
Chapter 3
Causal Graphs and Biological Mechanisms

Alexander Gebharter and Marie I. Kaiser

Abstract Modeling mechanisms is central to the biological sciences – for purposes
of explanation, prediction, extrapolation, and manipulation. A closer look at the
philosophical literature reveals that mechanisms are predominantly modeled in a
purely qualitative way. That is, mechanistic models are conceived of as representing
how certain entities and activities are spatially and temporally organized so that they
bring about the behavior of the mechanism in question. Although this adequately
characterizes how mechanisms are represented in biology textbooks, contemporary
biological research practice shows the need for quantitative, probabilistic models
of mechanisms, too. In this chapter, we argue that the formal framework of causal
graph theory is well suited to provide us with models of biological mechanisms that
incorporate quantitative and probabilistic information. On the basis of an example
from contemporary biological practice, namely, feedback regulation of fatty acid
biosynthesis in Brassica napus, we show that causal graph theoretical models can
account for feedback as well as for the multilevel character of mechanisms. How-
ever, we do not claim that causal graph theoretical representations of mechanisms
are advantageous in all respects and should replace common qualitative models.
Rather, we endorse the more balanced view that causal graph theoretical models of
mechanisms are useful for some purposes while being insufficient for others.
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3.1 Introduction

The search for mechanisms that underlie the phenomena under study is ubiquitous
in many biological fields. Physiologists seek to find the mechanism for muscle
contraction, cancer scientists try to discover the mechanisms that cause cell
proliferation, and ecologists aim at elucidating the various mechanisms that bring
about the maintenance of species diversity – just to mention a few examples. In the
last 15 years, the philosophical literature on mechanisms has dramatically increased.
Among the major proponents of the “new mechanistic philosophy” (Skipper and
Millstein 2005, p. 327) are Carl Craver (2007), William Bechtel (2006, 2008),
Stuart Glennan (2002, 2005), Lindley Darden (2006, 2008), and Peter Machamer
et al. (2000). According to the mechanist’s view, scientific practice consists in the
discovery, representation, and manipulation of mechanisms. Scientific explanations
are (exclusively or primarily) conceived as mechanistic explanations, that is, as
descriptions of how the components of a mechanism work together to produce the
phenomenon to be explained.1

Our primary interest in this chapter is the modeling of biological mechanisms.
How are, can, and should mechanisms be represented? Are certain kinds of models
of mechanisms advantageous with regard to particular scientific purposes like
explanation, understanding, prediction, or manipulation? Previous philosophical
literature on this topic (e.g., Glennan 2005; Craver 2007; Bechtel 2008) regards
mechanistic models as being primarily qualitative representations. According to
the mechanist’s view, adequate models of mechanisms describe all and only those
factors that contribute to bringing about the mechanism’s behavior of interest
(i.e., the “constitutively relevant” factors; cf. Craver 2007, pp. 139–159). These
factors include the entities (or objects) that compose the mechanism, the activities
(or operations or interactions) that these entities engage in, and the spatial and
temporal organization of the entities and activities (i.e., how the entities are
spatially distributed, which position shifts of entities take place, which activities
initiate which other activities to what time). These qualitative models of biological
mechanisms are typically depicted by diagrams (cf. Perini 2005), which scientists
sometimes call “cartoon models” (Ganesan et al. 2009, p. 1621). Diagrams make it
easier to understand how the steps of a mechanism together bring about the behavior
in question. Hence, the representations of mechanisms that can be found in common
biology textbooks are typically qualitative models.

1Of course, one need not subscribe to all the details of the mechanistic view of science in order to
acknowledge the importance of mechanisms to wide areas of biology.
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However, biological research practice is much more diverse than what is depicted
in biology textbooks. Whereas the models of mechanisms which are designed
for textbooks aim at providing explanations and promote understanding, modeling
strategies that are pursued in contemporary scientific practice, by contrast, serve
multiple purposes. Besides offering explanation, models of mechanisms are also
used, for instance, to make (quantitative or qualitative) predictions, to guide
hypotheses building in scientific discovery, and to design manipulation experiments
or even computer simulations. In some research contexts what will be needed
are not purely qualitative models of mechanisms, but rather models that contain
quantitative, probabilistic information. These models often have the virtue of being
closer to the experiments and studies that are actually carried out in biological
research practice. It is due to this closeness that probabilistic and quantitative models
often allow for more usable predictions, in particular when it comes to predicting the
probabilities of certain phenomena of interest under specific manipulations. Another
advantage of models of mechanisms that combine qualitative with quantitative,
probabilistic information might be that they allow for the integration of qualitative
(e.g., molecular) studies and probabilistic (e.g., ecological or evolutionary) studies
in a certain biological field. This is, for example, an urgent issue in epigenetics
where the laboratory experiments performed by molecular epigeneticists and the
observational studies and computer simulations conducted by ecologists and evolu-
tionary biologists need to be brought together (cf. Baedke 2012).

With this chapter, we respond to the need of contemporary biology for models
of mechanisms that include quantitative, probabilistic information. We argue that
the formal framework of causal graph theory is well suited to provide us with
probabilistic, (often) quantitative representations of biological mechanisms.2 We
illustrate this claim with an example from actual biological research, namely,
feedback regulation of fatty acid biosynthesis in Brassica napus. Modeling this
example allows us to show how causal graph theory is able to account for certain
features of biological mechanisms that have been regarded as problematic (e.g.,
their multilevel character and the feedback relations that they frequently contain).
However, besides the virtues our analysis of this case study also reveals which
difficulties causal graph theoretical modeling strategies face when it comes to
representing mechanisms. As a result, we argue for the balanced view that, even
though causal graph theoretical models of mechanisms have advantages with respect
to particular scientific purposes, they also have shortcomings with respect to other
purposes.

We start with an introduction of the basic formal concepts of causal graph
theory (Sect. 3.2). In Sect. 3.3, we present what can be regarded as the major
characteristics of biological mechanisms, namely, their multilevel character, their
two kinds of components, and the spatial and temporal organization of their
components. Section 3.4 deals with the case study that is central to our analysis:

2In certain areas of neuroscience, causal graph modeling is already prevalent (cf. the work of Karl
J. Friston, Michael D. Lee, Eric-Jan Wagenmakers, Josh Tenenbaum, and others).
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the mechanism for feedback inhibition of ACCase by 18:1-ACP in Brassica napus.
In Sect. 3.5, we discuss how this mechanism (as well as one of its submechanisms)
can be modeled by using causal graph theory. In doing so, we also address the
possible objection that causal graph theory can account neither for the feedback
relations that many biological mechanisms contain nor for the fact that mechanisms
are frequently organized in nested hierarchies. On the basis of this analysis, we can
then specify, on the one hand, the virtues and, on the other hand, the shortcomings
of modeling biological mechanisms within a causal graph framework (Sect. 3.6).

3.2 Causal Graph Theory

Causal graph theory is intended to model causality in a quite abstract and empir-
ically meaningful way; it therefore provides principles which connect causal
structures to empirical data. While causal structures are represented by graphs,
empirical data is stored by means of probability distributions over sets of statistical
variables. In this section we will introduce the basic formal concepts needed
to investigate the question of whether a causal graph framework is capable of
representing mechanisms. We start by giving some notational conventions and
remarks concerning statistical variables and probability distributions (Sect. 3.2.1)
before providing definitions for “probabilistic dependence” and “probabilistic
independence” (Sect. 3.2.2). We introduce the concept of a causal graph (Sect. 3.2.3)
and illustrate how such a causal graph, complemented by a probability distribution,
becomes a causal model (Sect. 3.2.4).

3.2.1 Statistical Variables and Probability Distributions

A statistical variable X is a function that assigns exactly one of at least two mutually
exclusive properties/possible values of X (“val(X)” designates the set of X’s possible
values) to every individual in X’s domain DX . Statistical variables can be used in a
way quite similar to predicate constants. “X(a)D x” (where “a” is an individual
constant), for instance, can be read as the token-level statement “individual a (e.g.,
a particular Drosophila fly) has property x (e.g., red eye color)” and “X(u)D x”
(where “u” is an individual variable) as the type-level statement “having property
x.” Formulae like “X(u)D x” can be abbreviated as “XD x” or, even shorter, as “x”
whenever reference to individuals u is not needed. For the sake of simplicity, we
shall only use discrete variables, that is, variables X whose set of possible values
val(X) is finite. Continuous quantities can be captured by discrete variables whose
values correspond to the accuracy of the used measurement methods.

Given a statistical variable X or a set of statistical variables X, then Pr is
a probability distribution over X if and only if Pr is a function assigning a
value ri 2 [0,1] to every x2 val(X), so that the sum of all assigned ri equals 1.
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Since probability distributions should be capable of storing empirical data, we
interpret probabilities as objective probabilities, that is, as inductively inferred limit
tendencies of observed frequencies.

3.2.2 Probabilistic Dependence and Independence Relations

Given a probability distribution Pr over variable set V, conditional probabilistic
dependence between two variables X and Y can be defined in the following way:

(1) DEPPr(X,YjM) if and only if there are x, y, and m so that
Pr(xjy,m)¤Pr(xjm), provided Pr(y,m) > 0.3

Read “DEPPr(X,YjM)” as “X and Y are probabilistically dependent conditional
on M.” According to definition (1), two variables X and Y are probabilistically
dependent conditional on M if the probability of at least one value of one of
these two variables is probabilistically sensitive to at least one value of the other
variable in at least one context MDm. So “probabilistic dependence” is a quite
weak notion. “Probabilistic independence,” on the other hand, is a very strong
notion. If two variables X and Y are probabilistically independent conditional on
M, then there is not a single X-value x and not a single Y-value y so that x is
probabilistically sensitive to y in any context MDm. Conditional probabilistic
independence (INDEPPr) is defined as the negation of conditional probabilistic
dependence:

(2) INDEPPr(X,YjM) if and only if for all x, y, and m, Pr(xjy,m)DPr(xjm),
provided Pr(y,m) > 0.

Unconditional probabilistic dependence/independence (DEPPr(X,Y)/INDEPPr

(X,Y)) turns out to be a special case of conditional probabilistic depen-
dence/independence; it can be defined as conditional probabilistic depen-
dence/independence given the empty context MD∅:

(3) DEPPr(X,Y) if and only if DEPPr(X,Yj∅).
(4) INDEPPr(X,Y) if and only if INDEPPr(X,Yj∅).

3The condition Pr(y,m) > 0 is needed because Pr(x|y,m) is defined as Pr(x,y,m)/Pr(y,m) and
division by 0 is undefined.
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3.2.3 Graphs and Causal Graphs

Let us turn to the concept of a causal graph. A graph G is an ordered pair hV,Ei,
where V is a set of so-called vertices (which are statistical variables in causal graphs)
while E is a set of so-called edges. Edges may be all kinds of arrows (e.g., “!,”
“���>,” and “$”) or undirected links (“—”) representing diverse binary relations
among objects in V. Two variables in a graph’s variable set V are called adjacent
if and only if they are connected by an edge. A chain of n� 1 edges connecting
two variables X and Y of a graph’s variable set V is called a path between X and
Y. A path of the form X! : : :!Y is called a directed path from X to Y. Whenever
a path contains a subpath of the form X!Z Y, then Z is called a collider on this
path; the path is called a collider path in that case. X is called an ancestor of Y if
and only if there is a directed path from X to Y; Y is called a descendant of X in
that case. The set of all ancestors of a variable X is denoted by “Anc(X),” while the
set of all descendants of X is indicated by “Des(X).” All X for which X!Y holds
are called parents of Y; the set of all parents of Y is referred to via “Pa(Y).” All Y
for which X! : : :!Y holds are called children of X; the set of all children of X
is referred to via “Chi(X).” Variables to which no arrowhead is pointing are called
exogenous variables. Non-exogenous variables are called endogenous variables. A
graph GDhV,Ei containing a path of the form X! : : :!X (with X 2 V) is called
a cyclic graph; an acyclic graph is a graph that is not a cyclic graph. A graph
GDhV,Ei is called a directed graph if E contains only directed edges.

A graph becomes a causal graph as soon as its edges are interpreted causally.
We will interpret “X!Y” as “X is a direct cause of Y in causal graph G.” X is a
cause (i.e., a direct/indirect cause) of Y in G if and only if there is a causal chain
X! : : :!Y in G.

3.2.4 Bayesian Networks and Causal Models

A directed acyclic graph (DAG) GDhV,Ei and a probability distribution Pr over
G’s variable set V together become a so-called Bayesian network (BN) hG,Pri if
and only if G and Pr satisfy the Markov condition4 (MC). If G is an acyclic causal
graph, then G and Pr become an acyclic causal model (CM) if and only if G and Pr
satisfy the causal Markov condition5 (CMC) or d-separation6:

4Cf. Glymour et al. 1991, p. 156.
5Cf. Spirtes et al. 2000, p. 29.
6For a definition of d-separation see Spirtes et al. (2000, pp. 43f.). d-separation is equivalent with
CMC for acyclic causal models. For a proof see Verma (1987).
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Fig. 3.1 A simple exemplary
causal graph

(MC/CMC): GDhV,Ei and Pr satisfy the (causal) Markov condition if and
only if for all X 2V, INDEPPr(X,V\Des(X)jPa(X)).7

V\Des(X) is the set of all non-descendants of X. Note that “Des(X)” and “Pa(X)”
in CMC refer to X’s effects and X’s direct causes, respectively, while “Des(X)”
and “Pa(X)” are not causally interpreted at all in MC. The main idea behind CMC
can be traced back to Reichenbach’s The Direction of Time (1956).8 It captures the
strong intuition that conditioning on all common causes as well as conditioning on
intermediate causes breaks down the probabilistic influence between two formerly
correlated variables X and Y. Or in other words, the direct causes of a variable X
contain all the probabilistic information which can be found under the causes of
event types XD x; knowing the values of X’s parents screens X off from all of its
indirect causes.

We illustrate how CMC works by providing some examples. CMC implies for
the DAG in Fig. 3.1, for instance, the following independence relations (as well
as all probabilistic independence relations implied by them). These independence
relations can directly be read off CMC applied to this DAG: INDEPPr(X1,X4), IN-
DEPPr(X2,fX3,X4,X6gjX1), INDEPPr(X3,fX2,X4gjX1), INDEPPr(X4,fX1,X2,X3,X5g),
INDEPPr(X5,fX1,X4,X6gjfX2,X3g), and INDEPPr(X6,fX1,X2,X5gjfX3,X4g).

It follows from MC/CMC that the equation Pr(X1, : : : ,Xn)D…i Pr(Xijpa(Xi))9

holds in every BN/acyclic CM hV,E,Pri and, thus, that every BN/acyclic CM
determines a fully defined probability distribution Pr(X1, : : : ,Xn) over the variable
set V of this BN/acyclic CM. Hence, BNs/acyclic CMs allow for probabilistic

7In addition to MC/CMC, there are further principles of special interest when it comes to causal
inference on the basis of empirical data (e.g., causal sufficiency, the minimality condition, and the
faithfulness condition). For further details on these principles, see, for example, Spirtes et al. (2000)
or Williamson (2005).
8See also Williamson (2010).
9Note that “pa(Xi)” stands for Xi’s parents taking certain values, while “Pa(Xi)” stands for Xi’s
parents, that is, the variables which are Xi’s direct predecessors in the corresponding graph.

2000
2005
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reasoning about events which can be described in terms of the variables in V.
Because Pr(X1, : : : ,Xn)D…i Pr(Xijpa(Xi)) holds in acyclic CMs, the conditional
probabilities Pr(Xijpa(Xi)) – which are called Xi’s parameters – can represent the
causal strengths of a variable Xi’s direct causes. Note that Pr(X1, : : : ,Xn)D…i

Pr(Xijpa(Xi)) and thus MC/CMC do not hold in cyclic CMs, either. It is because
of this that in cyclic CMs there are always some variables whose parameters
are undefined (these are the variables lying on a cyclic directed path) and,
thus, that also the causal strengths of their direct causes are undefined in such
models.

3.3 Biological Mechanisms

Before we can assess the strengths and shortcomings of causal graph theoretical
models of biological mechanisms, we need to know what the main features of
biological mechanisms are. In the last 15 years, philosophical interest in mech-
anisms has significantly increased. Those who endorse the mechanistic account
place the concept of a mechanism at the heart of their philosophical analysis of
scientific practice. They regard models of mechanisms as being involved in almost
all scientific activities, let it be explanation, discovery, prediction, generalization, or
intervention. There are still controversies in the debate with regard to how the notion
of a mechanism should be specified, for instance, to which ontological category the
components of a mechanism belong (Machamer et al. 2000; Tabery 2004; Torres
2008), whether the regular occurrence of the mechanism’s behavior is a necessary
condition (Bogen 2005; Craver and Kaiser 2013), or whether the concept of a
mechanism can be extended such that it also accounts for the behavior of complex
systems (Bechtel and Abrahamsen 2010, 2011) or for historical processes (Glennan
2010; see also Glennan’s chapter in this volume). Despite these differences there
are also many points of accordance. In what follows we will briefly present what are
regarded as the major characteristics of biological mechanisms in the debate.

To begin with, a mechanism is always a mechanism for a certain behavior
(Glennan 2002), for instance, the mechanism for protein synthesis or the mech-
anism for cell division. This is crucial because only those factors (i.e., entities
and activities/interactions) that contribute to producing the specific behavior of
the mechanism are said to be components of this mechanism.10 An important
consequence is that, although, for example, protein synthesis is the behavior of a
cell, not all parts of the cell are also components of the mechanism for protein
synthesis. Some parts of the cell (e.g., the centrosome and the cytoskeleton) are
causally irrelevant for synthesizing proteins and thus do not count as components

10Craver calls these factors “constitutively relevant” and specifies this notion by his criterion of
“mutual manipulability” (2007, pp. 139–159).
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of the mechanism for protein synthesis.11 In other words, the decomposition of a
mechanism into its components depends on how the behavior of the mechanism is
characterized (Kauffmann 1970; Craver and Darden 2001).

A second major characteristic of mechanisms is their multilevel character.
The notion “multilevel character” refers to two distinct but related features of mech-
anisms: first, it appeals to the part-whole relation that exists between a mechanism
and its components. This part-whole relation gives rise to the ontological claim that
the mechanism as a whole is located on a higher level of organization12 than the
entities and activities/interactions that compose the mechanism. For instance, the
mechanism for muscle contraction is said to be located on a higher level than the
calcium ions, the sarcoplasmic reticulum, the myosin and actin molecules, etc., that
interact with each other in a certain way (or that perform certain activities) in order
to bring about the behavior of the mechanism as a whole (i.e., the contraction of the
muscle fiber). Second, what is also meant by “multilevel character” is the fact that
many mechanisms (in particular, in the biological realm) occur in nested hierarchies.
Many mechanisms have components that are themselves (lower-level) mechanisms;
and many mechanisms themselves constitute a component in a higher-level mecha-
nism. For instance, the calcium pump that actively transports the calcium ions from
the cytosol back into the sarcoplasmic reticulum is a part of the mechanism for mus-
cle contraction. However, the calcium pump is also a mechanism on its own, namely,
a mechanism for active transport of calcium ions. As such, it has its own components
(e.g., A-, N-, and P-domain, transmembrane domain, calcium ions, ATP) with their
own organization. Furthermore, the mechanism for muscle contraction constitutes
itself a part in a higher-level mechanism, for instance, in the mechanism for crawling
by peristalsis, a behavior that is exhibited, for example, by earthworms.

The third feature of mechanisms concerns their components. It is the one with
respect to which there exists least conformity. The proponents of the mechanistic
view concur that mechanisms consist of components, but they use different termi-
nologies to classify the components, and some of them assign the components to
different ontological kinds (whereas others are just not interested in metaphysical
issues). For instance, Machamer et al. (2000) endorse the dualistic thesis that mech-
anisms are composed of entities and activities, which they conceive as two distinct
ontological kinds. By contrast, Glennan (1996, 2002) characterizes mechanisms in
a monist fashion, that is, as being constituted exclusively by entities that interact
with each other and thereby change their properties. Other mechanists do not take a
stand on this ontological dispute, but nevertheless draw the distinction between the

11However, the parts of the cell that are not components of the mechanism for protein synthesis
may be components of other mechanisms. For instance, the centrosome and the cytoskeleton are
components of the mechanism for cell division.
12We leave it open whether the notion of a level of organization must be spelled out in a mechanistic
way, as, for example, Craver claims (2007, pp. 184–195). Alternatively, one could try to offer an
account of levels, according to which levels are defined in not only local explanatory contexts but
rather globally. In this spirit, for instance, Wimsatt takes levels to be local maxima of regularity
and predictability (1976, 1994, and 2007).
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spatial components of a mechanism and “what the spatial components are doing”
or “the changes in which the spatial components are involved.” Moreover, these
authors adopt a different terminology to describe this difference. Bechtel (2006,
2008), for example, speaks of component parts and component operations (or
functions). We think that it is not necessary (although legitimate) to become engaged
in the ontological dispute about whether mechanisms consist of components that
belong to one or to two distinct ontological kinds. One can avoid this dispute
and yet argue that the two concepts – let it be entities and activities, entities and
interactions, component parts and component operations, or whatever one likes – are
descriptively adequate, that is, useful for representational purposes. When biologists
represent mechanisms, they typically distinguish between the object itself (e.g.,
ribosome) and what the object is doing or the interactions in which the object is
involved (e.g., binding, moving along the mRNA, releasing polypeptide). Thus, one
should account for this difference when one models biological mechanisms. This,
however, leaves open the ontological question of whether activities can be reduced
to property changes of entities13 or not. In sum, the third feature of mechanisms is
that they are represented as having two kinds of components, entities and activities
(or operations or interactions).

A fourth major characteristic of mechanisms is the importance of the spatial and
temporal organization of their components for the functioning of the mechanism.
Only if the components of a mechanism are organized in a specific way, the
mechanism as a whole brings about the behavior in question. It is important to
note that mechanisms are organized in a spatial as well as in a temporal manner.
The spatial organization refers to the fact that certain entities are localized in certain
regions of the mechanism, move from one region to another, and perform different
activities in different regions. For instance, it is significant to the functioning of the
mechanism of photosynthesis that the transport of electrons through the thylakoid
membrane causes the transport of protons from the chloroplast stroma into the
thylakoid lumen and that the resulting chemiosmotic potential is used for ATP
synthesis by transporting the protons back into the stroma again. The temporal
organization means that a mechanism is temporally divided into certain stages which
have characteristic rates and durations as well as a particular order. Earlier stages
give rise to latter stages so that there exists a “productive continuity” (Machamer
et al. 2000, p. 3) between the stages of a mechanism. In other words, the activities
or interactions are “orchestrated” (Bechtel 2006, p. 33) such that they produce the
phenomenon of interest. Consider the mechanism of photosynthesis again. This
mechanism is also characterized by a specific sequence of activities. The first step
is the absorption of a photon (by the photosystem II). This causes the excitation of
an electron, which is followed by the transport of this electron down the electron
transport chain. This transport brings about the transport of protons and so on.

13Or, in the case of an activity that involves two entities, two events in which the change of one
property of one object causes the property change of another entity.
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At this point one could discuss further features of mechanisms, like the fact
that most mechanisms produce a certain behavior in a regular way (given certain
conditions) or that the components of mechanisms might be connected by a special
kind of causal relations, namely, “productive causal relations” (Bogen 2008).
However, these characteristics of mechanisms are far more controversial than the
ones we have mentioned so far. This is why we do not take them for granted
here. In what follows we examine the question of whether causal graph theoretical
models of biological mechanisms are able to capture the major characteristics of
mechanisms that we have presented in this section, namely, the multilevel character
of mechanisms, their two kinds of components, and the spatial and temporal
organization of their components. We do this by means of an extended analysis of
an example from recent biological research. As announced before, the result of our
analysis will be that causal graph theory succeeds with regard to some respects while
failing with regard to others (Sect. 3.5). But before, we give a short introduction to
the case study that we are concerned with (Sect. 3.4).

3.4 Feedback Inhibition of ACCase by 18:1-ACP
in Brassica napus

Feedback inhibition is a common mode of metabolic control. Generally speaking,
in feedback inhibition a product P produced late in a reaction pathway inhibits an
enzyme E that acts earlier in the pathway and that transforms the substrate S into an
intermediate product IP1. Figure 3.2 illustrates this general connection.

Figure 3.2 shows that the substrate S is transformed in several steps into the
product P (via the intermediate products IP1, : : : ,IPn). As P accumulates, it slows
down and finally switches off its own synthesis by inhibiting the regulatory enzyme
E that often catalyzes the first committed step of the pathway. That way, feedback
inhibition prevents the cell from wasting resources by synthesizing more P than nec-
essary. Because enzyme activity can be rapidly changed by allosteric modulators,
feedback inhibition of regulatory enzymes provides almost instantaneous control of
the flux through the pathway.

Many instances of this general mechanism of feedback inhibition can be found
in nature. In this chapter, we focus on an example from contemporary botanical
research, namely, on the feedback regulation of fatty acid biosynthesis in canola

Fig. 3.2 The general mechanism for feedback inhibition
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(Brassica napus), which has only recently been identified by Andre et al. (2012).14

Fatty acid biosynthesis is a crucial process for both plants and animals, providing the
cell with components for membrane biogenesis and repair and with energy reserves
in specialized cells (such as epidermal cells or the cells of oilseeds). Since the need
for fatty acids not only varies with the cell type but also depends on the stage of
development, time of the day, or rate of growth, fatty acid biosynthesis must be
closely regulated to meet these changes. Although the biochemistry of plant acid
biosynthesis has been extensively studied,15 comparatively little is known about
its regulation and control (Ohlrogge and Jaworski 1997). However, knowing the
mechanism of how fatty acid biosynthesis in plants is regulated is important, not
least because it may give rise to the design of strategies for increasing fatty acid
synthesis in plants (cf. Tan et al. 2011). This is particularly significant in light of the
economic potential of genetically manipulated oil crops for improved nutritional
quality or as renewable sources of petrochemical substitutes.16

The main aim of the experimental studies conducted by Andre et al. (2012) was
to discover the feedback system that regulates the biosynthesis of fatty acids in
the plastids of Brassica napus. The major results of their studies are twofold: first,
they provide evidence for the hypothesis that plastidic acetyl-CoA carboxylase (in
short, ACCase) is the enzymatic target of the feedback inhibition (i.e., the enzyme E
that is inhibited). ACCase catalyzes the transformation of acetyl-CoA into malonyl-
CoA. Second, their experiments indicate that the 18:1-acyl carrier protein (in short,
18:1-ACP) is the feedback signal, that is, the inhibitor of ACCase. On the basis of
these findings, they proposed the mechanism for feedback inhibition of fatty acid
synthesis in Brassica napus that is illustrated in Fig. 3.3.

The mechanism for feedback inhibition that takes place in the plastid (depicted in
the upper, inner box) can be characterized as an instance of the general mechanism
presented in Fig. 3.2. The enzyme ACCase (E) converts the substrate acetyl-CoA
(S) into the intermediate product malonyl-CoA (IP1), which is then transformed
into the product 18:1-ACP (P). If the concentration of 18:1-ACP increases, more
and more 18:1-ACP molecules bind to ACCase molecules and inhibit them. This, in
turn, slows down and finally switches off the synthesis of further 18:1-ACP.

14Empirical work on similar regulation mechanisms, for instance, in tobacco suspension cells
(Shintani and Ohlrogge 1995) and in Escherichia coli (Heath and Rock 1995; Davis and Cronan
2001), has been carried out before.
15For an overview about lipid biosynthesis, see, for instance, Ohlrogge and Browse (1995).
16Canola (Brassica napus) is the third largest source of vegetable oil supply. It is of high nutritional
value (because of its high concentrations of unsaturated C18 fatty acids and a low level of erucic
acid) and a suitable source for biodiesel fuels as well as for raw materials in industry (Tan et al.
2011).
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Fig. 3.3 Mechanism for feedback inhibition of fatty acid synthesis in Brassica napus (Reproduced
from Andre et al. 2012)

3.5 Modeling the Mechanism for Feedback Inhibition

The mechanism presented in the previous section can be characterized as bringing
about the regulation of the synthesis of 18:1-ACP (which is a fatty acid). One way
to characterize this phenomenon in more detail is to specify it quantitatively: the
concentration of 18:1-ACP is regulated such that it very likely does not reach a
certain upper bound b (i.e., the probability for a concentration of 18:1-ACP lower
than b is greater than a certain defined probability threshold r). Figure 3.4 shows an
illustration.

3.5.1 A Causal Graph Theoretical Model of the Mechanism
for Feedback Inhibition

How can the mechanism that brings about the regulation of fatty acid synthesis
(more precisely, the regulation of the synthesis of 18:1-ACP) be represented within
a causal graph framework? At first, we need to introduce a variable P, standing
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Fig. 3.4 The explanandum phenomenon of 18:1-ACP regulation [The dots stand for the 18:1-
ACP concentrations (C18:1-ACP) measured over time (t) (To be precise, the empirical data that
biologists actually gather are not concentrations. Rather, they measure, for instance, optical
densities (in spectrophotometric studies) and then draw inferences from the density values about
the concentrations). More than r (95 % in this example) of 18:1-ACP concentrations measured so
far do not exceed b]

for the concentration of the product 18:1-ACP.17 P shall be a discrete variable fine-
grained enough to correspond to the given measurement accuracy. The phenomenon
may then be described as Pr(p� b) > r.

Furthermore, the concentration of the substrate acetyl-CoA (represented by
variable S) is causally relevant for the 18:1-ACP concentration P: the higher the
concentration of acetyl-CoA is, the higher will be the probability for higher 18:1-
ACP concentrations. Another factor that is causally relevant for the 18:1-ACP
concentration is the concentration of the regulatory enzyme ACCase. Here we have
to distinguish between active enzymes and enzymes which bind the product 18:1-
ACP (at the effector interaction site). We represent the former by the variable Eactive

and the latter by the variable EP-bound. While the concentration of active enzymes is
causally relevant to the concentration of the product 18:1-ACP (the higher Eactive’s
value, the higher the 18:1-ACP concentration), the 18:1-ACP concentration is
causally relevant to the concentration of P-bound enzymes (the higher P’s value,
the higher EP-bound’s value) which is, again, causally relevant to the concentration
of active enzymes (the higher EP-bound’s value, the lower Eactive’s value), etc. The
negative causal influence of EP-bound on Eactive represents the fact that the binding of
18:1-ACP molecules to active ACCases causes the inhibition of the ACCases (i.e.,
the ACCases becoming inactive), and the negative causal influence of Eactive on S
stands for the fact that many active enzymes decrease the amount of the ACCases.
According to these considerations, we may illustrate the mechanism by the causal
graph depicted in Fig. 3.5.

To get a causal model, we have to supplement the causal graph depicted in
Fig. 3.5 with a probability distribution Pr over variable set VDfS,P,Eactive,EP-boundg.

17Note that variables are always represented by italic letters. The italic “P,” for example, stands for
a variable describing the concentration of the product 18:1-ACP, while the non-italic “P” stands
for the concentration of the product 18:1-ACP itself.
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Fig. 3.5 Static cyclic CM of the mechanism for feedback inhibition [S and Eactive are direct causes
of P. P is a direct cause of EP-bound which is a direct cause of Eactive which is, again, a direct
cause of S and P, etc. Direct causal influences are represented by arrows. A plus (“C”) above an
arrow stands for a positive causal influence (i.e., high cause values lead to high effect values), and a
minus (“�”) stands for a negative causal influence (i.e., high cause values lead to low effect values)]
(One might object that this causal graph is inadequate because it contains two variables that are
analytically dependent, namely, EP-bound and Eactive. We do not think that this is the case. EP-bound

and Eactive are analytically independent variables because there is a temporal distance between the
binding of P to E and the inactivation of E (i.e., the conformational change of the substrate binding
site). In other words, the binding of P to E and the inactivation of E are not the same processes
occurring at the same time, but rather the former causes the latter. This is also why there exists a
submechanism that specifies this causal relation)

Pr will imply that the probability of p� b is greater than r (this is the phenomenon
the mechanism brings about). The probabilities Pr will correspond to the pos-
itive/negative causal influences as described above. So the probability for high
P-values, for example, will be high given high S- and Eactive-values, and low given
low S- or Eactive-values.

The probabilities Pr are interpreted as inductively inferred limit tendencies of the
observed frequencies of the diverse concentrations, as they are found under normal
conditions. These normal conditions can be captured by adding a context CD c.
This context is simply an instantiation of a variable or a set of variables which stand
for the typical experimental setup and are not (or only slightly) changed during
measuring or manipulating S, P, Eactive, or EP-bound. With regard to our case study, the
context CD c will include a certain temperature (or range of tolerable temperatures),
a particular level (or tolerable range) of salinity, and a certain pH value (or range of
tolerable pH values). The conditional probabilities along the causal arrows should
correspond to the causal strengths of the variables’ direct causes in context CD c.

Here we can observe the first problem of our causal model: while the parameters
of a causal model are uniquely defined in an acyclic CM, this is not the case in
cyclic CMs. This is a problem when it comes to explaining or predicting certain
phenomena. We typically explain or predict a variable X’s taking value x by means
of this variable’s direct or indirect causes and its parameters or the parameters of
the variables lying between X and its indirect causes. So we explain or predict
XD x by reference to X’s causes and only to X’s causes and not to X’s effects.
But in our cyclic CM, some variable’s causes are also their effects. P, for example,
is a cause and an effect of EP-bound. So conditioning on P does not correspond to
the probabilistic influence of EP-bound’s direct causes alone, but rather to a mixture
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Fig. 3.6 The causal graph of a five-stage dynamic CM representing the mechanism for feedback
inhibition in Brassica napus

of the probabilistic influences one gets from EP-bound’s direct causes and some of
its effects. In other words, conditioning on P does not give us the probabilistic
influence of P on EP-bound transported only over path P!EP-bound, but the mixed
probabilistic influence of P transported over P!EP-bound and EP-bound!Eactive!P.
A second problem of our causal model is that it does not capture the dynamic
aspect of mechanisms – it does not show how the parts of the mechanism described
influence each other over a period of time. A third deficit of our causal model is that
it does not represent any hierarchic organization, that is, it does not account for the
fact that mechanisms are often embedded in higher-level mechanisms and have parts
that are (sub)mechanisms themselves (see Sect. 3.3). The above model just describes
the causal relations that are responsible for bringing about the behavior of the
mechanism, that is, it refers only to causes at one and the same ontological level and
therefore (even if the first problem would not exist) does not, strictly speaking, allow
for interlevel explanation/prediction. In order to cope with these three problems, in
the next two subsections, we expand our causal model that represents the mechanism
for feedback inhibition of fatty acid synthesis in Brassica napus.

3.5.2 Dynamic Causal Models

The first two problems discussed in the last section can be solved by unrolling the
causal model over a period of time and thereby constructing a dynamic CM.18 In
doing so, we quite plausibly presuppose that causal influences need some time to
spread and do not occur instantaneously. We get a dynamic CM if we add time
indices to the variables of our system VDfS,P,Eactive,EP-boundg, representing the
mechanism’s diverse stages. By presupposing that causal influences need some time
to take place, we can generate the dynamic CM whose causal graph is depicted in
Fig. 3.6 (for five stages) on the basis of our static CM in Sect. 3.5.1.

The dashed arrows transport probabilistic influences (the substrate concentration
Si, for instance, is always probabilistically relevant to the substrate concentration

18Similar considerations can already be found in the first (but not in the second) edition of Spirtes
et al. (2000).
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at the next stage) in exactly the same way as their non-dashed counterparts. The
only difference is that we interpret continuous arrows as direct causal connections
while we want to leave it open whether the dashed arrows represent such causal
connections. Dashed arrows could, for example, also be interpreted as analytic
dependencies.19 The variables of the five stages together with the continuous and
the dashed arrows constitute the dynamic CM’s causal graph.

The corresponding static CM’s topological structure can be read off from the
dynamic CM. One just has to abstract from the diverse stages of the dynamic CM
and look at the continuous arrows: there has to be an arrow from S to P, from P to
EP-bound, from EP-bound to Eactive, and from Eactive to S and to P in the corresponding
static CM, and these all have to be causal arrows in this static CM.

Note that the time intervals between two stages of a dynamic CM should be
suitably chosen. On the one hand, if they are too small, then the causal influence may
not have enough time to spread from the cause to the effect variable and correlations
between causes and effects will get lost. On the other hand, these intervals should
not be too large, either. This may lead to violations of very basic causal intuitions.
To give an example, suppose the causal model in Fig. 3.6 shows the correct
causal structure of the mechanism for feedback inhibition of fatty acid synthesis
in Brassica napus. Then S is an indirect but not a direct cause of EP-bound. S’s causal
influence on EP-bound is mediated via P. But if the interval between two stages were
too large, say, for example, it were chosen such that stage 3 in the dynamic CM
in Fig. 3.6 would be the next stage after stage 1, then S and EP-bound would be
correlated and this correlation would not break down under conditionalization on
the intermediate cause P. Thus, conditioning on an effect’s direct causes would not
screen it off from its indirect causes.

Dynamic CMs have some advantages over static CMs. First of all, they are
acyclic CMs, and, thus, we can use the same methods as in BNs to compute the
probabilities we are interested in. Furthermore, CMC holds and the causal model’s
parameters are defined. So we know the causal strengths of a variable’s causes, and
we can thus use dynamic CMs to explain certain phenomena which can be described
by means of endogenous variables. So the first problem discussed in Sect. 3.5.1 can
be solved: we can generate explanations and predictions by referring to the causes of
the event of interest and to the probabilistic influence of these causes on this event.
In addition, we can predict the probabilities of certain effects of interventions. We
can, for example, predict the probability of certain P-concentrations at stage 5 given
certain S- and Eactive-concentrations at stage 1 when we change the concentration
of S in a certain way at stage 3 via manipulation. The second problem can also be
solved: the dynamic CM tells us how the parts of the mechanism described influence
each other over a period of time, and we can thus also make predictions about what
will (most likely) happen at later stages of the mechanism when we manipulate

19“Analytic dependence” is a notion that captures a wide range of noncausal dependences, for
example, conceptual dependence, definitional dependence, and dependence which is due to a part-
whole relation.
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certain variables at earlier stages of the mechanism. Another nice feature of dynamic
CMs is, provided the time intervals between the diverse stages of the mechanism
are suitably chosen, that standard methods can be used for causal discovery because
CMC holds for dynamic CMs. Causal discovery is still a serious problem for cyclic
CMs, and there are only a few algorithms which, in general, do not lead to very
detailed causal information (cf. Richardson 1996; Spirtes 1995). The third problem,
however, still remains: our dynamic CM captures only causal information at one
and the same ontological level and thus does not allow for interlevel mechanistic
explanation, manipulation, and prediction.

3.5.3 Hierarchically Ordered Causal Models

There are at least two possibilities to represent the hierarchic organization of
mechanisms within causal graph theory, that is, to solve the third problem that we
mentioned at the end of Sect. 3.5.1. Each of these approaches has its own merits
and deficits. One of these possibilities is developed in detail in Casini et al. (2011).
Casini et al. provide a quite powerful formalism. They propose to start to represent a
mechanism’s top level by a causally interpreted BN. Such a BN’s variable set V may
then contain some so-called network variables. These are variables whose values
are BNs themselves. Network variables (or, more precisely, the BNs which are their
possible values) are intended to represent the possible states (e.g., “functioning”
and “malfunctioning”) of a mechanism’s submechanisms. These BNs’ variable sets
may then themselves contain network variables which stand for the possible states
of a submechanism’s submechanisms and so on. To connect the diverse levels
of the mechanism represented by such BNs, Casini et al. suggest an additional
modeling assumption: the recursive causal Markov condition (RCMC). Whenever
this condition holds, then Casini et al.’s formalism allows for probabilistic reasoning
across the diverse levels of the represented mechanism.

In this chapter, we can discuss Casini et al.’s (2011) approach only very briefly.
For a detailed discussion of their formalism see Gebharter (forthcoming). Though
their formalism is definitely powerful, their crucial modeling assumption RCMC is
quite controversial. First of all, it is neither obvious that RCMC holds in general,
nor is it clear how one could distinguish cases in which it holds from cases in
which it does not. Secondly, RCMC leads to contra-intuitive consequences. We have
the strong intuition that learning information about a mechanism’s microstructure
should at least sometimes lead to better (or at least different) predictions of
the phenomena this mechanism will bring about. This should be the case, for
example, when the macro-variable describing the possible states of the mechanism
is described in a quite coarse-grained way, while more and more knowledge
about the mechanism’s microstructure is collected. But, according to RCMC, a
mechanism’s micro-variables are probabilistically screened off from its macro-
variables whenever the state of the submechanism represented by a network variable
is known. A third deficit of Casini et al.’s approach is that it does not provide
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Fig. 3.7 Static CM of the phenomenon that is brought about by the submechanism for allosteric
inhibition

any information about how a submechanism’s microstructure is connected to the
macrostructure of the overlying mechanism, that is, how exactly changes of some
of the submechanism’s micro-variables’ values influence the mechanism’s macro-
variables due to probabilistic influences transported over its causal microstructure.
Such information is crucial when it comes to the question of how macro-phenomena
can be controlled by manipulating some of their underlying mechanisms’ micro-
variables.

In what follows we sketch an alternative approach for representing the hierarchic
structure of mechanisms which avoids these problems. According to our approach,
the submechanisms that a particular mechanism contains are, at least in most cases,
adequately represented not via network variables, as Casini et al. (2011) propose, but
via causal arrows. We will illustrate this claim on the basis of the case study that
we have already introduced, namely, the mechanism for feedback inhibition of fatty
acid synthesis in Brassica napus. This mechanism can be modeled within a causal
graph framework as described in Sect. 3.5.1. An example for a submechanism of this
mechanism is the mechanism for allosteric inhibition. This submechanism specifies
the causal arrow between the variables EP-bound and Eactive (see Fig. 3.7). That is, it
describes how exactly the binding of the product 18:1-ACP (i.e., P) to the regulatory
enzyme ACCase (i.e., Eactive) causes the inhibition or inactivation of ACCase with
the effect that ACCase cannot bind the substrate acetyl-CoA (i.e., S) and convert it
into 18:1-ACP anymore. In other words, this submechanism discloses why it is the
case that the higher the concentration of 18:1-ACP, the lower the concentration of
active ACCase.

But how can such a submechanism be modeled within a causal graph framework,
and how can it be related to the mechanism for feedback inhibition of which it
is a part? In order to assess these questions, we need to go into more scientific
details. Unfortunately, the biochemical submechanism that explains how the binding
of 18:1-ACP to the enzyme ACCase (EP-bound) causes the inhibition of ACCase
(Eactive) in Brassica napus has not been discovered yet (Andre et al. 2012). The same
is true for the biochemical inhibition mechanisms in other species, for instance,
in Escherichia coli (Heath and Rock 1995; Davis and Cronan 2001). However,
in order to get an idea of how the model of the submechanism might look like,
we will consider a different but analogous example, in which extensive molecular
and structural studies have been carried out to unravel the biochemical mechanism
of inhibition. In their recent work, Ganesan et al. (2009) investigated a different
feedback system, namely, the allosteric inhibition of the enzyme serine protease
(more precisely, of hepatocyte growth factor activator, in short “HGFA”) by an
antibody (Ab40). Their goal was to unravel the molecular details of this inhibition
mechanism. That is, they aimed at characterizing the molecular interactions and
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Fig. 3.8 Qualitative model of the mechanism for allosteric inhibition of HGFA by Fab40 (Fab40
is a special type of Ab40) (Adapted from Ganesan et al. 2009. With permission from Elsevier)

conformational changes that are caused by the binding of Ab40 (in general terms, of
product P) to the effector interaction site of the enzyme HGFA (in general terms, to
enzyme E) and that bring about the inhibition or deactivation of HGFA. Their work
is very useful for our analysis because, on an abstract level, Ganesan et al. (2009)
were interested in discovering the same submechanism as the one we singled out
above, namely, the submechanism that explains how the binding of P to E causes
the inhibition of E, in other words, why it is the case that the higher EP-bound’s value,
the lower Eactive’s value.

The exact route by which the amino acids that compose E transmit the allosteric
effect, that is, by which intermediate steps the binding of P to the remote effector
interaction site of E causes the altered catalytic activity of E, is in general very
poorly known (Sot et al. 2009). However, the structural and kinetic studies that
Ganesan et al. (2009) performed produce some relief. One of their main results is
that the binding of Ab40 (i.e., P) to the effector interaction site of HGFA (i.e., E) is
accompanied by a major structural change (called the “allosteric switch”; Ganesan
et al. 2009, p. 1620), namely, the movement of a certain part of the enzyme, the
99-loop, from the competent into the noncompetent conformation. This, in turn,
obstructs the binding of the substrate to the enzyme E; more precisely, it causes a
steric clash between the P2-Leu and the S2 subsite of E and the loss of stabilizing
interactions between P4-Lys and the S4 subsite of E. The diagram in Fig. 3.8
provides a general illustration of these changes (while leaving out most of the
molecular details).

The molecular interactions could be described in far more details. However, the
foregoing description suffices for our purposes. How can this submechanism for
allosteric inhibition of HGFA by Ab40 be modeled in a causal graph framework?
We propose to model the submechanism with a static CM containing the variables
and causal topology depicted in Fig. 3.9.

The first thing to note is that B, 99-loop, S2, and S4 are binary (and, thus,
qualitative) variables. B can take one of the two values “bindings between functional
groups of Ab40 and the effector interaction site of HGFA are established” and
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Fig. 3.9 Static CM of the submechanism for allosteric inhibition of HGFA by Fab40

Fig. 3.10 Static CM of the hypothetical submechanism for allosteric inhibition of ACCase by
18:1-ACP (The corresponding possible values of the variables are the following: B can take one of
the two values “bindings between functional groups of 18:1-ACP and the effector interaction site
of ACCase are established” and “bindings between functional groups of 18:1-ACP and the effector
interaction site of ACCase are not established.” X can take one of the two values “being in the
competent state” and “being in the noncompetent state.” S2 and S4 can take one of the two values
“having an ideal conformation that allows its binding to a certain part of 18:1-ACP” and “having a
deformed conformation that inhibits its binding to a certain part of 18:1-ACP.”)

“bindings between functional groups of Ab40 and the effector interaction site of
HGFA are not established.” 99-loop can take one of the two values “being in the
competent state” and “being in the noncompetent state.” S2 can take one of the
two values “having an ideally shaped hydrophobic pocket to recognize P2-Leu” and
“having a deformed pocket so that P2-Leu cannot be recognized.” S4 can take one
of the two values “being able to perform stabilizing interactions to P4-Lys” and
“being unable to perform stabilizing interactions to P4-Lys.” This model describes
that if bindings between functional groups of Ab40 and the effector interaction site
of HGFA are established, then the probability is high that 99-loop is in its competent
state, which is why the probability is high that S2 has an ideally shaped hydrophobic
pocket to recognize Leu and S4 is able to perform stabilizing interactions to P4-
Lys. On the higher level, we would say that if P (Ab40) binds to E (HGFA), this
submechanism brings about the behavior that E (HGFA) is inactive (which means,
on the lower level, that the two amino acids P2-Leu and P4-Lys of the substrate
cannot bind to the substrate binding sites S2 and S4 of the enzyme (HGFA)).

We are aware of the fact that it is very unlikely that the biochemical submecha-
nism for the inhibition of ACCase by 18:1-ACP in Brassica napus looks exactly like
the submechanism for the inhibition of HGFA by Ab40, which we just described.
There are too many molecular differences between the two enzymes and the two
inhibitory products. However, for the sake of the argument, suppose that also in the
case of the inhibition of ACCase, the binding of 18:1-ACP causes the movement
of some part of the enzyme X from a competent state into a noncompetent state.
Suppose further that this allosteric switch brings about certain molecular and
conformational changes in two substrate binding sites S2 and S4 of the enzyme
ACCase, which prevent the substrate to bind to the enzyme. A static CM of this
hypothetical submechanism would look like the one in Fig. 3.10.
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Fig. 3.11 Hierarchic static CM of the mechanism for feedback inhibition and of one of its
submechanisms, namely, the biochemical mechanism for allosteric inhibition

On this basis we can now tackle the crucial question of how the model of the
mechanism for feedback inhibition, which we developed in Sect. 3.5.1, and the
model of one of its submechanisms, namely, of the biochemical mechanism of
allosteric inhibition, can be related within a causal graph framework. We propose
to model the hierarchic order of this multilevel mechanism by means of a hierarchic
static causal model with the topological structure depicted in Fig. 3.11.

The two-headed arrows between EP-bound and B as well as between S2 and Eactive

and S4 and Eactive which connect the two levels of the two mechanisms do not stand
for causal, but rather for constitutive relevance relations, for instance, in the sense
of Craver (2007). Hence, they transport probabilistic dependencies and the effects
of manipulations in the same way as direct causal loops in static CMs. Note that the
causal arrow EP-bound!Eactive in our original static CM disappeared in the hierarchic
causal model. It is replaced by the underlying mechanism of this causal arrow, that
is, by a causal structure whose input and output variables are connected to EP-bound

and Eactive, respectively, via constitutive relevance relations in Fig. 3.5. Also note
that it is not clear how the submechanism represented by EP-bound!Eactive could
be analyzed in Casini et al.’s (2011) approach. They would need to add a network
variable N between EP-bound and Eactive (EP-bound!N!Eactive). But then and because
there is no intermediate (macro-level) cause N between EP-bound and Eactive, it is
unclear what this network variable N should represent at the mechanism’s macro-
level.

Our hierarchic static CM can be used for mechanistic reasoning20 across diverse
levels. In contrast to Casini et al.’s (2011) models, our model also tells us how

20The main difference between mechanistic reasoning and causal reasoning is that mechanistic
reasoning makes use not only of causal but also of constitutive relevance relations. In other words,
mechanistic reasoning contains not only intralevel reasoning but also interlevel reasoning.
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Fig. 3.12 Hierarchic dynamic causal model of the mechanism for feedback inhibition and the
biochemical mechanism for allosteric inhibition

exactly probabilistic influence between macro-variables is transported over the
underlying mechanism’s causal microstructure and how exactly (i.e., over which
causal and/or constitutive relevance paths) manipulations of micro-variables influ-
ence certain macro-variables. For example, if we manipulate S4, this will change
Eactive and S2 because S4 and S2 are constitutively relevant for Eactive. Since X is a
direct cause of S4, changing S4 will, on the other hand, not have a direct influence
on X’s value. But changing S4 will nevertheless have a quite indirect influence on X:
a change of S4’s value will have an influence on Eactive’s value at the macro-level,
which influences its macro-level effect EP-bound. Since B is constitutively relevant
for EP-bound, EP-bound-changes will lead to B-changes which will, since B is a direct
cause of X at the micro-level, lead to certain X-changes.

Though such hierarchic models as the one depicted in Fig. 3.11 can be used
for probabilistic reasoning across a mechanism’s diverse levels, they cannot
generally be used for explanation and prediction. The reason is the same as
in the case of static CMs, as illustrated in Sect. 3.5.1: a certain EP-bound-value,
for example, can be explained or predicted only via reference to EP-bound’s
causes, for example, P. But in our hierarchic static CM, P does influence
EP-bound not only as a cause but also as an effect: P influences EP-bound not
only over P!EP-bound but also over P Eactive<���>S2 X B<���>EP-bound and
P Eactive<���>S4 X B<���>EP-bound. So the probabilistic influence of P on
EP-bound does not correspond to P’s causal influence on EP-bound alone. We can solve
this problem by rolling out our hierarchic model over time as we have already done
for our original static CM in Sect. 3.5.2. Figure 3.12 is an illustration of the result
of this procedure.

Note that, while causal influences need some time to spread, value changes
produced by constitutive relevance relations occur instantaneously. Because of this,
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the two-headed dashed arrows representing such constitutive relevance relations
only connect variables at one and the same stage. This also corresponds to the
fact that one cannot change one of two constitutively dependent variables without
changing the other. Note also that the causal arrows from EP-bound to Eactive

disappeared in the hierarchic dynamic CM. This is because these arrows represented
a submechanism at work which is explicated in more detail in the hierarchic
dynamic CM – the hierarchic dynamic CM tells us exactly (and, in contrast to our
original dynamic CM developed in Sect. 3.5.2, in a mechanistic way)21 how EP-bound

influences Eactive and thus finally solves problem three, too: hierarchic dynamic CMs
allow for probabilistic interlevel explanation and prediction of certain Eactive-values.
Certain Eactive-values, for instance, can be mechanistically explained or predicted by
certain EP-bound-values: EP-bound at stage 1 has some influence on its constitutive part
B at stage 1. B at stage 1 causes X at the micro-level at stage 1.5 which causes S2
and S4 at the micro-level at stage 2, and, since S2 and S4 are constitutively relevant
for Eactive, they have a direct probabilistic influence on Eactive at stage 2.

One could object that, since the two-headed dashed arrows in our hierarchic
dynamic CM transport the influences of interventions in both directions, CMC
does not hold in such models and, hence, they should have the same problems
as static CMs when it comes to explanation and prediction. The first point of
such an objection is definitely true: CMC does not hold for hierarchic dynamic
CMs.22 However, this does not lead to the suspected consequence. The problem
for explanation and prediction in static CMs was that the probabilities one gets
when conditioning on some variables also provide some information which can only
be achieved if one also knew these variables effects (in other words, probabilistic
information is transported not only over cause paths but also over effect paths).
But the events that we want to explain do not occur because some of their effects
occurred (i.e., because they had a probabilistic influence on them), and events we
want to predict cannot be predicted via reference to some of their effects (which
have not occurred yet). However, this problem does not arise for hierarchic dynamic
CMs. In a hierarchic dynamic CM, cycles appear only due to constitutive relevance
relations within certain stages, and, thus, conditioning on a variable’s causes does
only provide probabilistic information about this variable’s values transported over
cause or constitutive relevance paths. It never provides probabilistic information
transported over an effect path.

21Note also that Casini et al.’s (2011) approach does not allow for mechanistic reasoning in this
sense. In their approach, the question of how two or more macro-variables (e.g., EP-bound and Eactive

in our example) influence each other can only be answered by causal connections at the macro-
level. In our approach, on the other hand, we can explain such an influence by reference to the
underlying mechanism – we can tell a story about how EP-bound influences Eactive by demonstrating
how EP-bound’s constitutively relevant parts causally influence Eactive’s constitutively relevant parts
at the micro-level.
22Note that d-separation may still be assumed to hold.
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3.6 Merits and Limits of Causal Graph Theoretical Models

On the basis of the preceding analysis, we can now approach the question of whether
causal graph theory is suited for modeling biological mechanisms and what the
advantages and shortcomings of representing mechanisms within a causal graph
framework are. In the previous literature the concern has been raised that, even if it is
possible to provide causal graph theoretical models of biological mechanisms, they
are deficient because they fail to comprise some important kinds of information. In
this line, for instance, Weber (2012) argues that because causal graph theoretical
models only encompass sets of variables and relations of causal dependence,
they fail to include information about the structure of biological entities (such as
information about the DNA double helix topology and the movements undergone by
a replicating DNA molecule) and about their spatiotemporal organization. However,
claims like these remain on a quite general level. Our goal in this section is to use
the results of our analysis of the case study in the previous section in order to assess
and to specify these claims. We do so by pointing out which kinds of information
about biological mechanisms cannot or can only insufficiently be represented within
a causal graph framework and what are the reasons for these failures. In addition to
revealing the limitations of causal graph theoretical models of mechanisms, we also
highlight the virtues they have with respect to certain scientific purposes.

To begin with, recall the major characteristics of biological mechanisms that
we identified in Sect. 3.3. First, mechanisms possess a multilevel character, which
means, on the one hand, that there exists a part-whole relation between the
mechanism and its components and, on the other hand, that mechanisms frequently
occur in nested hierarchies. Second, mechanisms are represented as having two
different kinds of components: entities (having particular properties) and activities
(or interactions, operations, etc.). Finally, a mechanism brings about a specific
behavior only if its components are spatially and temporally organized in a
certain way. Can all these three features of biological mechanisms adequately be
represented by causal graph theoretical models?

Consider first the multilevel character of mechanisms. As we have shown in
the previous section, the fact that many mechanisms occur in nested hierarchies
(i.e., that they are embedded in higher-level mechanisms and have components that
are themselves submechanisms) can be represented in at least two ways. On the
one hand, one can represent a mechanism’s submechanisms by so-called network
variables, as, for instance, Casini et al. (2011) do. We, on the other hand, think
that there are good reasons for representing such submechanisms by causal arrows
between variables X and Y. In our approach one can generate a hierarchic causal
model by replacing such a causal arrow by another causal structure. This causal
structure should be on a lower ontological level than X and Y, it should contain
at least one constitutively relevant part of X and at least one of Y, and there
should be at least one causal path going from the former to the latter at the micro-
level. Such hierarchic models allow, in contrast to purely qualitative models, for
probabilistic mechanistic reasoning across different levels. Hierarchic dynamic CMs
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do even allow for probabilistic mechanistic interlevel explanation and prediction.
Contrary to Casini et al.’s models, they can also provide detailed information about
how certain causal influences at the macro-level are realized by their underlying
causal influences propagated at the micro-level. This is important when it comes to
questions about how certain manipulations of macro- or micro-variables influence
certain other macro- or micro-variables of interest and how a mechanism’s causal
microstructure is connected to its macrostructure.

Let us now turn to the second feature of mechanisms. Do causal graph theoretical
models succeed in representing mechanisms as being composed of two different
kinds of components, namely, entities and activities (or operations, interactions,
etc.)? It is quite clear that causal models represent entities. Precisely speaking, the
individuals in the domains DX1, : : : ,DXn of the causal model’s variables X1, : : : ,Xn

represent the entities that are components of the mechanism. Furthermore, the
variables X1, : : : ,Xn taking certain values represent different properties or different
behaviors of these entities. But can causal graph theoretical models represent
activities, too?

A convenient first step towards an answer to this question seems to be to
scrutinize the activities that are involved in our case study. Examples of activities
that are part of the mechanism for feedback inhibition of fatty acid synthesis in
Brassica napus are the binding of 18:1-ACP (P) to ACCase (E), the transformation
of acetyl-CoA (S) into 18:1-ACP (P) (via the intermediate product malonyl-CoA),
and the inhibition of ACCase (E) by 18:1-ACP (P) (see description of Fig. 3.5). The
submechanism that brings about the activity of the inhibition of ACCase by 18:1-
ACP is, in turn, composed of the following micro-activities: the establishment of a
certain kind of binding between a functional group of 18:1-ACP and the effector
interaction site of ACCase, the shifting the conformation of a particular part of
ACCase, the deformation of the conformation of the S2 part of the substrate binding
site of ACCase, etc. (see description of Fig. 3.9). What all these activities have in
common is that they are temporally extended processes that involve some kind of
change. Correspondingly, Machamer et al. have characterized activities as being
“the producers of change” (2000, p. 3). It should be noted that not all activities
must involve interactions between two or more distinct entities.23 There might also
be activities (so-called noninteractive activities (Tabery 2004, p. 9; Torres 2008,
p. 246), like the shifting of the conformation of a particular part of ACCase) that
involve only one entity (i.e., the particular part of ACCase) and a change of its
properties (i.e., from the property “being in a competent state” to “being in a
noncompetent state”).24 In any case, activities involve the change of properties. In

23According to Glennan (2002, p. 344), an interaction is an occasion on which a change in a
property of one component of the mechanism brings about a change in a property of another
component.
24As mentioned in Sect. 3.3, we leave it open whether activities can be reduced to state
transformations via property changes or whether there is something lost by this reduction (such
as the productive nature of activities).
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principle, the variables of a causal graph theoretical model could just be chosen
in such a way that the different values they can take represent different processes
or changes of properties. However, such a choice of variables would completely
be at odds with experimental practice in biology. In most cases it is difficult or
even impossible to measure entire processes by just measuring once. Rather, what
biologists do, for instance, to collect empirical data about the inhibition of ACCase
by 18:1-ACP, is that they measure the concentration of the product (which is an
indicator of ACCase’s activity and, thus, also of its inhibition) to different times.
Against this background it would be inadequate to choose the variable in such a
way that one of its values represents the entire process/activity of inhibition of
ACCase by 18:1-ACP. The option of representing activities simply by variables
taking certain values can also be ruled out by the following argumentation: if
activities were represented by variables taking certain values, then activities would
neither involve changes nor be productive – they would rather occur due to other
productive causal relations. Since activities are productive and involve changes, they
must be represented differently.

We think that there are two ways in a causal graph theoretical model by which the
activities that compose a mechanism can be captured: they can either be represented
by causal arrows between variables. For instance, the causal arrow between S
and P in Fig. 3.5 represents the activity “transformation of acetyl-CoA into 18:1-
ACP.” This is the option that matches the neat picture that several authors seem
to have in mind: in a causal model the variables represent the entities (and their
possible properties), and the arrows represent the activities. However, our analysis
shows that things are not that neat. There is a second, equally adequate way to
represent activities in causal graph theoretical models, namely, representing them
by the change of the value of a variable. For instance, the activity “shifting the
conformation of a particular part of ACCase” is represented in Fig. 3.9 by the
variable X, changing its value from “being in a competent state” to “being in a
noncompetent state.”

A related view of static CMs, which we have to give up, is the neat view that
the different variables in static CMs always represent the possible properties and
activities of distinct entities. The flexibility of the choice of variables allows that
one static CM contains variables that represent different possible properties (and
activities) of the same entity. For instance, in our static CM depicted in Fig. 3.5,
the variables EP-bound and Eactive both refer to the concentrations of enzymes but
describe different properties of these enzymes, namely, “being bound to P” and
“being active.” In other words, in causal graph theoretical models, the boundaries
between different entities and between entities and activities often become fuzzier
than in qualitative models. This fuzziness may have the disadvantage of impeding
the understanding of how a mechanism brings about a certain phenomenon – when
one looks at a static CM or at a dynamic CM, one does not recognize at first sight
what the entities are and which activities they perform.

To conclude, we think that it is possible to represent mechanisms as being
composed of entities and activities in a causal graph framework. However, what
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one does not get are neat static CMs in which each variable represents a distinct
entity and the arrows represent activities. This might be disadvantageous for some
purposes, but not for others.

Finally, how do things stand with the third main feature of mechanisms, namely,
with the spatial and temporal organization of their components? How much and
which structural and spatial information one actually represents simply depends on
one’s choice of variables. In our case study, for instance, the causal graph theoretical
model depicted in Fig. 3.11 contains structural as well as spatial information: the
variable S2, for example, refers to a particular entity, namely, the S2 part of the
substrate binding site of ACCase, and to the two possible structural properties that
this entity can exhibit, namely, “having an ideal conformation that allows its binding
to a certain part of 18:1-ACP” and “having a deformed conformation that inhibits its
binding to a certain part of 18:1-ACP.”25 A different example is the variable EP-bound

which represents the concentration of those regulatory enzymes (ACCases) that are
bound to, that is, spatially connected to, the product 18:1-ACP. Hence, it is possible
to include certain crucial structural and spatial information about the components of
a mechanism into a causal graph theoretical model – one just has to choose variables
that refer to structural and spatial properties.

Information about the temporal organization can be captured by and read off from
the causal arrows of dynamic CMs: in the example we discussed in Sect. 3.5.2, for
instance, S at stage 1 causes P at stage 2, which causes EP-bound at stage 3. So at first
S interacts with P, then P interacts with EP-bound, etc. However, even if there are no in-
principle reasons for why it is impossible to include all the details of the spatial and
temporal organization of a mechanism’s components into a causal graph theoretical
model, this does not preclude that there may be heuristic reasons for doing so.
For instance, including all the relevant spatial, structural, and dynamic information
might give rise to a causal model that includes too many different variables, so that
it is unmanageable and thus not useful.

In sum, causal graph theoretical models can account for the three main features
of mechanisms. However, they do so in a quite abstract way, which is why
they are far worse than purely qualitative models with respect to the purpose of
providing understanding. Qualitative models tell us in a very intelligible way how
the components of a mechanism interact to bring about the phenomenon of interest.
They make, contrary to probabilistic causal models, clear distinctions between the
macro- and the micro-level (i.e., between mechanisms and their submechanisms)
and between distinct entities and activities (or operations, interactions, etc.). Purely
qualitative models of mechanisms can also be used to explain certain behaviors
of systems by revealing how the components of a mechanism bring about the
behavior in question. These qualitative models are, however, limited. They fail when
it comes to explain why certain systems frequently (but not always) bring about
certain behaviors. In other words, they fail when it comes to explaining probabilistic

25Of course, these two properties could be and, in fact, are specified in more detail in biological
practice. We give this general and brief characterization just for heuristic reasons.
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phenomena like the phenomenon described in Sect. 3.5. Moreover, they do not
allow for probabilistic prediction and (interlevel) manipulation. But knowing how
we can bring about a particular phenomenon with high probability is a crucial
investigative strategy in the biological sciences. Finally, purely qualitative models
fail to integrate qualitative information with quantitative, probabilistic information.
The latter is an important task in certain research areas like epigenetics where
laboratory molecular experiments need to be brought together with ecological or
evolutionary observational studies and computer simulations.

3.7 Conclusion

In this chapter, we have shown how the formal framework of causal graph theory
can be used to model biological mechanisms in a probabilistic and quantita-
tive way. Our analysis of the mechanism for feedback regulation of fatty acid
biosynthesis in Brassica napus revealed that causal graph theoretical models
can be extended such that they can also account for more complex forms of
organization of the components of a mechanism (like feedback) as well as for
the fact that mechanisms are frequently organized into nested hierarchies. We
argued that, because causal graph theoretical models are not purely qualitative,
but rather include probabilistic and quantitative information, they are useful in
the context of causal discovery – in particular if one wants to make quantitative,
probabilistic predictions or conduct manipulations. What is more, since causal
graph theoretical models allow us to represent different levels of mechanisms in
the same model (e.g., a mechanism, one of its submechanisms, and the relations
between them), they enable us to carry out interlevel mechanistic manipulation and
prediction, too.

However, our analysis of the case study did not only disclose advantages of
representing biological mechanisms within a causal graph framework. Rather, it
gave rise to the more balanced view that probabilistic, quantitative models of
mechanisms – although there are clear merits with respect to some purposes –
also have shortcomings with respect to other purposes. Accordingly, our analysis
revealed that causal graph theoretical models have the resources to represent the
three main features of biological mechanisms, namely, their multilevel character,
their two kinds of components, and the spatial and temporal organization of their
components. However, it also became clear that in some respects probabilistic,
quantitative models of mechanisms are insufficient (e.g., because the boundaries
of entities and between entities and activities become fuzzy and because the
amount of structural/spatial and dynamical information that can be represented
is limited) which makes them inadequate for some purposes (in particular for
providing understanding). With this analysis we hope to have shed some light on
the merits and limitations of modeling biological mechanisms within a causal graph
framework and to have provided some interesting prospect for future philosophi-
cal work.
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