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Abstract Barley, rye, Aegilops and Thinopyrum (syn. Agropyron) species belonging
to the Triticeae tribe have large genetic diversity and serve as a valuable genetic
reservoir for wheat improvement. Many of these species have been used for more
than a century for the production of wheat × alien hybrids and introgression lines.
The most up-to-date molecular cytogenetic techniques make it possible to detect and
identify alien chromosomes in the wheat genome. The first methods used to identify
rye, barley, Aegilops and Thinopyrum chromosomes in the wheat genome were
C- and N-banding. Genomic in situ hybridization (GISH) is the most accurate way of
detecting the translocation breakpoint in introgression lines. Alien chromosomes can
be identified in the wheat genome using fluorescence in situ hybridization (FISH)
with the help of repetitive DNA probes. Multicolor GISH (mcGISH) was developed
to demonstrate the various genomes in polyploid plant species and in interspecific
and intergeneric hybrids, amphiploids and derivatives. Sequential GISH and FISH
are useful methods for identifying alien translocations in the wheat genome.
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11.1 Introduction

11.1.1 Interspecific and Intergeneric Hybridization of Plant
Species

For several centuries scientists have been interested in hybridizing different plant
species in order to merge useful traits in a new hybrid progeny. The first known arti-
ficial interspecific hybrid was produced by Fairchild in 1717 (see Belea 1992), while
systematic attempts at interspecific crossing are linked with the name of Kölreuter
(1766). In 1876, Stephen Wilson presented some completely sterile ears of wheat-rye
hybrids for the consideration of the Botanical Society of Edinburgh. His work was
aimed at the unification of the favourable characters of the two crops. This was the
first step in expanding the gene pool of wheat to include the variations carried by the
many wild and cultivated related species in the Triticeae tribe.

The grass tribe Triticeae includes some of the major cereal crop species of the
world, namely Triticum aestivum L. (bread wheat), T. durum L. (durum wheat),
Secale cereale L. (rye), Hordeum vulgare L. (barley), the modern cereal Triticosecale
(triticale) and about 350 other species (Knüpffer 2009). Species related to wheat in the
Triticeae tribe have large genetic diversity and serve as a valuable genetic reservoir
for wheat improvement. The majority of these species can be crossed with wheat
and agronomic traits can be transferred from the hybrids into the wheat genome by
backcrossing. In 1969, a new era of molecular cytogenetics began which made it
possible to precisely identify the chromosomes of different species and to determine
the genome composition of hybrids and derivatives.

11.1.2 Molecular Cytogenetic Techniques

11.1.2.1 Chromosome Banding Techniques

The first chromosome banding technique was developed by Caspersson et al. (1968).
Alkylating fluorochromes like quinacrine (Q) and quinacrine mustard (QM) were
found to differentially stain regions of C-heterochromatin in the chromosomes of
Vicia faba. The Q and QM fluorescent patterns were chromosome-specific, thus al-
lowing the chromosomes to be identified (see Friebe and Gill 1996). The Giemsa
banding techniques originated as a by-product in an in situ hybridization (ISH) exper-
iment where mouse satellite DNA was hybridized to mouse metaphase chromosomes.
Pardue and Gall (1970) observed that the DNA probe preferentially hybridized to
the centromeric regions, but they also observed that these regions stained darker than
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other chromosome regions after counterstaining with Giemsa. This discovery led to
the development of the C- and G-banding techniques for mammalian chromosomes
and shortly afterwards to the development of similar techniques for plant chromo-
somes (Sarma and Natarajan 1973; Hadlaczky and Belea 1975). A standard karyotype
and banding nomenclature system for T. aestivum was proposed by Gill et al. (1991).
Today, it is possible to identify all 21 chromosome pairs of hexaploid wheat and
also 36 of the 42 chromosome arms by C-banding. The barley chromosomes were
identified by Giemsa C- and N-banding (Linde-Laursen 1975).

11.1.2.2 In situ Hybridization

The development of the DNA in situ hybridization (ISH) technique (Gall and Par-
due 1969; John et al. 1969) marked the transition from the classical cytogenetics
era to the modern molecular cytogenetics era (see Jiang and Gill 2006). The basic
procedure of ISH is the labelling of a DNA probe and its hybridization to cytological
preparations. ISH is a powerful method for localizing DNA or RNA sequences in the
cytoplasm, organelles, chromosomes or nuclei of biological material (Leitch et al.
1994). Radiation-based methods were used in probe labelling and signal detection in
early techniques, but they were soon replaced by fluorescence-based methodologies
(Langer-Safer et al. 1982). Fluorescence in situ hybridization (FISH) using fluo-
rochromes for signal detection has several advantages over ISH using isotopic probes
or enzymatic detection methods. First, different DNA probes can be labelled with
different haptens and simultaneously detected using different fluorochromes (mul-
ticolor FISH), thus allowing their physical order on chromosomes to be determined
(Lichter et al. 1990; Leitch et al. 1991; Mukai et al. 1993). Second, fluorescence sig-
nals can be captured by special cameras or laser scanning microscopes and analysed
with digital imaging systems, thus allowing more precise mapping (Jiang and Gill
1994).

Total genomic DNA probes with unlabelled blocking DNA can also be used
to identify the genomes in hybrid organisms (Le et al. 1989; Schwarzacher et al.
1989). Genomic probes are used in plant breeding to detect alien translocations and
substitutions in cereals (Schwarzacher et al. 1992). Genomic in situ hybridization
(GISH) is the most efficient and accurate technique to allocate the breakpoints and
estimate the amount of alien chromatin in translocation chromosomes (Anamthawat-
Jonsson et al. 1993; Jiang and Gill 1994).

FISH signals derived from a single repetitive DNA probe or a cocktail containing
several DNA probes can provide a hybridization pattern that allows all the chromo-
somes within a species to be identified. Since different probes or probe cocktails can
be developed for each species, the FISH-based chromosome identification method
is more versatile than the traditional chromosome banding techniques (Jiang and
Gill 2006). More importantly, FISH-based chromosome identification systems can
be integrated directly into the FISH mapping of other DNA sequences. Attempts to
increase the detection sensitivity of very small chromosomal targets, and to improve
the spatial resolution of signals derived from flanking sequences, have led to the
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development of a variety of novel techniques: it is now possible to perform in situ
hybridizations on interphase nuclei, meiotic pachytene chromosomes and isolated
chromatin (DNA fibres) (de Jong et al. 1999).

11.2 Wide Hybridization of Wheat

Molecular cytogenetic techniques are applied in the selection and identification of
progenies originating from distant crosses, which contain alien chromosome seg-
ments. The method for transferring genes from related species to wheat largely
depends on the evolutionary distance between the species involved. Species belong-
ing to the primary gene pool of common wheat share homologous genomes. Gene
transfer from these species can be achieved by direct hybridization, homologous
recombination, backcrossing and selection (Friebe et al. 1996). The secondary gene
pool of common wheat includes polyploid Triticum/Aegilops species that have at
least one homologous genome in common with T. aestivum. Gene transfer from these
species is possible by homologous recombination if the target gene is also located
on a homologous chromosome. Species belonging to the tertiary gene pool are more
distantly related. Their chromosomes are not homologous to those of wheat. Other
strategies need to be employed, because gene transfer from these species cannot be
achieved by homologous recombination.

11.2.1 Wheat × Barley Hybridization

11.2.1.1 Production of Wheat × Barley Hybrids and Addition Lines

Bread wheat (T. aestivum) and barley (H. vulgare) are two of the most important
cultivated cereals worldwide. The introgressive hybridization of barley to wheat
makes it possible to transfer useful characteristics such as earliness, tolerance to
drought and soil salinity, and various traits for specific nutrition quality. The first
wheat × barley hybrid was produced by Kruse (1973) and the production of the first
set of Chinese Spring/Betzes spring wheat-spring barley addition lines was described
by Islam et al. (1978). Since then Koba et al. (1997) have reported two new 5H and
6H addition lines from a hybrid between the wheat cultivar Shinchunaga and the
barley cultivar Nyugoruden. Alien additions are primarily produced to add specific
desirable genes to a crop species (Gale and Miller 1987), but addition lines can be
used for many other purposes, such as mapping genes and markers on introgressed
alien chromosomes, examining alien gene regulation, understanding meiotic pairing
behaviour and chromosome structure, and isolating individual chromosomes and
genes of interest (Chang and de Jong 2005; Cho et al. 2006).

The production of wheat × barley hybrids is a difficult task because of the low
crossability between the Hordeum and Triticum genera (Shepherd and Islam 1981;
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Fedak and Jui 1982; Molnár-Láng and Sutka 1994). Wheat × barley hybrids can only
be produced with wheat genotypes which carry recessive crossability alleles (kr1 and
kr2), and pollination must be carried out under favourable environmental conditions.
Pollinated flowers must be given hormone treatment (2,4-dichlorophenoxyacetic acid
or giberellic acid) followed by embryo rescue, but in spite of great efforts the seed
set is very low (Kruse 1973; Fedak 1980; Molnár-Láng and Sutka 1994; Molnár-
Láng et al. 2000a). The hybrids are male sterile, but can be pollinated with wheat
(Islam and Shepherd 1990; Koba et al. 1997). However, in most cases no backcross
progenies have been obtained (Wojciechowska and Pudelska 1993; Jauhar 1995).

Fourteen winter barley and three spring barley cultivars were tested as pollinators
for wheat × barley hybrid production in Martonvásár, and hybrids were successfully
produced with four barley genotypes: Betzes (North American two-rowed spring
barley), Igri (German, two-rowed winter barley), Osnova and Manas (Ukrainan
six-rowed winter barleys). The best seed set (3.3 %) was achieved with barley cv.
Betzes, but less than 1 % seed set was observed when wheat was pollinated with
the barley cultivars Igri, Manas and Osnova (Molnár-Láng and Sutka 1994; Molnár-
Láng et al. 2000a). There was no seed set with the other thirteen barley cultivars. The
Martonvásári 9 kr1 (Mv9 kr1) × Igri and Asakaze komugi × Manas hybrids were
vigorous and had good tillering abillity, which made it possible to collect anthers from
young inflorescences for meiotic analysis, to pollinate some spikes with wheat, and
to use some developing inflorescences for in vitro multiplication. The hybrids were
multiplied in tissue culture because of the high degree of sterility, and then pollinated
with wheat to obtain backcross progenies. Meiotic analysis of the hybrids Mv9 kr1 ×
Igri and Asakaze × Manas and their in vitro regenerated progenies with the Feulgen
method revealed 1.59 chromosome arm associations per cell in both initial hybrids.
The number of chromosome arm associations increased after in vitro culture in both
combinations (Molnár-Láng et al. 2000a). Wheat-barley chromosome pairing was
detected in the hybrids using GISH, as in the case of wheat-rye pairing in wheat × rye
hybrids (King et al. 1994; Miller et al. 1994). According to GISH analysis the number
of wheat-barley chromosome arm associations increased in the in vitro regenerated
progenies of both the wheat × barley hybrids (Molnár-Láng et al. 2000a). These
results proved the possibility of producing recombinants between the two genera,
and thus of transferring useful characters from barley into wheat. In vitro conditions
caused an increase in chromosome arm association frequency in both combinations
and in greater fertility in some regenerants. The Asakaze × Manas hybrids were
maintained in tissue culture for several years and their meiotic pairing behaviour and
genome composition were analysed after in vitro multiplication. The seven barley
chromosomes were present in most cells, even after the third in vitro multiplication
cycle, but some abnormalities were observed (Molnár-Láng et al. 2005).

The regenerated Mv9 kr1 × Igri hybrids were backcrossed with wheat and a series
of novel winter wheat-winter barley disomic addition lines (2H, 3H, 4H, 6HS, 7H and
1HS isochromosome) were selected and identified from the selfed progenies of the
BC1 plants (Szakács and Molnár-Láng 2007, 2010a). GISH was used to confirm the
presence of the barley chromosomes in the wheat genome. The barley chromosomes
were identified by the FISH patterns (Fig. 11.1) obtained with various combinations
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Fig. 11.1 Sequential FISH and GISH on mitotic chromosomes of 7H Mv9kr1/Igri wheat-barley
disomic addition line. a Identification of the 7H barley chromosomes using DNA probes GAA
(green), HvT01 (red) and pTa71 (yellow) on the FISH image. b Barley chromosomes are red as a
result of labelling the barley DNA with digoxigenin and were detected with anti-DIG-Rhodamine
on the GISH image. 7H barley chromosomes are indicated by arrows. Scale bar = 10 μm

of repetitive DNA probes: GAA-HvT01, pTa71-HvT01 andAfa family-HvT01 (Sza-
kács and Molnár-Láng 2007). Various DNA probes were used earlier to characterize
the barley genome using FISH. The 45S ribosomal DNA probe pTa71 hybridizes to
five chromosome pairs (Leitch and Heslop-Harrison 1992). The subtelomeric regions
of all barley chromosomes can be reliably identified with the barley-specific tandem
repeat HvT01 (Schubert et al. 1998) or the Triticeae-specific AT-rich tandem repeat
pHvMWG2315 (Busch et al. 1995). A non-random, motif-dependent distribution of
tandem array trinucleotide repeats was found for barley (Cuadrado and Jouve 2007).
With the exception of (ACT)5 the remaining trinucleotide repeats occur predomi-
nantly in Giemsa-banding-positive heterochromatin (Pedersen and Linde-Laursen
1994; Cuadrado and Jouve 2007). The identification of the barley chromosomes in
the addition lines was further confirmed with SSR markers, and the addition lines
were characterized morphologically.

Disomic addition lines (2H, 3H, 4H, 6H and 7H) were also selected from
selfed BC2 plants originating from the Asakaze × Manas crosses (Molnár-Láng
et al. 2012).The barley cultivar Manas is well adapted to Central European con-
ditions, having good winter hardiness, drought tolerance and yield ability. Manas
also has good tolerance of abiotic stresses such as Al and high NaCl concentration
(Darkó et al. 2010; Dulai et al. 2010), so it is a suitable candidate for transfering
useful agronomic traits from barley into wheat. The addition lines were identified by
FISH using repetitive DNA probes (HvT01, GAA, pTa71 and Afa family), followed
by confirmation with barley SSR markers. Addition lines are starting material for
incorporating small segments of barley chromosomes carrying genes responsible for
agronomically useful traits into the wheat genome, i.e. for producing translocation
lines.
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11.2.1.2 Wheat/Barley Translocations

Very few wheat/barley recombinant chromosomes have been reported (Islam and
Shepherd 1992), as homoeologous pairing between the chromosomes of these species
is rare (Islam and Shepherd 1988; Molnár-Láng et al. 2000a). Koba et al. (1997) re-
ported spontaneous wheat/barley translocations originating from a new wheat ×
barley hybrid combination. Various methods are available for producing transloca-
tions, including irradiation (Sears 1956) or genetic methods, but the most promising
way is to use the 2C Aegilops cylindrica addition line to induce chromosome re-
arrangements between wheat and barley, as described by Schubert et al. (1998).
This is a unique genetic system that induces frequent chromosomal structural rear-
rangements in common wheat by introducing gametocidal (Gc) alien chromosomes
into common wheat from wild species belonging to the genus Aegilops (Ae. cylin-
drica and Ae. triuncialis) (Endo et al. 1984). The rearranged chromosomes thus
induced deletions of barley chromosomes and translocations between the barley and
wheat chromosomes. Lines carrying rearranged barley chromosomes are designated
as ‘dissection lines’. Deletion mapping on barley chromosomes 7H, 5H and 3H
was performed using barley dissection lines and barley-specific EST markers (Endo
2009). The barley dissection lines were produced from CS/Betzes addition lines, so
they all carry chromosome segments from Betzes barley.

Five wheat-barley translocations (2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL,
4D-5HS and 7DL.7DS-5HS) were identified and characterized in Martonvásár
(Molnár-Láng et al. 2000b; Nagy et al. 2002) using sequential GISH and two-colour
FISH with the probes pSc119.2 and pAs1, and later by three-colour FISH with the
probes pSc119.2, Afa family and pTa71 (Fig. 11.2). The barley chromatin in these
lines was identified using SSR markers. The wheat/barley translocation lines were
used for the physical mapping of molecular markers on barley chromosome regions
(Kruppa et al. 1975).

A spontaneous interspecific Robertsonian translocation was revealed by GISH
in the progenies of a monosomic 7H addition line originating from the Asakaze
× Manas hybrid. FISH performed with the repetitive DNA sequences Afa family,
pSc119.2 and pTa71 allowed the identification of all the wheat chromosomes, in-
cluding wheat chromosome arm 4BS involved in the translocation (Cseh et al. 2011).
FISH using barley telomere- and centromere-specific repetitive DNA probes (HvT01
and AGGGAG) confirmed that one of the arms of barley chromosome 7H was in-
volved in the translocation. SSR markers identified the translocated chromosome
segment as 7HL. The presence of the HvCslF6 gene, responsible for (1,3;1,4)-β-
D-glucan production, was revealed in the centromeric region of 7HL. An increased
(1,3;1,4)-β-D-glucan level was also detected in the translocation line, demonstrat-
ing that the HvCslF6 gene is of potential relevance for the manipulation of wheat
(1,3;1,4)-β-D-glucan levels (Cseh et al. 2011, 2013).

Addition lines are good starting material for the incorporation of small segments
of barley chromosomes, carrying genes responsible for agronomically useful traits,
into the wheat genome. It will be possible to produce new barley dissection lines
containing chromosome segments from Igri and Manas, which may give new in-
formation for the mapping of DNA sequences related to various agronomic traits in
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Fig. 11.2 Sequential GISH
and FISH on mitotic
chromosomes of
6BS.6BL-4HL wheat-barley
disomic translocation line. a
Detection of barley
chromosome segments (red)
in the translocation
chromosome pairs using
GISH. Total barley DNA was
labelled with digoxigenin,
and detected with
anti-DIG-Rhodamine. The
translocated chromosomes
are indicated by arrows. The
wheat chromosomes are blue
as a result of counterstaining
with DAPI. b Identification of
the wheat chromosomes using
FISH with DNA probes
pSc119.2 (green), Afa family
(red) and pTa71 (yellow).
Disomic 6BS.6BL-4HL
translocated chromosomes
are indicated by arrows. Scale
bar = 10 μm

barley. It will also be possible to introgress chromosome segments carrying genes for
agronomically useful traits (nutritional parameters; Al, drought and salt tolerance)
from the two-rowed and six-rowed winter barley cultivars Igri and Manas into wheat,
and to determine the chromosomal location of these genes.

11.2.2 Wheat × Rye Hybrids

Secale is a small but important cereal genus that includes cultivated rye (S. cereale L.),
weedy rye, and several wild species. As it is capable of producing higher yields
than wheat under adverse conditions, rye has become a staple food grain at higher
elevations and in regions with poor soils and severe winters. Secale spp. contain
genes associated with resistance to many cereal diseases, winter hardiness, drought
tolerance, sprouting, high lysine content and morphological and biochemical traits,
which can be transferred to closely related cereal crops (Molski et al. 1985).
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11.2.2.1 Wheat × Rye Crossability

The crossability of hexaploid wheat (T. aestivum) with rye is controlled by two loci,
Kr1 and Kr2, where the dominant alleles reduce crossability, Kr1 having the more
and Kr2 the less potent effect. Plants which carry the Kr1Kr1Kr2Kr2 dominant
alleles give lower than 5 % seed set when pollinated with rye, but genotypes with the
kr1kr1kr2kr2 recessive homozygous genome composition may have over 50 % seed
set with rye (Lein 1943). The kr1 gene is located on the long arm of chromosome 5B,
while kr2 is located on the long arm of chromosome 5A (Riley and Chapman 1967;
Lange and Riley 1973). Most European wheat varieties carry the dominant Kr alleles
and thus have very low crossability with rye (Kiss and Rajháthy 1956; Zeven 1987).
The recessive kr alleles are mostly present in wheat varieties from China, Japan,
Siberia and other Asiatic regions, but these varieties are not suitable for production
under Central European conditions. Snape et al. (1987) and Gay and Bernard (1994)
transferred the recessive kr1 allele into English and French varieties, respectively, by
first incorporating the 5B chromosome from Chinese Spring or Fukuhokomugi into
monosomic lines of these varieties. The major gene Kr1 was identified on 5BL, and
SKr, a strong QTL affecting crossability between wheat and rye, on chromosome
5BS (Tixier et al. 1998). Two SSR markers completely linked to SKr were used to
evaluate a collection of crossable wheat progenies originating from primary triticale
breeding programmes. The results confirm the major effect of SKr on crossability
and the usefulness of the two markers for the efficient introgression of crossability
into elite wheat varieties (Alfares et al. 2009).

In Hungary, the recessive crossability allele kr1 was transferred from the spring
wheat variety Chinese Spring (CS) into the winter wheat variety Martonvásári 9
(Mv9) by backcrossing Mv9 × CS hybrids with Mv9 (Molnár-Láng et al. 1996).
As a result of five backcrosses with Mv9 and two selfings after each backcross, the
selected progenies had over 50 % seed set with rye when tested on a large number
of individual plants. These data confirmed that after the fifth backcross the selected
Mv9 kr1 line carried the recessive crossability alleles Kr1 and Kr2, but the genotype
was 98.4 % Mv9. When the Mv9 kr1 line was pollinated with the old Hungarian rye
cultivar Lovászpatonai (Molnár-Láng et al. 2002), the mean crossability percentage
was fairly high, 68.4 %. The chromosome number distribution, examined in mitotic
chromosome spreads of octoploid triticale obtained via colchicine treatment of the
initial hybrid, was found to range from 51 to 56. All the rye chromosomes were iden-
tified with the help of C-banding and were detected using GISH (Nagy et al. 1998).
The Mv9 kr1 line is now used as a maternal partner in wheat-alien hybridization
experiments in Martonvásár (Molnár-Láng et al. 2002). This has the advantage that
the alien genes can be transferred directly into a winter wheat line with good yielding
ability and good quality, instead of into CS, which has many unfavourable features
from the agronomic point of view.

11.2.2.2 Wheat-Rye Addition and Substitution Lines

Rye is most intensively used to extend the genetic variability of wheat via intergeneric
hybridization and recombination (Lelley 1993). Wheat-rye addition and substitution



264 M. Molnár-Láng et al.

lines played an important role in determining the homoeologous relationship between
the two genera and were extensively used to search for useful genes in rye for wheat
breeding. The first wheat-rye addition lines were produced by O’Mara (1940) and
since then complete series of disomic wheat-rye addition lines, including adequate
disomic telocentric lines (see Shepherd and Islam 1988; Lukaszewski 1988) have
been developed. The rye chromosomes in the addition lines were detected by GISH
and identified using C-banding and in situ hybridization with the help of labelled
repetitive DNA probes (Mukai et al. 1992).

The genetic stability of wheat/rye disomic addition lines was checked using the
Feulgen method and FISH (Szakács and Molnár-Láng 2010b). Feulgen staining de-
tected varying proportions of disomic, monosomic and telosomic plants among the
progenies. The greatest stability was observed for the 7R addition line, while the
most unstable lines were those with 2R and 4R additions. Chromosome rearrange-
ments were also detected using FISH. Based on the specific hybridization patterns of
repetitive DNA probes (pSc119.2 and (AAC)5), and ribosomal DNA probes (5S and
45S), isochromosomes were identified in the progenies of the 1R and 4R addition
lines. The results draw attention to the importance of using FISH for continuous cy-
tological checks on basic genetic materials because this method reveals chromosome
rearrangements not detected either with the conventional Feulgen staining technique
or with molecular markers (Szakács and Molnár-Láng 2010b).

The first reports on the spontaneous wheat-rye chromosome substitution 5R(5A)
were published by Kattermann (1937) and O’Mara (1947). Driscoll and Anderson
(1967) reported the substitution of wheat chromosomes 3A, 3B, 3D and 1D by rye
chromosome 3R. Since then many other wheat-rye substitutions have been produced
and identified (Lukaszewski 1991; Schlegel 1997).

11.2.2.3 Wheat/Rye Translocations

The 1BL.1RS wheat/rye translocation is the most widespread alien translocation,
detected in hundreds of wheat cultivars worldwide (Bedö et al. 1993; Rabinovich
1998, Lukaszewski 2000). Most varieties with a 1BL.1RS translocation contain the
short arm of the 1R chromosome from Petkus rye (Zeller 1973; Schlegel and Korzun
1997). Unfortunately most of the resistance genes (Lr26, Yr9, Pm and, Sr31) located
on this chromosome arm are no longer effective against new biotypes of the diseases.
However, the translocation was also postulated to have a yield-enhancing effect and
to improve adaptability (Rajaram et al. 1990; Villareal et al. 1998). As it is probably of
single origin (Schlegel and Korzun 1997) this 1RS arm lacks any genetic variation,
so new allelic variation needs to be introduced from other 1RS chromosomes in
order to exploit the rich gene reservoir of diploid rye. Other rye genotypes may
have new resistance genes or alleles against various diseases and may have a less
deleterious effect on bread-making quality, probably the only negative consequence
of the presence of the original Petkus rye chromosome arm in wheat.

Several authors have reported the production of wheat cultivars carrying 1RS
chromosome arms from various rye genotypes. The 1RS.1AL translocation in wheat
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cultivar Amigo carries the 1RS arm of Insave rye (Zeller and Fuchs 1983). Salmon,
another 1BL.1RS wheat/rye translocation line, was derived from an F3 seed from a
hybrid between two octoploid triticale strains (Tsunewaki 1964). A 1DL.1RS translo-
cation was derived from the rye cultivar Imperial (Shepherd 1973). Marais et al.
(1994) used homologous recombination to transfer a gene from the short arm of
chromosome 1R from Turkey 77 rye into the 1RS arm of the translocated chromo-
some in the wheat cultivar Veery. A new 1BL.1RS wheat/rye translocation line was
developed by Ko et al. (2002) from the backcross of the F1 hybrid of wheat cv. Olmil
and rye cv. Paldanghomil. A fast, efficient method is urgently needed to introduce
a substantial amount of allelic variation into this chromosome arm directly from
diploid rye (Nagy et al. 2003; Lelley et al. 2004). Nagy et al. (2003) demonstrated
that new genetic variation from the 1RS arm of rye can routinely be introduced
into the 1RS of translocation wheats by crossing commercial cultivars, containing
the1BL.1RS chromosome, with octoploid triticale lines.

Molnár-Láng et al. (2010) developed a wheat genotype containing both the re-
cessive crossability alleles (kr1kr1kr2kr2), allowing high crossability between 6 ×
wheat and diploid rye, and the 1BL.1RS wheat/rye translocation chromosome. This
wheat genotype was used as a recipient partner in wheat × rye crosses for the efficient
introduction of new allelic variation into 1RS in translocation wheats. These wheat
lines were selected after crossing the wheat cultivars Mv Magdaléna and Mv Béres,
carrying the 1BL.1RS translocation, with the wheat line Mv9 kr1, which carries
the kr1kr1kr2kr2 alleles. The wheat × rye F1 hybrids produced with new recipient
wheat lines involving the rye cultivar Kriszta were analysed in meiosis using GISH.
Chromosome pairing between the 1BL.1RS translocation and the 1R chromosome
of the rye cultivar was detected in 62.4 % of the pollen mother cells of the wheat ×
rye hybrids. The use of FISH with repetitive DNA probes pSc119.2, Afa family and
pTa71 allowed the 1R and 1BL.1RS chromosomes to be identified (Fig. 11.3). The
presence of the 1RS arm from Kriszta as well as that of Petkus was demonstrated
in the F1 hybrids using the rye SSR markers RMS13 and SCM9. Based on GISH
and SSR marker analysis it was concluded that recombination had occurred between
the 1RS chromosome arms of Petkus and Kriszta in the translocated chromosome in
four of the 22 plants analysed. New primary 1BL.1RS translocation lines were also
created with three Chinese local rye varieties (Ren at al. 2011).

The first experimental wheat/rye translocation (4B-2R) was produced in 1967
(Driscoll and Anderson 1967), but the introgression of rye genetic information into
wheat most famously occurred through a spontaneous 1RS.1BL wheat/rye translo-
cation (Mettin et al. 1973; Zeller 1973). Another wheat/rye translocation with
importance for breeding was found in the Danish variety Viking, which carries a
4B-5R interchange (Schlegel et al. 1993) causing high iron, copper and zinc ef-
ficiency compared to common wheat (Schlegel 2006). The old Portuguese wheat
landrace, Barbela contains small, spontaneously occurring rye segments on the long
arm of 2D. This landrace shows good productivity under the low fertility conditions
often associated with acid soils (Ribeiro-Carvalho et al. 1997). A large number of
wheat/rye translocations were detected among the progenies of triticale × wheat
crosses (Lukaszewski and Gustafson 1983), involving all seven rye chromosomes.
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Fig. 11.3 Sequential GISH and FISH on meiotic chromosomes of a wheat × rye hybrid. a Genomic
in situ hybridization (GISH) on meiotic metaphase I chromosomes of the wheat × rye F1 hybrid
produced between the Mv Béres kr1 wheat line having the 1BL.1RS translocation and the rye
cv. Kriszta. Seven rye chromosomes and the 1RS arm in the 1BL.1RS translocated chromosome
(arrow) are yellowish green. Twenty wheat chromosomes (18 univalents and 1 rod bivalent) and
the 1BL arm of the 1BL.1RS chromosome are unlabelled. b 1BL.1RS-1R pairing was identified
using FISH with repetitive DNA probes pSc119.2 (green), Afa family (red) and pTa71 (yellow) on
the same cell. Scale bar = 10 μm

Agronomically useful wheat/rye translocations were produced by incorporating chro-
mosome segments from the 2R (Mukade et al. 1970; Sears et al. 1992; Cainong et al.
2010), 3R (Rao 1978) and 6R (Friebe and Larter 1988; Friebe et al. 1991) rye
chromosomes into the wheat genome (Friebe et al. 1996).

Triticale is the first man-made crop originating from wheat × rye hybridization
(Kiss 1966; Lelley 1993). According to the FAO database it is grown on more than
4 million ha worldwide. At present, triticale is grown in Poland on 1.465 million ha,
in Germany on more than 400,000 ha, in the Russian Federation on 187,000 ha and
in Hungary on more than 125,000 ha.

11.2.3 Wheat × Aegilops Hybrids

11.2.3.1 Aegilops (goatgrass) Species

The genus Aegilops L. comprises 11 diploid, 10 tetraploid and 2 hexaploid species
(Van Slageren 1994). Some of these species took part in the evolution of pasta and
bread wheat, as Ae. tauschii Coss. (2n = 2 × = 14, DD) is the donor of the hexaploid
wheat D genome and Ae. speltoides Tausch (2n = 2 × = 14, SS) exhibits the closest
relationship to the B genome of wheat (Dvorak 1998). Aegilops species have great
diversity, thus representing a large reservoir of useful traits for wheat improvement.
Species belonging to this genus have been evaluated for their resistance to diseases
and pests (Gill et al. 1983, 1985; Raupp et al. 1995). Many agronomically useful
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traits, including disease and pest resistance, stress and salt tolerance and winter
hardiness, have been transferred from these species to wheat and several of them are
used in wheat improvement (Cox et al. 1994; Gill et al. 1987; Raupp et al. 1993, see
Schneider et al. 2008).

The directed exploitation of this variability requires detailed knowledge of the
genetic and cytogenetic structure of the Aegilops species. Karyotypic data includ-
ing C-banding patterns and the chromosomal distribution of four repetitive DNA
sequences have been reported for all the diploid Aegilops species (Badaeva et al.
1996a, b). This set the stage for the analysis of the genome differentiation of the poly-
ploid Aegilops species, which were analysed by C-banding and FISH with repetitive
DNA probes (Badaeva et al. 2002, 2004, 2011; Schneider-Linc et al. 2005; Molnár
et al. 2011).

Aegilops cylindrica Host (2n = 4 × = 28, DcDcCcCc) is an autogamous, allote-
traploid wild relative of bread wheat, which is native to the Mediterranean, the Middle
East andAsia, and was introduced both to the Great Plains and Pacific northwest of the
United States and into Hungary (Kimber and Feldman 1987; van Slageren 1994). The
genomic constitution of Ae. cylindrica was determined by analysing chromosome
pairing (Sax and Sax 1924; Kihara 1931), storage proteins (Johnson 1967), isozymes
(Jaaska 1981; Nakai 1981) and differences in the restriction length patterns of re-
peated nucleotide sequences (Dubcovsky and Dvorak 1994). These studies identified
the diploid species Ae. caudata L. (2n = 2 × = 14, CC) as the donor of the C genome
and Ae. tauschii as the donor of the D genome of Ae. cylindrica. A detailed karyotypic
analysis of Ae. cylindrica was performed by C-banding, GISH and FISH using the
DNA clones pSc119, pAs1, pTa71, and pTa794. GISH analysis detected interge-
nomic translocation in three of the five Ae. cylindrica accessions (Linc et al. 1999).

Aegilops biuncialis Vis. [syn. Aegilops lorentii Hochst., T. macrochaetum (Shut-
tlev. & A. Huet ex. Duval-Jouve) K. Richt] (2n = 4 × = 28, UbUbMbMb) is a
tetraploid wild relative of wheat belonging to the section Polyeides of the genus
Aegilops. Ae. biuncialis shares the U and M genomes with the polyploid species Ae.
geniculata Roth. (2n = 4 × = 28, UgUgMgMg), Ae. columnaris Zhuk. (2n = 4 × =
28, UcoUcoMcoMco) and Ae. neglecta REq. Ex Bertol. (2n = 4 × = 28, UnUnMnMn).
The Ub genome progenitor is the diploid Ae. umbellulata (syn. Triticum umbellula-
tum) Zhuk. (2n = 2 × = 14, UU), while the modified Mb genome originated from
Ae. comosa (syn. Triticum comosum) Sm. in Sibth. & Sm. (2n = 2 × = 14, MM)
(Kimber and Sears 1983; Badaeva et al. 2004). Aegilops biuncialis has good toler-
ance against biotic (Damania and Pecetti 1990; Makkouk et al. 1994) and abiotic
stresses such as cold and salt stress (Colmer et al. 2006). Accessions originating
from semi-desert habitats can also be used as gene sources to improve drought and
heat tolerance of wheat (T. aestivum L.) (Molnár et al. 2004; Dulai et al. 2005). To
facilitate the exact identification of the Ae. biuncialis chromosomes in the T. aestivum
genetic background, FISH was carried out using repetitive DNA probes (pSc119.2,
pAs1/Afa family, pTa71, (GAA)n and (ACG)n) on Ae. biuncialis, Ae. geniculata and
their two diploid progenitor species (Schneider-Linc et al. 2005; Molnár et al. 2005,
2011a, b). Differences in the hybridization patterns (Schneider-Linc et al. 2005;
Molnár et al. 2011a, b) indicated that the M genome was more variable than the U
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Fig. 11.4 a, b Two-colour genomic in situ hybridization (GISH) using U and M genomic probes,
and FISH using Afa family, pSc119.2 and pTa71 repetitive DNA probes on mitotic chromosomes of
Aegilops biuncialis. a On the GISH image the U genome is visualized in orange and the M genome
in green. b On the FISH image pSc119.2 sites are green, Afa family signals are red and pTa71
signals are yellow. Scale bar = 10 μm. c Multicolor genomic in situ hybridization (mcGISH) on a
partial wheat-Ae. biuncialis amphiploid cell having 39 wheat and 28 Ae. biuncialis chromosomes.
The Ub genome is visualized in orange, the Mb genome in green and the wheat chromosomes in
brown. Scale bar = 10 μm

genome which was confirmed by conserved orthologous set (COS) markers (Molnár
et al. 2013). Intraspecific genetic variability was examined using two-colour GISH
and FISH in 32 Ae. biuncialis (Fig. 11.4a, b) and 19 Ae. geniculata accessions.
Homozygous intergenomic translocations were detected by GISH between the U
and M genomes in six accessions (Molnár et al. 2011). Intergenomic translocation
breakpoints were mapped to SSR-rich chromosomal regions (Molnár et al. 2011).
The evolutionary changes in the karyotypes of the D, U and N genomes of diploid
and polyploid Aegilops species have also been investigated by means of FISH and
C-banding (Badaeva et al. 2002, 2004, 2011).
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11.2.3.2 Production of Wheat × Aegilops Hybrids, Addition
and Translocation Lines

Efforts to exploit Aegilops species for wheat improvement were begun more than a
century ago. The results achieved to date in the field of wheat-Aegilops hybridiza-
tion and gene transfer were reviewed by Schneider et al. (2008). Of the 23 Aegilops
species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis
(Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L.,
Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.)
and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser)
Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have
been used to develop wheat-Aegilops addition lines while wheat-Aegilops substitu-
tion lines have been developed using several species, including Ae. umbellulata, Ae.
caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. genic-
ulata (see Kilian et al. 2011). Translocations carrying genes responsible for useful
agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa,
Ae. longissima, Ae. speltoides and Ae. geniculata (see Schneider et al. 2008).

Ae. biuncialis was crossed as male parent with the winter wheat line Mv9 kr1,
and F1 hybrids were produced with great efficiency. Amphiploids were then devel-
oped and backcrossed with wheat by Logojan and Molnár-Láng (2000) who also
investigated the meiotic pairing behaviour of the hybrids. The wheat-Ae. biuncialis
amphiploids were able to maintain significantly higher water content, photosynthetic
capacity and biomass production than wheat genotypes during drought stress (Molnár
et al. 2008). Six different disomic addition lines, each with 22 bivalents in metaphase
I of meiosis, were selected from the selfed backcross derivatives of the amphiploids
(Molnár-Láng et al. 2002). Five of them were identified using FISH with repetitive
DNA probes pSc119.2 and pAs1. No chromosome rearrangements between wheat
and Ae. biuncialis were detected by GISH in these additions (Schneider-Linc et al.
2005), which can be used to study the genetic effects of individual alien chromosomes
in wheat.

Since the first successful gene transfer from Aegilops umbellulata Zhuk. to wheat
(Sears 1956), ionising irradiation (such as X- and Y-rays) has been widely applied
to crop species for the production of interspecific translocations. A large number of
genes were transferred from Aegilops species to cultivated wheat, including those
for resistance to leaf rust resistance, stem rust, yellow rust and powdery mildew, and
various pests (cereal cyst nematode, root knot nematode, Hessian fly and greenbug)
(see Schneider et al. 2008), but there are still many untapped genetic resources in
Aegilops species that could be used as resistance sources for plant breeding. C-
banding and FISH permit the distinction of the wheat and Aegilops chromosomes
involved in wheat-alien translocations, whereas their size and breakpoint positions
can be determined by GISH analysis (see Jiang et al. 1994; Castilho et al. 1996; see
Friebe et al. 1996). Biagetti et al. (1999) used two highly repetitve DNA sequences
(pSc119.2 and pAs1) and one low copy 3BS-specific RFLP sequence to physically
map Ae. longissima chromatin in wheat recombinant lines carrying Pm13 derived
from Ae. longissima. Using a combination of C-banding and ISH, it was possible to
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identify chromosomes carrying Aegilops-derived chromosome segments (see Friebe
et al. 1996; Nasuda et al. 1998).

Because Aegilops species are more closely related to wheat than rye, barley
or Agropyron species, it is often difficult to discriminate Aegilops-derived chro-
mosomes using GISH (Wang et al. 2000; Benavente et al. 2001; Molnár et al.
2005, 2009; Cifuentes et al. 2006). However, a GISH protocol combining the pre-
annealing of the probe and blocking DNA and prehybridization with blocking DNA
was successfully used both to differentiate the very closely related genomes of Ae.
uniaristata and wheat and to distinguish the S genome of Ae. searsii and Ae. longis-
sima from the B genome of wheat (Iqbal et al. 2000; Belyayev et al. 2001). Multicolor
GISH (mcGISH) using differentially labelled total genomic DNA probes enables the
parental genomes to be discriminated in allopolyploid plants (Mukai et al. 1993;
Belyayev et al. 2001) can also detect intergenomic chromosome rearrangements.
The simultaneous visualization of individual wheat genomes and alien chromatin in
interspecific hybrids and derivatives has also been reported (Sánchez-Morán et al.
1999; Han et al. 2003). Benavente et al. (2001) individually distinguished the Uo

and Mo genomes of Aegilops ovata L. in durum wheat-Ae. ovata amphiploids using
the total genomic DNA of Ae. umbellulata and Ae. comosa Sm. in Sibth. & Sm. as
U and M genomic probes. The simultaneous discrimination of the two constituent
genomes of Ae. biuncialis and the wheat chromosomes by mcGISH was reported by
Molnár et al. (2009). This procedure also allowed for the parallel discrimination of
the Ub and Mb genomes of Ae. biuncialis from bread wheat chromosomes (11.4).
The γ-irradiation of the wheat-Ae. biuncialis amphiploids yielded a large number of
intergenomic translocations involving the whole of the Aegilops and wheat genomes
(Molnár et al. 2009). Dicentric chromosomes, fragments and terminal transloca-
tions were most frequently induced by γ-irradiation. Chromosome banding and ISH
techniques may fail to identify translocated chromosome segments if there are no di-
agnostic bands or hybridization sites. In such cases chromosome-specific molecular
markers may facilitate the characterization of the Aegilops segment.

11.2.4 Wheat × Thinopyrum (syn. Agropyron) Hybrids

11.2.4.1 Agropyron Species

Wheatgrass and wildrye grasses are some of the most important grasses in the tem-
perate regions of the world (Wang 2011). These species are important as tertiary gene
pools for wheat improvement and also serve as forage crops. Many of these grasses
are related to and have been hybridized with cultivated cereal crops including wheat,
barley and rye as genetic sources for disease resistance, salinity tolerance and other
traits.

The taxonomy of the wheatgrass and wildrye grasses has been object of consid-
erable controversy. The wheatgrasses traditionally have been included in the genus
Agropyron and wildrye have been largely treated as species in the genus Elymus
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(Wang 2011). Although it is now agreed by taxonomists that Agropyron should be
restricted to A. cristatum and its close relatives, in the present review, Agropyron is
used to include species in the genera Australopyrum (Tzelev) A Löve, Dasypyrum
(Coss. & Durieu) T. Durand, Elymus Linnaeus, Leymus Hochstetter, Pascopyrum A.
Löve, Pseudoroegneria (Nevski) A. Löve, and Thinopyrum A Löve, etc. according to
Wang (2011).All species in the genera Agropyron, Pseudroegneria, Psathyrostachys,
Thinopyrum, Elymus and Leymus are theoretically capable of being hybridized with
wheat.

Species belonging to the present Thinopyrum genus (formerly Agropyron) are
known to possess genes conferring resistance to various diseases, such as leaf and
stem rusts, barley yellow dwarf virus, Fusarium head blight, etc., making these
species suitable for improving the distance resistance of wheat (Friebe et al. 1994;
Zhong et al. 1994; Fedak and Han 2005; Li and Wang 2009). Thinopyrum genus
consists of three species complexes: Th. junceum (L.) A. Löve, Th. elongatum (Host)
D.R. Dewey, and Th. intermedium. Species in this genus possess the J-, E-genome
and sometimes contains the St-genome. This genus consists of diploids, segmental
allotetraploids, segmental allohexaploids, octoploids and decaploids (Wang 2011).

11.2.4.2 Exploitation of Thinopyrum Species for Wheat Improvement

The prospect of taking advantage of the desirable gene content of these species has
urged researchers worldwide to exploit the potential of the tertiary gene pool. Up till
now several resistance genes have been transferred from perennial Triticeae, most of
them originating from species in the Thinopyrum genus. One of the most important
alien resistance genes for biotic stress transferred from Agropyron elongatum (syn.
Th. elongatum) to wheat is Lr19 (Sharma and Knott 1966). Wide hybridization of
tall wheatgrass species with wheat appears promising as an avenue to improve salt
tolerance (Colmer et al. 2006; Mullan et al. 2009). Other genes conferring resis-
tance to leaf and stem rust, scab and head blight, curl mite, powdery mildew, wheat
streak mosaic virus and barley yellow dwarf virus have been introgressed success-
fully into wheat through chromosome engineering (see Wang 2011). The two most
valuable sources are Th. intermedium and Th. ponticum, firstly due to the fact that
these species have resistance to rusts, common root rot, wheat scab, wheat streak
mosaic virus, green bug and curl mite, and tolerance of abiotic stress (drought,
high temperature, salinity) (Liu et al. 2007) and secondly because they contain the
two basic genomes E and St, which are closely related to the A and D genomes
of hexaploid wheat. Their polyploid nature suggests multiple origins, with progen-
itors from different geographical areas. They thus possess great genetic variability
and molecular polymorphism which could be exploited by researchers and breed-
ers (García et al. 2002). An intensive hybridization programme involving annual
wheat and species from the former Agropyron genus was successfully initiated in
the early 1930s by Tsitsin (Tsitsin 1960). Several Thinopyrum-wheat amphiploids
were obtained worldwide and used for producing addition, substitution or translo-
cation lines such as Agrotana, OK7211542, PWM706, PWMIII and PWM 209. The
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GISH and multicolor GISH (mcGISH) methodologies were used to establish the
cytogenetic constitution of various partial amphiploids (Chen et al. 1995, 1999; Han
et al. 2004; Sepsi et al. 2008; Georgieva et al. 2011). A set of disomic addition lines
was produced in each of which a chromosome for Agropyron elongatum (syn. Th.
elongatum, 2n = 14) was added to the chromosome complement of T. aestivum (Dvo-
rak and Knott 1974). These were later proved to carry many agronomically useful
traits (resistance to wheat streak mosaic virus, barley yellow dwarf virus, common
root rot, Fusarium head blight, tan spot and Stagonospora nodorum) originating
from the Th. ponticum progenitor and have been exploited as alien sources of dis-
ease resistance in wheat improvement (Chen et al. 1998; Thomas et al. 1998; Li et al.
2003; Fedak and Han 2005; Oliver et al. 2006).

McGISH and FISH were used to characterize the genomic composition of the
wheat-Th. ponticum partial amphiploid BE-1. The amphiploid is a high-protein line
having resistance to leaf rust and powdery mildew and has a total of 56 chromosomes
per cell (Szalay 1979). Multicolor GISH identified 16 chromosomes originating from
Th. ponticum and 14 A-genome, 14 B-genome and 12 D-genome chromosomes from
wheat. Six of the Th. ponticum chromosomes carried segments differing from the
J genome in their centromeric regions. Using the Afa family, pSc119.2 and pTa71
probes, FISH identified all the wheat chromosomes present and determined which
chromosomes were involved in the translocations. On the basis of their multicolour
FISH patterns, the alien chromosomes could be arranged in eight pairs and could
also be unequivocally differentiated from each other (Sepsi et al. 2008). In situ hy-
bridization techniques, combined with SSR marker analysis, are extremely useful in
detecting and identifying intergenomic rearrangements in the wheat genome, leading
to the selection of genetic materials that could be useful for future mapping studies
(Somers et al. 2004; Sepsi et al. 2009).

Using the FISH technique with various repetitive DNA probes, the genes control-
ling agronomically important traits can be assigned to precise chromosomal regions,
thus facilitating effective gene transfer. Hsiao et al. (1986) studied the karyotypes
of 22 diploid species of perennial Triticeae representing the P, St, J (E), H, I, Ns,
W and R genomes. The C-banding patterns established for 10 diploid species (Endo
and Gill 1984) drew the attention to the equivalence of the J and E genomes. The
two genomes are indistinguishable on the basis of the chloroplast sequence data,
whereas the chromosome pairing pattern in meiosis, karyotype differences and data
on the 5S DNA spacer and ITS sequences provide clear evidence that they represent
different genera (Jauhar 1990; Kellogg et al. 1996). The rapid, accurate identifica-
tion of these materials can only be achieved by generating detailed karyotypes of the
individual genomes based on the use of molecular cytogenetic probes. A detailed
FISH karyotype of the E genome of Elytrigia elongata (Host) Nevski (= Agropyron
elongatum, Thinopyrum elongatum, 2n = 2 × = 14, EE) was generated and verified
in several accessions using highly repetitive DNA sequences and the sequential GISH
– mcFISH technique (Linc et al. 2012).
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11.3 Conclusions

Alien chromatin originating from species in the tertiary gene pool can be detected
in the wheat genome using GISH, as their genomes are not homologous with wheat.
A GISH protocol for the detection of barley and rye chromosomes in a wheat back-
ground was elaborated more than twenty years ago and routinely applied in many
laboratories. Differentiating the chromosomes of wheat and Aegilops, species pre-
viously classified in the same genus using GISH is a considerable challenge. The
identification of wheat, barley, rye and Aegilops chromosomes was first achieved
by C- and N-banding and later by in situ hybridization using various DNA probes
(pSc119, pAs1, pTa71, pT794 HvT01, GAA, pSc250, pSc200, etc.). Sequential
GISH and FISH, a combination of GISH and chromosome identification with the
use of repetitive DNA probes is a very efficient method for detecting and identifying
alien chromatin in the wheat genome.

Barley, rye, Aegilops and Thinopyrum (syn. Agropyron) species are important
gene sources for wheat improvement, but have only been partially exploited. Very
few reports have been published on gene transfer from barley, and most of these
projects involved a single barley cultivar, Betzes. Rye is the related species exploited
most frequently for wheat improvement. Several genes have been transferred from
the Aegilops and Agropyron species into wheat, but there is still a vast reservoir of
species, both in gene banks and in natural habitats, which could be tapped in future
to enhance genetic diversity of wheat.
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