Chapter 7

The Application of ‘Omics’ Techniques

for Cancers That Metastasise to Bone:
From Biological Mechanism to Biomarkers

Steven L. Wood and Janet E. Brown

Abstract The study of the mechanisms underlying the spread of cancer to sites of
bone metastasis have benefitted greatly from recent advances in the high-throughput
analysis of biomolecules using modern “omic” techniques. Omic-based profiling
can provide both qualitative and quantitative data about the expression of key
biomolecules within body fluids, tissues and sub-cellular compartments within
both healthy and disease states. Individual omic platforms which analyse DNA-
sequences (genomics), mRNA (transcriptomics), proteins (proteomics) and metab-
olites (metabolomics) have provided key information relating to the biological
alterations which occur as a result of cancer spread to bone. Application of omic-
techniques to both patient derived samples and animal models of bone metastasis
have identified molecules which could serve as diagnostic and prognostic biomark-
ers of disease development. Biomarkers identified by omic techniques also offer the
potential to assist in making cancer treatment decisions. Biomarkers identified by
omic techniques require extensive validation in large patient cohorts and across
multiple institutions before their adoption within clinical practice. The large num-
ber of potential biomarkers which have already been identified within pre-clinical
omic-based studies in the field of bone metastatic cancer provides considerable
promise for the future of both cancer detection and treatment.
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Abbreviations

APRIL A proliferation inducing ligand
BAFF B-cell activating factor

BCa Breast cancer

cDNA  Complementary DNA

miRNA  Micro-RNA

MM Multiple myeloma

mRNA  Messenger RNA

MS Mass spectrometry

NMR Nuclear magnetic resonance
PCa Prostate cancer

TF Transcription factor

7.1 Introduction: The Promise of “Omics’ in Bone
Metastasis

Bone metastasis occurs in greater than 70 % of patients with advanced breast and
prostate cancer and multiple myeloma. The consequent skeletal complications,
which include pathological fracture, bone pain, spinal cord compression and hyper-
calcaemia represent a major cause of morbidity and loss of quality of life [1, 2].
Prediction of patients at high risk of developing bone metastases as well as early
diagnosis would enable more timely and effective interventions aimed at prevention
or treatment of bone metastases. Markers of cancer development and metastatic
spread have historically been discovered by immunological profiling of tissues and
body fluids (for instance the elucidation of serum prostate specific antigen-PSA
[3]). Scientific developments such as the sequencing of the complete human genome
(complete sequence published in 2003), combined with high speed computing and
other technological developments within analytical chemistry have ushered in the
era of large scale qualitative and quantitative analysis of biomolecules (“omics”-
technologies). These high-throughput platforms for biomolecular analysis offer
exciting prospects of discovering new and improved markers for cancer metastasis
to bone, as well as the identification of pivotal molecules within cancer develop-
ment and spread which may serves as future drug targets.

7.2 Molecular Profiling: Genomics, Proteomics,
Metabolomics

The term “omic technologies™ refers to a series of techniques and methodological
platforms which each aim to characterize biomolecules using approaches with a
degree of generic applicability to a given type of biomolecule. In the process by
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which biological information flows from DNA (gene sequences and non-transcribed
regulatory elements), through to transcription of mRNA, translation into proteins
(and their associated post-translational modifications) and the eventual effect of pro-
tein expression upon metabolite levels within the cell, “omics” technologies embrace
the fields of: genomics (DNA), functional genomics (mRNA), proteomics (proteins)
and metabolomics (metabolites) respectively (see Fig. 7.1). Each of these fields of
“omic” research includes a wide variety of potential techniques and a thorough
description of all the methods available for omic-research is beyond the scope of this
chapter, however a general overview will be given. The information which each
method can provide can include: (1) identification of the molecules involved,
(2) quantification of the amount of biomolecules present within defined biological
states/systems-quantitative omics approaches, (3) characterization of the molecular
interactions between biomolecules and (4) identification and quantification of the
molecular alterations which can diversify a given biomolecule into numerous isoforms.
The information from omic-studies can provide several useful outputs of clinical
utility including mechanistic insight into the development of disease and/or candi-
date biomarkers. The official NIH definition of a biomarker is “a characteristic that
is objectively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic intervention” [4].
The discovery of biomarkers and of mechanistic insights into disease development
are by no means mutually exclusive and key mechanistic players may indeed be
biomarkers of disease.

7.2.1 Genomic Analysis

7.2.1.1 Methodology

Genomic techniques involve sequencing of DNA, the determination of gene
sequences, base-substitution mutations within genes, sequencing and identifica-
tion of gene fusions, and the detection of duplications and deletions of key areas
of the genome and their relation to disease states. Genomic platforms have
evolved to allow the sequencing of whole genomes (using paired end sequenc-
ing) [5] and the technology has developed to enable genomic sequencing from
single cells [6]. In addition to sequence alterations cancers can also display gene
copy number alterations. Normal cells are diploid containing two copies of
every gene (one on each chromosome pair-with the exception of sex-linked
genes on the X and Y chromosomes in males). Within many cancers regions of
chromosomes are duplicated resulting in genes having more than two copies per
cell and sometimes entire chromosomes are duplicated (polyploidy). Cancers
can also harbour deletions resulting in less than two copies of genes per cell, and
this can also encompass loss of entire chromosomes (aneuploidy). Copy number
alterations within genes can be detected by array-based comparative genomic
hybridization (aCGH) which enables the detection of copy number alterations
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Fig.7.1 “Omics” strategies within biomarker discovery and biological research-an overview:
“Omic”-approaches apply molecular characterization methodologies to biomolecules within the
flow of biological information from DNA, through to mRNA, protein and eventually alterations
within cellular metabolites (“Cellular process”). Different classes of biomolecules are analysed
within: genomics (for DNA sequence analysis), functional genomics (for mRNA analysis), pro-
teomics (for protein analysis) and metabolomics (for the analysis of metabolites). The individual
omic procedures each encompass a wide-range of different techniques which can produce different
types of data pertinent to disease aetiology, prediction of clinical outcomes and guidance of treat-
ment options. Genomic analysis (using techniques such as next-generation sequencing) can iden-
tify key genes mutated within disease, germline mutations which predispose towards disease or
disease-associated single nucleotide polymorphisms (SNPs). Functional genomic profiling deter-
mines the level of gene-transcripts and in some cases provides useful fingerprints for molecular
profiling of tumours enabling patient-centred treatment decisions for personalized medicine.
Proteomics and metabolomics identify alterations in proteins and metabolites. The data arising
from proteomics can be both qualitative (presence/absence of proteins) or quantitative depending
upon the technique being used. Metabolomics provides quantitative information about the levels of
metabolites within disease and this information can be used to supplement data from other molecu-
lar profiling strategies to provide an improved patient-diagnostic/prognostic/treatment-oriented
decision tool to aid disease management. In addition to biomarker discovery all of these platforms
have the potential to discover key molecules involved in disease which could function as drug
targets

within genes and whole chromosomes [7]. Genomic techniques for molecular
classification have begun to impact upon patient diagnosis and treatment. For
instance within breast cancer the Mammaprint®, (Agendia, Irvine, CA, USA)
microarray based kit [8], and the OncotypeDX®, (Genomic Health, Inc,
Redwood City, CA, USA) PCR-based kits [9], are both approved for use in
standard clinical treatment guidelines.



7 The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone... 129

7.2.1.2 Applicability

Current state of the art methods for genomic analysis (i.e., next generation
sequencing-NGS) require a cellular source of DNA which can be obtained from
solid tumours or circulating cancer cells. Solid tumours are challenging due to their
heterogeneity as well as the presence of normal, healthy cells within the tumour
mass. For this reason most studies focus on tumours with >60 % tumour nuclei pres-
ent [10]. For diffuse tumour-types, such as pancreas and prostate cancer, laser-
capture microdissection (LCM) can be employed, however this approach is
challenging due to the low yields of genomic DNA (<100 ng). Genomic sequencing
has the potential to reveal mechanistic aspects of cancer development including the
identification of somatic mutations predictive of poor disease outcome (e.g., in
acute myeloid leukaemia-[11]), identifying the clonal origin and development of
malignancy [12] and determining treatment options [13].

7.2.2 Functional Genomic Analysis

7.2.2.1 Methodology

Functional genomic methodologies study the products of gene expression, princi-
pally mRNA transcripts as well as regulatory RNAs such as microRNAs [14]. The
main technological platform used within functional genomics have been microar-
rays. Microarray surfaces present a series of short impregnated oligonucleotides
printed onto their surface which will hybridize along the length of specific mRNAs.
More recently exon arrrays have been developed which present oligonucleotides
specific to individual exons within genes. As exons are specific DNA regions which
encode protein domains, and as these exons are frequently shuffled together in
differing orders during gene expression (a process termed “alternative splicing”)-
exon arrays can provide information relevant to the expression of alternative protein
isoforms. In addition to these array based methods deep-sequencing of mRNA
(mRNA-seq) methods are becoming increasingly applied [15, 16]. By fluorescently
tagging genetic material and using the principle of hybridization of complementary
nucleic acid strands followed by the digital evaluation of fluorescent signals, micro-
arrays allow the expression of tens of thousands of genes to be quantified simultane-
ously, and within pair-wise sample comparisons. Functional genomic studies can
provide an assessment of the differentially expressed genes between two biological
samples (e.g., healthy vs. cancer), as well as identifying alternative splicing events.
This provides key mechanistic insights into the disease process as well as providing
information relevant to patient stratification and guiding treatment options.

7.2.2.2 Applicability

Functional genomic screens profile cellular mRNA (the “transcriptome”) and thus
require either tumour derived cells, circulating cancer cells within the blood, or
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released microsomes (small membranous vesicles reported recently to contain
miRNAs [17]). The clinical value of functional genomic data is illustrated by the
array of gene signature detection assays available to provide prognosis/prediction
tools for breast cancer treatment [18]. Gene expression signatures can provide com-
plementary information to histological tumour grade and patient health status to aid
prediction of survival outcomes. Functional genomic profiling can also provide
results aiding treatment decisions, e.g., the response to lenalidomide within del(5q)
myelodysplastic syndromes (MDS) [19].

7.2.3 Proteomic Analysis

7.2.3.1 Methodology

A complete description of proteomic methods is beyond the scope of this book
chapter however a review of these methods is provided within [20-22]. There are
many different methodological platforms for proteomic analysis, and these can
provide information including (i) identifying the proteins present within a biologi-
cal sample, (ii) providing quantification of protein levels (and comparison of these
levels amongst multiple samples), (iii) identification of protein-protein interactions
(“interactomics”), (iv) identification of important regulatory post-translational
modifications to proteins (e.g., phosphorylation), (v) profile temporal alterations in
the levels of proteins within a biological system and (vi) identifying organelle and
cellular localization. Whilst the number of proteomic hardware platforms and ana-
lytical strategies is great all methods use one of two different approaches: (a) “Top-
down” proteomics-in which whole proteins and naturally occurring peptides are
analysed and (b) “Bottom-up” proteomics-in which the proteins within a biological
sample are digested into peptides in vitro using proteases (typically trypsin) and
the resulting peptides analysed. Top-down proteomics is useful for identifying the
range of Post-Translational Modifications (PTMs) within proteins-chemical modi-
fications to the protein structure that are not part of the DNA encoded amino acid
sequence (such as phosphorylation, glycosylation, ubiquitination) and alternative
splicing/proteolytic isoforms within a sample, whilst bottom-up proteomics can
generate larger data sets more rapidly due to the relative ease of identifying small
peptides. Within biomarker discovery, proteomics has the advantage of identifying
altered proteins, the class of molecules which are the target of almost all drug
therapies. Furthermore altered protein expression cannot be inferred from genomic
or functional genomic data sets.

7.2.3.2 Applicability

Proteomic approaches can be applied to tissue/cell-extracts, biological fluids (serum/
plasma/urine) and more recently to tissue sections themselves. Each individual
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sample type provides its own unique challenges-e.g., within serum/plasma the high
level of a few major protein components makes detecting disease-specific proteins/
peptides more difficult, a limitation partially overcome by using immunodepletion
[23]. Proteomic data sets can provide mechanistic insights into disease processes as
well as providing diagnostic, prognostic and treatment-decision orientated informa-
tion to guide cancer management.

7.2.4 Metabolomic Analysis

7.2.4.1 Methodology

Metabolomic methods enable the identification and quantification of metabolites
(e.g., salts, lipids, steroids, sugars, hydrocarbons and salts) within body fluids as
well as tissues. Metabolomic studies involve metabolite extraction followed by sep-
aration of the metabolites and their identification. The separation of metabolites can
be performed using liquid chromatography-LC [24] or gas-chromatography-GC
[25], and metabolite identification can be performed using either mass-spectrometry
(MS) or nuclear magnetic resonance (NMR) [26]. The advantage of using MS
within metabolomics is sensitivity, whilst NMR provides relatively low sensitivity
but high reproducibility. Metabolic alterations are a frequent phenomena within
cancers via cellular alterations such as the Warburg effect-(increased glycolytic flux
within cancers [27]) and the reverse-Warburg effect [28]. Other key metabolic
alterations observed within cancer include: hypoxia, increased synthesis of proteins,
fatty acids and nucleotides, altered de novo fatty acid synthesis and alterations
within lipid metabolism. Metabolomic data can be combined with proteomic data to
provide a more detailed diagnostic fingerprint of cancer development, thus increasing
the specificity of cancer diagnosis [29]. One potential advantage of metabolomic
alterations within disease monitoring arises from the fact that metabolic alterations are
already being used within diagnostic/therapeutic tests-for instance mass-spectrometry
is frequently used for measuring inborn errors of fatty acid and amino acid metabolism
within newborn babies [30].

7.2.4.2 Applicability

Metabolomic analysis within cancer diagnosis currently faces some of the same
hurdles and challenges as proteomics. Although body fluids can be analysed by both
MS-based and NMR-based metabolomics, and solid tissue samples are also appli-
cable (by magic-angle NMR) several key challenges remain. In order to reliably
detect disease states the normal range and variability of metabolite levels requires
an improved definition, and sample preparation procedures need a greater degree of
standardization to enable comparison between studies [31]. Sample preparation for
LC-MS based metabolomics using solvent extraction also faces the limitation that



132 S.L. Wood and J.E. Brown

each individual procedure samples only a sub-fraction of the entire metabolites
present. Despite these limitations, metabolomics will provide biomarker signatures
enhancing the diagnostic and prognostic utility of biomarkers discovered using
other omic-platforms.

7.3 “Omic”’-Strategies Within Bone-Metastatic Cancer

A summary of individual studies relating to cancers that metastasise to bone will
now be presented. An overview of selected “omic”-biomarker studies is provided
within Table 7.1.

7.4 Bone Metastasis in Multiple-Myeloma

7.4.1 Multiple Myeloma: Role of Epigenetic Regulation Within
Bone Metastasis Revealed by Proteomic Profiling

The term “epigenetics” refers to a series of heritable modifications within the
genome that do not consist of DNA-sequence alterations. Several forms of epi-
genetic modification have been identified within cancer including: (a) methyla-
tion of gene-promoter regions resulting in gene-silencing (“DNA-methylation™)
[32]; (b) post-translational modification of the histone-components that bind
DNA within the nucleus “histone modification” [33]; (c) repositioning of the
nucleosomes to different DNA regions (“nucleosomal repositioning™) [34] and
(d) the regulation of gene expression by short 18-25 nucleotide micro-RNAs
(“miRNA”) [35].

Several miRNAS have been discovered which play a role in the developmental
pathway of multiple myeloma from normal plasma cells through to MGUS and
MM, including miR-21, miR-106b-25 cluster, miR181a and b, miR-32 and mIR-
17-92 cluster [36]. miR-21 has received particular attention as a micro-RNA
frequently over-expressed in a wide range of cancers including numerous solid
tumours (hepatocellular carcinomas, gastric cancer, cervical carcinoma, ovarian
carcinoma, head and neck cancers and papillary thyroid carcinomas) as well as
leukemic cancers and thus a miRNA which functions as a classical oncogenic
miRNA or “OncomiR” [37]. Quantitative reverse-transcription-polymerase chain
reaction (QRT-PCR) enables the amplification of mRNA transcripts into cDNA
with incorporation of fluorescent groups and the ability to monitor the rate of fluo-
rescence-incorporation in real time. The rate of incorporation of the fluorescent
signal is proportional to the amount of mRNA in the sample enabling as estimation
of the relative level of different mRNA transcripts and this approach can be applied
to miRNAs as well. In a PCR-based study of myeloma cells it was observed that
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Fig.7.2 Proteomic analysis of multiple myeloma cells identifies a regulatory network stimulating
cancer cell proliferation: Multiple myeloma cells within the bone microenvironment are in con-
tact with bone marrow stromal cells (BMSCs). The interaction with BMSCs promotes MM-cells
to secrete several autocrine and paracrine factors including SDF1a, VEGF-A and IL-6. Contact
with BMSC:s also increases the level of miR-21 within bone-resident MM-cells. One of the targets
of miR-21 action is the gene for PIAS-3. PIAS-3 decreases cell-proliferation by dephosphorylating
STAT-3 downstream of the IL-6 receptor (IL-6-R). Contact with BMSCs thus activates MM-cell
proliferation both by stimulating the release of proliferative autocrine and paracrine cytokines and
growth factors from MM cells, but also by inhibiting a growth-inhibitory pathway acting via
PIAS-3 and STAT3

miR-21 levels were increased when these cells were cultured in the presence of
bone marrow stromal cells (BMSCs) [38]. The miR-21-induced alterations in pro-
tein expression occurring within MM cells were profiled by selective knockdown
of miR-21 expression following transfection with a locked nucleic acid anti-
miR-21 oligonucleotide (LNA-21) and in the control experiment transfection with
a control oligonucleotide (LNA-cont) (see Fig. 7.2). SILAC-labelling of cells
transfected with LNA-miR-21 and LNA-cont enabled the quantitative estimation
of the global proteomic alterations occurring in response to the action of miR-21.
Several proteins were identified as potential miR-21-targets including the Protein
Inhibitor of activated STAT3 (PIAS3)-a negative regulator of Signal Transducer
and Activator of Transcription 3 (STAT3) activity [39]. Constitutive STAT3 signal-
ling has been strongly implicated in the development of MM [40] and PIAS3
has been demonstrated to negatively regulate IL-6-mediated STAT3-signalling
within MM cells [41]. SILAC-based comparison of a MM-cell line before and
after H1-parvovirus-mediated reversion of the malignant phenotype identified 379
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proteins which were either increased or decreased during cell-reversion with STAT3
being the most significantly down-regulated, further pointing to a role of STAT3 in
MM-progression [42].

In addition to a role in the regulation of miRNA-21 levels, binding or MM-cells
to BMSCs also increases the secretion of cytokines such as stromal-derived
factor-1a (SDF-1a), vascular endothelial growth factor (VEGF) and interleukin-6
(IL-6) which promote cell-survival, migration and angiogenesis. The bone environ-
ment thus promotes multiple myeloma cell survival via a number of mechanisms
including cell-cell contact and receptor mediated signalling as well as epigenetic
modification within metastatic MM cells themselves (see Fig. 7.2).

Functional genomic studies combined with SILAC-labelling and proteomic
analysis have thus identified a key epigenetic switch responsible for the adaptation
of multiple myeloma cells to growth within the bone metastatic niche. This work
also identifies the IL-6/STAT3 signalling pathway as a potential drug target within
multiple myeloma.

7.4.2 Functional Genomic Profiling Identifies
a Gene-Signature Predictive of Dependence
Upon the Bone-Microenvironment

The survival and proliferation of MM cells within the bone microenvironment is
promoted by a number of autocrine and paracrine signalling systems which enhance
tumour cell proliferation and inhibit tumour cell apoptosis. Several members of the
tumour necrosis factor (TNF) family have been reported to be elevated within the
serum of patients with MM, including B-cell Activating Factor (BAFF), and A
Proliferation-Inducing Ligand (APRIL) [43, 44]. BAFF and APRIL are produced
within the bone microenvironment with APRIL being a significant factor released
by osteoclasts [45]. Several receptors for BAFF and APRIL have been identified
within malignant plasma cells including the receptors TAC1 (Transmembrane acti-
vator and calcium modulator and Cyclophilin Ligand Interactor) and BCMA (B-Cell
Maturation Antigen).

Gene expression profiling of purified MM cells from patients across a range of
clinical grades, followed by hierarchical clustering identified two sub-groups of
patients, a TACI"#" subgroup and a TACI'" subgroup with a 659-gene signature
differentially expressed between them [45]. TACIMe" MM cells displayed a gene
signature more similar to that of mature plasma cells, with a preponderance of up-
regulated transcripts encoding autocrine/paracrine signalling components and
receptors responsible for interaction with the extracellular matrix (ECM) and bone
microenvironment. In contrast TACI®¥ MM cells express a gene signature with a
preponderance of cell-cycle genes resembling the profile of plasmablastic cells.
Treatment of purified MM-cells with BAFF/APRIL did not alter the expression
pattern of the signature genes within the TACI"e"/ TACI¥ signatures suggesting
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that these transcriptional profiles may arise from exposure to the bone microenvi-
ronment and not be directly regulated BAFF/APRIL transcripts themselves. TACI'®¥
patients have a higher proportion of advanced stage III MM cases, more frequent
bone lesions and a decreased haemoglobin level and an overall worse prognosis
than TACI"¢" patients. In particular the TACT"¢"*¥ status of patients did not corre-
late with other known clinical parameters and risk factors including levels of f2m/
LDH or CRP, suggesting that TACI may well be an independent prognostic factor
for outcome within MM. Stratification of MM cases into TACI"&"*¥ subclasses
could also aid treatment decisions as many therapeutic agents target components of
the bone microenvironment and autocrine/paracrine signalling components respon-
sible for tumour cell survival.

7.4.3 Phosphoproteomic Profiling to Identify Key Signalling
Components Within Multiple Myeloma Bone Metastases

Altered cellular signalling within MM could represent a potential target for future
drug discovery. Several signalling networks involving tyrosine-phosphorylation
are altered within multiple myelomas. A subgroup of MM cases harbour the t(4;14)
chromosomal translocation which results in the activation of the fibroblast growth
factor receptor-3 (FGFR3) [46] and a role for activation of FGFR3 has been identi-
fied within a variety of cancers including bladder, colon and cervical cancers as
well as skeletal dysplasia’s [47]. Signalling via FGFR3 occurs via a similar mecha-
nism to many receptor tyrosine kinases (RTKs), in which ligand binding to the
extracellular domain of the receptor triggers receptor activation and autophosphor-
ylation of key tyrosine-residues within the cytoplasmic domain of the receptor.
These phosphorylated sites can act as docking sites for key-signalling proteins
which contain src-homology-2 (SH2) and protein-tyrosine-binding (PTB)-binding
domains [48, 49]. The activated receptor tyrosine kinases can also phosphorylate
other proteins in a signalling cascade. Phosphoproteomic identification of key pro-
teins involved in FGFR3 signalling has been facilitated by use of an FGFR3-
inhibitor PD173074, as well as by stimulatory treatment of MM cells with FGF1
and the pan-tyrosine-phosphatase inhibitor orthovanandate. Isolation of phosphot-
yrosine-containing peptides from the MM-cell line KMS11 treated with PD173074,
or with FGF1+orthovanandate, followed by label-free quantification identified a
series of protein phosphorylation sites which were increased by FGF1-treatment
and inhibited by PD173074-treatment [50]. These candidate FGFR3-mediated tar-
gets included proteins within cell-signalling cascades (Ribosomal S6 Kinase
2-RSK?2, proteins involved in endocytosis which may regulate FGFR3 signalling,
cytoskelatal proteins and proteins which regulate growth factor signalling to MM
cells) [50]. This phosphoproteomic study identified key proteins responsible for
the FGFR3-mediated growth of multiple-myeloma. Targets such as RSK-2 may
also be potential drug targets within multiple myeloma.
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7.5 Prostate Cancer Metastasis to Bone

7.5.1 Metabolomic Alterations Within Prostate Cancer
Metastasis to Bone

Metabolic alterations accompanying prostate cancer metastasis to bone could
potentially be utilized to aid the prognosis of prostate cancer metastatic spread
enabling more rapid application of drug treatments. Several metabolomic studies
have been performed within prostate cancer including: (a) a reduction in citrate
concentrations within primary prostate tumours compared to benign prostatic
hyperplasia (BPH) or normal prostate tissues [51], as well as (b) a 'H-NMR study
which demonstrated statistically significant altered ratios of citrate/lactate, citrate/
total choline, phosphocholine/total creatinine, choline/total creatinine, alanine/total
creatinine, phosphoethanolamine/total phosphate, phosphocholine/total phosphate
and glycerophosphoethanolamine/total phosphate within prostate cancer tissue
samples compared to BPH samples [52]. In contrast here have been few metabolomic
studies of prostate cancer metastasis to bone.

To date there have been a few metabolomic studies within prostate cancer
metastasis. Using gas-chromatography-MS (GC-MS) Sreekumar et al. [53] iden-
tified elevated levels of sarcosine (an N-methylated derivative of the amino acid
glycine) as being elevated in prostate cancer invasion. Within this study it was
observed that reduction in the level of sarcosine (by knock-down of glycine
n-methyltransferase) attenuated the invasive potential of prostate cancer cell lines.
Similarly increasing the level of sarcosine (by knock down of the sarcosine
degrading enzyme sarcosine dehydrogenase) increased the invasive potential of
prostate endothelial cells [53].

Metabolomic profiling of normal-bone and prostate cancer derived bone metas-
tases by GC-MS identified a panel of 71 metabolite peaks of which 34 were identifi-
able [54]. Validation of this data set was also performed by GC-MS analysis of
plasma samples from prostate cancer patients with and without bone metastases as
well as plasma samples from patients with benign prostate disease. In addition
metabolomic profiling of both malignant and benign prostate tissue was also per-
formed and the results also indicated increased cholesterol levels within bone meta-
static prostate cancer [54]. A key metabolite observed to alter within bone metastatic
prostate cancer was cholesterol, with statistically significant higher levels of choles-
terol within prostate cancer bone metastases than from bone metastases derived
from other forms of cancer. Increased immunostaining for the low-density lipopro-
tein receptor (LDL-R) as well as the scavenger receptor class B type I receptor (SR-
B1) suggested an increased potential for bone metastatic prostate cancer cells to
take up cholesterol containing lipoproteins. In addition increased immunostaining
for 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-Reductase) was
observed in osteoblasts situated adjacent to the metastatic prostate cancer cells [54].

This panel of metabolites identified in advanced, metastatic prostate cancer
may enable the earlier detection of cancer spread to bone (particularly when
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using high-sensitivity methods such as LC-MS). In combination with proteomic
biomarker profiles this may facilitate the high-sensitivity, high specificity detec-
tion of malignant spread to bone.

7.5.2 Transcriptomic Alterations Within Bone-Metastatic
Prostate Cancer Cells

Functional genomic studies of the altered gene expression profiles within bone
metastatic prostate cancers have attempted to identify master transcriptional reg-
ulators of bone colonization. Several transcription factors have been implicated
in osteoblastogenesis including the Runx-transcription factor family member
Runx?2 [55-57]. Runx2 transcriptional activity has been associated with expres-
sion of key-bone proteins including bone sialoprotein [58], MMP9 [59] and
Runx?2 expression induces the mineralization of prostate cancer cell-lines [60].
Gene expression analyses have identified a panel of genes which are Runx?2 tar-
gets including: genes mediating anti-apoptotic protection of prostate cancer cells
e.g., survivin and Bcl2 [61, 62], increases in prostate cancer cell survival via ele-
vated expression of BMP7 [63, 64], as well as known genes involved in epithe-
lial-mesenchymal transition (EMT), invasiveness, degradation of the extracellular
matrix, bone breakdown and angiogenesis [59, 65-67] and osteoclast differentia-
tion [59, 65, 66]. The combined effect of these transcriptional alterations is to
promote prostate cancer growth within and adaptation to the bone environment
(see Fig. 7.3).

The molecular events which trigger Runx2 expression and activation when
prostate cancer cells metastasize to bone are a subject of intensive research.
Recent studies revealed a role for SMADS phosphorylation within the signal
transduction pathway leading to Runx2 activation [68]. Transcriptional activa-
tion of Runx2 with resultant increased RANKL production by metastatic pros-
tate cancer cells requires phosphorylation of both SMADS and Runx2. SMADS
phosphorylation increases when hyaluronan (a major component of the ECM
within bone) binds to the cell surface receptor CD44 on prostate cancer cells
[69]. Runx2 phosphorylation was observed to require ligation of the cell surface
receptor avp3-integrin [68], and avp3-integrin has been demonstrated to bind
osteopontin, a signalling component secreted by prostate cancer cells [70].
Increased bone resorption functions in concert with oestrogen receptor (ER)
signalling to regulate Runx2 [71, 72] and there is evidence that Runx2 expression
itself may be driven by a switch in the oestrogen receptor expression profile
from the ERB1 isoform (which suppresses Runx2 expression) to the ERB2 isoform
(which enhances Runx2 expression) [73] (See Fig. 7.3).

The transcriptomic profiling of bone-metastatic prostate cancer cells identifies a
gene signature indicative of Runx2 transcriptional activation within bone metasta-
ses. Runx2 may therefore be a key target for therapies (including miRNA-mediated
gene therapies) aiming to reduce prostate cancer spread to bone.
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Fig. 7.3 Transcriptomic profiling identifies a key transcriptional regulator within bone-
metastatic prostate cancer: Transcriptomic profiling has identified the Runx2 transcription factor
as a key transcriptional regulator involved in prostate cancer metastasis to bone. Bone is a rich
source of hyaluronan, a non-protein-containing glycosaminoglycan which binds to the receptor
CD44 on metastatic prostate cancer cells triggering the phosphorylation of the SMADS-
transcriptional coactivator. Osteoprotogerin (OPN) which is secreted by metastatic prostate cancer
cells, binds to the cell surface receptor avp3-integrin triggering phosphorylation of the transcrip-
tion factor Runx2. The complex of phospho-SMADS5 and phospho-Runx2 can then activate the
transcription and protein expression from genes involved in numerous aspects of prostate cancer
metastasis to bone including: cell survival, increased bone resorption, extracellular matrix (ECM)
degradation increased cell motility and osteoclast (OC) activation

7.5.3 Serum Diagnostic Markers for Prostate Cancer
Metastasis to Bone

Diagnostic markers for prostate cancer metastasis to bone are urgently required to
supplement current assessment procedures which typically involve isotope bone
scanning (reviewed in [74]). Serum/plasma represents a potentially invaluable
sample source for biomarker discovery as it can be obtained non-invasively. In the
time course of prostate cancer development the failure of anti-androgen therapy
initially presents as a biochemical failure characterized by rising serum prostate-
specific antigen (PSA)-levels [75]. This biochemical failure predates the develop-
ment of detectable bone metastases and metastasis-associated symptoms by a



7 The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone... 141

median time of approximately 6-months [75]. Thus there is a window of time
during which serum/plasma biochemical alterations predate the development of
clinical symptoms of cancer-spread to bone. Earlier detection of bone micrometas-
tases may enable more effective targeting of bone-directed therapies to target pros-
tate cancer spread.

Proteomic profiling of prostate cancer serum samples using 4-plex iTRAQ
was performed using 4 different groups of serum pools: (i) benign prostatic
hyperplasia (BPH) samples, (ii) localised prostate cancer with no evidence of
progression, (iii) localized prostate cancer with biochemical evidence of pro-
gression and (iv) serum from patients with confirmed bone metastases [76]. Of
122 proteins identified and quantified within this study 25 proteins were signifi-
cantly differentially expressed between progressing vs. non-progressing cancer
samples and 23 proteins were significantly differentially expressed between
bone-metastatic and progressing samples. Within the 23 metastasis associated
proteins eukaryotic translation elongation factor 1 alpha 1 (¢éEF1A1) was further
validated by immunostaining of tissue microarrays and observed to be elevated
within osteoblasts within close proximity to bone-metastases [76]. Low molecu-
lar weight-peptide-based biomarkers of prostate cancer metastasis to bone have
also been identified by SELDI-TOF-MS, resulting in the identification of a series
of serum amyloid protein A (SAA) isoforms with statistically significant elevated
expression within serum from bone metastatic prostate cancer patients compared
to prostate cancer patients without bone metastases, a result confirmed by immu-
noprecipitation assays [77].

“Bottom-up” proteomic analysis of prostate cancer serum samples, and charac-
terization of the low-MW serum peptidome has thus identified potential early diag-
nostic markers for prostate cancer metastasis to bone.

7.6 Breast Cancer Metastasis to Bone

7.6.1 Breast Cancer Bone Metastasis: Transcriptional
Profiling Reveals a Key Role for Transforming
Growth-Factor-f§ (TGFf)/Bone Morphogenetic
Protein (BMP)-Signalling

Breast cancer primary tumours have been subject to extensive gene expression anal-
ysis using both commercially available microarray chips (i.e., Affymetrix) as well
as using custom made chips, and the gene expression data from these studies are
publicly available (via gene expression omnibus). These gene expression databases
represent a potentially rich source of information for identifying key mediators of
breast cancer development, relapse and metastatic spread. In a recent statistical
analysis of these data sets a subset of genes were identified which correlated with
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the risk of relapse. Members of this gene family subset displayed either increased or
decreased expression levels correlating with risk of relapse across a panel compris-
ing hundreds of breast cancer samples representing all stages of development and
subtypes of breast cancer [78] and gene ontology analysis identified key members
of this relapse- and metastasis-related gene family to be transforming growth
factor-p (TGFp) family cytokines and a key TGFp-family member antagonist-
Noggin [78, 79].

TGFp has the ability to both inhibit as well as promote tumorigenesis depending
upon the stage of cancer development [80—82]. The TGFf-family of growth factors
includes Bone morphogenetic Proteins (BMPs) which stimulate bone formation.
Several BMP inhibitors have been identified which play diverse roles within devel-
opmental pathways, embryogenesis and cancer [83] including the BMP-antagonist
Noggin. TGFp-family cytokines play a variety of roles within breast cancer metas-
tasis to bone in particular by altering the balance of bone formation and bone break-
down. Bone consists of mineralised extracellular matrix components, and numerous
cell types including bone forming osteoblasts and bone-resorbing osteoclasts [84].
Osteoblasts secrete growth factors including Receptor of Activator of Nuclear
Factor xB-Ligand (RANKL) which binds to the Receptor activator of Nuclear
Factor-kB (RANK) on osteoclasts stimulating osteoclast maturation and bone deg-
radation. Osteoblasts can also secrete osteoprotogerin (OPG) a soluble decoy recep-
tor which inhibits RANKL function.

BMPs are members of the TGFp-family of growth factors, a large family of
growth factors with over 20 members with numerous diverse functions [85].
BMPs play key roles in bone-formation including the formation of the body-axis,
and bone and cartilage formation [86]. Several BMP-family members promote
bone formation by acting upon osteoblasts to increase their release of OPG and
reduce the release of RANKL thereby inhibiting osteoclast mediated bone deg-
radation. Within development BMP action is controlled by a series of secreted
BMP-antagonists which also play key developmental roles [83]. Noggin is a key
BMP-antagonist which is required for correct embryonic development [87] and
gene-knockout studies have suggested that it plays a key role in skeletal develop-
ment [88].

Mechanistic investigation of the role of noggin within breast cancer metastasis to
bone revealed that high noggin-expression is strongly selected for within the bone
environment (but not within metastases to the lung, liver or brain) [79]. Over-
expression of noggin increased the growth rate of bone metastases within orthotopic
mouse models as assessed by BioLuminescence imaging, furthermore shRNA-
mediated gene silencing of noggin reduced the growth rate of bone metastases in the
same study and modulation of noggin levels was observed to influence the ability of
breast cancer cells to form tumourspheres-suggestive that noggin might also facili-
tate the re-initiation of metastases via inhibiting the differentiation of metastatic
breast cancer cells [79]. In this way the BMP antagonist noggin may provide bone
metastatic breast cancer cells with a double advantage for growth and colonization
within the bone environment and be a potential drug-target for targeting of bone
metastases.
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Fig. 7.4 Comparative molecular-profiling of primary tumours and matched bone metastases:
Molecular profiling of patient matched primary tumours and bone metastases, as well as mouse
model systems has the potential to identify functionally important molecules within bone metasta-
sis. The common cellular-origin within the mouse-model, as well as the isogenic background for
the patient-derived samples reduces the effect of inter-individual variability. This facilitates the
identification of functional molecules within bone metastases. Functional genomic and proteomic
studies have been conducted within such sample types identifying the up-regulation of osteoblastic
differentiation genes, as well as the altered protein expression of cell-surface molecules such as
Class-I HLA molecules and o,fps-integrin

7.6.2 Breast Cancer Adaptation to the Bone-Metastatic
Environment: Patient-Matched Genomic/Proteomic
Studies

The adaptation of metastatic cancer cells to the bone microenvironment is a key
step within cancer dissemination and a potential source of therapeutic targets.
There have been few studies on primary tumours and patient matched metasta-
ses. This is partly due to the long time frame -breast cancer bone metastases often
present years after the resection of the primary tumour and also due to logistical
challenges in obtaining bone metastasis biopsy material [89]. Despite these limi-
tations there have been a few omic-profiling studies of patient-matched primary-
tumour vs. bone metastasis samples as well as studies within mouse-model systems
for bone metastasis (see Fig. 7.4).

Genomic analysis of primary breast tumours and these tumours after their
relapse to either brain or bone metastatic sites identified panels of genes which
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clustered together according to the site of metastasis [90]. In total 22 transcripts
were differentially expressed between the primary tumour and bone metastases
and hierarchical clustering revealed similarity between the bone metastases and
the primary breast tumour. Gene expression analyses such as these offer the
hope that a diagnostic signature could be profiled within a primary tumour
which will predict the site of future metastases, thus aiding treatment decisions
[90, 91].

Functional genomic profiling has also been applied to mouse models of
metastatic breast cancer. Microarray analysis of a breast cancer cell line
(MDA-MB-231) and a bone homing variant obtained by intra-cardiac injection
(MDA-MB-231-B02) identified the upregulation of a panel of 11 mRNAs with
known roles within osteoblastic differentiation, including the increased expres-
sion of the osteoblast specific differentiation protein cadherin-11 [92]. A sepa-
rate study involving functional genomic profiling of MDA-MB-231 breast
cancer cells and a mouse-bone homing variant identified a functionally signifi-
cant role for vascular cell adhesion molecule-1 (VCAM-1) in the recruitment of
osteoclast progenitors into the site of bone micrometastases [93]. Anti-VCAM-1
antibodies had demonstrable ability to inhibit the development of bone metasta-
ses in this study [89].

Proteomic profiling of paired primary tumour/bone metastasis samples focussing
on cell-surface and secreted proteins identified proteins implicated in cell-cell
communication, and autocrine and paracrine signalling events. Cell-membrane
proteins are attractive potential targets for antibody-based therapies. Surface bio-
tinylation (a technique which enriches for cell-membrane proteins) has been
employed in studies to date. Isolation of biotinylated membrane proteins from the
osteotropic cell-line MDA-MB-231-B02 (abone homing variant of MDA-MB-231)
revealed the upregulation of the cell-surface receptor o,p;-integrin, and the down-
regulation of class-I HLA molecules within the bone homing cells [94]. Proteomic
analysis of a primary human breast tumour and a bone-metastasis from the same
patient, with identification of surface biotinylated as well as glycosylated proteins,
revealed a decreased expression of tumour suppressive a2p1-integrin within the
bone metastasis [95]. Numerous proteins involved in cancer cell motility and
tumour aggressiveness were identified in this study as being elevated in bone
metastasis including activated leukocyte cell adhesion molecule (ALCAM/
CD166), whilst Sushi-domain-containing protein-2 (SUSD2)-a known tumour
suppressor-had reduced expression with the bone metastasis samples [95].
Addition of these differentially expressed proteins to the current breast cancer
biomarkers oestrogen-receptor (ER) and HER2 may improve treatment decisions.
Tumours are currently classified according to histological criteria as well as the
presence of differing receptor expression levels such as for oestrogen-receptor
and HER2. Measurement of the levels of the differential proteins identified in
these studies and their inclusion within the classification criteria may enable a
more accurate subdivision of tumour types according to aggresiveness and
response to therapeutic interventions.
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7.7 Bone Metastasis Biomarkers: From Pre-clinical “Omics”
Screens to Clinical Application

The application of genomics, transcriptomics, proteomics and metabolomics to
biomarker-discovery within bone-metastatic cancers has generated large quantities
of data and numerous potential biomarkers for further development. Whilst these
studies are very promising the application of “omic”-strategies to the field of bone
metastatic cancer is relatively recent and few omic-insights have been pursued as far
as clinical utility.

One of the key challenges in the development of clinical biomarkers is revealed
by recent data regarding the high degree of heterogeneity of tumours. High
throughput genomic sequencing within breast cancer has identified extensive inter-
tumour heterogeneity, with each individual tumour containing multiple cell clones
each with a different pattern of mutations [96]. The genomic sequencing of gene
fusion products within breast cancer also reveals considerable inter-individual het-
erogeneity [97] and this diversity may partly be explained by defects in the appa-
ratus responsible for mismatch repair leading to genomic instability [98]. There is
therefore a diverse family of subtypes within each organ-specific cancer and this
makes it unlikely that an individual biomarker will predict outcomes in all cases of
that cancer. A consequence of this is that currently used individual markers can
have high sensitivity but low specificity. Prostate specific antigen (PSA) within
prostate cancer is just one example of a biomarker with high sensitivity but low
specificity [99]. The requirement for high specificity to prevent false positive
results and consequent patient stress (and unnecessary treatment costs) has driven
the search for multiple biomarker panels which should have improved diagnostic
ability. In this approach successful biomarker development must therefore aim to
identify a series of molecules which are involved in the key steps within the disease
process with sufficient diversity to represent the full spectrum of subtypes within
that cancer. The requirement for biomarkers enabling early diagnosis is particu-
larly acute. In the early stages of cancer development alterations in protein and
metabolite levels are likely to be of small magnitude and therefore multi-marker
panels may also provide a compound assessment of disease progression. The
development of diagnostic/prognostic decision tools arising from “omics”-research
thus frequently focuses upon multi-marker panels.

The key steps involved in the translation of pre-clinical biomarkers into clinical
utility are briefly outlined below and summarised in Fig. 7.5 (biomarker develop-
ment for clinical utility has been covered in detail in several excellent reviews
including [100]).

The translation of pre-clinical findings into improved early diagnosis tools for
bone metastasis, as well as their incorporation into patient stratification nomograms
and treatment option determinants involves a number of number of stages and chal-
lenges. Pre-clinical biomarker discovery using “omics”-technologies typically
involves the use of time-consuming procedures and expensive technology
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Fig. 7.5 “Omic”-strategies within cancer metastasis to bone: Workflow from the laboratory
to clinical application: Omic strategies have the potential to impact upon patient diagnosis
and treatment in several ways, most notably the development of new clinical tests for prognosis/
diagnosis of disease as well as the discovery of new drug targets. (a) As the majority of “omic”
discovery platforms are time-consuming and/or expensive initial discovery is usually performed
in a small cohort of well-defined patients. (b) The results of this discovery phase can include
potential disease biomarkers and/or drug targets. Validation of these biomarkers involves applica-
tion of the potential predictive panels within class-prediction tests using a larger blinded panel of
patients with or without the disease. This first validation phase frequently requires the develop-
ment of high-throughput assays for the markers. (¢) Further validation of the candidates discov-
ered then proceeds through multi-centre testing of the biomarker(s) to ensure that the insight
discovered by the original omics-based screen is applicable across multiple clinics and laborato-
ries. Only when a biomarker panel or drug target has cleared these steps of development and
received regulatory approval will the original omics-based discovery proceed to clinical applica-
bility. Eventual clinical application depends upon health economic assessment and the new diag-
nostic marker is frequently combined with pre-existing markers to provide the final, improved
patient-diagnostic tool
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platforms, and for this reason they usually involve small patient sets. The putative
biomarker candidates resulting from these small scale discovery projects require
confirmation in blinded validation cohorts. A significant proportion of candidates
fail this validation step and this may be due to the small number of samples origi-
nally analysed, sample biases, or in some cases the lack of robust sample prepara-
tion procedures. Quantification of biomarkers within large patient sets frequently
requires the development of high-throughput assays for use in clinical chemistry
laboratories.

In order to provide an effective clinical test the putative biomarkers discovered
within pre-clinical studies must have demonstrable reproducibility between institu-
tions. A challenge here to date has been the lack of standardization within the plat-
forms used to discover potential biomarkers in pre-clinical studies such that
biomarker panels may not be reproducible over time within an institution or between
institutions. Validation of biomarkers at this stage requires the ability of the bio-
marker panel to accurately predict which patients have disease (or the disease-stage
in question) within large, population-based, multi-institutional blind test cohorts
(see Fig. 7.5). Biomarker candidates and panel-based diagnostic/prognostic tools
that prove their utility across multiple institutions using these high-throughput
assays provide a suitable biological basis for the development of clinical test kits.
Eventual application of the clinical products (test kits or pharmaceutical drugs) to
the sphere of patient treatment requires regulatory approval and input from health-
care professionals and health-economic advisors.

7.7.1 Genomics/Functional Genomics: Towards
Clinical Applicability

Gene expression signatures have already made a significant contribution towards
cancer treatment decisions and outcome prediction, as application of the 70-gene
signature MammaPrint test and the 21-gene-signature OncoTypeDX Kkits
within breast cancer illustrate [18]. There is evidence that as blood cells flow
through tumour tissues signalling events modify the gene expression profiles
of the blood cells. Whole RNA-based transcriptomics has recently identified
gene expression signatures predictive of overall survival within castration-
resistant prostate cancer [101, 102]. Therefore whole blood profiling of mRNA
(and miRNA) expression levels within whole blood cells offers considerable
promise for informing cancer treatment. These gene expression signatures may
reflect the risk of bone metastasis as this is a major contributor towards the mor-
bidity arising from these cancers. Gene expression profiling and correlation
with overall survival does not always relate to bone metastasis however, as a
recent study within breast cancer illustrates [103]. In the study of Rajski et al.
2012 MDA-MB-231 cells cultured in the presence of osteoblasts up-regulated
two sets of genes, one set of interferon-response genes which strongly pre-
dicted overall survival, and another set of IL-6 related genes which did not
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significantly change overall survival but was associated with a shorter time to
bone metastasis [103]. Genomic profiling and gene expression analysis thus
holds out significant promise for the mechanistic elucidation, and clinical man-
agement of bone metastatic cancers. Large multi-centre trials with careful data
analysis (including patient associated meta-data) has the potential to reveal key
insights into bone metastasis.

7.7.2  Proteomic/Metabolomic Signatures of Disease: Towards
Clinical Utility

There have been many pre-clinical proteomic/metabolomic-studies performed to
date which have identified potential protein and metabolic alterations which
occur within bone metastatic cancer. None of these observations have to date
impacted upon the treatment of bone metastatic cancer in the clinic, though some
of these putative biomarkers are progressing through downstream biomarker
validation. This validation relies on quantitative measurement of the candidates
discovered within preclinical studies in much larger patient cohorts and this
requires the development of robust, quantitative assays. Proteomic biomarker
validation to date has principally involved use of immunoassays (i.e., ELISA),
however MS-based quantitative methods for assaying proteomic biomarkers
such as multiple-reaction monitoring (MRM) are increasingly being used [104].
Despite the current early stage of translation of proteomic/metabolomic markers
into the clinic, multi-marker panels composed of these candidates have consider-
able potential to impact upon patient treatment in bone metastatic cancer in the
future, particularly when combined with existing diagnostic markers (such as
PSA) and clinical observations.

7.8 Conclusions

Post-genomic technologies are relatively recent additions to the arsenal of tech-
niques being applied to the diagnosis and treatment of cancers that metastasise to
bone. To date these technologies have contributed considerable insights into the
disease-mechanisms and potential drug targets for bone metastatic cancers.
Continual refinement of the techniques involved, for instance improved sensitivity
within NMR-based metabolomic studies, the improved accuracy of transcriptome
analysis using techniques such as mRNA-seq, and the expansion of functional
genomics to include recently identified non-coding regulatory RNAs (such as
miRNAs) will further increase the utility of omic-strategies within bone metastasis
in the foreseeable future.
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