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Preface

The spectacular successes such as the construction of lasers and magnetic resonance
instruments, commonly credited to quantum physics and spectroscopy, make the ex-
pectation of a quantum theory of chemistry almost irresistable. Equally spectacular
failures to account for high-temperature superconductivity, cold fusion, molecular
diffraction, optical activity and molecular shape are conveniently ignored. Even the
emergent concept of spin, correctly considered the most non-classical property of
elementary matter, has never been explained in terms of first-principle quantum the-
ory.

It is therefore not surprising to find that beyond the Bohr-Sommerfeld model
of the atom quantum mechanics has caused more confusion than enlightenment in
theoretical chemistry. However, to turn away from the fantasy of quantum chemistry,
after a century of expectation, could be as traumatic as renouncing the prospects of
alchemical transmutation.

Chemistry is the prodigy of alchemy as modified by the theories of modern
physics. Even so, it still has not resolved the ancient enigma around the nature
and origin of matter. Alchemy itself is the product of ancient hermenistic philoso-
phies, traces of which have survived the metamorphosis into chemistry. Elements of
the number-based Pythagorean cosmology are clearly discernible, even in the most
modern theories of chemical affinity. Briefly [1]:

The cosmic unit is polarized into two antagonistic halves (male and fe-
male) which interact through a third irrational diagonal component that con-
tains the sum of the first male and female numbers (3 + 2) and divides
the four-element (earth, water, fire, air) world in the divine proportion of
τ = (

√
5/4 − 1

2 ).

v
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In Pythagorean parlance, any chemical interaction is essentially of the type

HCl + NaOH → NaCl + H2O.

It is facilitated by the affinity between opposites to produce a product that symbol-
izes the principle of substantiality, in harmonious equilibrium with the total envi-
ronment.

All harmonic proportions and relationships are said to derive from the roots of 2,
3 and 5, the number of life. In modern terminology, the harmony that results from
the interplay of integers and irrationals manifests at all levels of reality. It is collo-
quially referred to as self similarity, well known to be mediated by the golden ratio
and golden logarithmic spirals. Modern theories perform little better in describing
ponderable matter as resulting from the interaction between cold dark matter and a
universal Higgs field. The mathematical model that underpins the theory is as mys-
terious as the divine proportion.

Chemistry distinguishes between space and time, and between matter and energy.
The seminal theories of physics, independently developed by Newton and Huygens
made the distinction between particles and waves. Hamilton’s refinement of classi-
cal mechanics demonstrated some common ground between the two theories, but
Maxwell’s formulation of the electromagnetic field revealed a fundamental differ-
ence in their respective laws of motion. It was the unified transformation of Lorentz
that finally established the four-dimensional nature of Minkowski space-time and
the equivalence of mass and energy. The gravitational and electromagnetic fields
remained poles apart. However, both of these could be shown, by Einstein’s general
relativity and the notion of gauge invariance as developed by Weyl and Schrödinger,
to be products of Riemann’s non-Euclidean geometry. Ultimate unification of the
fields was achieved in terms of Veblen’s projective relativity.

Analysis of the interaction between matter and radiation and the theories of
chemistry were pursued in Euclidean space and remained at variance with the the-
ory of relativity, culminating in the awkward compromise of wave-particle duality.
It is only the recognition of spin as a strictly four-dimensional concept that holds the
promise of wave structures, which behave like particles. Formulated as a quaternion
structure it defines the common ground between relativity and quantum theories.
The electron, defined as a nonlinear construct, known as a soliton, recognizes the
importance of space-time curvature and represents final unification of its initially
antagonistic attributes.

It is the theme of this book to show how refinement of the concepts matter
and wave would lead to a consistent description of chemical systems without the
confusion of probability densities and quantum jumps. The final model is that of
Schrödinger, extended to four dimensions in nonlinear formulation.

The major effect of this more general proposed formulation is that the procedure
of linear combination of atomic orbitals, at the basis of all “quantum chemistry”
completely looses its validity and it needs to be replaced by entirely new modelling
strategies. One alternative, already in place, is molecular mechanics, an empirical
procedure based on classical mechanics and classical notions of molecular struc-
ture. It is encouraging to note that the same number-theoretic simulations, which
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are effective as a basis of elemental periodicity, are commensurate with molecular
mechanics.

The number-theory simulation of chemical systems originated with the observa-
tion that the periodicity of atomic matter depends on the number ratio of atomic
protons to neutrons that converges to τ as a function of either A, Z, A − Z or
A − 2Z. The same pattern is revealed by the golden proton excess x = Z − τN . By
demonstrating that this convergence is a function of general space-time curvature
the observed cosmic self-similarity is inferred to depend in equal measure on space-
time curvature, the golden ratio and the shape of the golden logarithmic spiral.

To put the whole scheme into perspective it is noted that, because of curvature,
the geometry of space time is non-Euclidean and different from the commonly per-
ceived Euclidean geometry. Topologists distinguish between an underlying, glob-
ally curved space-time manifold and the local, approximately Euclidean, three-
dimensional, tangent space and universal time. Any analysis performed in tangent
space, using a model such as Newtonian mechanics or Schrödinger’s linear equa-
tion, produces a good, but incomplete, approximation, compared to possibly more
refined descriptions in four-dimensional detail.

To compensate for the neglect of curvature the golden parameter τ , or optimiza-
tion in terms of golden logarithmic spirals, provides an immediate corrective, in the
simulation of chemical systems by linear procedures. The very existence of matter
is seen to depend on the nonlinear deformation of a hypothetical, Euclidean, four-
dimensional energy field as described by the theory of general relativity. The prod-
uct is a non-dispersive solitary wave packet, known as a soliton. Different modes
of deformation lead to the formation of solitons of different symmetry, colloqui-
ally known as elementary particles. Dependent on mass, charge and spin these units
are of different stability and in combination with those of complementary affinity
develop into the different forms of ponderable matter—atoms, molecules, crystals,
fluids and higher aggregates. The imprint of space-time curvature and the golden
ratio remains with all matter, exhibiting a common self-similar symmetry.

The periodicity of matter arises as the product of a closed numerical system with
a natural involution that relates matter to antimatter. In four dimensions such a func-
tion defines elliptic space in the form of projective space-time, as used by Veblen in
the unification of the electromagnetic and gravitational fields.

The hard sell of convincing chemists that quantum mechanics in its present guise
is too restrictive as a theory of chemistry necessarily involves unfamiliar mathemat-
ical arguments that may turn out to be counterproductive. To be convincing it is
unavoidable to introduce various aspects of physics and applied mathematics tradi-
tionally considered to be way outside the chemistry paradigm. The bland alternative
of starting from “well established” mathematical physics appears equally problem-
atical. This is the exact strategy that created the present dilemma in the first place.

The most daunting prospect is to argue convincingly for the adoption of a four-
dimensional world view, against the millions of three-dimensional molecular struc-
tures derived by sophisticated experimental techniques. To complicate matters by
the introduction of nonlinear effects would surely be considered as meaningless,
unless it can be supported with concrete examples. The anticipated response is dif-
ficult to predict.
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The conservative respect for authority creates another problem. It comes natu-
rally to reject, without thinking, dissident views that contradict the time-honoured
ideas of respected pioneers. A prime example is in the handling of high-temperature
superconductivity. The BCS theory, which ascribes superconduction to the forma-
tion of bosonic electron pairs, mediated by lattice phonons, offers no insight into
the mechanism that operates in ceramic materials. Even the correlation of low-
temperature metallic superconduction with normal-state properties remains an em-
pirical observation without theoretical support. A reported room-temperature super-
conducting state is simply denied as theoretically impossible.

The credibility of the quantum-based BCS theory rests entirely on the reputation
of its authors. Reluctance to abandon the model relates to the mistaken perception
that it is supported by the mathematical simulation of a superconduction transition
as the breakdown of gauge symmetry on cooling. However, the symmetry model
applies to all forms of superconductivity whereas the phonon interaction is an em-
pirical conjecture for one special case only.

The readily demonstrated dependence of superconductivity on the composition
of atomic nuclei favours an alternative description of the phenomenon as a nuclear,
rather than a strictly electronic, property. Special stability of the nuclear composition
that corresponds to the Z/N ratio of τ implies a positively charged surface shell that
correlates remarkably well with anomalous nuclear spin and superconduction. With
this surface excess as a guide an alternative mechanism that effects all forms of
superconductivity is recognized.

At a more speculative level the phenomenon of electrolytic “cold fusion”, appears
to occur at cathodes, rich in high-spin isotopes of the same type. In this case the
active process appears as neutron capture that converts symmetry-distorted nuclides
to lower-energy forms.

These examples all point at the unpalatable conclusion that quantum theory, in
its present form, falls far short of popular perceptions. It is not the all-embracing
panacea that stretches beyond science and inspires the non-local metaphysics of fun-
damental acausality, probability and complementarity, which blossomed into multi-
verse cosmology. An “inner voice” told Einstein that something was amiss, but he
lacked the data to support his intuition.

The central issue that defied comprehension was the apparent dual nature of both
elementary matter and radiation. Efforts to account for this uncertainty resulted in
concepts, universally accepted by now, such as an observer’s role in creating pat-
terns from the conceptually unknown. This confusion between subject and object
resonates with the musings of psychologists and philosophers, groping for an un-
derstanding of reality in terms of medieval mysticism through quantum theory [2].

The unfortunate conviction that inspires such pursuits, although hard to gainsay
philosophically, has a simple resolution:

There is no such thing as an elementary point particle.

Matter, as the product of intrinsically nonlinear four-dimensionally curved space-
time, or “condensation of the vacuum (æther)”, has a wave structure. Not in the
form of dispersive wave packets, but as non-dispersive persistent solitary waves, or
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solitons, only known to occur in shallow water at the time when quantum theory
was formulated.

Solitons are flexible and under certain circumstances may appear to behave like
point particles. Futile efforts to account for a soliton’s wave-like behaviour with a
particle model result in the weird constructs, generally believed to reflect quantum
effects. This statement is a concise summary of the argument to be developed in the
following.
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Chapter 1
Of Electrons and Molecules

Abstract The discovery of X-ray diffraction promised to resolve the mystery of
molecular structure, but a hundred years on it is fast receding into the fourth dimen-
sion. The contemporary development of quantum mechanics performed no better.
It introduced, without explanation the notion of non-commuting dynamic variables,
described by complex functions, failed to account for electron spin or optical ac-
tivity and still appears to be at odds with special relativity. The confusion starts
with Maxwell’s formulation of the electromagnetic field, interpreted differently in
quantum and relativity theories, and grows with the chemical practice of reducing
complex quantum functions to real classical variables. This leaves the nature of a
single molecule’s structure undefined—neither classical nor non-classical.

1.1 Introduction

Chemical theory is based in the final analysis on two poorly understood concepts—
electron and molecule. In principle both of these are wave-mechanically well de-
fined, but in reality neither model reveals anything beyond the initial assumptions.
The chemist’s electron is a negatively charged particle and a molecule a set of atoms
connected into a fairly rigid framework as dictated by classical valence forces.

The purpose of this introductory chapter is to review the theoretical problems
with electrons and molecules in broad outline and to highlight important aspects
to be discussed in subsequent chapters. It is necessary to recognize the problems,
which are commonly ignored during unsuccessful computational simulations, in
order to reformulate the wave-mechanical approach on a more fundamental ba-
sis.

1.2 Electrons in Chemistry

As the science that studies the transformations of matter, an understanding of chem-
istry depends on elucidating the behaviour of the electrons that mediate interac-
tion between atomic cores. Elucidation in this sense is not to be confused with the
simulation of intramolecular electron transfer, routinely performed by practising
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2 1 Of Electrons and Molecules

chemists, without appreciating the nature of electron spin, charge or mass. It is con-
sidered as sufficient common knowledge that an electron carries one unit of indi-
visible negative charge and half a unit of intrinsic spin, directed either up or down.
The origin and meaning of these attributes are seldom contemplated and electron
mass is no more than the natural property of an elementary point particle. The more
surprising phenomenon of electron diffraction is considered adequately explained
by the quantum-mechanical concept of wave-particle duality.

This amazing compliance can be traced back to the accepted infallibility of quan-
tum theory, considered to underpin all of chemistry. Most theories are considered
subordinate to experimental evidence, but occasionally some special theories ac-
quire metaphysical importance by virtue of universal acclaim that results in dog-
matic certainty. This recognition befell the peripatetic physics of Aristotle, Ptole-
maic cosmology, the phlogiston theory of chemistry and the quantum theory ac-
cording to von Neumann. Once a theory has been elevated to such a level, conflict-
ing evidence is rationalized by the introduction of secondary concepts, not part of
the seminal theory. Well-known examples include the epicycles of planetary motion
and the negative mass of phlogiston. The accepted properties of the electron are
immediately recognized as being of this nature.

Except for the quantum theory, all of the others had given way eventually under
the pressure of experimental evidence. In the same way the prevailing theory of
the electron needs replacement by another that accounts for its spin, charge and
wave nature. Schrödinger’s fundamental equation represents a modification of the
general equation for wave motion according to de Broglie’s postulate of a function
ψ = exp(ipx/�) to describe matter waves.

The resulting wave-mechanical formulation of quantum theory has several de-
fects. The most glaring is that, despite the evidence from special relativity, it is
formulated as a theory in three-dimensional space. For this reason the spin function
remains undefined. Solution of the resulting differential equation by further separa-
tion of the variables next reduces all electronic motion into the unrealistic classical
one-dimensional vibrations of quantum chemistry.

As for all linear differential equations, superposition of any elementary solutions
of Schrödinger’s equation is another solution. The most general solution can hence
be written as the Fourier sum of orthogonal functions

ψ(x) =
∑

k

A(k)eikx .

For continuously varying k, the normalized solution

ψ(x) = 1√
2π

∫ ∞

−∞
φ(k)eikxdk

represents a wave packet, which is dispersive for de Broglie matter waves, e.g. an
electron.
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1.2.1 Wave-Particle Duality

Although the Schrödinger-de Broglie model failed to produce an acceptable wave
description of an electron with spin, its confirmation of the Bohr-Sommerfeld hy-
drogen spectra instilled overwhelming confidence in the methodology. Instead of
modifying the seminal equation to generate a non-dispersive electronic wave packet,
the agreed remedy was to retain the equation without alteration, but supplemented
by the addition of suitable ad hoc correction factors.

Without a stable wave packet to simulate the particle-like behaviour of an elec-
tron it was therefore redefined arbitrarily as a point particle with spin and wave
properties. Of these stated attributes only the wave behaviour is consistent with the
mathematical model. Spin could be introduced by the addition of a matrix opera-
tion to represent an extra two-level variability, not reflected in the seminal equation.
However, the simulation of wave-like behaviour in terms of particle dynamics neces-
sitated a drastically modified interpretation of the wave functions that characterize
the eigenvalue solutions. The agreed innovation, sanctioned by neither de Broglie
nor Schrödinger, was to interpret the square of the wave function |ψ |2 = P , as a
probability electron density. Not even this device could be argued to account for
electron diffraction, which problem was overcome by the invention of the new term
wave-particle duality. It has no operational meaning but is recommended to imply
that an electron may behave as either a particle or a wave, as needed.

1.2.2 The Schrödinger Approximation

Quantum chemistry is based exclusively on the one-electron solutions of Schrö-
dinger’s equation. As a modification of Laplace’s equation these solutions are mod-
ified spherical harmonics. Two-dimensional plane harmonics, better known as circu-
lar harmonics, underpin the original quantum theory of Bohr [1]. One-dimensional
simple harmonics define the basis of de Broglie’s postulate that relates linear mo-
mentum to wavelength.

The relationship between one-dimensional harmonic vibration and two-dimen-
sional circular motion is demonstrated by the mechanical device known as a Scotch
yoke, familiar to most as an automotive crankshaft. This device generates rotational
motion about an axis perpendicular to two orthogonal vibrations that it locks into
phase, as described by a complex function. In spherical rotation the phase relation-
ship is described by a four-dimensional hypercomplex function. Mathematically the
various modes of harmonic motion are all described by Laplace’s equation. In one
dimension it describes simple harmonic motion by a single real variable and cir-
cular harmonics by a complex function of two variables. Schrödinger’s equation is
obtained by separating the space and time variables of a three-dimensional wave
equation [2].

Not only could this be the reason why quantum chemistry fails, but it also ex-
plains the notorious discrepancy between quantum mechanics and the theory of
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general relativity, which was developed as the common frame of reference for me-
chanical motion and the electromagnetic field. The equations of special relativity,
known as the Lorentz transformation are formulated most generally as a complex
rotation in four-dimensional space-time [3]. It is of the essence that this formulation
does not allow the separation of space and time variables. The four-dimensional ro-
tation operator is known as a quaternion and the argument as a spinor, which is a
harmonic function in four-dimensional space-time.

There is a regular progression from one- to four-dimensional number systems.
The familiar fields of real and of complex numbers are one- and two-dimensional
respectively. A complex number has two real components. In the same way a four-
dimensional hypercomplex number, known as a quaternion, has two complex com-
ponents. Quaternions differ from complex numbers in not being commutative under
multiplication. An octonion has two quaternion components and for it the distribu-
tative law does not hold.

Notably there is no normed division algebra in three dimensions [4]. Three-
dimensional space is therefore described in terms of a complex plane, orthogonal
to a linear polar direction. General, or spherical rotation, which defines a spinor is
hence undefined in three-space. This explains why the important property of elec-
tron spin has to be added manually to the traditional quantum model. The standard
model of quantum chemistry, which is based on three orthogonal orbital directions,
is, for the same reason, undefined in Schrödinger space.

1.2.3 Four-Dimensional Waves

The appearance of an electron, as all other elementary forms of matter, cannot be
reduced to a level lower than the physical vacuum, with geometrical shape defined
by the space-time variables of general relativity. As a discrete object it must be seen
as characteristic of a stable elementary distortion of space-time. While the nature
of empty space-time remains unknown elementary objects, such as electrons, which
appear in curved space-time, have been studied in detail.

To first approximation different elementary units have characteristic properties of
mass, charge and spin, all of which relate to a specific mode of space-time distortion
and the accumulated space-time density that results in the region of distortion.

If elliptic topology of space-time is assumed, the vacuum is represented by an
equilibrium interface between material and anti-material regions and may be imag-
ined to be in a state of gentle undulation. Space-time curvature generates interfer-
ence patterns in this four-dimensional wave field with the formation of standing
wave packets, recognized as electrons and other elementary entities.

To ascertain the characteristic mass (or energy) of such an entity, space-time
density is multiplied by the volume in space, i.e. m = ρx3. In four-dimensional
space-time the product of ρx3t = a, corresponds to the more fundamental property
known as action, a ∝ mt . The elementary unit of action, given by Planck’s constant,
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�, describes the spin, or the four-dimensional symmetry of the distortion. The three-
dimensional symmetry (rotation) with respect to the local time axis, is observed as
electric charge.

The more complex internal structure of hadrons is ascribed to extra symmetry
(e.g. three-fold symmetry) of the internal wave field. It is suggested that such inter-
actions could be described by octonions.

1.2.4 Nonlinear Schrödinger Equation

An obvious defect of wave mechanics is being based on linear differential equations.
The computers to solve nonlinear equations simply did not exist in 1930 and, to a
first approximation, solutions of the linear equations corresponded so well with ex-
perimentally known quantum effects that the model was generally accepted as ade-
quate. Twenty years later when serious discrepancies started to emerge the paradigm
was so firmly established that modification was considered heretical.

At the same time the theoretical analysis of chemical problems by the linear com-
bination of atomic orbitals, which came into widespread use, was seen as the ulti-
mate solution. A moment’s sober reflection at the time should, arguably, have cau-
tioned the numerous users of powerful new software that became widely accessible,
that nonlinear effects in the handling of medium to large molecules cannot reason-
ably be ignored. The numerical simulation of ergodic effects at Los Alamos brutally
exposed the inadequacy of linear statistical models and soon led to the recognition of
soliton structures that could be of relevance in the simulation of elementary-particle
models.

Computational chemists have been too slow to exploit the new techniques for the
analysis of electron and molecular structures, while chemical and electrical engi-
neers continue to make free use of nonlinear Schrödinger (NLS) and sine-Gordon
equations.

It is of special importance to note that the NLS equation has the same structure
as the so-called classical Schrödinger equation. This parallel identifies the quantum
potential as the nonlinear term and defines a seamless transition between wave-
mechanical and classical Hamilton–Jacobi systems. An exciting possibility arising
from this is the recognition of a wave-mechanical basis of venerable classical con-
cepts such as electronegativity, bond order, polarizability, valence state and molec-
ular shape.

In order to fully appreciate the proposed modifications to the standard wave-
mechanical model of chemistry it is necessary to examine the state of the art against
the background of the historical developments over the previous two centuries.

1.3 Molecular Structure

The molecular-structure hypothesis originated during the 19th century in the work
of Kekulé, van’t Hoff and others [5]. It gained respectability as a reliable diagnostic
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of optical activity of molecules in solution and as the basis of the Lewis electron-pair
model of chemical bonding. Final vindication of the three-dimensional structure of
molecules in the crystalline state was provided by the pioneering work of J. Mon-
teith Robertson who published a structure for anthracene as early as 1933 [6], with
the significant comment that:

It must be remembered, however, that the crystal molecule is far from being
a free body in space.

On the other hand, the famous statement by Dirac [7] that:

. . . the whole of chemistry are thus completely known. . .

signalled the prospect of deriving the molecular structure of any molecule by
quantum-mechanical calculation.

The brave attempt [8] to formulate a quantum theory of chemistry during the pe-
riod around the second world war, anticipating full development by powerful digital
computing, has by now turned into an embarrassment. Despite the absolute confi-
dence of quantum physicists in the enabling theory, the conviction of a few that it
was incomplete must now be seriously re-examined.

1.3.1 Molecular Modelling

Despite the posturing of computational chemists the theory behind molecular mod-
elling amounts to a computerized empirical generalization of the Lewis electron-pair
model of a hundred years ago. This includes all quantum-chemical VB and LCAO-
MO schemes, DFT and molecular mechanics.

Trying to understand what Quantum Chemistry is all about we may turn to one of
its principal architects, C.A. Coulson. Two relevant passages from his monograph
[9] put his vision and the ground rules of the pursuit into fair perspective:

. . . the laws of quantum mechanics (of which wave mechanics is merely one
particular formulation) allow us, in principle, to predict not only the electronic
structure and the geometry of a molecule but indeed all of its properties.

At the highest level, we attempt a highly accurate numerical solution of
the Schrödinger equation; such calculations, which usually start from nothing
more than a conjectured molecular geometry, are usually termed ab initio.

These two statements can, at best, be described as deliberate euphemisms to dis-
guise the fact that quantum chemistry does not extend beyond a crude rationaliza-
tion of the hydrogen atomic spectrum. The laws of quantum mechanics, whatever
they are, do not, even in principle, allow the prediction of the electronic structure of
a molecule and most certainly not the geometry and properties of any molecule, in-
cluding H+

2 . This is confirmed by the second statement which admits the necessity of
assuming a molecular structure in order to attempt a calculation at the highest level.
It is fatally misleading to refer to such computations as solution of Schrödinger’s
equation. It is nothing of the kind.
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The solution of any equation is exhaustive and excludes further alternatives. An
ab initio ‘solution’ only demonstrates that a polynomial function can be constructed
computationally to be apparently consistent with the assumed molecular Hamilto-
nian. For this to be considered a solution it would be necessary to repeat the exercise
for the infinite number of alternative connectivities, permutations and configura-
tions, consistent with the chemical formula of the ‘molecule’.

The unspoken assumption that sanctifies the ab initio procedure is that once an
acceptable level of agreement between the calculated electron distribution and the
assumed Hamiltonian has been reached, the molecular structure has been confirmed
quantum mechanically. This is utter nonsense, even in terms of the so-called laws
of quantum mechanics. One of these, known as the uncertainty principle, forbids a
fixed location for any quantum object, presumably including atoms and molecules.

Irrespective of the ‘level of theory’ no amount of hand waving or computing
power can overcome this problem. A Hamiltonian based on a rigid, so-called Born-
Oppenheimer, nuclear framework can never constitute a quantum-mechanical vari-
able. The emperor simply has no clothes on.

Alternatively, a solution ab initio in terms of the Copenhagen laws of quantum
mechanics must generate, not assume, the probability nuclear distribution, given the
chemical composition of the target molecule.1 Unless this can be achieved molec-
ular quantum chemistry does not exist. Density-functional theory is refuted by the
same argument.

Molecular mechanics has no such pretensions. Its only objective is to simulate
a classical three-dimensional molecular structure according to the principles de-
veloped by Kekulé, van’t Hoff, Lewis and others, using classical mechanics and
Hooke’s law. Within this formalism it serves the chemical community well, despite
repeated efforts to belittle the technique for not being quantum based. In this respect
it is no different from VB, MO and DFT methods, except for being honest about its
theoretical background. In order to distinguish interactions of different order an un-
fortunate practice to label bonding types in orbital terminology, has developed, but
this can be eradicated with little effort.

That orbital hybridization is a myth is now getting more widely accepted [10, 11].
It occurs most frequently to describe the interaction between first-period elements
in terms of s − p hybrid orbitals. According to Coulson [9]:

. . . we describe each electron by an orbital, or ‘personal wavefunction’. . .
The p-functions occur in sets of three, each set describing three alternative

states in which the electron has exactly the same energy; three such p-orbitals,
which we denote by px , py , pz are said to be triply degenerate.

What remains unsaid is that these p-orbitals are all real functions; therefore all with
the same wave-mechanical quantum number of ml = 0. At the same time we are
reminded by Coulson [9] that

1Some science writers even claim that the molecular products of chemical reactions can be pre-
dicted quantum-chemically.



8 1 Of Electrons and Molecules

Pauli’s famous exclusion principle then takes a very simple form: in the
orbital description of an atom no two electrons can occupy the same spin-
orbital.

In any other branch of science such self-contradiction would be devastating. Quan-
tum chemists respond that in this case quantum numbers are no longer needed,
which, they forget to admit, therefore defines a classical system.

We conclude that a search for the quantum-mechanical basis of molecular me-
chanics is a non sequitur. It does not exist and there is no need for it. Still, it would be
useful to have a non-empirical estimate of the variables, such as ideal bond lengths
and angles, stretching and bending force constants and a measure of steric rigidity;
that feature in MM force fields. Many of these are provided by the number-theory
approach to covalent interaction. However, in practice there is little need of recalcu-
lating the force-field parameters which, in most applications, have been established
empirically with care and suitable validation.

It does not mean that the search for a wave-mechanical model of molecular struc-
ture should be abandoned. New insight based on four-dimensional and nonlinear
molecular models would be of tremendous advantage in the elucidation of chemical
reactivity.

1.3.2 Atomic and Molecular Structure

The 4D equivalent of Schrödinger’s equation remains to be solved. In the interim the
number-theory simulation of atomic structure [12] confirms a spherical standing-
wave structure of electron density as first indicated by golden logarithmic-spiral
optimization [5]. The interaction between such wave structures depends on the in-
terference of (hyper)spherical waves, which cannot be reconciled with the formation
of rigid chemical bonds. The familiar structural formulae of molecules can only re-
flect connectivity patterns and not rigid three-dimensional structures.

We conjecture that curving of the space-time vacuum generates elementary four-
dimensional distortions, which, for lack of better terminology, may be described as
spherical wave packets of characteristic mass, charge and spin, summarized together
by a quaternion wave function. As these elementary units coalesce into larger struc-
tures they appear as the classical objects familiar to three-dimensional observers in
tangent space. Free molecules are not of this class, but molecular crystals are.

Free molecules only occur in empty intergalactic space-time. Radio astronomi-
cal analysis of Rydberg atomic spectra from interstellar space indicates electronic
quantum numbers of up to 350, for atomic size of ∼6 micron and subject to strong
polarization by weak electromagnetic fields [13]. Free molecules would be affected
in the same way and are not likely to occur intergalactically. Stable small molecules
of high symmetry are detected in dark interstellar clouds [14]. These molecules
have no structure. As the concentration of matter in an environment increases, single
molecules develop structure of lower symmetry, culminating in molecular crystals.
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The shape of a single molecule therefore varies from a structureless 4D symmetry
to a rigid 3D arrangement—from a non-classical to a classical molecule.

Intergalactic space-time is not a void, although depleted of matter in large enough
concentration to cause further aggregation. The total uniformly distributed residual
elementary wave structures constitute an enormous total mass which astrophysicists
refer to as dark matter and energy. The mass density in interstellar space is sufficient
for the condensation of clouds hot enough for the formation of primitive molecules.
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Chapter 2
The Classical Background

Abstract The development of physical science over the last two millenia is traced
from the summary of Lucretius, through the early Christian era, to the transforma-
tion into critical science after Copernicus. This revolution saw the birth of physics
and chemistry to replace Aristotelian authority and alchemy, guided by the princi-
ples formulated by Isaac Newton and John Dalton. The new awareness blossomed
into the formulation of a comprehensive theoretical mechanics and the recognition
of seventy well-characterized chemical elements to replace the four elements of an-
tiquity.

2.1 Introduction

Modern theories of the physical sciences have developed through several refine-
ments from ancient philosophical models and, not surprisingly, many an outdated
concept has remained hidden in modern expositions. Most persistent are those that
appear self-evident to the non-critical or casual observer and therefore quietly tol-
erated without further analysis. Some of the most debilitating inconsistencies in
theoretical science are of this type and often the hardest to gainsay.

A useful strategy to weed out hidden fallacies is by historical scrutiny of the the-
oretical progress of science, starting from the classical roots. Most of the authentic
ancient sources have been lost, but a reliable account of physical theories in Roman
times (∼55 BCE) has been preserved in poetic form, as compiled by Lucretius [1].
The poem develops around six primary propositions:

(i) Nothing is ever created out of nothing
(ii) Nothing is ever annihilated
(iii) Matter exists in the form of invisible particles (atoms)
(iv) Besides matter, the universe contains empty space (vacuity)
(v) The universe consists of matter (with its properties and accidents) and of vacu-

ity and of nothing else
(vi) The atoms are indestructible

These are augmented by two further propositions:

(vii) The universe is boundless
(viii) The universe has no centre

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_2,
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The motion and shape of atoms are described by two sets of secondary proposi-
tions.

On atomic movement:

(i) The atoms are always on the move, either falling or rebounding
(ii) They move faster than light

(iii) The atoms normally curve downwards
(iv) Occasionally they swerve slightly from the vertical
(v) They were never either more or less congested than now

(vi) The apparent mobility of matter is an optical illusion

On atomic shape:

(i) The various properties of objects are due to the varieties in the size and shape
of atoms

(ii) The number of atomic shapes is large but finite
(iii) The number of atoms of any one shape is infinite
(iv) All visible objects are compounds of different kinds of atoms
(v) Only certain compounds can exist

(vi) The atoms themselves are devoid of colour, heat, sound, taste, and smell, and
sentience

These propositions are supported by three general corollaries:

(i) The world is one of an infinite number
(ii) Nature is self-regulating, without interference from the gods

(iii) The world had a beginning and will soon have an end

A number of important conclusions, drawn from appropriate analysis of the basic
propositions, deserve special mention:

(i) The universe is not bounded in any direction. It stretches away in all directions
without limit

(ii) Solid matter results from a closer union between atoms by the entanglement of
their own interlocking shapes

(iii) Through undisturbed vacuum all bodies must travel at equal speed though im-
pelled by unequal weights. The heavier will never be able to fall on the lighter
from above

(iv) There is no visible object that consists of atoms of one kind only

Many of these propositions have a surprising modern ring to them, although
based on a totally outdated cosmology of a flat earth in infinite space. The disturb-
ing reality is that precisely these objectionable features again underpin the “standard
cosmology” of the West. Despite the evidence from general relativity, space is still
considered in the expanding universe cosmology as Euclidean (i.e. flat) and of in-
finite extent in all directions. Despite intimate experience with the electromagnetic
field, the expanding universe is modelled exclusively in terms of matter moving
through vacuity, precisely as presumed by Lucretius.
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It would seem that apart from trivial refinement of the atomic model, the philo-
sophical paradigm has not changed in two millenia. Where Lucretius ascribed chem-
ical interaction to the entanglement of interlocking atomic shapes the modern quan-
tum chemist achieves the same in terms of entangled hybrid orbitals, and with the
same conviction as Lucretius.

The first millenium after Lucretius saw little change in the understanding of the
physical world, except for an infusion of theological dogma and the revival of cre-
ation myths that have survived into the present as big-bang cosmology. Instead of
progressing, theoretical physics regressed to the Aristotelian model, leaving it to
Galileo to rediscover the Lucretian proposition of falling bodies. As the progenitor
of chemistry the art of alchemy descended into mysticism and astrology.

By the end of the first millenium CE there was total consensus in the Western
World over the workings of the cosmos and the odd heretic, who dared to challenge
the revealed truth, could readily be disposed of. Only two problems, destined to
disturb this tranquility, remained: how to make gold and where to find the univer-
sal remedy for all disease. In searching for the philosopher’s stone and an elixir to
end the quest, the variety of unexpected secondary products that turned up could
no longer be understood within the standard model of alchemy. The emerging scep-
ticism soon spread to other aspects of natural philosophy and it became feasible
to challenge metaphysics with real physics; alchemy with chemistry. However, the
development of a new scientific paradigm had to await the emergence of a new
cosmology, which was initiated by Copernicus.

2.1.1 The Copernican Revolution

Mediaeval science was liberated from its paralysis, imposed by the canonized Aris-
totelian and Ptolemaic systems, by the new cosmology, inaugurated by acceptance
of the heliocentric model proposed by Copernicus. The awkward questions that tor-
tured Lucretius, such as the whereabouts and status of the sun at night, the cause of
seasonal changes and the support structure of the earth in space, disappeared almost
miraculously, although the new system was resisted by the establishment for more
than a century.

The real hero of the revolution was Johannes Kepler, who supposedly [2, p. 178],
murdered his superior, Tycho Brahe, in order to gain access to the data that even-
tually substantiated heliocentric planetary motion without epicycles. Although Ke-
pler’s three laws of planetary motion on elliptic, rather than circular, orbits1 were,
for ideological reasons, received with scepticism, they were embraced by a new
generation of scientists and eventually inspired the long-awaited new paradigm. The
idea of planetary orbits, stabilized by gravity, culminated in Newton’s memorable
work and it finally also invalidated the notion of astrological interaction between
heaven and earth and its stranglehold on alchemy. The way was cleared for the de-
velopment of modern physics and chemistry.

1Only circles were assumed to reflect heavenly perfection.
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2.2 Newtonian Physics

The tortuous route from Kepler’s laws to Newton’s reformulation in terms of the
mechanical concepts of inertia and force was reviewed only recently [3] and the
details of Newtonian mechanics have been confirmed in writing so many times as to
make another repetition superfluous. It is considered more important to concentrate
on the philosophical aspects of his work, how these impacted on later developments,
and still have a decisive influence on current science.

The single most important concept introduced by Newton in order to rationalize
Kepler’s laws was the general inverse-square law of gravity, postulated to operate
between any two mass points in the universe with a force,

F = G
m1m2

r2
.

Newton was the first to admit that [4, p. 314]:

. . . the Cause of Gravity is what I do not pretend to know. . .

and further elaborated:

That Gravity should be innate, inherent and essential to Matter, so that
one Body may act upon another at a distance thro’ a Vacuum, without the
Mediation of anything else, by and through which their Action and Force may
be conveyed from one to the other, is to me so great an Absurdity, that I believe
no Man who has in philosophical Matters a competent Faculty of thinking, can
ever fall into.

The evident implication is that the mathematical formalism that correctly accounts,
not only for planetary motion, but also for terrestrial gravitational effects, is by itself
sufficient to uphold the general theory, without any physical understanding of the
interaction.

Two and a half centuries had to elapse before a satisfactory physical explanation
of gravity would emerge from the general theory of relativity. During this time con-
stant positive scrutiny of Newton’s gravitational model created the firm conviction
that mathematical formalism suffices as the sole criterion to establish a physical the-
ory. As a pertinent example, it is frequently repeated as a great virtue of quantum
mechanics that it is adequately formulated on the hand of postulates with no more
than mathematical meaning. It is probably fair to say that this has been the hallmark
of twentieth-century theoretical physics. The delusional effects of such false secu-
rity cannot be overemphasized and will be highlighted again in the course of this
work. The problem does not lie with the mathematics per se, but with an inappro-
priate physical interpretation that may become established by default.

The particle concept that still dominates physical science is another spin-off of
Newton’s mathematical model. It arose from Newton’s comment in Principia [4,
p. 295]:

After I had found that the force of gravity towards a whole planet did arise
from and was compounded of the forces of gravity towards all its parts, and
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to every one part was in the inverse proportion of the squares of the distances
from the part, I was yet in doubt whether that proportion as the square of the
distance did actually hold. . . it might be that the proportion that was accurate
enough at greater distances would be wide of the truth near the surface of the
planet, where the distances of the particles are unequal, and their situations
dissimilar.

The eventual mathematically inspired conclusion was that the force between two
spheres

. . . increases or decreases in proportion to the distance between their cen-
tres according to the same square law as applied to the particles themselves.
And this is a noteworthy fact.

As paraphrased by Hall [4]:

Once more mathematics demonstrated a physical improbability as truth:
the sphere acted on any body outside it, however close, from its own centre;
and this was true of any law of attraction. But if the inverse-square law applied
outside the sphere, then inside it the attraction to the centre was directly as the
distance.

It is remarkable how this conclusion has gone unnoticed by scores of scientists who
have agonized for many years over the presumed infinite self-energy of a charged
object such as an electron. Without going too deeply into further philosophical im-
plications, the proposition that a geometrical mass-point takes the place of a phys-
ical body, has had enormous ramifications. Not least because of Newton’s lack of
distinction between particles and atoms. He stated [4, p. 237]:

. . . it seems probable to me that God in the Beginning form’d Matter in
solid, massy, hard, impenetrable, movable Particles. . .

For the matter of all things is one and the same, which is transmuted into
countless forms by the operations of nature. . . and hence we conclude the
least particles of all bodies to be also extended, and hard and impenetrable,
and movable, and endowed with their proper inertia.

It is clearly implied that all fundamental particles are alike. This proposition has
evolved into the modern notion that all elementary particles are zero-dimensional
points. Nothing causes more confusion in quantum chemistry than the electronic
point particle.

2.3 Daltonian Chemistry

The reason why the Copernian proposal of a heliocentric system was resisted for
such a long time, is because it challenged the views of the mediaeval philosopher-
saints, who incorporated Aristotelian physics and the Ptolemaic Almagest as a sub-
set of revealed biblical truth. In essence, the result was a universe, centred on the
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static earth, in the form of eight concentric crystal spheres that move in harmony,
directed by the prime mover (God) on the ninth immovable heavenly sphere.

As all motion is interconnected, all terrestrial events are inextricably correlated
with their counterparts on the crystal spheres. This awareness developed into a firm
guiding principle for the early alchemists whose prospects of success was inter-
preted to depend equally on a correct reading of the stars as on experimental de-
sign [5].

The Copernican revolution changed all that. The earth, no longer the focal centre
of the cosmos, was no longer perceived as the microcosm that merely responds to
the whims of the primum mobile. Events on earth could now happen and be con-
trolled, independent of the stars. As the emphasis on astrology diminished, the rela-
tionship between starting materials and reaction products started to be appreciated
and alchemy gradually evolved into chemistry.

Robert Boyle, a contemporary of Newton is generally identified as the first mod-
ern chemist, whereas Newton’s chemical research is usually referred to as alchemy.
In this case tradition has almost certainly got it wrong. Boyle is credited with writ-
ing the book Sceptical Chymist and, apart from formulating a seminal gas law, had
contributed very little to indicate a new direction for chemistry. On the contrary,
Newton’s “alchemy” was pursued in the belief [4, p. 323]:

. . . that chemistry touches on some of the fundamental properties of matter.
Through chemistry knowledge might be won of the forces that hold together,
or rearrange, the particles of substances.

This is still the spirit in which modern chemistry is practiced. Although Newton
therefore contributed very little of chemical significance, he certainly showed the
way in which chemistry was to develop.

In less than a hundred years after Newton succeeded in providing a firm founda-
tion for new physics, the new directions in chemistry culminated in the formulation
of Dalton’s atomic theory which did the same for chemical science.

The formulation of Newton’s laws of motion, by refuting the four-element theory
of Aristotle, was of equal importance for the development of chemistry. Associated
with heavenly spheres, the elements, identified as earth, water, air and fire, each
had its own natural comfort zone to which it invariably returned when displaced by
unnatural action. The lowest sphere was occupied by earth, always seen to fall back
when raised to higher levels, The heavier an object, the faster it falls. Next came
water, that preferred to float on the solid earth in the sphere where it belongs. Air
occupied the next sphere, with fire at the top. This behaviour soon found a more
rational explanation in terms of Newton’s law of gravity, rather than each element
accelerating towards its own sphere.

The properties of composite bodies could be rationalized in terms of their ele-
mental composition. Heavy objects obviously contained a high proportion of earth
and inflammable substances were full of fire. In this sense the four elements repre-
sented characteristic principles, rather than indentifiable substances and were inter-
preted in this way by the alchemists. For laboratory practice the alchemists identified
the secondary qualities of metallicity (spirit), brittleness (body), and combustibility
(soul), typified by the real ‘elements’ mercury, salt and sulphur.
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The seven metals, astrologically linked with seven planets

silver (Moon), mercury (Mercury), copper (Venus), gold (Sol), iron (Mars),
tin (Jupiter) and lead (Saturn),

contained the three qualities in characteristic, subtly different, adjustable proportion,
which enabled transmutation.

The period between Newton and Dalton saw the identification of a variety of
different airs (gases) such as fixed air (carbon dioxide), acid air (HCl), alkaline
air (ammonia), empyreal (dephlogisticated) air (oxygen), phlogisticated air (nitro-
gen), phlogiston (hydrogen), laughing gas (nitrous oxide), inflammable air (carbon
monoxide) and inflammable air of marshes (methane) [6]. The confusing nomencla-
ture was a remnant of the phlogiston theory of combustion, the overthrow of which
by Lavoisier was a direct result of the discovery of new gases. The reformulation of
known chemical processes in terms of mass-balanced reactions, such as

mercury calcinatus = mercury + oxygen
oxygen + hydrogen = water
oxygen + nitrogen = laughing gas
acid air + alkaline air = sal-ammonia
charcoal + oxygen = fixed air (carbonic gas)
wort of grapes = carbonic gas + alcohol

are all consistent with the conservation of matter, as conjectured by Lucretius.
The stage was set for the formulation of Dalton’s atomic theory, in the form of

four postulates [6]:

(i) The ultimate particles of a pure substance, whether simple or compound, are
perfectly alike in size and weight.

(ii) The “simple atoms” of an elementary substance are indivisible, and can neither
be created nor destroyed.

(iii) The “compound atoms” (or “molecules”) of a compound are formed by the
union of two or more elementary atoms.

(iv) Combination between atoms takes place in the simplest integral ratios, e.g.
1 atom of A with 1, 2 or 3 atoms of B.

This reads like a paraphrase of what Lucretius proposed almost two millenia earlier.
The difference is that Dalton had a responsive audience and a mass of data that

could be rationalized in the form of a few simple laws of chemical combination,
based on Dalton’s proposals. These are the well-known laws of:

(i) Fixed Proportions
(ii) Multiple Proportions

(iii) Reciprocal Proportions

The first of these is almost self-evident, giving new meaning to the concept element,
the second follows as a prediction from Dalton’s postulates and the third implies
that each element has its own characteristic equivalent or combining weight.

The third law enabled the specification of chemical formulae that reflect the rela-
tive number of equivalents of different elements in various compounds, but because
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of multiple proportions equivalent weights could not be assigned unambiguously.
This ambiguity was finally resolved ten years later by Avogadro’s Hypothesis, stat-
ing that,

When the temperatures and pressures are the same, equal volumes of dif-
ferent gases contain equal numbers of molecules.

To make this generally applicable it was necessary to assume that molecules of an
elementary gas might consist of groups of similar atoms, such as

N2,O2,O3,H2,P4,S8, etc.

It is therefore possible to substitute molecules for volumes in any equation in which
gases are involved. Thus, from the experimental result that

(1 vol)nitrogen + (1 vol)oxygen = (2 vols)nitric oxide

it follows that

N2 + O2 = 2NO.

The next fifty years were devoted to clear up the confusion between atoms and
molecules; between equivalent and atomic weights, finally achieved by Cannizaro,
resulting in a consistent set of atomic weights for elements known at the time.

2.4 The Aftermath

Newton saw himself [7]

. . . to have been like a boy playing on the sea-shore, . . . now and then find-
ing a smoother pebble or a prettier shell than ordinary, whilst the great ocean
of truth lay all undiscovered before me.

The same is evidently true of John Dalton. In both cases their bold conjectures
provided the foundation for continued research, aimed at the ultimate refinement of
their seminal ideas, which were never in doubt.

2.4.1 Dalton’s Legacy

The chemists were so single-minded in their dedication that the brilliant insight
of William Prout, that made sense of their blind pursuits, was rejected with such
hostility that he had to publish his theory anonymously. Noting the large number
of atomic weights on the (H = 1)-scale improbably close to whole numbers Prout
hypothesized [8]

. . . that the atoms of all elements are formed by the condensation of atoms
of hydrogen, this element being the primary matter or protyle.
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It is as if the mule-headed obstinacy that sustained alchemy, against all reason, for
two millenia has been driving chemical research ever since. The same obstinacy
upheld the phlogiston theory in the face of overwhelming counter-evidence. Even
the discoverers of oxygen (Priestly) and hydrogen (Cavendish) refused to consider
the experimentally proven alternative theory of combustion. At the present time one
marvels at the pathological reluctance to abandon the discredited model of orbital
hybridization and linear combination of atomic orbitals as an explanation of chemi-
cal interactions.

In defence of Prout’s hypothesis it was pointed out repeatedly that non-integral
atomic weights, such as 35.5 for chlorine, could result from a mixture of atoms
with different mass, but the same chemical properties. The only reason why this
proposition was rejected, was because it conflicts with Dalton’s conjectures. The
discovery of isotopes, almost a hundred years later, dovetailed with Prout’s proposal,
without lessening Dalton’s contribution.

In the meantime sustained efforts to either confirm or discredit Prout’s hypothe-
sis resulted in a consensual set of accurate atomic weights. However, the revolution-
ary postulate of elemental gaseous molecules, consisting of aggregates of identical
atoms remained a major stumbling block for many years. Such a union is explicitly
forbidden in the Lucretian system and was seriously frowned upon by Dalton. The
vague notion of chemical affinity, which presupposed an attraction between some
type of opposites, offered no explanation for the formation of elemental molecules.
It caused the same agony as experienced before by Newton and his contemporaries
looking for a physical explanation of gravity. In the same way it culminated in a pas-
sive acceptance of some mysterious attraction that leads to the formation of chemical
bonds. As a palliative it was argued that the exceptionally close approach, which can
be achieved between vanishingly small atoms, would imply strong inverse-square
gravitational interaction.

The discovery of electrochemical effects later in the 19th century provided a
partial explanation of chemical affinity in terms of polarization effects, but also
largely confined to heteroatomic interactions. Commenting on chemical affinity Al-
fred Stewart [9] stated in 1926, when wave mechanics was already in the air:

In the ’nineties the whole problem lacked a generalization. On the one
hand lay the metallic salts with their capacity for ionization, which suggested
an electrical conception of chemical affinity; but on the other side stood the
enormous host of the carbon derivatives which showed no electrical character
and which could be so easily symbolized by means of graphic formulæ. At-
tempts to force the carbon compounds into line with the inorganic compounds
proved unsatisfactory; while the converse effort to reduce the inorganic series
to a graphic formulation was equally ineffective: and towards the end of the
century, the whole problem seemed beyond the power of chemists to solve
upon a simple basis.

It cannot be asserted that, even at the present day, the chemical affinity
problem is solved; but at least some change in outlook is obvious. It is gen-
erally agreed that chemical affinity is electrical in nature; and that polar and
non-polar compounds differ from each other in degree rather than in kind.



20 2 The Classical Background

The theory of G.N. Lewis is widely accepted as a means of formulating the
machinery of chemical combination and dissociation, though at present it has
hardly progressed beyond the stage of being a representation of the facts rather
than an explanation. Still, even with its limitations, it furnishes the best me-
chanical model available to depict the union of one atom with another; and it
has the decided advantage of bringing a unifying conception to bear upon the
whole question.

The classical concepts of chemical affinity developed from the rapid advances in
organic chemistry following the introduction by Berzelius of a simplified scheme
of atomic symbols and molecular formulae to replace the awkward graphical sym-
bolism of Dalton. Many of the rules were formalized by Kekulé [10] by assigning
valencies of 1, 2, 3 and 4 to H, O, N and C and their congeners, later associated
with affinity centres in order to rationalize the assumed three-dimensional structure
of molecules. The well-known conjecture of Jacobus van’t Hoff which associates
optical activity with three-dimensional molecular chirality is perhaps the most im-
portant chemical concept that can be traced back directly to Dalton’s atomic theory.

2.4.2 Classical Mechanics

The heirs of Newton were equally diligent in repeatedly solving the equation

F = ma

in all possible situations, but decidedly more open-minded in accepting equivalent
alternative formulations, particularly those developed by Lagrange, Hamilton and
others.

An important issue left undecided by Newton and his contemporaries was the
mode in which light propagates. The bland statement, repeated in many textbooks,
that Newton defended the corpuscular nature of light against the wave model of
Huygens, has no validity. In his mathematical analysis of Newton’s rings [11,
p. 368], Newton introduced a ‘fit’ parameter, not physically defined, but in exact
agreement with modern values of wavelength. Hence [4, p. 271]:

Evidently Newton’s theory of light was very far from being a simple cor-
puscular or emission theory. The wave-concept was always essential to it—not
as a hypothesis, but as a feature of a mathematical theory from which verifi-
able predictions could be drawn.

A brief review of classical dynamics [12] shows that the Hamiltonian refinement
of Newton’s laws resulted in a similar formulation that links particle mechanics to
wave motion.

For a system of n mass points the Newtonian equations of force along x, as a
function of kinetic energy

d

dt

(
∂T

∂ẋi

)
= miẍi = Xi
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is further modified by defining the force as a function of potential energy,

Xi = − ∂V

∂xi

to yield

d

dt

(
∂T

∂ẋi

)
+ ∂V

∂xi

= 0

with similar expressions for yi and zi .
Hamilton’s principle of least action requires that the Lagrangian function,

L(q, q̇) = T − V , defined as the difference between the kinetic and potential en-
ergies of a system, in terms of generalized coordinates and velocities, be an ex-
tremum, i.e.

δ

∫ t1

t0

{
T (q, q̇) − V (q)

}
dt = 0.

After integration by parts the variation condition yields the set of equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0, j = 1,2,3, . . . ,3n.

The Lagrangian equations are further modified by definition of the Hamiltonian
function

H =
3n∑

k=1

pkq̇k − L(qk, q̇k)

where

pk = mkq̇k = ∂T

∂q̇k

, k = 1,2,3, . . . ,3n, ṗk = ∂L

∂qk

,

i.e.
∂H

∂pk

= q̇k,
∂H

∂qk

= − ∂L

∂qk

= −ṗk.

These are the Hamiltonian or canonical form of the equations of motion, with the
advantage that they contain 6n partial differential equations of the first order rather
than 3n of the second order. Noting that kinetic energy is a homogeneous quadratic
function of velocities it is shown that H = T + V = E, the total energy, and T =
p2/2m.

In the case of a time-dependent Hamiltonian it is next demonstrated that

1

2m

(
∂S

∂q

)2

+ V + ∂S

∂t
= 0,

the so-called Hamilton–Jacobi equation, where H = −∂S/∂t , dS/dt = L and the
action S is known as Hamilton’s Principal Function.
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The Hamiltonian in integrated form is given by S = −Et + W , where W(p,q)

is known as Hamilton’s Characteristic Function. It now becomes apparent why S

has been called the action of the system. It represents the energy transferred to the
system over a period of time. Substitution of −∂S/∂t = H into the HJ equation
shows that

H = T + V = 1

2m

(
∂S

∂q

)2

+ V (2.1)

to give another form of the HJ equation:

(
∂S

∂q

)2

= 2m(E − V ).

At any given instant the equation S(q, t) = constant defines a surface in Eu-
clidean space. As t varies the surface traces out a volume. At each point of the
moving surface the gradient, ∇S is orthogonal to the surface. In the case of an ex-
ternal scalar potential the particle trajectories associated with S are given by the
equation mq̇ = ∇S. It follows that the mechanical path of a moving point is per-
pendicular to the surface of constant S for all q and t . A family of trajectories is
therefore obtained by constructing the normals to a set of surfaces, each orbit being
distinguished by its starting point q0. For a single starting point the moving sur-
face describes a spherical wavefront. This intimate connection between wave and
particle formalisms is of special interest and has been used to forge a link between
geometrical and wave optics. By analogy to this it was also used by Schrödinger in
his original formulation of a wave equation for quantum matter [13].

The alternative approach is to describe the motion in wave formalism. In this
case the wave equation

∇2U = 1

v2

d2U

dt2

is assumed to have a plane-wave solution of the form

U = Aei(ωt−kφ)

with variable amplitude A, phase kφ, frequency ω, and variable velocity v. It satis-
fies the wave equation providing

∇2A − k2A(∇φ)2 + A
ω2

v2
= 0.

Assuming the velocity in vacuum, v0 = ω/k one has

∇2A

A
− k2

[
(∇φ)2 −

(
v0

v

)2]
= 0
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where v is the velocity in another medium with index of refraction n = v0/v. Since
∇2A = 0 for the plane wave and k2 �= 0, it is implied that

(∇φ)2 = n2.

The striking mathematical similarity between this so-called eikonal equation of ge-
ometrical optics and the HJ equation

(∇S)2 = 2m(E − V )

is unmistakable. Setting n2 = 2m(E −V )/p2, where p has the dimensions of a mo-
mentum and assuming the proportionality S = pφ, the equations become identical.

This result suggests the possibility that wave propagation can be approximated
in terms of particle motion or to describe the motion of a particle in wave formal-
ism, the basic assumption of wave mechanics. However, it is important to note that
this eikonal analysis is only valid in the short wavelength region of geometrical op-
tics and under no circumstances does it imply the popular notion of wave-particle
duality.

The mechanical equivalents of the dimensionless optical parameters φ and n

have the dimensions of momentum appropriate for wave-mechanical matter waves.
These wave properties become increasingly less in evidence with increasing mass
and becomes effectively unobservable for macroscopic massive objects.
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Chapter 3
Great Discoveries

Abstract The two major achievements of 19th century science that produced the
periodic table of the elements and the electromagnetic theory are reviewed. A criti-
cal analysis of Prout’s hypothesis, Newlands’ law of octaves and Nagaoka’s Satur-
nian model of the atom argues for a major re-assessment of the currently accepted
history and interpretation of this most important chemical discovery of all time.
The synthesis of concepts around chemical affinity and molecular conformation by
Sommerfeld is recognized as the ultimate development of chemical theory based on
Newton’s particle model.

The developments that led to the unification of magnetism, electricity and op-
tics happened during the same period. The empirical observations that resulted in
Maxwell’s synthesis are reviewed. The theory of electromagnetic radiation and the
supporting theory of wave motion are critically examined.

3.1 Introduction

The initial burst of activity in physics and chemistry was triggered by the two new
theories of Newton and Dalton. The experimental researches inspired by these theo-
ries produced such dramatic new insights that by the middle of the 19th century the
emphasis had shifted to the contemplation of issues no longer understood in terms of
the seminal theories. A periodic relationship, revealed by experimentally measured
atomic weights, pointed at a radically different interpretation of chemical phenom-
ena and the measurements that resulted in the recognition of an electromagnetic
field demanded a complete reformulation of classical mechanics.

Such an alternation between theoretical and experimental advances has become
a regular feature of scientific research. A new theory is said to establish a new
paradigm to be adhered to in all subsequent experimental studies. Any result at
variance with the paradigm is treated with suspicion and subjected to remorseless
scrutiny. In many cases such deviant results are suspended from consideration until
an acceptable correction factor for its rationalization is found. Many a new innova-
tive suggestion is simply rejected pending conclusive proof, and promptly forgot-
ten. Paradigm shifts, which in retrospect may appear to be natural logical develop-
ments, are never painless and may happen only gradually over a period of many
years.

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_3,
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3.2 Periodic Table of the Elements

Despite the erratic atomic weights derived by a variety of methods, based on
gas densities, heat capacities (Dulong and Petite), isomorphism (Mitscherlich) and
chemical analyses, before Cannizaro managed to unify the results, sufficient data
were generated to reveal some regular patterns. The generalization suggested by
Prout has been mentioned. At about the same time it was spotted by Döbereiner
that the atomic weights of triads of related elements, such as chlorine, bromine and
iodine were related in a simple numerical pattern. Like Prout’s hypothesis this ob-
servation was simply ignored.

As described by Berry [1]:

Between 1863 and 1866 a series of short papers was published in The
Chemical News by Newlands on numerical relations between the atomic
weights of the elements and their corresponding properties. He found that
if the elements. . . were arranged in the order of ascending atomic weights,
‘the numbers of analogous elements generally differ by seven’, like ‘the ex-
tremities of one or more octaves in music’. This relation was termed the law of
octaves by Newlands. It was read before the Chemical Society and publication
was refused.

The situation is further elaborated on by Stewart [2], stating that:

He also suggested that from his scheme it was possible to predict the exis-
tence of elements as yet unknown.

It is reported [Chem. News 13, 113 (1866)] that when the Law of Octaves
was propounded at the meeting of the Chemical Society, “Professor G. Fos-
ter humorously inquired of Mr. Newlands whether he had ever examined the
elements according to the order of their initial letters”.

Stewart further compares the published tables of Newlands (1866), that was rejected
and ridiculed, and that of Mendeléef (1869) that was received with acclaim. The
comparison is reproduced from [2] in Fig. 3.1. Those elements, incorrectly placed
in terms of modern concepts are printed in red.

Remarkably, the two tables list 62 and 63 elements respectively, of which each
placed 45 correctly, according to the compact form of the Periodic Table based
on number theory [3] for Newlands, and according to the standard long form for
Mendeléef. Of those placed incorrectly 9 are in common between the two tables,
evidently because of incorrectly measured atomic weights.

Modern textbooks invariably dismiss the Law of Octaves as infantile numerology
compared to the scientifically mature exposition of Mendeléef. This conclusion is
clearly based on the ignorant conceit of a buffoon, who was repudiated when the
Davy medal of the Chemical Society was awarded to Newlands in 1887.

In comparing the contributions of Newlands and Mendeléef Stewart [2] reached
the following conclusions:

In his Faraday lecture (1889) Mendeléef summarized [his achievements in
the form of 8 claims].
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Fig. 3.1 Periodic Tables according to Newlands (1866) and Mendeléef (1869) redrawn in modern
style (Colour figure online)

When the first five of these statements are compared with the six claims of
Newlands (1884), it will be found that the two sets are practically identical.
All that Mendeléef ascribed to the Periodic Law had already been achieved by
the Law of Octaves. As to the seventh and eighth clauses. . . neither of them
was correct even in Mendeléef’s day.

On the face of things, then, Mendeléef had achieved nothing which New-
lands had not already brought before the chemical world. . .

Attempts to rationalize the irrational response of the chemical world in denying
Newland’s rightful priority to the major chemical discovery of all time, is irrelevant
in historical perspective.1 It is properly documented that Newlands published the
Law of Octaves three years ahead of Mendeléef and Lothar Meyer, albeit four years
after de Chancourtois had announced the telluric screw which contained the pio-
neering concept of atomic numbers. The fact that a group of British chemists found
the comparison with music sufficiently hilarious to discount the scientific value of
the discovery is immaterial. They would probably have considered the achievements
of Pythagoras and Kepler as equally ridiculous.

It is intriguing to note Mendeléef’s sanctimonious denial of all knowledge about
any previous mention of atomic periodicity, while openly insinuating that Lothar
Meyer had plagiarized his work.

1If the Catholic church could admit and apologize for their shabby treatment of Galileo after 4 cen-
turies, the least that the chemists of the world can do is to give Newlands his proper recognition.
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The human drama that surrounded the discovery of the Periodic Table pales into
insignificance compared to the scientific importance of the event. In this regard it is
sufficient to note that, as more atomic weights became accurately known, a general
awareness of some mysterious qualitative relationship between atomic weight and
chemical properties, developed among European chemists—in Britain, France, Ger-
many, Italy and Russia. Apart from the frivolous response in some quarters it must
have been generally appreciated that Dalton’s atomic model was hopelessly inade-
quate to account for this observation. The time had come to move beyond Newton’s
solid, massy, hard, impenetrable particles as an atomic model.

The problem had become more intractable than simple interatomic attraction that
could be vaguely likened to the equally mysterious gravitational interaction. There
is no simple understanding of how three elements like chlorine, bromine and iodine,
with vastly different atomic weights, could be so alike in their special chemical be-
haviour. If the same trend is observed for seven elemental triads in a row of increas-
ing atomic weight, it becomes all the more difficult to dismiss as a coincidence. The
conclusion that the members of each triad must share some internal characteristic,
independent of atomic weight, becomes irresistable.

Soon, the wish became father to the thought, with Faraday’s experiments on elec-
tricity in mind. In 1879 Crookes discovered cathode rays, followed by Arrhenius
with the publication of his ionic theory in 1887 and Stoney’s proposal in 1891 of a
charged particle, called electron, present in all atoms. The old paradigm was dead
and with it all restrictions on experimental innovation. The next two decades pro-
duced spectacular results which identified new phenomena and entities such as ra-
dioactivity, the photoelectric effect, X-radiation, atomic line spectra, positive rays
and isotopes.

The time was ripe for the emergence of a new paradigm, which for chemistry
meant a new atomic theory to account for all the exciting new atomic properties.
Such a theory was communicated to the Physico-Mathematical Society, Tokyo on
Dec. 5th 1903 by the author, Hantaro Nagaoka, reported the next year in Nature [4]
and communicated in full the same year [5].

The planet Saturn with its rings served as a model, which [4]

. . . will be approximately realized if we place negative electrons in the ring
and a positive charge at the centre.

. . . at the centre of the circle is placed a large particle attracting the other
particles forming the ring according to the same law of force.

Such an ideal atom will not be contradictory to the results of recent exper-
iments on kathode rays, radioactivity, and other allied phenomena.

The feasibility of this model was later confirmed by Rutherford’s scattering experi-
ments. Figure 3.2 demonstrates the scattering of a beam of α-particles on an atomic
nucleus in a metal foil.

Nagaoka showed [5] how the model reproduces the spectral frequencies as sum-
marized by the formulae of Balmer and Rydberg and added the following significant
comments:
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Fig. 3.2 Diagram to simulate
Rutherford scattering on an
atomic nucleus

Here we notice that waves of frequency n travel around the ring in opposite
senses, so long as the particles are not acted upon by extraneous forces. The
frequency increases as h [integer 1,2,3, . . . ] is increased, and the nature of
the series shows that the spectral lines corresponding to these vibrations will
gradually crowd together when h is large.

If the spectra of the elements be due to the motion of electrons revolving in
circular orbits, as above supposed, several rings of electrons must exist where
there are different series of spectra, as in most elements.

There are various problems which will possibly be capable of being at-
tacked on the hypothesis of a Saturnian system, such as chemical affinity
and valency, electrolysis and many other subjects connected with atoms and
molecules. The rough calculation and rather unpolished exposition of various
phenomena above sketched may serve as a hint to a more complete solution
of atomic structure.

This could well be the first meaningful mention of the modern concept of atomic
structure. As pointed out before [6]:

The nuclear concentration of mass anticipated Rutherford’s model of the
atom, and Bohr’s planetary model by a decade. The spectral integers, linked
to a standing-wave pattern, predates de Broglie’s proposal by two decades.

Apart from Rutherford’s reference, Nagaoka’s model has not received the recog-
nition it deserves [6]. However, extension of the model by Bohr and Sommerfeld re-
sulted in a new understanding of elemental periodicity and chemical affinity, prepar-
ing the ground for a revolutionary new paradigm.

3.2.1 Static Model of Chemical Affinity

Kekulé and his contemporaries derived all the empirical rules to account for the
valence structure of most small organic molecules, which enabled the distinction
between isomeric structures by their connectivities, according to structural formu-
lae. A typical example occurs for the two compounds with the same formula of
C4H10, known as butane and isobutane:
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Fig. 3.3 The tetrahedral
carbon atom according to
van’t Hoff

The question of geometrical and optical isomerism remained unresolved until
1874 when van’t Hoff suggested an explanation based on an assumed tetrahedral
structure for carbon in saturated compounds, such as methane, pictured in Fig. 3.3.
The classical problem of the isomeric maleic and fumaric acids was solved by the
postulate of restricted rotation around a double bond, which was formulated as the
interaction that connects two tetrahedra joined at two corners (Fig. 3.3).

Only the cis form allows the easy formation of an anhydride.
Optically active molecules were proposed to contain at least one asymmetric

carbon, having four different substituents at the tetrahedral corners, resulting in an
arrangement which cannot be superimposed on its mirror image. It is emphasized
that van’t Hoff’s proposals are precise diagnostics for stereoisomerism, without ex-
plaining the cause. Still, the scheme was successful enough to serve as a guideline
towards understanding the nature of interatomic interaction.

Gilbert Lewis was the first to combine the ideas of Newlands, Stoney and van’t
Hoff into a single construct whereby most of the known chemical interactions could
be rationalized. Discovery of the noble gases required modification of the law of
octaves into a periodic arrangement of 8 elements each in the short periods Li–Ne
and Na–Ar. This condition was interpreted by Lewis as defining a valence shell
with the number of electrons increasing from 1 to 8 within these atomic series;
i.e. Li and Na each with a single valence electron, and filled valence shells for Ne
and Ar.

To account for Kekulé’s valency rules and van’t Hoff’s stereochemistry the va-
lence electrons were postulated to occupy corner sites of a cube that surrounds each
atomic kernel. In order to include hydrogen into the scheme the first noble gas, He
was assigned a valence shell, completely saturated by two electrons.
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The success of the model relies on the assumption that the interaction between
two atoms is driven by the tendency to acquire a filled valence shell of 8 or 2 elec-
trons. This can be achieved either by the transfer of electrons from one atom to
another, or by sharing a pair of electrons between the interacting atoms. As the
electron carries unit negative charge the interaction between Na and Cl atoms is
symbolically represented by

Na + Cl → Na+ + Cl−.

The structure of methane is rationalized in terms of shared electron pairs at alternate
corners of the C cube, completion of an octet for carbon and a pair for each hydrogen
atom. The van’t Hoff double bond (Fig. 3.3) amounts to the sharing of two pairs of
electrons between the carbon atoms of ethylene, H2C=CH2, as in the Kekulé double
bond.

The Lewis mechanism, with minor embellishments, has remained the working
model of practising chemists to this day. The most important additional assumption
relates to the formation of bonding pairs that only happens between electrons with
oppositely directed spin vectors.

The most familiar modification to the Lewis model was proposed by Irving Lang-
muir, lucidly summarized by Dushman [7] in [8, p. 1061], and more specifically
aimed at an improved formulation of the periodic law. Starting from the Rydberg
formula

N = 2
(
12 + 22 + 22 + 32 + 32 + 42+)

.

Langmuir is quoted [7] as stating:

. . . to determine the arrangement of electrons in atoms, we must be guided
by the numbers of electrons which make up the atoms of the inert gases; in
other words by the atomic numbers of these elements: 2, 10, 18, 36, 54 and 86

hence, assuming that the outer shells of krypton and xenon each contains 18 elec-
trons while 32 are required to complete the outer shell of the radon atom. Following
this scheme he arrived at closed sub-shells of 10, 10 and 24 for Ni, Pd and Pt. In line
with the Lewis model the kernel consists of the nucleus and inner electrons, which
do not play any rôle in chemical combination.

Formulated in terms of the total number of valence electrons, e, the number of
octets n, and p, the number held in common by two octets, Langmuir’s valence
model amounts to the formula

p = 1
2 (8n − e).

As an example, the water molecule has n = 1 and with e = 8(6 + 2 × 1), p = 0. For
carbon dioxide, p = (24 − 16)/2 = 4, i.e. O=C=O.

The formula works for all carbon compounds and proves to be more reliable
than the simple octet rule for compounds of oxygen and nitrogen. In the words of
Langmuir:
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Fig. 3.4 Langmuir’s model of the N2 molecule, compared to the Ar atom, O2 and C2 in the same
style

If we apply the octet theory to the nitrogen molecule, by placing n = 2,
e = 10, we find p = 3. We are thus led to the formula :N≡N: for the nitrogen
molecule. Now, in acetylene we have an illustration of two atoms holding
three pairs of electrons in common. Such a substance is endothermic, forms
additional products easily, and even by itself is relatively unstable. A structure
of this kind could not possibly account for the properties of nitrogen.

Langmuir pointed out that in most of its properties elementary nitrogen resembles
argon, which is fair comment. Its freezing point lies between those of argon and
oxygen, while its boiling point lies below those of either of these gases.

As an alternative it is suggested that p = (8 − 10)/2 = −1, interpreted as an
electron pair inside the octet.

This description is directly in line with Avogadro’s original conception of
gaseous molecules as spherical objects of the same type as an atom. This view likens
the pair of nitrogen kernels to an atomic nucleus surrounded by shells of 2, 8, 8, etc.,
electrons, as shown in Fig. 3.4 for Ar. As remarked by Langmuir [7]:

This structure of the nitrogen molecule explains in a perfectly satisfactory
way all the remarkable properties of elementary nitrogen. . . The high heat of
formation of nitrogen molecules from the atoms accounts for the great num-
ber of endothermic and explosive nitrogen compounds. It is also evident why
elementary nitrogen is so unusually inert, while in its compounds it is one of
the most active of the elements.

Other molecules with similar structures were identified as CO, NO and the CN radi-
cal. The whole series of nitrogen oxides, from N2O to N2O5, are shown to obey the
standard valence rule.

The previously highlighted [6, p. 70] anomalous properties of the diatomic N2,
O2 and H2 molecules, such as relative size, as predicted by conventional theory,
are readily understood in terms of Langmuir’s model. Modification of the two car-
bon and oxygen kernels to facilitate the formation of an inner molecular shell of
2 electrons, is shown in Fig. 3.4 to generate biradicals, in line with the observed
paramagnetism of O2, probably not appreciated in Langmuir’s time, before the dis-
covery of electron spin. Such detail and the final structure of the classical periodic
table only became apparent as the refined form of the Bohr–Sommerfeld atomic
model became generally known.
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3.2.2 The Planetary Quantum Model

When Nagaoka proposed his Saturnian model of the atom in the very early days
of the quantum era he simulated discrete atomic and molecular spectra in terms of
the integers that characterize harmonic motion. In effect, he described the orbiting
electrons as standing waves.

A year before Max Planck had derived the equation that describes the equilibrium
radiation density in a closed cavity at constant temperature, by the assumption that
the energy carried by monochromatic light is quantized in units proportional to the
frequency of radiation, i.e.

E = nhν.

The universal constant h has the dimensions of action, the same as angular momen-
tum.

The Bohr Model

Planck’s proposition was used by Niels Bohr to develop a mathematically precise,
but physically dubious, theory of atomic structure, consistent with the experimen-
tally known details of the spectrum of atomic hydrogen. The theory assumed the
absorption and emission of radiation by atomic matter to only occur if the frequency
matches the difference between allowed atomic energy levels of the form

hνnm = Em − En

for integer n and m. The allowed energy levels were assumed to correspond to al-
lowed orbits of an electron around a stationary atomic nucleus, such as a proton, in
the case of the hydrogen atom. A radiationless stationary orbit was assumed to occur
where the coulombic attraction between proton and electron provides the centripetal
acceleration of the electron of mass m to maintain an orbit at a distance r from the
nucleus. In electrostatic units, it means that

e2

r2
= mv2

r
= p2

mr
.

In terms of the total energy

E = T + V = e2

2r
− e2

r
= − e2

2r
,

and orbital radius

r = (pr)2

me2
, E = − me4

2(pr)2
.
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The quantum condition, consistent with a least-action principle specified the elec-
tronic angular momentum, L = pr = nh/2π , as an integral multiple of the unit of
action � = h/2π , such that

E = −2π2me4

n2h2
.

The stated frequency condition then implies a Balmer-type formula,

hν = �Enm = 2π2me4

h2

(
1

m2
− 1

n2

)
.

The predicted Rydberg constant, R = 2π2me4/h3c, corresponds well with the spec-
troscopic value.

The angular-momentum postulate was substantiated in 1921 by Stern and Ger-
lach who confirmed the magnetic moment predicted by L = � for Ag atoms. The
discovery of electron spin, which implied L = 0 for H, changed all that.

This observation highlights the major problem with the Bohr atom. It predicts
an orbital frequency, of ω = e2/nha0 for an electronic particle of mass m without
measurable orbital angular momentum.

As pointed out before [6] the Bohr model could be salvaged by a simple modifi-
cation of the proposition L = n� to read L = n(n − 1)�, but the ad hoc assumption
of a non-radiating accelerated charge remains unresolved. A solution to this problem
was in fact proposed by Louis de Broglie who proposed a description of the orbit-
ing electron as a standing wave of wavelength λ = 2πr/n = h/p, to account for
Bohr’s action conjecture of pr = n�, without angular momentum. It is totally feasi-
ble to reproduce all results obtained by solution of Schrödinger’s equation from the
Bohr model, considering the electron as a spherical harmonic fluid that surrounds
the nucleus. However, this was not the historical route, which saw the Bohr model,
generalized by Sommerfeld with the introduction of elliptic orbits and additional
quantum numbers to address the angular momentum problem and to fit the periodic
table of the elements, without giving up the particle description of an electron.

The Sommerfeld Model

In the same way that planetary orbits could be shown to be a special case of the
more general elliptic Kepler orbits, it was demonstrated by Sommerfeld that the
Bohr model could be successfully generalized by the introduction of elliptic electron
orbits. The secret was to use the more powerful methods of Hamiltonian mechanics
which allowed the quantum conditions to be restated in terms of action variables.
This was Sommerfeld’s “royal road to quantization”. The proper procedure was,
first to describe electronic motion in terms of continuous classical action variables,
followed by quantization, on equating the classical action to an integral multiple of
h, the quantum of action. Action is defined in general as the product of canonical
variables, such as pj ġj , and the action variable for a periodic system takes the form
J = ∮

pdq . It always has the dimensions of an angular momentum.
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Fig. 3.5 The Ne atom with
two electrons on circular
orbits at an inner level, and
eight electrons on four
circular and four elliptic
orbits in the valence shell

As an example of royal quantization it is shown [9] that modification of the
Hamiltonian for a Kepler orbit,

H = −2π2mk2

J 2

by substituting k = Ze2 and J = nh, yields the quantized energy levels for a hydro-
genic atom,

E = −2π2mZe4

n2h2
.

The major improvement effected by Sommerfeld lies in the introduction of two
additional quantum numbers to describe the eccentricity and spatial orientation of
elliptic orbits. As remarked by Sommerfeld [10]:

(This) space quantization of the Kepler orbits is without doubt the most
surprising result of the quantum theory. The simplicity of the results and their
derivation is almost like magic.

The real meaning of the innovation is even more profound. Addition of the az-
imuthal quantum number transformed the two-dimensional Bohr model into a more
realistic three-dimensional description. The two-dimensional action of the Bohr
model restricts the orbital angular momentum to a single fixed direction (L = n�)

whereas the azimuthal variability introduced three-dimensional action, which cor-
rectly describes the electronic configuration of non-hydrogen atoms, in line with the
structure of the periodic table.

A signal success of the system was the specification of the electronic orbits of
the Ne atom, shown in Fig. 3.5 [10]. It shows a valence shell of 4 circular and 4
elliptic orbits, surrounding a first shell of two electrons on circular orbits. For the
carbon atom, with four valence electrons, these were argued to occupy four degen-
erate elliptic orbits directed towards the corners of a tetrahedron, which ensured the
quenching of the total orbital angular momentum.

The predicted tetrahedral structure for CH4, based on this arrangement was in
complete agreement with the Lewis and van’t Hoff models and perfectly in line
with the theory of covalent bonding. It has been remarked that [6]:

Theoretical chemistry reached its pinnacle during the Sommerfeld era, be-
fore the advent of wave mechanics. The theoretically superior new theory,
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Table 3.1 The final periodic table obtained by the synthesis of proposals from Bohr, Langmuir,
Sommerfeld and Bury

Shell → Period K L M N O P

1 H–He

2 2 Li–Ne

3 2 8 Na–Ar

4 2 8 8 + (K–Ni) Cu–Kr

5 2 8 18 8 + (Rb–Pd) Ag–Xe

6 2 8 18 18 + (Ce–Lu) 8 + (Cs–Pt) Au–Rn

although it eliminated the paradoxes of zero angular momentum of the hydro-
gen ground-state, the orbital motion in helium and the nature of the stationary
states, it defined the periodic table less well and confused the simple picture
of chemical bonding.

This development is discussed in the next chapter.

3.2.3 The New Periodic Table

By 1920 the necessary data to finalize the structure of the periodic table were in.
Atomic spectra were understood in sufficient detail, the importance of atomic num-
bers well established and the Sommerfeld atomic model provided the theoretical
framework for the final synthesis. The ultimate periodic table reflects the Rydberg
formula for the atomic numbers of the noble gases. These were interpreted by Bury
with the stipulation that the number of electrons in an outer shell never exceeds 8.
The layout of the table over 6 shells, K–P, and 6 periods, 1–6, is shown in Table 3.1.

It closely reflects the Aufbau principle that assumes the addition of electrons in
the sequence of increasing atomic numbers. It deviates from the sequence in period 6
where the elements Cs, Ba and La precede the element Ce by atomic number. In
terms of spectroscopic notation the groups of ten elements in parentheses are more
appropriately described as 2 + 8, e.g. K–Ca, Sc–Ni.

Most features of this table can be rationalized in terms of the spectroscopically
assigned electronic configuration of the atoms. The major anomaly relates to a the-
oretical understanding of the 8-membered transition series that terminate at the ele-
ments Ni, Pd and Pt, and the relationship between the alkali and coinage groups.

It is important to note that the theoretical simulation of the periodic table in terms
of the Sommerfeld model, augmented by spectroscopic analysis and assumption of
a spin quantum number, ms = ± 1

2 , has never been improved upon. In this sense
Sommerfeld’s atomic theory is recognized as the best possible quantum description
of atomic structure in terms of a particle model of the electron. The alternative wave-
mechanical description of the same system, suggested as feasible by Hamilton–
Jacobi theory (Sect. 2.4.2), was eventually achieved by Schrödinger.
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An unbiased comparison should confirm the mathematical equivalence of the two
models. It does not mean that the two formulations are equally appropriate as atomic
models, as this decision would depend on different criteria of a physical nature. It
must depend on whether an electron is a particle or a wave.

3.3 The Electromagnetic Field

The formulation of Newtonian mechanics and the identification of a gravitational
field left three fundamental concepts unexplained. These are the propagation of
light, of electricity and the nature of magnetism. Next to the development of the
periodic law, the demonstration that these, apparently disparate, phenomena could
be accounted for by a unified field, must rate as the other, equally important, achieve-
ment of 19th century science.

3.3.1 Wave Theory of Light

The idea that light propagates as a vibrating wave motion, which started to gain
support at the time of Newton, was supported by Robert Hooke and others. It be-
came established as a viable alternative to the more popular corpuscular theory once
it had been demonstrated by Christiaan Huygens how to interpret the phenomena
of reflection and refraction in terms of a propagating wavefront. The Huygens con-
struction existed therein that each point in a wavefront acted as a source of secondary
wavelets, that together constitute the wavefront.

While particle mechanics flourished wave theory remained dormant until the time
of Thomas Young, who first rationalized the phenomenon of interference, assum-
ing light to be transverse wave motion that creates a Huygens wavefront as shown
schematically in Fig. 3.6.

Should this wavefront be collimated by a narrow slit, a new spherical wavefront
develops around the slit. In Young’s double-slit experiment this spreading wavefront
was passed through two identical slits in a second screen and eventually allowed to
fall on a third screen where an interference pattern, consisting of a set of bright
lines, separated by dark spaces, is observed. The curve in Fig. 3.6 represents the
decreasing intensity of the bright lines in the pattern, whose spacing depends on
the wavelength of the monochromatic waves. This famous experiment has remained
textbook material to this day, even to “explain” the wave-like behaviour of electronic
particles.

Exploiting the same ideas the French physicist Fresnel demonstrated and ex-
plained diffraction phenomena and the optical properties of crystals. A memorable
event in the development of the wave theory was Fresnel’s award winning explana-
tion of diffraction, which is succinctly summarized by Anton Amann in [11]:

[In] the year 1818. . . Augustin Fresnel presented his memoir on diffraction
for the prize of the French Academy. . . . Poisson, Biot and Laplace were on
the committee to judge the paper, and all three were declared supporters of
the corpuscular theory of light. Fresnel had calculated various cases of his
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Fig. 3.6 Schematic drawing
of a moving Huygens
plane-wavefront of coherent
transverse wavelets, shown to
generate an interference
pattern in Young’s double-slit
experiment

Fig. 3.7 Interference pattern
of a monochromatic light
source diffracted at a black
disc

formula and compared them with experiment. But Poisson noticed that one
could calculate the integral for the circular disc, and came to the conclusion
that there is a white spot in the centre of the shadow of a circular disc. He
raised this as an objection to the whole theory, since it was patently ridiculous.
However, Arago and Fresnel went and performed the experiment, and, sure
enough the spot was there, whereupon Fresnel was awarded the prize.

Details of the experiment are shown in Fig. 3.7.
Amann proceeds to comment [12]:

What we can learn from this story is, that “strange” aspects of a theory
should periodically be checked again. Curious results should not be over-
looked and ignored, but kept in mind for later and better understanding. Quan-
tum theory is in some respects a strange theory in the above sense. . .

Some very strange quantum effects will be highlighted later on.
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Fig. 3.8 Lines of force mapping the magnetic field of a bar magnet, the region between two north
poles and between a pair of unlike poles

No other explanation of diffraction, other than the interference of waves, has ever
been presented. Not only is the wave nature of light firmly established by this argu-
ment, but the observation of diffraction effects associated with electrons, neutrons
and protons must be interpreted to demonstrate the wave nature of these objects.
A successful theory of matter should reflect this property, which is clearly at vari-
ance with the general notion of elementary particles.

3.3.2 Magnetism

Although magnetic materials such as magnetite (loadstone) and their navigational
use as compasses were known in the earliest antiquity, the phenomenon of mag-
netism remained poorly understood until the late 19th century. The speculations of
William Gilbert in the 16th century linked this property to the proposal that the earth
was a huge magnet with a pair of north and south poles like a small bar magnet. The
first scientific results of practical value was obtained by Charles-Augustin Coulomb.
With the use of a torsional balance he established that the attraction between unlike
poles, as also the repulsion between a pair of equivalent poles, is inversely propor-
tional to the square of the distance between the poles. He is also credited with the
discovery of the same law of interaction between electric charges. This law, formu-
lated as the force,

F = k
m1m2

r2
,

for pole strengths, or charge magnitudes, of m1 and m2, defined in terms of the
proportionality constant k, is of the same form as Newton’s law of gravitational
attraction.

Magnetic interaction is effectively visualized by covering a bar magnet with a
sheet of paper and sprinkled with iron filings. By gently tapping the paper the filings
arrange themselves along the lines of magnetic force, as shown in Fig. 3.8. The
arrows indicate the direction in which an isolated north pole would move when
placed in the field, defined by the lines of force. This concept of a field has proved
invaluable in the mathematical analysis of electromagnetic interactions. The idea of
a field of force was introduced and used to good effect by Faraday, and its use has
now spread through all science.
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3.3.3 Electrostatics

The term electricity derives from the Greek word ηλεκτρoν that means amber,
which is a resinous substance that becomes electrified when rubbed with rabbit fur.
However, like magnetism, electricity remained a curiosity until it was subjected to
systematic study by Coulomb, Faraday, Ampére and Maxwell. As is the case for
magnetism, the interaction between electrified objects is conveniently described as
the force between positive and negative charges, giving rise to an electric field. The
major difference is that positive and negative electricity may readily be separated
mechanically.

Mathematical manipulation resulted in the definition of the concepts electric field
strength and electric potential. The electric field at a point is defined as the force
acting on a test charge at that point divided by the magnitude of the test charge.
Hence the vector

E = kq

r2
.

As in the gravitational field a difference in potential between two points is defined
as the mechanical work required to take a test charge from one point to the other,
divided by the magnitude of the test charge. The potential at a point may therefore
be thought of as the potential energy of a unit charge at the point. As in the case
of mechanical potential energy, electric potential is determined only to within an
additive constant. This constant is arbitrary and depends on the particular choice of
a zero of potential.

The work required for an infinitesimal displacement dl of a unit charge defines
an infinitesimal increase in potential

dV = −E.dl = −kq

r2
dr.

The potential difference between two points A and B ,

VB − VA = −kq

∫ B

A

dr

r2
= kq

(
1

b
− 1

a

)
.

It follows that the difference in potential between two points only depends on the
positions of the points and not on the path between them. The work required to move
a charge between two points at different potentials is known as the electromotive
force, emf. In order to determine the additive constant it is assumed that the potential
zero occurs at an infinite distance from any point of interest. This means that for
1/a = 0 the potential V is given by the work per unit charge required to bring a test
charge from infinity to b = r , i.e.

V = kq

r
.
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Fig. 3.9 Equipotentials in the
plane of two positive charges

A small change in potential may be defined in terms of Cartesian displacements
as

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz = grad V · dl

which function is written in vector notation as grad V , and read, the gradient of V .
The electric field strength is therefore conveniently defined as

E = −grad V. (3.1)

Contour lines that represent equipotentials intersect the lines of force at right
angles. Equipotentials in the field of two equivalent positive charges of q , distance d

apart, calculated as [13]

V = kq

(
1√

(x − d)2 + y2 + z2
+ 1√

(x + d)2 + y2 + z2

)

are shown in Fig. 3.9.
This diagram could easily be mistaken for the electronic charge distribution ob-

tained by a complicated quantum-chemical computation for the H+
2 molecule [14].

The electrostatic equilibrium distribution of a uniform electric fluid of unit negative
charge in the field of two positive point charges of unity should therefore describe
the structure of this one-electron covalent interaction rather well. A point-charge
model that simulates electrostatic interaction between positive atomic kernels and a
pair of electrons has in fact been known for a long time [15] to predict the correct
dissociation energy of diatomic molecules.

Electrostatic induction, which causes displacement of charges within a conduc-
tor, is illustrated in Fig. 3.10 with an electrophorus by lowering a metal disc held
on an insulating handle on to a positively charged slab S. By inductive action across
the intervening space positive electricity is displaced to the upper surface of A from
where it can be discharged to earth. On raising the disc it carries the induced nega-
tive charge, leaving S positively charged.
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Fig. 3.10 An electrophorus

The Law of Gauss

By the same mechanism a charge within a closed surface will be displaced into
the surface and from the field intensity at all points in the surface it is possible to
calculate the magnitude of the enclosed charge. For each infinitesimal area ds in the
surface, the vector ds, perpendicular to the surface, describes the displacement of
charge into the surface as E cos θds = E · ds, where θ is the angle between E and
the outward normal to the surface at ds.

By the inverse-square law E = kq/r2 and the sum over the closed surface
∮

E · ds = qk

∮
ds
r2

= qk

∮
dω.

The solid angle subtended at ds is given by dω = ds · r−2 and hence
∮

E · ds = 4πqk = q/ε0.

In the International (SI) System of units the constant k is defined as k = 1/4πε0,
where ε0 is known as the permittivity of free space.

In vector notation the divergence of a vector defined as

∇ · v = divv = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

describes the outward flow through a volume element dv = dxdydz. The integral
of the flow throughout the volume must be the same as the flow through the external
bounding surface, i.e.

∫

v

divv dv =
∮

s

v · ds .

For any fluid in a region of space where there is neither a source nor a sink, the total
mass flow out of a region must balance the rate of decrease of the total mass in the
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volume. This balance means that
∫

v

∇ · (ρv) = − ∂

∂t

∫

s

(ρv)ds = − ∂

∂t

∫

v

ρdv,

which leads to the continuity condition

∂ρ

∂t
+ div(ρv) = 0. (3.2)

For an electric charge density ρ the quantity ρv = J defines a current density. Since

∮

s

E · ds = 1

ε0

∫

v

ρdv

where ρ is the charge density throughout the enclosed region,

divE = ρ/ε0, (3.3)

also written as ∇D = ρ, where D = ε0E is the displacement.
If E is eliminated between (3.1) and (3.3) the resulting equation is div grad V =

∇2V = ρ/ε0, where the operator ∇2 is called the Laplacian.

∇ · ∇ · V = ∂2V

∂x2
+ ∂2V

∂x2
+ ∂2V

∂x2
= ∇2V = ρ

ε0
. (3.4)

Equation (3.4) is known as Poisson’s equation. In a charge-free region it reduces to
Laplace’s equation:

∇2V = 0.

3.3.4 Electromagnetism

Electromagnetic theory originated in the observations of Ørsted, Ampére and Fara-
day that electric currents have magnetic effects and from this it developed into the
mathematical formalism that describes the interrelationships between electric and
magnetic fields. The conclusion that electric lines of force stretch from a positive
to a negative charge, compared to the closed lines of magnetic force, served as the
guiding principle in the construction of a mathematical model. This is consistent
with the observation that an isolated magnetic pole has no independent existence.
In electromagnetic theory a magnetic field is always ascribed to circulating electric
currents. The complete theory must therefore recognize the dynamic effect known
as electromagnetic induction, in addition to the more common electrostatic induc-
tion. In the same way that electric displacement is related to the field, a magnetic
field in the vacuum is defined by μ0H = B , with μ0 the permeability of free space.
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Faraday’s Law

Faraday’s law of electromagnetic induction describes how magnetic fields induce
electric effects. If the magnetic field in a region of space occupied by a conducting
loop is changed in any manner, e.g. by changing the current in neighbouring circuits
or by moving the latter when they carry steady currents or by moving a permanent
magnet near the loop, an emf is induced in the stationary circuit. By Faraday’s law:
the induced emf is equal to the time rate of change of the magnetic flux that crosses
any area within the loop.

A simple formulation of the law relates the partial derivatives of the electric field
to the time derivative components of the magnetic field. The three equations:

∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t
,

∂Ex

∂z
− ∂Ez

∂x
= −∂By

∂t
, (3.5)

∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t

are expressed together in vector notation as

∇ × E = −∂B

∂t
or as curl E = −∂B

∂t
.

The vector formulation used in this discussion is largely based on Harnwell’s trea-
tise [13].

Ampére’s Law

The relationship between an electric current and its magnetic effect is described
most directly by Ampére’s law. The law predicts the magnetic field induced by an
electric current. This is the inverse of Faraday’s law that accounts for the electric
field induced by a circulating current. Ampére’s analysis led to the result

∮
H · dl =

∫

s

iv · ds
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for current density iv . By Stokes’s theorem
∮

H · dl =
∫

s

curl H · ds =
∫

s

iv · ds .

As this equation holds at every point the last two integrands may be equated, to give

curl H = iv = J .

This is Ampére’s law.
Alternatively, the total induction due to the motion of a closed current-carrying

circuit is

B = μ0

4π
i

∮
r1 × dl

r2

where the vector product r1 ×dl = r1dl sin θ is perpendicular to both the unit vector
r1 and dl. The proportionality constant is fixed to μ0/4π in SI units. It is readily
shown by direct partial differentiation that

grad
(

1

r

)
= r1

r2
, and hence

B = μ0

4π
i

∮
grad

(
1

r

)
× dl .

(3.6)

By an expansion such as (3.5) it can be shown [13] that

curl uA = u curl A − A × grad u

which identity simplifies the integrand of (3.6) into:

grad
(

1

r

)
× dl = curl

(
dl
r

)
− 1

r
curl dl .

As dl is independent of the coordinates of the point at which B is measured, this
last term is zero; hence

B = μ0

4π
i

∮
curl

(
dl
r

)
= curl A

where

A = μ0

4π
i

∮
dl
r

is known as the vector potential. It plays a similar role for steady currents as
the scalar potential V does in electrostatics. From another vector identity [13]:
div curl v = 0, it follows that the divergence of magnetic induction

divB = 0. (3.7)
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3.3.5 Maxwell’s Theory

The experimental data produced by Faraday’s dexterity, restated in Maxwell’s math-
ematical wizardry, culminated in the formulation of a single field theory that uni-
fies the phenomena of magnetism, electricity and light. A vital factor was added
by Maxwell’s realization that Ampére’s law was not consistent with the continu-
ity (3.2), that requires divJ = ∂ρ/∂t . By Ampére’s law div curl H = divJ is identi-
cally zero in those situations where the charge density is constant in time. To be con-
sistent with the continuity condition Ampére’s equation was adjusted by Maxwell
to read

curl H = J + ∂D

∂t

where ∂D/∂t is the famous displacement current.
To construct his electromagnetic theory Maxwell started from the following four

fundamental equations:

∇ × E + ∂B

∂t
= 0, (Faraday–Lenz law)

∇ × H = J + ∂D

∂t
, (Ampére–Maxwell)

∇ · B = 0,

∇ · D = 0.

In the absence of charge and matter, D = εE0, H = B/μ0 and Maxwell’s equations
in free space become:

∇ × E = μ0
∂H

∂t
, (3.8)

∇ × H = ε0
∂E

∂t
, (3.9)

∇ · B = 0, (3.10)

∇ · E = 0. (3.11)

From (3.8)

curl curl E = −μ0
∂

∂t
(curl H )

= −ε0μ0
∂

∂t

(
∂E

∂t

)
.

Using the identity curl curl E = grad divE − ∇2E with (3.11) it follows that

∇2E = ε0μ0
∂2E

∂t2
.
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Similarly, by taking the curl of (3.9) it follows that

∇2H = ε0μ0
∂2H

∂t2
.

The product ε0μ0 has the dimensions of (second/metre)2, the reciprocal of a squared
velocity. If this velocity is denoted by c, its value is predicted by the theory as
c = 3 × 108 ms−1. This value may immediately be recognized as the velocity of
light in the vacuum. This observation strongly suggests that light is a form of elec-
tromagnetic radiation, as the two equations

∇2(E,H ) = 1

c2

∂2(E,H )

∂t2

are differential equations characteristic of wave motion.

3.4 Electromagnetic Radiation

To understand how electromagnetic radiation transports energy through space it is
assumed that an electric or magnetic field stores potential energy to an amount that
depends on the product of the field intensity and the induction at a point, i.e.:

u = 1
2ED = 1

2ε0E
2 or u = 1

2HB = 1
2μ0H

2. (3.12)

The factor 1
2 arises from the balance at a point between negative and positive dis-

placements, D+ − D− = 0, D+ + D− = ε0E, D = ε0E/2.
Without loss of generality the electromagnetic disturbance may be considered in

the form of an infinite plane wave in which the vector E or H depends only on
one coordinate. If z is chosen as this coordinate all partial derivatives with respect
to x and y vanish. Thus divE becomes ∂Ez/∂z = 0, hence the electric field has
no varying component along this axis. As this is the direction of propagation of
the wave, (3.10) and (3.11) show that the wave is of the transverse type where the
electric and magnetic vectors lie in the plane of the wave front. There will in general
be both an x and a y-component of the field, e.g.

∂2Ex

∂z2
= 1

c2

∂2Ex

∂t2
,

∂2Ey

∂z2
= 1

c2

∂2Ey

∂t2
.

These components are independent of each other and only one component need to
be considered, and as the partial derivative with respect to y, say, is zero, it follows
from the definition of curl that

−∂Hy

∂z
= ε0

∂Ex

∂t
.

This equation shows that the magnetic vector of the wave is at right angles to the
electric one.
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Fig. 3.11 A plane
electromagnetic wave,
showing electric and
magnetic vectors at right
angles

A wave such as that shown in Fig. 3.11, in which the electric vector (and hence
the magnetic vector as well) is always parallel to one direction, is called a plane po-
larized wave. The plane in which the electric vector and the direction of propagation
lie is called the plane of polarization.

Electromagnetic waves are usually detected through the absorption of the energy
carried by them. This quantity may be calculated by forming the products

H · curl E − E · curl H = −
(

H
∂B

∂t
+ E

∂D

∂t

)

= − ∂

∂t

(
μ0

2
H 2 + ε0

2
E2

)
.

From (3.12) the right hand side is recognized as the rate of decrease of total electric
and magnetic energy density. By the vector identity

H · curl E − E · curl H = div(E × H )

this is equal to the divergence of the vector product of E and H . By the theorem of
Gauss the integral of this quantity throughout any volume is equal to the integral of
the normal component of E ×H over the bounding surface. The obvious interpreta-
tion is that the decrease of energy within the volume is accounted for by an outward
flow of energy through the bounding surface, equal to the integral of E×H over this
surface. The vector that represents this energy flow is known as Poynting’s vector,
N . Since N is the vector product of two vectors in the xy-plane it must be directed
in the z-direction, i.e. normal to the wave front and in the direction of motion. Ab-
sorption of this energy from short waves produces ionization, affects a photographic
plate, or produces the sensation of sight. When an electromagnetic wave is incident
on a conducting or absorbing surface the theory predicts that it should exert a force
on the surface in the direction of N .

3.4.1 General Theory of Wave Motion

Electromagnetic wave motion is governed by differential equations similar to those
that apply to other forms of wave motion in Nature:

v2∇2Φ − ∂2Φ

∂t2
= 0. (3.13)
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Rather than assume a specific solution it is important to examine the features that
determine the most general solution. It has been shown [16] that the equation can
be solved by the introduction of a single dependent variable

ξ = αx + βy + γ z + vt

α,β, γ being constants, provided ∇2 is written in Cartesian form. On substituting
this into (3.13)

[
v2(α2 + β2 + γ 2) − v2]∂2Φ

∂ξ2
= 0

which is clearly satisfied if α2 + β2 + γ 2 = 1.
Subject to this condition, the substitution

η = αx + βy + γ z − vt

will also lead to a solution Φ(η). The functional form of Φ is left entirely arbitrary
aside from the requirement that it must permit of two differentiations. A general
solution of (3.13) with constant v has the form

Φ = f1(ξ) + f2(η).

To proceed it is necessary to assume that α,β, γ are real numbers, which interpreted
as direction cosines, represent the components of a unit vector σ . The wave function
then takes the form

Φ = f1(σ · r + vt) + f2(σ · r − vt).

Constant values of f1(σ · r + vt) are defined by σ · r = −vt ; they lie on a plane
travelling along −σ with velocity v. Likewise, constant values of f2(σ · r − vt) lie
on a plane travelling along +σ with velocity v. In this form Φ describes two plane
waves that travel in opposite directions at the same speed.

This is the procedure which is used invariably for solving plane-wave problems.
It depends on the two assumptions of α,β, γ real and a time variable which is inde-
pendent of space coordinates; both valid in three-dimensional Euclidean space. It is
noted that the absolute constant c = 1/

√
ε0μ0 in free space, defined by Maxwell’s

equations, conflicts with the two conditions above and the generality of the proce-
dure will have to be revisited.

The solution for spherical waves suffers from the same defects. In this case the
wave equation is written in polar coordinates and Φ is assumed to be a function of
the radius vector and t alone. The operator ∇2 reduces to ∂2/∂r2 + (2/r)(∂/∂r) and
the equation reads

v2

r

∂2(rΦ)

∂r2
− ∂2Φ

∂t2
= 0.

Substitution of ξ = r + vt (or η = r − vt), rΦ = P , gives

P = f1(r + vt) + f2(r − vt)
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or

Φ = 1

r

[
f1(r + vt) + f2(r − vt)

]
.

This solution describes two spherical waves, one travelling in toward the origin, the
other out from the origin. The factor 1/r accounts for the attenuation of a spherical
wave as it moves out from its source. A common application, to be considered, is
the formation of standing waves by a combination of f1 and f2.

Separation of Variables

The general form of f1 and f2 is established by solving the wave equation by sepa-
rating the variables. Assuming that Φ = ST , where S is a function of space coordi-
nates and T a function of t only, transforms (3.13) into

v2T ∇2S − S
∂2T

∂t2
.

On division by T S

v2 ∇2S

S
= 1

T

∂2T

∂t2

where the left-hand side (LHS) is a function of space coordinates only, while the
RHS is a function of t only. This implies that each side is equal to a function neither
of space nor t . That is, the two sides must each be equal to the same constant, chosen
here for convenience as −ω2.

The equation

∂2T

∂t2
+ ω2T = 0

has the general solution

Tω = c1e
iωt + c2e

−iωt .

In this formulation the constant ω has the meaning of an angular frequency. The
space part of the wave function is defined by the equation

∇2S + ω2

v2
= 0.

Interpreting the constant k = ω/v = 2π/λ in terms of the wavelength λ, implies
v = ωλ/2π . The equation

∇2S + k2S = 0
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is the basis of the entire theory of vibrations. In one dimension it reduces to the
Helmholtz equation

d2S

dx2
+ k2S = 0

with the solution

Sk = aeikx + be−ikx .

Noting that exp(iθ) = cos θ + i sin θ , the general solution of (3.13) becomes

Φ = a(k)ei(kx−ωt),

the real part of which may be written as

ϕ = a cos

(
x

λ
· 2π − t

τ
· 2π

)
= a cos(kx − ωt).

This solution confirms that the profile of an harmonic wave which is periodic in both
space and time is a sine or a cosine curve. The maximum value of the disturbance,
viz. a, is called the amplitude. The profile repeats itself at regular distances 2π/k,
known as the wavelength λ of the wave. Periodicity in time means that the wave
moves past a fixed point at a steady rate characterized by the period τ , which counts
the crests that pass in unit time. Other wave variables in frequent use include:

• frequency: ν = 1/τ

• wave vector: k

• wavenumber: ν̄ = 1/λ = k/2π

• angular frequency: ω = 2πν

• There is widespread confusion in the literature over use of the symbol k, either as
wave vector or wave number. As defined here k = 2πν̄, following [17].

3.5 Conclusion

Many commentators have referred to the formulation of electromagnetic theory as
the biggest achievement of 19th-century physics, if not of all time. It appears so
flawless in many ways that it comes naturally to ignore and forget about a few minor
inconsistencies.

All other forms of wave motion involve the oscillations of a supporting medium
in response to the periodically changing wave disturbance. Electromagnetic waves
are thought to represent no more than a fluctuating field in the void.2 Still, the ra-
diation carries momentum of N/c2 in the direction of propagation, experimentally

2Not everybody agrees with this point of view and a significant minority still finds a place for an
aether [18].
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observable as radiation pressure. Momentum without mass has no meaning in New-
tonian mechanics.

Observations such as photochemistry, optical activity and the Faraday effect pro-
vide conclusive evidence that electromagnetic radiation also carries angular mo-
mentum related to its energy by a factor of 2πν. However, an infinite transverse
plane wave cannot carry any angular momentum even if the electric vector rotates
periodically in the plane perpendicular to its propagation. It could be argued that
polarized light of a finite plane wave might generate intrinsic angular momentum,
but that calls for a meaningful modification of the general theory. This might call
the assumptions of separability and Euclidean geometry into question.

The major problem with Maxwell’s theory concerns the predicted absolute con-
stant c. It emerges as a strict property of the electromagnetic field together with ε0

and μ0. There is no room for maneuvre and it signals a vital conflict with classical
mechanics. Not only does it call for a reformulation of the relativity principle, which
was addressed by Lorentz and Einstein, but for a careful scrutiny of a Euclidean ba-
sis for the entire theory.

It will be shown how some of the problems that plagued Maxwell’s theory were
resolved by the new theories of the next century. The same cannot be said about the
periodic table. The new quantum theory, in the form of wave mechanics, although
it provided an improved formulation of orbital angular momentum, performed no
better than Sommerfeld’s model in formulating a detailed periodic function. Fur-
thermore it left the periodic function that includes all stable nuclides, which was
recognized by Harkins [19], completely unaccounted for.

References

1. Berry, A.J.: Modern Chemistry. Cambridge University Press, Cambridge (1946)
2. Stewart, A.W.: Some Physico-Chemical Themes. Longmans, London (1922)
3. Boeyens, J.C.A., Levendis, D.C.: All is number. Struct. Bond. 148, 161–179 (2013)
4. Nagaoka, H.: On a dynamical system illustrating the spectrum lines and the phenomena of

radioactivity. Nature 69, 392–393 (1904)
5. Nagaoka, H.: Kinetics of a system illustrating the line and the band spectrum and the phenom-

ena of radioactivity. Phil. Mag. Ser. 6 7, 445–455 (1904)
6. Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008)
7. Dushman, S.: The quantum theory in physical chemistry, in [8, pp. 1005–1130]
8. Taylor, H.S. (ed.): A Treatise on Physical Chemistry. Macmillan, London (1924)
9. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

10. Sommerfeld, A.: Atombau und Spektrallinien, 4th edn. Vieweg, Braunschweig (1924)
11. Gans, W., Boeyens, J.C.A. (eds.): Intermolecular Interactions. Plenum, New York (1989)
12. Amann, A.: Chemical reactions in the framework of single quantum systems, in [11, pp. 9–24]
13. Harnwell, G.P.: Principles of Electricity and Electromagnetism, 2nd edn. McGraw-Hill, New

York (1949)
14. Cartmell, E., Fowles, G.W.A.: Valency and Molecular Structure, 4th edn. Butterworths, Lon-

don (1979)
15. Boeyens, J.C.A.: Electrostatic calculation of bond energy. J. S. Afr. Chem. Inst. 26, 94–105

(1973)

http://www.springer.com


References 53

16. Margenau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry. Van Nostrand,
New York (1943)

17. Schutte, C.J.H.: The Theory of Molecular Spectroscopy. North-Holland, Amsterdam (1976)
18. Dirac, P.A.M.: Is there an æther? Nature 168, 906–907 (1951)
19. Harkins, W.D.: The periodic system of atomic nuclei and the principle of regularity and con-

tinuity of series. Phys. Rev. 38, 1270–1288 (1932)



Chapter 4
Theoretical Response

Abstract Classical science reached maturity in the discovery of the electromag-
netic field and the periodic variation of the chemical properties of atoms, for which
no theoretical explanations existed. The theory of relativity and quantum theory, in
the form of wave mechanics, developed in response. The details are briefly discussed
and critically examined. By design, the theory of relativity provided a common basis
for mechanical and electromagnetic motion, which could be refined into a model for
gravitational interaction. The search for an equivalent space-time origin of the elec-
tromagnetic field resulted in the recognition of gauge fields, one of which gave birth
to wave mechanics. As a theory that underpins atomic periodicity and chemistry it
has only been partially successful and, reduced to a scheme of quantum chemistry,
based on real linear functions, has failed completely.

4.1 Introduction

As discussed in the previous chapter, nineteenth century science produced two mon-
umental concepts—the periodic table of the chemical elements and the electromag-
netic field. To gain a unified understanding of these concepts two theories to comple-
ment Newtonian mechanics were developed during the twentieth century, without
reaching consensus. Quantum mechanics was developed as a theoretical model to
account for the spectroscopic and periodic properties of the chemical elements and
the theory of relativity was formulated as a common basis for the mechanical and
electromagnetic fields. We first outline the two theories separately, followed by a
comparison of the two.

4.1.1 The Electromagnetic Field

The researches of Michael Faraday and others demonstrated reciprocity between
the phenomena of electricity and magnetism. In particular it was shown that these
effects are transmitted differently through different media, controlled by an elec-
trical permittivity and a magnetic permeability respectively. Both of these factors
approach characteristic limiting values in the vacuum. It follows by dimensional
analysis that the product of the two factors defines the inverse square of a velocity,
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which in the vacuum limit corresponds to the experimentally known speed of light.
It was demonstrated conclusively by James Clerk Maxwell that a combined elec-
tromagnetic disturbance propagates as a wave motion at this characteristic speed.
The implication that light propagates with a constant speed through the vacuum,
irrespective of the motion of its source, is at variance with the concept of relative
velocity, well known since the time of Galileo.

Redefinition of the Galilean laws of relative motion to allow for a constant
speed of light, led, in the hands of Hendrik Antoon Lorentz, to a revised set of
equations, known as Lorentz transformation, which underpins the special theory
of relativity. The mathematical difference between Galilean and Lorentzian rela-
tivity hinges on the ratio between the relativistic particle velocity and the speed
of light. At moderate velocities the Galilean formulation may appear to be ad-
equate, but only as a special case of Lorentzian relativity, which introduces a
time component in space transformations, and vice versa. This observation im-
plies that the co-existence of gravitational and electromagnetic fields characterizes
the world as four dimensional, rather than three dimensional as superficially ob-
served.

4.1.2 Periodicity of Atomic Matter

The atomic and molecular models of Dalton and Avogadro focussed the course of
19th century physical chemistry on the isolation of the elements in chemically pure
form and the determination of their atomic weights. The conjecture of Prout that
all atoms are composites of hydrogen atoms stimulated the critical comparison of
atomic weights, which resulted in the formulation of the periodic law. At the same
time the need for physical characterization of the various elements stimulated the
development of atomic spectroscopy. Once again the spectrum of hydrogen served
as a benchmark, which, as rationalized by Balmer’s integer formula for discrete line
spectra, inspired all quantum models of atomic structure.

Most successful of the early proposals was Bohr’s planetary model, which
provided a theoretical rationalization of Balmer’s formula. It is now known to
be based on two-dimensional harmonics for the specification of electronic an-
gular momentum. As modified by Arnold Sommerfeld, with the introduction of
three-dimensional elliptic orbits the model correctly specifies the allowed elec-
tronic energy levels for hydrogen by two independent integer quantum num-
bers.

From the chemical point of view the Sommerfeld model constituted a significant
advance. The more detailed specification of energy levels suggested an electronic
distribution for non-hydrogen atoms which appeared to be in line with the periodic
table of the elements. However, in order to demonstrate full compliance it was nec-
essary to postulate an additional half-integer quantum number and a strict exclusion
principle to regulate an Aufbau procedure in line with the periodic table. Equally
significant was the conclusion that for the carbon atom, the highest, four-fold de-
generate, energy level is characterized by elliptic orbits directed towards the corners
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of a tetrahedron, centred on carbon. In one fell swoop this provided a rationaliza-
tion of van’t Hoff’s stereochemical model and the Lewis electron-pair description
of chemical bonding. Chemical theory never had it so good again.

4.1.3 Theories in Conflict

The incompatibility of special relativity and quantum theory is seen as the most
important unsolved problem of theoretical physics. Whereas relativity theory is in-
terpreted to show that the speed of light cannot be exceeded in any form of motion,
quantum theory in wave-mechanical formulation is interpreted to allow non-local
interaction, popularly known as instantaneous action at a distance. Modern consen-
sus favours the non-local interpretation as correlation of distant events through the
collapse of a single wave function. However, in terms of the consensual quantum-
particle model wave functions are poorly understood.

4.2 The Theory of Relativity

The classical, or Galilean, model of relativity allows transformation of the laws of
mechanics between systems in relative motion, by an intuitive logical procedure.
The transformed coordinates of a stationary object, as observed from a frame in
linear relative motion in the z-direction, or vice versa, appear as

x′ = x, y′ = y, z′ = z − vt, t ′ = t. (4.1)

For a generally directed relative motion v,

x′ = x − vxt, y′ = y − vyt, z′ = z − vzt, t ′ = t

i.e.

r ′ = r − vt.

Since the relative velocity is constant, the time derivative

dr ′

dt
= dr

dt
− v

describes the apparent velocity of an object that moves in the primary system, as
measured in the relatively moving frame of reference. Taking the second deriva-
tive

d2r ′

dt2
= a′ = a

shows that the acceleration is the same in both systems.
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Fig. 4.1 Diagrams to
illustrate relative motion

The wave front of a light beam emitted with velocity c = dr/dt in a system that
moves with velocity v relative to a stationary observer should hence be observed
to propagate with velocity dr ′/dt = c − v in the direction of relative motion. Not
only does it conflict with Maxwell’s conclusion of constant c, but it also implies that
the spherical wavefront becomes distorted in the direction of motion, as shown in
Fig. 4.1.

Measuring the speed of light in different directions consistently failed to show
up such relativistic distortion, in agreement with Maxwell’s prediction.

4.2.1 Special Relativity

The relativity problem presented by the constant speed of light is readily resolved
mathematically by the revised set of transformations, usually attributed to Lorentz,
despite evidence that these had been used previously elsewhere [1]. The proposed
equations to replace (4.1) are:

x′ = x,

y′ = y,

z′ = z − vt√
1 − β2

, (4.2)

t ′ = t − vz/c2
√

1 − β2

where β = v/c, the ratio of v to the speed of light. As β → 0 at velocities v � c2 the
transformation reduces to (4.1). To demonstrate that the speed of light remains the
same in both frames of reference the equation that describes a moving light-wave
front

x2 + y2 + z2 = c2t2, (4.3)

after Lorentz transformation has the form

x′2 + y′2 + x′2 = c2t ′2.



4.2 The Theory of Relativity 59

Fig. 4.2 Minkowski diagram
of Special Relativity

The Lorentz transformation provides the simplest known vindication of Max-
well’s wave equation. It has the virtue of being mathematically precise without spec-
ifying a definitive physical interpretation of the operation. It will be shown that the
mathematical implication of length contraction in the direction of high-speed mo-
tion, accompanied by time dilation, is beyond dispute, without trying to resolve any
philosophical difficulty that could arise. The common practice of disputing the the-
ory of relativity without specifying a valid alternative to (4.2) is baseless. Whether
the theory of relativity does, or does not, imply the existence of an aether is therefore
considered irrelevant even though it may conflict with the exact model proposed by
Maxwell.

It is significant to note that the Lorentz transformation depends on a mathemat-
ical entanglement of space and time variables. This entanglement is beautifully il-
lustrated by Minkowski’s formulation of the invariant τ = √

x2 + y2 + z2 − (ct)2,

implied by (4.3), as τ =
√

x2
1 + x2

2 + x2
3 + x2

0 , on defining x0 = ict . This proposition
is visualized in two-dimensional projection by the Minkowski diagram of Fig. 4.2.

The Lorentz transformation in Minkowski space, written in the form

x′
1 = x1

x′
2 = x2

x′
3 = γ x3 + iβγ x0

x′
0 = −iβγ x3 + γ x0

with γ = 1/
√

1 − β2, reads in matrix notation as:

x′ = x ×

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 γ iβγ

0 0 −iβγ γ

⎞

⎟⎟⎠ . (4.4)

The 2 × 2 submatrix of x3 and x0 resembles the rotation matrix

R =
(

cosϕ sinϕ

− sinϕ cosϕ

)
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for rotation about one axis in a three-dimensional coordinate system. Correspond-
ingly the matrix in (4.4) represents a rotation in the x3x0 plane of four-dimensional
Minkowski space, through an imaginary angle with

cosϕ = γ, sinϕ = iβγ.

Successive rotations of ϕ1 and ϕ2 amount to a total rotation of Φ = ϕ1 +ϕ2. Noting
that tanϕ = sinϕ/ cosϕ = iβ it follows that:

tanΦ = tan(ϕ1 + ϕ2) = tanϕ1 + tanϕ2

1 − tanϕ1ϕ2
.

Two successive Lorentz transformations with relative speeds β1 and β2 therefore
correspond to a single transformation with relative speed

β = β1 + β2

1 + β1β2
.

This is Einstein’s addition law for parallel velocities. No matter how closely β1 and
β2 may approach unity (v = c), their sum, β , can never exceed unity. The speed of
light emitted by a source in relative motion is measured as

vobs

c
=

(
v + c

c

)
·
(

1

1 + vc/c2

)
,

vobs = v + c

(c + v)/c
= c.

Vectors in Minkowski Space

A revolutionary feature of the Lorentz equations is that in order to perform a co-
ordinate transformation between relatively moving frames of reference a complex
time coordinate must be taken into account, as in Fig. 4.2. This transformation
takes the form of a complex rotation in a four-dimensional pseudo-Euclidean or
Minkowski space. The amount of rotation is related to the relative velocity of the
observers.

A three-dimensional vector in familiar Euclidean space is represented by
−→
Oa.

Rotation in three-dimensional Euclidean space leaves the length

∣∣−−→Oa′∣∣ =
√

�x2 + �y2 + �z2 = r

invariant. However, on rotation into complex space the real part of the transformed
vector is no longer invariant, as the vector acquires an extra component, such that

∣∣−−→Oa′∣∣ =
√

�x2 + �y2 + �z2 + �(ict)2 = |−→Oa|.
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The real (space) part therefore contracts by �r , which is compensated by an increase
�ict . Since c is constant this effect is observed as a time dilation, �t . Clocks in
relatively moving frames do not remain synchronized.

Thus, when an object moves by an amount dx + dy + dz in time dt with respect
to a stationary observer, the time as measured by an observer moving with the object,
is dτ , where

(dτ)2 = dt2 − (
1/c2)(dx2 + dy2 + dz2)

and dτ is known as the proper time for the observer in relative motion. While the ve-
locities, such as dz/dτ remain small compared to c, there is little difference between
dt and dτ . However, when the relative velocity of two observers is comparable to
the speed of light, their time directions are measurably not parallel.

Another consequence of time dilation is that the concept of simultaneity depends
on the frame of reference. Suppose two events occur at the same time t at two
points z1 and z2 in system S. Observed in a relatively moving reference frame S′
these events occur at times

t ′1 = t − (v/c2)z1√
1 − v2/c2

and t ′2 = t − (v/c2)z2√
1 − v2/c2

.

Obviously t ′1 �= t ′2, unless z1 = z2. This inability to define absolute simultaneity also
prevents the definition of an absolute universal time.

The path followed by an object in space-time is called its world line and the
distance along it is seen to measure its proper time:

(icdτ)2 = dx2 + dy2 + dz2 + (icdt)2.

Since the apparent size of objects changes with the relative velocity of the observer,
the apparent density of matter is also not an invariant under Lorentz transformation.
It is inferred that the mass of a body is not a four-dimensional invariant. This is
confirmed by the conservation of momentum as discussed below.

The vector dxμ, (μ = 0,3) represents the change in the four-dimensional po-
sition vector of a particle in differential motion along its world line. The absolute
magnitude of the 4-vector, as for any 3-vector, is described by the dot product with
itself and defines an invariant world scalar,1

ds2 = − 1

c2

3∑

μ=0

dxμ · dxμ ≡ − 1

c2
dxμdxμ.

In expanded form:

ds2 = − 1

c2

[
dx2 + dy2 + dz2 − c2dt2]

1The Einstein summation convention applies: If an index occurs twice in one term of an expression,
it is always to be summed unless the contrary is expressly stated.
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or

ds = dt

√
1 − 1

c2dt2

[
dx2 + dy2 + dz2

]

which is equivalent to writing dt = dτ/
√

1 − β2 for proper time dτ .
Exactly like the proper time all other vectors such as the momentum or force

vectors have one time-like and three space-like components. The 4-velocity

uν = dxν

dτ
= dxν√

1 − β2dt

has space-like components ui = vi/
√

1 − β2, i = 1,3 and time component u0 =
ic/

√
1 − β2. The world velocity

uν · uν = v2 − c2

1 − β2
= −c2.

To an observer moving with a particle at constant velocity v in the z-direction the
mass of the particle is m0 and the proper time is τ . With respect to a stationary ob-
server the particle travels a distance dz, where dτ 2 = dt2 − (dz/c)2. To ensure that
momentum is conserved it is necessary to define the components of the momentum
as:

pz = m0
dz

dt
= m0v√

1 − v2/c2
; pt = m0c

dt

dτ
= m0c√

1 − v2/c2
; v = dz

dt
.

The invariant square of the momentum

p2 = p2
z − p2

t = (m0v)2

1 − v2/c2
− (m0c)

2

1 − v2/c2
= m2

0(v
2 − c2)

1 − v2/c2
= −(m0c)

2.

The momentum four-vector as measured by a stationary observer, for a particle mov-
ing with relative velocity v is

pxi
= m0(dxi/dt)√

1 − v2/c2
, i = 1,3, pt = m0c√

1 − v2/c2
, v2 =

∑(
dxi

dt

)2

.

The time component of the momentum is proportional to the total energy of the
particle:

E = cpt = m0c
2

√
1 − v2/c2

= mc2

where m = m0/
√

1 − v2/c2 is the relativistic mass and m0 is the rest mass.
Motion in Minkowski space is defined as differential change with respect to

the time interval on a clock that moves with an object, which is its proper time.
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The trajectory through space is known as the world line of the object. The mathe-
matical formalism required to express dynamic variables, gradients and potentials
in four-dimensional notation has been completely worked out, as briefly summa-
rized before [1]. It is of special importance to note that, in the same formalism, the
usual vector and scalar potentials of the electromagnetic field transform together
as a Minkowski four-potential, related to the invariant four-vector of current and
charge densities. The fourth component of such a four-vector often is the complex
product of light velocity and a three-dimensional quantity such as time, mass, elec-
tric charge or scalar potential. The equivalent of the three-dimensional scalars are
known as Lorentz invariants.

The Lorentz transformation is assumed to refer to particle motion within the time
cone. Electromagnetic waves are confined to the surface of the light cone. The entire
space domain is declared physically unreal. This interpretation depends on the clean
separation of space and time coordinates, at variance with Lorentz transformation.
The interval between any pair of points in the light cone surface, such as A and B

in Fig. 4.2, is in fact zero. The so-called speed of light, c, therefore is not a speed at
all, but only a conversion factor to relate space and time variables.

4.2.2 General Relativity

The common perception that the world can be described in terms of three space
coordinates, orthogonal to universal time is fatally misleading. Working through
the implications of Lorentz transformation demonstrates that any object in motion
suffers contraction in the direction of motion, compensated for by time dilation. This
effect has an important implication for an object accelerated to move on a stable
circular orbit. It contracts in the direction of motion, but not in the perpendicular
radial direction. The length of a ring in orbital motion must therefore decrease while
its radius remains constant. This means that the geometrical relationship between
the circumference and radius, known as the constant π , is no longer valid with
respect to accelerated motion. This condition defines the basis of Einstein’s theory of
general relativity. Any acceleration, including the acceleration due to a gravitational
field, is said to cause space-time to become curved, or non-Euclidean, in geometrical
terminology.

The quadratic invariant of special relativity

ds2 = dx2 + dy2 + dz2 − (cdt)2

is a special case of the more general expression for non-Euclidean Riemann geom-
etry,

ds2 =
3∑

μ,ν=0

ημνdxνdxμ
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with x1 = x, x2 = y, x3 = z, x0 = ict and the metric tensor

η =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −c2

⎞

⎟⎟⎠ .

As the presence of gravity (mass) imparts a variable curvature on space the metric
tensor is no longer constant. As the summation extends over all values of ν and μ,
the sum consists of 4×4 terms, of which 12 are equal in pairs, hence 10 independent
functions. The motion of a free material point in this field will follow a curvilinear
non-uniform path.

The curved space may be considered as covered by local metric neighbourhoods
and regions of overlap where the transformation law of general relativity applies. It
is called a Riemannian manifold. Vectors transplanted to neighbouring points may
change their orientation and the intuitive idea of a straight line must be replaced by
that of a geodesic, which may be regarded as the shortest or straightest curve in that
region. A manifold on which vector transplantation is described by a law of the form

dξ i = Γ i
mjdxmξj (4.5)

(in which the summation rule operates) is called an affine (or linear) space and
the Γ coefficients are called the affine connections. To ensure that the length of
a vector is not affected by the transplantation the metric requirement that the scalar
product of two vectors be invariant is retained. This condition defines an unique
connection, compatible with a given metric tensor g, and its components in any
coordinate system (x) are given by

Γ i
jk = − 1

2gim

(
∂gmk

∂xi
+ ∂gmj

∂xk
− ∂gjk

∂xm

)
.

The defining equations for a geodesic in Riemann space become

d2xi

ds2
− Γ i

αβ

dxα

ds

xβ

ds
= 0

where s is the arc length of the geodesic.
An affine manifold is said to be flat or Euclidean at a point p, if a coordinate

system in which the functions Γ i
jk all vanish, can be found around p. For a cartesian

system the geodesics become

d2xi

ds2
= 0, i.e. straight lines.

To specify the directions of two different vectors at nearby points it is necessary
to define tangent vectors at these points. Stated in different terms, at each point of
space-time, known as the contact point, there is an associated tangent Minkowski
space. The theory of these spaces together with the underlying space becomes a
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Fig. 4.3 Schematic drawing
of a positively curved
Riemannian manifold with
tilted light cones in tangent
space

Riemannian geometry if a Euclidean metric is introduced in each tangent space by
means of a differential quadratic form.

Important tangent spaces are the light cones of Fig. 4.3. In Minkowski space
these all have the same shape and orientation, but not in general relativistic curved
space, where the light cones may tilt, expand or contract as one moves from one
tangent space to another.

Our immediate objective here is an equation that relates a geometrical object rep-
resenting the curvature of space-time to a geometrical object representing the source
of the gravitational field. The condition that all affine connections must vanish at a
Euclidean point, defines a tensor

Rα
μβν = ∂Γ α

μν

∂xβ

− ∂Γ α
μβ

∂xν

+ Γ γ
μνΓ

α
γβ − Γ

γ
μβΓ α

γ ν

known as the Riemann curvature tensor, which can be contracted to the symmet-
rical tensor Rμν with 10 independent components. Since this tensor has non-zero
divergence it cannot feature in a conservation law (of mass and energy), but this is
achieved by definition of the Ricci tensor

Gμν = Rμν − 1
2gμνR

where the doubly contracted tensor R is called the Riemann scalar. The components
gμν of the fundamental tensor define the gravitational potential. Light rays are null
curves ds2 = 0 and the trajectories of particles in uniform motion are the geodesics.
The geometry of space is not known a priori, but depends on the distribution of
matter.

The Ricci tensor that represents the geometry of space is next equated with the so-
called energy-momentum (stress) tensor of the matter field that defines the influence
of matter and field energy

T μν = ρ0(x)uμ(x)uν(x)

in terms of a scalar density field ρ0 and a four-vector field of flow.
This procedure leads to the Einstein gravitational field equations, one form of

which is

Gμν = Rμν − 1
2gμνR = −8πκ

c2
Tμν

= kTμν (4.6)

where k is Newton’s gravitation constant, or equivalently
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Rμν = −8πκ

c2

(
Tμν − 1

2gμνT
)

(4.7)

where the Laue scalar T is the doubly contracted stress tensor.
The most important feature of Einstein’s general relativistic field equations is the

obvious symmetry between Tμν and Rμν as shown in (4.6) and (4.7). Both of these
tensors vanish in empty Euclidean space and a reciprocal relationship between them
is inferred: The presence of matter causes space to curl up and curvature of space
generates matter. As the curvature of Euclidean (flat) space is zero by definition,
the known universe, full of matter and energy fields, must therefore have positive
curvature. Our perception of a three-dimensional world with universal time is a
delusion, which only appears valid in local context. Topologists refer to this local
Euclidean space as tangent to an underlying four-dimensional non-Euclidean space-
time manifold in which space and time coordinates are intimately entangled.

In summary—existence of the electromagnetic field demands that any valid
mathematical description of the world should be formulated in terms of the en-
tangled parameters of four-dimensional non-Euclidean space-time. To first approx-
imation the theory of special relativity, formulated as Lorentz transformation in Eu-
clidean four-dimensional Minkowski space, describes an entangled whole. Any at-
tempt to interpret the theory in tangent space destroys the relativistic effects that
support the electromagnetic field, and reduces the theory to the classical Galilean
approximation.

Motion always occurs in response to a potential field which is mathematically
described by a second-order differential equation, the solutions of which are known
as harmonic functions. The harmonic equation in Minkowski space is traditionally
interpreted as a three-dimensional wave equation. When solved in this form by the
separation of space and time variables the solutions are three-dimensional harmonic
waves.

Three-dimensional wave motion is described by linear differential equations,
with the remarkable property that any superposition of two or more solutions of
an equation is another solution. In the development and interpretation of wave-
mechanical quantum theory, especially in quantum chemistry, extensive use is made
of this property. The procedure of linear superposition no longer holds in non-
Euclidean spaces, which means that the results of quantum theory can only be ap-
proximately correct in the space-time of general relativity. This complication is not
easily overcome as the solution of nonlinear differential equations presents a non-
trivial problem.

4.3 Quantum Theory

The first convincing rationalization of the postulated stationary states of the Bohr
model came with Louis de Broglie’s wave model,2 which pictured the hydrogen

2De Broglie’s argument is outlined in Chap. 7.
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electron as a standing wave on the Bohr orbits. This postulate was exploited by
Schrödinger when modifying the general three-dimensional wave equation to de-
scribe de Broglie’s matter waves. This new wave mechanics, which requires three
quantum numbers, predicted energy levels equivalent to the Sommerfeld model,
with an improved characterization of orbital angular momentum in terms of spheri-
cal harmonics. According to this description the electron now finds itself in a truly
unaccelerated, non-radiative, stationary ground state with zero orbital angular mo-
mentum.

The real impetus behind the search for a quantum theory based on more funda-
mental principles than the Bohr–Sommerfeld atomic model, was provided by Her-
man Weyl’s proposal of a new world geometry with a gauge field.

4.3.1 Global Gauge Invariance

The concept of a gauge field and the notion of gauge invariance originated with the
suggestion [2] how to accommodate electromagnetic variables, in addition to the
gravitational field, as geometric features of a differential manifold.

Vector transplantation in an arbitrary coordinate system, formulated in differen-
tial form, is described by (4.5)

dξ i = Γ i
mjdxmξj

where the Γ are symmetric connections of the manifold, ξ i are the components of
the vector and dxm the local displacement vector. In Riemannian space the length
of the vector ξ , specified as

l2 = |ξ |2 = gμνξ
μξν

remains invariant under transplantation. The suggestion made by Weyl was that
a differential manifold which allows transplantation with non-constant l could be
considered instead. If the vector ξ is interpreted as the length of a measuring rod
it means that this length (gauge) could change under displacement. Assuming that
the increment in length is proportional to the length itself and a linear homogeneous
function of the displacement vector, then

dl = (
φmdxm

)
l

where the covariant vector φm takes the role of the connection Γ .
For a time-independent gauge vector φ0, like an electrostatic field, the gauge

transformation after time x0 would yield

l = l0 exp

[∫ x0

0
φ0dx0

]
= l0 exp

(
φ0x

0).

Since the gauge factor is in general dependent on the path and therefore not inte-
grable, circulation vectors defined by the curl operator (3.5):
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fik = ∂φi

∂xk
− ∂φk

∂xi

will be non-zero. The divergence

∂fik

∂xl
+ fkl

∂xi
+ ∂fli

∂xk
= 0, i �= k �= l, i, k, l = 0,3.

The formal resemblance with the electromagnetic field equations e.g. (3.8) and
(3.11)

curl E = −∂B

∂t
,

divE = 0

prompted Weyl to identify the gauge factor with the potentials of the electromag-
netic field.

Although Weyl’s conjecture could not be substantiated in its original form it was
pointed out soon afterwards by Schrödinger [3] and London [4] that the classical
quantum conditions could be deduced from Weyl’s world geometry by choosing
complex components for the gauge factor, i.e.

l = l0 exp

[
2πi

h

∫
φmdxm

]
.

In view of this new insight Weyl [5] reinterpreted his world geometry as a change
of phase rather than scale. In the original proposal the scale was proposed to change
from unity to

1 + Sμdxμ (4.8)

in going from a point xμ to a neighbouring point xμ + dxμ of space-time. In the
new interpretation the factor Sμ is replaced by the complex quantity iSμ. This has
the far-reaching consequence of changing (4.8) into3

1 + iα → eiα

which is a phase change, not a change of scale. The terms gauge invariance and
gauge field were retained, have persisted to this day and should be understood to
mean phase invariance and phase field respectively.

In the theory of special relativity the gauge factor α is a constant since there
exists only one coordinate system for all space. The transformation

ψ(x) → ψ ′(x) = eiαψ(x) (4.9)

is called a global gauge transformation and it has the special property that the deriva-
tive of the field

∂μψ → eiα∂μψ

3For small α cosα → 1 and sinα → α, hence eiα = cosα + i sinα → 1 + iα.
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transforms like the field itself. It is assumed here that the complex field ψ(x) de-
scribes an electron, following the suggestion of Schrödinger [3].

A charge (q) is therefore associated with the wave field ψ(x) and the charge
density is given by

ρ(x, t) = q|ψt |2
which is clearly invariant under the phase transformation (4.9). This invariance im-
plies the global conservation of the total charge, and shows that the overall phase
factor is not measurable. The phase can be chosen arbitrarily, but is a constant and,
once chosen it remains fixed over the entire universe and for all time. The relevance
of the gauge concept to quantum theory was convincingly demonstrated by Fritz
London [4].

4.3.2 Wave Mechanics

Accepting the Bohr postulate of an electronic orbit on a hydrogen atom, stabilized
by a balance between mechanical and electrostatic forces,

mv2

r
= e2

r2

London calculated the orbital velocity v = e/
√

mr and period τ = 2πr/v for an
electron at a distance r from the proton. At constant r the Weyl gauge parameters
are ϕ0 = a/r , ϕ1 ≡ 0, where a is a dimensionless proportionality constant, and
describe the variation of scale as

l = l0 exp

(∫ x0

0
ϕ0dx0

)
= l0e

ϕ0x
0

in terms of the time coordinate x0. Assuming that the change of scale vanishes for
special orbits specified by an appropriate choice of a, it follows that

exp(ϕ0cτ) = 1, ϕ0cτ = 2πin

where n is an arbitrary integer, such that

acτ

r
= ac · 2π

√
mr

e
= 2πin

or

r = − n2e2

a2c2m
≡ an,

for the first Bohr orbit,

a0 = h2

4π2e2m
.
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Hence

a2 = −4π2e4

h2c2
and a = iα,

where α is the Sommerfeld fine-structure constant. By this analysis a complex gauge
factor leads directly to the quantization conditions for the hydrogen atom.

From de Broglie’s postulate of electron waves of wavelength λ = h/p, an even
simpler derivation of the Bohr formula follows from the argument that limits the
wavelength of a standing wave on a circular orbit by the condition, nλ = 2πr , i.e.
nh/p = 2πr ; pr = n�.

From this result, and the unexpected appearance of a complex gauge factor,
the logical conclusion to describe electronic motion by a wave equation is almost
self-evident. The only impediment was the incorporation of a massy, hard electron
into such an equation. The problem was overcome by Schrödinger on appealing
to Hamilton’s demonstration of material motion as mathematically equivalent to a
propagating wavefront, (2.1).

The modern interpretation of Schrödinger’s equation considers the link with the
wave equation, shown here in one dimension,

∂2u(x, t)

∂x2
− 1

c2

∂2u(x, t)

∂t2
= 0 (4.10)

as no more than a formal resemblance. Fact remains that the solution

u(x, t) = f (x) · e−iω0t

leads directly to Schrödinger’s equation. Forming the derivatives

∂u

∂x
= e−iω0t

∂f (x)

∂x
,

∂2u

∂x2
= e−iω0t

∂2f (x)

∂x2
,

∂u

∂t
= −iω0f (x)e−iω0t = −iω0u,

∂2u

∂t2
= −ω2

0f (x)e−iω0t = −iω0
∂u

∂t

substituted back into (4.10) leads to two new equations:

(i)
∂2u

∂x2
− 1

c2

∂2u

∂t2
= ∂2f (x)

∂x2
+

(
ω0

c

)2

f (x) = 0,

which is the Helmholtz equation

(
d2

dx2
+ k2

0

)
f (x) = 0, where k0 = ω0/c.
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(ii)
∂2u

∂x2
+ iω0

c2

∂u

∂t
= 0.

By introducing the quantum postulate �ω0 = E − V , the energy in excess of a con-
stant potential, and the velocity of a matter wavefront, in Hamilton–Jacobi formal-
ism [6], c = √

T/2m, these equations (in 3D) transform into the familiar set of
Schrödinger equations:

�
2

2m
∇2ψ + (E − V )ψ = 0, (4.11)

i�

2m
∇2Ψ = ∂Ψ

∂t
. (4.12)

Equation (4.12) in Ψ , the so-called time-dependent wave equation, is often consid-
ered to be a diffusion equation, as it shows only a first time derivative.

In the axiomatic approach to quantum mechanics these equations are obtained
by substituting differential operators for the classical variables of momentum and
energy

p → −i�∇, E → i�
∂

∂t

into the Hamiltonian expression

H = p2

2m
+ V.

Schrödinger’s Equation

Schrödinger’s amplitude equation in three dimensions reads

(
∇2ψ = d2ψ

dx2
+ d2ψ

dy2
+ d2ψ

dz2

)
+ 8π2m

h2
(E − V )ψ = 0.

It can be solved in principle for any system of physical interest on specification of
the two parameters m and V , representing mass and potential energy respectively.
Its most conspicuous success as a theory for chemistry occurred as the solution of
electronic motion in the hydrogen atom. Not only does it reproduce the numerical
results of the Bohr model without further assumption, but also provides a convincing
explanation of the quantum integers of Sommerfeld’s model.

The hydrogen atom is handled as a spherically symmetrical central-field prob-
lem. In the simplest formulation the electron is treated as a spherical wave with unit
negative charge in interaction with a stationary proton of opposite charge. The po-
tential energy of the electron, as a function of radial distance, is given in SI units
as

V = − e2

4πε0r
.
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Fig. 4.4 Definition of
spherical polar coordinates

Since cartesian coordinates are not appropriate to handle problems in spherical sym-
metry it is necessary to transform to the more appropriate spherical polar coordinates
r , θ and φ as defined by Fig. 4.4.

An expression for the Laplacian operator ∇2 can be obtained directly by forming
the appropriate derivatives. The result, given without proof is

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
Λ2.

The term in Λ contains the total angular dependence, independent of r . The radial
wave equation, without angle dependence is

d2ψ

dr2
+ 2

r

dψ

dr
+ 2m

�2

(
E + e2

4πε0r

)
ψ = 0. (4.13)

For large r the equation becomes

d2ψ

dr2
+ 2mEψ

�2
= 0.

This equation is familiar in the form k2 = 2mE/�2 < 0, with solutions ψ =
exp(−kr). Substitution of this solution into (4.13) gives

dψ

dr
= −ke−kr = −kψ,

d2ψ

dr2
= −k

dψ

dr
= k2ψ

and hence

k2 − 2k

r
+ 2mE

�2
+ me2

2πε0�
2r

= 0.

Since this equation is valid for all r the respective sums that are dependent and
independent of r should individually be equal to zero, i.e.

k2 + 2mE

�2
= 0 and −2k + me2

2πε0�
2

= 0.
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Thus

k = me2

4πε0�
2

=
(

1

r1

)

Bohr
and E = −k2

�
2

2m
= (E1)Bohr.

Solution of Schrödinger’s three-dimensional differential equation

∇2ψ + 2m

�2

(
E + e2

4πε0r

)
ψ = 0

is achieved by separation of the variables, writing

ψ(r, θ,φ) = R(r) · Y(θ,φ).

The two separated equations, with separation constant l(l + 1) are

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂φ2
+ l(l + 1)Y = 0 (4.14)

and

d2R

dr2
+ 2

r

dR

dr
+

[
8π2μ

h2

(
E + e2

4πε0r

)
− l(l + 1)

r2

]
R = 0. (4.15)

The angle-dependent equation is separated into two equations by introducing the
separation constant m2

l , i.e.:

d2Φ

dφ2
+ m2

l Φ = 0

with the solution,

Φ = Ae±imlφ

and the Θ equation:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
l(l + 1) − m2

l

sin2 θ

]
Θ = 0.

The separated equations are all of the Sturm–Liouville type

L(x)y(x) = λy(x)

with differential operator L(x) and real eigenvalues λ, [1]. The condition

Φml
(2πml) = Φml

(0)

for single-valued Φ(φ) restricts the values of ml to positive or negative integers.
The normalization condition

∫ 2π

0
ΦΦ∗dφ = 2πA2 = 1
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implies

Φ(φ) = 1√
2π

eimlΦ, −i
∂Φ

∂φ
= mlΦ.

The operator Lz = −i�∂/∂φ defines a set of action eigenfunctions

LzΦ = ml�Φ,

traditionally interpreted as orbital angular-momentum vectors.
The more complicated radial and Θ equations are solved by the Frobenius

method in terms of infinite series that terminate for integer n and l in Sturm–
Liouville systems with operators H and L2:

HRnl(r) = 1

n2
E1 · R(r),

L2Ymll(θ,φ) = l(l + 1)�2Ymll(θ,φ).

The three numerically related quantum numbers are commonly designated as:

Principal quantum number: n = 1,2,3, . . . ,∞
Angular-momentum quantum number: l = 0,1,2,3, . . . , (n − 1)

Magnetic quantum number: ml = −l, . . . ,0, . . . l, (2l + 1 values).

Electronic states of wave functions with common n, but different values of l

and ml have the same energy and are said to be degenerate. Wave functions with
l = 0,1,2,3 describe the electronic states referred to as s, p, d , f states in ac-
cordance with spectroscopic notation. The degeneracy of these states depend on
allowed values of ml and therefore amount to 1, 3, 5, 7 respectively.

4.3.3 Local Gauge Invariance

Weyl’s seminal attempt to relate electromagnetic effects to gauged motion of mat-
ter through space-time, as modified by Schrödinger into a complex phase factor,
provided the link for the development of particle physics.

The fundamental concept is embodied in the equation

Ψ ′ = Ψ eiα

that describes the transformation of a state function on transplantation through the
vacuum. For constant α the equation defines a global gauge transformation, with
the special property that the derivative of the field

∂Ψ ′ = eiα∂Ψ

has the same form as the gauge transformation. If, in the case of a charged parti-
cle, the complex field Ψ describes an electron, a charge of ρ = |Ψ |2 is associated
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with its wave field, which is clearly invariant under the transformation and implies
conservation of the total charge.

In the curved space-time of general relativity the gauge factor α is no longer
globally fixed, but changes as a function of the local coordinates of the curved space-
time manifold,

Ψ ′ = Ψ eiα(μ) ≡ Ψ eiα(x,t). (4.16)

By forming the derivative

∂μΨ ′ = ∂μΨ · eiα + ∂μα · iΨ eiα

it is seen that the conservation of charge now depends on the appearance of a com-
pensating gauge field.

In the case of an electron the transformed wave function (4.16), on substitution
into Schrödinger’s equation

i�
∂Ψ

∂t
= − �

2

2m

(
∂2Ψ

∂x2

)
(4.17)

yields

i�
∂Ψ

∂t
= − �

2

2m

[
∂2Ψ

∂x2
+ 2i

∂α

∂x

∂Ψ

∂x
− Ψ

∂2α

∂x2
− Ψ

(
∂α

∂t

)2]
+ �Ψ

∂α

∂t
.

Abbreviated in vector notation it reads

i�
∂Ψ

∂t
= − �

2

2m

[
(∇ + i∇α)2 − ∇ · ∇α − 2m

�

∂α

∂t

]
Ψ

≡ − �
2

2m

[
(∇ + iA)2 − ∇ × A − V

]
Ψ. (4.18)

The form of (4.17) is recovered by defining the vector A ≡ ∂α/∂x and the scalar
V = (2m/�)(∂α/∂t).

Equation (4.18) is recognized as Pauli’s equation that describes an electron in
an electromagnetic field. A and V are known respectively as the vector and scalar
potentials of the electromagnetic field.

The central idea of particle physics is inspired by this successful description of
an electron in terms of the electromagnetic gauge field. Having recognized the ap-
pearance of strong and weak interactions in atomic nuclei it was argued that these
could also serve to characterize the corresponding elementary particles by speci-
fying the appropriate interaction as a gauge field. Whereas Schrödinger’s equation
correctly describes electronic interaction, the starting point in the analysis of strong
and weak interaction is to ensure that the Lagrangian function, which describes the
interaction of these particle wave functions, remains invariant under the symmetry
transformations that reflect known conservation laws [7].
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The next important step is to identify asymmetric solutions of the symmetrical
Lagrangian. This procedure corresponds in principle to the modification of global
gauge invariance by the recognition of a local gauge field, as before [8]. The process
has become known as spontaneous symmetry breaking of gauge theories. The most
important application in the present context is the broken symmetry that generates
the Higgs field, characterized by a massive boson.

This result is important within elementary-particle physics as a mathematical
procedure to simulate the effect of space-time curvature, which is known to pro-
duce matter. In this sense it is neither unexpected nor mysterious. However, the
common interpretation of the effect as a transition between two symmetry states
of the vacuum has no observational support. More obviously, the high-symmetry
Lagrangian is the correct formulation in hypothetical Euclidean space, whereas the
‘broken’ symmetry represents physically real curved space-time. Another way of
distinguishing between the two symmetry states is in terms of linear and nonlinear
formulations.

It is emphasized that the Higgs mechanism does not refer to two physically realiz-
able vacuum states in that pseudo-Euclidean Minkowski space-time is no more than
a local tangent approximation to the curved manifold of general relativity [9, 10]. It
has no independent existence.

‘Symmetry breaking’ only has mathematical meaning and it makes no sense to
associate it with a phase transition between two possible vacuum states. A Higgs
field is one mathematical manifestation of space-time curvature.

4.3.4 Space-Time Manifold and Tangent Space

In four-dimensional space-time space and time coordinates are entangled and there
is no difference between time-like and space-like events. Furthermore, point par-
ticles are without extension in both space and time, and therefore have no exis-
tence. The two-dimensional Minkowski diagram therefore becomes meaningless. It
will be argued that the light cone in 4D now defines an interface between a world
and an anti-world in projective space-time. In this model there is no difference be-
tween relativity and quantum theory, providing the latter is described in quaternion
notation, without the separation of variables and the former abandons the notion
of a limiting speed. It follows that special relativity and wave mechanics are both
flawed. Wave mechanics because Schrödinger’s equation describes a situation in
three-dimensional tangent space (Fig. 4.5) and relativity because it is traditionally
interpreted in tangent space. A common failure of both theories is the reluctance to
abandon the notion of point particles.

The primary cause of this reluctance was Einstein’s interpretation of the photo-
electric effect in terms of light quanta, i.e. photons or particles of light, in interaction
with particulate electrons in metal surfaces. An equally convincing interpretation in
terms of interacting electromagnetic and electronic waves, offered by Schrödinger,
has never been accepted. The unfortunate interpretation of electron density as a
probability function developed from this oversight.
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Fig. 4.5 Schematic diagram
to show the relationship
between a local Euclidean
surface tangent to a
spherically curved surface
embedded in three
dimensions. The tangent to a
curve in a plane is a straight
line

4.3.5 The Periodic Function

The wave-mechanical quantum numbers for the hydrogen atom specify a strict hi-
erarchy of energy levels, no longer open to empirical adjustment in order to fit the
elemental periodic sequence. The predicted Aufbau procedure stays in register with
the periodic table up to atomic number 18, where it breaks down in an unpredictable
complicated way. At the same time the slick description of tetrahedral structure in
terms of elliptic orbits also disappeared. The laboured reformulation in terms of
hybrid orbitals has been shown to have no validity [11].

On first discovery the wave-mechanical solutions in the form of non-commutative
complex variables appeared to be foreign and mysterious. However, the simple truth
is that these are the normal properties of angular momenta. As remarked by Herbert
Goldstein [6]:

The introduction of the quantum commutation relations was a great act of
physical discovery by the pioneers of quantum mechanics.

He goes on to show the formal resemblance with the classical Poisson bracket for-
mulation.

The most sensational aspect of quantum theory, the so-called uncertainty princi-
ple has been over-interpreted by the philosophers of science into an insiduous ideol-
ogy of acausality and unpredictability. In reality there is nothing non-classical about
the concept. It is a common feature of classical mechanics associated with conju-
gate pairs in Fourier analysis and wave motion [6]. Recent experimental studies [12]
failed to find evidence of uncertainty induced by disturbance during measurement.
The quantum version was developed in support of the unrealistic interpretation of
Schrödinger’s wave equation in terms of particle motion, which resulted in the con-
cept of probability density, causing hopeless confusion in the theory of molecular
structure.

The theory is therefore incomplete in its failure to account for electron spin, the
periodic table and molecular structure. The reason for this failure becomes evident
on closer scrutiny of the periodic function. Using the distribution of prime num-
bers as a guide [13], periods of 24 and 8, empirically related to composition of
stable atomic nuclei and atomic number, respectively, are readily identified [14].
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Elemental periodicity emerges from this analysis as a function of space-time cur-
vature [15]. Four well-defined periodicities, which have been identified, can be as-
sociated with four special space-time structures. The periodic function defined by
the wave-mechanical hydrogen spectrum correlates with the void and the observed
periodic table correlates with space-time curvature characterized by the golden ra-
tio. Periodic functions that reflect inverted electron configurations of the above are
correlated with conditions of extreme curvature that induce nuclear synthesis by
α-particle fusion and/or conversion into antimatter.

The well-known fact [16] that the spin function is defined by square-root quater-
nion rotation raises the expectation that four-dimensional hypercomplex characteri-
zation of atomic electrons could solve the periodicity and structure problems at the
same time.
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Chapter 5
State of the Art

Abstract The theory of chemistry is the theory of matter—how it is constituted
and how it behaves in interaction. Theories to address these issues emerged early in
the previous century. Their impact on chemical thinking is discussed in this chap-
ter. The theory of relativity that explains the origin of matter in the geometry of
four-dimensional space-time has been completely ignored. Quantum theory in the
form of Schrödinger’s three-dimensional wave equation is claimed as fundamental
to the computational scheme, widely known as quantum chemistry, considered to
represent the “highest level” of chemical theory. It relies on the ubiquitous linear
combination of real atomic orbitals, in direct conflict with the complex functions
of wave mechanics. The flawed models of chemical bonding, periodicity, molecular
structure, stereochemistry, point particles, molecular modelling and reaction mech-
anism, formulated in terms of this approach, are critically analyzed. All of these
urgently need serious reconsideration.

5.1 Introduction

Quantum theory may have revolutionized physics, but in the process has destroyed
chemistry, at least its theoretical basis. The two major areas in which quantum theory
impacted on chemistry are traditionally known as chemical bonding and molecular
structure. These two concepts are closely related and before the advent of quantum
mechanics both of them were understood in terms of well-defined empirical models.

The idea of covalence, which emerged as one of the classical models of chem-
istry, has, despite persistent efforts never been successfully adapted as a non-
classical description of chemical interaction. It gained general acceptance about a
hundred years ago when formulated as the sharing of an electron pair between two
atoms. The name of Gilbert Lewis is most prominently associated with this devel-
opment. When it became fashionable to declare interatomic cohesion as a strictly
non-classical quantum phenomenon several bizarre suggestions to glorify electron
pairs had come and gone. One of the more bizarre has managed to survive into the
21st century. An electron is still regarded as a point particle that occurs probabilis-
tically in a flexible bag, known as an atomic orbital, that protrudes from an atom.
When two orbitals are fused together they form a bonding orbital which encloses
the shared pair of electrons. The only new feature of this “quantum” theory, com-
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pared to the classical Lewis model, is a rich, but incomprehensible, jargon. At the
point where even primary-school pupils find the model too ludicrous to consider a
career in chemistry, quantum chemists are hiding behind group theory and computer
software to disguise the orbitals of bonding theory.

The simple truth is that the particle concept is, and remains, a classical idea. It
is not only teachers of chemistry that battle with the notion of a quantum particle;
the entire physics community shares the dilemma. The founding fathers of quan-
tum mechanics were well aware of this fact, and in order to avoid the classical idea
they created the monster known as a particle with wave properties, which they pro-
claimed a quantum object. The respectability of the so-called wave-particle duality
may be traced back to Einstein’s work which was recognized for award by the No-
bel committee. As physicists struggled to understand the mechanism whereby the
energy, which is spread over an electromagnetic wavefront, is miraculously concen-
trated to interact with a single point electron in a metal surface, Einstein cut the
Gordian knot by redefining electromagnetic waves as a stream of energetic parti-
cles, which became known as photons. When subsequently, the wave nature of an
electron beam was demonstrated experimentally the idea of a wavicle became firmly
established.

Had Einstein gone the other way by recognizing an electron as a standing wave,
the present problem would have been avoided a century ago. Only Schrödinger of-
fered an alternative explanation of the photoelectric effect as two waves interacting,
but the German establishment refused to humour the Austrian. As their reward the
whole world pretended for a century to understand probability densities and quan-
tum uncertainties.

It is remarkable how often Einstein arrived at a correct conclusion for the wrong
reason. When he asked in 1935 [1]:

Can quantum-mechanical description of physical reality be considered
complete?

he argued on the perceived premises of incompatibility between quantum theory and
special relativity. He should have done the opposite. It now transpires that quantum
mechanics appears incomplete because its equivalence to the theory of relativity is
overlooked.

The irrefutable evidence of special relativity is that we live in a four-dimensional
world in which the transformation between moving frames of reference amounts
to a complex rotation that implies the equivalence of space and time coordinates.
Furthermore, the extended theory of general relativity identifies four-dimensional
space-time to be positively curved and topologically closed. This means that a math-
ematical description, which separates space and time variables, is no longer consis-
tent with physical reality. It is well known that the first step in the analysis of wave-
mechanical problems, is precisely that—separation of the variables by the definition
of product functions that destroys the holistic entanglement of space and time.

In mitigation it is noticed that this response is the human thing to do. In the world
that we experience, time and space do not appear entangled. In the same way, the
two-dimensional world, as it appears in Flatland, is not entangled with any third
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dimension and the idea of a spherical earth has no meaning. In the same way that a
flat earth is tangent to the curved planetary surface, the flat three-dimensional space,
which we understand, is tangent to curved four-dimensional space-time. Events in
this tangent space are described by classical Newtonian mechanics, whereas the ac-
tual four-dimensional space-time is described by the mathematical model of general
relativity. This is where traditional quantum theory falls short. It tries to describe
four-dimensional space-time events, best perceived as phase-locked matter-wave
packets, by the mechanics of three-dimensional particles. Rather than using hyper-
complex algebra it endeavours to simplify the problem by using the algebra of real
numbers. The result is a disaster.

Efforts to coerce four-dimensional matter waves into reflecting the properties of
three-dimensional point particles resulted in the appearance of unanticipated com-
plex functions and dynamic variables with unforeseen commutation properties. In
order to rationalize the weird mathematics an equally weird physical model, based
on quantum uncertainty, wavicles and probability density, became entrenched in the
lore of an acausal and unpredictable quantum world. This is the price we pay for
projecting four-dimensional reality into tangent three-dimensional Euclidean space.
Sadly, the result is the old classical world superimposed with non-Boolean logic. It
makes no sense.

Chemistry itself is assumed to be securely underpinned by wave mechanics.
However, in order to generate a model in line with classical valence theory a number
of assumptions, completely at variance with quantum theory, had to be invoked.

5.2 Chemistry at the Crossroads

Several authors have tried for decades to caution the chemistry world against a
malaise at the roots of the subject that threatened the credibility of chemistry as a
science. The problem may be traced back to the 1950’s when the idea of developing
a theory of chemistry from the principles of quantum mechanics gained worldwide
popularity with spirited debates between conservative and progressive theorists on
the subjects of resonance, orbitals, hybridization, directed valency, π -bonds, multi-
ple bonds, back bonding, physical methods of molecular-structure elucidation, and
many other exciting developments. The new developments and ideas were eagerly
accepted at face value in the chemical world, truly believing that a new dawn had
broken.

Over the years small chinks appeared in the armour of quantum chemistry, but
reluctance to see a few ugly facts spoil a beautiful theory had them conveniently
ignored. As it turns out the half-truths confidently preached by thousands of glossy
textbooks had been faithfully copied from the works of the masters.

There are basically two fallacies that bedevil chemical education. The first of
these concerns the structure of the periodic table of the elements. It is taught that the
general sequence of energy-level occupation follows the wave-mechanical solution
of electronic energy levels in the hydrogen atom:

1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p < 4p < 4f etc.
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Because of interelectronic interaction in many-electron atoms some of these levels
may cross to yield:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f etc.

giving rise to an s2 block, followed by d10 and p6 blocks, with an f 14 block inserted
within the third d-block.

In reality there are no d10 blocks of so-called transition elements. The transition
series consist of 21Sc→28Ni, 39Y→46Pd and 57La→78Pt—eight elements each.
The block consisting of Cu, Zn; Ag, Cd; Au, Hg; is part of the s-block, as originally
placed by Mendeléev. It is interesting to note that this observation was highlighted
by Bohr [2], but deliberately ignored on the advent of wave mechanics, although
there is no quantum theory to explain this structure. Why not be honest about this?

Another failure is to account for the periodicity amongst all stable nuclides, first
observed by Harkins in 1921, and which contains the periodic table of the elements
as a special case. Again there is no quantum-theoretic explanation of this fact, which
is conveniently ignored by all chemists.

5.2.1 The Bonding Model

In the euphoria of discovering a quantum basis to theoretical chemistry Pauling and
his followers exploited observed periodicities in atomic ionization potential, elec-
tron affinity and electronegativity to create the illusion that these quantities have a
firm quantum-theoretic basis. This exercise resulted in the absurdity of three linearly
related electronegativity scales, based on the square root of an energy, an energy
and a force, respectively [3]. Must we assume that quantum uncertainty overrides
dimensional analysis?

Undeterred, the assumed quantities are next accepted as the basis of a quantum-
mechanical model of chemical bonding. The theme is developed around the known
geometries of methane, ethylene and acetylene. These structures were first ratio-
nalized in terms of Sommerfeld’s proposed electronic structure of carbon. Con-
sisting of two spherical and four elliptic orbits, directed towards alternate ver-
tices of an enclosing cube, it neatly fits the tetrahedral structure of methane. The
wave-mechanical solution, on the other hand suggests four electrons in spherically-
symmetrical distribution and two more of lower symmetry, assuming hydrogenic
energy levels. To arrive at an orbital rationalization Pauling proposed the valence-
state excitation

1s22s22p2 → 1s22s12p1
12p1

02p1−1

with four unpaired electrons to explain the tetravalency, but without accounting for
the conservation of angular momentum. The four valence sub-levels correspond to a
spherically symmetrical state (2s), another with polar symmetry (p0) and a complex
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pair with combined rotational symmetry (p±1). Noting that a tetrahedral structure
is vectorially defined by Cartesian unit vectors x, y and z in the combinations:

c1 = x + y + z,

c2 = −x − y + z,

c3 = x − y − z,

c4 = −x + y − z

the complex pair was assumed reducible to unit vectors x and y by the linear com-
binations p1 ± p−1, resulting in one real and one imaginary function, proportional
to x and iy respectively. By choosing a complex coefficient for iy and defining the
polar axis as z, the required unit vectors are obtained in the form of three real wave
functions px , py and pz. In order to accommodate four, rather than three electrons,
the 2s function is added to each linear combination of p functions without changing
the vectorial properties of the (in)famous sp3 hybrid orbitals.

This construction has a fatal flaw, which probably was first pointed out in a failed
MSc thesis at the University of Manchester in 1956 [4]. Fact is that any linear com-
bination of p-type degenerate eigenfunctions defines a specific rotation of the coor-
dinate axes. In particular, the combinations p1 ± p−1 define rotations of 90◦ about
the y and x axes respectively. The net result is two new choices of the polar axis
along x and y, redirecting the p0 eigenfunction. The real eigenfunctions px , py

and pz are in fact identical, except for orientation, which is an arbitrary choice in
any case. The magnetic quantum number ml is not affected by the rotation and re-
mains at zero. Some textbooks [5] assign quantum numbers ml = ±1 to the px and
py orbitals while others claim that quantum numbers are no longer relevant in this
operation. Both of these arguments are invalid.

We conclude that sp3 hybridization has no quantum-mechanical meaning as
the existence of three eigenfunctions with identical quantum numbers (n, l,ml) =
(2,1,0) are forbidden by the exclusion principle. On previous mention [6, 7] this
statement was greeted with derision, as due to “not understanding quantum theory”,
and pointing out that “the exclusion principle should not be taken too literally”. Not
being told how to take it, one still stands to be corrected by a valid counter argument.

The only positive aspect of sp3 hybridization is that it “predicts” the correct
structure for methane, no different from van’t Hoff’s proposal of half a century
earlier. It is also supposed to predict the correct structure for ethylene and acetylene.
In the case of ethylene it is argued that through the medium of sp2 hybridization
the two carbon atoms interact through two bonds, σ(sp2) and π(pz), in direct and
indirect overlap respectively.
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The amazing result is that, experimentally, the π -bond is significantly stronger
than the σ -bond [8], despite the guiding principle that bond strength is a linear
function of orbital overlap. In this case faith is stronger than logic.

The selling point of the ethylenic π -bond is the barrier to rotation that goes with
π -overlap. In the acetylene molecule there are two pairs of overlapping π -orbitals,
at right angles, suggesting double the steric rigidity. Although this is not directly
measurable, one finds that in the case of dimetal triple bonds, defined in exactly
the same way, there is no barrier to rotation. The handwaving to gloss over this
unpleasant fact is all but convincing.

In more modern analyses, especially in molecular-orbital (MO) theory, hy-
bridization is no longer mentioned explicitly. However, the basis sets that feature
in these computations are all functions of “real” spherical harmonics. Like sp3 hy-
brids such things have no physical meaning. As before, any linear combination of
spherical harmonics defines rotation of the coordinate axes. Even the elaborate ef-
forts to disguise the hybrid orbitals as elements of a symmetry group cannot turn
the assumed classical basis into quantum theory or impart physical meaning to these
arbitrary functions. It is important to realize that the group structure has only math-
ematical meaning, unless it operates on physically real objects. Applied to linear
combinations of orbitals it becomes an exercise in futility. The treatment may be
advanced to higher and higher “levels of theory”, without exorcizing this evil.

Even computational chemists could be hard-pressed to explain the utility of an
ab-initio MO LCAO HF SCF CI MP4 STO-6-31++G* calculation. In this, each syl-
lable of the acronym modifies the algorithm which, as part of a modern software
package, incorporates contributions from scores of independent programmers. It is
questionable if any mortal could actually keep track of the logical structure of such
computer code. It is besides the point that such a calculation can be massaged by
skilful selection of basis sets and convergence criteria to produce results that match
experimental data. The entire procedure that manipulates mathematical functions
without physical meaning, neither classical nor non-classical, is completely base-
less. One of the main objectives of the scheme is to calculate molecular structure.
It is fairly successful in this pursuit, provided it starts with the known structure as a
classical boundary condition. The Born-Oppenheimer approximation serves as the-
oretical justification of the method.

5.2.2 Molecular Structure

Quantum mechanical solution of the problem consists of finding the molecular wave
function from the eigenvalue equation

HΨ = EΨ

over all nuclei and electrons. However, beyond this statement no mathematical
progress is possible, unless the molecular Hamiltonian is known, but that presup-
poses the tautology of successful solution of the equation. The tension is said to
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be eased by the BO assumption that splits the problem into electronic and nuclear
parts by noting that, on the scale of electronic motion, the heavy nuclei remain sta-
tionary for all practical purposes. The strategy is to assume an appropriate nuclear
framework as the boundary condition in solving the quantum-mechanical electronic
problem. This by itself is a miracle, considering that a two-body system is the most
complicated problem that has ever been solved in classical mechanics. However,
computational chemists claim the ability to solve a quantum-mechanical many-body
electronic problem. As a final step the computed electronic structure is then used as
the boundary condition also to solve for the nuclear motion quantum-mechanically.
It is in these operations that the multi-syllabic acronyms come into their own. As it
all happens on a computer the need to explain the procedure that solves the many-
body problem falls away.

Surely this is all a joke. In order to invoke the BO procedure it is necessary to
have an algebra of observables that can be decomposed into two sub-algebras, for
instance a W∗-algebra. This is mathematically feasible, but there is a price to pay.
The mathematical requirement is that at least one of the sub-algebras be commuta-
tive. In physical terminology it means that at least one of the sub-systems must be a
classical one. The message is clear: the nuclear framework of a molecule cannot be
simulated by quantum-mechanical computation.

What about the electronic structure? We are back to the problem that, even if
the molecular Hamiltonian is known from the assumed molecular framework, the
molecular equation can only be solved for a single electron. The most complicated
molecular system that can be solved quantum-mechanically therefore is H+

2 , with
clamped nuclei. Why not admit it and stop pretending to do the impossible? The
only alternative is to resort to a linear combination of atomic orbitals, substituted
into the equation as a trial solution, but that brings us back to hybridization, already
shown to be a meaningless operation.

By ignoring the physical meaning associated with mathematical functions the
chemists brought the dilemma of orbital hybridization upon themselves. What they
failed to appreciate is that the eigenvectors of a degenerate set, such as the 2p func-
tions with ml = −1,0,1, are mathematically connected. Modification to any mem-
ber of the set therefore affects the other partners as well. Creation of the real px

function, by whatever means, cannot be done without generating a complex pair in
the yz-plane, so as not to disrupt the degeneracy. On performing the mathematical
operation by linear combination, the effects on the physical situation can therefore
not simply be ignored. Choosing px , py and pz as an orthogonal basis has mathe-
matical meaning only, but this meaning no longer pertains to the physics.1 All of a
sudden the information about angular momentum has just disappeared. This means
loss of the only function with the necessary vectorial quality that can possibly gen-
erate a three-dimensional molecular structure. Minimization of scalar energy can
never generate such structure ab initio.

1It seems plausible that the original authors of the method must have intended this as a first classical
approximation, whereas later commentators failed to appreciate the difference.
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5.2.3 Stereochemistry

At one stage the stereochemical postulates of van’t Hoff appeared to be adequately
explained by Sommerfeld’s atomic model with its well-defined set of angular-
momentum vectors. Electromagnetic theory associates a magnetic field with a circu-
lating electric charge. This means that the angular momentum of an electron on an
elliptic orbit must generate a magnetic field. This field should affect incoming radi-
ation in the same way as an applied magnetic field. As shown by Faraday, chemical
substances in a magnetic field interact measurably with polarized light. This phe-
nomenon is known as the Faraday effect. At the same time it was known that some
special substances retained this property even in the absence of an applied field.
This, so-called, optical activity could, arguably, be caused by an intrinsic magnetic
field, presumably due to orbital electronic motion. The observation by van’t Hoff
that all of these special optically active substances were endowed with an asymmet-
ric structure, based on the tetrahedral carbon atom, can be correlated with Sommer-
feld’s model.

Two electrons that rotate in opposite sense on elliptic orbits should generate equal
but oppositely directed magnetic fields, with an overall resultant of zero. This hap-
pens whenever the angular momenta of the orbiting electrons are quenched. In van’t
Hoff’s tetrahedral model the angular-momentum vector of each orbit will be mod-
ulated by the electrochemical nature of each substituent, such as H·, Cl·, etc., asso-
ciated with that orbit. In a fully symmetrically substituted derivative such as CR4 it
is readily shown [9, 10] that the angular momentum remains quenched, as for any
arrangement of substituents that defines a molecule which can be superimposed on
its mirror image. Chiral molecules, such as Cabde do not have this property and
are found to be optically active because of a non-zero residual angular momentum
vector.

In the Pauling–Coulson model of chemical interaction, and in all other schemes
that rely on LCAO, orbital angular momentum vectors and magnetic quantum num-
bers (ml) are no longer defined. Optical activity is therefore undefined in quantum
chemistry and treated as another of those ‘mysterious’ quantum effects to be ac-
cepted in good faith [11].

5.2.4 The Particle Problem

Not only have the ill-conceived concepts of orbitals and hybridization created a dis-
torted picture of chemical interaction in the minds of many students, but an uncrit-
ical acceptance of the Copenhagen interpretation further contributed to an alieniza-
tion from quantum theory itself. The original Copenhagen scheme was a deliberate
effort between Bohr and Heisenberg to refute the obvious interpretation of wave
mechanics and Schrödinger’s denial of quantum jumps. Their main objective was to
explain wave phenomena in terms of dimensionless particles. This approach may be
adequate in physics. For instance, to formulate the laws of celestial mechanics the
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sun and its planets may be represented as point particles, without loss of generality.
In this case there is nothing to be gained by dragging the physical dimensions of
these bodies into the equation. Such point objects are probably better represented
by the mathematical notion of an open point.

In chemistry this approach is disastrous. Entities like electrons, atoms and
molecules, despite their quantum nature, are well known not to be of zero extent.
Anybody who has ever carried out a crystallographic analysis or an experiment in
gas kinetics should know better.

The obvious response is to recognize electrons, and the like, for what they are—
flexible wave packets that interact through the medium of standing waves, known in
physics as either photons or virtual photons. The size of an electron depends on its
environment and may vary between that of an open-point particle or the dimensions
of a macroscopic conductor. From a chemical point of view there is nothing to be
gained by trying to represent an electron by a probability density of point particles or
as a hybrid between a wave and a particle. The wave picture eliminates the mystery
of quantum jumps, action at a distance, half-dead cats and other ghostly features
ascribed to quantum systems.

5.2.5 Reaction Mechanisms

There is nothing that popularized the hybrid-orbital picture more so than the rules
for predicting the stereochemical outcome of pericyclic organic reactions. The guid-
ing principle in all instances is the observation that the stereochemical results are
invariably inverted when reactions are carried out under photochemical, rather than
thermal, conditions [12]. The rules are formulated in terms of what became known
as frontier molecular orbitals; more specifically the highest occupied (HOMO) and
lowest unoccupied molecular orbitals (LUMO)—always the pz π -orbitals on the
interacting C atoms. To differentiate between thermally activated and photochem-
ical reactions the former is assumed to involve ground-state HOMO and the latter
excited-state HOMO’s. Although the rules that derive from this assumption cor-
rectly predict the stereochemical outcome of all relevant reactions and rearrange-
ments, the difference between thermal and photochemical activation is never ex-
plained. In fact, there is no explanation in terms of the orbital picture. Recall that
the polar pz direction in a real Cartesian set is not fixed, but may be assigned arbi-
trarily.

To make sense of these rules it is noted that photochemical activation implies the
transfer of electromagnetic angular momentum of �, resulting in an activated state,
not accessible to thermal activation, by inversion of the spin axis:

2p(↑) + �→ 2p(↓)

that directly explains the different effects of thermal and photochemical activation.
Favourable spin pairing in thermal activation depends on whether the reaction sites
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are separated by an odd or even number of double bonds, as set out in the empir-
ically established stereochemical rules. These rules remain the same as before, but
now they depend on the direction of the orbital angular-momentum vector, which is
undefined in the hybridization scheme.

To put the situation into proper perspective it is important to note that a polar
direction, associated with a rotating radical such as −CR2·, is defined by the orien-
tation of the spin axis of the unpaired electron, with respect to the set of quenched
angular-momentum vectors, ml = ±1. This direction remains correlated with all
similarly paired vectors in a conjugated system, to constitute a theoretical basis for
the empirical stereochemical rules.

In the hybridization model a pz-orbital is assumed to define the polar direction
while it remains fixed by overlap within a π -bond. Once the π -bond is ruptured,
as in the postulated valence state, the polar direction disappears, and with it the
“symmetry of the frontier orbital”. The assumed algebraic signs of the orbital lobes
therefore have no meaning and cannot underpin the stereochemical rules.

5.2.6 Atomic Periodicity

At the risk of labouring a point it is emphasized once more that the key to an under-
standing of chemical structure and change is locked up in the details of the function
that determines the periodic properties of atomic matter and the nature of spin. It is
abundantly clear from the foregoing that chemistry itself lacks this understanding.

Turning for guidance to the more fundamental discipline of elementary particle
physics we learn that [13]:

. . . quantum theory describes a world in which a particle really can be in
several places at once and moves from one place to another by exploring the
entire Universe simultaneously. . .

but we are reassured

. . . that everything is constructed out of a handful of tiny particles that move
around according to the rules of quantum theory. The rules are so simple that
they can be summarized on the back of an envelope. . . we do not need a
whole library of books to explain the essential nature of things. . . the more
we understand about the elemental nature of the world the simpler it looks.

About the periodic table of the elements we are told how to approach the problem
by

. . . science rather than numerology. . . elements ‘like’ to have all their en-
ergy levels neatly filled up.

The experts continue:

Of course we have not made any attempt to actually compute the energy
levels, so we aren’t really in a position to rank them in order of energy. In
fact it is a very difficult business to calculate the allowed electron energies in
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atoms with more than two electrons, and even the two-electron case (helium)
is not so easy. The simple idea that the levels are ranked in order of increasing
n comes from the much easier calculation (sic) for the hydrogen atom, where
it is true that the n = 1 level has the lowest energy followed by the n = 2
levels. . .

It is not made clear how, in this instance, science outperforms numerology or particle
physics chemistry. It is hard to spot the “simple” quantum picture of periodicity
revealed by the particle model, and we leave it at that.

5.3 Conclusion

The simple fact is that the accepted electron configurations of all atoms are known
empirically from the results of atomic spectroscopy. The familiar atomic states
dubbed s, p, d , f summarize the most important spectroscopic analyses. They had
been correlated with known features of the periodic table before the development of
wave mechanics, not with more nor less success. There is no quantum-mechanical
prediction of the periodic law—not even a description to rival that of numerology.

It becomes evident that the discovery of the electromagnetic field resulted in the
formulation of a theory that accounts for the discovery in detail. On the other hand,
the theory that was formulated to rationalize the periodic table has been less suc-
cessful. This is not the biggest failure of quantum theory. Its most glaring defect is
non-compliance with the theory of relativity. At first glance it is obvious that the
major discrepancy between the two theories is one of geometry. The theory of rel-
ativity only has meaning in four-dimensional space-time, whereas wave mechanics
derives from a three-dimensional wave equation. It will be shown how reformu-
lation in space-time eliminates the discrepancy with relativity, and appropriately
developed must surely obviate the assumption of a particle that occupy all of space
for all time. As the seminal theory of chemistry it further calls for a complete redef-
inition of wave mechanics in a form appropriate for a new quantum chemistry, free
of linear combinations of real orbitals. If this could be achieved in four-dimensional
space-time the spin function would appear naturally and not by empirical addition.

History shows that paradigm shifts are initiated by exciting new ideas. That is
how it happened in the 1950’s. A brave new world, inspired by the “triumphant”
quantum theory that revolutionized physics, was opening up for a new breed of
chemists, with enough momentum to last them for half a century. Where this initia-
tive is now running out of steam with unfulfilled promises, turning back the clock
is not an option. To break the shackles of sterile “quantum chemistry” new horizons
have to beckon and that is the real challenge facing chemistry in the 21st century.

References

1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev. 47, 777–780 (1935)



90 5 State of the Art

2. Bohr, N.: The structure of the atom. Nature 112, 29–44 (1923)
3. Boeyens, J.C.A.: The periodic electronegativity table. Z. Naturforsch. 63b, 199–209 (2008)
4. Boeyens, J.C.A., Schutte, C.J.H.: Assumptions of quantum chemistry. In: Putz, M. (ed.)

Chemical Information and Computational Challenges. Nova, New York (2012)
5. Ketelaar, J.A.A.: Chemical Constitution, 2nd edn. Elsevier, Amsterdam (1958)
6. Boeyens, J.C.A.: The holistic molecule in [7]
7. Boeyens, J.C.A., Ogilvie, J.F. (eds.): Models, Mysteries and Magic of Molecules.

www.springer.com (2008)
8. Boeyens, J.C.A.: Multiple bonding as a screening phenomenon. J. Crystallogr. Spectrosc. Res.

12, 245–254 (1982)
9. Boeyens, J.C.A.: Quantum potential chemistry. S. Afr. J. Chem. 53, 49–72 (2000)

10. Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008)
11. Julg, A.: The problem of enantiomers: Support for a new interpretation of quantum mechanics.

Croat. Chem. Acta 57, 1497–1507 (1984)
12. McMurray, J.: Organic Chemistry. Brooks, Monterey (1984)
13. Cox, B., Forshaw, J.: The Quantum Universe. DaCapo Press, Boston (2011)

http://www.springer.com
http://www.springer.com


Chapter 6
The Forgotten Dimension

Abstract Henri Poincaré, one of the pioneers of relativity theory predicted that, for
the sake of simplicity, physicists would never abandon Euclidean geometry. It is ar-
gued here that chemical theory has stagnated for the same reason. It is pointed out
how a fresh approach in four-dimensional non-Euclidean space-time could eliminate
most of the conceptual stumbling blocks that inhibit the growth of a non-classical
theory for chemistry. Immediately foreseen benefits include an understanding of
four-dimensional action, recognized as the spin function, to replace the unrealis-
tic concept of orbital angular momentum associated with standing electron waves.
The controversial issues of non-local interaction and the discrepancy with rela-
tivity resolve themselves, giving new meaning to the concept of quantum poten-
tial energy. Without the debilitating assumption of point particles problematical is-
sues such as the exclusion principle, wave-particle duality, quantum probability, the
measurement problem, uncertainty principle, molecular shape and the mysterious
fine-structure constant, also disappear. An alternative wave model is introduced and
shown to be consistent with elemental periodicity as it occurs in projective space-
time, which is briefly discussed.

6.1 Introduction

Scientific evidence that we live in a four-dimensional world has been around for
more than a hundred years. Manifestations of a 4D space-time continuum include
the electromagnetic field and the generation of nuclear power. Although the tech-
nological byproducts are utilized worldwide, theoretical science is practiced in ap-
parent ignorance of this reality. The space-time concept, which underpins electro-
magnetism and the interconversion of mass and energy, belies the notions of abso-
lute space and absolute time. However, when time is colloquially referred to as the
‘fourth dimension’ it is invariably treated as a unique measure, orthogonal to, but
distinct from, three-dimensional Euclidean space. This is no different from New-
ton’s world view.

Subconscious efforts to deny the continued adherence to classical ideas generate
a lot of learned nonsense about the nature of time. In reality the arrow of time is an
illusion, created in the human mind, conditioned to experience the world in three
dimensions. During a previous flat-earth epoch the third dimension, which had a
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Fig. 6.1 The conventional
two-dimensional
representation of Minkowski
space-time [1, 2]. In four
dimensions the light-cone
surface appears as a
three-dimensional interface
that separates time-like and
space-like domains,
interpreted to be populated by
matter and anti-matter
respectively

similar function as time today, was confused with the illusion of eternal heaven
(above) and hell (below). One-dimensional perception probably consists of reality
here, in magical interaction with an illusive there. The zero-dimensional world (of
plants and animals) is static for all practical purposes.

It is obvious that 3 + 1 dimensional science has reached its logical limit. The-
oretical physics arrived at this conclusion long ago and decided to make a bold
jump to many-dimensional hyperspace of string theory, apparently without getting
to terms with 4D space-time first. To my mind the chemistry community would be
ill-advised to blindly imitate physics again. A more prudent response would be con-
servative progress, not to 10 + D theories, but towards a better understanding of 4D
space-time. The most difficult concept to digest is that in such a 4D world there
is no past and no future, only the dynamic present. Motion acquires a subtle new
meaning distinct from the vulgar perception described by Newton’s laws in three
dimensions. This strange notion is illustrated most vividly with the aid of a two-
dimensional Minkowski diagram shown in Fig. 6.1. The 4D interval between any
two points (A and B) within the surface of the time cone,

d =
√

(�x)2 − (�ct)2 = 0. (6.1)

What is described in 3D as a running wave that moves from A to B with velocity c

is represented in 4D by a standing undulation that connects A to B. The constant c

in this context is a simple dimensional conversion factor, required to express time
and space variables in the same units, i.e. x0 = ict . The recognition of bradyons and
tachyons, traditionally defined by reference to entities that propagate through three-
dimensional space with speeds of vb < c < vt , relate in 4D to their location with
respect to the surface of the time cone, occurring at radial distances of db < 0 < dt

from the origin; identified in 3D parlance as time-like and space-like.
The major advantage of the 4D interpretation is the uniform description of stand-

ing and running waves. In 3D analysis running waves propagate against boundary
conditions at infinity. In contrast, the 4D equivalent occurs as standing waves be-
tween emitter and acceptor. The zero-point motion of 3D vibrators relates to the
time component of any event in 4D space-time.
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6.2 The Classical World

Strange as it sounds, traditional wave mechanics is based on the same world struc-
ture of absolute space and time assumed by Newton. It is inherent in both cases
that beyond the mathematical principles of their philosophies there is no further
understanding of matter and its interactions. The main purpose of Newtonian me-
chanics was to account for gravitational attraction whereas wave mechanics was
aimed at intra-atomic interaction. In both cases the mathematical model accounted
for the important characteristics of the interaction without elucidating the underly-
ing physics at all. The unpalatable inference in both instances was that the source of
interaction mysteriously resided within the elementary particles of which matter is
made up.

The wave functions, assigned to elementary particles, did very little to explain
the nature of quantum-mechanical interaction and the origin of matter remained an
unsolved mystery. In fairness it should be pointed out that Schrödinger conducted
a spirited defence of a proposed wave model of matter [3–5] as an alternative to
the uncertain particle model, in a devastating, though ineffectual, demolition of the
positivist concepts such as ‘probability waves’, energy parcels, quantum jumps and
the creation of observable states through measurement; but finally overruled by the
Copenhagen orthodoxy—the standard model of quantum mechanics.

6.3 Non-classical World

The final break with Newtonian science should have occurred with the announce-
ment of the general theory of relativity (GTR). However, in the euphoria generated
by the discovery of a mathematical model that accounted for elementary atomic
spectra, it was seen as the final and definitive model of quantum events—at the
same fundamental level as GTR, despite a serious interpretational problem.

A series of debates around the probabilistic Copenhagen interpretation was con-
sidered to be settled by consensus in favour of Bohr [6] and the Copenhagen model.
As this was followed by an empirical modification of Schrödinger’s equation [7]
to render it Lorentz invariant, and mathematical ‘proof’ of quantum theory as the
ultimate rubric of physical reality [8], the issue became beyond dispute. This delu-
sion has dominated theoretical physics to this day, with chemistry and cosmology
dutifully in tow. As a result chemistry is without a theory and cosmology in chaos
[9].

The fatal, but rarely recognized, defect of quantum mechanics, that accounts for
all its aberrations, lies in its failure to reflect, not only the 4D nature, but also the
positive curvature of space-time as revealed by GTR. Although standard analyses
of GTR traditionally only emphasize the importance of space-time curvature as the
generator of gravitational fields, it is equally important as a source of ponderable
matter. The reciprocity between curvature and matter is the telling argument that
elucidates the nature of elementary stuff. Whatever the essence of the space-time
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medium, whether described as vacuum or the aether, it is the only possible source
of matter and energy. The field equations of GTR show that flat Euclidean space of
zero curvature is matter free and that non-zero space-time curvature is balanced by
the appearance of matter.

Existence of the material universe confirms that space-time is permanently
curved. As a heuristic exercise the curving of flat Euclidean space may be consid-
ered to generate persistent space-time wrinkles, observed as elementary wave-like
units of matter. Empirical evidence points at the occurrence of localized units with
characteristic mass, charge and spin, depending on intrinsic wave structure. These
material units may be likened to 4D wave packets immersed in, and interacting with,
an energetic field of standing waves.

In agreement with Schrödinger’s interpretation [3] photons, as energy parcels,
are undefined in this model which has more in common with the interaction theory
of Wheeler and Feynman [10]. The standing wave between two electronic wave
packets at the same potential is known as a virtual photon in elementary-particle
physics. Energy transfer between electrons at different potentials (states of vibration
[3]) occurs according to Schrödinger’s resonance model [3], limited by space-time
resistance of c = 1/

√
ε0μ0.

The conjecture that both gravitational and electromagnetic fields could be due to
space-time curvature developed in the hands of Weyl and Schrödinger into the con-
cept of gauge symmetry. The seminal demonstration [11] that an electron, endowed
with a variable complex phase, must develop the vibrational states in a central field
commensurate with the energy levels that occur in the Bohr model of the hydrogen
atom, enabled the textbook formulation of the electromagnetic field as a Minkowski
four-vector, V = (Ax,Ay,Az, iφ/c).

Reformulation of GTR on projective space-time topology, in which the gauge
principle appears naturally, was shown [12] to define a combined potential field of
15 variables that represents both gravity and electromagnetism. Of these the gravi-
tational field requires 10, the electromagnetic field 4, and the extra parameter distin-
guishes between the worlds of matter and antimatter. The indisputable 4D nature of
the electromagnetic field is interpreted as a firm indication that electronic behaviour
can only be understood by its response to a 4D potential field. Projection of the pro-
jective electromagnetic potentials into three-dimensional tangent space revealed the
interesting result that the golden ratio appears as conversion factor [9]. This prop-
erty will be shown to underpin the utility of the golden parameter in the modelling
of chemical interaction.

6.3.1 Potential Theory

Potential energy in mechanics is described by a scalar field represented by a simple
number at any space-time point. Familiar examples include the displacement of a
string or a membrane from equilibrium; the density, pressure and temperature of a
fluid; electromagnetic, gravitational and chemical potentials. All of these fields have
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the property of invariance under a transformation of space coordinates. The most
important property of a scalar field is expressed in terms of its second derivatives.
From the definition of a force, defined as

X = −∂V

∂x
, the gradient of the force follows as

∂X

∂x
= −∂2V

∂x2
.

Laplace’s equation ∇2V = 0, or its equivalent in any number of dimensions, there-
fore describes a system of balanced forces in a potential field.

The solutions of Laplacian equations are known as harmonic functions. The one-
dimensional equation

d2V

dx2
= 0

has the general solution, V = mx + b, the formula of a straight line. The two arbi-
trary constants are fixed by appropriate boundary conditions. This simple solution
illustrates two important properties of general harmonic functions: The value of V

at x is the average of its values on opposite sides of x, and secondly there are no
local maxima or minima—extreme values of V only occur at the end points. An ex-
ample of a two-dimensional harmonic system is represented by a thin rubber sheet
or a soap film stretched over an irregular support, such as a distorted ring. The most
celebrated solution was obtained by Laplace to model the tidal wave motion of a
flooded planet. We look for solutions of the equation

∂2V

∂x0
+ ∂2V

∂x1
+ ∂2V

∂x2
+ ∂2V

∂x3
= 0

to model the behaviour of a 4D electronic wave packet at equilibrium.

6.4 The Spin Function

Jean d’Alembert’s equation:

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
− 1

c2

∂2Φ

∂t2
= 0

considered to define a product function

Φ = X(x) · Y(y) · Z(z) · T (t)

with the Minkowski condition ict = x0, i.e.

�2Xμ = 0 (6.2)
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rearranges into:

3∑

μ=0

1

Xμ

∂2Xμ

∂x2
μ

= 0.

Each term is a function of a single variable and independent of all others, which
implies that it equals some constant.

The individual terms therefore resemble Helmholtz’s equation

∂2X

∂x2
= k2X,

which can be solved directly. The overall condition for solution of (6.2) is

∑
k2
μ = 0.

For all kμ real it is therefore required that k0 = k1 = k2 = k3 = 0, whereby the
overall solution is obtained as the product of four simple harmonic functions.

Alternatively with k0 = k1 = 0, k2 = ik3 the standard wave solution is obtained
as the product of a Laplacian and a temporal Helmholtz function, i.e.: Ψ = ψ · eiωt .
The Laplacian is the product of a two-dimensional and a simple harmonic function.
This is the form in which it appears in Schrödinger’s equation, interpreted in the
central field as the three-dimensional angular-momentum function. There are several
problems associated with this interpretation:

1. In polar coordinates the Laplacian is separated into functions of the angular vari-
ables θ and ϕ, with eigenvalue solutions characterized by the quantum numbers
l and ml , such that ml ranges from −l to l. The quantum number l = 1 defines
the three-fold degenerate set of eigenfunctions, designated p. The quantum num-
ber ml = 0 defines a real function (k1 = 0), whereas ml = ±1 corresponds to a
pair of complex functions (k2 = ik3) which describe axial rotations in opposite
sense. The interpretation of non-zero orbital angular momentum for the function
with ml = 0, which defines zero angular momentum, has caused considerable
agony amongst quantum theorists [13]. The fact is that ml = 0 describes simple
harmonic motion, which consists of vibration rather than rotation, as explained
above.

2. It is well documented [14] that quantum-mechanical orbital angular momentum
is not a conserved quantity. A proposed remedy [14] is the ad hoc addition of
spin angular momentum as a mysterious non-classical component on noting that
classical angular momentum, L = q × p, vanishes for a point particle (r = 0).

The anomaly is explained much better as a consequence of the separation of vari-
ables in the Schrödinger analysis. Conservation of non-classical angular momentum
is a manifestation of the isotropy of space-time. By separating out the time vari-
able only the three-dimensional Laplacian harmonic function, which describes the
isotropy of tangent space only, survives, and the time-like component is lost.
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An alternative strategy for solving (6.2) is by defining two pairs of complex func-
tion on setting k0 = ik1, k2 = ik3. The second pair defines the classical angular mo-
mentum as before and the first pair, which combines one space coordinate and the
time coordinate, defines a rotation that involves the time coordinate. This leads to
the appearance of spin angular momentum in the form [15] of the spinor

(
0 e−i(ωt−kx)

ei(ωt−kx) 0

)

which is traditionally added by hand to account for the spin quantum number
ms = ± 1

2 . In this formulation one of the space directions is arbitrarily selected
as a polar direction in space, traditionally defined as the z-axis. Dirac’s equation
[7] describes point particles in terms of a relativistic Hamiltonian with assumed
plane-wave solutions and linearized by choosing Pauli’s spin matrices as coordinate
coefficients. This procedure relies effectively on the separation of space and time
variables.

The most general solution of (6.2) does not provide for any such polar direction,
which may be assumed to occur only in a magnetic field. This solution, obtained
without separation of the variables has the form of a quaternion [15]:

Φ = eθ(iα+jβ+kγ ) = cos θ + sin θ(iα + jβ + kγ )

in which i, j and k are generalizations of
√−1 in the form of quaternion units,

in matrix notation: 1 = ( 1 0
0 1

)
, i = (

i 0
0 −i

)
, j = ( 0 1

−1 0

)
, k = ( 0 i

i 0

)
. These units define

the rotations of C2, known as the special unitary Lie group SU(2), which describes
the four-dimensional spin function.

The spin function has no polar direction. It describes rotation about a point rather
than an axis, and is known as spherical rotation. It is demonstrated in three dimen-
sions by the famous ‘plate trick’ of a dexterous waiter with a plate of soup. Another
well-known characteristic of an object in spherical rotation is that, although it ini-
tially gets entangled with the medium, it unwinds periodically on completion of
each cycle of rotation through 4π radians. The half-frequency undulation in a sup-
porting medium is correctly described by the half-integer quantum number [16].
This means that a four-dimensional wave packet (e.g. an electron) with spin moves
freely through the vacuum without shearing.

Finally, four-dimensional quaternion rotation also describes the Lorentz trans-
formation of special relativity, which demonstrates its equivalence with quantum
theory.

6.4.1 Four-Dimensional Action

In the atomic models of Bohr and Sommerfeld, which describe the motion of orbit-
ing particles, it is appropriate to interpret the action of the system as angular mo-
mentum. The unfortunate practice to impose this concept on the Schrödinger model
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has caused a lot of unnecessary confusion. The Schrödinger equation describes an
electron as a standing wave, without kinetic energy or angular momentum, and rep-
resents a spherical charge distribution. Interaction of the wave with an electromag-
netic field, in either absorption or emission, is described by a change in the action
of the system, and observed as a distortion of the spherical symmetry. The effect of
such interaction may be visualized by analogy with the tides created by the gravita-
tional field of the moon.

Four-dimensional action, defined here by the spin function, is to be understood
in exactly the same way as describing the process of electromagnetic interaction,
observed as the transition between different action states. In the Copenhagen inter-
pretation this process is called a quantum jump.

6.4.2 Spin Correlation

Without understanding spin as a four-dimensional effect it is not surprising that an-
other debate, about the mooted non-locality of quantum theory, has remained incon-
clusive. It started out as an argument about the predicted behaviour of a previously
correlated system according to special relativity and quantum mechanics respec-
tively. The succession of contradicting thought experiments presented by Einstein
[17] and Bohr [18] makes interesting reading [19] but never revealed anything fun-
damental about the presumed quantum-measurement problem. After the interven-
tion of Bell [20] the moot point was redefined as the alternative between non-local
quantum theory and local realistic theory. Countless analyses of the problem have
been published from many different points of view, including a contribution by the
present author [16]. In view of the new insight gained into the four-dimensional na-
ture of quantum events those conclusions can no longer be supported and the entire
debate is now considered irrelevant.

In this context it is the Copenhagen interpretation of quantum measurement
which is once more at issue, rather than non-locality. According to Bohm [21] and
Bell [20] only one of the three independent orthogonal components of electron spin
can be resolved at any time and according to Copenhagen each of them acquires
a sharp value of ±�/2 only when measured. Any correlation between σx(A) mea-
sured at point A and σy(B) at B, for a previously associated pair, must then be
ascribed to non-local communication between A and B.

This argument only holds if the 4D spin function is mathematically separated
into one-dimensional projections for which there is no physical justification. The
decomposition of a binary unit, stabilized by 4D spin pairing, must result in two
complementary quaternion spinors. Unless one of them is disturbed by some ex-
ternal agent their spin functions must remain correlated, irrespective of locality. It
follows that simultaneous, even non-aligned, spin measurements at A and B must
both reflect the characteristics of the original complementarity, which for some cre-
ates the illusion of non-local communication.
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6.5 The Time Enigma

One of the strangest results of special relativity shows that some velocity, v < c, can
always be found such that the time difference between any two space-like events
must vanish [22]. For light-like events (v = c) this means that two world points
receding at the relative three-dimensional speed of light remain in physical contact,
which amounts to the standing wave, commonly interpreted as photon-mediated
interaction in an electromagnetic field. On the other hand, two general space-like
events can only occur simultaneously for relative velocities v < c. For time-like
separations between events there is no Lorentz transformation that will make them
simultaneous.

The popular explanation of EPR-type correlations in terms of the non-local col-
lapse of a wave function is therefore ruled out both ways. This result supports the
previous conclusion that correlated spin measurements do not imply nor need an
explanation in terms of non-local interaction. In this connection it is instructive to
note the final sentence of the EPR paper [17]:

While we have thus shown that the wave function does not provide a com-
plete description of the physical reality, we left open the question of whether
or not such a description exists. We believe, however, that such a theory is
possible.

The prescription proposed here for non-classical chemical systems in 4D
Minkowski space-time comes close to such an alternative. Probably even closer
than Bohm’s hidden-variable proposal [23, 24] on which Einstein commented in a
letter to Born1 [25, p. 252]:

Hast Du gesehen, daß der Bohm (wie übrigens vor 25 Jahren schon de
Broglie) glaubt, daß er die Quanthentheorie deterministisch umdeuten kann?
Der Weg scheint mir zu billig.

In Bohr’s response [18] to the EPR analysis it was argued that the experimental
arrangement and results constitute a whole that is not further analyzable. Hence it is
impermissible to attribute independent reality to the properties of separate particles.
This view, although in line with the natural correlation proposed here to persist in
unseparated Minkowski space-time, does not eliminate the locality problem as the
measurements may be spread non-locally.

The entangled time component makes all the difference. It resolves the EPR
paradox, vindicates the view that quantum theory is incomplete, but shows that the
presumed non-local EPR correlation is an illusion created by projection into three
dimensions.

1Have you noticed that Bohm believes (as de Broglie did, by the way, 25 years ago) that he is able
to interpret the quantum theory in deterministic terms? That way seems too cheap to me.
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6.5.1 Quantum Potential

In view of the foregoing, designation of the quantum potential, implied by the hy-
drodynamic [26] and hidden-variable [23, 24] interpretations of Schrödinger’s equa-
tion, as a non-local phenomenon, should also be reconsidered. Quantum potential is
defined in terms of the amplitude function, R, as

Vq = −�
2∇2R

2mR
.

It is generally agreed that as the potential contains R in both numerator and de-
nominator it does not necessarily fall off with distance. In the case of a many-body
system it therefore means that the interaction between the bodies in the extended
system can be described as non-local [27].

For an object like a free electron, confined to a sphere of radius r0, the ground-
state energy E0 = h2/8mr2

0 , interpreted [28] as Vq = E0, implies

∇2R + (π/r0)
2R = 0

which is solved by spherical Bessel functions, the Fourier transform of which de-
scribes a limiting sphere of uniform density. It is readily shown [9] that for a sphere
of radius r , Vq = �cα/2r = K/r , where α is the usual fine-structure constant.

This result may be interpreted to define a non-local quantum-potential field, in-
versely proportional to the radial extent of the system of interest. It only disappears
at infinity, which will be argued to be cosmologically undefined in curved space-
time. In the case of a many-body system Vq depends on the coordinates of all bodies.
Disturbance of one part therefore affects the entire system holistically and interac-
tion in the extended system may be described as non-local. However, it is debatable
whether it also means instantaneous interaction at a distance.

There is no apparent reason why these conclusions should be radically different
in four-dimensional analysis. In view of (6.1) it appears likely that the holistic in-
teraction amounts to all parts of the system being in effective contact, which defines
the quantum potential also as a four-dimensional relativistic phenomenon. It there-
fore needs to be emphasized that such non-local 4D interaction, mediated by the
quantum-potential field, is fundamentally different from the postulated EPR-type
interaction, which is understood to impose a previously non-existent attribute on
some system by an unrelated remote measurement.

We now conjecture that a 4D quantum potential pervades any isolated holis-
tic unit at a constant level, inversely proportional to the radial extent of the sys-
tem. Holistic units such as electron, atom, molecule and nanoparticle are stabilized
by progressively weaker quantum potentials that operate over increasingly longer
ranges. This trend extends to larger units such as solar system, galaxy and the ob-
servable universe as Vq → 0. It is an interesting possibility that telepathic interaction
and telekinesis through a universal information field could be of this type.
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On a more practical note the quantum potential of an atom, activated into its
valence state, can be shown [29] to define the classical empirical concept of elec-
tronegativity. Reduction of this useful concept to a fundamental basis immediately
elucidates the nature of covalence and of chemical affinity at the same time. Recall
that quantum potential represents the essential difference between classical mechan-
ics as embodied in the Hamilton–Jacobi equation and non-classical wave mechanics
according to Schrödinger. Explanation of electronegativity in terms of Vq therefore
contradicts the popular notion, often stated by quantum theorists [30], that tradi-
tional chemical concepts such as molecular chirality and chemical potential

. . . have served a noble purpose in the past but. . . they are now obsolete

and without meaning in modern quantum chemistry. As a possible remedy it was
proposed [30] to formulate an algebraic theory of chemistry that recognizes both
classical and non-classical variables, noting that

[p]ioneer quantum mechanics in any of its proposed interpretations has an
agonizing shortcoming: it cannot describe classical systems. [Original em-
phasis.]

This pessimistic view is effectively refuted if it can be demonstrated that a non-
classical 4D formulation eliminates most of the irrational features of conventional
quantum theory.

6.5.2 Time Flow

The elementary demonstration that independent observers in relative motion
through Minkowski space-time cannot agree on the simultaneity of events is of
fundamental importance for the understanding of time flow. It means that certain
events in the past of one observer lie in the future of another, and vice versa. This
observation conflicts with the common understanding of the recorded past as being
fixed and for ever beyond dispute, whereas the unknown future is totally uncertain
and unpredictable. In other words, what may appear to be completely uncertain
could already be firmly established by observation elsewhere.

The only logic behind this paradox is that there is no difference between past and
future. Any two points in time, whether past or future, coexist in the same way as two
points separated in space. Transplantation between time-separated points appears
equally feasible in both directions, but the situation may be more complicated in
a non-Euclidean space-time manifold. Not only the ‘arrow of time’, but also the
quantum-mechanical ‘uncertainty principle’ may hence be recognized as illusions
created by projection into Euclidean tangent space.

The equation �2V = 0 describes a 4D potential field with a constant gradient
tensor. In physical reality such a field has no maxima or minima, except at its bound-
aries, if any. A closed system, such as the surface of a sphere has no boundaries and
the gradient defined by the curvature of the surface (known as the curvature tensor)
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is constant at all points and in all directions in the surface. Any object, which re-
sponds to the gradient, once activated, will maintain indefinite inertial motion in the
surface.

The four-dimensional equivalent is topologically known as either a 4D hyper-
sphere or a 3-sphere. Using this as a model of space-time the GTR predicts the
generation of matter that would locally modify the gradient. The accumulation of
elementary matter into massive units causes distortion of the potential function, re-
sulting in local minima, which act as attractors for other matter, observed as a grav-
itational field.

Newton’s law of gravity treats the gravitational potential as an inverse-square
function of space coordinates only. This implies that inertial displacement in the
direction of the time axis (ict) continues unabated. This is consistent with the sen-
sation of time flow and the basis for postulating an arrow of time. The argument
is certainly valid at a high level of approximation, but mathematical analyses of
the interactions in a black hole suggest that non-inertial time flow occurs in strong
gravitational fields [31].

The concept of motion is not to be confused with time flow. Motion only acquires
meaning by reference to other objects which respond differently to a potential field
and act as coordinate markers. An isolated observer has no means of distinguishing
between different states of inertial motion, including quiessence. For such an ob-
server time has no meaning. The sensation of time flow is therefore best described
as an emergent function of the environment. In this sense it has much in common
with the three-dimensional structure of a molecule. Not surprisingly, both concepts
are intimately related to the mysterious notion of entropy, another manifestation of
space-time curvature.

Chemical practice happens in tangent space, but theoretical analysis of the data,
like sub-atomic physics and astronomy can no longer afford to ignore the effects of
space-time curvature.

6.6 Space-Time Curvature

A regular one-dimensional object without beginning or end is defined as a circle or
a 1-sphere. The equivalent two-dimensional object, represented by the surface of a
globe is called a 2-sphere. The surface of a 4-dimensional globe or hypersphere is
known as a 3-sphere. This is the construct that Einstein envisaged as a model of
the universe [32]. It is important to note that this object is defined in terms of four
orthogonal spatial coordinates, to which Einstein added a universal time coordinate
as a fifth dimension in order to formulate a sensible geometrical model.

Einstein’s contemporary, Willem de Sitter, considered a 3-sphere defined by 3-
space and one time coordinate, embedded in 5-dimensional space [33]. As an alter-
native Herman Weyl suggested a four-dimensional analysis in which the 3-sphere is
separated into one-dimensional time and a 2-sphere in 3D space.

In order to stabilize Einstein’s model it was necessary to introduce an additional
parameter, the so-called cosmological constant. To stabilize de Sitter’s model it is
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necessary to eliminate all matter and to modify the assumed 3-sphere into projective
space [9]. Weyl’s proposal leads to the Robertson-Walker metric which forms the
basis of expanding universe cosmology and the big bang. Of these it is only de
Sitter’s model that incorporates the idea of curved space-time. However, the non-
appearance of matter shows that 3-sphere topology does not represent the universe
as observed.

6.6.1 Space-Time Topology

The topology of space-time is another of those concepts presumed to defy compre-
hension. However, behind the folklore there are some powerful indicators identify-
ing a simple logical resolution of the problem. By the GTR space-time is known
to be four-dimensional and curved. The Euclidean alternative favoured by standard
cosmology can therefore be rejected out of hand. The only alternative that avoids
mathematical infinities is a closed system which allows only one of two possibili-
ties: the 3-sphere and elliptic (or projective) space with a continuous group structure
in the form of the Hamiltonian quaternion [34], encountered before as the rotation
that defines both the Lorentz transformation of special relativity and the spin func-
tion of 4D quantum theory. In addition, the periodicity of atomic matter has been
shown [35] to be a function of projective geometry. Internal evidence from math-
ematics, physics and chemistry therefore points at a universe closed in projective
space-time.

It becomes increasingly evident that the non-classical theory of chemistry is an-
chored in a four-dimensional potential function of projective space. Although a
mathematical formulation may be moderately feasible, physical visualization bor-
ders on the impossible. At the risk of oversimplification a two-dimensional analogue
may provide a qualitative illustration of some important points. The most convenient
illustration is provided by a Möbius strip which may be considered as sliced from a
projective plane.

A Möbius surface is mathematically described to be of zero thickness and con-
sidered to turn into itself through an involution. As a practical model it is more
appropriate to consider a Möbius band as consisting of a double cover on the math-
ematical surface as interface to define a single, non-orientable surface that covers
the interface on two sides as in Fig. 6.2.

Not only does a Möbius band have a single surface, but also a single edge, which
is readily ascertained by inspection. In order to create a closed projective surface
from a Möbius band it is only necessary to start from any point in the edge and
stitch the two sides together, all the way back to the starting point. This operation,
which requires that the band eventually intersects itself, turns out to be impossible
in three-dimensional space.

Transplantation of a vector, oriented with respect to the surface, along the dou-
ble cover, results in the inversion of the vector as it rotates through 2π to a point
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Fig. 6.2 Three-dimensional
section through a
four-dimensional projective
plane to illustrate the property
of a one-sided non-orientable
surface

on the opposite side of the interface. The original orientation is restored after an-
other 2π rotational displacement. The formal relationship with the spin function is
immediately obvious.

Because of the involution a projective model of space-time would be self-
destructive. More appropriately, the double cover has several attractive advantages
as a 4D model universe, wrapped around a three-dimensional interface that sepa-
rates a chiral world from an enantiomeric anti-world [36]. Longitudinal displace-
ment within the double cover causes a gradual change of chirality, transforming
matter into antimatter after rotation of 2π . The interface which is achiral by defini-
tion may be identified with the Minkowski light cone in curved space-time [9]. In
this sense it is the abode of boson radiation which separates fermions and bradyons
from anti-fermions and tachyons.

Projective geometry differs from its Euclidean counterpart by redefinition of par-
allelism as the intersection of straight lines in a single point at infinity. This modi-
fies the stipulation of point positions through the addition of an extra coordinate in
a homogeneous set. Four-dimensional projective space-time is thereby described in
terms of five homogeneous coordinates. The effect of this is that the geometry has
no metric and hence any parameter may be multiplied by an arbitrary factor without
affecting its meaning. This so-called gauge factor turns out to be the same as the
complex phase of wave mechanics [11] and the electromagnetic field.

The power of projective geometry in the unification of the gravitational and elec-
tromagnetic fields was recognized many years ago by Oswald Veblen [12]. At about
the same time a regular five-dimensional model, shown by Kaluza [37] and Klein
[38, 39] to effect the same unification, was considered less complicated than the pro-
jective model, which lapsed into oblivion. Where Kaluza’s model failed the projec-
tive formulation produced a relativistic wave equation in tensor notation [40] which
could be reduced to the standard form in affine space. What went unnoticed at the
time was the relationship between the factors that convert potential functions from
projective to affine space and the golden ratio [9]. This opens up an entirely new
perspective on the relationship between four-dimensional space-time and tangent
three-dimensional Euclidean space, which suggests the modelling of self-similar
chemical and astronomical systems by the methods of number theory.

Support of this idea is provided by the successful simulation of the periodic ta-
ble of the elements as a subset of a more general periodic function, conditioned
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by space-time curvature, in terms of Farey sequences and the golden ratio [35]. It
reveals the same Möbius involution between matter and antimatter noticed before.

The only known attempt to derive an atomic model from GTR is due to Einstein
and Rosen [41] who defined physical space as consisting of two congruent sheets
connected by “bridges”. Massless particles (bosons?) are identified to occur within
these bridges (interface?). To quote:

. . . the electrical particle is a portion of space connecting the two sheets
[. . . ] consider the electron or proton as a two-bridge problem. [. . . ] the
“charges” of the electrical bridges are numerically equal to one another and
only two different “masses” occur for the mass bridges. . .

Although the conclusions are rather tentative and the physical model rather vague,
a close parallel with the projective model proposed here is clearly evident.

6.7 Quantum Effects

When a leading philosopher of science [42] declares that,

quantum theory—the deepest discovery of the physical sciences—has ac-
quired a reputation of endorsing practically every mystical and occult doctrine
ever proposed,

it sounds a warning which cannot responsibly be ignored. When the same savant
continues to explain quantum theory, in even more bizarre terms, as the histories
of an elementary particle over an infinitude of inaccessible multiple universes, one
stands aghast. This is the theory that was borrowed in good faith from physics and
relied on by the chemists of the world as the infallible quide that underpins their
pursuits.

In reality theoretical chemistry has not advanced beyond the models of chemical
affinity and molecular structure developed during the 19th century. There has been
a lot of handwaving with brave talk about quantum chemistry that found its way
into all modern textbooks, to the annoyance of a small minority who tried in vain to
encourage the development of alternative relevant theories. The constant stumbling
block has been the proclaimed magic and mystique of quantum mechanics. We now
re-examine a number of the concepts that sit uneasily with the practice and theory of
chemistry and, where possible, show how these are avoided in the four-dimensional
approach.

6.7.1 Exclusion Principle

The exclusion principle was established in an effort to bring quantum theory in line
with the periodic table of the elements. The relationship was correctly formulated
by Stoner [43] as follows:
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The number of electrons in each completed shell is equal to double the sum
of the inner quantum numbers.

This is to be interpreted as double the total number of levels corresponding to the
allowed values of the quantum number ml for each value of the principle quantum
number n. This rule was empirically ascribed by Pauli [44] to the appearance of
a new two-valued quantum number for each electron, which effectively doubled
the number of energy levels per shell. An improved formulation of the effect was
provided by Dirac [45] on demonstrating that the two-valuedness was implied by an
anti-symmetrical total electronic wave function.

The implication is that the interchange of any two indistinguishable electrons in
a system must result in the inversion of their eigenfunctions,

ψT = ψ(q1, q2)ψ4 = −ψ(q2, q1)ψ4.

Equating q1 = q2 implies ψT = 0, which shows that two electrons in the same quan-
tum state cannot be at the same point in three-dimensional space. The standard form
of the exclusion principle is still stated as the requirement that electrons be de-
scribed by anti-symmetrical eigenfunctions, compared to photons in symmetrical
states. The fourth quantum number ψ4 is now equated with the spin quantum num-
ber ms = ± 1

2 , but there is still no fundamental explanation of the anti-symmetry
of the wave function and the exclusion principle remains an emergent property of
fermions [46, 47].

Viewed as a four-dimensional effect the exclusion principle assumes a com-
pletely different complexion. Solution of the 4D potential problem leads directly
to an exposition of electron spin as a spinor, which is known to reverse sign on rota-
tion through an odd multiple of 2π [48]. Such a rotation is the natural equivalent of
what is commonly referred to as the interchange of indistinguishable objects. In this
case the operation is mathematically characterized as anti-symmetrical, without as-
sumption and the exclusion principle appears as a fundamental property of fermions
in 4D space-time.

It needs to be reiterated that the quaternion operation that defines the spinor is
characteristic of four-dimensionally curved projective space-time.

The analysis of covalent interaction in terms of dimensionless variables of in-
teratomic distance and interaction energy [28] reveals the exclusion principle as a
restriction on electron density in space as a function of the golden ratio—ipso facto
as a function of space-time curvature.

6.7.2 Wave-Particle Duality

The conclusion that the exclusion principle allows two electrons with paired spin to
occupy the same space should immediately have eliminated the particle description
as an acceptable model for fermions. It is an ancient truism that two solid objects
cannot be in the same place at the same time. Indeed, the earliest known model,
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proposed by Lorentz [49] considered an electron at rest as a small rotating flexible
sphere, subject to deformation when in a state of motion.

The major difficulty with the Lorentz model was seen as the lack of a mechanism
to hold the charge together against Coulomb repulsion and so prevent spontaneous
dispersal. The alternative of a point charge was shown by Dirac [50] to generate a
problem of equal magnitude in the form of an infinite self energy. To overcome the
problem a finite size of the electron with an interior through which signals propagate
with superluminal speeds, had to be assumed. Evidently, classical theory has failed
completely to postulate an acceptable structure for the electron. Quantum mechanics
performed no better.

The only proposal of electron structure to come out of quantum theory occurred
in the hydrodynamic model of Madelung [26]. It is identical to the Lorentz model
and was rejected for the same reason—failure to account for the non-dispersal of the
elementary sub-electron charges of which the electron fluid was assumed to consist.

Although theory failed to account for the structure of an electron, not even the
experimental evidence that an electron diffracts like a wave was sufficient to suc-
cessfully uphold the wave-mechanical model of de Broglie and Schrödinger. As
a matter of fact, all of the mystical features associated with quantum theory can
be traced back to a stubborn obsession to account for the wave properties of an
electron, using a point-particle model. This obsession can now be traced back to
the innocent assumption that the wave-mechanical action, defined by Schrödinger’s
equation, represents orbital angular momentum. Having failed in this and faced with
conflicting experimental evidence the only way out, short of abandoning the particle
model, was to declare an electron to be a particle and a wave at the same time.

6.7.3 Quantum Probability

During the early 20th century physics was driven by a single-minded urgency to find
the ultimate explanation of the quantum phenomenon, which was discovered at the
turn of the century. There is no better description of this obsession than by the word
ecstacy, defined in the Collins dictionary as

abnormal mental excitement when the mind is ruled by one idea, object or
emotion.

Not surprisingly an early success in this quest was greeted ecstatically—

in a state of enthusiastic frenzy or rapture.

What is surprising is that this enthusiasm has still not subsided. Despite well-known
defects of the resulting theory, such as its failure to account for electron spin; its
irrational account of physical measurement; its definition of a quantum object of
non-zero volume (wave) as a localized (zero-volume) object (particle) at the same
time; and its discrepancy with the fundamental theory of relativity, a modern quan-
tum physicist [42] declares:
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Quantum theory is the deepest explanation known to science. [. . . ] There
is no other.

The problem with quantum theory is rooted in the frenzied search for a fundamental
explanation of the stationary states of the Bohr-Sommerfeld atomic model. The ec-
static announcement from Göttingen of a matrix formulation as the final (endgültig)
truth, almost immediately received a body blow on the publication of the more log-
ical and user-friendly wave mechanics, based on a differential eigenvalue equation.
And the gloves came off. To protect their turf the Göttingen school declared wave
mechanics an inferior subset of their own quantum mechanics. The only problem
was to demonstrate how the wave model was a flawed approximation of the more
logical quantum jumps of a particle, correctly described by a matrix eigenvalue for-
mulation. All of the mystical features associated with quantum theory originated
with this stubborn obsession to account for wave properties, using a point-particle
model. Such a particle is obviously required to be in more places than one at any
given time. Not quite, but perhaps—probability density was born.2

There is nothing in Schrödinger’s equation to justify the probability postulate. In
fact, a lucid interpretation of quantum effects in terms of wave packets to represent
both material objects and energy flow was presented early on [3]. Although the
concept still features in numerous discussions of quantum events it stands officially
discredited because of the dispersion of Schrödinger matter-wave packets. Instead
of a careful examination of wave-packet dispersion, the leading quantum theorists
adopted an artificial model, designed to simulate a non-dispersive wave packet by a
random distribution of mass points.

Dispersion analysis [51] for a system governed by a linear differential equation
such as (6.2), is based on the four-dimensional Fourier representations with har-
monic functions ei(k·r−ωt). Whenever a linear dispersion relation connects ω and
k the system is non-dispersive. Such a linear relationship holds for electromagnetic
waves in the vacuum. However, in the treatment of matter waves the equation

∂2u(x, t)

∂x2
− 1

c2

∂2u(x, t)

∂t2
= 0 (6.3)

is modified according to de Broglie’s prescription and solved by separation of the
variables, assuming Ψ (x, t) = ψ(x) · e−iωt . The second derivative

∂2Ψ

∂t2
= −ω2ψe−iωt = −iω

∂Ψ

∂t

when substituted into (6.3) yields

∂2Ψ

∂x2
+ iω

c2

∂Ψ

∂t
= 0

2No pun intended.
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and eventually, with ω = c
√

2mT /� and c = √
T/2m, there follows:

∂Ψ

∂t
= i�

2m

∂2Ψ

∂x2
,

the standard time-dependent Schrödinger equation.
As demonstrated before this equation no longer reflects the correct four-

dimensional spin function and with its first-order time derivative it has a non-linear
dispersion relation, ω = k2/c2T . A wave packet constructed from such waves must
therefore be dispersive, as reflected in standard textbook statements like, [52] that

. . . unfortunately. . . in general, wave packets change their shapes and flow
apart with time. . .

or more precisely demonstrated [53] that a wave packet, obtained by the superposi-
tion of matter waves with λ = 2π/k and frequency ν = (�/4πm)k2,

. . . does not retain its spatial distribution.

The “explanation” [54] that

[t]he packet. . . spreads out because of the Uncertainty Principle. . .

simply puts the cart before the horse.
Commenting on the wave packet, constructed by the superposition of Hermite

polynomials, David Bohm [55] states that

. . . there is an unusual feature of the motion of this packet, namely it does
not change shape with time. Normally, we expect wave packets to spread out
with time, but this particular packet does not.

. . . for a harmonic oscillator and only for a harmonic oscillator can we ex-
pect periodic wave packets.

This conclusion is based on the result mentioned by Schrödinger [3] on first propos-
ing the electronic wave model. However, a one-dimensional harmonic oscillator
hardly provides a convincing model of a free electron in motion. It remains nec-
essary to formulate a non-dispersive four-dimensional matter-wave packet that re-
sembles classical particles while correctly simulating the behaviour of elementary
quantum objects without the need to invoke probabilities. That would eliminate the
probability postulate and finally resolve the first Einstein-Copenhagen debate [6],
confirm3 [25, p. 127]:

. . . daß der [Alte] nicht würfelt,

explain the quantum measurement problem and rationalize the so-called uncertainty
principle.

3That the Old One does not play dice,
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6.7.4 Measurement Problem

The measurement problem of quantum theory is the primary source of a body of
pseudo-scientific philosophical fall-out that pervades many fields of enquiry and
criticism. In essence, it concerns the subjective role of an observer in the outcome
of an objective measurement. It is argued that a quantum system is inherently un-
predictable and yields information only through the invasive action of an observer.
Such intervention is said to collapse the wave function into one of its eigenstates,
irrevocably changing the system in the process.

The exact role of an observer in effecting the collapse of the wave function (or
wave packet, according to some sources, e.g. [55]) is the subject of intense specula-
tion. There seems to be consensus that some measuring device by itself, without an
intelligent operator to register the observation, is not sufficient. It remains mysteri-
ous how the measurement of a probabilistic particle’s position can produce a sharp
result. Copenhagen logic stipulates that it only happens on conscious intervention.
That is why [56]

the moon is demonstrably not there when nobody looks.

Or, even more extreme [57, 58]:

Observers are necessary to bring the Universe into being.

Others [42] would say that a measurement favours one member of the multiverse,
leaving the rest high and dry. However, if all but one of the probability points are
fungible, but inaccessible in the universe of interest, then why bother? The result is
no different from that predicted by Newtonian mechanics.

With each further step into the unknown quantum models based on the Copen-
hagen orthodoxy create more problems than they solve. In the case of chemistry,
where this theory dictates a point description for molecules with demonstrable non-
zero extension, the situation borders on the absurd. Reluctance to challenge au-
thority has created a computational edifice, completely divorced from reality, but
dutifully supported by educational institutions around the world. The sad fact is that
quantum chemistry further dilutes the dictates of elementary wave mechanics to the
extent where it operates at the classical level, using unnecessarily complicated al-
gorithms with a vague resemblance to quantum formalism. Mindless extension of
such practice to the life and behavioural sciences results in the grotesque philoso-
phies widely claimed to be quantum based. Although quantum effects are real the
supporting theories have gone haywire. Blind belief with ecstatic fervour is not the
way forward. The time has come to critically re-examine the hasty conclusions of
the pioneers and, not only for an alternative explanation, but for a more appropriate
formulation of non-classical theory.

In their incisive analysis of the quantum-mechanical measurement problem
Bohm and Bub [59] identified as a root cause of the problem the presumed notion of
probability which is implicitly incorporated into the standard axiomatic formulation
of wave mechanics, i.e.:
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The wave function determines the probabilities of the possible results of
any measurement on the system.

A measurement, which selects one of the probabilities, is therefore said to “collapse”
the wave function into a specific eigenstate. The dilemma exists therein that in the
case of an electron passing through a slit system

. . . the electron is somewhere in the region where the wave function is ap-
preciable.

However, when analyzed in terms of “classical” probabilities, defined as P(x) =
|ψ |2, it is shown unequivocally that

. . . the particle model fails as a description of the details of the motion of
an individual electron. . .

Without disclosing their operational understanding of an electron the authors con-
tinue to state that,

. . . since the electron acts like an individual particle [. . . ] the wave model
also fails to describe the order and structure of this motion adequately.

Although details of the wave model being discounted here are not disclosed it is
inferred that

. . . a precise conceptual description of the process of measurement in quan-
tum mechanics becomes in principle impossible, so that one gives up all hope
of ever being able to obtain a clear conception of the nature of the individual
electron or how it moves.

Their despair can be appreciated if the authors have in mind the model of the elec-
tron as a particle-like localized inhomogeneity, or a small stable vortex, in a contin-
uous fluid [60] that obeys Schrödinger’s equation. The conclusion that [59]:

There is, however, no solution to the measurement problem within the
framework of classical mechanics.

must be endorsed as the only logical one. Classical mechanics is based on the par-
ticle concept, identified here as the very item responsible for the measurement con-
fusion. Small wonder that a leading theorist states [61]:

. . . I think it is safe to say that no one understands quantum mechanics.

The situation is entirely different in terms of Schrödinger’s interpretation of the
wave equation, which is not based on the axiomatic approach. In this case the wave
function has more than mathematical significance as it describes a wave packet with
postulated physical meaning and well-defined properties of mass, charge and spin.
Then there is no need to collapse a wave function in order to perform a measurement
and certainly not to collapse a wave packet. The flexible wave packet simply con-
tracts into a virtual point in the field of the measuring device and responds naturally
to the electromagnetic field of the probe. A charged wave packet moves through
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a cloud chamber like a classical particle and leaves a track that maps out the path of
its centre of mass, unlike the random walk predicted by the probability model.

An electron on an atom or a crystal does not jump around from point to point. It
occurs as a wave packet which is spread across an extended domain in equilibrium
with the field of atomic cores. The variation of charge density as measured by X-ray
diffraction is described by the wave function as ρ = |Ψ |2, in terms of the internal
wave structure of the wave packet. The only problem is to identify a non-dispersive
wave packet that correctly models an electron. This problem is addressed in the next
chapter.

6.7.5 Uncertainty Principle

Quantum uncertainty is almost as notorious as the measurement problem. It started
out as a statement of the way in which a quantum system is disturbed in an un-
predictable way by any measurement. However, as this could imply a definite state
of the system before measurement it was necessary to redefine measurement as the
process of selecting a specific eigenstate from an uncertain set.

Although Schrödinger’s interpretation of particles as wave packets was promptly
rejected, the model was adapted to rationalize the uncertainty principle, not as a
wave characteristic, but as a particle property, for which it makes no sense. In its
most abstract formulation the uncertainty principle argued to represent an inherent
lack of knowledge about quantum systems, which eventually led to [62]

. . . subjectivist rejection of realism, motivated by the belief that a funda-
mentally and irreducible statistical physics has to be explained by a funda-
mental and irreducible barrier to our (subjective) knowledge. . .

The only effect of the hot air produced, by scientists and laymen alike, in countless
efforts to decode the uncertainty principle is to cause more confusion. Maybe the
time has come to accept the fact that quantum theory has no need of this princi-
ple, which in any case carries no new information. At the end of the day all that
remains is evidence of the confusion among the scientists who first stumbled upon
the spectroscopic formulae at the basis of quantum mechanics. What caused their
consternation was the appearance of commutators of the type

[p,q] = pq − qp = i�,

foreign to classical macroscopic systems. Instead of investigating the mathematics
of commutators the founding fathers resorted to metaphysical explanations resulting
in what Popper [62] referred to as “the great quantum muddle”.

It is now known that the hypercomplex algebra of quaternions is not commutative
and the variables that feature in a four-dimensional harmonic equation would hence
not commute. There is nothing left to explain. Even in three dimensions any pair of
conjugate variables related by Fourier transformation do not commute. Conjugate
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variables x and k are related by a conjugate transformation specified by the Fourier
inversion formulae:

g(k) = 1√
2π

∫ ∞

−∞
e−ikxf (x)dx,

f (x) = 1√
2π

∫ ∞

−∞
eikxg(k)dk.

Comparing [63] the spread, or dispersion �x, of a Gaussian function f (x) =
Ne−cx2/2 and �k for its Fourier transform g(k) = (N/

√
c)e−k2/2c, the product

�x�k = 1
2 . On demonstrating that no other function has a smaller uncertainty prod-

uct it is concluded that in general, �x�k ≥ 1
2 .

In the case of matter waves where x represents position, k the wave number
and p = �k the momentum, it follows that the relationship �x�p ≥ �/2 occurs as
the natural property of any wave. Again, given a viable matter-wave model, there
would be nothing to agonize over. The muddle starts when trying to explain this as
a particle property.

6.7.6 Fine-Structure Constant

Another item which is often mentioned to highlight the mysterious nature of quan-
tum mechanics is the fine-structure constant, with the provocative value of α =
1/137. An award-winning theorist writes [64, p. 129]:

It (α) has been a mystery ever since it was discovered more than fifty years
ago, . . . is it related to π , or perhaps to the base of natural logarithms? Nobody
knows. It’s one of the greatest damn mysteries of physics: a magic number that
comes to us with no understanding by man. You might say the “hand of God”
wrote that number, and “we don’t know how He pushed His pencil”.

The constant was first introduced by Sommerfeld [65, p. 107] as α = v1/c =
e2/4πε0c� (=e2/c�, in esu), where v1 is the velocity of an electron in the first
Bohr orbit. The joke is that without the Bohr model the meaning of α is indeed
unclear, but not as mysterious as made out. Although the unphysical probability
particle model offers no alternative explanation a valid interpretation is anticipated
to emerge as the property of a non-dispersive wave packet that correctly models an
electron. The search for such a model, defined by nonlinear wave functions, contin-
ues in the next chapter.
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Chapter 7
Nonlinear Chemistry

Abstract The sensational aspects of quantum theory, from the wave-particle na-
ture of electrons to Schrödinger’s cat, are the artefacts that result from describing
nonlinear systems by linear differential equations. As linear waves are dispersive, a
wave model of the electron is still being rejected, whereas a nonlinear wave model is
shown to account for electronic behaviour in all conceivable situations. This chapter
introduces the distinction between linear and nonlinear systems with examples from
hydrodynamics and mechanics and applied to the wave mechanics of wave packets,
solitons, electrons and lattice phonons. Special topics for discussion include the mo-
tion of free electrons, the fine-structure parameter, electron diffraction, photoelectric
and Compton effects, X-ray diffraction, metallic conduction, superconductivity and
elementary covalent interaction. A new innovation, introduced here, is recognition
of the quantum potential as a nonlinearity parameter that enables a seamless transi-
tion between classical and non-classical systems.

7.1 Introduction

It has been argued [1] that because complex phenomena are so ubiquitous in Nature
the common concepts, characteristic of nonlinear behaviour, are not discipline de-
pendent but pertain equally well to problems in physics, chemistry, biology and en-
gineering. Although the general validity of this perception is readily demonstrated,
the value of mathematical models that describe nonlinear behaviour has not been
recognized to a significant extent in chemistry.

To highlight the chemical relevance of the nonlinearity paradigms developed
elsewhere there is no better starting point than the analysis of electronic behaviour,
which underpins all of chemistry.

Most electron models, from Lorentz [2] to the present have stumbled on the prob-
lem of non-dispersal. Despite the early realization, first verbalized by Stoney in
1891, that an electron features an indivisible unit charge, it has been argued repeat-
edly that it should blow up under coulombic repulsion. The standard response has
been to reduce the electron to a zero-dimensional point object. The problems asso-
ciated with this as a physical model are infinitely worse; with infinite gravitational
and electrostatic fields.

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_7,
© Springer Science+Business Media Dordrecht 2013

117

http://dx.doi.org/10.1007/978-94-007-7578-7_7


118 7 Nonlinear Chemistry

More recent analyses of nonlinear waves led to renewed interest in wave mod-
els of elementary particles, including electrons, in quantum field theory. Nonlinear
waves are different, not because they are non-oscillatory, but also because their ve-
locity is amplitude dependent. For linear waves the speed is always independent of
amplitude. Any two solutions of a linear equation can be added together to form
a new solution. This, so-called, superposition principle enables the solution of es-
sentially any linear problem. Fourier transformation, for instance, depends on such
superposition of solutions. In contrast, different solutions of a nonlinear equation
cannot be added together to form another solution. A nonlinear problem can there-
fore not be reduced to smaller solvable problems and without a general analytic
approach they are more difficult to solve.

7.2 Wave Model of the Electron

To specify the kinematics of a macroscopic system it is traditionally decomposed
into elementary components of rectilinear, rotational and oscillatory motion, de-
scribed by a set of linear classical equations. In Hamilton–Jacobi theory, aimed at
a unified description of many-particle systems, characteristic moving surfaces are
shown to propagate through space in the same manner as wave fronts of constant
phase [3, p. 487]. It is therefore possible, even in classical mechanics, to recognize a
duality of particle-like and wave-like aspects in the motion of macroscopic objects.
This conclusion has no implication on the physical structure of the moving object
and it is generally conceded that a particulate description is the more appropriate.

The same duality applies to microscopic systems, but in this case the wave na-
ture predominates. Mathematically the only instance where wave and particle de-
scriptions are equally valid is in the case of geometrical optics. Again, this dual
formalism does not confer particle nature to physical waves or vice versa. On de-
scribing wave motion in Hamilton–Jacobi formalism, which is the basis of wave
mechanics [3, p. 490], the appearance of particle-like behaviour must be anticipated,
without implying that the wave is a point particle.

As commonly conceived a wave is theoretically of infinite extent and a particle
has no extent. In this sense the two alternative descriptions of an electron commonly
defined as either a particle or a wave are equally unrealistic. Maybe it is for this rea-
son that the Copenhagen notion of an entity with both wave and particle properties
is generally more readily accepted. This compromise hints at an object of finite size,
widely, but vaguely, rationalized as a wave packet.

The unrealistic wave-particle model of the electron has an interesting history that
dates back to the 19th century and Faraday’s electrochemical research. It was found
that a chemical equivalent of any substance reacts with a fundamental quantity of
electricity, F . Interpreted as an electrochemical equivalent it amounts to a charge of
e = F/L per atom, where L is Avogadro’s number. Observation of discrete parti-
cles with the same elementary charge during radioactive decay confirmed that elec-
tric charge is not indefinitely divisible but occurs as discrete units, now known as
electrons.
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Assuming that the electrostatic charge carried by an electron of rest mass m, is
spread over a spherical volume of radius r0, i.e. mc2 = e2/4πε0r0, the electron is
defined as a sphere of mass m and radius r0 that carries a unit of electric charge. This
so-called “classical” radius of the electron is confirmed in scattering experiments.

7.2.1 Wave Mechanics

The simplest example of a linear wave is the so-called sinusoidal wave

φ(x, t) = a sin(kx ± ωt)

where a is the amplitude, k and ω, wave number and angular frequency, are related
to the wavelength λ and frequency ν by k = 2π/λ, ω = 2πν. The ± sign specifies
waves progressing to the left and right respectively. The speed of the wave is given
by v = ω/k. If the velocity of the wave is independent of k and ω, these may be
eliminated by differentiation to give

∂2φ

∂t2
= c2 ∂2φ

∂x2
(c = constant), (7.1)

the general wave equation in one dimension. Except for electromagnetic waves in
vacuum, all waves in nature show some deviation from (7.1).

Equation (7.1) is linear, which means that if both φ1 and φ2 are solutions, then
the superposition φ(x, t) = φ1(x, t) + φ2(x, t) is also a solution of (7.1). For linear
waves, it is more convenient to use superposition of complex functions

φ(x, t) = a(k) exp
[
i(kx − ωt)

]
.

The most elementary linear wave is the harmonic wave for which a is independent
of k.

The requirement that φ(x, t) satisfies a linear wave equation depends on the
functional relationship between k and ω, known as a dispersion relation. If this
relationship is nonlinear the wave is dispersive. The phase velocity is defined as
vϕ = ω/k and describes how a surface of constant phase moves. The group velocity
vg = dω/dk shows how fast the bulk of the wave propagates.

Given some initial data φ(x,0) = f (x) it is possible to calculate φ(x, t) for
all t [4]. Even though the initial data may not have harmonic form, it may be repre-
sented by a Fourier integral

φ(x,0) = 1√
2π

∫ ∞

−∞
a(k)eikxdk

where

a(k) = 1√
2π

∫ ∞

−∞
φ(x,0)e−ikxdx.
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Fig. 7.1 Wave train defined
by the superposition of two
harmonic waves

For a linear system, ω = ω(k), so a solution for all t ≥ 0 is

φ(x, t) = 1√
2π

∫ ∞

−∞
a(k)ei[kx−ω(k)t]dk.

However, in practice neither of these integrals can be evaluated in terms of elemen-
tary functions.

Dispersion

The general form of a harmonic wave is conveniently defined as

ϕ = ae2πi(kx−νt)

in terms of an amplitude a, wave number k = 1/λ and frequency ν. The real part of
a complex wave is represented by

ϕ = a cos 2π(kx − νt)

and for simplicity we consider the combination of two such waves with equal am-
plitudes and nearly equal frequencies [5]. The total disturbance is given by

Φ = a cos 2π(k1x − ν1t) + a cos 2π(k2x − ν2t)

= 2a cos 2π
[
(k1 + k2)x/2 − (ν1 + ν2)t/2

]

× cos 2π
[
(k1 − k2)x/2 − (ν1 − ν2)t/2

]
. (7.2)

The first cosine factor represents a wave, very similar to the original waves with
frequency and wavelength at the average of those of the original waves and it moves
with a velocity of (ν1 + ν2)/(k1 + k2). For electromagnetic waves this is the same
as the velocity of the initial waves, c = ν1/k1 = ν2/k2. The second cosine factor
changes more slowly with respect to x and t and may be regarded as a varying
amplitude. The resultant is a wave of approximately the same wavelength and fre-
quency, but with an amplitude that changes with both time and distance. In Fig. 7.1
the outer profile represents the second cosine term in (7.2).

The dotted profile is the reflection of this curve in the x-axis. The actual distur-
bance Φ lies somewhere between these two boundaries, cutting the x-axis at regular
intervals, and touching alternately the upper and lower profiles. Since the velocity
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of the two component waves are the same, the wave train moves steadily forward
without change in shape.

If the velocities of the component waves are not the same, ν1/k1 �= ν2/k2, the
profiles move with a speed (ν1 − ν2)/(k1 − k2), which is different from that of the
more rapidly moving oscillating part, whose speed is (ν1 + ν2)/(k1 + k2). In other
words the individual waves advance through the profile, gradually increasing and
then decreasing their amplitude, as they give place to other succeeding waves. This
phenomenon is strikingly illustrated by a wave on the seashore which may look
large when it is some distance away from the shore, but gradually reduces in height
as it moves in, and may even disappear before it is sufficiently close to break.

This situation arises whenever the velocity of the waves, i.e. their wave veloc-
ity vϕ , is not constant, but depends on the frequency. This phenomenon is known
as dispersion. The actual velocity of the profiles is known as the group veloc-
ity, vg . It follows that if the two components are not too different, vϕ = ν/k, and
vg = (ν1 − ν2)/(k1 − k2) = dν

dk
. In terms of the wavelength

vg = dν

d(1/λ)
= −λ2 dν

dλ
or

vg = dν

dk
= d(kvϕ)

dk
= vϕ + k

dvϕ

dk
= vϕ − λ

dvϕ

dλ
.

Wave Packets

The wave train of Fig. 7.1, even apart from the problem of dispersion, is not suitable
as an electron model. It may be improved by the superposition of more waves, se-
lected so as to produce a large amplitude over a small region of space and nowhere
else. Such an accumulation of waves is known as a wave packet. It may be con-
structed by forming the integral

∫ k0+�k

k0−�k

a exp
[
i(kx − ωt)

]
dk = Φ(x, t)

assuming that the wave numbers of the component waves form a continuous distri-
bution. Noting that ω and k are functionally related the integral may be evaluated
as [6]:

Φ =
∫ k0+�k

k0−�k

eik(x−x0)dk = 2 sin
�k(x − x0)

(x − x0)
eik0(x−x0). (7.3)

Plotted as a function of (x − x0) the real part looks like the curve shown in Fig. 7.2.
The amplitude of oscillation is seen to reach a maximum at x = x0, and goes to zero
where x − x0 = π/�k. After that it is a rapidly decreasing oscillatory function.

The wave packet moves with the group velocity defined as vg = dω/dk, which
may be interpreted as the velocity of an electron as defined by the matter-wave
model of de Broglie.
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Fig. 7.2 Wave packet
obtained by the superposition
of harmonic waves over a
limited wavelength range

7.2.2 Matter Waves

The demonstration that Hamilton–Jacobi theory favours a wave model for motion at
the sub-atomic level is in line with the notion that matter in all its forms is a mani-
festation of space-time curvature. According to this point of view elementary matter
does not appear as massive point particles in a void, but rather as local geometri-
cal distortions of some featureless continuous medium, traditionally known as the
aether. Such distortions are generated by the curving of 4D space-time and occur as
persistent wave-like objects, much like the eddies on a fluid in turbulent flow.

In contrast, the aether before curvature may be likened to a fluid in laminar flow.
This state is well known to represent an ideal isoteric and unstable system, which
develops turbulence on the slightest disturbance. It is noted that the two contrasting
states of flow are distinguished as linear and nonlinear systems respectively.

The most efficient way of describing material motion is in terms of differential
equations, which may also be divided into linear and nonlinear equations [7]. This
distinction depends on the order and degree of the differential equation. The order of
an equation is defined as the order of the highest-ordered derivative in the equation.
For instance

d2y

dx2
+ 2b

(
dy

dx

)3

+ y = 0 (7.4)

is a second-order equation.
The degree of an ordinary differential equation is the algebraic degree in the

highest-order derivative in the equation. The equation

(
d2y

dx2

)3

+ d2y

dx2

(
dy

dx

)4

− x4y = sinx

is of degree three, because in as far as the second derivative alone is concerned, the
equation is a cubic. Equation (7.4) is of degree one.
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An equation is said to be linear if each term of the equation is either linear in
all the dependent variables and their various derivatives or does not contain any of
them. Otherwise the equation is nonlinear. The term y

dy
dx

is of degree two in y and its
derivative together and is therefore nonlinear. Every linear equation is of degree one.

The equation

x2 d2y

dx2
+ x

dy

dx
+ (

x2 − n2)y = 4x3

is linear in y. The manner in which the independent variable enters the equation has
nothing to do with the property of nonlinearity.

Mathematically, the essential difference between linear and nonlinear equations
exists therein that any two solutions of a linear equation can be added together to
form a new solution [1]. In contrast two solutions of a nonlinear equation cannot be
added together to form another solution. Superposition fails. For this reason there is
no general analytic approach for solving typical nonlinear equations. Applied math-
ematicians therefore tend to describe physical systems as far as possible with linear
differential equations. On dealing with essential nonlinear behaviour this approach
is an oversimplification that may obscure the actual characteristics of a system.

The traditional handling of matter waves suffers from precisely this defect. The
discussion that follows initially treats the problem linearly, with the constant aware-
ness that the final analysis presents a nonlinear problem.

The more daunting prospect in all of this is to persuade the next generation of
chemists not to dismiss nonlinear effects as insignificant second-order perturbations.
A spectacularly popular recent textbook [8], aimed at senior undergraduates, intro-
duces quantum theory by way of five postulates, featured as

. . . the bedrock on which the theory is built.

The first of these postulates declares:

Any superposition of state vectors is also a state vector.

Whoever graduates under this paradigm with the added conviction that [9]:

Quantum theory is the deepest explanation known to science. . . There is
no other.

would, understandably have little patience with arguments about nonlinearity.

De Broglie Waves

The wave model of an electron originated in de Broglie’s work which associated a
frequency with an electron at rest according to the quantum relation

E = mc2 = hν

that defines the electron as a standing wave

ψ = ψ0e
−2πiνt , (x = 0).
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From a relatively moving frame of reference the energy and momentum of the elec-
tron is observed as [10]

p′ = mvβ, E′ = mc2β, β = (
1 − v2/c2)− 1

2

to define a running wave

ψ ′ = ψ0e
2πiνt ′ = ψ0 exp

[
2πiν

(
vx/c2 − t

)
β
]
,

which is of the form

ψ = ψ0e
2πi(x/λ−νt).

It follows that

ν′ = νβ = mc2β/h = E′/h,

λ′ = c2/βvν = h/βmv = h/p′,

the famous de Broglie definition of matter waves. The phase velocity of the de
Broglie wave

vϕ = v′/β ′ = E′/p′ = c2/v > c.

The group velocity

vg = dν

d(1/λ)
= dE

dp
,

i.e. vg = d

dp

(
p2c2 + m2c4) 1

2 ,

= 1
2E

(
2pc2) = pc2/E,

= mvc2/mc2 = v,

the velocity of the electron. The de Broglie wavelength corresponds to the oscilla-
tory function of Fig. 7.2.

The only remaining inconsistency of the de Broglie wave model of an elec-
tron is that linear wave packets change their shape and flow apart in time. That
is, with the exception of the harmonic-oscillator wave packet, originally proposed
by Schrödinger [11] as a wave-mechanical model of an electron.

In order to avoid the problem of dispersion Louis de Broglie [12] proposed a
double-solution formulation of wave mechanics by associating a particle with the
singular points of a differential wave equation. As a linear equation cannot have
singular solutions [7] the particle was postulated as described, more specifically, by
a nonlinear solution. This singular solution, characteristic of the nonlinear region
that represents the particle, is not a special case of the general wave equation, but
tangent to that in the boundary surface. Despite some sporadic efforts, this proposal
has not led to the formulation of a convincing nonlinear wave equation.
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Schrödinger Waves

Wave mechanics, by definition, originated in Schrödinger’s famous equations, com-
monly formulated in time-dependent and time-independent forms as:

∂Ψ

∂t
= i�

2m

(∇2 + V
)
Ψ, (7.5)

∇2ψ + 2m

�2
(E − V )ψ = 0 (7.6)

with potential energy, V , independent of time. As explained in the previous chapter
these equations do not account for spin, which is only defined in four-dimensional
space-time. It was however, shown by Dirac [13] how to linearize the time-
dependent Hamiltonian of (7.5) by the introduction of Pauli matrices as coefficients
and in this way to add the spin as an additional variable.

An incisive quantum-mechanical analysis of electron structure, based on Dirac’s
equation, was published in a series of papers by Schrödinger [14–16] in 1930–31.

Each coordinate of an electron, which refers to the centre of mass of a charge
cloud, was shown to be specified by the sum of two terms. The first of these terms
changes continuously with time and describes the linear motion at the group velocity
of a wave packet, which in size corresponds to the de Broglie wavelength (λdB =
h/px) of the electron. The second term specifies a smaller high-frequency periodic
component that represents a small amplitude trembling motion1 superimposed on
the linear motion of the charge cloud. The average periodic displacement in a given
direction amounts to λC/4π , where λC = h/mc is the Compton wavelength of the
electron. In this interpretation λC clearly specifies the wavelength of a spherical
standing wave within the de Broglie profile. Trembling motion at the speed of light
about a mean position represents a contribution of �/(2mc) ·mc = �/2 to the angular
momentum, naturally interpreted as electron spin.

In the case of the hydrogen atom trembling motion is shown not to distort the
spectroscopic fine structure appreciably. The maximum perturbation without a seri-
ous effect, estimated as the ratio between 2λC/4π and the Bohr radius a0, amounts
to

f = h

2πmc
· 4π2me2

h2
= e2

�c
= α,

the fine-structure constant. We note that the ratio of λC to λdB = 2πa0 also yields

λC

λdB

= h

mc
· 2πme2

h2
= α.

This conclusion seems to indicate a natural equilibrium condition characteristic of
non-dispersive wave packets; a proposition to be discussed later on.

1Zitterbewegung.



126 7 Nonlinear Chemistry

At an early stage Schrödinger identified [16] an essential difference between
quantum and relativity theories in that the time variable in the former is not treated
on the same footing with the space coordinates, as required by the Lorentz transfor-
mation

(
x′, y′, z′, t ′

) = F(x, y, z, t)

of special relativity. In our view this problem arises from the formulation of a wave
equation in three dimensions by the separation of space and time coordinates. The
only obvious remedy lies in the 4D quaternion solution of d’Alembert’s equation
for matter waves.

On subsequent reconsideration Schrödinger [17] concluded that the concept of
position had to be given up in microphysics because there was nothing in reality
that corresponded to it. However, as a possible alternative the position of an electron
could arguably be considered as specified by the centre-of-mass coordinate of a
soliton.

Zitterbewegung Several authors [18–21] have commented on the meaning and
interpretation of Zitterbewegung (zbw) with respect to the internal structure of an
electron, in all cases treating the electron as a point particle.

Hestenes [21] examined the derivation of the zbw by reformulation of Dirac’s
equation in terms of a Clifford algebra, closely related to standard hypercomplex
quaternion formalism. It is shown in particular that

. . . the complex phase factor in the electron wave function can be associ-
ated directly with zbw. . . ,

that

. . . the spin was “smuggled” into the Dirac theory. . . ,

that the quaternion tensor J

. . . expresses the total angular momentum of the electron as the sum of an
orbital angular momentum p × x and a spin angular momentum S. . . ,

that

. . . the electron moves with the speed of light, as in Schroedinger’s original
zbw model. . . ,

and finally, that

. . . the spin angular momentum can be regarded as the angular momentum
of zbw fluctuations.

Sporadic interest in Zitterbewegung has not managed to provide a simple physi-
cal explanation of the phenomenon. Most commentators (e.g. [19, 22]) return to the
original characterization as arising from the mixing of positive and negative energy
states in Dirac theory. Alternatively [20] it is considered “. . . an unobservable math-
ematical curiosity. . . ” or [21] “. . . a physical interpretation for the complex phase
factor. . . ”.



7.2 Wave Model of the Electron 127

It is less common for authors to interpret the appearance of Compton and de
Broglie wavelengths in a single construct as the attribute of a real matter wave.
From a purely mathematical point of view such a wave is readily formulated as the
superposition of two complementary waves. The associated physical model is more
difficult to describe.

7.2.3 Two-Wave Models

A notable effort to address the problem in terms of de Broglie’s double-solution
model for elementary matter is due to Elbaz [23]. Using both alternative expressions
for the rest energy of a matter wave, E0 = hν0 = m0c

2, it was demonstrated to
be associated with an amplitude function of Compton wavelength (λC = h/mc)

and a wave function with de Broglie wavelength (λdB = h/mv). The combination
u(x, t) · ψ(x, t), where

u(x, t) = exp
[
2πi(x/λC − νCt)

]
,

ψ(x, t) = exp
[
2πi(νt − x/λdB)

]

describes a standing wave packet, characterized by a pair of waves that move in
opposite directions [24].

The amplitudes u and ψ are related by the equations

1

c2

∂2u

∂t2
− ∇2u −

(
m0c

�

)
u = 0, (7.7)

1

c2

∂2ψ

∂t2
− ∇2ψ +

(
m0c

�

)
ψ = 0, (7.8)

1

c2

∂u

∂t
· ∂ψ

∂t
− ∇u · ∇ψ = 0. (7.9)

Equations (7.7) and (7.8) can be formally regarded as the equations for brady-
onic and tachyonic components respectively with the invariant interaction condi-
tion (7.9). As stated [25]:

The u-function planewave solutions have a wavelength equal to the Comp-
ton wavelength λ = h/mc, a phase velocity equal to the particle velocity
v, and a group velocity c2/v, while the quantum mechanical ψ -function
planewave solutions have a wavelength equal to the de Broglie wavelength
λB = h/mv, a phase velocity c2/v and a group velocity v.

From another perspective the situation is described [26] as the trapping of a time-
like bradyon (v < c) and a space-like tachyon (v > c) in a relativistic invariant way.
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An equivalent standing wave, generated by the superposition of a pair of con-
verging and diverging spherical waves,

Φ = A

r
eiωt

{
eikr − e−ikr

}

= Φ0e
iωt sin(kr)/r

was proposed by Wolff [27] as an electron model in which the wavelength of the sine
function h/γmc = λC and of the exponential oscillator h/γmv = λdB , as perceived
from a relatively moving frame of reference, as before. This model is mathemati-
cally closely related to the wave packet (7.2) obtained by the integration of linearly
superimposed harmonic waves as shown in Fig. 7.2.

The common factor in this variety of presentations is the attempted modifica-
tion of a Schrödinger wave packet to produce the equivalent of a nonlinear wave
packet [28] that involves an internal spectrum of matter waves with the appearance
of a stable extended massive particle in motion.

All of these models are mathematically feasible, but none of them describes the
origin of the component waves in physically meaningful form.

7.2.4 Fine-Structure Parameter

The appearance of the fine-structure constant as the ratio of Compton and de Broglie
wavelengths should be examined more closely in the search for a convincing wave
description of an electron. In the context of the Bohr model the relativistic mass
of an orbiting electron, seen from the nucleus, with respect to the rest mass, m0, is
given by

m = m0√
1 − v2/c2

= m0√
1 − α2

.

Noting that

α2 =
(

e2

�c

)2

, E1 = −me4

2�2
,

α2 = −2E1/
(
mc2).

Hence

2E1/
(
mc2) = (m0/m)2 − 1,

2E1 = c2(m2
0/m − m

)
,

E1 � −1

2
(�m)c2.
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The increase in relativistic mass represents a proportional decrease in the potential
energy that stabilizes the system at − 1

2e2/r , in esu. This is the same argument that
explains nuclear binding energy as a mass defect. The same explanation holds in
the Bohmian interpretation [29, 30] of quantum theory, which argues that an atomic
stationary state occurs when the potential energy of an electron at rest, is balanced
by the quantum potential [31]:

Vq = −�
2∇2R

2mR
.

For the hydrogen atom in the ground state, R(r) = Ne−r/a0 and hence,

d2R

dr2
= N

a2
0

e−r/a0,

such that Vq = �
2/2ma2

0 . In general

Vq = �
2

2mr2
,

and the quantum force on the electron:

Fq = ∂Vq

∂r
= − �

2

mr3
,

whereas the electrostatic force, in electrostatic units (4πε0 = 1), F = e2/r2. These
forces are in balance when

�
2

mr3
= e2

r
; r = �

2

me2
= a0,

the Bohr radius. This means that V = Vq at r = a0/2, halfway between proton and
electron.

Transition of an electron with n > 1 to a lower unoccupied energy level by emis-
sion of a photon with energy hν and spin �, is anticipated. However, in the 1s state
of minimum action, with quantum number l = 0, there is no orbital angular mo-
mentum to transfer in stimulating photon emission and the ground state remains
stable. The calculation does not imply different velocities for the electron at dif-
ferent energy levels—only a quantized change in de Broglie wavelength. The mass-
energy difference amounts to exchange of a (virtual) photon in the form of a standing
wave between the charge centres. With the classical radius of the electron defined
as r0 = e2/mc2 it is noted that

r0

a0
= me4

m�2c2
=

(
e2

�c

)2

= α2

where a0 is the Bohr radius.
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In terms of the Compton wavelength λC = h/mc it follows that:

αλC = 2πe2

mc2
= 2πr0,

λC

α
= 2π�2

me2
= 2πa0 = λdB.

From this result the parameter α′ = v/c for the freely moving electron with λdB =
h/mv is defined, more appropriately as α′ = λC/λdB .

Now define λZ = 2πr0. Whereas the wavelength λdB = λC/α represents a
wavepacket with group velocity vg < c, the phase velocity vφ > c is associated
with the Zitterbewegung of wavelength λZ = α · λC ; vgvφ = c2 [32].

The Wave Model Common sense dictates that an electron must have extension
and so eliminates the particle model and supports Schrödinger’s interpretation [11]
of an electron as a wave structure, further developed by Madelung [33] and Tak-
abayasi [34], in hydrodynamic analogy, as an indivisible flexible charge. The inter-
nal wave structure of the electron is observed as high-frequency Zitterbewegung, at
Compton wavelength, while the macroscopic effects in an electromagnetic field are
fixed by the spread of a wave packet, conveniently defined as a de Broglie wave-
length. A wave packet is formally described by the superposition of converging and
diverging spherical waves. The generation of such waves will have to be examined
in more detail. The fine-structure parameter is associated with this wave nature of
an electron.

Trapped in the field of a proton the de Broglie wavelength is quantized to avoid
self-destruction, such that

λC

λdB

= αn = e2

n�c
.

For an effective charge separation of rn, the ratio αn may be considered the ratio
of two energies:

e2

n�c
=

[
e2

rn
· 1

hν

]

an electrostatic and a quantum-mechanical factor. The constant c = λ/τ describes
the virtual photon that occurs as a standing wave (nλ = 2πrn) between the charge
centres. The balance between the classical coulombic attraction and the quantum-
mechanical repulsion (the quantum potential) now defines the fine-structure con-
stant with a value, fixed by the de Broglie wavelength of the virtual photon.

In a strong field the size of an electronic wavepacket may be compressed below
the Compton radius to an absolute minimum of λZ , which describes the minimum
size to which an electron may be compressed, measuring r0 = λZ/2π , for an elec-
tron defined as an electric charge −e distributed over a sphere of radius r0. The
classically measured value of r0 = e2/m0c

2 is retrieved from this relationship.

Discussion The fine-structure parameter is a dimensionless variable that de-
scribes the wave structure of an elementary charge in space. It has been interpreted
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as the ratio of wavelengths, charges, energies or radial distances:

α = λC/λdB = e2/�c = e2/a0hν = √
r0/a0.

The quantity qP = √
�c � √

137e is known as the Planck charge.
Without the benefit of dimensional analysis it is not obvious which of these ra-

tios is the most fundamental. However, the parameter λC/λdB which refers to any
electron and assumes special values in special quantum states, provides the simplest
definition. We note that the approximate value of 1/α � 137 is numerically purely
accidental and without physical significance. Should the value of α be dictated by a
more fundamental consideration, it can only be the general curvature of space-time.

There is nothing mysterious about α. It is the parameter that describes the shape
of an electronic wave packet of wavelength λdB , made up of elementary waves of
length λC . The dimensionless ratio varies as a function of electric field strength.
In the field of a proton, in the H atom, the “constant” value of α is fixed by the
quantized ground state.

The mystique that surrounds α derives from the fact that it is a dimensionless
number such as π or the golden ratio τ , in both cases the ratio of two lengths. Its
intrinsic relationship with the electromagnetic field is even less of a mystery as it
depends on the wave properties of the field’s source.

7.3 Nonlinear Systems

As described by Dodd et al. [4] in a wave system, driven or pumped with energy
through some mechanism, for example a rotation, a background flow or a heat gra-
dient, potential energy is made available to the waves.

. . . the system may become unstable under the influence of the background
energy flow when some parameter passes through a critical value.

In hydrodynamics turbulence is said to occur.

At the critical value the initial stationary state becomes unstable—a bifur-
cation occurs as the unstable state moves to another stable state

This statement precisely describes Schrödinger’s proposed resonance mechanism to
explain ‘quantum jumps’ [35]. The way in which nonlinear motion differs from lin-
ear wave motion is not because it is non-oscillatory wave motion, but also because
its velocity is amplitude dependent. For linear waves the speed is always indepen-
dent of amplitude.

Coherent nonlinear systems have been identified in nature on scales ranging from
108 to 10−9 m—seventeen orders of magnitude [1]. The largest example is the fa-
mous red spot on Jupiter, with a diameter equal to the distance from the earth to the
moon. The structures identified as eddies in globular clusters [36] could measure
light years across. At the other extreme are the charge-density waves in a cleaved
surface of a tantalum disulphide crystal. We now propose that the structure of an
electron with an estimated diameter of 10−15 m is of the same type, known as a
soliton.
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To substantiate this conjecture it will be necessary to demonstrate that nonlin-
ear wave equations can be found to improve on the electronic wave models of
Schrödinger and Dirac, which are based on linear equations. The demonstration that
elementary particles correspond to classical solitons [37] lends credibility to this
proposal. By way of introduction the anomalous stability of the wave-mechanical
oscillator, described by Bohm [6, p. 307], is examined in more detail in comparison
with shallow-water waves.

7.3.1 Hydrodynamic Analogy

Some insight is gained into the behaviour of harmonic-oscillator wave packets by
comparison with the properties of waves on water [38]. By the principle of super-
position a general wave on deep water in a narrow channel is formed by adding
together many plane-wave solutions. As the elementary components with different
wave numbers will propagate at different group velocities the general solution will
change its form, or disperse as it moves. In shallow water the long wave components,
which travel faster than the short wave components, cannot develop and dispersion
effects become negligible. The resulting non-dispersive wave packet is known as a
solitary wave.

The shallow water wave is no longer described by a linear differential equation
and the superposition principle no longer applies. The restricted depth of the channel
is seen to introduce a boundary condition that leads to the formation of nonlinear
non-dispersive wave packets.

7.3.2 Schrödinger Oscillator

Schrödinger harmonic-oscillator waves differ from the more general solutions for all
other systems in a similar way because of the more restrictive boundary condition.

The motion of a simple plane pendulum is described by a nonlinear differential
equation [1]:

d2θ(t)

dt2
+ g

l
sin θ(t) = 0

where θ is the angular displacement of the pendulum from the vertical,
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l is the length of the arm and g is the acceleration due to gravity. For small displace-
ment sin θ ∼ θ and the resulting linear equation has the familiar solution

θ(t) = 1

ω

(
dθ

dt

)

0
sinωt + θ0 cosωt

where ω = √
g/l. Wave-mechanical analysis of the harmonic oscillator, considered

within this approximation, also exhibits approximate linear behaviour, but enters the
nonlinear regime for large displacement.

Noting that the natural dispersion of all other matter-wave packets arises from
the invariable use of the superposition principle, excites the reasonable suspicion
that the idealized linearity of Schrödinger’s equation does not apply to real physical
systems. In fact, it is widely recognized that most systems are inherently nonlinear,
but that most nonlinear problems are essentially inaccessible to analytic methods.
Without fast computers there hence was the tendency of resorting to linear approxi-
mations wherever feasible. At the same time constant efforts were made to simulate
expected nonlinear behaviour by other means. Related to this problem it was pointed
out [39]:

. . . that physical theory is unduly dominated by the use of point-particle
abstractions, yet no physicist truly believes in the reality of a point particle.

We now look for a nonlinear model to provide a more realistic description of elec-
tron structure and behaviour at the same time.

The amazing reality is that the correct nonlinear behaviour of the oscillator was
described in detail by Schrödinger in 1926 [11], but, to his annoyance, remained
unrecognized by his contemporaries and imitators. He demonstrated that a group
of proper harmonic vibrations of high quantum number n and relatively small
quantum-number differences represents a particle-like object, oscillating with the
frequency ν0. This was achieved by singling out a relatively small group of nor-
malized proper vibrations in the neighbourhood of n = A2/2, A � 1, finally result-
ing in

ψ = exp
[ 1

4A2 − 1
2 (x−A cos 2πν0t)

2] cos
[
πν0t +(A sin 2πν0t)

(
x− 1

2A cos 2πν0t
)]
.

(7.10)
The first exponential factor represents a relatively tall and narrow hump, with the
form of a Gaussian error curve at position

x = A cos 2πν0t. (7.11)

According to (7.11) this narrow hump behaves like a particle of mass m in linear
oscillation, and with energy

2π2a2ν2
0m = 1

2A2hν

where n is the average quantum number of the select group.
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The second cosine factor in (7.10), which varies rapidly with x and t resem-
bles the central wave packet of Fig. 7.2. The number and breadth of the oscilla-
tions vary with time. The wavelets are most numerous and narrowest at the central
point x = ±A, where this second factor is independent of x: cos, sin 2πν0t = ±1,0.
However, the entire extension of the wave group remains constant. The variability
of the “corrugation” depends on the velocity. The wave group remains compact
and does not spread out. This behaviour is ascribed to the use of discrete harmonic
components rather than a continuum of such. It will become apparent later on that
Schrödinger had discovered the nonlinear soliton structure for an electron in 1926.2

In three dimensions the spatial wave group moves round harmonic ellipses, as
represented by the wave mechanics of the hydrogen atom, on half-integral quantum
levels—the first demonstration of quantum spin.

7.3.3 Korteweg–de Vries Equation

Solitary waves were first observed in a shallow narrow canal by the Scottish engi-
neer John Scott Russell in 1834. He noticed how the wave that was generated by the
motion of a horse-drawn barge kept on moving as the boat came to a sudden stop. He
followed this unusual wave on horseback for a long distance and subsequently man-
aged to generate and study similar waves on other canals and experimental tanks.
One point of interest was the nondispersive nature of the solitary wave as it moved
over the surface of the water without disturbance.

A mathematical model to account for Scott Russell’s observation was published
years later by Korteweg and de Vries, two Dutch scientists [41] who derived a differ-
ential equation that governs the propagation of waves along the surface of a narrow
canal, generally known as the KdV equation,

∂u

∂t
− 6u

∂u

∂x
+ ∂3u

∂x3
= 0.

The nonlinear second term and the third dispersion term describe opposing effects.
When these terms are in balance the equation describes a solitary wave that moves
without change in shape. The effect is illustrated graphically in Fig. 7.3(a). The non-
linear wave, about to break, combines with the dispersive wave, about to dissipate,
to generate a persistent solitary wave.

It was shown that the equation has a solution of the form

u(x, t) = 2κ2 sech2 κ(x − ct + δ)

2At an even earlier date Schrödinger was the first to recognize the phase invariance of electronic
motion [40] that subsequently developed into modern gauge theory, the basis of elementary-particle
physics, but rarely attributed to the seminal source.
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Fig. 7.3 (a) Formation of a
solitary wave as the balance
of nonlinear and dispersive
components. (b) Generation
of solitons by numerical
solution of KdV equation.
(c) Collision of two unequal
solitons

with arbitrary δ and c = 4κ2, describing a hump-like shape as described by Scott
Russell and moving at constant velocity without change in shape. As the velocity is
amplitude dependent it follows that a taller wave moves faster than a small one.

7.3.4 Solitons

Numerical solutions of the KdV equation were studied by Zabusky and Kruskal [42].
Starting from a normalized (u = 1) periodic initial condition, u(x,0) = cosπx, de-
veloping as cosπ(x − ut), the first two terms of KdV dominate and u steepens with
time, as in Fig. 7.3(a), in regions where it has negative slope. As the third term
gains importance and balances the nonlinearity it prevents the formation of a dis-
continuity. Instead, small wavelength oscillations develop and grow in amplitude,
assuming a shape like that of an individual solitary-wave solution. Eventually these
solitons move apart (Fig. 7.3(b)) and may interact with one another as they follow
the cycles forced by the periodic boundary condition. They reappear virtually unaf-
fected in size or shape—they pass through one another without losing their identity
(Fig. 7.3(c)). This soliton behaviour does not depend on the boundary condition.
Simulations in which u → 0 as x → ∞ show that as a faster taller wave overtakes a
smaller one they pass through one another as before.

The linearized version of KdV3

ut + ux + uxxx = 0

3It is customary to use the notation ut ≡ ∂u/∂t , uxx ≡ ∂2u/∂x2, etc. in writing nonlinear wave
equations.
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Fig. 7.4 Diagrams to
illustrate the nonlinear
deformation of a wave form

is dispersive, with ω = k − k3. It is the uxxx term that introduces dispersive effects
into the dispersionless equation: ut + ux = 0. To model the effect of a nonlinear
term we next consider the equation

ut + (u + 1)ux = 0.

It can be solved [4] with the initial condition

u(x,0) = f (x) =
⎧
⎨

⎩

u0x 0 < 1,

u0(2 − x) 1 < x < 2,

0 x < 0;x > 2.

The gradient on the left slowly decreases with time while the gradient on the right
changes from negative to positive as shown in the series of diagrams in Fig. 7.4. This
behaviour is understood intuitively by noting that, since larger values of u travel
faster than smaller values, the apex of the triangle overtakes all the lower points.
The wave breaks.

Many nonlinear equations have localized solitary wave solutions, but not all of
these are solitons, which have the special property of maintaining their identity
through numerous interactions. A much smaller number of equations, among them
the nonlinear Schrödinger equation (NLS) and the sine-Gordon equation (sG), have
soliton solutions of the KdV type and are of special importance in the present con-
text.

7.3.5 Soliton Eigenvalues

It is of special importance for understanding the soliton structure of electrons to note
that the KdV equation, usually abbreviated in the form

ut − 6uux + uxxx = 0, (7.12)

is associated with the eigenvalue Schrödinger equation

ψxx + (λ − u)ψ = 0

where λ is independent of time and where u changes with time according to the
KdV equation. This conclusion was reached by inverse transformation solution4 of

4This procedure is analyzed in detail by Toda [43].
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the KdV equation [44]. The eigenvalue equation

−ψxx + uψ = λψ

is rewritten in the form u = λ+ (ψxx/ψ), which is used to calculate ut , ux and uxxx

and substituted into (7.12). After rearrangement one has

λtψ
2 + [ψQx − ψxQ] = 0

where λt = dλ/dt and Q = ψt + ψxxx − 3(u + λ)ψx .
The term in square brackets is a perfect differential with respect to x and in the

limit

lim
x→∞u = 0, the integral λt

∫
ψ2dx = 0,

which implies λt = 0, i.e. λ = constant. From this result it can be shown that a soli-
ton has a time-independent eigenvalue that satisfies Schrödinger’s equation. Stated
differently, if the potential in Schrödinger’s equation evolves according to the KdV
equation, the eigenvalue parameter λ remains constant. Two solitons have two eigen-
values which remain constant as they approach, collide and separate again.

A more detailed analysis [45], using numerical methods and a large-amplitude
initial condition,

u(x,0) = −p(p + 1) sech2 x, p > 0,

was shown to yield one-dimensional soliton solutions that match the known central-
field radial wave-mechanical results. Bound states emerged with eigenvalues, given
in ascending order by λn = −(p−n)2, such that |λn| is directly proportional to n, as
in Fig. 7.3(b) above. Like the wave-mechanical result, the KdV simulation conserves
total bound-state momentum and energy and generates an oscillating “tail” related
to the continuous Schrödinger spectrum.

We interpret these results as conclusive proof that the wave-mechanical elec-
tron is described more appropriately as a soliton, which means that the linear
Schrödinger equation gives a good, but incomplete, description of the atomic hy-
drogen electronic spectrum. Apart from being at variance with 4D space-time ge-
ometry it also fails to recognize small, but important, nonlinear effects, related to
space-time curvature.

7.3.6 Soliton Models

The KdV is not the only integrable nonlinear equation with soliton solutions.
Closely related to it is the modified KdV, (MKdV):

ut ± 6u2ux + uxxx = 0
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Fig. 7.5 Breather solution of
KdV [47]

with the single-soliton solution

u(x, t) = ±2k sech
(
2kx − 8k3t

)
.

The pulse profile is in the form of an oscillatory solution that is modulated by a sech-
shaped envelope. The oscillations and the envelope move at different velocities. As a
result of the undulations in the profile that take place as the pulse propagates (shown
in Fig. 7.5), it is referred to as a breather solution [47]. It is a localized entity with the
essential features of a soliton and interacts with other solitons in an elastic fashion.

As a small-amplitude, slowly varying phase term F , for a MKdV soliton, is sub-
stituted into the KdV equation the result is readily simplified [47] to read:

iFt + Fxx + 2|F |2F = 0.

This equation is of the same form as Schrödinger’s equation

i�ψt + (
�

2/2m
)
ψxx − V ψ = 0

and is known as either the cubic or nonlinear Schrödinger equation, which arises
for a potential V ∼ |ψ |2. This condition is immediately recognized as characteristic
of the hydrogen electron or a single valence electron that surrounds a monopositive
atomic core [48].

In view of this result it is not surprising to learn that by the modification of a
linear differential equation such as the non-relativistic Schrödinger equation or the
relativistic Klein–Gordon equation, on the addition of a term that generates a non-
linear frequency condition, ω(k), it is possible to obtain soliton solutions without
seriously affecting the original meaning.

The NLS equation [46]

i�
∂Ψ

∂t
= −

(
�

2

2m

)
∇2Ψ − ε2(Ψ ∗Ψ

)
Ψ, (7.13)
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commonly abbreviated in one dimension to read:

i
∂φ

∂t
+ ∂2φ

∂x2
+ β|φ|2φ = 0

has the same form as the quantum Schrödinger equation with β|φ|2 as potential.
φ is a complex function that implies a travelling wave solution with an oscillatory
modulation. Subject to the condition

lim|x|→∞φ = 0 it has the travelling wave solution

φ = a
√

2/β exp
{[ 1

2bx − ( 1
4b2 − a2)]} sech

[
a(x − bt)

]

with a and b arbitrary constants. The sech wave acts as an envelope to the oscillary
part, producing a structure that resembles the wave packet of Fig. 7.2.

One form of the NLS equation can be written in terms of the electric field ampli-
tude E(x, t) as [1]:

i
∂E

∂t
+ ∂2E

∂x2
+ |E|2E = 0

to describe a soliton that moves through an optical fibre. It should describe a con-
duction electron equally well.

The linear Klein–Gordon equation

∂2u

∂t2
− c2 ∂2u

∂x2
+ m2u = 0, m = m0c

2/�

when turned into the non-linear form

∂2θ

∂t2
− c2 ∂2θ

∂x2
+ m2 sin θ = 0 (7.14)

is known as the “sine-Gordon” equation.
In the limit of small θ this equation reduces to

∂2θ

∂t2
− c2 ∂2θ

∂x2
+ m2θ − 1

6
θ3 + · · · = 0

which approximates the linear equation.
The sine-Gordon equation has a single solitary-wave solution

θk(x, t) = 4 tan−1 eγ (ζ−vτ)

with γ = 1/
√

1 − v2, ζ = mx/c, τ = mt , known as a kink.
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Fig. 7.6 Bloch wall

7.3.7 Electronic Solitons

Details of the soliton behaviour of an electron depends on the environment. We con-
tend that an electron in empty Euclidean space behaves as a dispersive linear wave
and hence dissipates indefinitely. On propagation through the intrinsic nonlinear
curved space of general relativity [49] it encounters modulation on which the final
wave form depends.5 A single non-linear equation that describes the modulation
in different situations is not known, but a number of special equations, such as the
KdV, MKdV, NLS and sG equations, together give an adequate description of the
electron in most chemically important nonlinear environments.

Free Electron

An interesting nonlinear model for an electron, based on the minimization of en-
ergy density in space, was proposed by Enz [50], using a variational procedure that
considers the electron as the entity of lowest energy with respect to any variation of
the parameters which describe its interaction with the space-time vacuum. A Bloch
wall [51], which balances magnetic energy against the anisotropy between mag-
netic domains in a crystal was used as minimization model. The gradual change in
magnetization within a Bloch wall is shown schematically in Fig. 7.6.

The magnetic domains are considered in analogy to simulate the spin function
that distinguishes between electron and positron in four-dimensional space-time on
rotation of the variable θ between ±π . Exchange energy is defined as

FA = A

4∑

μ=1

(
∂θ

∂xμ

)2

,

with x4 = −ict and the constant A, an energy per unit length. The anisotropy energy
density is given by

FK = K sin2 θ, where K measures energy per unit volume.

5As pointed out by Goldstein [3, p. 283], the most general transformation in Minkowski space that
preserves the velocity of light has the form x′ = Lx + a, where a is an arbitrary translation vector
of the origin and L is the orthogonal matrix of the homogeneous Lorentz transformation x′ =
Lx (4.4). The modified inhomogeneous (Poincaré) transformation has ten independent elements
compared to the six of (4.4). This condition generates the intrinsic nonlinearity of curved space-
time.
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In two dimensions the solutions of the energy-minimized nonlinear equation

∂2θ

∂x2
− 1

c2

∂2θ

∂t2
= K

2A
sin 2θ

i.e. θ = nπ (n = 0,1,2 . . . ),

and sin θ = ±[cosh
√

K/A · x]−1

define a non-zero extent x0, to which the non-vanishing energy density, Es =
2
√

AK , and the associated mass, Es/c
2, are confined.

Minimization of this Bloch-wall equivalent was finally stated to generate either a
stable electron or a positron. This interpretation of the energy density as an extended
elementary particle is not convincing. More realistically it represents a situation
of stable equilibrium between an electron and a positron in space-time, related by
an element of CPT symmetry, equivalent to the Bloch wall. The involution shown
in Fig. 7.6 was interpreted as ±π rotation of the spin function, in either clock—
or anti-clockwise sense and the asymmetry as referring to differences in electric
charge and the chiral forms of matter. In the magnetic case rotation of the spin
vectors through the Bloch wall interconverts magnetic domain fields. We therefore
propose as the correct analogy that electron-positron interconversion should be de-
scribed here by involution across an interface, such as the achiral vacuum interface,
proposed before [36, 52], to separate the chiral antipodes in the double cover of
projective space-time. This interpretation would account for the fact [50] that three-
dimensional spherically symmetrical solutions do not exist.

An equivalent result was obtained by Einstein and Rosen [53] on solving the
equations for a directed gravitational field near a singularity at the origin, as the
model of a massive particle. In this case the four-dimensional space splits into two
congruent parts, or “sheets”, on opposite sides of a hypersurface, interpreted as rep-
resenting

. . . a gravitational field which ends in a plane covered with mass and form-
ing a boundary of the space.

We consider it more logical to interpret the singular hypersurface as an interface be-
tween chiral regions of space-time, populated by matter and antimatter respectively,
rather than a “mass bridge”. Mutual annihilation is prevented by inverted time flow
if the two-sheet structure is assumed to result from involution in elliptically curved
space-time.

In another attempt to extend the Enz model into three-dimensional space [54]
θ was assumed to be a function of r only—i.e. time-independent. The negative
result, so obtained is not entirely surprising in view of the fact that the spin function
required for the simulation only exists in four-dimensional space-time [55].

Wave Structure As an electron wave propagates through the vacuum nonlinear
modulation causes periodic variation in the amplitude of the individual wavelets to
generate a wave train as shown in Fig. 7.1. However, this periodic variation is not
due to the superposition of different waves as used in the construction of Fig. 7.1.
As indicated before, it occurs as the resultant of two opposing forces—natural dis-
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Fig. 7.7 KdV elastic modulation of a sinusoidal wave

persion of the wave and nonlinear cresting and breaking of wave profiles. A hy-
drodynamic analogy based on restricted flow of an incompressible fluid, correctly
described by KdV, is outlined by Lamb [47] as represented graphically in Fig. 7.7.

The effect is velocity dependent and for a given mass, m a wave profile of de
Broglie wavelength, which depends on momentum, appears at λdB = h/p = h/mv.
The wavelength shrinks with increasing velocity and reaches a minimum, called
the Compton wavelength, λC = h/mc, at the speed of light. All intermediate forms
of the electron is characterized by the fine-structure parameter, α′ = λC/λdB . The
common factor is Planck’s constant h, which evidently is another manifestation of
general space-time curvature.

By considering the meaning of continuous matter density in space-time, Edding-
ton [56, p. 147], arrived at a similar conclusion:

Density multiplied by volume in space gives us mass or, what appears to
be the same thing, energy. But from our space-time point of view, a far more
important thing is density multiplied by a four-dimensional volume of space
and time; this is action. The multiplication by three dimensions gives mass or
energy; and the fourth multiplication gives mass or energy multiplied by time.
Action is thus mass multiplied by time, or energy multiplied by time, and is
more fundamental than either.

Action is the curvature of the world.

The earlier conclusion that the distortion of Euclidean space-time generates elemen-
tary units of matter may now be modified to state that elementary units of action
occur in curved space-time. This means that general relativity implies, not only the
appearance of a gravitational field, but also of the quantum-potential field, charac-
terized by �.

Electron Diffraction

Diffraction effects are directly explained by the electronic wave structure outlined
in the previous paragraph. This includes the notorious two-slit experiment quoted in
many textbooks to ponder the mysterious nature of the electron. The crucial factor
to appreciate is that the diffraction effects associated with a wave train as in Fig. 7.1,
depend on the wavelength of the modulated profile, rather than the Zitterbewegung.

Nonlinear Perturbation

Electrons were first directly observed in radioactive decay as β-rays, behaving in
all respects like particle beams, for instance as judged by the tracks left behind in a
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cloud chamber. In this case the de Broglie wave train of the free electron is perturbed
in the more nonlinear medium and converted into single solitons that travel like
particles. Increased nonlinearity due to continued interaction with the medium is
described by the damped NLS equation

iut + uxx + 2|u|2u = −iγ u

that leads to the eventual spreading and decay of the soliton [47, p. 276].
It may be inferred from Fig. 7.4 that in collision with a solid object as in a scin-

tillation screen, the breaking waves disappear with transfer of kinetic energy.

Photoelectric and Compton Effects

Electromagnetic radiation obeys the general wave equation (7.1) in three dimen-
sions. In photoelectric interaction it transfers energy in discrete units to electrons in
the surface of an active metal. So strong is the conviction that an electron is a point
particle that, for more than a century, the only generally accepted explanation of the
effect has been based on the assumption of a complementary photon structure for
radiation. The situation can hardly be that simple. Equation (7.1) describes a linear
monochromatic wave. The creation of discrete photons must clearly require some
pronounced nonlinear modification thereof. Examination [54] of the nonlinear form

∇2φ − (
1/c2)(∂φ2)(∂t2) = (1/2) sin 2φ

provided no evidence of time-independent localized solutions. The possibility of
time-dependent and four-dimensional solutions could admittedly not be excluded,
but the observed constant speed of light militates against the formation of photonic
solitons in the vacuum. At this stage it appears very likely that this conclusion would
be generally valid for the dispersive system of massless photons [57], with infinite
Compton wavelength in the vacuum. However, photons may well occur in media
that induce increased nonlinearity.

For the sake of argument we may conjecture that encounter with the metal sur-
face provides sufficient nonlinearity to transform the light wave into solitons. To
rationalize the photoelectric interaction it would then be necessary for the electron
to occur as a single soliton in the surface. That by itself cannot account for the pho-
toelectric effect as solitons are known to pass through one another without changing
their shape. Maybe not if one of these carries an electric charge that interacts with
the fluctuating electric vector of the other. This scenario explains the effect and
avoids the dilemma of assigning a frequency to a point particle.

During the interaction of radiation with an atom, mutual polarization of the
atomic charge cloud as well as the electromagnetic field of the light wave, generates
a nonlinear response, reflected in the modified wave equation [47, p. 206]:

∇2E − 1

c2

∂2E

∂t2
= 4π

c2

∂2P

∂t2
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where P is known as the polarization of the medium. An induced atomic dipole
essentially interacts nonlinearly with the coherent light wave, giving rise to soliton
phenomena. In this sense photons are not present in propagating light waves, but are
created during nonlinear transfer of energy to an electron.

An encounter, inverse to the interaction envisaged here, was analyzed by
Schrödinger [58] in his reconstruction of the Compton effect as Bragg diffraction
(reflection) of a light wave on a de Broglie wavetrain—not appreciating the impor-
tance of solitary waves at the time.

Atomic Structure

It is in the interpretation of the extranuclear electron distribution on atoms that the
Copenhagen probabilistic model is at its most confusing. Solutions of the linear
wave equation give an excellent account of the energy spectrum of the hydrogen
electron, but not perfect in detail. Some obvious defects of the model relate to the
separation of variables, the intrinsic nonlinearity of space-time and neglect of envi-
ronmental perturbation. Treated as a radial distribution in one dimension a properly
adapted NLS equation could provide an immediate improvement, numerically an-
alyzed. Multi-soliton solutions of the KdV equation could conceivably serve as a
model, even for non-hydrogen atoms, inaccessible at present, except by way of un-
warranted linear superpositions.

Scattering and Absorption

To envision the scattering of light on an atom [47] the leading edge of a light pulse is
assumed to invert and hence attenuate the electronic arrangement, while the trailing
edge of the pulse returns the population to its initial state by means of stimulated
emission.

Absorption occurs when the frequency of the light matches a separation between
electronic energy levels (�E = hν) to create a resonance pulse that excites the
electron to the higher level. The reverse process, in which the photon is re-emitted,
completes an event, equivalent to scattering, albeit at a retarded rate.

X-ray and/or electron diffraction is initiated by scattering on atomic electrons,
without absorption. The energy of the X-ray photon or fast electron exceeds the
possible resonance conditions on the atom. Interference between the scattered waves
leads to the familiar diffraction effects.

Lattice Solitons and Diffraction

The detailed process of diffraction is poorly explained as the linear superposition of
randomly scattered photons. More precisely, a diffraction pattern is generated by the
interaction of a coherent wavefront with a regular lattice such as the rigid grating
in optical diffraction. An X-ray beam constitutes such a wavefront and the electron
clouds, concentrated on atoms in a crystallographic plane, are traditionally consid-
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ered to define an equivalent grating, as described in detail elsewhere [48]. However,
whereas an optical grating is a static construct, the crystallographic equivalent is
not. The atoms are in constant vibration, causing mutual polarization in interac-
tion with immediate neighbours. In one-dimension the interaction within a chain
of atoms resembles that in a linear lattice of particles connected by springs, which
obey Hooke’s law [43].

Denoting the mean distance between adjacent particles when the lattice has no
motion, by d , treating the position of the nth particle, x = nd , as a continuous vari-
able, the displacement y = y(x, t) = yn(t) is described for long wavelengths by the
wave equation

∂2y

∂t2
= c2

0
∂2y

∂x2

where c0 = d
√

κ/m for particles of mass m and κ is the force constant of the spring.
This dispersive equation is known experimentally not to describe the ergodic be-

haviour of lattice phonons correctly. An obvious improvement would be by addition
of a nonlinear term. The equation

∂2y

∂t2
= c2

0

(
1 − ε

∂y

∂x

)
∂2y

∂x2

introduced by Raleigh in 1877 to describe nonlinearity in sound waves [43] also
fails to simulate lattice phonons as the numerical solutions become multi-valued
and break up after a while. It was found by Zabusky [59] that the wave is stabilized
by addition of a fourth derivative:

1

c2
0

∂2y

∂t2
=

(
1 + ε

∂y

∂x

)
∂2y

∂x2
+ d2

12

∂4y

∂x4
.

If the KdV equation is modified by analogy, on introducing an interaction with quar-
tic nonlinearity

φ(r) = 1
2κr2 + 1

4κr4,

the resulting equation, simplified by substituting ε = 3αd2, ξ = x − c0t , τ = 1
2εc0t ,

μ = 1/36α, v = ∂y/∂ξ :

∂v

∂τ
+ v2 ∂v

∂ξ
+ μ

∂3v

∂ξ3
= 0,

known as the modified (MKdV) equation, has soliton and multi-soliton solu-
tions corresponding to lattice phonons, with eigenvalues that satisfy the linear
Schrödinger equation.

This conclusion is interpreted to confirm that the thermal motion of scattering
centres on a crystallographic plane is correlated and therefore unlikely to disrupt
the coherent scattering of X-rays. On the other hand, in an ideal harmonic solid, the
independent vibration modes are dispersive and the energies stored in them never
come into thermal equilibrium.
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X-ray diffraction is therefore seen to depend on the interaction between a linear
wavefront and a nonlinear soliton lattice, giving rise to coherently scattered sec-
ondary waves, in exact analogy with optical diffraction. Linear superposition of the
scattered waves define the Fourier transform of the electron density.

Conduction and Superconductivity

An electric current is intuitively described as the flow of electrons through a conduc-
tor, typically a metal. Phenomenologically an electron in this context is considered
to be a particle, which in terms of the wave model assumed here, should be defined
as a single soliton. In terms of the classical Drude model of metallic conduction va-
lence electrons pervade a metal in the form of an electron gas. The highly nonlinear
medium must ostensibly promote the formation of propagating solitons.

By contrast, superconductivity is associated with the alignment of high-spin
atomic nuclei [60], that creates a uniform aperiodic field and promotes uninhibited
flow of linear electron waves.

7.4 Chemical Aspects

The consistent failure to formulate convincing quantum-mechanical models that
represent fundamental chemical concepts such as molecular structure and shape,
optical activity and chirality, chemical cohesion, electronegativity and many others,
is often ascribed to an inadequate understanding of the difference between classical
and non-classical systems. A common strategy to address the problem is by search-
ing for an informative definition of the illusive classical limit. A critical review of
such efforts was published by Rosen [61] who examined the difference between
Schrödinger’s equation and its “classical” counterpart.

It is well known that Schrödinger derived a wave equation in analogy with the
Hamilton–Jacobi (HJ) equation in the geometrical-optics limit. The inverse opera-
tion that relates the Schrödinger wave function to Hamilton’s principal function, S,
is done by substituting

Ψ = ReiS/� (7.15)

into (7.5), to yield6

−∂S

∂t
= 1

2m
(∇S)2 + V − �

2

2m

∇2R

R
, (7.16)

∂ρ

∂t
= − 1

m
∇ · (ρ∇S) (7.17)

where ρ = R2 = |Ψ |2.

6For details see [31, p. 134].
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Equation (7.16) is identical with the HJ equation for a particle moving in a
potential-energy field of P = V + Vq :

−∂S

∂t
= (∇S)2

2m
+ P (7.18)

with Vq = −�
2∇2R
2mR

, known as the quantum potential.
In order to recover the classical HJ equation with P = V it is necessary to define

the “classical Schrödinger equation”:

i�
∂Ψ

∂t
=

[
− �

2

2m
∇2 + V + �

2

2m

∇2|Ψ |
|Ψ |

]
Ψ (7.19)

and its complex conjugate with |Ψ | = R. Substitution for Ψ , as in (7.15), produces
the classical HJ equations.

Equation (7.19) differs from (7.5) only in the last term on the right, in exactly the
same way as the NLS equation (7.13) defined before. The nonlinear term in (7.19)
is proportional to the quantum potential, represented by a quadratic term in (7.13).
In fact, the two nonlinear equations are identical for β|φ|2 = Vq .

As there is nothing “classical” about (7.19) it is more plausible to simply de-
scribe it as a modified NLS equation that transforms gradually into the nonlinear HJ
equation for m > mP , the Planck mass, mP = √

�c/G = 2.17 × 10−8 kg. In this
case there is no discontinuous change from a linear to a nonlinear regime at some
classical limit, as occurs for systems described by (7.5) and (7.18).

This conclusion is in line with the notion that, because of space-time curvature
all material systems, including quantum objects, are intrinsically nonlinear, accord-
ing to (7.19) and (7.18), linked by (7.15). For massive objects, Vq → 0 and (7.18)
provides the more appropriate description. There is a grey area, the analog of geo-
metrical optics for linear systems, where (7.18) and (7.19) apply equally well. In the
limit of massless entities (m → 0) the sine-Gordon equation (7.14) converts into the
general linear wave equation (7.1) that governs the propagation of electromagnetic
waves.

The grand conclusion is that a linear differential equation cannot give a correct
description of electronic structure and behaviour. Although the linear Schrödinger
and Dirac equations account for most observations, some features of spectroscopic
fine structure, such as the Lamb shift remain unexplained and the concept of elec-
tronegativity undefined. Correction factors based on mass renormalization and quan-
tum electrodynamics are of the correct magnitude, but the physical basis, which at-
tempts to smear out a point electron into a finite sphere [62, p. 231], are plagued
with serious infinity problems.

The most glaring defect of linear wave mechanics is the failure to account in
detail for the observed structure of the periodic table of the elements. It is more than
a suspicion that a reformulation based on a nonlinear equation in 4D curved space
could eliminate the need of all ad hoc correction factors.
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7.4.1 Solving the Equation

Solution of the NLS equation (7.13) by means of an “inverse scattering transform”
is described by Kaup [46]. The procedure involves mapping of the field into a non-
linear Fourier transform space, defined as the “scattering data”. The coupling con-
stant ε2 in (7.13) is assumed to be real. When ε2 < 0, ε is purely imaginary and no
bound states occur. However, when ε2 > 0 and the integral

∫ ∞

−∞
∣∣Ψ (x, t)

∣∣dx < ∞

is sufficiently large the mapping becomes essentially linear and bound states can
occur.

The bound-state part of the spectrum is analyzed by assuming the continuous
part to be absent. In this case, each bound state corresponds to exactly one soliton.
For the simplest case of a one-soliton solution it has the form

Ψ (x, t) = F(η1, ε) · exp
[
f1(x − x̄0), η1

] · sech
[
f2(x − x0), η1

]

where x0 and x̄0 are arbitrary real constants. The imaginary part of the complex
eigenvalue η1 determines the height and width of the soliton and the real part deter-
mines the velocity.

The solution for the continuous part of the spectrum, in the limit of ε → 0, devel-
ops in time like the solution for the linear problem (ε = 0), in that it slowly disperses
and decays away. Because of nonlinear decaying oscillations this continuous part of
the spectrum is referred to as “radiation”.

Remarkably, the eigenvalues for the continuous part of the spectrum are identi-
cally the same as for the linear case (ε = 0). It was pointed out [46] that no effects
requiring renormalization are found, and the zero-point energy is independent of ε.
For ε2 > 0 bound states of nj excitations moving as coherent units, occur with
binding energy ∝ (nj + 1

2 )3. These bound-state solutions, even more so than KdV
solitons, can be interpreted directly as models for electron structure and motion,
both in the free state and in atoms.

7.4.2 Chemical Interaction

All chemical interactions are mediated by electrons and therefore proceed accord-
ing to (7.19). In principle the behaviour of all chemical systems, from electrons
to molecules and crystals, is therefore controlled by the quantum potential of that
system.

Equation (7.19) as it stands, is impossible to solve unless one resorts to numeri-
cal analysis, using solutions of the linear equation (7.6) as an initial value, Ψ (x,0)

at t = 0. For the hydrogen atom in its ground state (compare Sect. 7.2.4) the linear
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solution predicts Vq = −�
2/2ma2

0 , as an initial value for iterative solution of (7.19).
We predict that such a solution would provide an improved simulation of the hy-
drogen spectrum, without ad hoc corrections. We note in passing that the Feynman
sum over histories, the basis of quantum electrodynamics, is essentially a linear su-
perposition and hence of dubious validity for the problem in hand. Formulation of
the quantum potential of a many-body system as a linear superposition,

Vq = −
n∑

i

�
2∇2

i Ri(xi, t)

2mRi(xi, t)
,

also needs nonlinear revision.
For the electron in an atomic valence state Vq , known as a function of the ion-

ization radius [63], defines electronegativity and could be used directly as a param-
eter in (7.19). As for the hydrogen atom, a strategy of starting with the calculated
quantum potential to analyze electron-pair covalent interaction by Heitler–London
simulation is envisaged. However, any progress beyond this step must depend on the
interaction between electrons in atoms and molecules. Do they behave like solitons
that freely interpenetrate one another or as extended interfering standing waves?
Judging by the experience with other nonlinear systems we further anticipate the
need of additional nonlinearity parameters on dealing with more complex molecu-
lar systems for which (7.19) will be of limited use.

The virtue of nonlinear analysis is that it recognizes the complexity of natu-
ral systems. Although the algorithms required to address meaningful problems are
vastly more complicated, the temptation of linear superposition as a strategy is elim-
inated by definition. Problems such as the half-dead Schrödinger cat need no longer
confuse the quantum philosophers. We call into doubt the entire industry known as
quantum chemistry, which is based on the linear combination of atomic orbitals.
Alternative strategies are explored in the next chapter.
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Chapter 8
Matter-Wave Mechanics

Abstract The concept of matter waves as a product of four-dimensionally curved
space-time is examined. A vital step in the analysis is taking cognisance of the con-
troversial concept of an all-pervading aether. The discrepancy between relativity and
quantum theory is traced to the three-dimensional linear equations of wave mechan-
ics, in contrast to Minkowski space-time. The notion of space-like interaction is re-
examined and shown to arise from a superficial interpretation of space-time curva-
ture. The more appropriate projective topology is shown to be suitable, in principle,
to define four-dimensional matter waves. The transformation from the more general
underlying space-time to the familiar three-dimensional affine space is shown to be
mediated by the golden ratio, which is further characterized in terms of Fibonacci
numbers, Farey sequences and other concepts of number theory. It is demon-
strated conclusively that the observed periodic table of the elements and the wave-
mechanical approximation are correctly simulated by number theory, with a clear
distinction of the respective four- and three-dimensional bases of the two models.

8.1 Introduction

The matter-wave postulate of de Broglie, developed into a wave-mechanical theory
by Schrödinger, Madelung and Bohm, has revolutionized chemistry without pro-
ducing a convincing working model of chemical interaction, molecular structure, or
the periodicity of atomic matter. Chemical systems in the laboratory are still manip-
ulated on the hand of the 19th century models of chemical affinity and molecular
structure. The Dreiding model remains the most reliable guide in the analysis of
chemical change and covalent interaction is described by straight lines that con-
nect atomic symbols as prescribed by the principles laid down by Gilbert Lewis.
In writing, chemical bonding is described by hybridization formulae, such as sp2,
with distinction between σ , π and δ types to emphasize the quantum-chemical, or
orbital, meaning of the Lewis stripes. Until a convincing definition of a covalent
bond can be presented all of this remains meaningless window dressing. The ploy
to invoke spin pairing explains nothing while the concept of electron spin remains
an empirical postulate.

Although never openly admitted the periodic table of the elements is understood
no better than a hundred years ago. Molecular structure is still interpreted in terms

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_8,
© Springer Science+Business Media Dordrecht 2013
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of van’t Hoff’s model and the physical grounds of optical activity have not been
identified beyond a group-theoretic statement of molecular chirality. A non-classical
theory of chemistry simply does not exist.

The amount of confusion and uncertainty about the essential nature of matter is
simply too much for a consensual theory of atomic structure and chemical inter-
action to be feasible. Models that recognize atoms-in-molecules peacefully coex-
ist with molecular-orbital theories, free-electron simulations and sterically dubious
molecular rearrangements. At a deeper level the concepts of a physical vacuum and
of a void are used interchangeably, while assuming the presence of an electromag-
netic field and wave motion in the vacuum. Even Aristotle realized that there would
be no upper limit to the speed of an object in a void. On the one hand the same
theory of relativity that imposes such a limit is invoked to declare the non-existence
of an aether in the vacuum. Or does it?

According to Dirac [1]

. . . the existence of an æther could not be fitted in with Einstein’s discovery
of the principle of relativity. . . This argument is unassailable from the 1905
point of view. . .

Another authority [2] states that:

[Poincaré’s theory of relativity] was based on the full theory of electro-
magnetism and was restricted to phenomena associated with the concept of a
universal ether that functioned as the means of transmitting light, a concept
that Einstein shared.

Emphasis added.
Einstein himself is quoted [3] to have stated repeatedly that

. . . Ether exists. According to the general theory of relativity, space is in-
conceivable without ether. . .

We cannot manage in theoretical physics without ether, i.e. a continuum
provided with physical properties.

It is rather obvious that the relativity objection was not so much against the medium
through which the radiation propagates as against Maxwell’s vortex model of the
aether, when he declared that:

We can scarecely avoid the conclusion that light consists in the transverse
oscillations of the same medium which is the cause of electric and magnetic
phenomena.

In this he referred to his mechanical model of the aether [4] that guided him in the
derivation of the electromagnetic equations. To him the aether was composed of sub-
atomic vortices, all rotating in the same direction so as to produce the circulation of
the magnetic field. Some details, shown in Fig. 8.1, are explained by Maxwell [4]
as follows:

The contiguous portions of consecutive vortices must be moving in oppo-
site directions. . . The only conception which has at all aided me in conceiving
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Fig. 8.1 Maxwell’s model of
the aether, composed of
vortices that rotate in the
same sense so as to produce
circulation of the magnetic
field

of this kind of motion is that of the vortices being separated by a layer of par-
ticles, revolving each on its own axis in the opposite direction to that of the
vortices, so that the contiguous surfaces of the particles and of the vortices
have the same motion

In mechanism, when two wheels are intended to revolve in the same direc-
tion, a wheel is placed between them so as to be in gear with both, and this
wheel is called the ‘idle wheel’. The hypothesis about the vortices which I
have to suggest is that a layer of particles, acting as idle wheels, is interposed
between each and the next, so that each vortex has a tendency to make the
neighbouring vortices revolve in the same direction with itself.

The idle wheels were supposed to be particles of electricity.
Ignoring the 19th century mechanical details Maxwell’s aether may, in hindsight,

be interpreted as a tenuous medium that resonates in a structured way with electro-
magnetic disturbances in a process that minimizes four-dimensional action.

8.2 The Aether and Matter

To understand the results of special relativity it is necessary to assume that mat-
ter does not move through the aether, but that a four-dimensional æther penetrates
through matter.1 This interpretation would explain why certain forms of matter are
transparent to some forms of radiation, but less so than the vacuum. The electromag-
netic field of the aether is perturbed by the local electron distribution as it passes
through matter. Radiation of different wavelengths responds characteristically to
the degree of perturbation and, although the nature of the field is more subtle than
Maxwell’s aether the result is the same.

We recall that the electromagnetic field is a gauge field that is generated by space-
time curvature. The local gauge field affects the phase of electromagnetic waves and

1This is interpreted to mean that there is no motion through the aether. The perception of three-
dimensional motion reflects a static situation in space-time [5].
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its influence on ponderable matter in the bulk must therefore be minimal. However,
space-time curvature has another manifestation as discovered accidentally in a cal-
culation by Schrödinger [6, 7], which was aimed at the analysis of wave motion in
an expanding universe.

8.2.1 Alarming Phenomena

Schrödinger [6] studied the massive scalar field, described by the covariant Klein–
Gordon equation

−∇2ψ + 1

c2

∂2ψ

∂t2
+ μ2ψ = 0

where μ = mc/�, by separating space and time variables. The temporal part

d2f (τ)

dτ 2
+ ω2(τ )f (τ ) = 0

describes a linear oscillator with circular frequency ω(τ), dτ = dt/R3(t).
This equation can be solved only for special choices of R(t). For constant R,

i.e. constant ω, it reduces to the linear oscillator equation which is solved by plane
waves e±iωt . After an accelerated change of R(t) the initial solution of eiωt (say)
need not be the same after the event, and more generally will be a superposition of
plane waves with different signs of frequency (and energy):

f (τ) = Aeiωt + Be−iωt .

This unavoidable frequency mixing or mutual adulteration of positive and negative
frequency terms gives rise to what Schrödinger called “alarming phenomena”. What
it means is that the accelerated change has created a particle–antiparticle pair from
the vacuum. In general relativity where acceleration is equivalent to curvature the
inference is that equal amounts of matter and antimatter are produced by space-time
curvature.2

In the present context this observation is anything but alarming. Rüger [7] ex-
pressed surprise at the fact that the proponents of continuous creation in a steady-
state universe had not seized upon this result in support of their theory. The obvious

2As an interesting side-issue it is of interest to note Schrödinger’s conclusion about universal ex-
pansion as the cause of nebular red-shifts. For galaxies of constant diameter and energy output he
found that expansion had no effect. He pointed out:

To speak of a Doppler-effect is rather inappropriate, for the thing has nothing to do with
dR/dt in the moment of emission or in the moment of observation, but only with the ratio
of the R’s of these two moments.

Clearly an effect of curvature as surmised by Hubble [8].
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dilemma must have been to explain away the antimatter that, in good time, would
annihilate their equivalent of conjugate matter, with zero net creation of matter.

What is more exciting is the fact that in this instance wave mechanics confirms a
conclusion inferred before from the field equations of general relativity. We recog-
nize the possibility of a unified quantum-relativistic approach towards a new theory
of matter as a condensation of space-time aether.

8.2.2 Generation of Mass

Space-time curvature distorts the geometry of the aether to the point where the
stress, so generated, is relieved by the release of elementary quanta. This process
may be considered as restoring the plane-wave structure of Euclidean aether by ex-
trusion of distorted regions in the form of elementary solitons, which, by definition,
are totally transparent to the primary plane wave.

Elementary solitons occur in a limited variety of forms, observed to emerge with
characteristic properties of spin, charge and mass, dependent on internal wave struc-
ture. Composite structures result through the combination of complementary enti-
ties with increased mass, although spin and charge are typically neutralized in the
process.

Standing waves, like gas molecules, exert pressure on the walls of a container.
With the container at rest or in uniform motion the force exerted on any wall is
balanced by that exerted on the opposite wall. If the container is accelerated radia-
tion reflected off the rear wall gains more momentum than that lost by the radiation
which reflects off the front wall. It has been demonstrated [9–12] that radiation ex-
erts a net force, which opposes an applied force on the container, such that

(
m + ER

c2

)
a = F.

The radiant energy adds an effective inertial mass ER/c2 to the mass of the con-
tainer. In the same way the total mass of an elementary soliton may be interpreted
as deriving from internal motion in a phase-locked cavity.

8.2.3 Space-Time Topology

Special relativity is formulated in pseudo-Euclidean Minkowski space and Schrö-
dinger wave mechanics in 3D Euclidean space. In order to establish common ground
with general relativity both of these need to be recast into four-dimensional non-
Euclidean space-time. The immediate purpose of this is to arrive at a model for
elementary matter which is consistent with both quantum theory and general rela-
tivity. We are constantly aware of the fact that the use of the Klein–Gordon equation
in the following does not recognize the intrinsic nonlinearity of curved space-time.
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Fig. 8.2 Diagrams to
illustrate the correspondence
between Minkowski and
Schrödinger spaces

Minkowski Space

The theory of special relativity distinguishes between three types of motion, clearly
defined by a Minkowski light cone, as in Fig. 8.2.

Electromagnetic interaction is propagated at constant speed of c in the surface
of the light cone. Time-like motion of mechanical objects at speeds of v < c occurs
within the light cone and superluminal space-like motion, on the outside, is tradi-
tionally considered to be non-physical. There are no obvious grounds for this as-
sumption, which actually is at the root of the discord. Space-like motion can clearly
be non-local, which means that in the special case, when lacking a time component,
displacement happens instantaneously, exactly as in the quantum process denounced
by Einstein [13].

Relativistic and quantum theories both depict the world as an entangled whole.
Relativity makes no distinction between the space and time coordinates of a four-
dimensional reality, meaning that the world-line of a general event is a function of
space-time rather than of space and time. There are three special cases:

(i) a stationary object that proceeds along the time axis;
(ii) a non-local event that spreads (instantaneously) along the space axis;

(iii) an electromagnetic disturbance in the isotropic surface of the light cone, which
separates time-like and space-like events.

Quantum theory attempts to achieve holistic entanglement in the correlation of dis-
tant events.

Schrödinger Space

Quantum theory tells the same story in different words. A wave that mediates elec-
tromagnetic interaction, also referred to as a photon, has zero rest mass and does not
obey the equation for matter waves, propagates with a speed v that equals its phase
velocity vφ = c, and has an effective momentum related to its wavelength, p = h/λ.
It is the epitome of a quantum object with a quantum potential Vq → ∞, compared
to classical objects with Vq → 0. Entities within the light cone, which include all
composite waves and wave packets with group velocity vg < c, are known collec-
tively as matter and antimatter. Complementary stuff, known as tachyons, occurs
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Fig. 8.3 Two-dimensional
projection of closed geodesics
in Minkowski space-time.
The curve AB(CD) returns
through a point at infinity to
continue as the involuted
curve BA(DC) that meets up
with AB(CD) in the same way

in the region excluded by the light cone, with vg > c. In all cases vgvφ = c2. The
superluminous stuff may also be considered as scalar waves with λ → ∞, p = 0,
i.e. completely non-local.

It is instructive to consider non-dispersive wave packets made up of tachyonic
and bradyonic (v < c) components. Matter wave packets with a structure as shown
schematically in Fig. 7.2, may be synthesized from the interaction of two waves
moving in opposite direction with speed v < and > c. A macroscopic radius is de-
fined by the de Broglie wavelength, λdB = h/mv, and the internal structure is char-
acterized by the Compton wavelength λC = h/mc of the superluminal waves known
as Zitterbewegung (trembling motion) [14].

We note that the instantaneous response of an electron in interaction used to be
considered a violation of special relativity, unless the electron is seen as a point
particle. The argument is readily refuted by considering the electron as a holistic
unit, but the conviction remains.

The wave description of the electron accounts for the fine-structure parameter
αe = λc/λdB = vg/c. The related tachyon would have αt = c/vφ . The familiar fine-
structure constant, α = e2/�c, refers to an electron in the ground level of a proton
field (H atom), with v1 = e2/�, in electrostatic units. Within the light cone velocity
refers to the motion of massive objects and matter waves. In the light-cone surface it
refers to electromagnetic waves, and in the space domain to long-wavelength scalar
waves and tachyons.

Curved Space

Minkowski space in the real world cannot be flat on a large scale. In order to generate
a connected surface it is necessary that all of space should be curved appropriately.
The curvature should be such that the isotropic lines that appear to diverge in two-
dimensional projection should close onto themselves in more dimensions. A useful
clue is provided by the pseudocircles in Minkowski space, M2, x2 − c2t2 = ±r2,
which appear as a pair of hyperbolas [15] that may join up into two Möbius bands
as shown in Fig. 8.3. The four-dimensional equivalent defines what is known as a
projective plane, an elliptic space, which, like a Möbius band is one-sided and non-
orientable. Motion along the double cover of the projective plane (or the Möbius
band) goes through an involution which entails an inversion of chirality. It thereby
defines an isotropic interface that separates regions of matter and antimatter.
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Separation of the four-dimensional equation �2φ = 0, on assuming the product
function φ(x, t) = u(x) · ψ(t), into the temporal and atemporal pair of equations:

− 1

c2

d2ψ

dt2
+ k2

0ψ = 0,

∇2u + k2u = 0,

although mathematically feasible, is physically dubious, as the constants k0 and k

are not separable, unless either k0 = 0 or k = 0. The equations therefore remain
linked and only with appropriate choice of constants (e.g. k = ik0) is a physically
allowed separation into space-like and time-like wave equations of the form

∇2ψ ±
(

m0c

�

)2

= 1

c2

∂2ψ

∂t2
(8.1)

obtained as a first approximation by setting �ω = m0c
2. This is the Klein–Gordon

equation in a form used by Elbaz [16] to describe both time-like and space-like mat-
ter waves, the latter with rest mast of im0, as derived for tachyons by Feinberg [17].
Equation (8.1), although a notable improvement on Schrödinger’s amplitude equa-
tion, still fails to reflect the large-scale structure of curved space-time.

Solution of (8.1), by projection from homogeneous projective coordinates was
described by Veblen and Hoffmann [18]. The transformation from the projective
manifold into three-dimensional tangent space was noticed [19] to be mediated by
the golden ratio and local gauge invariance [20].

Complex Geometry

This simple picture is flawed. Not only is the time axis perpendicular to each of
the three cartesian space axes but, with respect to each of the space axes, it is an
imaginary axis in the mathematical sense. The four-dimensional differential element
of separation

ds2 =
3∑

μ=0

(dxμ)2

defines x0 = ict . The isotropic line, which represents the light cone, implies x = it

in Fig. 8.2 and has some unusual properties. In standard 2D coordinate geometry
the distance between two points is defined as

d =
√

(x1 − x2)2 + (y1 − y2)2.

For x = iy in the complex plane, noting that i2 = −1, it becomes:

d =
√

−(y1 − y2)2 + (y1 − y2)2 = 0.
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Fig. 8.4 Minkowski
perpendiculars

The dot product of two complex vectors, as in Fig. 8.4:

z1 = a + ib and z2 = b + ia, i.e. z1 · z2 cos θ

is calculated from z1 · z2 = x1x2 + y1y2 as ab − ba = 0, and hence these vectors are
perpendicular to each other (Effectively, θ = π/2).

The vectors coincide, on the isotropic line, z · z = 0, which means that the line is
perpendicular to itself. The two isotropic lines of Fig. 8.2 are therefore one and the
same line and must join up geometrically. Any two points on the isotropic line are in
contact (d = 0) and therefore connected non-locally. Crossing the isotropic line at
A, in Fig. 8.2, implies crossing at B , showing that the isotropic light cone constitutes
an interface between time-like (matter) and space-like (antimatter) domains.

Antimatter

As shown in the previous section, the closure of Minkowski space-time is only
possible with involution, which implies projective geometry. Relevant details for
chemists were published recently [19] and will not be repeated here. The essential
argument recognizes a closed surface of which the double cover is non-orientable,
with identity period of 4π . The involuted conjugate arrangement is reached by a 2π

rotation along the double cover.
As a model of space-time the closed surface represents the vacuum as an interface

between the conjugate forms in the double cover. It makes good sense for weightless
achiral bosons to move in the interface which is the same as the aether, with the
chiral forms of matter and antimatter on opposite sides in the double cover. The
alarming phenomena now become charming phenomena.

The matter and antimatter that result from the curving of space-time are separated
directly by the interface. For the conjugate forms to come into contact would require
2π rotation along the double cover, through the involution that inverts chirality.
A unit of matter on 4π transplantation along the double cover therefore gradually
changes into antimatter and back into matter without catastrophe, in line with the
original conjecture [21].

This construction implies complete independence of the gravitational and elec-
tromagnetic fields. Both of them have their origin in space-time curvature, with
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Fig. 8.5 Minkowski
space-time diagram to explain
the possibility of
superluminal speeds,
approaching infinity in the
space-like domain

electromagnetism confined to the interfacial aether and gravity in the double cover,
pervaded by the vacuum.

The caricature of closed Minkowski space-time as in Fig. 8.3 shows that, like
the closed projective plane that represents the vacuum interface, the double cover is
closed on all sides by the interface. The isotropic light surfaces all intersect on a line
at infinity.

Tachyonic Motion

In a more radical analysis of Minkowski space-time superluminal motion is assumed
to occur in the space-like domain.

The idea is based on Feinberg’s [17] interpretation of space-like events in terms
of tachyonic motion (v > c), with a limiting minimum speed of c. Details are sum-
marized in Fig. 8.5. In this model an increase in velocity corresponds to a lowering
of kinetic energy.

In line with common usage a theory is developed in the context of quantum-field
particle theory, not always in line with the wave theory subscribed to in the present
discussion. The statement that “tachyons are fermions, even though they have spin-
zero” points at one serious inconsistency. The remark that emission of C̆erenkov
radiation by tachyons in free space had been known to Sommerfeld in 1904 needs
careful attention. In Sommerfeld’s analysis [22], communicated by Lorentz, the mo-
tion of a charged object with velocity close to or exceeding c is examined. He did
indeed calculate the field of a hypothetical charged particle with superluminal speed
in the form of a “shadow of motion”, as in Fig. 8.6.

It has the same shape as a sonic boom or C̆erenkov radiation with sin θ = c/nv,
associated with β-particles of velocity v > c/n, emitted by a radioactive source in a
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Fig. 8.6 The shadow of motion calculated by Sommerfeld [22] for a superluminal charged parti-
cle, compared to the C̆erenkov radiation emitted by β-particles in a nuclear reactor

medium of refractive index n. As pointed out [22] “. . . it is the smaller, the more the
velocity of the electron exceeds that of light”, as for C̆erenkov radiation as n → 1.

The analysis is put into perspective by the following relevant statements [22]:

. . . you deduct easily the value of the force, necessary to maintain a mo-
tion of a bodily charge with a velocity exceeding that of light. This force is
distinctly finite, even in case of infinite velocity. . .

. . . in case the charge is concentrated at one point, the force is infinite even
in the case of a velocity less than that of light.

Although the stationary motion with velocity exceeding that of light is no
free possible movement of the electron, yet this motion is not impossible from
a physical point of view as requiring (even if the velocity is infinite) in every
moment only a finite expense of force and also for every finite path only a finite
expense of work.

The stationary motion of an electron, charged uniformly over its surface,
with a velocity exceeding that of light is actually impossible; it would require
an infinitely great expense of force and energy.

Of importance in the present context is the description of an electron as an object of
finite size that carries bodily charge, rather than having it spread over the surface.
The implication is that elements of charge, smaller than the unit electronic charge
cannot be identified. However, superluminal electronic motion is considered feasi-
ble in an accelerating field, admittedly without taking the effect of radiation into
account. Since tachyons lose energy when accelerated the inverse must be equally
true. A charged tachyon that emits C̆erenkov radiation must therefore accelerate
indefinitely, with runaway energy production.

Without the projective involution Feinberg’s proposal of tachyonic motion could
perhaps be a valid model, but only in infinite space-time. The model has indeed been
used successfully to interpret a variety of elementary particle interactions [23], but
later analyzed [24] equally well in terms of a nonlinear wave hypothesis. A more
plausible interpretation to prevent the infinite energy catastrophe is that only from
a time-like perspective does a tachyon appear to move with superluminal speed,
away from the interfacial light surface. Within the space-cone the laws of motion
are therefore the same as in the light cone.
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Feinberg’s interpretation of Minkowski space-time contradicts the assumption of
projective topology. Displacement of 2π through the projective involution implies
inversion of chirality, as in a gauge transformation, without measurable effects on
internal kinematics. Superluminal velocity therefore remains undefined and leaves
the meaning of space-like displacement unexplained.

Without experimental evidence that tachyons exist the projective interpretation
of curved space-time must therefore be preferred and the idea of tachyonic motion
considered as another example of the misreading of four-dimensional phenomena
in three-dimensional mode.

The relativistic barrier to superluminal motion is to be interpreted to physically
coincide with the topological interface that separates the world and antiworld. This
could mean that superluminal motion is prevented by the structure of the vacuum
because of an effect such as the sound barrier in air and that is why the Lorentz
transformation is universally valid.

8.2.4 The Vacuum

The nature of the vacuum clearly holds the key to a proper understanding of matter
and energy. The existence of an electromagnetic field can be inferred with a high
degree of confidence, but an exact model of this field is difficult to conjecture. Even
more speculative is the existence of a quantum-potential field and still harder to
imbed is the gravitational field. Precise details of these fields, beyond a mathemati-
cal account of their effects, are simply unknown. To populate the vacuum, as a basis
for understanding quantum-field theory, by 1080 virtual particles, signals despera-
tion on a par with Maxwell’s aether or Descartes’ aetherial foam.

The only firm evidence about the nature of the vacuum is that it supports the flow
of energy. In the case of electromagnetic energy this process is clearly associated
with wave oscillations. The remarkable fact is that the rate of energy transmission is
independent of the energy and motion of its source. Only the wavelength changes,
λ = c/ν = hc/E. For no transfer of energy between emitter and absorber, λ = ∞
(p = 0), in the state of equilibrium.

For matter waves with rest mass of m, hc/E = hc/mc2 = h/mc = λC , the
Compton wavelength. As discussed in Sect. 7.2.2 λC is characteristic of a wave
packet with de Broglie wavelength λdB = h/mvg , where the group velocity vg rep-
resents the velocity of a soliton, interpreted as the electron.

The displacement of ponderable matter follows a similar pattern, except that the
state of motion is subject to external stimuli. In this case the transmission of energy
does not depend on interaction with the aether, as a massive object is no longer
part of it. Not subject to any interaction such an object maintains its inertial motion
along the geodesics of space-time. In local tangent space these are straight lines
and on a larger scale they follow the general curvature of space-time with local
perturbations in the vicinity of massive objects like planets and stars. This scenario
defines the gravitational field. It is an attractive possibility to define this field along
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the same lines as electromagnetism. However, the gravitons, postulated to mediate
such interaction, have never been observed and probably never will.

The substance of the vacuum is undefined in spaces of three or less dimensions. It
is noted that one-dimensional motion is proscribed by the potential energy equation
d2y/dx2 = 0, with the geodesic solution y = mx + b. In four-dimensions �2y = 0
defines a potential-energy field created by space-time curvature. Separation of the
variables denies physical reality and the only acceptable solution of the equation is
in terms of hypercomplex quaternions.

The aether which supports quantum fields in the vacuum is subject to the same
geometry of space-time that accounts for the geodesic motion of light rays. To
distinguish between light and matter the former may be viewed as energy waves
that move at the constant velocity that defines the limiting speed of both matter
and antimatter waves. This statement comes with the caveat that speed and veloc-
ity are strictly three-dimensional concepts with vastly different meaning in four-
dimensional space-time.

8.3 The Wave Model

Our quest for the essence of atomic matter that underpins a fundamental under-
standing of chemistry is drawing to a close. The evidence that matter originates in
the vacuum rather than independently existing as point particles in a void, appears
conclusive. The crucial decision to decide between the alternatives hinges on an
understanding of mass.

One version of the particle model [25] ascribes the acquisition of mass to interac-
tion of virtual particles, modelled as open points, with the Higgs field that resulted
from a phase transition of the big-bang vacuum at 0 + 10−36 seconds, initiating in-
flationary expansion that lasted until 0 + 10−33 seconds, increasing the diameter of
the universe to 10 cm and transforming the virtual particles into point particles with
mass.

The phase transition was supposedly triggered by spontaneous breakdown of the
symmetry of the vacuum, with the release of sufficient latent energy to drive the ex-
pansion. The hidden assumption is that the big bang started as a stable point universe
of high symmetry and energy. The only possibility whereby the temperature could
be lowered, was by an increase in size. The creation of space and time to allow this
is therefore the real miracle that enabled the transformation of the static point into a
dynamic topology. The mathematical description of the procedure is equivalent to a
local gauge transformation (Sect. 4.3.3).

Inflation theory is claimed to have solved all cosmological problems, but in the
process it created all the problems, related to point electrons, that exist in chemistry
today.

In the wave model the attribute of mass is described by the same mathemati-
cal model, without the creation miracle. Instead of point symmetry, that sponta-
neously transforms into extended space-time of lower symmetry, the relevant sym-
metry states of the argument are the alternative perceptions of tangent Euclidean
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space and the lower-symmetry non-Euclidean description of the same vacuum. In-
teraction with a hypothetical Higgs field is obviated. Ponderable matter represents
the difference between Euclidean and non-Euclidean forms of a uniform continuous
wave field.

The difference between differently curved surfaces is described in terms of their
Euler characteristics as derived from differential topology [26]. An elementary ex-
ample concerns the extent to which a hairy surface can be brushed with all hair in
the same continuous direction. Failure to achieve complete continuity of direction
results in the appearance of tufts, holes and crowns in surfaces of different topology.
These are known as singular points of the surface and may include sinks, sources,
vortices, crosspoints, dipoles, foci and others of higher and higher Euler index, de-
pending on the local topological features in the manifold. Some of these, such as
sources and sinks would clearly mutually annihilate each other on encounter, in the
same way as matter and antimatter, unless they are generated on opposite sides of
an interface.

In the wave model of matter these singularities appear as standing waves or soli-
tons, with different characteristics and represent what is commonly known as ele-
mentary particles. Different combinations of topological qualities manifest as dif-
ferent characteristics of mass, charge and spin.

8.3.1 Projective Solution

The way in which special relativity and quantum theory describe the world from
different perspectives is only rarely acknowledged. Relativity describes the motion
of particles and quantum theory that of waves. Confusion sets in when the two the-
ories are used carelessly to address the same problem, or inappropriate physical
models are forced onto the mathematical results of a theory. Several examples of
such confusion have been highlighted and some of these are repeated here by way
of illustration.

Most recently we discussed the unwarranted interpretation of the space-like seg-
ment of Minkowski space-time to postulate the existence of tachyons, which relates
to the presumed non-local nature of quantum theory. In this case the confusion cen-
tres around the unphysical separation of the spin function. In one analysis of the
problem the components of electron spin is considered to be undefined until the
wave function is collapsed by a physical measurement, when they assume proba-
bilistic values. The relationship, observed to persist between previously correlated
spins, is then interpreted as non-local interaction. The alternative description of the
electron as a wave structure with intrinsic four-dimensional spin immediately re-
solves the problem.

The confusion spreads even further when electromagnetic radiation is described
as particulate photons. It seems to work in accounting for the photoelectric and
Compton effects, but have no explanation of elementary optical effects such as
diffraction. The postulate of wave-particle duality only clouds the issue even more.
The wave model works in all cases.
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The honourable way out for all concerned is shown by the theory of general
relativity, based on the non-Euclidean geometry of space-time. This way out was
recognized early on by Schrödinger’s [6] on pointing out that:

Wave mechanics imposes an a priori reason for assuming space to be
closed; for then and only then are its proper nodes discontinuous and provide
an adequate description of the observed atomicity of matter and light.

As a working model we accept that energy propagates as wave motion through the
electromagnetic field. Linearity of the field is maintained by the extrusion of flexible
standing waves to compensate for the intrinsic nonlinearity of curved space-time.
These elementary units behave as four-dimensional matter waves. Their motion and
interactions can only be adequately described by nonlinear wave equations, the for-
mulation of which depends on the topology of space-time. To outline the procedure
that leads to such a wave equation in projective space-time we follow the detailed
description as presented by Oswald Veblen and Banesh Hoffmann [18].

Unification of the gravitational and electromagnetic fields by Kaluza and Klein,
in terms of a five-dimensional field is shown to reduce to a four-dimensional theory
based on projective geometry. Projective tensors have 5k instead of 4k components
and in each coordinate system they have an infinity of components dependent on a
factor x0, identified as a gauge parameter.

With any point (x1x2x3x4) = x of space-time there is associated an infinity of
differential sets (dx1dx2dx3dx4) = dx. These differentials are arbitrary numbers
and may be regarded as coordinates of another four-dimensional space, called a tan-
gent space of the underlying space. The point dx = 0 is identified with the point
x and is called the point of contact. Thus to each point of space-time there is an
associated affine tangent space. The theory of these tangent spaces together with the
underlying space becomes a Riemannian geometry if a Euclidean metric is intro-
duced in each tangent space by means of a quadratic differential form3

gij dxidxj .

The tangent spaces can be converted into projective spaces by introducing points at
infinity as explained before [19]. The projective spaces are studied analytically by
means of homogeneous coordinates (Xα) and projective tensors. The effect of this
is that Kaluza–Klein 5-space becomes a projective rather than an affine theory of
space-time. The symmetric covariant tensor of second degree, Gαβ , determines a
metric in each tangent space:

GαβXαXβ = 0.

The point of contact of the tangent space with the underlying space has homoge-
neous coordinates such that Xi = 0. The tangent lines to the quadric from this point
meet it in points which all lie in a hyperplane

Gα0 = Xα = 0.

3Latin suffixes take on values from 1 to 4 and Greek suffixes from 0 to 4.
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The tangent lines generate a quadric cone with its vertex at the point Xi = 0. The
equation of this cone may be written in nonhomogeneous coordinates

gij dxidxj = 0.

The coefficients gij represent the gravitational potentials of ordinary relativity. The
φα is a projective vector such that φ0 = 1. The components φi represent the poten-
tials of the electromagnetic field.

Under an ordinary transformation the φi transform like the components of an
affine vector

φ̄i = φj

∂xj

∂x̄j
, φ̄0 = φ0

but with a change of gauge factor

φ̄i = φi − ∂ logψ

∂xi
, φ̄0 = φ0

φi changes by the addition of a gradient and so in any coordinate system is de-
termined only to within an additive gradient, which is the property of the vector
potential of the relativistic Maxwell field (compare Sect. 4.3.3).

Following the procedure for deriving the field equations of general relativity in
terms of projective tensors leads to

Γαβ − φαφβΓ = 0.

These expand into a set of equivalent affine equations that are identical with those of
classical relativity. More generally the equations afford a solution of the unification
problem by combining the field equations for gravitation and electromagnetism into
a single invariant set of equations. Solutions to this set of equations must describe
the motion of an electron in curved space-time. Of special interest in the present
context is the solution obtained for the general field equations which, in affine form,
reduce to:

1√
g

∂

∂xi

(
gij√g

∂ψ

∂xj

)
− 4πie

h
gijVj

∂ψ

∂xi
− 2πie

h

1√
g

ψ
∂

∂xi

(
gijVj

√
g
)

− 4π2e2

h2
gijViVjψ

(
5

27
R − 4π2mc2

h2

)
ψ = 0.
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Nowhere is the equivalence of relativity and quantum theories demonstrated
more convincingly than in the transformation of the projective relativistic field
equations to affine tangent space. In gravitation-free Minkowski space of signature
{1 1 1 −c2} the field equations reduce to a form that closely resembles the rela-
tivistic Klein–Gordon wave equation in the electromagnetic field. Conversion of the
four-potential to tangent space was achieved by setting

(
τ + 1

2

)
φj =

(
e

mc2

)
Vj ,

in which the golden ratio, τ appears as a proportionality constant. The quantum
condition is introduced by scaling the arbitrary gauge index, N , of the projective
curvature tensor as in

(
τ + 1

2

)
N = −3

4

(
mc

�i

)
,

which is equivalent to the stipulation of gauge invariance, as prescribed by
Schrödinger [27]. Noting that τ 2 + τ = 1, the product of these two expressions
reduces to

5
3φjN =

(
ie

�c

)
Vj ≡ φα

as it occurs in the Klein–Gordon equation [28, 29]:

[(
∂

∂xα

+ iφα

)(
∂

∂xα

+ iφα

)
− k2

]
ψ = 0,

φi =
(

e

hc

)
Ai, φ4 =

(
e

hc

)
iV , k2 = m2

0c
2

�2
, x4 = ict.

The quantity in brackets is the same as the phase factor associated with a five-
dimensional electronic wave function [30], or equivalently, the four-dimensional
function in homogeneous projective coordinates. It was introduced here [18] to de-
fine the projective scalar Φ = ψ3/5.

The remarkable resemblance between the two diagrams of Fig. 8.2 reflects the
common ground between quantum theory and relativity discovered by Veblen and
Hoffmann.

8.4 Matter in Space-Time

Four-dimensional space-time, which is intrinsically nonlinear and chiral, is de-
scribed by a form of d’Alembert’s equation

�2ψ = f (m)ψ
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as a function of matter and energy in homogeneous projective coordinates. The func-
tion f (m) derives from fourteen algebraically independent equations that involve
the fifteen quantities Gαβ of a projective tensor of arbitrary index N . Direct solu-
tion in projective space-time, without separation of the variables, has never been
attempted beyond the separation of gravitational and electromagnetic potentials in
affine tangent space.

A more detailed solution is not anticipated to be forthcoming any time soon. The
only practical alternative is to simplify the formidable projective field equations into
a manageable set, with the clear understanding that each simplifying assumption
entails a loss of information.

It has been emphasized several times how the separation of space and time vari-
ables destroys the four-dimensional spin function, reducing it to an approximation
in terms of two-dimensional rotations and vibrations.

It has also been remarked that by adopting a system of linear differential equa-
tions the intrinsic nonlinearity of curved space-time is unaccounted for. Sophisti-
cated experiments [31] to explore the subtle effects of linear superpositions may be
chasing phantoms. The use of nonlinear wave equations may be a better approxima-
tion, but on solution by the separation of variables still ignores hidden effects.

The status of chemistry, the central science that should clarify the condition with
respect to the fundamental nature of matter, is of special concern. The chemists
of the world seem to be content that the ultimate understanding was achieved in
Max Born’s interpretation of wave mechanics as a statistical formula to predict the
most likely position of a particle that performs random jumps. To elucidate chem-
ical bonding, valence electrons are assumed to “occupy” atomic orbitals that de-
marcate high-probability vibration directions, identified by a linear superposition of
real functions in the complex plane. This model violates each and every condition
implied by wave mechanics in, not only four, but also in three-dimensional tangent
space.

A few attempts to solve a wave equation in curved spaces [32, 33] relied on
separation of the variables and assumed spin matrices, without adding anything to
the standard approach.

If the brute-force approach is unlikely to produce a new basis for theoretical
chemistry it may be necessary to examine less direct alternatives. An attractive pos-
sibility is to explore the way in which non-Euclidean effects could qualitatively aug-
ment the approximate results obtained with the three-dimensional Euclidean model,
without solving the full four-dimensional problem. The importance of the golden ra-
tio as a conversion factor between projective and affine environments suggests one
possible approach.

8.4.1 Fibonacci Numbers

Fibonacci numbers were first (?) discovered to model the population of a rabbit
colony, but have a much wider significance. The numbers are generated as an infinite
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Table 8.1 Fibonacci numbers as a basis of natural numbers

n 1 2 3 5 8 13

0 0

1 1

2 0 1

3 0 0 1

4 1 0 1

5 0 0 0 1

6 1 0 0 1

7 0 1 0 1

8 0 0 0 0 1

9 1 0 0 0 1

10 0 1 0 0 1

11 0 0 1 0 1

12 1 0 1 0 1

13 0 0 0 0 0 1

14 1 0 0 0 0 1

15 0 1 0 0 0 1

16 0 0 1 0 0 1

n 1 2 3 5 8 13 21

17 1 0 1 0 0 1

18 0 0 0 1 0 1

19 1 0 0 1 0 1

20 0 1 0 1 0 1

21 0 0 0 0 0 0 1

22 1 0 0 0 0 0 1

23 0 1 0 0 0 0 1

24 0 0 1 0 0 0 1

25 1 0 1 0 0 0 1

26 0 0 0 1 0 0 1

27 1 0 0 1 0 0 1

28 0 1 0 1 0 0 1

29 0 0 0 0 1 0 1

30 1 0 0 0 1 0 1

31 0 1 0 0 1 0 1

32 0 0 1 0 1 0 1

series

Fn = Fn−1 + Fn−2

with seed values of F0 = F1 = 1, generating

F∞
n=2 = 1 1 2 3 5 8 13 21 34 . . .

These numbers can be used in more than one way to code for all the natural numbers.
The presentation shown in Table 8.1 has the advantage that two adjacent Fibonacci
numbers never contribute to the definition of an integer. The symbols 1 and 0 are
used to identify the Fn that contribute to each sum. In Fibonacci notation an integer
is represented by the inverse of the strings defined in Table 8.1. For example

32 = 1010100.

A periodic pattern in the least significant figures of the Fibonacci code for the
numbers 1–32 reveals an interesting relationship with four-dimensional Euclidean
geometry. In Table 8.2 the truncated codes for pairs of odd and even integers are
compared.

Interpreted as unit vectors the pattern corresponds in detail with what is known
as the Hamilton path [34] of a four-dimensional cube. The Hamilton path through
any connected set of edges and vertices is a route through the edges that visits each
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Table 8.2 Pairs of integers in Fibonacci code interpreted as four-dimensional unit vectors

1–2 3–4 5–6 7–8 9–10 11–12 13–14 15–16

0001 0100 1000 1010 0001 0100 0000 0010

0010 0101 1001 0000 0010 0101 0001 0100

1 2 1 3 1 2 1 4

→ → ← ← → ← ← →

17–18 19–20 21–22 23–24 25–26 27–28 29–30 31–32

0101 1001 0000 0010 0101 1001 0000 0010

1000 1010 0001 0100 1000 1010 0001 0100

1 2 1 3 1 2 1 4

→ → ← → → ← ← ←

Fig. 8.7 Drawing of a
tesseract, or four-dimensional
cube, showing the Hamilton
path in bold coloured lines,
starting at top left. Labelling
x4 = ict the arrows in black
may be interpreted as
connecting two 3D spaces
across a time-inversion
interface (Colour figure
online)

vertex without revisiting a vertex. The Hamilton path through a tesserack, or four-
dimensional cube is shown in Fig. 8.7.

This same pattern had been recognized before [34] by finding the maximum value
of p for which 2p is a factor of each integer. For n odd p = 0 and for the even
numbers it has the value shown in parentheses

2(1), 4(2), 6(1), 8(3), 10(1), 12(2), 14(1), 16(4), etc.

This empirical result also corresponds to the Hamilton path, but without the direc-
tional properties and visual appeal in the Fibonacci code.

The Golden Ratio

The major importance of Fibonacci numbers resides in their close relationship with
the golden ratio. The most striking feature appears in the formula [36] for powers
of τ :

τn = lim
i→∞

Fi

Fi+n
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Table 8.3 Farey sequences, F1−5 and F8

0
1

1
1

0
1

1
2

1
1

0
1

1
3

1
2

2
3

1
1

0
1

1
4

1
3

1
2

2
3

3
4

1
1

0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1

0
1

1
8

1
7

1
6

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

5
6

6
7

7
8

1
1

as series of modularity

m =
∣∣∣∣
ni ni+1
di di+1

∣∣∣∣ = ±Fn

where n and d denote numerator and denominator respectively. Other forms of the
formula are:

τn = Fn−1 − Fnτ,

τn+2 = τn − τn−1,
(
e.g. τ 2 = 1 − τ

)
.

The most useful form of the Fibonacci numbers in the present context occurs
embedded in the general Farey sequence that specifies all rational fractions as an
enumerable array. It is generated by separately adding numerators and denomena-
tors of adjacent fractions in an infinite sequence, starting from 0/1 and 1/1. The
procedure is illustrated in Table 8.3 for the lower Farey sequences, Fn.

These sequences are all unimodular, i.e. m = 1. By following a zig-zag path ver-
tically down the table the unimodular sequence 0

1
1
1

1
2

2
3

3
5

5
8 . . . is found converging

to the golden ratio. As shown in Table 8.4 all other powers of τ are convergents
of k-modular sequences where the k are successive Fibonacci numbers. Only frac-
tions associated with the sequences Fn, with n a Fibonacci number, are involved.
Briefly, the power series τn occur as Fibonacci sequences with seed values of 0/Fn

and 1/Fn+1.
By continuing the golden sequence in the opposite sense through fractions less

than 3
5 , i.e. 0

1
1
2

2
3

3
5

4
7

7
12

11
19

18
31

29
50

47
81

76
131

123
212 . . . , it converges to 0.5802, a value of

special importance in the definition of atomic periodicity [35].

The Periodic Function

A general k-modular set of Farey sequences, defined as

{Sk} = n

n + k
, n = 1,2,3 . . .
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Table 8.4 k-modular sequences that converge to powers of τ

Table 8.5 Special k-modular
Farey sequences that simulate
the composition of naturally
stable isotopes

{S0} = 1
1

1
1

1
1

1
1 . . .

{S1} = 0
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8 . . .

{S2} = 0
2

[ 1
3

] 1
2

[ 3
5

] 2
3

[ 5
7

] 3
4

[ 7
9

] 4
5 . . .

{S3} = 0
3

[ 1
4

2
5

] 1
2

[ 4
7

5
8

] 2
3

[ 7
10

8
11

] 3
4 . . .

{S4} = 0
4

[ 1
5

1
3

3
7

] 1
2

[ 5
9

3
5

7
11

] 2
3 . . .

{S5} = 0
5

[ 1
6

2
7

3
8

4
9

] 1
2

[ 6
11

7
12

8
13

9
14

] 2
3 . . .

{S6} = 0
6

[ 1
7

1
4

1
3

2
5

5
11

] 1
2

[ 7
13

4
7

3
5

5
8

11
17

] 2
3 . . .

{S7} = 0
7

[ 1
8

2
9

3
10

4
11

5
12

6
13

] 1
2

[ 8
15

9
16

10
17

11
18

12
19

13
20

] 2
3 . . .

{S8} = 0
8

[ 1
9

1
5

3
11

1
3

5
13

3
7

7
15

] 1
2

[ 9
17

5
9

11
19

3
5

13
21

7
1

15
23

] 2
3 . . .

is summarized in Table 8.5. All of these sequences converge to unity and each frac-
tion represents the composition of a potential nuclide, Z/N for which N ≥ Z. The
relationship between the fractions and the composition of naturally stable isotopes
is shown in Fig. 8.8. Only a selection of fractional points to demonstrate the gen-
eral trend is shown. Open circles represent the fractions that appear within square
brackets in Table 8.5. Red dots represent fractions that correspond with the compo-
sition (Z/N) of stable nuclides. Arrows show the outline of the triangle of isotope
stability that converges to the golden ratio, τ at Z = 102.

The stability of nuclides depends on the imbalance between protons and neu-
trons, measured as either the ratio Z/N , which, with the exception of 3He, is al-
ways less than 1.0, or as the relative neutron excess, (N − Z)/Z ≥ 0. Whereas the
ratio Z/N decreases with Z, the excess N − Z increases. The optimum value of
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Fig. 8.8 Fractions defined by the k-modular sequences Sk , interpreted as the ratio Z/N , on a plot
against natural numbers, Z (Colour figure online)

0 < Z/N < 1, is approached as

Z

N
= N − Z

Z
,

i.e. Z2 + NZ − N2 = 0

to give

Z = −N ± √
N2 + 4N

2
,

Z

N
= −1 ± √

5

2
= τ.

This is the minimum ratio of Z/N or the maximum of (N − Z)/Z for stable nu-
clides. Graphical analysis [36] showed that both ratios approach this optimal value
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Fig. 8.9 The touching Ford circles labeled 1 to 4, which represent the sequence F4, are centred
at coordinates of x = h/k and y = 1/(2k2). The reciprocals of the y-coordinates are in one-to-one
correspondence with the natural numbers, ordered in sets of 2k2, i.e. 2,8,18,32, etc.; a mapping of
the periodic table of the elements

as Z → 102, N → 165 = Zmax/τ and A → 267 = Zmax/τ
2. The extreme values at

Z = 0 that define the triangle of stability are 2τ − 1
2 = 0.74 and τ + 1

2 = 1.12.
Although the triangle of stability includes all stable isotopes it does not exclude

all radioactive nuclides. However, a number of simple formulae that correctly pre-
dict the stability of all potential nuclides within the triangle of stability do exist [37].
The final result identifies a pattern that corresponds in detail with the observed pe-
riodic table of the elements and reveals a more comprehensive periodic function of
all stable nuclides against mass number, A, atomic number, Z, as well as neutron
number, N = A − Z [38].

An intimate relationship between the periodicity of atomic matter and number
theory is best demonstrated by the amazing fact that the entire periodic table of the
elements is reproduced by the Farey sequence

F4 : 0

1

1

4

1

3

1

2

2

3

3

4

1

1

represented by the equivalent set of Ford circles [35]. Each of the Farey fractions
h/k, codes for a Ford circle of radius and y-coordinate of 1/(2k2) and x-coordinate
of h/k, as in Fig. 8.9.

The resultant geometrical mapping represents the only direct mathematical for-
mulation of the periodic table of the elements, a result that cannot be achieved by
standard wave mechanics.
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Fig. 8.10 A logarithmic
spiral constructed in the
rectangle 21 × 13 from
circular segments inscribed
within a series of squares
with side lengths of Fibonacci
numbers. It converges to the
point where the diagonals of
Fibonacci rectangles intersect

To understand the meaning of the wave-mechanically predicted elemental peri-
odicity it is seen to correspond to one half of the F5 sequence:

→ ψ(n, l,ml) 1s2 2(s2p6) 3(s2p6d10) 4(s2p6d10f 14) 5(s2p6d10f 14g18)

2k2 2 8 18 32 50

Z 0 2 10 28 60 110

It is obvious that the difference between the two schemes cannot be rationalized
by invoking interelectronic effects ad hoc. We make bold to suggest that the discrep-
ancy is due to the three-dimensional nature of Schrödinger’s equation. It disregards
the effects of the environment as well as the four-dimensional nature and curvature
of space-time. The more correct mathematical model of elemental periodicity, and
hence of atomic structure, should be in the form of a nonlinear differential equation,
based on a four-dimensional potential in projective space-time. Although such an
equation awaits solution, the successful simulation of the observed periodicity in
terms of the F4 sequence is interpreted to be consistent with the envisaged mathe-
matical model.

With good reason the number-theory approach may now be extended, as a re-
liable coding of four-dimensional wave mechanics, to an analysis of atomic and
molecular structure and other chemical effects.

The Fibonacci Spiral

The common procedure of using logarithmic spirals in optimization problems gov-
erned by second-order dynamics [39] has its basis in number theory. For the simula-
tion of chemical effects it is convenient to approximate the true logarithmic golden
spiral by a Fibonacci spiral, which is constructed by the procedure demonstrated in
Fig. 8.10. It follows from the sum of Fibonacci squares

n∑

i=1

F 2
i = FnFn+1
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that converges to a golden rectangle. As a typical example the placement of botan-
ical leaves on a stalk depends on an optimal divergence angle of 2πτ 2, measured
along a Fibonacci spiral, starting from its focal point. This procedure will be shown
to be equally effective in the analysis of chemical systems.
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Chapter 9
Chemical Wave Structures

Abstract The wave structure of the electron lends itself to the formulation of chem-
ical phenomena in terms of number theory. Without a particle concept the behaviour
of elementary units of matter, in the form of solitons, is described directly in the
wave formalism originally proposed by Schrödinger and Madelung in hydrody-
namic analogy. The quantum condition appears naturally as a minimum action prin-
ciple. All atoms are alike with nuclei bathed in a uniform electronic fluid, the spher-
ical wave structure of which is revealed by optimization on a logarithmic spiral. The
density distribution pattern has much in common with the Bohr–de Broglie model
of atomic structure and predicts a number of important atomic properties, includ-
ing atomic size, ionization radius, electronegativity and atomic polarizability. The
intimate connection between atomic properties and space-time curvature is convinc-
ingly demonstrated by derivation of atomic radii as a periodic function optimized
on Fibonacci spirals. Details of covalent interaction are elucidated by the manipu-
lation of ionization radii and the golden ratio as parameters to predict interatomic
distance, bond order, dissociation energy, stretching force constant and dipole mo-
ments. Extended to molecules the matter-wave approach demonstrates that the con-
cepts of structure and shape of a free molecule are strictly four-dimensional. Molec-
ular structure observed and modelled in three dimensions only applies to condensed
phases. Molecules involved in chemical change are essentially in the free state and
their mode of interaction is not always obvious as a function of assumed three-
dimensional structure. Proposed mechanisms for synthetic processes serve to ratio-
nalize the apparent discrepancies.

9.1 Introduction

By now it is well known for many reasons that there is no evidence for the existence
of point particles of whatever nature. Although it is widely conceded that chemical
atoms have internal structure, the most advanced theories of physics still consider
all sub-atomic matter to be made up of elementary point particles. It is therefore
instructive to repeat the conclusion reached more than a hundred years ago by Som-
merfeld, based on direct calculation [1]:

. . . in case the charge is concentrated at one point, the force [necessary to
maintain a motion of a bodily charge] is infinite. . .

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_9,
© Springer Science+Business Media Dordrecht 2013
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Careful scrutiny of the literature confirms that this simple model, which in the words
of Lorentz [2] states that

. . . electrons which I take to be spheres. . . in the state of rest, have their
dimensions [in the direction of motion] changed by the effect of translation,

has never been refuted. In modern terminology this model defines the electron as an
indivisible four-dimensional whole, consisting of entangled units of mass, charge
and spin, confined to a volume that varies in size and shape in response to its envi-
ronment.

9.2 Electronic Structures

In a word, the electron is best described as a soliton, with implied standing-wave
structure. Despite their variable size solitons are non-dispersive. They interact with-
out losing their identity. They may pass through each other or form a composite
from which they reappear virtually unaffected in size and shape.

Interelectronic effects are readily visualized in terms of these criteria. Two elec-
trons of opposite spin may coalesce to form a bosonic pair whereas electrons with
equal spins interpenetrate without sticking. In principle a large number of bosonic
pairs may flow together under favourable conditions to form a so-called Bose con-
densate, with all electrons at the same energy level. The phenomena of superfluidity
and superconductivity depend on the formation of such condensates. These phenom-
ena are rare because perfect bosonic pairing is readily disturbed by the environment,
such as an imperfect crystal lattice. In these cases the restricted electronic mobility
gives rise to various degrees of ohmic conduction.

A collective of electronic solitons propagates through the vacuum as a nonlinear
plane wave, as described by the sine-Gordon equation:

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
ψ + m2 sinψ − 0.

The terms in brackets define a standing wave by components that move in opposite
directions, giving rise to a wave train as shown in Fig. 7.1. The product of group and
phase velocities vgvφ = c2.

All sub-atomic entities, even atoms and small molecules, have the same type of
wave structure and, concentrated in beams, exhibit familiar wave properties such as
diffraction. The wave train envisaged here should not be confused with the photons
of traditional quantum theory, which are point particles. However, like photons the
energy of a propagating soliton is related to the de Broglie frequency of the wave
train, E = hν.

It is instructive to note how the hydrodynamic interpretation of wave mechanics,
proposed by Madelung [3], but rejected with indecent haste at the time, serves as
an attractive model for the electronic behaviour considered here. As demonstrated
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before [4] Madelung’s specification of the wave function

Ψ = ReiS/�

as an action function, separates the wave equation into two equations

∂S

∂t
+ 1

2m
(∇S)2 + V − �

2

2m
· ∇2R

R
= 0,

∂R2

∂t
+ 1

m
∇(

R2∇S
) = 0

(9.1)

that closely resemble Euler’s equations of hydrodynamics. This interpretation re-
quires R2 = ρ(x), the density of a continuous fluid with stream velocity v = ∇S/m.

The last term in (9.1) is interpreted hydrodynamically as a function of internal
interactions and was later interpreted by Bohm as quantum potential energy. This is
the term that appears in the nonlinear wave equation (7.19).

Madelung’s distinction between stationary and non-stationary states, where both
density and flux vary periodically only in the latter, is of crucial importance. It re-
flects the results of Sect. 7.3.5 according to which linear eigenvalues appear un-
changed, together with the more general nonlinear states. On writing the energy as
a volume integral of the form

E =
∫

R2 ∂S

∂t
dV

the same expression is argued to be valid for non-stationary states, that fluctuate
with the same periodicity as νik = (Ei − Ek)/h. This may now be interpreted as
the nonlinear formulation of what became known as a quantum jump. The emission
or absorption of radiation therefore happens by slow transition in a non-stationary
state.

Commenting on the relationship between wave mechanics and hydrodynamics
Madelung concluded that electrons should be interpreted with the ability to inter-
penetrate without fusing together, correctly anticipating the properties of a soliton.

9.2.1 Numbers and Waves

A modern paraphrase of Madelung’s ideas describes an electron or a collective of
electrons as a continuous fluid consisting of flexible soliton units, or wave structures.
In shape a single electron may vary between an extended plane wave and a point-like
object, depending on its environment.

It is of special interest to examine an electron captured in the field of a posi-
tive charge, concentrated on a miniscule massive object known as a proton. The
symmetry of the field demands the electronic wave structure to be dispersed into
a spherical shell around the proton, in an arrangement that minimizes the action
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of the combined system. To first approximation the implied equilibrium depends
on a balance between charge and spin interactions, colloquially referred to as elec-
trostatic and quantum effects. Mathematically this equilibrium is conveniently de-
scribed as a balance between classical and quantum components of the potential
energy, V = −Vq .

Should this electron absorb energy from an electromagnetic field, which comes
in discrete units, the equilibrium is re-established in a modified arrangement. The
allowed energy levels, known from spectroscopic analysis are modelled reliably by
the matter-wave equations developed by de Broglie, Schrödinger, Dirac and others.

The increased number of extranuclear electrons on more massive atoms cannot be
simulated with the same accuracy as for the hydrogen atom. The standard practice is
to describe the electronic configurations of non-hydrogen atoms qualitatively, using
arguments based on spectroscopy and the wave-mechanical model for hydrogen.

As more sensitive instrumentation revealed spectroscopic features at variance
with theoretical models the response consisted in the addition of secondary assump-
tions rather than an upgrade of the seminal theory. In particular, no effort was made
to eliminate the assumption of elementary point particles, to reformulate the theory
as a function of non-Euclidean four-dimensional space-time, or to take cognisance
of nonlinear effects. A blind belief in the infallibility of a three-dimensional linear
model of the world persists. Even more worrisome is the demonstration [5] that the
seminal Rydberg-Ritz equation

�Emn = R

{
1

n2
− 1

m2

}

that defines a linear graphical relationship with the same slope and intercept, is
not identically valid. This equation, based on the original Balmer conjecture is the
irreducible assumption on which the entire quantum theory of matter is based.

The deterrent that prevents the exploration of nonlinear four-dimensional alter-
natives is doubtlessly mathematical complexity. Existing models are of two types—
based on matrix algebra and linear differential equations, respectively. This ap-
proach commands such respect that it is often overlooked that these quantum mod-
els are just that—mathematical models. Wave mechanics reflects the wave nature of
matter only in name and matrix mechanics is not based on any recognizable physical
model.

The new paradigm advocated here is to recognize that matter exists as wave struc-
tures in non-Euclidean space-time and to formulate a mathematical model consistent
with this assumption. It is highly unlikely that this could be achieved in the medium
of matrix algebra, which becomes unwieldy even in three dimensions. The prospect
of solving a four-dimensional nonlinear differential equation without separation of
the variables appears equally daunting. Supercomputers could probably do the job.

It appears to be constantly overlooked that physical theory could be supported
by any form of mathematical model apart from a differential equation. However,
when physical phenomena are correctly described by number theory the tendency
is to dismiss the results as mere numerology. It has never been demonstrated in
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what way the use of differential calculus is any different, or has a deeper physical
significance, than numerology.

Inspired by the superior simulation of all forms of atomic periodicity by the meth-
ods of number theory, compared to the results obtained by differential calculus, use
of the same approach in the analysis of other systems of chemical interest is ex-
plored in what follows.

9.3 Atomic Structure

The feasibility of using number theory for the analysis of atomic structure is
assessed by comparison with the model that assumes a hydrogen-like wave-
mechanical energy spectrum. The corresponding electron configuration dictated by
the quantum numbers n, l, ml and the exclusion principle, implies that a multi-
electron atom remains spherical in its ground state. This conclusion depends on
the fact that any degenerate set of harmonic eigenfunctions consists of one real
(spherical) function with ml = 0 and conjugate pairs of complex functions with
ml = ±(0, l), which quench into spherical objects. In physical terms this model is
interpreted to specify an atomic nucleus spherically surrounded in equilibrium by
a uniform electric fluid with a total charge of Ze, rather than so many electrons.
The fluid is quantized in the sense that it may be dispersed into Z identical units,
but not beyond that. There are no sub-electronic electric charges. The complexity of
electronic energy levels increases as a function of atomic number with the addition
of a 2n − 1 degenerate sublevel as compared to the previous lower level.

This arrangement represents an optimization problem of the same type as the
gravitational accretion of satellites from a dust cloud in the formation of the solar
system, which was solved on a Fibonacci spiral [6]. This two-dimensional problem
was solved with a convergence angle of 3π/5 = 108° � πτ .

The electron cloud differs from this in being a three-dimensional distribution that
responds to an electromagnetic rather than a gravitational field. The geometrical
details of the distribution must depend on the 4π periodicity of the spin function
and the variation, limited by a factor of 2n − 1, of electron density between the
n − 1 and nth energy levels. Optimization [7] with the variable divergence angle of
4π/(2n − 1) is shown in Fig. 9.1.

The radial distances that correspond to the convergents increase as n2, exactly
like the Bohr radii of n2a0. Unlike the Bohr radii that represent local maxima in
electron density, the interpretation [8] in terms of a spherical wave structure corre-
lates n with the closure of the periodic groups of Fig. 8.9, as shown in Fig. 9.2.

From the known number of electrons the density for unitary atoms at the crest of
each spherical wave is calculated directly, and found to be in exact agreement with
empirical Thomas–Fermi simulations and with Hartree–Fock radial expectation val-
ues [8]. More significantly, this predicted nodal structure is observed experimentally
in photoionization microscopy [9] and Fourier transform scanning tunneling mi-
croscopy [10]. Despite claims [9] to the contrary, these are not the nodal structures
of the Schrödinger solution.
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Fig. 9.1 Optimization of
atomic electron density on a
Fibonacci spiral

Fig. 9.2 Spherical atomic
wave structure with nodal
surfaces at n2a0. The stippled
curves indicate electron
density as numbered.
Spectroscopic sub-levels s, p,
d , f follow the fine ripple
with 2n − 1 cycles between
the nodal surfaces

9.4 Chemical Concepts

The spherical wave structure derived from Fibonacci optimization was shown [8] to
predict electron densities as accurately as the computationally intensive Thomas–
Fermi and Hartree–Fock calculations that consist of self-consistent optimization of
trial functions based on Schrödinger’s solution for hydrogen. With as little effort
the wave model lends itself to the derivation of several other chemically significant
quantities, most of which have never been calculated from first principles before.

9.4.1 Atomic Size

The appearance of spherical nodal surfaces ensures a reliable estimate of atomic size
from the radial extent of the outer boundary on the electron density of each atom. As
a practical procedure the limiting radii for the alkali metals were calculated directly
[8] and by self-consistent interpolation the radii for all other atoms could be derived.
The procedure depends on the introduction of empirical parameters, as in

rp = r(s1) · σ
μp
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Fig. 9.3 Atomic radii calculated from spherical atomic wave structures, in units of a0

by which the radii of atoms in a p-block are related to that of the radius, r(s1) of the
alkali metal in the same period. By reference to the mean densities in each period
and sub-level the parameters σ and μ converge to self-consistent values.

A remarkable spin-off from this analysis relates to the mean volume occupied
by different types of electron. Expressed as vi = Ve/100a0, electron volumes in
period 6 of Fig. 9.2 define a power series in φ = 1/τ , within rounding-off errors:

vs

(
φ3), vd

(
φ

8
3
)
, vp

(
φ

7
3
)
, vf

(
φ2)

with an overall mean of φ
7
3 .

The final results are presented graphically in Fig. 9.3. It is immediately obvious
how the distribution reflects a periodic relationship exactly as in Fig. 8.9, and not in
line with the hydrogen energy spectrum.

The irregularities in the curves of Fig. 9.3 are due to the use of irregular electron
configurations adopted on the basis of spectroscopic results. There are nine irregu-
larities in total, five of which occur in the second transition series, i.e.:

Cr, Nb, Mo, Ru, Rh, Pd, La, Gd, Pt.

The textbook explanation [11] of the irregularities is that

. . . competition between. . . two states develops, and the process of filling
is not so regular. . .
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More specifically, the s1d5 configuration of Cr and Mo and the d1f 7 of Gd may
be rationalized [12, p. 632] as a preference for the maximum spin state of the half-
filled arrangement. It probably has some validity although it fails to account for the
regular configuration of W or the severe fluctuations in the second transition series.
Here is a situation that clearly cannot be dealt with by any qualitative theory as the
ultimate explanation should be sought in a full four-dimensional analysis.

Except for these anomalies the pattern that emerges from Figs. 9.2 and 9.3 de-
rives purely from the optimization formula of Fig. 9.1, without further reference to
chemical systems. Like the matching periodic structure of Fig. 8.9 it is an indepen-
dent numerical result, based on the properties of Fibonacci and Farey sequences,
and the calculations that are involved require only modest mathematical skills. It
matches, and in several ways surpasses, all of the comparable quantum-mechanical
results. It is tempting to claim that, given Nagaoka’s conjecture [13] and the names
of the elements, the number model provides an adequate introduction to chemical
theory, without quantum mechanics.

9.4.2 The Bohr–de Broglie Model

Bohr’s conjecture that the electron on a hydrogen atom is restricted to exist only in
discrete stationary states is given physical content by de Broglie’s model of a matter
wave of wavelength λ = h/p, which, for a standing wave in a spherical stationary
state, is restricted to values that satisfy nλ = 2πr for radial distances of r and inte-
ger n. This condition implies that a quantity, equivalent to an angular momentum, is
quantized in units of action:

n�= nh

2π
= pr.

From Bohr’s condition of balanced electrostatic and mechanical forces the radii of
allowed spherical stationary states follow from

e2

r2
= p2

mr
as r = (pr)2

me2
= (n�)2

me2
.

The total energy of the electron as the sum of potential and kinetic energy

V = −e2

r
, T = p2

2m
= e2

2r

reduces to

E = V + T = − e2

2r
= me4

2(n�)2
,

in electrostatic units. The principal quantum number n = 1,2, . . . identifies the
spherical standing waves in the stippled outlines of Fig. 9.2.
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The quantization of action would follow the pulsation of a three-dimensional
fluid sphere in a central field, which is described by Laplace’s equation

∇2V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0.

This differential equation may be solved [4] by separation of the variables under the
assumption that the potential may be defined as the product of three one-dimensional
potentials, or cartesian components of V = X(x) · Y(y) · Z(z). This solution is sub-
stituted into the equation and after differentiation, divided by V , to give

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
= 0.

Each term is a function of one variable only and hence independent of the two other
variables, which implies that each term is independently equal to some constant, e.g.
d2X/dx2 = KX. By defining the constant as a squared quantity each equation is a
one-dimensional Helmholtz equation, which is solved by an exponential function.
For K = k2

1 , X(x) = c exp(±k1x). Noting that ea.eb = e(a+b), the overall solution
follows as

V (x, y, z) = ek1x+k2y+k3z

with

k2
1 + k2

2 + k2
3 = 0. (9.2)

This condition requires at least one of the constants to be a complex quantity, such
that (ik)2 = −k2 and i = √−1, unless

k1 = k2 = k3 = 0. (9.3)

An interesting situation arises as one of the constants is equal to zero. The solution
that involves the two remaining terms then requires k2

1 +k2
2 = 0, e.g. k1 = k, k2 = ik.

Hence

X = c1e
±kx, Y = c2e

±iky

or

Vk = c1e
±k(x+iy), (9.4)

Vz = c2z + c3. (9.5)

This solution occurs in Fig. 9.2 as the ripple with 2l + 1 cycles in each re-
gion, labeled s, p, d , f , with the so-called angular momentum quantum number
l = 0,1,2,3 respectively.

It is emphasized that the variables in (9.4) are not separable because of condition
(9.2). This means that the complex functions cannot be reduced to real functions
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Fig. 9.4 Diagram to define
rotation in the complex plane

unless (9.3) applies. The definition of real surface harmonics that feature in chemical
orbital theories is thus ruled out as mathematically impossible by this condition.

In polar coordinates the complex exponential exp[±k(x + iy)] defines a rotation
of ϕ about the z-direction, as shown in Fig. 9.4, and noting that eiϕ = cosϕ + i sinϕ,
i.e.

f (ϕ) = Φ = eikϕ or
dΦ

dϕ
= ikΦ.

Rearranged into the form

−i
∂

∂ϕ
(Φ) = kΦ

it is known as an eigenvalue equation in which the parameter k specifies the allowed
values of the angular momentum, which according to the Bohr model occurs as
discrete values ml�.

The quantum number ml = 0 generates the vibration (9.5) along z. The 2l + 1
eigenvalues of Lz are generated by an eigenvalue equation for the total angular
momentum of the form

L2Y = l(l + 1)�2Y.

The important quantized electronic energy and angular momentum eigenvalues
in a central field are therefore seen to derive from the simple spherical wave model,
without solving the associated differential equation. Although detailed expressions
for the radial wave functions are therefore not available, the general exponential ac-
tion function Ψ = R exp(−iS/�), known from elementary wave theory, is sufficient
for the simulation of most chemically important systems by number theory.

9.4.3 Ionization Radii

Chemical change is controlled by the interaction between the electrons that consti-
tute the outermost maxima of atomic and molecular wave structures. In virtual all
cases interaction is initiated by a suitable process of promotion that activates the
reactants into a valence state. In practice promotion depends on an increase in elec-
tronic energy due to heating or photochemical activation, resulting in more violent
collisions between interacting atoms and molecules. The desired result is the release
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of a valence electron from its parent atomic core, suitably activated for interaction
with other activated entities.

A controlled process of atomic activation by hydrostatic pressure is particularly
well suited for computer simulation. Such a simulation [14], starting from Hartree–
Fock wave functions showed that sub-levels of lower angular-momentum quantum
number, l, are energized preferentially, leading to an inversion of levels with in-
creased pressure and the invariable ionization of a spherically symmetric s-type
electron. For any atom a state of compression to a critical radius is reached where
an electron becomes effectively decoupled from the atomic core. These, so-called
ionization radii, r0, are characteristic of individual atoms.

In order to perform an equivalent simulation in the spherical-wave protocol it
is argued that the hydrostatically decoupled electron becomes confined at uniform
density to a sphere of radius r0. This radius is calculated by the simple procedure of
spreading the concentrated one-electron valence density of an electron at the radial
maximum of the outer shell into a sphere at uniform density. The results [8], not
only match the Hartree–Fock values, but are more reliable for the smaller important
first-period atoms.

The significance of this result lies therein that ionization radii are indispensible in
the simulation of chemical abstractions such as electronegativity and the parameters
that feature in covalent interactions.

9.4.4 Electronegativity

In reviewing the origin and current status of the electronegativity concept [15] se-
rious confusion around the theoretical basis and appropriate units of the measure is
exposed. To unify the disparate models atomic electronegativity is redefined as the
chemical potential of the valence state as derived from ionization radius.

As both the classical potential energy and kinetic energy of a decoupled valence
electron tend to zero, the energy of the electron confined to the ionization sphere,

Eg = h2

8mr2
0

is interpreted as quantum potential energy, Vq . This is the same parameter that oc-
curs in the nonlinear Schrödinger equation (7.19) which explains why electronega-
tivity is undefined in traditional quantum chemistry.

Correspondence with electronegativities in common use is achieved by setting
χ = √

Eg . With Eg in eV and r0 in Å units, it reduces numerically to χ = 6.133/r0.
As remarked before [15]:

It is indeed the tendency of an atom to interact with electrons and the fun-
damental parameter that quantifies chemical affinity and bond polarity.

The periodic table of the elements, reprinted here as Table 9.1 from [16], sum-
marizes the values of both r0 and χ as derived from the spherical-wave model of the
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Table 9.1 Periodic table of the elements

atom. As demonstrated in the following sections many characteristics of covalency
derive in a simple way from these tabulated values and Fibonacci numbers.

9.4.5 Covalent Interaction

A major objective of theoretical chemistry is to understand and predict the interac-
tion between atoms to form molecules. The hardest to predict is interatomic distance
in the resulting molecule. The reasonable suspicion that ionization radius should
be a measure of homonuclear interatomic distance [17] is readily confirmed for
diatomic interactions traditionally considered to be of first order. A sampling of
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Table 9.2 Calculated
interatomic distances (Å) for
first-order homonuclear
interaction

C N Cl As Se Br

d(X − X) 1.545 1.467 1.996 2.43 2.35 2.27

Expt. 1.54 1.47 1.99 2.44 2.32 2.28

Table 9.3 Interatomic
distance, Å C Cl S Br

H–X 1.14 1.30 1.34 1.38

Expt 1.12 1.27 1.34 1.41

calculated results, using the linear equation, dc = 0.868r0, that relates interatomic
distance to ionization radius is shown in Table 9.2. Heteronuclear first-order in-
teractions have been characterized less well experimentally, except for some H–X
interactions, shown in Table 9.3, using R0 = √

r0(1) · r0(2).
Exceptions to these rules include the homonuclear interactions, traditionally in-

terpreted as first order, O–O, F2, and I2 that require a proportionality constant of
0.932 in order to match the experimental distances. This observation prompted a
more detailed analysis of the relationship d ′ = d/r0, where the characteristic di-
mensionless interatomic distance, d ′ is a function of bond order [17].

9.4.6 Bond Order

An empirical relationship between d ′ and bond order is readily established on ex-
amination of a large number of well-documented diatomic interactions. The well-
defined relationship

d ′ = jbτ
n

that converges with increasing powers of τ , as a function of Fibonacci numbers, was
found [17] to generate definitive values of jb , and hence of d ′, for integer and half-
integer bond orders, b. The powers, n, for lowest-order homonuclear interactions
are in Fig. 9.5.

Within a given period interactions with common n have equal bond orders. Cal-
culated n, for first-order interactions, increases, on average, stepwise from n = 5,6
for second-period elements, to n = 10 for period 6. The parameter n = 6 for N,
O, F defines bond order 1

2 . For second- and third-order interactions the appropriate
exponents within a given period are n2 = n1 − 1 and n3 = n1 − 2.

The converged values of d ′ for bond orders from 0 to 4, in half-integer steps,
increase from d ′ = 1 to τ . On a Fibonacci spiral the values of

d ′ = 1,0.935,0.869,0.804,0.764,0.724,0.683,0.658, τ,

are reproduced by a divergence angle of π/16, as shown in Fig. 9.6.



194 9 Chemical Wave Structures

Fig. 9.5 Periodic variation of the bond-order exponents, τn

Fig. 9.6 Simulation of
integer bond orders on a
Fibonacci spiral

9.4.7 General Covalence

A well-defined scheme to calculate the details of pairwise covalent interaction by
either point-charge or Heitler–London simulation resulted in the definition of a set
of atomic interaction radii, ra , somewhat different from, but closely related to the
more soundly defined ionization radii, r0 [4].
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Table 9.4 Anomalous
interaction radii of N, O and F C N O F

r1/a0 1.75 1.49 1.27 1.09

ra/Å 1.85 1.69 1.51 1.37

remp/Å 1.85 1.62 1.51 1.37

r0/Å 1.78 1.69 1.60 1.52

Fig. 9.7 Diagram to define
the interdependence of
dimensionless interatomic
distance and dissociation
energy in covalent interaction

The difference between the two sets of radii are readily identified by the ratio
ra/r0 < 1 for electropositive elements (metals) and ra/r0 ≥ 1 for non-metals. In all
cases ra/r0 → 1 with increasing atomic number. The only exception to this general
rule occurs in the second period for Li and the elements N, O, F, with a progressive
tendency for r0 to exceed ra .

The reason for this discrepancy traces back to the assumption of uniform electron
density in the valence state, which not necessarily holds in a chemical interacting
environment. Polarization of the ionization sphere of electropositives depletes the
valence density near the radial limit, with the opposite effect for non-metals, which
explains the general variation of the ra/r0 ratio. The small Li atom is highly polar-
izable.

The p-shell anomaly occurs because the inner shell of two electrons provides
minimal screening of the nuclear attraction that increases with atomic number. The
observed one-electron densities in the 2p-shell [8] are found empirically to increase
by a factor (1.06)p with the number of p-electrons. Noting that 2a0 = 1.06 interac-
tion radii in Å are predicted from r1/a0 (Fig. 9.3) as ra = (1.06)p−1r1.

The discrepancy between calculated and empirical ra for N in Table 9.4 is most
likely due to an unreliable empirical estimate. The revised estimate is remp = r0 =
1.69 Å.

Taking advantage of these observations, and assuming strict linearity with atomic
ionization energies [18], some minor adjustments to the empirical radii served to
establish a final set of values.
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Although the simulation of covalent interaction by point-charge interaction is
now superseded by the number-theory approach it is of interest to note the pre-
cise way in which it graphically limits the mapping of D′ against dimensionless
interatomic distance defined as d ′ = d/ra to a narrow crescent that depends on the
golden ratio, as shown in Fig. 9.7.

The diagram is constructed within a golden rectangle. Homonuclear diatomic
interactions, irrespective of bond order, map to the curve CF, centred at the point
(2,1), and continue along FB of the arc BFA for higher order interaction. Interac-
tions with substantial transfer of charge, including the oxides and chalconides of
group 4, do not follow the covalence curves—a good diagnostic for ionic contribu-
tions to an interaction.

9.4.8 Atomic Polarizability

Atomic polarizabilities are notoriously difficult to either measure or calculate. The
most reliable measured polarizabilities are those of the monatomic noble gases,
obtained by low-frequency measurement of dielectric constant [19]. These val-
ues provide a useful guide for scaling other measurements and theoretical simu-
lations.

The polarizabilities of only the smallest atoms have been calculated in detail,
based on a perturbation method [20, 21]. A variational calculation for Be, for exam-
ple, required a 105×53-term perturbed wave function [22]. Various approximations
are necessary for both experimental and theoretical estimates to arrive at “recom-
mended” polarizabilities for all other atoms. Empirical estimates are often based on
covalent radii or single-bond lengths [23].

The polarizability of atoms and molecules is one of those useful chemical proper-
ties which is not only difficult to calculate but even to define in non-classical terms.
It is succinctly defined as the electric moment induced by a field of unit strength,
i.e. as:

α = m/F

= qr

q/r2
= r3

on a charged conducting sphere of radius r , with the dimensions of a volume.
Atomic volume as derived from the set of atomic radii [8], calculated from the
wave model, is therefore recognized as a potential measure of atomic polarizabil-
ity.

Atomic volumes calculated as V = 4πr3
1 /3, in units of Å3 ≡ 10−24 cm3 exhibit

the same periodicity as the recommended values of atomic polarizability [18] and
by simple scaling reproduce these in detail. The recommended values are obtained
by scaling from SCF calculations and forcing agreement with better values where
available [18, 19]. These recommended values are compared with α′ = σV μx in
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Table 9.5 Calculated polarizabilities of representative elements in units of Å3

Li Be B C N O F Ne

α 24.3 5.60 3.03 1.76 1.10 0.80 0.56 0.40

α′ 21.7 11.3 2.74 1.75 1.07 0.81 0.56 0.40

Na Mg Al Si P S Cl Ar

α 24.11 11.0 6.8 5.38 3.63 2.90 2.18 1.64

α′ 22.88 11.86 7.8 5.32 3.60 2.78 2.14 1.67

K Ca Ga Ge As Se Br Kr

α 43.4 22.8 8.12 6.07 4.31 3.77 3.05 2.48

α′ 32.6 20.5 8.23 6.00 4.31 3.68 3.10 2.60

Rb Sr In Sn Sb Te I Xe

α 47.3 27.6 10.2 7.7 6.6 5.5 4.7 4.04

α′ 45.7 28.5 13.0 9.45 6.99 5.88 4.86 4.07

Cs Ba Tl Pb Bi

α 59.42 39.7 7.6 6.8 7.4

α′ 62.44 39.6 14.9 11.1 8.4

Table 9.5. For the elements Li–Ne, σ = 0.52, μ = 1.15, x = p − 3, x > 0. For
higher periods the parameters are the same, except that σ = 0.4. In addition μ = 1.2,
x = s −1 apply for the s-block of periods 4–6. The calculated values that differ from
the recommended by more than the stated uncertainties are printed in bold type.
General periodic trends suggest that in all of these cases the recommended values
are in error.

Essentially equivalent results are obtained for the three transition series as shown
in Table 9.6. The scaling parameters for the first two series are σ = 0.36, μ = 1.08,
x = 5 − d , x ≥ 0. All discrepancies in this case relate to the electronic configu-
rations assumed in the calculations. The present calculation is based on spectro-
scopic results, whereas the recommended values clearly reflect an assumed regular
increase according to s2d1→10. Despite some variation in the expected periodicity
the polarizabilities for the lanthanides, calculated as α′ = 0.37V agreed with the
recommended values [18] well within the rather generous estimated accuracy of
25 %.

Judging by the scaling parameters needed to bring calculated atomic volumes
[8] into register with polarizabilities the electronic response to an electric field ap-
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Table 9.6 Atomic polarizabilities (Å3) for the transition and lanthanide series

Sc Ti V Cr Mn Fe Co Ni Cu Zn

α 17.8 14.6 12.4 11.6 9.4 8.4 7.5 6.8 6.2 5.75

α′ 17.2 14.5 12.3 13.7 9.5 8.1 7.4 6.8 8.2 5.72

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

α 22.7 17.9 15.7 12.8 11.4 9.6 8.6 4.8 7.2 7.36

α′ 22.4 18.9 19.1 16.1 11.5 13.6 12.2 16.7 10.3 7.4

Lu Hf Ta W Re Os Ir Pt Au Hg

α 21.9 16.2 13.1 11.1 9.7 8.5 7.6 6.5 5.8 5.7

α′ 21.4 17.2 13.8 11.1 8.9 8.1 7.5 9.1 8.3 5.7

La Ce Pr Nd Pm Sm Eu

α 31.1 29.6 28.2 31.4 30.1 28.8 27.7

α′ 26.9 30.5 29.8 28.9 27.8 27.2 26.6

Gd Tb Dy Ho Er Tm Yb

α 23.5 25.5 24.5 23.6 22.7 21.8 21.0

α′ 22.0 24.8 24.2 23.6 22.8 22.0 21.4

pears to be different for the usual s, p, d , f classes of electron. Spin pairing has an
additional, more minor effect.

9.4.9 Atomic Radii

Because there is no technique for the direct observation of free atoms the concept
of atomic size has remained vaguely defined. Based on a suggestion by Pauling,
covalent radii, derived from observed interatomic distances in covalent diatomic
interactions, have been used as such a measure for a long time. These radii, from an
early compilation [24] are shown in Table 9.7. There is a clear resemblance to the
free-atom radii [8] from Fig. 9.3 and the corresponding Hartree–Fock values [8, 25].
The radii for atoms in a polarizing field (rα), calculated from α′ of Tables 9.5 and
9.6 are shown for comparison.

The way in which covalent interatomic distances and all of these different radii
are closely related to ionization radii and number theory suggests the possibility of
deriving atomic size directly as a function of only the golden ratio.
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Table 9.7 Atomic radii (Å)

Li Be B C N O F Ne

rcov 1.33 0.89 0.80 0.77 0.74 0.74 0.72

rat 2.12 1.72 1.06 0.90 0.77 0.66 0.56 0.48

rα 1.80 1.39 0.89 0.75 0.64 0.58 0.51 0.46

Na Mg Al Si P S Cl Ar

rcov 1.57 1.36 1.25 1.17 1.10 1.04 0.99

rat 2.36 1.90 1.66 1.46 1.27 1.12 0.98 0.86

rα 1.76 1.41 1.23 1.08 0.95 0.87 0.80 0.74

K Ca Ga Ge As Se Br Kr

rcov 2.03 1.74 1.25 1.22 1.21 1.17 1.14

rat 2.62 2.12 1.71 1.53 1.38 1.24 1.12 1.00

rα 1.98 1.76 1.25 1.13 1.01 0.96 0.90 0.85

Rb Sr In Sn Sb Te I Xe

rcov 2.16 1.91 1.50 1.41 1.41 1.37 1.33

rat 2.92 2.36 2.00 1.80 1.62 1.46 1.31 1.18

rα 2.22 1.89 1.46 1.31 1.19 1.12 1.05 0.99

Cs Ba Tl Pb Bi

rcov 2.35 1.98 1.55 1.54 1.52

rat 3.24 2.62 2.11 1.90 1.71

rα 2.46 2.11 1.53 1.38 1.26

Sc Ti V Cr Mn Fe Co Ni Cu Zn

rcov 1.44 1.32 1.22 1.17 1.17 1.16 1.16 1.15 1.17 1.25

rat 2.04 1.98 1.90 1.98 1.77 1.71 1.65 1.60 1.77 1.49

rα 1.60 1.51 1.43 1.48 1.31 1.25 1.21 1.18 1.25 1.11

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

rcov 1.61 1.45 1.34 1.29 1.24 1.25 1.28 1.34 1.41

rat 2.28 2.19 2.28 2.20 1.97 2.05 1.98 0.82 1.84 1.65

rα 1.75 1.65 1.66 1.57 1.40 1.48 1.43 1.59 1.35 1.21
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Table 9.7 (Continued)

Lu Hf Ta W Re Os Ir Pt Au Hg

rcov 1.56 1.44 1.34 1.30 1.28 1.26 1.26 1.29 1.34 1.44

rat 2.27 2.20 2.12 2.05 1.97 1.91 1.84 2.05 1.97 1.65

rα 1.72 1.60 1.49 1.38 1.29 1.25 1.21 1.30 1.26 1.11

La Ce Pr Nd Pm Sm Eu

rat 2.58 2.68 2.65 2.63 2.61 2.58 2.56

Gd Tb Dy Ho Er Tm Yb

rat 2.40 2.51 2.49 2.47 2.45 2.43 2.40

Table 9.8 Parameters that
produce atomic radii for
p-block elements

n μ σ

2 φ2/4 ε3/2

3 ε−1 ε5/4

4 ε−3/2 ε

5 ε−1 ε

6 ε−3/2 ε

The consilience between the golden ratio, Fibonacci spirals, the curvature of
space-time, cosmic self-similarity and the mysterious parameters, ε � 1.111 and
1.0345 [26, 27], prompted a revisit to atomic size. Added impetus was provided by
the observation that ε = √

2τ = 1.11178 . . . = 1.0363, for convenience defined in
the following as ε = 1.112.

A set of formulae to reproduce our free-atom radii and the HF equivalents, only
based on golden-ratio parameters, has been found:

For s-block atoms in period n: r(s) = 1
2φ3ε(n−2s).

For the p-block: r(p) = μφσ (n−p−1), where the parameters μ and σ vary with
n as shown in Table 9.8.

For the d-block:

n = 4,5: r(s2d) = r(ns2)/εd/3, r(sd) = r(ns2)/ε(d−3)/3,
n = 6: r(s2d) = r(6s2)/ε(d+3)/3, r(sd) = r(6s2)/ε(d−2)/3, r(Pd) = r(Xe)/εd/3.

The lanthanide radii are defined in terms of the parameters τ and ε, noting that
ε1/12 = 1.009 and 4τε1/3 = 2.56, as:

r(f ) = 2.56(1.009)7−f , r(La) = 2.56 × 1.009, r(Gd) = 2.56/(1.009)7.
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Fig. 9.8 Derivation of atomic radii on Fibonacci spirals

The radii calculated by these formulae are shown in Table 9.7 as rat . The corre-
spondence between the number-based and Hartree–Fock radii is calculated as

∑ |rHF − rat |∑
rHF

= 0.023.

The correspondence with the free-atom radii calculated directly from the spherical
wave model (Fig. 9.3) is even better. The largest single difference of 0.03 occurs
here for the Cs atom.

The Golden Number Basis

It becomes increasingly obvious that the various sets of atomic radii have a com-
mon basis related to the golden ratio. This being the case the likelihood of deriving
atomic radii through Fibonacci spirals needs to be explored. As shown in Fig. 9.8 the
optimized set of free-atom radii, rat , is reproduced in detail by assuming divergence
angles of γ = 32°, 27°, 22.5° and 7.5° for the atoms of the p-block and the first
d-series. Equally convincing results, not shown, are demonstrable for all remaining
elements.

By an interesting exercise it can be shown that all of the other radii listed in
Tables 9.7 and 9.1 can be simulated in the same way by choosing appropriate diver-
gence angles. A readily testable proposition is to show that the ionization radii of
the first p-series are correctly specified by γ = 10°.

Without any effort to fine-tune divergence angles the observed ratio between γ ’s
in the p-series of ∼1.2, again points at the involvement of the ε-parameter.
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The simple demonstration that the general curvature of a Fibonacci spiral is a
function of ε = √

2τ [26] defines a Gaussian radius of curvature R2 = 2τ , which, on
the strength of the well-documented cosmic self-similarity, confirms that the golden
ratio is a measure of space-time curvature.

9.4.10 Final Results

In the same way that interatomic covalent approach is a function of ionization radii
and bond order, dissociation energy for any homonuclear covalent interaction is
simulated as [17]:

Dc = Kr2
0 τn

where the dimensional constant K = 1.389 or 14.35 converts calculated values into
either eV or kJ mol−1, for r0 in Å.

For heteronuclear interaction

Dc = Kr3
0 (1)τn/r0(2) with r0(1) > r0(2).

The general validity of the extensively documented results [17] resolves into a self-
consistent scheme that fully characterizes all aspects of covalent interaction.

Harmonic stretching force constants are predicted by formulae of the type

kr = 4.615τn+2s

(�d ′)2r0(1)r0(2)
N cm−1,

in which s describes the variation of dimensionless interatomic distance, d ′, with
bond order.

Diatomic dipole moments are calculated [17] by a novel method that does not
take the difference in nuclear charge directly into account. It is argued that cova-
lent interaction occurs between electrically neutral atoms in their respective valence
states. It is only the polarization of the valence shells during heteronuclear interac-
tion that results in a diatomic dipole. The degree of polarization depends on elec-
tronegativity differences and polarizabilities, that both derive directly from ioniza-
tion radii.

9.5 Molecular Structure

The biggest challenge that faces theoretical chemists is the prediction of molecular
structure and shape, given a connectivity pattern. The popular quantum-chemical
procedure consists of the optimization of a three-dimensional trial structure con-
structed according to classical valency rules. It differs from an all-classical opti-
mization by molecular mechanics only in the use of unnecessarily complicated al-
gorithms based on a limited real basis set. It is quantum-mechanical only in name.
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On reducing atomic wave functions into real form the vectorial properties of
the Schrödinger spherical harmonics are lost. The only prospect of deriving the
geometrical shape of a molecule quantum-mechanically is by solution of the rel-
evant four-dimensional wave equation without separating the variables. This hope-
less operation would in principle reveal the interference pattern between the spher-
ical atomic waves that corresponds to minimum action in the equilibrium arrange-
ment. To first approximation the action consists of electron spin and the three-
dimensional Schrödinger harmonics, traditionally interpreted as orbital angular mo-
mentum. Three-dimensional molecular structure could hence be simulated mechan-
ically as the arrangement of minimum angular momentum.

This approach has been used to good effect [4] in the simulation of the three-
dimensional structures of small molecules and to account for geometrical and op-
tical isomerism. The simulation depends in all cases on the criterion of minimum
orbital angular momentum that depends on the mutual orientation of interacting rad-
icals such as –CH3, –OH, etc. It needs to be emphasized that this is no more than
a convenient model. Rather than angular momentum, which implies rotational mo-
tion, the action function, associated with standing waves, unfolds as a distortion of
the spherical symmetry that induces a magnetic moment. These moments line up
anti-symmetrically and any residual moment, that only survives in chiral systems,
is responsible for optical activity.

As pointed out elsewhere [7, 28] absolute three-dimensional chirality and the
sense of optical rotation are not reciprocally related. Optical activity is four-
dimensional in both cause and effect. Only the three-dimensional projection of
molecular structure is observed in diffraction analyses.

In a detailed discussion [29] of four-dimensional molecular structure it is argued
that

[a]part from its structure, a classical molecule has no other properties and
a free molecule, which exhibits the full range of chemical properties, has no
structure.

Molecules, small enough to persist in free space, are too small to develop
a characteristic shape and macromolecules, large enough to exhibit three-
dimensional structure, adopt their characteristic shape in response to inter-
action in condensed phases.

Free biological macromolecules simply fall apart in intergalactic space [30].
In general, molecules only acquire structure in interaction with their environment

as in the process of crystallization or dissolution, where they assume a structure
dictated by the condensed phase.

9.5.1 Molecular Modelling

Chemical practice is guided in general by the details of molecular structure as
derived from crystallographic and spectroscopic analyses. This procedure is well-
known to have produced excellent results for close to a hundred years and destined
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to do so into the foreseeable future. However, the persistent notion that an isolated
molecule should have a robust three-dimensional structure almost identical with the
crystal molecule, has no validity and is a constant source of confusion. Not to men-
tion frustration.

It is still widely believed that by solving a molecular wave equation a quantal
molecular structure can be derived from first principles. In fact, quantum chemists
appear to be convinced that they are succeeding. The mere fact that no wave equa-
tion, more complicated than that for the one-particle central-field problem, has ever
been solved, should advise that this is not the way to go.

The empirical approach [31] is still the only viable option, with the proviso that
it is restricted to yield no more than a three-dimensional condensed-phase caricature
of four-dimensionally shaped molecules. Problems such as the reversible folding of
proteins, the unwinding of DNA and the mechanism of sterically1 forbidden phase
transitions, must inevitably remain unexplored.

There is no obvious alternative for modelling molecular shape, except in self-
similar analogy with some astronomical structure. Recall that the three-dimensional
atomic wave structure is the analogue of a two-dimensional solar system. The next
higher level of a spiral galaxy could be considered as a self-similar molecular model.
Optimization of such a structure in three dimensions would result in a radial distri-
bution function.

The molecule emerges from this as a spherical atomic cluster held together
by constructive interference between the electron waves that surround the nuclei.
There is no fixed connectivity pattern in four dimensions. It only appears in three-
dimensional confinement and varies with thermodynamic state. Molecules in the
gas phase or in solution are more fluxional compared to the solid state. The situa-
tion is conspicuously reflected in the crystallographic structure of a perchlorate ion
clathrated in a crystal cavity [7]. Depending on the size of the cavity its shape varies
from being entirely structureless to a well-defined tetrahedron in close confinement.

9.6 Reaction Mechanism

Molecular structure is of vital importance in the design and execution of chemi-
cal syntheses. It is more than connectivity, but also the stereochemistry that could
decide the outcome of a chemical reaction. Although it is a useful guide, the large
number of exceptional situations associated with name reactions, special inversions,
migrations and rearrangements that occur in the course of chemical change, suggest
that reactions which follow the obvious route are the exception rather than the rule.

The study of reaction mechanisms could be seen as an elaborate scheme to find
plausible explanations of why chemical reactions, more often than not, do not pro-
ceed in the obvious way consistent with the classical rules of chemical affinity. The

1As understood in three-dimensional Euclidean space.
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obvious explanation behind the myriad of special mechanisms is that the conforma-
tion of fluxional four-dimensional molecules in the reaction medium is not neces-
sarily the same as the assumed three-dimensional solid-state structures.

In formulating reaction mechanisms organic chemists concede as much by re-
sorting to the concepts of mesomerism and resonance, which amount to the transfer
of fractional charges, glibly explained as quantum-mechanical effects.

A convincing mechanism remains to be formulated for the famous Beckmann
rearrangement that invariably involves the concerted migration of trans substituents
as in

irrespective of the electron-releasing ability of the R groups [32].
The rearrangement of camphor into p-cymene

is equally baffling.
All cases point at alternative structures in the valence state.
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Chapter 10
A Fresh Start

Abstract The quantum theory as formulated almost a hundred years ago appears
outdated in view of new developments. The firm belief in quantum magic persists
and chemical practice appears irrevocably committed to it, despite many failures.
By way of re-assessment the assumptions behind the Copenhagen interpretation of
the theory are shown to be indefensible on closer scrutiny. It offers no reasonable
atomic model nor an explanation of stationary states. The belief in a quantum theory
of chemistry appears baseless, and a more useful theory is needed. The extension of
chemical modelling by number theory into a general physically meaningful theory is
explored through the simulation of the unexplained phenomena of high-temperature
superconductivity and low-temperature nuclear activity. The prospect of number-
theory analysis in nanoscience is explored.

10.1 Introduction

Quantum theory has become the all-embracing catchword of science and pseudo-
science. The version in vogue is still understood in the formulation of the early 20th
century. Without trying to belittle the founding pioneers it is fair to note that their
interpretation was formulated insensitive to the importance of nonlinear effects, un-
aware of solitons and without the benefit of supercomputers. Many phenomena that
defied comprehension at the time no longer appear mysterious and a reassessment
of quantum events from a modern perspective could be of general benefit.

Quantum theory is freely invoked in the modern world by philosophers, cosmol-
ogists, organic chemists and psychologists to sidestep awkward situations. Once
an intractable problem is labeled as a quantum effect there is no further argument.
Quantum effects are agreed to be acausal, unpredictable, illogical and uncertain, but
infallible. Pressed for clarification any number of different expositions of quantum
theory can be expected. At one level it is a measure of the disturbance effected by an
observation or the collapse of a wave function by conscious interference. If needed
it eliminates reality or enables action at a distance. Quantum theory supersedes clas-
sical mechanics. It solves the many-body problem and invests a point particle with
wave properties and intrinsic spin. There is no end to the magic. Quantum theory
explains the inexplicable. Everybody seems to know it, but nobody is supposed to
understand it [1, p. 129].

J.C.A. Boeyens, The Chemistry of Matter Waves, DOI 10.1007/978-94-007-7578-7_10,
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The situation would be comical had it not been that serious. While the bureaucrats
who control the funds remain convinced that only quantum-based research merits
support the scientists of the world are trapped in a state of paralysis. Too many
of them, despite their unease with the reigning paradigm survive by continued lip
service to protect their prospects of promotion. Retired sages who dare to speak up
are conveniently ignored.

There is a deeper problem. Academic scientists barely have the time to keep up
with current literature in their own narrow fields and certainly not to probe beyond
the facts recorded in their favourite textbooks or to consider the views of some
maverick who pretends to know better. In the case of the quantum theory there is
the comforting certainty that it reflects the unanimous views of a hundred Nobel
laureates.

David Bohm, who tried to develop a causal interpretation of the quantum theory,
died half a century later branded as a heretic [2]. Bohm developed his alternative
interpretation of quantum phenomena in terms of hidden variables, without criti-
cally analyzing the orthodox views. Maybe that was a tactical error, creating the
impression that he was trying to add something, without rejecting the Copenhagen
interpretation.

It is fair to say that most modern science writers and commentators, who guide
public opinion, are poorly informed about the origins of quantum theory and its
interpretational problems. It is generally agreed that such details had been thrashed
out in a series of debates between the titans, including Einstein and Bohr, and that
the final consensus was confirmed mathematically by von Neumann. By now this
perception is entrenched virtually indisputably.

In order to make a fresh start it is probably best to ignore the documented history
and examine, without prejudice, the original arguments of Bohr, Heisenberg and
Born, the gentlemen responsible for formulating the orthodox Copenhagen formu-
lation, still universally accepted.

10.2 The Copenhagen Interpretation

Although the Copenhagen orthodoxy is accepted and respected worldwide it only
exists as folklore without formal documentation. The closest to a statement of the
assumptions and considerations that were taken into account leading to the final
version is to be found in a collection of early reviews by Bohr [3]. As formulated in
this, the theory stands on three pillars:

(1) Complementarity
(2) The Correspondence Principle
(3) The Quantum Postulate.

The aimless repetition and tedious elaboration of these concepts throughout the
book of 119 pages provide a hint at Schrödinger’s exasperation with Bohr’s inces-
sant insistence on quantum jumps during his ill-considered visit to Copenhagen in
1926, e.g. [4, p. 261]. The rambling discussion never really comes to a point and
part of the reconstruction that follows had to be read between the lines.
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10.2.1 Quantum Mechanics

It is clear that Bohr was totally enchanted with Heisenberg’s coding of the hydrogen
spectrum as a multiplicative scheme, later recognized as the matrix formulation of
an eigenvalue problem. It is repeatedly emphasized that

. . . the new quantum mechanics does not deal with a space-time description
of the motion of atomic particles.

The entire quantum philosophy that later developed into the Copenhagen orthodoxy
is based on this statement, which is by no means beyond dispute.

Although Bohr–Sommerfeld orbits do not feature, the quantum condition, E =
hν, is introduced via a modification of Hamilton’s canonical equations by defining
generalized coordinates and momenta, guided by the correspondence principle, in
terms of two-dimensional arrays:

qk = {
q(nm)e2πiν(nm)t

}
, pk = {

p(nm)e2πiν(nm)t
}

based on classical Fourier sums for multiply-periodic systems. On forming the prod-
uct

(pq)k = {
pq(nm)e2πiν(nm)t

}
(10.1)

another square array is obtained, providing all elements of the same frequency are
added together, i.e. those specified by the combination principle

ν(nk) + ν(km) = ν(nm)

to generate the elements of array (10.1).
In practice observed frequencies are interpreted as the energy difference between

stationary states,

hνnm = (Hn − Hm),

which is equivalent to the matrix equation of motion [5]

�q̇nm = i(Eq − qE)nm.

In terms of general matrices P and Q

i(PQ − QP) = �(I )

where (I ) is the unit matrix.
This is the celebrated procedure that Bohr associates with the quantum postulate,

stating:

This postulate implies a renunciation as regards the causal space-time co-
ordination of atomic processes.

Presumably this renunciation is in contrast to the old procedure which is superseded
by the new quantum mechanics.
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The “old” procedure starts from a classical equation of motion to calculate the
energy difference between stationary states, fortuitously1 ending up with the same
condition that links spectroscopic terms to energy differences:

νnm = νnk + νkm = (Hn − Hm)/h.

The novel achievement of the Heisenberg procedure is relating the Ritz combination
principle to a matrix operation and highlighting the commutation properties of dy-
namic variables. The momentum-position commutator is the best-known example,
in the form (pq − qp) = �I/i, abbreviated to [p,x] = i�.

The appearance of non-commuting quantum variables in complex formalism is
featured by Bohr as the fundamental departure from classical theory and causality.
It is therefore sobering to note that the same features are present, though hidden, in
the “fortuitous” Bohr model of the atom.

As shown in Sect. 9.4.2 the two-dimensional rotation of the Bohr electron is
described by the complex function (9.4), which in polar coordinates rearranges into
the eigenvalue equation

−i
∂

∂ϕ
Φ = kΦ.

Assuming the quantum condition of the Bohr model, k = m�, m = 0,±1, etc. it
defines the angular-momentum commutator by

Lz = i�

(
x

∂

∂y
− y

∂

∂x

)
.

The primary assumption of the Copenhagen argument that “mechanical models in
space and time” are rigorously excluded by the “quantum postulate” is based on
the presumed difference between the “old” and “new” approaches, now seen to be
non-existent.

10.2.2 The Quantum Postulate

Bohr’s “search for a more precise formulation of the concepts of quantum theory”
led to the following postulates:

(1) An atomic system possesses a certain manifold of states, the “stationary states”,
to which corresponds in general a discrete sequence of energy values and which

1Heisenberg [6] explains:

. . . the partial agreement of the (old) quantum rules with experience is more or less fortu-
itous. Instead it seems more reasonable to try to establish a theoretical quantum mechanics,
analogous to classical mechanics, but in which only relations between observable quantities
appear.

Emphasis added.
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have a peculiar stability. This latter shows itself in that every change in the
energy of the atom must be due to a “transition” of the atom from one stationary
state to another.

(2) The possibility of emission and absorption of radiation by the atom is condi-
tioned by the possibility of energy changes of the atom, in such a way that the
frequency of the radiation is connected with the energy difference between the
initial and final states by the relation

hν = E1 − E2.

It is presumed in the following that Bohr’s frequent reference to the quantum
postulate refers to these postulates.

As a secondary assumption, in order to renounce any effect related to space and
time it is stated that the new “mechanics takes no account of the coupling of transi-
tion processes in pairs which show itself in those interactions”. To achieve this

. . . only those quantities which depend on the existence of the stationary
states and the possibilities of transitions between them occur in the new the-
ory. . .

The following statements, quoted verbatim from Bohr [3] give some idea of the
Copenhagen handling of the quantum postulate in the development of their theory:

. . . we have reached a complete understanding of the intimate connection
between the renunciation of causality in the quantum-mechanical description
and the limitation with regard to the possibility of distinguishing between phe-
nomena and their observation, which is conditioned by the indivisibility of the
quantum of action.

. . . all changes of state of an atom are [. . .] in agreement with the require-
ment of indivisibility of the quantum of action, as individual processes by
which the atom goes over from one so-called stationary state into another sta-
tionary state and for the occurrence of which only probability considerations
can be made. . .

. . . the fundamental postulate of the indivisibility of the quantum of ac-
tion is itself, from the classical point of view, an irrational element which
inevitably requires us to forego a causal mode of description and which, be-
cause of the coupling between phenomena and their observation, forces us to
adopt a new mode of description designated as complementary. . .

. . . any measurement which aims at tracing the motions of the elementary
particles introduces an unavoidable interference with the course of the phe-
nomena and so includes an element of uncertainty which is determined by the
magnitude of the quantum of action.

. . . any observation takes place at the cost of the connection between the
past and the future course of phenomena.

. . . the finite magnitude of the quantum of action prevents altogether a
sharp distinction being made between a phenomenon and the agency by which
it is observed. . .
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. . . we can visualize the lack of causality by considering our lack of simul-
taneous knowledge of the quantities entering into the classical mechanical
description. . .

. . . the description of the state of a single atom contains absolutely no el-
ement referring to the occurrence of transition processes, so that in this case
we can scarely avoid speaking of a choice between various possibilities on the
part of the atom.

The impossibility of distinguishing in our customary way between physical
phenomena and their observation places us, indeed, in a position quite similar
to that which is so familiar in psychology where we are continually reminded
of the difficulty of distinguishing between subject and object.

. . . in the general problem of the quantum theory, one is faced [. . .] with an
essential failure of the pictures in space and time on which the description of
natural phenomena has hitherto been based.

. . . the essence [of quantum theory] may be expressed in the so-called quan-
tum postulate, which attributes to any atomic process an essential discontinu-
ity, or rather individuality, completely foreign to the classical theories and
symbolized by Planck’s quantum of action.

. . . the definition of the state of a physical system, as ordinarily understood,
claims the elimination of all external disturbances. But in that case, according
to the quantum postulate, any observation will be impossible, and, above all,
the concepts of space and time lose their immediate sense.

. . . in the description of atomic phenomena, the quantum postulate presents
us with the task of developing a “complementary” theory the consistency of
which can be judged only by weighing the possibilities of definition and ob-
servation.

[Of] the essence [. . .] is the inevitability of the quantum postulate in the
estimation of the possibilities of measurement.

. . . the idea of observation belongs to the causal space-time way of descrip-
tion [. . .] this idea can be consistently utilized also in the quantum theory, if
only the uncertainty [. . .] is taken into account.

The matrix theory [. . .] is limited just to those problems, in which in ap-
plying the quantum postulate the space-time description may largely be dis-
regarded, and the question of observation in the proper sense therefore placed
in the background.

According to the quantum postulate any observation regarding the be-
haviour of the electron in the atom will be accompanied by a change in the
state of the atom.

. . . wave-mechanical solutions can be visualized only in so far as they can
be described with the aid of the concept of free particles.

In the conception of stationary states we are concerned with a characteristic
application of the quantum postulate. By its very nature this conception means
a complete renunciation as regards a time description.

. . . the concepts of stationary states and individual transition processes
within their proper field of application possess just as much or as little “re-
ality” as the very idea of individual particles.
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Comment

The only aspect of Bohr’s “quantum postulate” which is supported by observation
is the Planck condition,

E = nhν.

This relationship is considered to arise from the uncertainty associated with any
observation, which in this instance is fixed by the “indivisibility of the quantum
of action”. Apart from this assumption, it is difficult to understand how this condi-
tion, by itself, entails acausality and the separation between quantum and space-time
events, but that is clearly implied.

As already demonstrated the results of the matrix method are entirely equivalent
to that of the atomic model, based on classical mechanics, including commutation
properties and complex formalism. The independence from space and time, which
is claimed, can therefore only arise from the postulated nature of stationary states,
which however, also occur in the mechanical model.

Maybe what makes the difference is the special new feature of stationary states,
said not to be subject to any observational probe and hence to exist timelessly with-
out uncertainty. Nothing is more irrational in all of Heisenberg–Bohr mechanics
than this very notion. Without the bizarre assumption that there is no interrelation
between stationary states, they are in no way different from normal thermodynamic
equilibrium states.

In hindsight it is clear that the motivation behind the frantic efforts [7] in Copen-
hagen to develop an interpretation based entirely on the particle concept was to
refute the results of wave mechanics. Popper’s remorseless exposé [8] of the sor-
did attack on Schrödinger reached the same conclusion. Failure to simulate wave
characteristics by a particle model necessitated the introduction of probability as a
physical agent. It is not too difficult to see how this assumption led on to the notions
of uncertainty, unreality and acausality. The impossibility of measuring quantum
effects and the equivalence of subject and object are just wild speculation.

The Copenhagen formulation is reminiscent of Kelvin’s proof that heavier-than-
air flight was theoretically impossible, shortly before the Wright brothers took off.
Had they been better informed and suitably aware of Kelvin’s authority the aviation
industry might not have developed. It is not too difficult to demonstrate that in terms
of four-dimensional matter-wave mechanics the quantum mystery disappears. (See
Sect. 6.7.)

10.2.3 Atomic Model

It is instructive to consider the Copenhagen atomic model, again as described in
Bohr’s own words [3]:

Negatively charged particles, the so-called electrons, which are held within
the atom by the attraction of a much heavier positively charged atomic nu-
cleus, enter as common building stones in all atoms. The mass of the nucleus
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determines the atomic weight of the element but has otherwise only a slight
influence on the properties of the substance, these depending primarily on the
electric charge of the nucleus which, apart from the sign, is always an integral
multiple of the charge of the electron. Now, this whole number, which deter-
mines how many electrons are present in the neutral atom, has turned out to
be just the atomic number that gives the place of the element in the so-called
natural system, in which the peculiar relationships of the elements as regards
their physical and chemical properties are so appropriately expressed. This
interpretation of the atomic number may be said to signify an important step
towards the solution of a problem which for a long time has been one of the
boldest dreams of natural science, namely to build up an understanding of the
regularities of nature upon the consideration of pure numbers.

The picture of the atom with which we are dealing is that of a small me-
chanical system which even resembles in certain main features our own solar
system. . .

One might believe perhaps that the properties of the elements do not inform
us directly of the behaviour of individual atoms but, rather, that we are always
concerned only with statistical regularities holding for the average conditions
of a large number of atoms.

Above all, we must assume that the quality of the light which the elements
in certain circumstances emit and which is characteristic of each element is
essentially determined by what occurs in a single atom. [. . .] we expect, on
the basis of the electromagnetic theory of light, that the frequencies of the
individual lines in the characteristic spectra of the atoms should give us a suf-
ficient basis for interpreting this information; indeed, owing to the possibility
of a continuous variation of the mechanical states of motion mentioned above,
it is not possible even to understand the occurrence of sharp spectral lines.

The missing element in our description of nature, evidently required to ac-
count for the behaviour of the atoms, has been supplied, however, by Planck’s
discovery of the so-called quantum of action. [. . .] in contrast with the de-
mand of continuity which characterizes the customary description of nature,
the indivisibility of the quantum of action requires an essential element of
discontinuity in the description of atomic phenomena.

Taking the indivisibility of the quantum of action as a starting point [. . .]
every change in the state of an atom should be regarded as an individual pro-
cess incapable of more detailed description, by which the atom goes over from
one so-called stationary state into another. According to this view, the spectra
of the elements do not give us immediate information about the motions of
the atomic parts, but each spectral line is associated with a transition process
between two stationary states, the product of the frequency and the quantum
of action giving the energy change of the atom in the process.

On the whole, this point of view offers a consistent way of ordering the
experimental data, but the consistency is admittedly only achieved by the re-
nunciation of all attempts to obtain a detailed description of the individual
transition processes. We are here so far removed from a causal description
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that an atom in a stationary state may in general even be said to possess a free
choice between various possible transitions to other stationary states. From
the very nature of the matter, we can only employ probability considerations
to predict the occurrence of the individual processes. . .

A peculiar feature of this attack on the problem of atomic structure is the
extensive use of whole numbers which also play an important rôle in the em-
pirical spectroscopic laws. Thus, the classification of stationary states, besides
depending upon the atomic number, also depends on the so-called quantum
numbers. . .

. . . referring to the ideas of matter waves, [. . .] in connection with the con-
ception of stationary states, the quantum numbers of which are interpreted as
the number of nodes of the standing waves symbolizing these states. [. . .] in
wave mechanics, we are not dealing with a self-contained conceptual scheme
but, rather, as especially emphasized by Born, with an expedient to formulate
the statistical laws which govern atomic phenomena.

Comment

This contrived description represents a brave effort on Bohr’s part to dissociate
himself from his own elegant planetary model of two decades earlier, in favour of
Heisenberg’s fanciful proposal of a system, said to be exclusively based on obser-
vational data. However, one looks in vain for the specification of how spectroscopic
measurement distorts the timeless stationary states.

There is not much method in the madness that invokes atomic free will in order to
avoid any mention of the essential mechanical aspects of the structure for an atom,
admittedly made up of material particles.

Despite his obsession with whole numbers Bohr only reluctantly admits that in
this case they derive from a matter-wave model, but cannot resist the sting in the
tail, in the form of a sideswipe that subordinates Schrödinger’s wave mechanics to
Born’s probabilities.

To summarize, there is no Copenhagen model of the atom. Electrons are either
particles or waves. An appropriate atomic model must hence be formulated in terms
of either particle mechanics or wave mechanics. There is no middle ground and no
room for probability mechanics. Particles do not jump around at random and wave
structures are not defined at point positions. The final conclusion must be dictated by
the “quantum postulate”. Only waves can satisfy the equation pλ = h, and variations
thereof. A particle has no wavelength.

The momentum and wavelength variables are both associated with the wave
structure and the “quantum of action” is a property of space-time. No measure-
ment is required to account for quantum events. The characteristic mass, charge and
spin of an electron imply that it occurs as a non-dispersive solitary wave, known
as a soliton. The only uncertainty is associated with the variable size of the soliton,
which only depends on the environment, with no dependence on measurement or hu-
man intervention. Nothing is unreal, irrational or acausal. A well-defined resonance
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process mediates the transition between “stationary states” and any development is
predictable by the wave equation.

The spherical atomic wave structure, atomic number and the “natural system”
of elements are all simulated correctly by “the consideration of pure numbers”
as shown in the preceding chapters, presumably in realization of Bohr’s “boldest
dream”.

10.2.4 Quantum Chemistry

Traditional wave mechanics is most valuable to the chemist as the interpretational
tool of molecular spectroscopy. However, its impact in the elucidation of fundamen-
tal chemical concepts and interactions has been minimal. Paradoxically, although
not a single problem of chemical significance has been obtained by rigorous solu-
tion of the total wave function, or its matrix equivalent, there is an apocryphal belief
that the course and outcome of any chemical reaction as well as the structure of
all products are predicted quantum-mechanically so well as to render the need of
laboratory study redundant [9].

The whole discipline of quantum chemistry is aimed at achieving this same
impossible goal. It centres around the prediction of the three-dimensional struc-
ture of free molecules, which is undefined, using a methodology which is inade-
quate for this purpose. Some qualitative results, such as the Heitler–London simula-
tion of molecular hydrogen show that, in principle, molecular properties are wave-
mechanical in nature. However, quantitative modelling requires four-dimensional
nonlinear methods, based on the non-Euclidean space-time geometry of general rel-
ativity. While these remain inaccessible one possible strategy that exploits the notion
of self-similarity in number-theory formalism has produced promising preliminary
results. Development of this approach to its full potential depends on the willingness
of the academic community to abandon quantum chemistry in its present form.

10.3 Two New Models

The phenomena of high-temperature superconductivity and cold fusion represent
two notable failures of quantum theory. Although by no means fully substantiated,
the superconduction model based on number theory [10], provides a much clearer
picture of the phenomenon and a rational elucidation of cold fusion by the same
approach will be demonstrated.

10.3.1 Superconductivity

With the discovery of superconductivity of ceramic materials more than a quarter of
a century ago it became clear that an entirely new theory was required to account for
superconductivity in all its forms and at all temperatures. Because of reluctance to
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Fig. 10.1 Superconductive
standing electron wave in
vacuum on the surface of an
n-type diamond

abandon the BCS theory that assumes the effect to be mediated by lattice phonons,
alternative theories are not received sympathetically at all. The reported observa-
tion [11] of a room-temperature superconducting phase in the vacuum between a di-
amond cathode and a gold anode (Fig. 10.1) was not only coolly accepted [12, 13] at
first, but later treated with such hostility that further reports of experimental progress
are now denied reasonable access into mainstream media [14].

Creation of this superconducting phase depends on heavy doping of the diamond
surface by bombardment with low-energy oxygen ions extracted from an oxygen
plasma. On applying a high voltage as shown in Fig. 10.1 electrons, emitted from the
diamond surface, are attracted to the anode, leaving behind a positively charged de-
pletion zone. On first contact the accelerated electrons emit visible Bremsstrahlung
at the anode, but this disappears as the voltage increases and a constant current
flows, conducted by a standing electron wave across the gap, typically ∼5 micron
wide.

Once this phase in the vacuum has been established it remains intact even when
all power is switched off. It stays in place for months and as soon as it is recon-
nected, even to a source of picovolts, the same current flow as before is resumed
immediately. The current across the gap flows in zero field, which is characteris-
tic of, and explained as superconductivity [11]. Although this explanation is widely
rejected it is consistent with the number-theory model of superconductivity.

The Number-Theory Model

The ratio of protons to neutrons, Z/N , for stable nuclides is known to converge
to the golden ratio as a function of mass number, A. This is interpreted to show
that, in order to ensure optimal stability, the same ratio should prevail at the core of
each nucleus, which implies a proton excess of x = Z − τN at the surface. Noting
that a plot of x/Z vs A reveals the known periodicity of the stable nuclides [10]
it is interpreted to confirm that the golden excess, which converges to zero, is a
meaningful measure of nuclear properties. It correlates remarkably well, not only
with the appearance of anomalously high nuclear spin, but also with the tendency of
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Fig. 10.2 The red bands identify the nuclides most likely to cause superconductivity (Colour
figure online)

an element to go superconducting on cooling [10]. This relationship is demonstrated
in Fig. 10.2.

Superconductivity is empirically found to be associated with nuclides of pro-
ton excess not exceeding the limiting lines drawn for each of the 11 × 24 periodic
groups. The blocks in red therefore identify the most likely superconducting nu-
clides with an odd mass number and spin. The correlation is equally valid for the
traditional low-temperature as well as the ceramic and organic superconductors.

The rationale behind this observation is that for a critical separation of operative
nuclei within and between layers in the solid, the excess positive charges line up to
define a featureless background, as in the simple Drude model, that promotes the
formation of standing electron waves between the layers.2 This situation is equiva-
lent to the configuration, as in Fig. 10.1, that creates a standing wave on a diamond
surface. Such standing waves define the superconducting phase. This model has
been shown [10] to correlate with normal-state properties such as the Hall effect
and to account for the Meisner effect and the benefit of isotope enrichment.

10.3.2 Cold Fusion

The hotly disputed phenomenon that became known as cold fusion was first re-
ported almost a quarter of a century ago [15] and the argument still remains to be
settled [16]. However, this author [16] claims that

. . . hundreds of replications [. . .] show consistent patterns of energy pro-
duction and various nuclear products being produced using four different
methods. . .

Ignorance is no longer an excuse for rejecting the claims.

2A periodic potential leads to the formation of band structure and scattering at the Brillioun surface.
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The seminal observation that inaugurated the cold-fusion saga was the production
of unexpected excess heat during the electrolysis of heavy water (D2O containing
LiOD) on a palladium cathode. It was argued that the deuterium produced at the
cathode3 and driven into the metal caused some nuclear fusion reaction.

Convincing evidence exists that cold fusion, with the release of 5 MeV tritons
(3H) occurs on passing an electric current through thin deuterium-loaded titanium
foil, from −196◦ C to room temperature [17, p. 252]. In this case the energy of the
bombarding deuterium ions does not exceed 350 eV.

Despite overwhelming evidence that some form of cold fusion happens the actual
process remains a mystery. Persistent efforts to formulate a convincing model have
by now established a number of criteria to be met for the process to occur and neces-
sary characteristics to serve as guidelines for theoretical simulation. The following
characteristics are frequently in evidence:

1. Ability of the metal to absorb large volumes of H2 or D2.
2. An induction period related to the texture of the cathode material.
3. Appearance of surface cracks before the onset of heat production, with the cre-

ation of a nuclear-active environment (NAE).
4. Sporadic release of tritium = 3H, 3He and 4He, none of which appears to be

essential byproducts of the fusion processes, although none can be discounted
either.

5. Violent events may occur unexpectedly and irreproducibly, often associated with
neutron bursts.

6. Fusion hotspots that persist after electrolysis show up on autoradiographs.

The two metals traditionally found to be most active in cold-fusion processes are
palladium and titanium. Palladium occurs in the form of six stable isotopes of mass
number 102, 104, 105, 106, 108 and 110. Titanium has five stable isotopes with
A = 46−50.

Apart from palladium and titanium the only other metal often implicated in cold-
fusion processes is nickel. Following the criteria outlined above there may well be
other equally effective cathode materials. The various criteria are now examined in
turn.

Hydrogen Uptake

Palladium and platinum are known to absorb H2 up to levels corresponding to
PdH0.7 [18]. The uptake of both hydrogen and deuterium by Pd is described in
detail by Sidgwick [19]. To quote:

3The process consists of:
4D+ + 4e → 2D2
4OD− → 2D2O+O2 + 4e

2D2O → 2D2 + O2



220 10 A Fresh Start

Palladium in the colloidal, powdered or compact state will absorb anything
up to 900 times its own volume of hydrogen at any temperature from zero to
a red heat and beyond.

. . . The absorption is accompanied by an expansion of the solid, and the
lattice constant may increase by as much as 5 %. . .

Of particular interest in the present context is the analysis of hydrogen diffusion
through a palladium plate. It is stated

. . . that the process of diffusion consists in the atomization of the hydrogen
on one surface, the passage of hydrogen atoms through the foil, and their
recombination to hydrogen molecules on the other surface. This explains why
the penetration is so rapid when the hydrogen is produced electrolytically; it
is then already in the atomic state when it reaches the palladium, and so the
heat of activation required by the molecules in order to break the H–H bond
is no longer needed.

Based on this analysis it can be assumed that in the cold-fusion electrolysis deu-
terium reaches the nuclear-active-environment [16] (NAE) in the atomic state.

It is generally agreed [18–20] that the elements Ti, Zr, Hf, Th, V, Nb, Ta and
Pt, but not Mo or W, have the same ability, although less pronounced, as Pd to ab-
sorb considerable quantities of hydrogen, always with a marked decrease in overall
density [21]. Both Ru and Os in finely powdered form absorb large amounts of
hydrogen, which cannot be removed under vacuum [19].

The NAE

Modification of the palladium structure on the uptake of increasing amounts of deu-
terium must eventually cause cracks to develop in the metal surface. Such cracks
are routinely implicated to account for the induction period and considered charac-
teristic of the NAE. It is suggested that, rather than directly initiating the nuclear
reaction, the cracks are symptomatic of critically increased deuterium pressure at
the nuclear-active site.

The Nuclear Reaction

In a related study of nuclear structures [10] convincing evidence was found that su-
perconductivity invariably occurs associated with nuclides that carry excess nuclear
spin due to aspherical distortion of the nucleus. In both Pd and Ti the presence of
such high-spin isotopes prompted the consideration of possible fusions involving
these nuclides.

An attractive feature of an interaction between the high-spin (σ = 5�/2) nu-
clide 105

46Pd of 22 % relative abundance, and deuterium, is the non-appearance of
detectable reaction products other than tritium:

105
46Pd + 2H → 104

46Pd + 3H.

The change in isotopic composition of Pd would be virtually impossible to observe.



10.3 Two New Models 221

Rather than a standard fusion procedure, the proposed reaction amounts to the
capture of a neutron by deuterium from the active Pd isotope. The only measurable
effect would be a decrease of 7.1 MeV in the relative nuclear binding energies [22],
appearing as excess heat. Simultaneous dissipation of the excess spin into the lattice
contributes to the heating. The feasibility of this proposal depends on the existence
of the stable 104Pd isotope, the formation of which entails no high-energy radiation.

The same reaction is possible for the two high-spin 49Ti(σ = 7�/2) and 47Ti(σ =
5�/2) isotopes with respective �E = 8.1 MeV and 8.8 MeV and abundances of
5.4 % and 7.4 %, converting to the stable isotopes 48Ti and 46Ti.

Although the production of free neutrons is not required by the proposed re-
action, their appearance at highly active hotspots, with melting of the metal, is not
rigorously excluded as a secondary reaction. The production of neutrinos to disperse
the excess spin is not excluded either.

The Coulomb Barrier

The effective NAE of the proposed model is a distorted aspherical high-spin isotope
at 20 % of the nuclear sites in solid palladium. Under deuterium pressure the transfer
of a single neutron from palladium restores the spherical symmetry of the distorted
nucleus at a lower energy level, releasing excess energy to the lattice. If neutrons
can be transferred directly between nuclei [17, p. 254] the Coulomb barrier against
the proposed neutron–deuteron interaction cannot be serious.

Discussion

The proposed mechanism lends itself to a number of testable predictions. Isotopic
enrichment of the active nuclides would be an obvious improvement.

The search for other active metals is limited by the requirement of a high-spin
isotope together with a stable isotope of the same element of mass number A − 1.
Single-isotope metals such as 93Nb(σ = 9�/2) are therefore excluded in a process
without radioactivity. The almost-single-isotope 181Ta(σ = 7�/2) could transmute
into radioactive 180Ta. More promising candidates include:

91Zr(σ = 5�/2, �E = 7.2 MeV, abundance 11 %)
99Ru(σ = 5�/2, �E = 7.4 MeV, abundance 13 %)
101Ru(σ = 5�/2, �E = 6.8 MeV, abundance 17 %)
177Hf(σ = 9�/2, �E = 6.3 MeV, abundance 13 %)
179Hf(σ = 7�/2, �E = 6.0 MeV, abundance 18 %).

Mo and W, being inert to hydrogen may perhaps be discounted. Metals with high-
spin metastable isomers could however, become active under suitable conditions,
e.g.:

189mOs(σ = 9�/2, �E = 5.9 MeV, abundance 16 %)
195mPt(σ = 13�/2, �E = 6.1 MeV, abundance 34 %).
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Nickel has been mentioned as an active metal, but with a 61Ni abundance of only
1 % not likely by the mechanism proposed here.

Hundreds of experiments to substantiate electrolytic cold fusion under a variety
of conditions [17] have identified additional reaction products produced in variable
quantities. In many cases unlikely products could be ascribed to careless experimen-
tation and unnoticed impurities. On balance, possible secondary reactions consistent
with the proposed model could be formulated with confidence to account for most
observations. Possible secondary products in low yield are predicted to result from
the reactions

3H → 3He + e−,

2H + 3H → 4He + n.

The observation [17, p. 130] that palladium when saturated with deuterium turns
superconducting at low temperature implies another possible source of low-level
β−-radiation during cold-fusion electrolysis. The most likely reaction responsible
for the appearance of superconductivity,

105
46Pd + (2H + e

) → 107
46Pd → 107

47Ag + β−

could be triggered electrolytically, to produce the radioactive high-spin 107Pd iso-
tope that decays by β− emission with a half-life of 6.5×106 y [23]. It is recognized
as the hypothetical intermediate nuclide produced by low-energy He+ irradiation to
yield superconducting Pd [10, p. 328].

Research strategies based on the scheme outlined here would be free from the
burden of constantly dodging the dictates of nuclear physics. The perennial debate
over numbers of neutrons, neutrinos and γ -rays produced in the process, becomes
irrelevant. There is no point in further comparison with hot fusion processes. With
agreement on the principles involved it should become feasible to standardize con-
trol conditions for the comparison and optimization of experimental procedures and
results. Falsification of the theory could be attempted by replicating the electrolytic
results using a cathode material without a high-spin isotope.

10.4 The Common Wave Model

The common factor between quantum theory, wave motion, self-similarity and the
golden parameter is their shared dependence on integers. Barring the unreasonable
suspicion with which most scientists treat everything that smacks of numerology, the
development of physical models through number theory could well be an attractive
pursuit. The problem is that numerical regularities are everywhere in evidence and
need no special expertise to observe and exploit—a temptation which is hard to re-
sist by mystics, missionaries and charlatans. The Oxford compact dictionary defines
numerology as “the study of the supposed magical power of numbers”. The same
stigma adheres to the application of number theory to scientific problems. Exactly
the opposite is true for differential calculus, another form of mathematics.
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Modern theories in physics and chemistry are ranked according to their mathe-
matical substructure. Conclusions based on solutions of a differential equation are
considered superior to empirical observation. A mere numerical regularity, howso-
ever convincing, remains a coincidence. A wave-mechanical simulation of the pe-
riodicity of twenty elements is considered scientifically more meaningful than the
demonstration of a general numerical function that predicts the periodicity of all
stable isotopes as a function of either Z, A or N = A − Z. A differential equation
that solves for this function is not known.

For such an equation to exist it must be some generalization of (7.19)—not only
nonlinear, but four-dimensional as well. Even computerized solution of such an
equation is a daunting prospect. Adapted for the analysis of many-body problems as
presented by atoms and molecules turns it into an even more distant dream. Given
the encouraging results obtained number theory appears as a more viable interim
measure.

At the heart of the number-theory approach is the reality of cosmic self-similarity.
Relevant examples in support of this notion are just too numerous to ignore. The
golden ratio, often embedded in a logarithmic spiral, features prominently in all ap-
plications. To address chemical problems the state of an electron is assumed com-
pletely fixed by its environment. As a working model it is assumed that the Comp-
ton wavelength, λC = h/mc, describes a free electron in empty space as an infinite
plane wave of momentum p = mc. Restricted in any way the wave is modulated into
a wave packet of de Broglie wavelength λdB = h/p with p < mc, as in Fig. 7.7. The
modulation is quantified by a fine-structure parameter, α′ = λC/λdB = p/mc. An
electron in the ground state on a hydrogen atom, with λdB = 2πa0, a0 = (�/e)2m,
has α′ = e2/�c = α, the well-known fine-structure constant.

Action, in elementary units of h is generated by space-time curvature and space-
time is curved to an extent that depends on the golden ratio. All non-dispersive
units of elementary matter and energy which occur as solitons are of the same type,
with characteristic properties of mass, charge and spin conditioned by the golden
parameter τ .

The same parameter features in the shape of a golden logarithmic spiral, char-
acteristic of self-similar growth structures in four-dimensional space-time and use-
ful as an optimization instrument. The most conspicuous applications are in the
optimization of solar and planetary systems [24] and the electronic structure of
atoms [25].

10.4.1 The Periodic Function

The periodic table of the elements that reflects the comparative electronic configu-
ration of different atoms is modelled in detail by Farey sequences that converge to
the golden ratio and which represent nuclear composition in terms of the rational
fractions Z/N . Convergence as a function of A, Z or N defines three equivalent
versions of an 11 × 24 periodicity of stable nuclides. The periodicity as a func-
tion of Z, when sampled at fixed values of the Z/N ratio, varies in a predictable
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way, commensurate with the response of electron configuration under applied pres-
sure.

By interpreting the state of pressure to reflect space-time curvature the periodic
function correlates with the dictates of an assumed projective space-time topol-
ogy. The hypothetical Euclidean state correlates with a periodic function based on
the Schrödinger solution for hydrogen in an essentially empty universe. Golden-
ratio curvature (Z/N = τ) corresponds to the observed periodic function and for
a curvature that approaches infinity (Z/N = 1), that could be reached in a black
hole, inversion between matter and antimatter and nucleogenesis by α-particle
fusion can be inferred. Observed convergences are consistent with an involuted
closed function that allows a maximum of 100 natural elements with 300 iso-
topes. In interplanetary space (Z/N = τ) the maxima are reduced to Zm = 81 and
Am = 264 = 11 × 24.

10.5 New Horizons

At the next level of aggregation it has been shown that the wave structure of covalent
interactions is strictly controlled by the geometry of a golden rectangle and the
exclusion principle that limits maximum bond order as a function of τ . Bond order
derives directly from a Fibonacci spiral. The covalent parameters of interatomic
distance, stretching force constant and dissociation energy are all simple functions
of bond order and powers of τ .

Optimization procedures for higher-level aggregates like molecules and crystals
may not be feasible without computer assistance, but are understood well enough as
the interference patterns between standing waves. There is no lack of challenging
prospects and plenty of scope for innovative endeavours.

Golden-ratio phyllotaxis imposed on nuclear structure results in the notion of a
surface excess of protons as a possible basis of superconductivity and cold fusion,
both of which are poorly understood as quantum phenomena.

10.5.1 Nanostructures

The blossoming field of nanoscience is increasingly confronted with phenomena
which are hard to explain by the traditional concepts of quantum chemistry [26].
A number of attempts to rationalize the electronic structure [27, 28], conformation
[29, 30] and topology [31] of nanomaterials in terms of hybrid orbitals are noted for
their misleading content. It is generally agreed that [27]:

Carbon nanotubes. . . consist of either one. . . or multiple. . . shells of car-
bon in sp2 bonding configuration.

This is clearly intended as a precise quantum description of carbon nanotubes, al-
though it strictly applies only to a rigid planar system.
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Fig. 10.3 The C70 molecule
unrolled. The interatomic
distances of 1.57, 1.33 and
1.25 Å are of bond order 1,
1.25 and 1.5 respectively

A more precise formulation is attempted elsewhere [31]:

The angle θσπ between the [π orbital axis vector] and a σ direction (i.e.,
a bond) indicates the degree of “pyramidalization” and the hybridization. For
θσπ = 90◦ (planar system), the σ orbitals are in a sp2 hybridization and the
π orbital is a pure pz orbital. For a folded graphene sheet, θσπ has an inter-
mediate value which decreases as the inverse of the radius of curvature of the
folding, and reaches 90◦ at the limit R → ∞.

This is quantum chemistry gone berserk, but perhaps not as wild as the ingeneous
affirmation of the quantum-mechanical nature of nanomaterials [30] that follows:

From a theoretical point of view, the Dirac equation—which replaces the
Schrödinger equation for electrons in graphene—has to be modified when de-
fects are in the lattice. . . . The overlap of pz-orbitals determines the electronic
properties but is altered in the vicinity of structural defects. . . . defects lead to a
local rehybridization of sigma and pi-orbitals which. . . changes the electronic
structure.

The different bonding models proposed for nanocarbon compounds are all based
on the assumption that the in-plane interactions in graphite are of sp2 type. Accord-
ing to the theory, right or wrong, all bond lengths must be the same, d(C−C) =
1.42 Å, with each atom trigonally surrounded by three others in the plane. Accord-
ing to hybridization theory such a graphite sheet, like extended aromatic systems, is
stabilized by a delocalized grid of π -electrons that ensures sterically rigid planarity
as a function of the combined barriers to rotation for each bond. The interplanar
spacing of 3.35 Å is ascribed to van der Waals forces [32].

The hybridization model for graphite breaks down completely when applied to
graphene and its derivatives. The rigid graphene sheet predicted by the theory has
never been observed.

The structure of the smallest nanotube, C70, as derived crystallographically [33]
is projected in Fig. 10.3. The first-neighbour interatomic distances observed here are
of three types, d(C−C) = 1.57(3), 1.33(3) and 1.25(3) Å, representing proposed
bond orders of 1, 1.25 and 1.5 respectively. Note how the bond orders add up to
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the classical tetravalency of four at each atom. It is also of interest to note that the
pentagons have strict five-fold symmetry, whereas the six-membered rings have no
chemically meaningful symmetry.

This result is in satisfying accord with the definition of bond order as a fun-
damental characteristic of wave-like covalent interactions [34]. Hybridization and
resonance are powerless in this situation. Not that molecular-orbital methods, also
based on linear combination of real atomic orbitals, can perform any better. The
only useful results, pertaining to the folding and distortion of graphene sheets, ob-
tained until now, are based on empirical analysis of curved surfaces. Even the nearly-
free-electron study of semiconductor band structures of nanomaterials are of limited
value, especially those that start from hybridization levels.

Electronic Properties

The quantum-chemical models for nanosized semiconductor crystals are also based
on hybridization and resonance, according to the general prescription of Coul-
son [35] for general intermetallic compounds.

All interactions are modelled by overlapping sp3 orbitals, augmented by a host
of empirical quantities, including effective nuclear charge, Madelung constant, net
atomic charge, effective charge per bond, bond length for first neighbours and dis-
tance between second neighbours—all of these variationally and empirically ad-
justed.

An ambitious analysis of semiconductor clusters by this procedure [28] is con-
cluded with remarks, such as:

The calculated discrete electronic spectra may need modification. . .
Quantitative calculations will require improvement. . .
The atomic nature and structure of intrinsic surface states, and the gen-

eral question of possible surface electronic bands and reconstruction, remain
largely unexplored.

Experiments on CdSe crystallites clearly demonstrate the reality of the
electronic quantum size effect.

It is fair to infer that the methods of quantum chemistry have not contributed in a
meaningful way to an improved understanding of size effects in nanosized semicon-
ductors, apart from the assumption that it is a quantum effect.

Nonlinear Effects

The behaviour of nanomaterials is essentially nonlinear. Any effort to describe the
behaviour of colloids and nanoparticles by linear equations is therefore an exercise
in futility. The non-classical nonlinear properties of nanomaterials can only be de-
scribed properly by a nonlinear wave equation. In particular, the simulation of their
band structure by linear superposition of sp3 orbitals [28] is no more informative
than the general statement [36]:
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Fig. 10.4 Creation of surface
plasmons as electronic charge
couples with the fluctuating
field of electromagnetic
radiation. The arrows indicate
electronic displacement

In semiconductor particles of nanometer size, a gradual transition from
solid-state to molecular structure occurs as the particle size decreases. Conse-
quently, a splitting of the energy bands into discrete, quantized levels occurs.

It goes without saying that computational quantum chemistry, exclusively based on
linear superpositions in all of its forms, holds no promise of contributing any insight
into the nature of nonlinear nanostructures.

The rapid progress with computer experiments in the analysis of nonlinear lat-
tices [37] points at an alternative approach that could be of considerable benefit in
the development of nanotechnology.

Plasmonics

The optical properties of metallic nanoparticles remain one of the most actively
studied aspects of nanotechnology. It is generally referred to as plasmonics, a de-
scription that derives from the similarity between metallic films and plasmas. A
plasma is a medium with equal concentrations of positive and negative charges, of
which at least one charge type is mobile. In a solid the negative charges of the con-
duction electrons are balanced by an equal number of positively charged ion cores.

A plasma oscillation results from the displacement of electrons as shown in
Fig. 10.4 [38]. A plasmon is a quantum of plasma oscillation, which may be ex-
cited by passing an electron through a thin metallic film or by reflecting an electron
or a photon from a film.

Plasmon excitations have been observed in surfaces, interfaces and spherical
metallic colloids. The deep red colour of gold nanoparticle sols in water and glasses
reflects a surface plasmon band; a broad absorption band in the visible region around
520 nm [39]. The phenomenon is interpreted in Mie’s theory, first formulated in
1908 [40]. The resonances of electric and magnetic oscillations in the surface were
described by solving Maxwell’s equations for spherical particles with the appropri-
ate boundary conditions. The plasmon band may therefore be ascribed to the dipole
oscillations of free electrons in the conduction band at energy levels immediately
above the Fermi level [41].

An intriguing characteristic of the surface plasmon band is its disappearance from
particles with core diameter less than 2 nm, as well as from gold in bulk. This be-



228 10 A Fresh Start

Fig. 10.5 Schematic drawing
to show the atomic positions
of fullerene connected by a
single spiral

haviour becomes hard to rationalize as a simple quantum effect. Phenomenologi-
cally there is no mystery. With increased clustering beyond the molecular level the
6s conduction electrons accumulate in the surface. On reaching a critical size Mie-
type resonance occurs and persists until the particle has grown to a size where nor-
mal metallic conduction sets in. This happens when the particle size has increased
to match the de Broglie wavelength of the valence electrons, which now propagate
as matter waves through the periodic lattice [39].

Fibonacci Patterns

The stress pattern in the surface of Ag/SiOx core/shell microstructures [42] appears
as arrays of triangles and pentagons. In addition, the spherules line up along Fi-
bonacci spirals. This observation highlights the similarity between nanoparticles,
the growth of biological structures and the conjectured mechanism that controls
the shape of polymers and macromolecules in terms of space-time curvature [25].
To explore the likelihood that all nanostructures are shaped in the same style, the
atomic positions in the spherical fullerene are shown schematically in Fig. 10.5 to
be consistent with the Fibonacci phyllotaxis of spherical growing cacti.

It is concluded that nanostructures are the natural intermediates in the growth of
macroscopic bodies from the atomic and molecular building blocks that assemble in
a fashion dictated by space-time curvature, which is quantified by τ . From this point
of view the C60 fullerene molecule consists of twelve interconnected pentagons in a
three-dimensional arrangement with six five-fold alternating 5̄ symmetry axes, that
intersect at a centre of symmetry.

Non-classical Structure

The sixty carbon atoms that make up the fullerene molecule, shown in Fig. 10.6, are
equivalent in all respects and together they define a holistic unit. Even the appear-
ance of twelve equivalent pentagons is less important compared to the arrangement
of all atoms on a closed spiral as shown in Fig. 10.5. Starting with any atom as pole,
a spiral connects the 30 atoms in its hemisphere and continues to spiral in towards
the opposite pole.
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Fig. 10.6 Stereoscopic view
of the C60 fullerene structure
as found crystallographical-
ly [43]

By considering the two poles as a single point the double spiral becomes topolog-
ically equivalent to a closed single spiral in elliptic, or projective, space, embedded
in four dimensions. This is the same structure that was proposed for the periodic
table of the elements [10] and for universal space-time [44].

There is no other known molecule that reflects the three-dimensional projection
of space-time structure as well as C60. The simple reason is that five-fold symmetry
is incommensurate with three-dimensional translational symmetry. Since traditional
structural chemistry is based almost exclusively on three-dimensional crystallog-
raphy the analysis of incommensurate structures and “quasi-crystals” that depends
on four-dimensional translational symmetry has largely been neglected until fairly
recently.

An interesting variety of structures, including those of viruses and quasicrystals
such as icosahedral Al70Pd2Mn9, of this type, are reviewed in two recently pub-
lished chapters [45–47]. A central feature of this work is the prominence of the
golden ratio in the metrics that characterize these structures. The theoretical impli-
cations are discussed in the same volume [48] and elsewhere [25]. The implied self-
similarity, ranging from atoms, molecules, through nanostructures, to astronomical
systems, strongly suggests an intimate relationship of nanomaterials with botan-
ical growth structures and biological composite materials, as widely recognized
empirically [49, 50]. A convenient approach towards the understanding and mod-
elling of the non-classical properties of such nanomaterials is via number theory
and self-similarity—the recommended new approach to nanoscience and technol-
ogy.

10.5.2 Quasicrystals

Four-dimensional and nonlinear effects are largely responsible for the occurrence
of incommensurate structures and aperiodic, or quasicrystals. In terms of standard
crystallography there is no understanding of these materials, of which hundreds of
different examples have been crystallized. The well-defined diffraction patterns can-
not be indexed in terms of any of the 230 possible three-dimensional space groups,
because of the apparent five- and ten-fold symmetry which is incommensurate with
three-dimensional translational symmetry. It is impossible to tile a two-dimensional
surface with identical pentagons or decagons.
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Fig. 10.7 Four-dimensional
extension of a crystal in direct
space

Several ingeneous models to explain the observed diffraction patterns of such
crystals mathematically have been proposed, but a definitive characterization of the
symmetry patterns in real physical space is not known; for the simple reason that
a Euclidean specification of the atomic arrangement in such phases is impossible.
The successful indexing of the observed diffraction patterns (in reciprocal space)
in terms of higher-dimensional lattices demonstrates the aperiodic nature of qua-
sicrystals, as shown in Fig. 10.7. In this diagram [51] each atom is represented by
a one-dimensional modulation curve which is periodically repeated along the four
dimensions of superspace. The observed crystal structure corresponds to the three-
dimensional intersection with the four-dimensional object along R. Atoms A, B ,
and C are not equally spaced in three dimensions (AB �= BC) and the structure is
aperiodic. The quasicrystal represents a tiling of the line R in short (S) and long (L)
intervals.

It can be shown [52, 53] that the ratio between the long and short intervals is fixed
by the generators of a Fibonacci chain, (−1+√

5)/2 = τ , and 1/τ . A self-similarity
that leaves these parameters invariant is a crystallographic Lorentz transformation.
It is inferred that the aperiodic long-range order of quasicrystals follows a Fibonacci
sequence. It starts from S and L and grows by adding the previous (shorter) chain
to the current one to produce the next [54]:

S L LS LSL LSLLS LSLLSLSLLS LSLLSLSLLSLSLLS . . .

This is the same algorithm that creates the numerical Fibonacci sequence in which
the ratio of adjacent terms

1/1 1/2 2/3 3/5 5/8 . . .

converges to the golden ratio.
The only known naturally occurring quasicrystal was found in a CV3 carbona-

ceous chondrite meteorite [55]. It is inferred that this material was formed in in-
terstellar space, only subject to a gravitational field due to the general curvature of
space-time, which is known to relate to the golden ratio.
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10.6 Future Prospects

When the final word is spoken on the nature of matter it must surely mention the
complex phase that relates it to the curvature of space-time. This relationship was
first discovered in Schrödinger’s re-interpretation [56] of Weyl’s gauge theory and
has grown since then into the unspoken assumption of all elementary-particle the-
ories. Unspoken, because it must surely be evident that associating a phase with
a point particle makes no physical sense. Still, it’s a rare chemist that would be
prepared to dispute the models of particle physics on the basis of this argument
alone.

The particle model has come a long way without serious dissent, from classical
times, and survived the careful scrutiny of twentieth-century acuity. It is perceived as
the only true and self-evident basis of atomic theory, without which all of chemistry
must collapse. Moreover, only by extension of the particle model, in the hands of
Einstein, to electromagnetic radiation, could Planck’s quantum conjecture be recon-
ciled directly with real physical systems. The model has become synonymous with
sensible science, despite many serious infinity problems. Most obvious is the infinite
gravitational field associated with a zero-dimensional massive point particle:

lim
r→0

m

r
= ∞.

In four-dimensional space-time the point particle not only has no spacial extent,
but its lifetime is also limited to zero. It never exists. Dodging the dilemma by
defining the particle as a space-time singularity only exacerbates the problem by the
introduction of a more serious mathematical anomaly.

Although there is no immediate prospect of changing the chemists’ perception of
elementary matter a slow paradigm shift could benefit from keeping the wave model
alive. It is seen as the only reasonable alternative without the defects of probabilistic
point-particle theories.

10.6.1 The Space-Time Vacuum

Sufficient grounds exist to posit that space-time fills the vacuum as a closed posi-
tively curved involuted plenum. Curved space, which is intrinsically nonlinear, com-
pared to the Euclidean alternative, is of lower symmetry than continuous, empty flat
space. Distortions that appear in curved space-time are recognized as a dynamic
mass-energy field that fluctuates between regions of high and low concentration.

The mathematical model which describes the potential field that regulates the
vacuum distortions consists of a four-dimensional second-order differential equa-
tion with harmonic solutions, characteristic of wave structure. Elementary waves
combine in a mode that depends on invariant phase relationships in the formation
of elementary forms of matter, interconnected by standing energy waves. Accumu-
lation of matter modifies local space-time curvature with feedback that stimulates
further accumulation, responsible for the dynamic cosmic equilibrium.
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The reciprocity between mass and curvature that defines the gravitational field
is mirrored by a reciprocity between charge and phase invariance. In flat Euclidean
space mass is undefined and waves propagate without phase change. In curved space
vacuum distortion manifests as mass and phase invariance requires a compensating
electromagnetic field for the conservation of charge. The phase, or gauge, factor
associated with both mass and charge is an intrinsic property of projective space-
time and does not appear in affine space. The third attribute of elementary matter,
known as spin, occurs as the solution of the four-dimensional differential equation
that defines the potential-energy function in curved space. All attributes of matter
are essential wave properties.

10.6.2 Perceptions in Linear Tangent Space

Curvature of the planetary surface, which is now rarely disputed, did go unnoticed
for centuries and flat-earth Euclidean geometry remains in general use. It works
well, except in navigational applications, and is considered entirely adequate for
modelling in the physical sciences.

Twentieth-century quantum mechanics developed as a three-dimensional linear
theory in tangent Euclidean space. In this form it is totally inadequate to deal with
four-dimensional and nonlinear effects, in particular in its complete reliance on lin-
ear superpositions and separation of space-time variables. As a result the matter-
wave solutions obtained in this way are dispersive and unsuitable for the simulation
of material motion. It has to rely perforce on probabilistic schemes that lead to
unnatural situations of acausality, intrinsic uncertainty and non-local interaction. It
provides fertile soil for mystics and philosophers.

10.6.3 Four-Dimensional Reality

All is not lost. An awareness of nonlinear phenomena is spreading fast. Once a soli-
ton is accepted as a possible structure for an electron the way is clear to abandon
the point particle as a model for elementary matter. The price to pay is finding a
mathematical model that does not rely on the separation of variables. A soliton is
a holistic unit with an invariant phase relationship between its geometrical compo-
nents, like the mechanical Scotch yoke that links one-dimensional oscillations into
two-dimensional rotation. The electronic soliton does not have spacially directed
orbitals that can be hybridized at random and it provides an equally convincing ac-
count of the photoelectric effect as an interaction between waves. An acceptable
wave function for an electron must be, not only nonlinear, but also four-dimensional
to account for spin and flexible enough to allow diffraction.

It is clear that the required equation does not have analytic solutions and the
challenge for the future is a computerized analysis. In the interim semi-empirical
number-theory methods promise intriguing results beyond traditional wave mechan-
ics.
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4-velocity, 62
α-particle fusion, 77, 223
æther, 161

four dimensional, 155
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π
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orbital, 84
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pz-orbital, 87
σ bond, 83
sp2 hybridization, 83, 224
sp3 hybridization, 83, 226

A
Accelerated motion, 63
Action, 4, 34, 142, 188, 223

eigenfunction, 74
function, 183, 190, 203
minimum principle, 183, 203

Activated state, 87
Affine

linear space, 64, 104
manifold, 64

Alchemy, 15, 16
Ampére

–Maxwell law, 46
’s law, 44, 46

Angular
frequency, 51, 119
momentum, 52, 76, 86, 188, 190

commutator, 210
conservation, 82

Antimatter, 77, 104, 161
Aperiodic crystal, 230
Arrhenius, 28

Arrow of time, 101, 102
Atomic

free will, 215
matter, 88
model, 213
number, 27, 176, 185, 194, 213–216
orbital, 80, 170
periodicity, 88
phenomena, 214
radiation frequency, 210
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shape, 11
spectroscopy, 89
states, 89
structure, 29, 144, 185, 215
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Aufbau principle, 36, 56
Avogadro’s

hypothesis, 17
number, 119

B
Back bonding, 81
Balmer formula, 33, 56, 185
Beckmann rearrangement, 205
Bell on non-locality, 98
Bloch wall, 141
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hidden variable theory, 99
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quantum heretic, 207
quantum potential, 183
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Bohr (cont.)
atomic model, 33–35, 56, 210, 215
boldest dream, 213, 216
Copenhagen orthodoxy, 93
orbit, 66, 70
radius, 125, 129, 185

Bond
order, 192–194, 196, 202, 224–226
polarity, 191

Born
–Oppenheimer scheme, 84, 85
probability model, 170
statistical model, 215

Bose condensate, 182
Boson, 182
Bosonic pair, 182
Boyle, 15
Bradyon, 92, 159

and tachyon, 104
Bremsstrahlung, 217

C
C70-crystallographic structure, 225
Central-field problem, 71, 190, 204
Charge density, 112
Chemical

affinity, 100, 105, 205
bonding, 79, 82
change, 205
potential, 100, 191
reaction, 204, 216
synthesis, 204

Chiral
molecule, 86
system, 203
world, 104

Classical
mechanics, 213
molecule, 203

Cold fusion, 216–222
electrolysis, 220, 222

Complex
geometry, 161
phase factor, 126

Compton
effect, 143, 144, 166
radius, 129
wavelength, 125–131, 142–144, 159, 165,

222
Conductivity, 146
Copenhagen

interpretation, 87, 93, 98, 119, 208, 213
logic, 109

Copernicus, 13
Correspondence principle, 208
Cosmological constant, 103
Coulomb, 39

barrier, 221
law, 39
repulsion, 106

Coulson bonding theory, 226
Covalence, 80, 100, 149, 192–196, 202,

224–226
Covalent radius, 196–199
Crystallography, 203, 229
Curvature tensor, 101
Curved space-time, 142, 159, 161, 231

intrinsic nonlinearity, 167, 170

D
d’Alembert’s equation, 95, 125, 170
Dalton, 15–20

atomic model, 16, 17, 27
de Broglie

nonlinear wave equation, 124
wave model, 66, 70, 107, 121–124
wavelength, 123–131, 159, 165, 222, 223,

228
de Chancourtois’ telluric screw, 27
de Sitter

curved-space model, 102, 103
Degenerate eigenfunctions, 83
Descartes æther model, 165
Diatomic

dipole moment, 202
interaction, 192, 193
molecule, 41

Differential
calculus, 185, 222
manifold, 66, 67
topology, 166

Diffraction, 37, 144
Dirac

æther, 154
antisymmetry principle, 105
equation, 126

Dispersion, 120, 121
analysis, 108
relation, 120

Displacement, 43
current, 46

Dissociation energy, 195, 224
Divergence angle, 185, 202
DNA unwinding, 204
Döbereiner’s triads, 26
Double

bond, 30, 87
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Double (cont.)
cover, 104, 161

Drude model, 146, 218

E
Eigenvalue, 73

equation, 190
Eikonal equation, 23
Einstein, 63, 80

–Rosen bridge, 104, 141
addition law, 60
field equations, 66
model of the universe, 102
summation convention, 61

Einstein and Bohr
non-locality debate, 98

Electric
charge, 4, 86, 185
field strength, 40
potential, 40

Electromagnetic
angular momentum, 87
field, 37, 56, 66, 67, 75, 155, 168, 183, 231

as Minkowski 4-vector, 94
induction, 43
radiation, 47, 228
wave, 47, 48, 63, 121

Electromagnetism, 43, 161
Electromotive force, 40
Electron, 1, 3, 4, 28, 87, 110

affinity, 82
as indivisible 4D whole, 182
as standing Schrödinger wave, 98
at speed of light, 126
charge, 1
classical radius, 119
cloud, 185
complex field, 68
configuration, 36, 89, 185, 187, 197
density, 76, 185, 187
diffraction, 3, 142, 144, 232
energy, 88, 188
pair, 80
particle or wave, 37, 215
soliton structure, 182, 183, 216, 232
spherical wave, 71
spin, 1, 3, 4, 34, 77, 98, 99, 106, 166, 182,

203
standing wave, 70, 217
structure, 106
wave model, 128, 159
wave nature, 1
wave structure, 118–121, 130, 131, 182,

232

Electronegativity, 82, 100, 191, 192, 202
Electronic structure, 85
Electrophorus, 41
Electrostatic

field, 67
interaction, 183

Electrostatics, 40
Elliptic

orbit, 76
space, 160

Energy level, 88
Energy-momentum tensor, 65
Entropy, 102
EPR correlation, 98–100
Equipotential, 40
Ergodic behaviour, 144
Euclidean space, 60, 66, 80, 104
Euler equation, 183
Exclusion principle, 8, 56, 83, 105, 106, 185,

224

F
Faraday, 56

–Lenz law, 46
effect, 52, 86
electrochemical equivalent, 119
’s law, 43

Farey sequence, 173–177, 188
k-modular, 173–175

Feinberg tachyon model, 161, 164
Fermion, 106

and anti-fermion, 104
Fibonacci

code, 172
number, 170, 172–178, 193
optimization, 185, 187, 188

of atomic radius, 202
of bond order, 194

pattern, 228
phyllotaxis, 228
sequence, 173, 230, 231
spiral, 177, 178, 185, 198, 202, 224

Fine-structure
constant, 113, 125, 130, 223
parameter, 128, 131, 159

Flatland, 80
Force constant, 144, 224
Ford circle, 176, 177
Four-dimensional

action, 98
space-time, 80, 89, 91, 92, 104
world, 91

Fourier
analysis, 77
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Fourier (cont.)
transform, 112
transformation, 118

Free
-atom radius, 200
electron, 139
molecule, 203, 216

Fresnel diffraction, 37
Frobenius method, 74
Frontier orbital, 87
Fullerene, 228, 229

G
Galilean relativity, 56
Galileo, 56
Gauge

compensating field, 75, 231
factor, 67, 167, 231
invariance, 169

global, 66
local, 74, 155, 161

transformation, 231
global, 68
local, 166

vector, 67
Gauss

law of, 41
theorem, 48

Geodesic, 64, 65
Geometrical

isomerism, 203
optics, 23, 118, 147

Gilbert, 39
Golden

ratio, 94, 104, 161, 169, 170, 172–175,
187, 193, 196, 198–200, 202, 217,
222–224, 228, 229, 231

rectangle, 178, 196, 224
sequence, 173

Graphene, 224, 225
Gravitational

field, 164, 165, 231
potentials, 168

Graviton, 165
Gravity, 14
Group velocity, 120, 121, 123, 127, 159, 165,

183

H
Hamilton

canonical equations, 208
characteristic function, 21
path, 172, 173
principal function, 21, 146

’s principle, 20
Hamilton–Jacobi

equation, 21, 23, 100, 146, 147
formalism, 70
theory, 37, 118, 121

Hamiltonian, 71, 124
equations of motion, 21
function, 20

Harkins, 82
Harmonic

eigenfunction, 185
function, 66, 95, 96, 108
oscillator, 109, 133
stretching force constant, 202
wave, 66, 120–122, 128

Hartree–Fock
ionization radii, 191
radial expectation value, 185
radius, 200

Heisenberg–Bohr mechanics, 213
Heitler–London simulation, 149, 194, 216
Helmholtz equation, 50, 70, 96, 188
Heteronuclear interaction, 192, 202
Higgs field, 76, 166
HOMO, 87
Homogeneous coordinates, 167–170
Homonuclear interaction, 192, 193, 196
Hooke’s law, 144
Huygens construction, 37
Hybrid orbital, 76, 84, 224
Hydrodynamics, 132

analogy, 141
Hydrogen atom, 148, 159, 183, 188

Schrödinger solution, 185, 223
Hydrogen uptake in metals, 219
Hypercomplex number, 3
Hyperspace, 92

I
Incommensurate structure, 229, 230
Inertia, 14
Inertial

mass, 157
motion, 101

Interaction
at a distance, 100
radius, 194

Interatomic
distance, 192, 224

dimensionless, 195, 202
Interface

in vacuum, 160, 161, 164, 166
Interference, 37
Inverse transformation, 137
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Involution, 141, 161
Ionization

energy, 195
potential, 82
radius, 190–194, 198, 202

Isotope
enrichment, 218, 221
high spin, 220–222

K
Kaluza–Klein

five-dimensional model, 104, 167
KdV, 135–137, 139, 141–144, 146

Korteweg–de Vries equation, 134
modified (MKdV), 137
multisolution, 144

Kekulé, 29, 30
valency rules, 30

Kepler, 13
laws, 14
orbit, 35

Klein–Gordon equation, 155, 169
Elbaz form, 160

L
Lagrangian function, 76
Lamb shift, 147
Laminar flow, 122
Langmuir, 30–32

valence model, 31, 32
Laplace

’s equation, 3, 43, 95, 188
Laplacian, 43, 49, 71, 96
Lattice

phonon, 144
soliton, 144

LCAO, 84, 87, 89, 226, 227
Lewis, 30, 31

electron-pair model, 56, 80
octet, 30

Light cone, 63, 65, 157
Line spectrum, 214
Linear

differential equation, 66, 170
oscillator, 156
superposition, 66, 83, 118–123, 126–128,

148, 149, 170, 227, 231
wave, 119, 132
wave mechanics, 147

Logarithmic spiral, 177, 178
London

quantum gauge theory, 68, 70
Lorentz

electron model, 106, 118, 182

invariant, 63
transformation, 3, 56, 59–63, 66, 103, 125,

164, 230
Lucretius, 11–13

model of the universe, 11, 12
LUMO, 87

M
Macromolecule, 203
Madelung

hydrodynamic model, 107, 130, 183
Magnetism, 39
Mass number, 176
Mathematical model, 185
Matrix mechanics, 185, 208, 209
Matter

-wave packet, 80, 108, 133
and antimatter, 94, 104, 161, 223
and space-time curvature, 93, 156
field, 65
wave, 94, 123, 167, 215

Maxwell, 56
’s equations, 47, 227
theory, 46
vortex æther model, 154, 155, 165
wave equation, 59

Measurement problem, 109, 110, 112
Meisner effect, 218
Mendeléef, 26, 27

periodic law, 27
Mesomerism, 205
Metastable isomer, 222
Mie’s theory, 227
Minkowski, 59

diagram, 60, 92
four-potential, 63
perpendiculars, 161
space-time, 59–66, 76, 92, 99, 101,

157–159, 162, 164, 169
tangent space, 65

Möbius
band, 160
involution, 104
non-orientable surface, 103

Molecular
chirality, 20, 100
Hamiltonian, 84, 85
mechanics, 202
modelling, 6, 203
shape, 202, 204
spectroscopy, 216
structure, 5–8, 79, 84, 86, 105, 202–204

four dimensional, 203
wave equation, 204
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Molecular (cont.)
wave function, 84
wave structure, 183

Momentum
-position commutator, 210
conservation, 61, 62

Motion, 102
geodesic, 165
space-like, 157
tachyonic, 162–164
time-like, 157

Multiple bond, 81
Multiverse, 105

N
Nagaoka, 28, 29

Saturnian model, 28, 188
Nanoscience, 224, 229
Nanostructure, 228
Nanotechnology, 227, 229
Nanotube, 225
Neutron

capture, 221
excess, 174

Newlands, 26, 27
law of octaves, 26, 27, 30

Newton, 13, 14, 20
gravitation constant, 66
law of gravitation, 39, 102
laws of motion, 16, 92
Principia, 14

NLS, 139, 143, 144, 147, 191
nonlinear Schrödinger equation, 136

Nodal
structure, 185
surface, 185, 187

Non-Euclidean space-time, 66
Non-local

event, 158
interaction, 166
quantum potential field, 100

Non-locality, 99
of quantum theory, 98

Non-stationary state, 183
Nonlinear

deformation of wave form, 136
effect, 5, 227, 231
electron structure, 133
equation, 122, 123, 167, 170, 176
lattice, 227
non-dispersive wave packet, 132
perturbation, 143
system, 131, 232
wave, 135

wave packet, 128
Normalization, 73
Nuclear

reaction, 220
spin, 217, 220

Number theory, 176, 185, 198, 222, 229, 232
Numerology, 88, 89, 185, 222

O
Observer, 109
Octonion, 3, 4
One-electron density, 195
Optical

activity, 20, 30, 52, 86, 87, 203
isomerism, 203

Orbital, 81
angular momentum, 66, 74, 87, 96
hybridization, 7, 81, 85, 87, 225, 227
lobe, 87
picture, 87

P
Paradigm shift, 89
Particle, 14, 15, 80, 88

elementary, 166, 231
of light, 76
physics, 75, 88, 94, 231

Pauli
equation, 75
spin matrices, 96, 124

Pauling, 82
Pauling–Coulson

model of chemical interaction, 87
Pendulum, 133
Periodic

function, 77, 104, 174, 176, 223
table, 26, 27, 35, 77, 81, 88, 89, 104, 105,

174–177, 191, 192
Permeability, 43
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invariance, 68, 231
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activation, 87, 190
Photoelectric effect, 76, 143
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Planck
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condition, 213
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’s constant, 4

Plane wave, 156
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Plasmon band, 227
Plasmonics, 227
Poincaré

theory of relativity, 154
Point

-charge simulation, 194
at infinity, 167
electron, 166
molecule, 109
particle, 87, 159, 166, 182, 183, 207, 231

Poisson
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’s equation, 43
spot, 37
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Polarized light, 52
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difference, 40
field
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theory, 94
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Probability

density, 80, 87
function, 76
mechanics, 215
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plane, 160
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space-time topology, 94, 223
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hypothesis, 19, 56
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Quantum
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magic and mystique, 105

model, 185
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mystery, 213
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rotation, 98
spinor, 98
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Quiessence, 102

R
Radial wave equation, 72
Raleigh equation, 144
Reaction mechanism, 87, 204, 205
Real

spherical harmonics, 84, 189
wave function, 83

Relative motion, 58
Relativistic
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length contraction, 59, 63
mass, 128

Relativity
general theory, 63, 80, 93, 168, 216
special theory, 58, 80
theory, 56, 158
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manifold, 64, 65
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in complex plane, 189
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Rutherford, 29
scattering, 29
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S
Scalar potential, 63, 75
Schrödinger, 66

alarming phenomena, 155
classical equation, 146
complex phase, 74
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hydrodynamic, 99
wave interpretation, 112
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interpretation
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nonlinear equation, 4, 139
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Scotch yoke, 3, 232
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wave structure, 157
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angular momentum, 96, 126
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170, 185
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216
Stereochemistry, 30, 86, 87, 204
Stoner-exclusion principle, 105
Stoney-electron model, 118
Stress tensor, 65
String theory, 92
Sturm–Liouville system, 73, 74
Superconducting phase, 216, 218
Superconductivity, 146, 182, 216–218

BCS theory, 216
high temperature, 216
number-theory model, 217
organic, 218

Superfluidity, 182
Superposition principle, 133
Superposition, see Linear superposition,
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Surface plasmon, 228
Symmetry

breaking (spontaneous), 76, 166
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Tachyon, 92, 159, 163, 166
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167, 170, 231
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Thermal activation, 87
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Time
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direction, 60
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Transition
between stationary states,
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element, 81

Triangle of stability, 174, 176
Turbulent flow, 122, 131

U
Uncertainty

principle, 101, 109, 110, 112
Underlying space, 167

V
Vacuity, 11
Vacuum, 154, 155, 231

structure, 164
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density, 191
electron, 146, 170, 190, 228
state, 100, 190, 194, 202,
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van’t Hoff, 30

stereochemistry, 30
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field equations, 168
projective relativity, 167–169
unified fields, 104

Vector
notation, 43
potential, 63, 75

W
Wave

-particle duality, 3, 80, 106, 107, 166
dispersive, 135
equation, 119, 144

four dimensional, 202
frequency, 51, 119
function, 74, 110, 183
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mechanics, 66, 70, 76, 81, 87, 89, 92, 119,

166, 176, 215, 216
4D formulation, 213

model, 110, 185
motion, 47, 222
number, 51, 119
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solitary, 135
theory of light, 37
train, 121, 141
vector, 51

Weyl, 74
gauge theory, 67, 94
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World
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velocity, 62

X
X-ray diffraction, 112, 144, 146
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Z
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