rewritten in the form u = λ+ (ψxx/ψ), which is used to calculate ut , ux and uxxx

and substituted into (7.12). After rearrangement one has

λtψ
2 + [ψQx − ψxQ] = 0

where λt = dλ/dt and Q = ψt + ψxxx − 3(u + λ)ψx .
The term in square brackets is a perfect differential with respect to x and in the

limit

lim
x→∞u = 0, the integral λt

∫
ψ2dx = 0,

which implies λt = 0, i.e. λ = constant. From this result it can be shown that a soli-
ton has a time-independent eigenvalue that satisfies Schrödinger’s equation. Stated
differently, if the potential in Schrödinger’s equation evolves according to the KdV
equation, the eigenvalue parameter λ remains constant. Two solitons have two eigen-
values which remain constant as they approach, collide and separate again.

A more detailed analysis [45], using numerical methods and a large-amplitude
initial condition,

u(x,0) = −p(p + 1) sech2 x, p > 0,

was shown to yield one-dimensional soliton solutions that match the known central-
field radial wave-mechanical results. Bound states emerged with eigenvalues, given
in ascending order by λn = −(p−n)2, such that |λn| is directly proportional to n, as
in Fig. 7.3(b) above. Like the wave-mechanical result, the KdV simulation conserves
total bound-state momentum and energy and generates an oscillating “tail” related
to the continuous Schrödinger spectrum.

We interpret these results as conclusive proof that the wave-mechanical elec-
tron is described more appropriately as a soliton, which means that the linear
Schrödinger equation gives a good, but incomplete, description of the atomic hy-
drogen electronic spectrum. Apart from being at variance with 4D space-time ge-
ometry it also fails to recognize small, but important, nonlinear effects, related to
space-time curvature.

7.3.6 Soliton Models

The KdV is not the only integrable nonlinear equation with soliton solutions.
Closely related to it is the modified KdV, (MKdV):

ut ± 6u2ux + uxxx = 0
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Fig. 7.5 Breather solution of
KdV [47]

with the single-soliton solution

u(x, t) = ±2k sech
(
2kx − 8k3t

)
.

The pulse profile is in the form of an oscillatory solution that is modulated by a sech-
shaped envelope. The oscillations and the envelope move at different velocities. As a
result of the undulations in the profile that take place as the pulse propagates (shown
in Fig. 7.5), it is referred to as a breather solution [47]. It is a localized entity with the
essential features of a soliton and interacts with other solitons in an elastic fashion.

As a small-amplitude, slowly varying phase term F , for a MKdV soliton, is sub-
stituted into the KdV equation the result is readily simplified [47] to read:

iFt + Fxx + 2|F |2F = 0.

This equation is of the same form as Schrödinger’s equation

i�ψt + (
�

2/2m
)
ψxx − V ψ = 0

and is known as either the cubic or nonlinear Schrödinger equation, which arises
for a potential V ∼ |ψ |2. This condition is immediately recognized as characteristic
of the hydrogen electron or a single valence electron that surrounds a monopositive
atomic core [48].

In view of this result it is not surprising to learn that by the modification of a
linear differential equation such as the non-relativistic Schrödinger equation or the
relativistic Klein–Gordon equation, on the addition of a term that generates a non-
linear frequency condition, ω(k), it is possible to obtain soliton solutions without
seriously affecting the original meaning.

The NLS equation [46]

i�
∂Ψ

∂t
= −

(
�

2

2m

)
∇2Ψ − ε2(Ψ ∗Ψ

)
Ψ, (7.13)



7.3 Nonlinear Systems 139

commonly abbreviated in one dimension to read:

i
∂φ

∂t
+ ∂2φ

∂x2
+ β|φ|2φ = 0

has the same form as the quantum Schrödinger equation with β|φ|2 as potential.
φ is a complex function that implies a travelling wave solution with an oscillatory
modulation. Subject to the condition

lim|x|→∞φ = 0 it has the travelling wave solution

φ = a
√

2/β exp
{[ 1

2bx − ( 1
4b2 − a2)]} sech

[
a(x − bt)

]

with a and b arbitrary constants. The sech wave acts as an envelope to the oscillary
part, producing a structure that resembles the wave packet of Fig. 7.2.

One form of the NLS equation can be written in terms of the electric field ampli-
tude E(x, t) as [1]:

i
∂E

∂t
+ ∂2E

∂x2
+ |E|2E = 0

to describe a soliton that moves through an optical fibre. It should describe a con-
duction electron equally well.

The linear Klein–Gordon equation

∂2u

∂t2
− c2 ∂2u

∂x2
+ m2u = 0, m = m0c

2/�

when turned into the non-linear form

∂2θ

∂t2
− c2 ∂2θ

∂x2
+ m2 sin θ = 0 (7.14)

is known as the “sine-Gordon” equation.
In the limit of small θ this equation reduces to

∂2θ

∂t2
− c2 ∂2θ

∂x2
+ m2θ − 1

6
θ3 + · · · = 0

which approximates the linear equation.
The sine-Gordon equation has a single solitary-wave solution

θk(x, t) = 4 tan−1 eγ (ζ−vτ)

with γ = 1/
√

1 − v2, ζ = mx/c, τ = mt , known as a kink.
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Fig. 7.6 Bloch wall

7.3.7 Electronic Solitons

Details of the soliton behaviour of an electron depends on the environment. We con-
tend that an electron in empty Euclidean space behaves as a dispersive linear wave
and hence dissipates indefinitely. On propagation through the intrinsic nonlinear
curved space of general relativity [49] it encounters modulation on which the final
wave form depends.5 A single non-linear equation that describes the modulation
in different situations is not known, but a number of special equations, such as the
KdV, MKdV, NLS and sG equations, together give an adequate description of the
electron in most chemically important nonlinear environments.

Free Electron

An interesting nonlinear model for an electron, based on the minimization of en-
ergy density in space, was proposed by Enz [50], using a variational procedure that
considers the electron as the entity of lowest energy with respect to any variation of
the parameters which describe its interaction with the space-time vacuum. A Bloch
wall [51], which balances magnetic energy against the anisotropy between mag-
netic domains in a crystal was used as minimization model. The gradual change in
magnetization within a Bloch wall is shown schematically in Fig. 7.6.

The magnetic domains are considered in analogy to simulate the spin function
that distinguishes between electron and positron in four-dimensional space-time on
rotation of the variable θ between ±π . Exchange energy is defined as

FA = A

4∑

μ=1

(
∂θ

∂xμ

)2

,

with x4 = −ict and the constant A, an energy per unit length. The anisotropy energy
density is given by

FK = K sin2 θ, where K measures energy per unit volume.

5As pointed out by Goldstein [3, p. 283], the most general transformation in Minkowski space that
preserves the velocity of light has the form x′ = Lx + a, where a is an arbitrary translation vector
of the origin and L is the orthogonal matrix of the homogeneous Lorentz transformation x′ =
Lx (4.4). The modified inhomogeneous (Poincaré) transformation has ten independent elements
compared to the six of (4.4). This condition generates the intrinsic nonlinearity of curved space-
time.
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In two dimensions the solutions of the energy-minimized nonlinear equation

∂2θ

∂x2
− 1

c2

∂2θ

∂t2
= K

2A
sin 2θ

i.e. θ = nπ (n = 0,1,2 . . . ),

and sin θ = ±[cosh
√

K/A · x]−1

define a non-zero extent x0, to which the non-vanishing energy density, Es =
2
√

AK , and the associated mass, Es/c
2, are confined.

Minimization of this Bloch-wall equivalent was finally stated to generate either a
stable electron or a positron. This interpretation of the energy density as an extended
elementary particle is not convincing. More realistically it represents a situation
of stable equilibrium between an electron and a positron in space-time, related by
an element of CPT symmetry, equivalent to the Bloch wall. The involution shown
in Fig. 7.6 was interpreted as ±π rotation of the spin function, in either clock—
or anti-clockwise sense and the asymmetry as referring to differences in electric
charge and the chiral forms of matter. In the magnetic case rotation of the spin
vectors through the Bloch wall interconverts magnetic domain fields. We therefore
propose as the correct analogy that electron-positron interconversion should be de-
scribed here by involution across an interface, such as the achiral vacuum interface,
proposed before [36, 52], to separate the chiral antipodes in the double cover of
projective space-time. This interpretation would account for the fact [50] that three-
dimensional spherically symmetrical solutions do not exist.

An equivalent result was obtained by Einstein and Rosen [53] on solving the
equations for a directed gravitational field near a singularity at the origin, as the
model of a massive particle. In this case the four-dimensional space splits into two
congruent parts, or “sheets”, on opposite sides of a hypersurface, interpreted as rep-
resenting

. . . a gravitational field which ends in a plane covered with mass and form-
ing a boundary of the space.

We consider it more logical to interpret the singular hypersurface as an interface be-
tween chiral regions of space-time, populated by matter and antimatter respectively,
rather than a “mass bridge”. Mutual annihilation is prevented by inverted time flow
if the two-sheet structure is assumed to result from involution in elliptically curved
space-time.

In another attempt to extend the Enz model into three-dimensional space [54]
θ was assumed to be a function of r only—i.e. time-independent. The negative
result, so obtained is not entirely surprising in view of the fact that the spin function
required for the simulation only exists in four-dimensional space-time [55].

Wave Structure As an electron wave propagates through the vacuum nonlinear
modulation causes periodic variation in the amplitude of the individual wavelets to
generate a wave train as shown in Fig. 7.1. However, this periodic variation is not
due to the superposition of different waves as used in the construction of Fig. 7.1.
As indicated before, it occurs as the resultant of two opposing forces—natural dis-
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Fig. 7.7 KdV elastic modulation of a sinusoidal wave

persion of the wave and nonlinear cresting and breaking of wave profiles. A hy-
drodynamic analogy based on restricted flow of an incompressible fluid, correctly
described by KdV, is outlined by Lamb [47] as represented graphically in Fig. 7.7.

The effect is velocity dependent and for a given mass, m a wave profile of de
Broglie wavelength, which depends on momentum, appears at λdB = h/p = h/mv.
The wavelength shrinks with increasing velocity and reaches a minimum, called
the Compton wavelength, λC = h/mc, at the speed of light. All intermediate forms
of the electron is characterized by the fine-structure parameter, α′ = λC/λdB . The
common factor is Planck’s constant h, which evidently is another manifestation of
general space-time curvature.

By considering the meaning of continuous matter density in space-time, Edding-
ton [56, p. 147], arrived at a similar conclusion:

Density multiplied by volume in space gives us mass or, what appears to
be the same thing, energy. But from our space-time point of view, a far more
important thing is density multiplied by a four-dimensional volume of space
and time; this is action. The multiplication by three dimensions gives mass or
energy; and the fourth multiplication gives mass or energy multiplied by time.
Action is thus mass multiplied by time, or energy multiplied by time, and is
more fundamental than either.

Action is the curvature of the world.

The earlier conclusion that the distortion of Euclidean space-time generates elemen-
tary units of matter may now be modified to state that elementary units of action
occur in curved space-time. This means that general relativity implies, not only the
appearance of a gravitational field, but also of the quantum-potential field, charac-
terized by �.

Electron Diffraction

Diffraction effects are directly explained by the electronic wave structure outlined
in the previous paragraph. This includes the notorious two-slit experiment quoted in
many textbooks to ponder the mysterious nature of the electron. The crucial factor
to appreciate is that the diffraction effects associated with a wave train as in Fig. 7.1,
depend on the wavelength of the modulated profile, rather than the Zitterbewegung.

Nonlinear Perturbation

Electrons were first directly observed in radioactive decay as β-rays, behaving in
all respects like particle beams, for instance as judged by the tracks left behind in a
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cloud chamber. In this case the de Broglie wave train of the free electron is perturbed
in the more nonlinear medium and converted into single solitons that travel like
particles. Increased nonlinearity due to continued interaction with the medium is
described by the damped NLS equation

iut + uxx + 2|u|2u = −iγ u

that leads to the eventual spreading and decay of the soliton [47, p. 276].
It may be inferred from Fig. 7.4 that in collision with a solid object as in a scin-

tillation screen, the breaking waves disappear with transfer of kinetic energy.

Photoelectric and Compton Effects

Electromagnetic radiation obeys the general wave equation (7.1) in three dimen-
sions. In photoelectric interaction it transfers energy in discrete units to electrons in
the surface of an active metal. So strong is the conviction that an electron is a point
particle that, for more than a century, the only generally accepted explanation of the
effect has been based on the assumption of a complementary photon structure for
radiation. The situation can hardly be that simple. Equation (7.1) describes a linear
monochromatic wave. The creation of discrete photons must clearly require some
pronounced nonlinear modification thereof. Examination [54] of the nonlinear form

∇2φ − (
1/c2)(∂φ2)(∂t2) = (1/2) sin 2φ

provided no evidence of time-independent localized solutions. The possibility of
time-dependent and four-dimensional solutions could admittedly not be excluded,
but the observed constant speed of light militates against the formation of photonic
solitons in the vacuum. At this stage it appears very likely that this conclusion would
be generally valid for the dispersive system of massless photons [57], with infinite
Compton wavelength in the vacuum. However, photons may well occur in media
that induce increased nonlinearity.

For the sake of argument we may conjecture that encounter with the metal sur-
face provides sufficient nonlinearity to transform the light wave into solitons. To
rationalize the photoelectric interaction it would then be necessary for the electron
to occur as a single soliton in the surface. That by itself cannot account for the pho-
toelectric effect as solitons are known to pass through one another without changing
their shape. Maybe not if one of these carries an electric charge that interacts with
the fluctuating electric vector of the other. This scenario explains the effect and
avoids the dilemma of assigning a frequency to a point particle.

During the interaction of radiation with an atom, mutual polarization of the
atomic charge cloud as well as the electromagnetic field of the light wave, generates
a nonlinear response, reflected in the modified wave equation [47, p. 206]:

∇2E − 1

c2

∂2E

∂t2
= 4π

c2

∂2P

∂t2
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where P is known as the polarization of the medium. An induced atomic dipole
essentially interacts nonlinearly with the coherent light wave, giving rise to soliton
phenomena. In this sense photons are not present in propagating light waves, but are
created during nonlinear transfer of energy to an electron.

An encounter, inverse to the interaction envisaged here, was analyzed by
Schrödinger [58] in his reconstruction of the Compton effect as Bragg diffraction
(reflection) of a light wave on a de Broglie wavetrain—not appreciating the impor-
tance of solitary waves at the time.

Atomic Structure

It is in the interpretation of the extranuclear electron distribution on atoms that the
Copenhagen probabilistic model is at its most confusing. Solutions of the linear
wave equation give an excellent account of the energy spectrum of the hydrogen
electron, but not perfect in detail. Some obvious defects of the model relate to the
separation of variables, the intrinsic nonlinearity of space-time and neglect of envi-
ronmental perturbation. Treated as a radial distribution in one dimension a properly
adapted NLS equation could provide an immediate improvement, numerically an-
alyzed. Multi-soliton solutions of the KdV equation could conceivably serve as a
model, even for non-hydrogen atoms, inaccessible at present, except by way of un-
warranted linear superpositions.

Scattering and Absorption

To envision the scattering of light on an atom [47] the leading edge of a light pulse is
assumed to invert and hence attenuate the electronic arrangement, while the trailing
edge of the pulse returns the population to its initial state by means of stimulated
emission.

Absorption occurs when the frequency of the light matches a separation between
electronic energy levels (�E = hν) to create a resonance pulse that excites the
electron to the higher level. The reverse process, in which the photon is re-emitted,
completes an event, equivalent to scattering, albeit at a retarded rate.

X-ray and/or electron diffraction is initiated by scattering on atomic electrons,
without absorption. The energy of the X-ray photon or fast electron exceeds the
possible resonance conditions on the atom. Interference between the scattered waves
leads to the familiar diffraction effects.

Lattice Solitons and Diffraction

The detailed process of diffraction is poorly explained as the linear superposition of
randomly scattered photons. More precisely, a diffraction pattern is generated by the
interaction of a coherent wavefront with a regular lattice such as the rigid grating
in optical diffraction. An X-ray beam constitutes such a wavefront and the electron
clouds, concentrated on atoms in a crystallographic plane, are traditionally consid-
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ered to define an equivalent grating, as described in detail elsewhere [48]. However,
whereas an optical grating is a static construct, the crystallographic equivalent is
not. The atoms are in constant vibration, causing mutual polarization in interac-
tion with immediate neighbours. In one-dimension the interaction within a chain
of atoms resembles that in a linear lattice of particles connected by springs, which
obey Hooke’s law [43].

Denoting the mean distance between adjacent particles when the lattice has no
motion, by d , treating the position of the nth particle, x = nd , as a continuous vari-
able, the displacement y = y(x, t) = yn(t) is described for long wavelengths by the
wave equation

∂2y

∂t2
= c2

0
∂2y

∂x2

where c0 = d
√

κ/m for particles of mass m and κ is the force constant of the spring.
This dispersive equation is known experimentally not to describe the ergodic be-

haviour of lattice phonons correctly. An obvious improvement would be by addition
of a nonlinear term. The equation

∂2y

∂t2
= c2

0

(
1 − ε

∂y

∂x

)
∂2y

∂x2

introduced by Raleigh in 1877 to describe nonlinearity in sound waves [43] also
fails to simulate lattice phonons as the numerical solutions become multi-valued
and break up after a while. It was found by Zabusky [59] that the wave is stabilized
by addition of a fourth derivative:

1

c2
0

∂2y

∂t2
=

(
1 + ε

∂y

∂x

)
∂2y

∂x2
+ d2

12

∂4y

∂x4
.

If the KdV equation is modified by analogy, on introducing an interaction with quar-
tic nonlinearity

φ(r) = 1
2κr2 + 1

4κr4,

the resulting equation, simplified by substituting ε = 3αd2, ξ = x − c0t , τ = 1
2εc0t ,

μ = 1/36α, v = ∂y/∂ξ :

∂v

∂τ
+ v2 ∂v

∂ξ
+ μ

∂3v

∂ξ3
= 0,

known as the modified (MKdV) equation, has soliton and multi-soliton solu-
tions corresponding to lattice phonons, with eigenvalues that satisfy the linear
Schrödinger equation.

This conclusion is interpreted to confirm that the thermal motion of scattering
centres on a crystallographic plane is correlated and therefore unlikely to disrupt
the coherent scattering of X-rays. On the other hand, in an ideal harmonic solid, the
independent vibration modes are dispersive and the energies stored in them never
come into thermal equilibrium.
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X-ray diffraction is therefore seen to depend on the interaction between a linear
wavefront and a nonlinear soliton lattice, giving rise to coherently scattered sec-
ondary waves, in exact analogy with optical diffraction. Linear superposition of the
scattered waves define the Fourier transform of the electron density.

Conduction and Superconductivity

An electric current is intuitively described as the flow of electrons through a conduc-
tor, typically a metal. Phenomenologically an electron in this context is considered
to be a particle, which in terms of the wave model assumed here, should be defined
as a single soliton. In terms of the classical Drude model of metallic conduction va-
lence electrons pervade a metal in the form of an electron gas. The highly nonlinear
medium must ostensibly promote the formation of propagating solitons.

By contrast, superconductivity is associated with the alignment of high-spin
atomic nuclei [60], that creates a uniform aperiodic field and promotes uninhibited
flow of linear electron waves.

7.4 Chemical Aspects

The consistent failure to formulate convincing quantum-mechanical models that
represent fundamental chemical concepts such as molecular structure and shape,
optical activity and chirality, chemical cohesion, electronegativity and many others,
is often ascribed to an inadequate understanding of the difference between classical
and non-classical systems. A common strategy to address the problem is by search-
ing for an informative definition of the illusive classical limit. A critical review of
such efforts was published by Rosen [61] who examined the difference between
Schrödinger’s equation and its “classical” counterpart.

It is well known that Schrödinger derived a wave equation in analogy with the
Hamilton–Jacobi (HJ) equation in the geometrical-optics limit. The inverse opera-
tion that relates the Schrödinger wave function to Hamilton’s principal function, S,
is done by substituting

Ψ = ReiS/� (7.15)

into (7.5), to yield6

−∂S

∂t
= 1

2m
(∇S)2 + V − �

2

2m

∇2R

R
, (7.16)

∂ρ

∂t
= − 1

m
∇ · (ρ∇S) (7.17)

where ρ = R2 = |Ψ |2.

6For details see [31, p. 134].
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Equation (7.16) is identical with the HJ equation for a particle moving in a
potential-energy field of P = V + Vq :

−∂S

∂t
= (∇S)2

2m
+ P (7.18)

with Vq = −�
2∇2R
2mR

, known as the quantum potential.
In order to recover the classical HJ equation with P = V it is necessary to define

the “classical Schrödinger equation”:

i�
∂Ψ

∂t
=

[
− �

2

2m
∇2 + V + �

2

2m

∇2|Ψ |
|Ψ |

]
Ψ (7.19)

and its complex conjugate with |Ψ | = R. Substitution for Ψ , as in (7.15), produces
the classical HJ equations.

Equation (7.19) differs from (7.5) only in the last term on the right, in exactly the
same way as the NLS equation (7.13) defined before. The nonlinear term in (7.19)
is proportional to the quantum potential, represented by a quadratic term in (7.13).
In fact, the two nonlinear equations are identical for β|φ|2 = Vq .

As there is nothing “classical” about (7.19) it is more plausible to simply de-
scribe it as a modified NLS equation that transforms gradually into the nonlinear HJ
equation for m > mP , the Planck mass, mP = √

�c/G = 2.17 × 10−8 kg. In this
case there is no discontinuous change from a linear to a nonlinear regime at some
classical limit, as occurs for systems described by (7.5) and (7.18).

This conclusion is in line with the notion that, because of space-time curvature
all material systems, including quantum objects, are intrinsically nonlinear, accord-
ing to (7.19) and (7.18), linked by (7.15). For massive objects, Vq → 0 and (7.18)
provides the more appropriate description. There is a grey area, the analog of geo-
metrical optics for linear systems, where (7.18) and (7.19) apply equally well. In the
limit of massless entities (m → 0) the sine-Gordon equation (7.14) converts into the
general linear wave equation (7.1) that governs the propagation of electromagnetic
waves.

The grand conclusion is that a linear differential equation cannot give a correct
description of electronic structure and behaviour. Although the linear Schrödinger
and Dirac equations account for most observations, some features of spectroscopic
fine structure, such as the Lamb shift remain unexplained and the concept of elec-
tronegativity undefined. Correction factors based on mass renormalization and quan-
tum electrodynamics are of the correct magnitude, but the physical basis, which at-
tempts to smear out a point electron into a finite sphere [62, p. 231], are plagued
with serious infinity problems.

The most glaring defect of linear wave mechanics is the failure to account in
detail for the observed structure of the periodic table of the elements. It is more than
a suspicion that a reformulation based on a nonlinear equation in 4D curved space
could eliminate the need of all ad hoc correction factors.
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7.4.1 Solving the Equation

Solution of the NLS equation (7.13) by means of an “inverse scattering transform”
is described by Kaup [46]. The procedure involves mapping of the field into a non-
linear Fourier transform space, defined as the “scattering data”. The coupling con-
stant ε2 in (7.13) is assumed to be real. When ε2 < 0, ε is purely imaginary and no
bound states occur. However, when ε2 > 0 and the integral

∫ ∞

−∞
∣
∣Ψ (x, t)

∣
∣dx < ∞

is sufficiently large the mapping becomes essentially linear and bound states can
occur.

The bound-state part of the spectrum is analyzed by assuming the continuous
part to be absent. In this case, each bound state corresponds to exactly one soliton.
For the simplest case of a one-soliton solution it has the form

Ψ (x, t) = F(η1, ε) · exp
[
f1(x − x̄0), η1

] · sech
[
f2(x − x0), η1

]

where x0 and x̄0 are arbitrary real constants. The imaginary part of the complex
eigenvalue η1 determines the height and width of the soliton and the real part deter-
mines the velocity.

The solution for the continuous part of the spectrum, in the limit of ε → 0, devel-
ops in time like the solution for the linear problem (ε = 0), in that it slowly disperses
and decays away. Because of nonlinear decaying oscillations this continuous part of
the spectrum is referred to as “radiation”.

Remarkably, the eigenvalues for the continuous part of the spectrum are identi-
cally the same as for the linear case (ε = 0). It was pointed out [46] that no effects
requiring renormalization are found, and the zero-point energy is independent of ε.
For ε2 > 0 bound states of nj excitations moving as coherent units, occur with
binding energy ∝ (nj + 1

2 )3. These bound-state solutions, even more so than KdV
solitons, can be interpreted directly as models for electron structure and motion,
both in the free state and in atoms.

7.4.2 Chemical Interaction

All chemical interactions are mediated by electrons and therefore proceed accord-
ing to (7.19). In principle the behaviour of all chemical systems, from electrons
to molecules and crystals, is therefore controlled by the quantum potential of that
system.

Equation (7.19) as it stands, is impossible to solve unless one resorts to numeri-
cal analysis, using solutions of the linear equation (7.6) as an initial value, Ψ (x,0)

at t = 0. For the hydrogen atom in its ground state (compare Sect. 7.2.4) the linear
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solution predicts Vq = −�
2/2ma2

0 , as an initial value for iterative solution of (7.19).
We predict that such a solution would provide an improved simulation of the hy-
drogen spectrum, without ad hoc corrections. We note in passing that the Feynman
sum over histories, the basis of quantum electrodynamics, is essentially a linear su-
perposition and hence of dubious validity for the problem in hand. Formulation of
the quantum potential of a many-body system as a linear superposition,

Vq = −
n∑

i

�
2∇2

i Ri(xi, t)

2mRi(xi, t)
,

also needs nonlinear revision.
For the electron in an atomic valence state Vq , known as a function of the ion-

ization radius [63], defines electronegativity and could be used directly as a param-
eter in (7.19). As for the hydrogen atom, a strategy of starting with the calculated
quantum potential to analyze electron-pair covalent interaction by Heitler–London
simulation is envisaged. However, any progress beyond this step must depend on the
interaction between electrons in atoms and molecules. Do they behave like solitons
that freely interpenetrate one another or as extended interfering standing waves?
Judging by the experience with other nonlinear systems we further anticipate the
need of additional nonlinearity parameters on dealing with more complex molecu-
lar systems for which (7.19) will be of limited use.

The virtue of nonlinear analysis is that it recognizes the complexity of natu-
ral systems. Although the algorithms required to address meaningful problems are
vastly more complicated, the temptation of linear superposition as a strategy is elim-
inated by definition. Problems such as the half-dead Schrödinger cat need no longer
confuse the quantum philosophers. We call into doubt the entire industry known as
quantum chemistry, which is based on the linear combination of atomic orbitals.
Alternative strategies are explored in the next chapter.
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