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Abstract The last 30 years have seen major changes in the field of plant breeding.
In this relatively short time frame we have witnessed the transition from a solely
pedigree-based approach to genetic improvement, to one based almost entirely on
genome-wide sequence information. We have also witnessed the evolution of dom-
inant genetic theory, including the adoption of new statistical techniques necessary
to accommodate the plethora of genomic information now available. In this chapter
we review the past, present and future of plant breeding in terms of the three distinct
“eras”: “the pedigree era”, “the molecular era” and the “genomics era”.
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5.1 Introduction

High-throughput genotyping technologies, in particular the single nucleotide poly-
morphism (SNP) chip, have prompted a revolution in the field of genetics and
breeding. With the potential of genotyping literally hundreds of thousands of molec-
ular markers at an affordable price, the once distant prospect of establishing an
individual’s genetic value without need of its pedigree has now become a reality.
In the following chapter we consider the three distinct eras of quantitative genetics
that led to this genotyping revolution, with final emphasis on genome-wide selection
(GWS). We begin with “the pedigree era”, to describe analysis prior to DNA markers
and revisit the fundamentals of quantitative genetic theory. In “the molecular era”
we review the birth of molecular markers and the advent of marker assisted selec-
tion (MAS). Finally, in “the genomic era”, we describe the development of GWS
and its current and future implications for plant breeding and utilization of genetic
resources.

5.2 The Pedigree Era

5.2.1 The Infinitesimal Model

Prior to the era of molecular markers and genomics, genetic variation in quantitative
traits was explained by modeling an individual’s phenotype as the sum of an infinite
number of infinitesimally small genetic effects plus an interaction between genotype
and environmental values:

yij = μ + gi + eij (5.1)

where; yij is the phenotype of individual i observed in environment j , μ refers
to the fixed environmental effects of individual i, gi is the total genetic value of
individual i, and eij is the sum of random environmental effects affecting individual
i in environment j. This is more commonly known as the infinitesimal model. The
total genetic value of an individual gi can be further partitioned into additive (gA),
dominance (gD) and epistatic (gE) components, with gD and gE representing the
non-additive component of the genetic variation. Elaborations on this model include
interaction effects of genotype with environment and also aim to consider interactions
of different trait phenotypes using selection indices, as discussed below.
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5.2.2 The Concept of Breeding Values

Substantial genetic improvement in animal breeding has been achieved by selecting
on estimated breeding values (EBVs). However it has not been a popular index in
plant breeding due mainly to the fact that the EBV is based on a simplified definition
of heritability tailored towards selection on individual animals and does not take
into account the diversity of observational units and mating systems used in plant
breeding (Holland et al. 2010). However, EBVs are central to applications of genomic
selection and are introduced here for that purpose.

The EBV represents the sum of the additive effects of an individual’s genes
(Falconer and Mackay 1996; Lynch and Walsh 1998) and is typically used to de-
termine an animal’s genetic potential when used as a parent. In its simplest form
an EBV is estimated using the individual’s phenotype and the population narrow
sense heritability, calculated as h2 = σ2

A�
σ2
P

. The difference between an individual’s

phenotypic value and the mean value of its population is adjusted according to h2 in
the following way:

EBVi = m0 + h2(yi − m0) (5.2)

where yi is the phenotypic value of individual i and m0 is the mean phenotypic value
of the population. In this case, adjusting the phenotype according to the population
narrow-sense heritability is a way of recognising that only a fraction of an individual’s
phenotype is heritable. Furthermore, as each parent contributes a sample half of its
genes to its progeny, it can also only transmit one-half of its genetic value. Thus the
expected breeding value of the offspring of parents 1 and 2 is equal to:

E(ProgenyP 1×P 2) = m0 + 1
2EBVP 1 + 1

2EBVP 2 (5.3)

5.2.3 Selection Indices

Selection indices are a way of combining information across pedigrees and across
traits. Equation 5.3 shows how the expectation of a breeding value can be defined
using parental EBV’s. Depending on the accuracy of those breeding values, it may
be useful to include information from more distant relatives such as grandparents.
A selection index allows us to use this information in the one prediction thereby
increasing the accuracy of genetic evaluation (Falconer and Mackay 1996).

The simplest example of using a selection index is the calculation of EBV’s based
on own performance (Eq. 5.2). This takes the form of I = EBVi = bAP P1 where
bAP is the simple regression of breeding value (A) on phenotype (P), and in the
absence of any interaction between genotype and environment (GxE) is equal to
cov(A, P )�σ 2

P
= σ 2

A�σ 2
P

= h2 (Falconer and Mackay 1996). A selection index in-
cluding information from a number of relatives therefore corresponds to a multiple
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regression of breeding value on all the sources of information and the linear index
of any one individual becomes:

I = bAP :1P1 + bAP :2P2 + bAP :3P3 + . . . (5.4)

5.2.4 Best Linear Unbiased Prediction (BLUP)

A limitation of the selection index approach is that the method does not adjust the
data for fixed environment effects; this must be done separately before the analysis.
Henderson (1976) devised an efficient method to simultaneously estimate genetic and
environmental effects in a single analysis. Henderson’s method, called best linear
unbiased prediction (BLUP), uses a mixed model approach and rapidly became
the most widely accepted method of genetic evaluation due to its many desirable
statistical properties.

The mixed model approach to estimating breeding values consists of modeling
each trait value as the sum of all fixed environmental effects and a residual component
comprised of the sum of all random genetic effects (BV’s) plus a random error. In
matrix notation,

y = Xβ + Za + e (5.5)

where y is a vector of trait values, β is a vector of fixed environmental effects with
incidence matrix X, a is a vector of random genetic effects with incidence matrix Z

and e is a vector of errors. In plant breeding, alternative formulations of Eq. 5.5 are
commonly used to incorporate random genotype by environment interaction effects
as variance-covariance structures (Piepho 1997).

The basic mixed model used in both animal and plant breeding incorporates
information from all relatives with or without phenotypic records to estimate BV’s.
Henderson (1976) showed that the expectation of fixed environmental effects β̂

and the expectation of random genetic effects â, are solutions to the mixed model
equations:

[
X′X X′Z
Z′X Z′Z + A−1λ

] [
β̂

â

]
=

[
X′y
Z′y

]
(5.6)

where β̂ and â are referred to as the best linear unbiased estimate (BLUE) and best
linear unbiased predictor (BLUP), respectively.

5.3 The Molecular Era

The discovery of DNA markers marked the dawn of a new era in agricultural breeding,
with some expectation that the ability to select directly on genotypes (MAS—marker
assisted selection) would lead to the redundancy of pedigree based selection methods.
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While DNA-based markers have now been deployed extensively for the tracking and
introgression of simple traits (Eathington et al. 2007), their use in the selection for
complex traits such as crop yield has so far been largely constrained to pyramiding
of quantitative trait loci (QTL) in single cross populations.

The first DNA-based genetic markers were restriction fragment length polymor-
phisms (RFLPs) (Botstein et al. 1980), first used for the improvement of qualitative
traits in crops by Beckmann and Soller (1986). Other early generation markers were
enhanced by the introduction of DNA amplification-based procedures, such as; ran-
dom amplified polymorphic DNAs (RAPDs) (Williams et al. 1990), AFLPs (Vos
et al. 1995), as well as another broad class of DNA markers categorized as simple
sequence repeats (SSRs) (Akkaya et al. 1992). SSR’s are typically the most widely
used markers in major cereals as they are highly reliable, co-dominant in inheritance
and highly polymorphic (Collard and Mackill 2008).

5.3.1 QTL Mapping

One of the first applications of molecular marker technology was the discovery
and mapping of quantitative trait loci (QTL). There are two distinct approaches to
finding and mapping QTL. The first involves testing for marker-trait associations in a
segregating population using marker genotypes located across the entire genome. The
second, commonly referred to as the candidate gene approach, intuitively proposes
previously sequenced genes of known function as potentially containing molecular
polymorphisms related to the trait of interest.

The discovery and mapping of QTL in plants via marker trait associations, typi-
cally starts with the development of a mapping population, say 100 to 500 segregating
individuals derived from an F2 or backcross population. Individuals (or, for hybrid
crops, test-cross progeny) are then phenotyped for each trait of interest and geno-
typed with evenly spaced markers across the genome (linkage mapping). A variation
on this is association mapping, where the individuals to be mapped represent a di-
verse set of relevant germplasm, e.g. historical (founder) and current breeding lines
and potential donor lines for useful traits (Lynch and Walsh 1998).

The standard process of establishing significant marker trait associations is to
use ordinary least squares where markers are treated as fixed effects and selected
for inclusion into a prediction model using a stepwise regression approach based on
arbitrary significance thresholds (Lande and Thompson 1990). The effects of markers
below this threshold are set to zero, whilst those above the threshold are included
in the model. The stepwise approach is useful to the extent that it minimizes the
complexity of the model and ensures that there remain sufficient degrees of freedom
for the estimation of marker effects. Once significant marker-trait associations have
been made and major QTL identified, in theory at least, these major QTL are then
ready to be introgressed into elite germplasm, hopefully leading to the development
of new and improved cultivars.

One variation of this approach involves the genotyping of only that part of the
population exhibiting extreme phenotypes for the target trait, creating two distinct
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pools of DNA (Michelmore et al. 1991). Association is then inferred by finding
allelic frequency differences between the groups of plants with contrasting pheno-
types (Lebowitz et al. 1987). This approach is also referred to as “bulked segregant
analysis” and has been successful in genetic mapping in plants using RFLP and SSR
markers (Xu and Crouch 2008). Despite numerous reports for single major genes and
major QTL using this method, bulked DNA analysis reports have been challenged
by problems relating to insufficient marker density, low power of QTL detection and
high false positive rates for marker-trait associations (Xu and Crouch 2008). See
Van Eeuwijk et al. (2010) for a summary of analysis methods to derive performance
estimates from different populations and statistical models.

5.3.2 The Candidate Gene Approach

The candidate gene approach has three chronological steps (Pflieger et al. 2001).
First, candidate genes are proposed based on molecular and physiological studies of
a trait. Then, a molecular polymorphism is identified so that statistical correlations
between candidate gene polymorphisms and phenotypic variation can be calculated
in a set of genetically unrelated individuals. The final step is the validation step and
involves conducting complementary experiments to confirm the actual involvement
of the candidate gene in the trait variation.

Although the candidate gene approach has been successfully used to characterize
disease resistance genes and has led to the isolation of many new putative function
resistance genes (R-genes), it is generally regarded as an expensive alternative to
QTL mapping, especially for complex growth related traits. A recognized problem
with the approach is that there are often a large number of candidate genes affecting
a trait, so many genes must be sequenced in many individuals. The cost of carrying
out so many association studies in a large sample of individuals is both expensive
and time consuming. Furthermore, there is always a chance that the true causative
mutation(s) may lie in a gene that would not intuitively have been selected as a
candidate gene (Pflieger et al. 2001).

5.3.3 Gene Introgression and QTL Pyramiding

One of the more successful applications of molecular marker technology is in the
introgression of major genes via marker assisted backcrossing (MABC). Although
backcrossing has been successfully used in plant breeding to integrate disease resis-
tance into numerous crop species such as maize (Hooker 1977) and wheat (Sharma
and Gill 1983), prior to the invention molecular markers it was often a slow and com-
plicated process. Without markers, phenotypic selection had to be done at each stage
of the process. Fortunately, the implementation of MABC circumvented much of
this process by using marker information to track target alleles from the donor parent
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(Lamkey and Lee 2006). Large crop breeding programs, such as those for soybean
and maize, have been redesigned to accommodate a seven-fold increase in data and
analysis demands to implement accelerated breeding based on markers (Eathington
et al. 2007). The same authors describe the complexities of using MABC to transfer
transgene segments into multiple adapted genetic backgrounds.

A major problem in traditional backcrossing techniques is linkage drag. The iden-
tification of plants possessing the target trait and a high level of resemblance to the
recurrent parent was complicated due to the fact that unfavorable alleles closely
flanking the target allele would often “hitch a ride” into the recurrent parent. The
implementation of MABC significantly helped researchers manage linkage drag
by using marker information to identify plants with a high proportion of desirable
genome from the recurrent parent. There are many examples of the successful use
of MABC in rice, in particular bacterial blight resistance (Chen et al. 2000) and sub-
mergence tolerance (Toojinda et al. 2005), but also in other cereals such as barley,
maize and wheat (see Table 1 in Collard and Mackill (2008)). This was further sup-
plemented by simulation studies which found methods to optimize the recovery of
recurrent parent alleles in just a few generations of backcrossing (Hillel et al. 1990;
Hospital and Charcosset 1997; Visscher et al. 1996). For most crops, over 90 % of
the recurrent parental genotype can now be recovered within two generations (Xu
and Crouch 2008).

MABC is usually conducted in conjunction with phenotypic selection for other
adaptive traits such as yield. However it remains a difficult challenge to introgress
and pyramid multiple genes into a single cultivar even if they can be identified.
Most plant breeders are forced to juggle selection on multiple traits and this often
involves the more difficult process of selecting for many QTL simultaneously. The
complexity of this task increases exponentially with increasing numbers of QTL.
For example, if the frequency of 10 favorable alleles between two inbred parental
lines is 0.5, then assuming they are unlinked, the frequency of the ideotype in the
progeny will be equal to 1 in every 1024 recombinants. Pyramiding genes from more
than two parents is an even tougher challenge. If those same 10 QTL were evenly
distributed amongst three parents, the frequency of the ideotype would be around
1 in 60,000 recombinants! Some notable examples of successful QTL pyramiding
in cereals include bacterial blight resistance in rice (Huang et al. 1997) and yellow
mosaic virus in barley (Okada et al. 2004).

A common method to increase the frequency of target genotypes is through ‘en-
richment’of target alleles in segregating generations (e.g. F2), followed by inbreeding
(Bonnett et al. 2005; Wang et al. 2007). If the frequency of the ideotype is rare in early
generations, a compromise is to select on heterozygotes at some, or all of the loci
in the F2 generation. By selecting for both target homozygotes and heterozygotes,
this filter removes non-target homozygotes from the population. Through further
inbreeding, or the development of doubled-haploid (DH) populations, the frequency
of target homozygotes in the population can be increased along with the frequency
of the target ideotype. The benefits of F2 enrichment have also been demonstrated
through simulation (Wang et al. 2009).
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5.4 The Genomic Era

The molecular era was characterized by extensive searches for individual QTL using
early generation markers such as RFLPs, RAPDs, AFLPs and SSRs. We also wit-
nessed the advent of MAS. Consequently, substantial effort was directed to issues
of marker density, population size, selection fractions and the combining of QTL
across different genetic backgrounds.

In a sense, the transition to the genomic era came about largely through techno-
logical necessity. Most of the early generation markers were developed using the
Sanger sequencing method (Sanger et al. 1978), which was both expensive and labor
intensive. With the discovery of single nucleotide polymorphism (SNP1) markers,
there was increasing interest in developing a high-throughput low-cost assay that
could make use of the relative abundance of these markers in both animal and plant
genomes. A technological breakthrough came in the form of high density oligonu-
cleotide arrays and quickly led to the development of massively parallel sequencing
platforms, otherwise known as next-generation sequencing (NGS) platforms. The
versatility of these arrays also allowed for the development of novel marker systems
like single feature polymorphisms (SFPs), diversity array technology (DArT) and
restriction site-associated DNA (RAD) markers (Gupta et al. 2008).

Although the emergence of NGS technologies has significantly reduced the cost of
marker scoring (Shendure and Ji 2008), the development of new markers still requires
significant investment (Deschamps et al. 2012). This is especially the case for crop
species such as maize (SanMiguel et al. 1996) and wheat (Li et al. 2004), where
the efficiency of the SNP discovery process is often hampered by large numbers
of repetitive sequences. However, a new concept called genotype-by-sequencing
(GBS) is beginning to emerge whereby massively parallel sequencing platforms
are used to simultaneously develop and score SNP markers within a segregating
population (Elshire et al. 2011). Since GBS can also be performed through a reduced
representation approach (Van Orsouw et al. 2007), polymorphism discovery in larger
and more complex genomes (e.g. allotetraploid durum wheat) is now becoming a
simpler and more cost effective process (Trebbi et al. 2011).

5.4.1 Genome-Wide Selection

In 2001, (Meuwissen et al. 2001) proposed a method called “genome wide selection”
or GWS, a simplification of the two step model selection approach detailed in (Lande
and Thompson 1990). Rather than selecting a subset of markers for inclusion into the
prediction model based on arbitrary significance thresholds, GWS proposed to exploit
linkage disequilibrium (LD) within the genome by using all marker information in
a single step to estimate individual genomic breeding values (GEBVs).

1 SNP markers are point mutations commonly occurring throughout plant and animal genomes,
whereby alleles differ by only one base position.
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The implementation of GWS requires that a population of individuals (in struc-
tured or unstructured populations) be initially phenotyped for the trait of interest and
genotyped for a pre-defined set of markers. This is referred to as the “training popula-
tion”. The purpose of the training population is to accurately calibrate the prediction
model by correlating marker effects with phenotypic values. The markers can then
be used to estimate the genetic value of successive generations of individuals without
need of phenotyping.

The method is theoretically superior to MAS for several reasons. The traditional
MAS approach of fitting only the largest QTL is subject to a degree of upward bias
known as the Beavis effect, an unavoidable consequence of selecting a posteriori
among many estimates (Beavis 1998; Xu 2003). Lande and Thompson (1990) pro-
posed a method to avoid this bias by using one half of the data to select the loci with
the largest effects, and the other half to re-estimate the effects, although this was
deemed to be a suboptimal use of the information (Meuwissen et al. 2001).

Furthermore, by fitting all markers into the prediction model these analyses should
capture all (or most) of the additive genetic variance. This is in contrast to traditional
MAS, where the estimation of a subset of significant QTL results in only a portion
of the genetic variance being captured (Goddard and Hayes 2007). One consequence
of this is that there is a greater chance that the largest and most accurately estimated
QTL will be fixed in the first cycle of selection, leaving insufficient residual variation
to maintain genetic gain in the cycles thereafter (Moreau et al. 2004).

5.4.2 Stepwise Regression, BLUP and the Bayesian Alphabet

Although stepwise regression is the technique of choice for selecting and fitting
QTL markers in MAS, the choice of statistical technique for fitting all markers
simultaneously in GWS is the topic of continuous debate. In GWS analyses, the
number of marker effects to estimate will almost always be greater than the number of
records (Goddard and Hayes 2007), and estimating a large number of marker effects
in a data set of limited size leads to the problem of there not being enough degrees
of freedom to fit all of the effects simultaneously via ordinary least squares (OLS).
This is sometimes referred to as the ‘large p, small n’ problem. If the significance
thresholds in stepwise regression are sufficiently relaxed, thereby allowing for a
greater spectrum of QTL effects (e.g. additive x additive interactions) to be included
in the model, it has been shown that prediction accuracies as high as 0.61 can be
achieved using this method (Habier et al. 2007). This is still not ideal however, since
in order to exploit the full potential of GWS we must make use of all available marker
information.

The only way to use all marker information is to treat the markers as random
effects within a BLUP or Bayesian framework. Meuwissen et al. (2001) used simu-
lation to compare the accuracy of GEBVs using ridge regression BLUP (RR-BLUP)
and two Bayesian methods called BayesA and BayesB. Whilst RR-BLUP assumes
that marker effects are normally distributed with constant variance (Whittaker et al.
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2000), both BayesA and BayesB assume slightly different forms of an inverted Chi-
square prior distribution of marker effects. Although RR-BLUP was highly accurate
(γTBV;EBV = 0.73) BayesA and BayesB were clearly superior (γTBV;EBV = 0.80
and 0.85 respectively), especially when QTL vary in magnitude. Other variations on
the “Bayesian alphabet” have also been shown to be highly effective (Habier et al.
2011). For an in-depth discussion of Bayesian methodology in a breeding context
see (Gianola et al. 2009).

More recently, Hayes et al. (2009a) proposed using dense marker information to
predict realized relationship coefficients between pairs of individuals using BLUP.
The method, which we will refer to as genomic BLUP (G-BLUP), is therefore analo-
gous in principle to traditional pedigree BLUP in that it attempts to calculate in each
case the proportion of the genome that is identical by descent (IBD). It is superior
to pedigree BLUP because it calculates this value directly, rather than relying on an
expectation derived through lineage and selection, and is therefore able to account
for Mendelian sampling during gamete formation.

5.4.3 How Many Markers Do We Need?

Marker density affects both the prediction of individual marker effects in all forms
of GWS and the estimation of realized relationship coefficients in G-BLUP. This is
because the accuracy of prediction for both methods relies in large part, on the ability
of markers to serve as proxies for QTL from generation to generation. So what is the
ideal marker density?

Firstly, the ability of markers to act as proxies for QTL, is a function of average LD
within the genome. The greater the expanse of LD in the genome, the fewer markers
that will be required to tag QTL located in any particular region. Furthermore, for
each generation that GWS is practiced, the proportion of genetic variance explained
by each marker decreases and the accuracy of GWS will tend to decline for each
successive generation that it is practiced (Muir 2007).

The rates of LD decay are known to vary considerable between species, depending
on a range of population characteristics, including those affected by selection history
(Gaut and Long 2003). From a genetic perspective, species LD will depend on the
population recombination rate, 4Ner where Ne is equal to the effective population
size, and r is the recombination rate per base pair. If this is known, the target marker
density for GWS can be approximated by using the average r2 between adjacent
markers as a measure of their marker density relative to the decay of LD (Calus and
Veerkamp 2007; Heffner et al. 2009).

The importance of marker density can also be demonstrated in terms of the re-
lationship between the effective population size Ne and the number of independent
chromosome segments q, defined as q = 2Ne × L where L is equal to the total
genomic map length in Morgans (Hayes et al. 2009b). Obviously if Ne is large, the
number of ‘independent’ chromosome segments is also large, and the extent of LD
in the population will be limited, requiring a very large number of markers to capture
all QTL effects.
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5.4.4 The Use of Low Density SNP Chips

Despite rapid advancements in genotyping technology, the cost of genotyping (in-
cluding sample collection and DNA extraction) remains a potential limitation in
the implementation of GWS in smaller breeding programs (Ibañez-Escriche and
Gonzalez-Recio 2011). This is especially the case when the number of selection
candidates per generation is high, or the economic benefit per selection candidate is
low compared to the cost of genotyping (Habier et al. 2009).

One solution is to use a reduced set of markers in the selection candidates to
reduce overall cost while minimising loss of accuracy. One adaptation of this strategy
involves the use of variable selection methods to identify a small set of markers
that are predictive of trait phenotype or breeding value. Although variable selection
methods have been shown to have good predictive ability (Cleveland et al. 2010;
Iwata and Jannink 2010; Vazquez et al. 2010; Weigel et al. 2009), this approach
is less attractive for multiple trait selection and across populations since it requires
specific SNPs for each trait and population (Ibaez-Escriche and Gonzalez-Recio
2011).

A more flexible (but less accurate) approach was proposed by Habier et al. (2009)
who suggested using evenly spaced low-density markers to obtain GEBVs in the
selection candidates. This way, co-segregation of high and low density SNPs within
families can be used to impute missing SNP genotypes in the selection candidates.
The method is similar to the use ofTAG SNPs to identify haplotype blocks segregating
across human populations (Servin and Stephens 2007), the primary difference being
that Habier et al. (2009) used pedigrees to estimate haplotype blocks within families
rather than across populations.

5.4.5 Training Population Size and Design

Another avenue to reduce genotyping costs is to limit the size of the training pop-
ulation through selective genotyping. Selective genotyping has been previously
proposed to improve the efficiency of QTL detection in a linkage mapping context
(Sun et al. 2010) and more recently in a GWS context (Zhao et al. 2012). Geno-
typing only those candidates with high or low phenotypic values of the target trait
(bidirectional selection) has been shown to lead to only a marginal decrease in the
prediction accuracy of genomic breeding values (Zhao et al. 2012) and may therefore
be a useful way to conduct GWS under a restricted budget.

Further concessions can also be made in crops when conducting GWS within
large bi-parental populations, since bi-parental populations have extensive LD and
allow for complete genome coverage with only a few hundred markers (Heffner et al.
2011). In bi-parental GS, the training population is made up of a subset of the progeny
and the resulting prediction models are then used for predicting genetic value of the
remaining progeny or for subsequent cycles of marker assisted recurrent selection
(Bernardo and Yu 2007).
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5.4.6 Marker Assisted Recurrent Selection (MARS)

Compared to crop breeders, animal breeders have been more accepting of GWS, per-
haps due to a long history of selecting on breeding values as a surrogate for aggregate
performance (Nakaya and Isobe 2012). In actual fact, the concept of selecting on an
index is not at all foreign to many modern plant breeders. Many breeders practice a
‘simplified’ version of GWS referred to as “marker assisted recurrent selection” or
MARS (Eathington et al. 2007; Hospital and Charcosset 1997; Koebner 2003). Like
GWS, MARS focuses on individual performance rather than marker genotypes and
selects on “marker scores” rather than GEBVs.

MARS was made possible by Lande and Thompson (1990) who first derived opti-
mal selection indices for the improvement of quantitative traits, using both molecular
and phenotypic information. Simply put, MARS refers to the improvement of typi-
cally an F2 population by a single cycle of MAS (based on phenotypic and marker
scores) followed by three cycles of selection based on marker scores only (Bernardo
andYu 2007). Thus there are two distinct steps involved in the application of MARS:
model selection and model estimation. The model selection step involves identifying
F2 or F2 derived progeny with a high proportion of favorable alleles at target marker
loci. Markers are typically chosen on the basis of a statistical test for significance.
In the model estimation step, each marker is given a weight based on its estimated
effect and individual candidates are then ranked based on selection index (molecular
score). The selection index represents a prediction of genetic value of each line,
much the same as a GEBV.

The primary benefit of MARS, as opposed to traditional MAS, is that once the
linear model for estimation of breeding values has been derived, it can be used to pre-
dict the breeding value of other marker genotyped individuals within the population
or in future generations. MARS has been widely used in plant breeding programs in
bi-parental crosses (Eathington et al. 2007) but is now being replaced by approaches
that utilize data compiled across the entire breeding program. As LD in successive
generations is slowly eroded due to recombination, the prediction value of each
marker decreases. With tight linkage between marker and trait loci, the breakdown
of LD can be minimized and the model can be used for several cycles of selection.
Theoretically, if all markers were to be attributed the same effect, MARS would
actually be equivalent to F2 enrichment (Bernardo 2008). However since there is
variation in marker effects, an individual with two QTL with large effects can be
prioritized for selection in MARS ahead of an individual with four QTL with small
effects.

5.4.7 Maintaining Genetic Diversity

The loss of genetic diversity in elite breeding programs due to factors such as selec-
tion, small population sizes and genetic drift remains an issue for concern for plant
breeders. The importance of genetic diversity can be thought of in terms of its role
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in generating additive genetic variance (σA) and thus genetic gain. It may useful to
think of the additive genetic variance as stored genetic potential, and selection as
being the process through which this genetic potential is converted to genetic gain.
This can be seen in the following equation:

R = ih2σp

where R = response to selection, i = intensity of selection, h2 = heritability, equal to
σA�σp and σp equals the phenotypic standard deviation (Falconer and Mackay 1996).

Selection can alter the genetic variance in a population by either changing al-
lele frequencies and/or generating linkage disequilibrium (Lynch and Walsh 1998).
However depending on the type of selection being applied to the population, the ge-
netic variance may either increase due to the generation of coupling disequilibrium
(e.g. disruptive selection), or decrease due to the generation of repulsion disequilib-
rium (e.g. directional and stabilizing selection). This reduction in additive genetic
variance, otherwise known as the Bulmer effect (Bulmer 1976), has been shown
to adversely affect the response to both GWS and pedigree based BLUP selection
(Van Grevenhof et al. 2012). The challenge for breeders is therefore to practice selec-
tion whilst preserving genetic variance or risk severely limiting their opportunities
to force further adaptation in the long term.

One approach to this issue involves the introgression of new alleles for quantitative
traits from unadapted germplasm. Plant breeders have been understandably hesitant
of this approach primarily due to the risk of inadvertently breaking up favorable
linkage blocks in elite germplasm. Many of these linkage blocks have been formed
through the gradual accumulation of favorable genes linked in coupling over many
generations. Reassembling favorable linkage blocks can be difficult, especially for
small effect genes whose positive effects can be masked by the negative effects of
other linked genes introduced from the unadapted parent (Jordan et al. 2011).

With the availability of high-density marker platforms to better understand the
genetic architecture of both donor and recipient populations (Klein et al. 2008),
it is becoming increasingly possible to utilize crossing strategies such as nested
association mapping (Buckler et al. 2009; Yu et al. 2008) and modified backcrossing
strategies (e.g. Jordan et al. 2011) to more quickly and efficiently deliver novel
genetic segments into adapted cultivars. Indeed, high-density marker platforms are
now being used extensively for assessments of genetic diversity in cereals (Chen et al.
2012; Pan et al. 2012), as well as in the discovery of allelic variants of known genes
(Deschamps and Campbell 2010). Furthermore, with the ability to select directly on
high-density markers, GWS allows for the option of preferentially weighting low
frequency favorable markers in the early cycles of selection so as to avoid losing low
frequency favorable QTL. Simulation has shown this to be a potentially useful way
of maximizing response over the long term, whilst sacrificing little or no response
in the short term (Jannink 2010).
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5.5 GWS or MAS/MARS?

Since its inception in 2001, GWS has had a limited uptake in public plant breeding
programs, although an internet search will show that large seed companies have
been hiring many staff in these areas in the last 2-3 years. The slow uptake in public
breeding is despite a growing body of evidence in both plants and animals suggesting
that GWS is the most efficient way of making use of the availability of dense marker
information. For example, Bernardo and Yu (2007) simulated the response due to
GWS compared with MARS over three cycles of selection in maize and found the
response due to GWS to be 18 to 43 % larger than the response due to MARS.
Furthermore, through reduction in time and costs needed to prove the value of a bull,
Schaeffer (2006) showed that GWS could provide a twofold increase in response
to selection and save 92 % of the costs of the current progeny test based breeding
programs. Finally, (Wong and Bernardo 2007) showed through simulation that the
19 year selection cycle in oil palm could be reduced to 6 years, and that GWS
would outperform MARS and phenotypic selection on a gain per unit cost and time
basis, even with very small population sizes (N = 50). It may be that some of the
reticence to implement GWS is due to lack of demonstration of the realised results.
Most of the published studies are related to prediction of target populations from
training populations, rather than the realisation of recombination over several cycles
of selection, and it will be some time before supporting evidence is accumulated in
this area.

Further motivation for the adoption of GWS should lie in the fact that MAS
has not performed up the expectations set on it over two decades ago. Since the
first application of molecular markers to crop improvement in 1986, an interesting
dichotomy has developed between the number of publications purporting to have
found significant marker-trait associations and the number of publications describing
the successful development of finished breeding products. By the year 2000, the
number of publications containing the term “quantitative trait loci” outnumbered
those that contained the term “marker assisted selection” on Google Scholar by a
factor of 3 (Xu and Crouch 2008), and the gap appears to have widened since. Thus
although the discovery of marker trait associations in crops has been successful (Price
2006), the application of this knowledge into developing new plant varieties has not,
at least in the public sector. Potential reasons for this disparity are presented by
Collard and Mackill (2008).

MAS and its various adaptations should be viewed collectively as interim method-
ologies, developed to make the best use of limited available information at a time
when genotyping technologies were very much in their infancy. Much has changed
since this time. Over the last 20 years, the number of base pairs sequenced per dollar
has increased exponentially, and by extension, so has the amount of genomic infor-
mation available for analysis. With the cost of DNA sequencing now dropping by
half every 5 months (Stein 2010), DNA sequencing throughput is outpacing advance-
ments in both computer speed and storage capacity. A major limitation for smaller
breeding programs is that they need efficient and well-designed information systems
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together with skilled staff to exploit these opportunities. Given these capabilities
are available, it is therefore opportune for plant breeding programs to transit from
traditional and MAS breeding to GWS and strive to exploit this influx of genomic
information.
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