Three Pillars of First Grade Mathematics,
and Beyond
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Abstract An integrated approach to first grade arithmetic is described. It consists of
a coordinated development of the three pillars of the title, which are (i) strong con-
ceptual grasp of the operations of addition and subtraction through word problems,
(ii) computational skill that embodies place value understanding, and (iii) coordina-
tion of counting number with measurement number. The ways in which these three
parts interact and reinforce each other is discussed. This approach is highly consis-
tent with CCSSM standards recently released in the United States by the Council of
Chief State School Officers.

In a second part, a sketch is given of a further development of these key ideas
in later grades. Increasing understanding of the arithmetic operations leads to in-
creasing appreciation of the sophistication and underlying structure of place value
notation, eventually making links with polynomials. Linear measurement becomes
the basis for developing and exploiting the number line, which later supports co-
ordinatization. Throughout, consistent attention should be given to interpreting and
solving increasingly involved word problems. Successful intertwining of these three
strands supports the later learning of algebra, and its links to geometry.

Keywords Word problems - Place value - Counting-measurement coordination -
Number line

For nearly all students, first grade is the beginning of dedicated intensive instruction
in mathematics. Since later mathematics learning builds on earlier learning, getting
started right is important. Since arithmetic is the main focus of mathematics educa-
tion in elementary school, first grade should concentrate on giving students a good
start in arithmetic. Some would argue that geometry or data or early algebra should
also get attention, and there is probably room time to do something about some of
these (and the Common Core State Standards in Mathematics (CCSSM) (CCSSO
2011) calls for some), but starting arithmetic off right is the essential task of first
grade.
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184 R. Howe

This is not as simple as it might sound. Getting going in arithmetic involves more
than learning how to compute. It entails developing a broad conception of the opera-
tions of addition and subtraction, one that includes all the main contexts where these
might be used, and one that supports thinking of addition and subtraction as well-
defined things with specific properties, about which we can reason. It also entails
going beyond situations that are described by counting, to see how arithmetic ap-
plies to the arena of measurement. The connection of arithmetic to geometry through
measurement both enlarges the conception of arithmetic and provides concrete and
conceptual tools to help students think about arithmetic.

In the domain of computation, the overarching idea is that of place value. The
standard conception of place value in the U.S. tends to be rather limited: it is fre-
quently treated as a vocabulary issue, that students should know the value of each
place in a multi-digit number. However, the principle of place value controls essen-
tially all aspects of arithmetic computation and estimation. Students should even-
tually come to appreciate and be able to exploit the ubiquitous influence of place
value. A good start in first grade can help students reach that goal.

The discussion below of computation and place value is substantially influenced
by our reading of East Asian texts and education literature. In particular, we em-
phasize the value of addition and subtraction within 20 (Ma 1999) as a context for
learning the addition and subtraction facts. This also has been recognized by CC-
SSM, which has this topic as an explicit standard at grades 1 and 2.

These considerations lead to three main ingredients that are key to starting off
right in arithmetic. They are:

(I A robust understanding of the operations of addition and subtraction.
(II) An approach to arithmetic computation that intertwines place value with the
addition/subtraction facts.
(III) Making connections between counting number and measurement number.

Below we enlarge on each of these topics. In two supplemental sections, we will
sketch ways in which these basic themes might extend to later grades.

A Robust Understanding of the Operations of Addition and
Subtraction

Addition is often described as combining and subtraction as taking away, but the
types of situations in which these operations are used are more varied than these
brief descriptions would suggest. Mathematics educators have articulated a taxon-
omy of one-step addition and subtraction word problems.

The CCSSM has adopted a version that recognizes 14 types. The types fall into
three main categories: change, in which some number changes over time; compar-
ison, in which the difference between two quantities plays a role; and part-part
whole, in which some quantity or collection of objects made up of two parts. These
broad classes are similar to those discussed in Adding It Up (Kilpatrick et al. 2001),
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based on Children’s Mathematics (Carpenter et al. 1999), and also to the discussion
in Fuson’s paper (2005).

Each of the first and second types can be divided into two subtypes. In problems
involving change over time, the initial quantity can either increase or decrease. Sim-
ilarly, in comparisons of quantities, one quantity can be described either as more or
less than the other one. In part-part whole problems, the two parts play equivalent
roles, so these form just one family.

Finally, for each of the four subtypes of change or comparison problems, one can
pose three different questions, according as to what is unknown. Thus, for change-
increase problems, one can ask to find the final total, the amount of change, or the
initial amount. For comparison problems, one can ask to find the larger quantity, the
smaller quantity, or the difference. For part-part-whole problems, since the two parts
play equivalent roles, there are only two questions: what is the size of the whole, or
what is the size of an unknown part. In all, this gives 2 x 2 x 3 + 2 = 14 types.

Here are examples of selected types:

Change-increase, total unknown: Shana had three toy trucks. For her birthday,
she got four more toy trucks. How many toy trucks did she have then?

Comparison-more, smaller unknown: Shana has seven toy trucks. She has four
more toy trucks than her friend Molly. How many toy trucks does Molly have?

Part-part whole, part unknown: Shana has a collection of seven toy trucks. She
keeps them on two shelves in her bedroom. There are four trucks on the top shelf.
How many trucks are on the lower shelf?

The full taxonomy, with all 14 subtypes (plus a fifteenth, of a different nature), is
given as table I on page 88 of the Common Core State Standards (CCSSO 2011).

Although an adult may think of these types of problem as quite similar, mathe-
matics educators have shown that young children find them quite different (Carpen-
ter et al. 1999). For example, consider the problem

Change-increase, original amount unknown: Shana had some toy trucks. For her
birthday, she got four more toy trucks, and then she had seven. How many toy
trucks did she have before her birthday?

This type of problem turns out to be difficult for many young students to think about,
because they are unsure how to model it. To solve the Change-increase, total un-
known problem, they can count out three tokens, then four more tokens, then count
all the tokens to find the answer. To deal with the Change-increase, change un-
known, they can proceed similarly after some thought. They lay out seven counters
to represent the total, and three next to them to represent the original amount. Then
they count the unmatched counters in the total. (Effectively, they have converted the
change problem to a comparison problem.) However, with the Change-increase,
original amount unknown, they have trouble getting started. At this stage, the fact
that a sum does not depend on the order in which the addends are combined (the
commutative property of addition), is still to be learned.

The importance of presenting all types of addition and subtraction problems is
clear if we take into account that a tremendous amount of learning takes place



186 R. Howe

through examples. Children acquire vocabulary at the rate of several words each day
(for passive vocabulary; see http://en.wikipedia.org/wiki/Vocabulary). Mostly, they
do not look them up in the dictionary. Rather, they learn them by seeing them used
in context, that is, through examples of how a word is used. It is important to obey
the maxim of example sufficiency, especially in teaching abstract concepts, which
are the main content of mathematics. By example sufficiency, I mean giving a broad
enough array of examples to provide a well-rounded representation of the concept.
A famous example of example insufficiency is the case of triangles. In brief presen-
tations of the concept of triangle, frequently only one example, that of an equilateral
triangle with a horizontal base, is given. Perhaps then it should not be surprising
that studies have found that many second or third grade students will not identify
non equilateral triangles, or even equilateral triangles with non-horizontal bases, as
being triangles. With foundational concepts, such as addition and subtraction, which
will form the base on which many further ideas are built, it is especially important
to present a well-rounded collection of situations where addition or subtraction can
be used. Thus, care should be taken in first grade to introduce all types of one-step
addition/subtraction word problems, and to use them all repeatedly throughout the
year with larger numbers as student technique in symbolic calculation improves.

Sometimes, the use of only a limited number of the simplest problem types is
justified on the basis that young students have limited reading skills, and that math-
ematics must be presented in ways that they can understand. This point of view
might seem to have increased validity today, when so many students are classified
as ELL (English-language learners). However, I would argue that mathematics word
problems are as important for their potential to improve reading skills and thinking
skills as they are for teaching arithmetic technique. In fact, word problems are the
glue that binds mathematics to the real world, and studying them from a language
arts point of view, as passages that we want to understand, is as important as solving
them. Oral presentation and class discussion can be a vehicle for this, as well as
individual reading.

In class discussion, comparative analysis may be an effective tool. Comparing
and contrasting pairs of problems, then discussing all three of one of the triples of
problems, and ending with comparison of pairs of triples, may give students a sense
for the territory of addition and subtraction in a way that just solving problems one
at a time could not achieve. A somewhat subtle side benefit of this kind of activity
may be that some students come to think of addition and subtraction as having an
existence independent of calculation, that is, they may realize that the expression
3 + 8 is a valid name for a number whether or not we calculate to find that it is 11.
This kind of understanding supports algebra.

Comparison problems require a special note of caution. In almost all uses of
numbers that occur in everyday life, numbers function as adjectives: two hats, or
two dollars, or two train rides all can be interpreted readily; however, “two” by
itself does not have a clear meaning. Without a unit to refer to, the meaning of “two”
is incomplete. Correspondingly, when we discuss addition, we understand (usually
tacitly) that the numbers we are adding all refer to the same unit. The statement
“3 dimes and 4 nickels equals 2 quarters” is perfectly intelligible. However, the
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equation 3 4 4 = 2 violates our usual understandings of arithmetic. The source of
the problem here is that each number is referring to a different unit. To write an
equation that expresses the desired relationship, we should make sure that all terms
are denominated in the same unit. For example, if we express each coin, nickel,
dime and quarter in terms of their value in pennies, we can write a correct equation:

3x10+4x5=2x25.

Since ignoring the unit is usually does not cause trouble when dealing with whole
numbers, units may often be suppressed in first grade and second grade texts. This
can even serve a positive purpose, by emphasizing that arithmetic is independent of
the unit: 4 apples and 3 apples make 7 apples, and likewise, 4 trucks and 3 trucks
make 7 trucks. However, lack of unit awareness can wreak havoc during the study
of fractions.

If they are not formulated carefully, comparison problems may seem to violate
the same-unit principle. In such problems, one is often asked to compare the number
of birds with the number of worms, or the number of children with the number of
cookies. It may then seem that we are subtracting birds from worms, or the other
way around, in contravention of the consistent unit principle. What is going on in
these problems is more complicated. The problem scenario implicitly sets up a cor-
respondence between the two sorts of things being compared, at some rate (often
one-to-one). This implicit correspondence converts (implicitly, of course!) one of
the quantities to the other, and subtraction takes place among the quantities of the
type that is in abundance. However, this under-the-table correspondence may well
be too subtle or confusing for young students to grasp. For this reason, it is advisable
to formulate comparison problems so that they are about quantities of essentially the
same type. For example, it is easier to assimilate “green apples” and “red apples”
under the umbrella unit “apple” than it is to think of “tickets” and “people” as being
essentially the same. Note that in the comparison example given above, all numbers
referred to toy trucks.

An Approach to Arithmetic Computation that Intertwines Place
Value with the Addition/Subtraction Facts

Place value is the central concept of arithmetic computation. It is not simply a vocab-
ulary issue, of knowing the ones place, the tens place, and so on; it is the key organiz-
ing principle by which we deal with numbers. Place value, together with the Rules
of Arithmetic, specifies the key aspects of how we perform addition/subtraction and
multiplication/division (i.e., the algorithms of arithmetic). The vital role of place
value is attested to by this quotation from Carl Friedrich Gauss (1777-1855), often
named the greatest mathematician since Newton:

The greatest calamity in the history of science was the failure of Archimedes to invent
positional notation. (Eves 2002)
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Two-digit numbers, and their addition and subtraction, is the topic where students
first engage seriously with place value. The main ingredients in learning two-digit
addition and subtraction are:

(a) learning the addition/subtraction facts: knowing the sum of any two digits (that
is, the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and, given the sum and one of the
digits, knowing the other digit;

(b) understanding that a two-digit number is made of some tens and some ones; and

(c) in adding or subtracting, you work separately with the tens and the ones, except
when regrouping is needed.

Specifically, item (c) comprises two situations:

(i) in adding, when you get more than 10 ones, you convert 10 of them into a ten,
and combine that with the other tens; or

(ii) in subtracting, if the ones digit you want to subtract is larger than the ones digit
you want to subtract from, you must convert a ten into 10 ones, and subtract
from the resulting teen number.

The main US method for teaching this topic has been

(a) learn the addition/subtraction facts by memorization; and
(b) learn the column-wise algorithm for performing the operations.

These are often treated separately, with little or no rationale given for either, and
no connections between the two. In recent years, increased use of base ten blocks
has probably increased understanding of the regrouping process for some students.
However, the learning of the addition facts remains primarily a memorization pro-
cess, unconnected with the other parts of the package, in particular with regrouping.
It is desirable and possible to combine the two key steps in such a way that they
support each other, and are both connected to the fundamental principle of place
value. We sketch the main steps in this development.

(1) Learn the addition and subtraction facts to 10.

This learning should be fluent, robust and flexible. This means understanding that
34+4=7,and 7 — 4 =3, and also, that, if you have 4 and want 7, you need 3; and
being able to produce any of these statements more or less automatically. (In the
U.S., these variants are sometimes referred to as “related facts”.) Instruction should
be accompanied by many concrete and pictorial illustrations of the relationships
involved.

In learning the facts to 10, it is valuable to spend time thinking about all the
possible ways to decompose a given number, for example to note that

5=4+1=34+2=24+3=1+4.

Besides improving fluency, this work highlights structural facts, such as the com-
mutative rule for addition, which reveals itself here in the symmetry of the possible
expansions of 5: each decomposition is paired with another in which the addends
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are in the opposite order. (Problems that call for all the possible ways to decompose
a whole number into two smaller whole numbers are recognized as a fifteenth type
of addition and subtraction problem in the Table I of the Common Core Standards,
as cited above.)

(2) Learn the teen numbers as a 10 and some ones.

In Chinese this is quite easy, because the number names express this directly: ten
and one, ten and two, ten and three, and so on, up to two tens, and onward. It will
involve more work in the US, since the number names are not as helpful. There
will have to be class discussion about hearing the 10 in “teen”, and hearing the 3 in
“thir”, so that students can think “ten and three” when they hear “thirteen”. Similar
work will have to be done with the other teen numbers. There will probably have to
be some special talk about how “eleven” and “twelve” are pretty dumb names, but
you just have to live with them, and think “ten and one” quietly to yourself when
you hear “eleven”.

Besides the names, the notation will need explicit attention. The fact that the 1 in
13 stands for ten, and the 3 stands for the three additional ones will probably have to
be taken note of repeatedly. We agree not to write the 0 in the ten, to save time and
space, but we put the 1 on the left of the three, and this is just a short way of writing
10 + 3. If our number names reinforced this, learning would probably be quicker
and easier, but with sufficient reminders, we can hope that students will retain the
idea.

Some amount of work with the teen numbers should be done to help students
become comfortable with them. Adding and subtracting a teen number and a single
digit, not involving regrouping, asking which number comes just before or just after,
asking which of two teen numbers is larger, are examples of exercises to increase
familiarity. With regard to ordering, and adding that does not cross decades, students
may observe spontaneously that only the ones digit is involved, and that, as far as
this digit is concerned, everything is “just like” the parallel single digit behavior. If
no student offers this, pointing it out may be helpful.

(3) Learning the higher addition facts.

This is known in East Asia as “addition and subtraction within 20” (Ma 1999). The
importance of this topic for providing important connections in the learning of place
value is recognized by the adoption of this term in the Common Core Standards in
grades 1 and 2 (CCSSO 2011).

Now that the teen numbers are understood in terms of their base 10 structure, the
focus returns to single-digit addition and subtraction, and learning the addition and
subtraction facts when the total exceeds 10. Here the key point is not memoriza-
tion of the higher addition facts, but understanding how to produce them, and their
connection to place value notation. So, for example, to add 6 4 7, a student should
think in terms of making a 10. From stage (1), it is known that starting from 6, one
needs 4 more to make 10. One gets the 4 from the 7, and since one also knows that
4 4+ 3 =17, there are 3 left over from the 7, so one gets 10 and 3 more, or 13. The
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formal expression of this in terms of symbolic manipulation uses the Associative
Rule of addition to change the form of the sum:

6+7=64+4+3)=6+4)+3=10+3=13.

However, at this stage, such niceties can be ignored. Similarly, in subtracting a one-
digit number from a two-digit number, one may have to unmake or break apart the
10. There are (at least) two different ways that a student might think about this;
either one is valid. These are illustrated in the following computations.

13-7=13—-(3+4)=(13-3)—4=10—4=6,

or

13-7=(10+3)-7=(10-7)4+3=3+3=6.

(4) Learn that two-digit numbers are made of some tens and some ones.

When students are fairly fluent in the addition/subtraction facts and making/un-
making 10, attention can then move to larger numbers. The key understanding is
that a two-digit number is made of some tens and some ones.

Thus, 43 =40 + 3 is 4 tens and 3 ones. The main work is probably in getting
students to think of each -ty number as indicating a certain number of tens. Then
the general two digit number is gotten by appending some ones, and this is fairly
clearly indicated in the name. Again students need to learn to think beyond the
names: “twenty” is 2 tens; “thirty” is 3 tens; “forty” is 4 tens; and so forth. The
names and what they mean should again be connected with the notation: the 10s
digit tells the number of tens, and the 1s digit tells the number of ones.

For many students, a fair amount of counting with verification, that indeed 20
is 2 tens, forty is 4 tens, and so forth, may be required to solidify confidence in
the equivalence. As the counting is being done, the benefits of grouping by some
manageable amount, which for us is 10, should be promoted. In fact, if counting
gets interrupted, the advantage of having made groups of 10 should be evident, in
greatly reducing the amount that must be recounted. A hundreds chart can also be
useful in this work. In working with a hundreds chart, it may be helpful to point
out that a given number tells the number of spaces in the chart up to and including
that number. This observation can also be helpful when studying computation (step
5 below), especially in interpreting the effect of adding 1 or adding 10 to a general
two-digit number. Some educators advocate having a hundreds chart in which the
numbers with a given tens digit run down a column (rather than across a row, which
seems to be the more common form).

Manipulatives such as 10-rods and 1-cubes may be helpful in making two-digit
numbers tangible and accessible. Often such manipulatives are handled by arranging
them in loose groupings, on a mat or other area designated for the work. However,
it is probably a good idea to have students do some of this work in the context of
linear measurement, with the 10-rods and cubes arranged into a linear train. Among
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other advantages, this will emphasize that the various rods and cubes are indeed
united into a single quantity, with length corresponding to the size of the number.
The measurement model for numbers is discussed further below.

Attention should also be paid to ordering two-digit numbers—thinking about
which of two numbers is larger. Here the simple principle is, that the 10s digit deter-
mines the relative size of two two-digit numbers, except when both numbers have
the same 10s digit, in which case, you look at the 1s digit. Since the size difference
between the 10-rods and the cubes is starkly apparent when all are assembled into a
train, the measurement or length model of numbers, constructed by trains of 10-rods
and cubes, can provide a physical and visual way of thinking about the relative sizes
of numbers and the order relation.

(5) Add/subtract two-digit numbers by combining tens with tens and ones with
ones.

This can be done in stages: add and subtract 1 or 10 from a two-digit number,
add/subtract single digit numbers or multiples of ten from a two-digit number,
add/subtract two-digit numbers without regrouping, add/subtract single digit num-
bers to or from two-digit numbers when regrouping is required, and finally, the gen-
eral case of adding or subtracting two-digit numbers with regrouping. When adding
(or subtracting) a single-digit number to (or from) a general two-digit number, if
regrouping is required, the corresponding addition fact should be emphasized. Both
the reasoning and the mechanics of regrouping have already been learned while
learning the addition facts beyond 10.

Manipulatives such as 10-rods and cubes can of course be used to model addi-
tion and subtraction. Again, arranging these rods and cubes into trains and working
in terms of the length model for numbers can help students think about addition
and subtraction. See section “Making Connections Between Counting Number and
Measurement Number” for more details.

The ability to work independently with the tens and the ones should enable many
students to do two-digit addition and subtraction mentally. To find 53 4 29, a stu-
dent could say “50 4+ 20 is 70, and 3 + 9 is 12, and 70 4 12 is 82.” To compute
64 — 36, one could subtract 30 from 64 to get 34, reducing to the problem 34 — 6,
which is 20 + 14 — 6, which one knows is 20 + 8 = 28, since one has learned how
to compute 14 — 6 as part of addition and subtraction within 20. (We note that this
subtraction method, in which the largest place is subtracted first, will work in gen-
eral. Of course, it may involve more rewriting than the standard algorithm; but for
two-digit numbers, it seems quite manageable.)

It should be mentioned that many of the activities in steps 4 and 5 are present
in various U.S. curricula, though perhaps without the unifying viewpoint provided
by addition and subtraction within 20 (step 3). They are also presented in teacher
training courses (Beckmann 2008; Van de Walle 2006).
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Making Connections Between Counting Number
and Measurement Number

One of the main arenas of application of mathematics is in measurement. Numbers
used in measurement, in contrast to counting, may not be whole numbers. They can
be rational numbers (meaning quotients of whole numbers), usually represented by
fractions (possibly also with a negative sign), or even stranger numbers. !

Geometrical measurement is so different from the context of counting, that the
classical Greeks did not think of the numbers involved in measurement as numbers,
and reserved the term ratio for numbers in the context of geometrical figures (Klein
1992). It was only after the invention of symbolic algebra by Francois Viéte around
1600 that the notion of number was expanded to include the numbers that arise
in measurement. A few decades later, this development led to the invention of the
coordinate plane by René Descartes, and to the strong linkage between number and
geometry that we take for granted today.

The history of mathematics can be a good guide to what is important and what is
difficult in learning mathematics. The difficulties evinced by the Greeks, combined
with our post-Renaissance understanding that they are joined at the hip, indicate that
it is necessary to help students explicitly to bridge the intuitive gap between number
and geometry, and that this should start early. There are several benefits to starting
in first grade. In particular, this can already help students think geometrically about
two-digit numbers. Also, it can help prepare students to appreciate the metric nature
of the number line (or ray), the use of which is called for explicitly by CCSSM in
second grade.

In the course of civilization, people have learned to measure a huge variety of
quantities, and several of the most important (area, volume, weight, time, speed,
etc.) are dealt with in school. The most basic and probably simplest type of mea-
surement is linear measurement: measurement of length or distance. Most adults
probably think of linear measurement in terms of using a ruler. However, one should
first lay a foundation by getting students to think of length or distance in terms of
the familiar counting numbers, and to model addition by concatenation of length—
laying rods end to end. (This can be viewed as a case of the part-part-whole aspect
of addition.)

This process lends itself well to work with manipulatives in first grade. The basic
materials needed are a collection of unit cubes, and rods with the same cross section
as the cubes, but of various lengths. All whole number lengths from 1 to 20 would
afford exploration of addition and subtraction within 20, in other words, a measure-
ment analog of the addition and subtraction facts. Cuisenaire rods can probably be
useful, but they don’t have the full range of lengths, and their colors may be a dis-
traction. Besides cubes, a generous supply of rods of length 10 is desirable. Unifix
cubes might also be used, although these do not come with the ready-made larger

Hrrational numbers, which, with a few exceptions such as some square roots, 7 and e are not
encountered by non-mathematicians, but which can be articulated into an elaborate hierarchy.
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lengths. It might be a productive class activity to assemble cubes into rods of various
lengths, which could then serve as templates for activities related to addition.

A first activity would be just measuring the length of various rods in terms of
the cubes. It might be a good exercise to see if students could learn to recognize
various lengths without having to measure. The rods might be marked with their
lengths to facilitate later work (or if Cuisenaire rods are being used, many students
will probably learn to associate lengths with the colors).

In learning to measure, students should come to appreciate the importance of
lining up the cubes carefully, face to face, with no gaps. For some students, this
may require a substantial amount of practice. If Unifix cubes are used, it could be
instructive to have several groups of students produce bars with the same number of
cubes, and to compare their lengths, noting the importance of having the cubes fit
tightly for consistent length.

After students have gained familiarity with measuring the rods, and have come to
associate a definite length with a given rod, along with associated ideas of order—
that longer rods have greater measured lengths—addition and subtraction can be
studied. Students should get used to the idea that addition corresponds to putting
bars together end-to-end, aka the combination of lengths. Subtraction corresponds
to the comparison of lengths: placing two rods side-by-side, and measuring the un-
matched part of the longer rod. After a reasonable amount of work like this, the rea-
sons for these correspondences between length measurement and arithmetic should
be discussed. Ideally, a student will volunteer the basic reason: we have defined
length in terms of measurement by unit lengths, and the collection of units needed
to measure a combination of lengths is just the union of the collections that measure
each of the individual lengths. Similar reasoning applies to subtraction.

Once addition and subtraction are interpreted in terms of lengths, one can begin
to use the length model to bolster understanding of place value. One can introduce
10-rods as a convenient way to simplify the measuring process. The ease of laying
down one 10-rod instead of carefully lining up ten unit cubes should be apparent to
students. The expression of the teen numbers as a 10 and some 1s is readily modeled
with a 10-rod and some cubes, and the modeling of the addition and subtraction facts
beyond 10, as well as the making (in addition) and unmaking (in subtraction) of a
10 can be illustrated concretely in terms of length.

At some point, the possibility of measuring other lengths—Iengths of pencils,
lengths and widths of book covers, various body parts, and anything else that attracts
class attention—should be explored. Longer things can be measured as students
become accustomed to dealing with larger numbers. (Such activities might also be
used as part of introducing larger numbers.) At least some measurement should
be done using unit cubes only, so that the huge savings in effort afforded by use
of 10-rods instead of only using unit cubes is made evident. Reporting of results
of measurement should include units—so many cubes long. If the cube sides are
of a standard length, such as a centimeter, this term could be used. Whether it is
necessary or advisable at this point to consider different units of length needs study.

Objects in the class environment will typically not be exactly whole numbers
of units in length. Often it is advocated to have students say that a given object is
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“about 14” units long. However, I would favor reporting the length as “between 14
and 15” if it is more than 14, or “between 13 and 14” if less. This kind of lan-
guage serves to highlight the need for more numbers than whole numbers in the
realm of measurement. Indeed, a teacher could tell students that later they will learn
about other numbers (fractions, mixed numbers, rational numbers) that can be used
to measure more accurately. If the length model for addition and subtraction (and
better, its interpretation in terms of the number line, to be introduced later) is well
absorbed, it can serve as an anchor for interpreting addition and subtraction of frac-
tions, because although the symbolic representation of addition is substantially more
complicated for fractions than for whole numbers, the geometric representation in
terms of combination of lengths is uniform.

When students are used to thinking of addition in terms of combining lengths,
and are familiar with 10-rods, the length model for addition can be coordinated
with base 10 notation. Students can make trains consisting of 10-rods and cubes, to
represent two-digit numbers. The convention should be established that the standard
way to do this is always to have the 10-rods together on one side of the train (say the
left), and the cubes together on the other (the right). This arrangement best displays
the base ten structure of the number.

When numbers so represented are added by combining the trains end-to-end,
students will probably observe that the resulting train is not in standard form: the
10-rods of the train on the right are to the right of the cubes of the train on the
left. To put the train in standard order, these rods and cubes must be rearranged.
The resulting train will be seen, perhaps after sufficient teacher direction, to be the
result of “combining the tens and combining the ones”, just as in the other contexts
where two-digit addition is studied. Also, if the sum has more than ten cubes, the
regrouping process can be modeled physically by replacing ten of the cubes by one
10-rod. If students fail to do so, it probably should be explicitly noted by the teacher
that this process preserves the total length.

The analog of this process for subtraction should also be done carefully. When
no regrouping is required, the trains of 10-rods and cubes can be compared to each
other, and it should be checked that this yields the same answer as the full train
comparison. When regrouping is required, one can convert a 10-rod to cubes to
supplement the cubes in the minuend, before comparing with the cubes in the sub-
trahend. As with addition, the results of the separate comparison processes for the
10-rods and the cubes should be verified to give the same result as the whole train
comparison.

This kind of work with lengths can strengthen the learning of arithmetic by rein-
forcing symbolic work and work with unstructured collections of objects. Equally
important, it should get children used to the idea that measurement is a natural do-
main for application of number ideas. It should prepare them well for introduction
of the number line, whose concrete realization is the ruler, as a tool that can be used
to measure anything without the need to form trains at all, in second grade.
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Beyond First Grade

Above we have argued that coordinated attention to word problems, place value is-
sues in base ten arithmetic, and linear measurement as a domain for number and
arithmetic, can form the core of first grade mathematics instruction that gives stu-
dents a good start. In the remainder of this note, we will sketch how these three
topics might continue to develop and support further mathematics learning in later
grades.

Second Grade

In many ways, second grade is a continuation and consolidation of first grade, and
completes the first stage of mathematics learning. The 3 pillars discussed above
remain highly relevant.

The study of addition and subtraction continues, the main advances being pro-
gression to more complex problems, and to 3 digit numbers. This is the next stage
of a gradual increase in the number of digits students are expected to cope with.
CCSSM calls for 4th grade students to deal with numbers up to 1 million, and 5th
grade students to also handle decimal fractions to thousandths. CCSSM is superior
to many of the state standards that it has replaced, in calling explicitly for students
to “Understand the place value system” in fifth grade.’

Word Problems Use of the full array of one-step addition and subtraction word
problems should continue, amplified by the introduction of some two-step problems.
Some problems might ask for addition of three or even four numbers. For example,
for her birthday, Shana could get toy trucks from two or even three different people;
or she could get some toy trucks for her birthday, and then some more for Christmas;
or both.

The reader may convince him/herself by experimentation, that of the 14 types
of one-step addition and subtraction problems discussed above, most pairs can be
combined to make a two-step problem, so that there are potentially almost 200 (14 x
14 = 196) two-step addition and subtraction problems. This should make obvious
the futility of any “key word” approach to dealing with word problems, and also
indicate the rich potential, both for mathematics and language arts, that analysis of
multistep problems affords.

Place Value In dealing with 3-digit addition and subtraction, one should continue
to develop the ideas introduced in first grade:

2However, the final stage of understanding, in which the base ten units are written as powers of
10 using exponential notation, linking place value notation with polynomial algebra, can not take
place before 6th grade, when exponential notation is first introduced (6.EE 1).
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Work with expanded form, adding the 1s, the 10s, the 100s independently, with
regrouping at the end, as needed. The point should be made that regrouping
from 10s to 100s is strictly parallel to regrouping from 1s to 10s, because 100
is made of ten 10s.

Work with addition and subtraction in parallel, and observe that regrouping in a
subtraction problem just reverses the regrouping in the corresponding addition
problem.

The situations that require regrouping are considerably more varied than in the
two-digit case, and probably require some systematic study. There may be no
regrouping; regrouping only from ones to tens; addition of multiples of ten re-
quiring regrouping of tens to hundreds; addition of general numbers with no
regrouping of ones, but regrouping from tens to hundreds; regrouping of both
ones and tens; and the most complicated case, when the tens add to 90, and
then a carry from the ones place makes this exactly 100, leaving a zero in the
tens place of the sum. This last situation may be called “rollover”, by anal-
ogy with the change in mechanical odometers when 1 is added to a number
with 9 in the 10s place (and perhaps larger places also). This should be studied
explicitly, along with the corresponding subtraction situation, which requires
“borrowing past a zero”. Second grade may be a good time to consolidate ad-
dition and subtraction algorithms (although CCSSM waits until 3rd grade to
ask for fluency). It probably would be a good idea to delay algorithm develop-
ment until all these different cases have been considered, and then discuss how
the usual right-to-left addition procedure handles all cases in one comprehen-
sive method. Subtraction of course is considerably less comfortable, because
of the rollover/borrowing past a zero issue, and more discussion of alternative
approaches might be helpful.

Work with manipulatives should include base ten block work (ones cubes, ten-
rods and hundred-flats) for student seat work, but also, in some whole class
work, with cubes, ten-rods and hundred-rods (meter sticks can double as these)
for forming linear trains representing 3-digit numbers. The same kind of rear-
ranging and trading that was done for two-digit numbers should be continued
here, including some of the more difficult symbolic cases, such as borrowing
past a zero. One big advantage of forming trains to represent 3-digit numbers is
that it emphasizes the size relations between 100s and 10s, as well as 10s and
1, making very visible that the 100s are the dominant part of any such num-
ber. This point should be made explicitly. Working with trains also shows that
arithmetic can take place wholly in terms of the line—two dimensions (or 3,
later used for blocks representing 1000 in the standard base ten block sets) are
not a necessity, only a convenience, allowing easy manipulation of the blocks.
In comparing numbers, students should learn that the number of 100s deter-
mine which of two numbers is larger, except when both numbers have the
same number of 100s, in which case the 10s must be considered, and the 1s
only when both numbers also have the same number of 10s.

The Linear Measurement Connection The counting-linear measurement con-
nection should be strengthened and elaborated. We have already mentioned above
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that trains of 100-rods, 10-rods and 1-cubes should be created to represent three
digit numbers, and combined to illustrate addition, and compared for subtraction.
However, in second grade, linear measurement should become a major topic (see
CCSSM Standards (2.MD.1 through 6)) and the number line (actually, the number
ray, since at this stage, it will go only in one direction from the zero or base point or
origin, which will be on one end of the stick or rod that embodies the line) should
be introduced, essentially as a ruler.

The connection of the number ray with measurement should be emphasized. Es-
pecially, the idea that a number on the number ray represents a length—the distance
from the origin (the end), as a multiple of the unit length—should be carefully es-
tablished in students’ minds. To bring home the necessity to choose a unit, number
lines based on several different unit lengths should be used at various times, with
explicit attention to specifying the unit. Taking the centimeter as unit will probably
afford maximum compatibility with base-ten manipulatives. In the linear measure-
ment context, the effect the choice of unit length has on the number obtained by
measurement should also get attention—the larger the unit, the smaller the asso-
ciated number, for a given length. A dramatic example would be that a single digit
number of meters is also hundreds of centimeters. In the U.S., taking the inch as unit
will afford a good tie-in with commonly encountered measurements, and later on,
converting from feet or yards to inches, or from miles to feet or yards, can provide
a source of multiplication and division problems.

The number ray should be used in conjunction with addition by lining up trains
of base-ten blocks, and it can be observed that, if you position the trains along the
ray with so that the end point of one train coincides with the end of the ray, then the
other end of the second train will fall on the number that gives the sum—the number
line functions as a computer! (This could be the first stage in rediscovering the slide
rule, which could make a great manipulative in the later grades.)

Introducing the number ray and relating it to length is a main task of second
grade, a key stage in a long learning trajectory that culminates with Cartesian coor-
dinates and infinite decimal expansions. Some later stages in this development are
discussed below.

Another key job of second grade that prepares for later work is to raise the con-
sciousness of students concerning units. Linear measurement is a context where this
issue clearly needs addressing, but it is relevant in many other contexts also. As we
have discussed above in connection with comparison word problems, in everyday
life, we don’t really encounter naked numbers, but rather, any number we meet has
a unit attached, and it expresses quantity in relation to that unit. In the early stages
of learning addition, it may be advisable to suppress attention to units, in order to
concentrate on the number relationships being established. Also, when dealing with
whole numbers, the relevant unit is often clear and does not need to be pointed out.

However, attention to units is essential when learning fractions. Many fallacies,
including claims of the sort

1/2+1/3=2/5 (not!) (1)
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involve lack of attention to the unit. The error in this statement is analogous to our
discussion of nickels, quarters and dimes in section “A Robust Understanding of the
Operations of Addition and Subtraction”. An equation like (1) is often justified with
a picture such as

AB+ ABB=AABBB 2)

The first group is taken to represent 1/2 (the number of As compared to the total
number of symbols), the second is taken to represent 1/3, and the last collection
represents 2/5. Addition is taken as union of sets.

What is wrong with Eq. (1)? A grouping such as AB can provide one reasonable
way to represent a fraction, but to avoid confusion, it is essential to see that the 1/2
refers to the first collection as unit, the 1/3 refers to the second collection as unit,
and the 2/5 refers to the third collection, the union of the first two, as unit. In order
to use a consistent unit, we could choose a single symbol as the unit. Doing this, we
see that the above equation of sets translates to the numerical fact

(1/2) x 24 (1/3) x 3= (2/5) x 5,

or

1+1=2,

which is indeed a true equation.’

In summary, both for purposes of learning the basics of linear measurement,
and in preparation for dealing successfully with fractions in third grade, a major
duty of second grade is to develop in students an awareness of units, especially, the
predilection to ask and the ability to keep track of what the unit is in a given context,
and to use units in a consistent fashion.

Third Grade and Later

Third grade, in contrast to second, presents a profusion of new ideas: multiplication
and division; fractions; and area measurement. The relations between these new
concepts must be presented in carefully orchestrated ways to promote successful
learning of each. It is beyond the scope of this essay to detail the key relationships
that need exploration, or even the key features of each of the new ideas. We will
limit ourselves to sketching how our trio of fundamental constituents of first grade
mathematics continue to support learning in this new and richer environment.

3 Alternatively, if we select the 5-element set as the unit, then the first two sets represent 2/5 and
3/5 respectively, and the equation would read

(1/2) x (2/5)+ (1/3) x (3/5) =2/5,

which is also a true equation, representing 2/5 as a weighted average (not a sum!) of 1/2 and 1/3.
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Word Problems To give students a good perspective on the uses of multiplication
and division, a varied collection of one-step multiplication and division problems
should be presented, with discussion and analysis, mirroring what was done for
addition and subtraction in grades 1 and 2. Page 89 of CCSSM gives a table of com-
mon multiplication and division situations, and all should be represented in word
problems.

Multiplication and division are subtler operations than addition and subtraction
and harder for students to internalize. In particular, although as a numerical oper-
ation multiplication is commutative, the two factors typically play different roles,
and may well have different units attached.* Even in the simplest context, usually
used in giving the first definition of multiplication, that of combining equal groups,
one factor counts the number of things in one group, and the other factor counts the
number of groups. In the standard interpretation of, say 3 x 5 as the combination
of equal groups, the 5 represents the number in each group, and the 3 represents
the number of groups. In this interpretation of multiplication, it is far from obvious
that 3 groups of 5 have the same number as 5 groups of 3. Thus, on a conceptual
level, the commutativity of multiplication is somewhat surprising. The fact that mul-
tiplication is indeed commutative should receive explicit attention. A good way to
justify it is to use arrays, observing that a, say, 5 by 3 array becomes a 3 by 5 array
when rotated by 90°.

Corresponding to the distinct roles of the two factors in multiplication, mathe-
matics educators recognize two types of division. One is partitive, or sharing, di-
vision, in which a quantity is to be divided into a given number of groups, and the
question is, what size will these groups be. The other is guotative, or measurement
division, in which the size of the groups is specified, and the question is, how many
groups can be formed. Parallel problems of the two types with the same numbers
should be given, and it should be observed, that the numerical value of answer to
both types of question is the same, although what the answer designates will be
different. In this work, careful attention to units is especially relevant.

Third grade should also see large numbers of two-step problems, including some
that involve any pair of the four operations. There are several hundred different pos-
sible types already for two-step problems, so the work required for understanding
the problem will increase. Discussions of how to figure out what the problem is
asking for, and what needs to be done to answer it, will have to be an important
part of instruction, and ongoing as the problems become more complex. The work
of Lieven Verschaffel and colleagues (Verschaffel et al. 2000) has documented the
worldwide failure of mathematics instruction to enable students to adequately inter-
pret word problems.

Later grades should see problems of increasing complexity, eventually arriving
at word problems that require algebra for their solution by 7th or 8th grade. In fact,
the boundary between arithmetic and algebra is somewhat fuzzy, and problems that
might seem to require algebra can often by solved using only arithmetic supported

4The unit attached to the product is then the product of the units attached to the factors.
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by a sufficiently insightful analysis (Howe 2010). It may be valuable for students
to consider such problems, and to see parallel solutions. The Singapore bar model
method (Singapore Ministry of Education 2009) is another approach to solving a
broad class of problems that in the U.S. are most commonly handled by algebra.
Singapore students start learning how to use this method in 3rd grade, when they
are given problems such as

There are 36 students in a class. There are 8 more boys than girls.
How many girls are in the class?

Some Singaporean students become so skilled at using bar models that it is diffi-
cult to get them to abandon the model method in favor of symbolic algebraic ap-
proaches (Singapore Ministry of Education 2006). Something similar could happen
with students who become highly skilled at solving word problems using arithmetic
methods. Such students should be challenged with problems of increasing difficulty,
until they reach a point when the systematic nature of symbolic algebra becomes so
advantageous that they use it willingly.

Place Value and Computation Acquisition of multiplication allows students to
deepen their understanding of place value, eventually revealing its depth and its
connection to polynomial algebra.

In grades 1 and 2, students work with the expanded form, such as

243 =200+ 40 + 3,

and learn that, in addition and subtraction, they can combine the parts of like mag-
nitude, using only the single-digit addition and subtraction facts, followed by any
necessary regrouping. We will call the numbers like 200 and 40 and 3, with only one
non-zero digit, single place numbers. Thus, the expanded form of a base ten number
expresses it as a sum of single place numbers.

Once students start learning about multiplication, they can begin to appreciate
the multiplicative structure of single place numbers. In third grade, they can realize
that each single place number is a multiple of a base ten unit, which is a single
place number whose non-zero digit is 1. Thus, 200 =2 x 100 and 40 =4 x 10 and
3 =3 x 1. This allows students to refine the expanded form to

243 =200+404+3=2x100+4 x 104+3 x 1.

Thus they would now think of 243 as being made of two 100s, and four 10s, and
three 1s. They were in effect using this structure in adding and subtracting, but now
they have a language to express what they were doing.

In fourth grade, students should refine their understanding of the base ten units,
seeing the ones larger than 10 as repeated products of 10s. Thus,

100 =10 x 10, 1,000 =10 x 10 x 10, 10,000 =10 x 10 x 10 x 10,
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and so forth.”

Understanding the structure of base ten units supports the appreciation of the
quantity aspect of place value: each base ten unit is ten times as large as the next
smaller unit (the place to the right), and only 1/10 as large as the next larger one
(the place to the left). In particular, as one moves to the right in the places, the value
of the unit shrinks by 10 at each step. This can support the idea of continuing places
to the right of the 1s place, and making

1/10=(1/10)x1,  1/100=(1/10}x (1/10), 171000 = (1/10) x (1/100),

and so forth; thus it prepares for thinking about and dealing with decimal fractions.

The final stage of understanding the place value system can be presented in sixth
grade, when whole number exponents are introduced. This allows the shorthand
notation

1=10°, 10=10", 100 = 102, 1000 = 10°,

and so forth. In combination with the earlier work on the structure of single place
numbers, this permits the last stage in the progression

243 =2004+4043

=2 x 100 +4x10 +3x 1
=2x(10x10)+4x 10 +3 x 1
=2 x 10? +4 x 10! +3.

The last stage in this progression shows that a base 10 number can be regarded
as a “polynomial in 10”. In 6th grade, it probably would serve mainly as an appli-
cation or example of the use of exponential notation. However, it also highlights
the sophistication involved in base ten place value notation, which implicitly uses
all the operations of algebra (addition, multiplication, exponentiation), just to write
numbers. The full implications of the final expression can be profitably investigated
in 8th grade when the algebra of polynomial expressions is discussed. Students can
verify that, if a base ten number is turned into a polynomial, by the recipe

243 — 2x2 +4x + 3,

and if calculations (addition, subtraction, multiplication) are done with the resulting
polynomials, and then 10 is substituted for x, the usual numerical answer will be

5 At this point, it might be a good idea explicitly to discuss the issue of associativity of multi-
plication, that it does not matter how we group the factors in these (or any) repeated multipli-
cations, the result will not depend on the grouping. Thus, 10,000 = 10 x 1000, but just as well,
10,000 = 100 x 100. In fact, associativity of multiplication is a somewhat subtle property, and its
justification using geometric models involves volumes of 3 dimensional bricks. See for example
(Epp and Howe 2008) for a fuller discussion.
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obtained. For some students, this observation can provide an “Aha!” moment that
will tie together eight years of study of mathematics.

The discussion above of course is quite standard mathematics, and in earlier years
this author tended to treat the five-stage progression above as common knowledge.
However, there is evidence that many students arrive in college without even stage 2,
the basic expanded form, as part of their intellectual toolkit (Thanheiser 2009), and
the value of making this progression explicit, and to give it emphasis in the curricu-
lum is supported by Teachers of India (2012). Also, the lack of understanding even
of the basic meanings of the places by mid-elementary students was documented by
Kamii (1986) long ago.

Linear Measurement and the Number Line The connections of arithmetic with
linear measurement developed in grades 1 and 2 are the beginnings of a long devel-
opment of the intimate relationship between number and geometry. In third grade,
the basic understanding of the number ray established in second grade would allow
studying the nature of fractions from a geometric viewpoint. Although the array and
area models will play an important role in helping students understand and work
with fractions, the number line can also contribute.

The understanding that the numbers on the number ray tell distances from the
endpoint/origin provides a sound basis for placing fractions on the line. The CCSSM
advocates understanding fractions as multiples of unit fractions. Thus,

2/3=2x(1/3), 5/3=5x(1/3),

and so forth. To locate 1/3 on the number line, one should divide the unit interval
into 3 equal parts. Then the other end of the part with one end at 0 is 1/3 of the
way from O to 1, and so should be labeled as 1/3. Then 2/3 is the point that is two
1/3 intervals from 0, and 5/3 is the point that is five 1/3 intervals away from O.
Repeating this process for all multiples of 1/3, one finds that they form a system
of equally spaced points, very much like the whole numbers, except three 1/3s
fit inside each unit interval—we could say they are three times closer together, or
three times as dense, or only 1/3 as far apart. It is of course the same for whole
number multiples n/d =n x (1/d) of any fixed unit fraction 1/d. They form a
system of equally spaced points on the number line, each one at distance 1/d from
its neighbors, with d intervals inside the unit interval. Thus, the number line affords
a compelling visualization of the systematic nature of the multiples of a fixed unit
fraction.
Two ideas crucial to understanding and working with fractions are

(i) repeated subdivision, and
(i1) reconstitution.

Repeated subdivision involves understanding that a unit fraction such as 1/5, which
resulted from subdividing the original unit into 5 equal pieces, constitutes a new
unit that can itself be subdivided. The result of the subdivision will then be a unit
fraction, with denominator equal to the product of the two denominators. Thus, if



Three Pillars of First Grade Mathematics, and Beyond 203

we divide 1/5 into fourths, the result will consist of (1/4) x (1/5) = 1/20. The
general relationship is

(1/e) x (1/d) = 1/ed

Reconstitution is the reverse process to repeated subdivision. Just as 4 copies of 1/4
make 1, the unit, so also 4 copies of 1/20 = (1/4) x (1/5) make 1/5. In symbols,
we would write 4 x (1/20) = 1/5. The general relationship is

ex (l/ed)y=1/d, or ejed=1/d.

The second form of the relationship shows that reconstitution is the justification for
the symbolic move of “canceling the same factor from numerator and denominator”.

These relationships should be illustrated in a variety of contexts so that students
can see how they work and get used to working with them. The number line can
be one of those contexts, and the regular subdivisions of the line provided by the
whole number multiples of a unit fraction can be used to show many examples
of repeated subdivision and reconstitution, by considering the relationship between
the subdivision given by the multiples n/d of a given unit fraction 1/d, and the
multiples m /ed of a unit fraction whose denominator is a multiple of d. This study
can also contribute to the understanding of how to add fractions. For example, if one
works with 1/6, then since 6 = 3 x 2, reconstitution would tell us that 1/2 = 3/6.
Since also 6 =2 x 3, reconstitution would also tell us that 1/3 =2/6. Thus, we
could conclude that

1/241/3=3/6+2/6=>5/6.

This kind of formula can also be shown explicitly on the number line. An impor-
tant pedagogical consideration here is that the linear measurement interpretation of
fraction addition is exactly the same as whole number addition: it is combination
of lengths. Similarly, subtraction of fractions amounts to comparing lengths. This
consistency over different types of numbers, when the symbolic representations and
the necessary manipulations may seem dissimilar, can provide a firm basis for un-
derstanding and reasoning.

With the introduction of signed numbers, the number ray must become the num-
ber line, that is, it must be (in principle) infinite in both directions. Currently, the
typical practice is not to distinguish between the number line and the number ray,
and to use the term “number line” for both, but if the distinction were made, the
change in terminology could provide a signal that something new is going on.

On the doubly infinite line, the origin loses its distinguished position as the end-
point, because there is no endpoint. Thus, the origin must now be specified explic-
itly. That done, we see that distance from the origin no longer specifies a unique
point—for each distance, there are two possibilities, on either side of the origin.
To distinguish between them, we must introduce the idea of orientation: left, right,
or positive, negative. The need for specifying orientation should be given a lot of
emphasis, including the use of ‘trick’ problems such as

James, Randolph and Rebecca live on Elm Street.
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If James lives 2 blocks from Randolph, and Rebecca lives 3 blocks from James,
how many blocks does Rebecca live from Randolph?

To deal successfully with signed numbers, several conceptual changes in student
thinking about numbers are necessary. The most obvious, of course, is the under-
standing that a number no longer simply gives information about magnitude, but
also about direction (which in one dimension reduces to a dichotomy: left, right;
plus, minus). This necessary revision gives rise to another surprise: addition and
subtraction become merged into a single operation, with subtraction of a given num-
ber amounting to addition of its additive inverse (aka negative or opposite). Thus,
we think of 2 — 6 as 2+ (—6). Also, for the first time, subtraction can be performed
with any two numbers: 1 — 2 now makes as much sense as 2 — 1.

Signed numbers are introduced in CCSSM in 6th grade, which is also the grade
in which simple algebraic expressions are introduced. Thus, in 6th grade, students
are asked to understand expressions such as

2+4+x, and 2x,

as meaning ‘“Pick a number x and add 2 to it”, and “Pick a number x and multi-
ply it by 2”; or somewhat more colloquially, “Add 2 to any number,” and “Multiply
any number by 2”. The change in point of view is perhaps somewhat subtle, but it
is highly significant, and it must be given enough attention to ensure that students
grasp it. Instead of thinking of addition, or multiplication, as a binary operation,
something we do with two numbers, we are asked to think of “adding 2”or “multi-
plying by 2” as a unary operation, something we do to any single number.

Thinking of “adding 2” as an operation on any number allows us to think of it as
a transformation of the number line, a recipe that takes each point, corresponding to
some number x, and moves it to the point corresponding to 2 + x. If students study
what this operation does to many points, they may be able to formulate themselves
what this transformation does: it moves each point 2 units in the positive direction
(to the right, in the usual orientation of the number line). In other words, it is a
translation of the number line through 2 units to the right. Similar work with adding
—2 should reveal it as a translation of the number line through 2 units to the left.
This provides a graphic understanding of the fact that adding —2 undoes adding 2,
so that it is the same as subtracting 2.

This transformational view of addition can be reinforced by use of a slide rule
to add and subtract numbers, by sliding one copy of a number line along a par-
allel copy. Care should be taken to correlate this new perspective on addition and
subtraction with the original understandings of combining and comparing lengths.
For adding or subtracting any given pair of numbers, they amount to essentially the
same thing. The difference is, when thinking of “adding 2” as a transformation, we
are fixing one addend, and letting the other vary.

The operation of “multiplying by 2” likewise can be visualized as a transforma-
tion of the number line. Again, by looking at many examples, we can see that it
takes any number and moves it to a number that is twice as far away from the origin.
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Thus, “times 2” is a stretching of the number line by a factor of 2, from the origin
(which does not move). Also, it preserves direction: positive numbers go to positive
numbers, and negatives go to negatives. Students should be made to notice that by
this transformation, the length of every interval is doubled, not just the intervals with
one end at the origin. This is the geometric embodiment of the Distributive Rule.

When this transformational interpretation is extended to fractions, it provides a
way of seeing that multiplying by 1/d is the same as dividing by d, so that, in the
rational numbers, multiplication and division are two aspects of the same operation.
More precisely, division by a given number is the same as multiplication by its
reciprocal.® This relationship is built out of two more basic ones:

(i) For a whole number d, division by d is the same as multiplication by 1/d; and
(i) Multiplication by a fraction n/d amounts to multiplication by n, and multipli-
cation by 1/d, and it does not matter which is done first.

Combining statements (i) and (ii) produces: multiplying by n/d amounts to multi-
plying by n and dividing by d, in either order.
The ideas that

(i) division by a given number is the inverse of multiplication by that number, and
(i1) division by a given number may be accomplished by multiplication by the re-
ciprocal, which combine to
(iii) division by a given number is the same as multiplication by the reciprocal,

are the key ingredients in the “invert and multiply” rule for division by fractions.

Multiplication by negative numbers, a well-known trouble spot, fits easily and el-
egantly into the transformational viewpoint (Friedberg and Howe 2008). The main
observation is that multiplication by —1 is reflection across the origin. Every num-
ber goes to its negative. Then multiplication by —2 would be multiplication by 2,
followed by reflection across the origin (or the other way around—it doesn’t matter,
since multiplication is commutative). In this picture, it is clear why the product of
two negative numbers is positive: reflecting twice across the origin leaves orienta-
tion unchanged. For many students, this geometric insight into the nature of mul-
tiplication by negative numbers may be more convincing than a formal symbolic
argument.

These geometric/transformational interpretations of the operations, and their
connections with the basic algebraic expressions are not explicitly emphasized in
the CCSSM, and the ability of students to grasp the transformational viewpoint is
not well documented. However, the picture afforded by these ideas is quite com-
pelling, and the connections to more advanced mathematics are also strong. In par-
ticular, this viewpoint fits very well with the CCSSM emphasis on transformations
in geometry. It seems possible that some students could benefit from the “multipli-
cation is stretching” idea from the time multiplication is introduced, in 3rd grade,

SUnfortunately, this basic principle is not explicitly enunciated in the CCSSM. One hopes that this
defect will be remedied in the next revision.
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and that it could form a useful supplement to the “repeated addition” and array/area
interpretations that are explicitly recommended by CCSSM.

A final place where the number line can provide a useful interpretation of a nu-
merical construction is in decimal expansions. In fact, it is hard to imagine devel-
oping a firm grasp of decimal expansions without invoking the number line. Essen-
tially, decimal expansions provide an address system on the number line. We should
think of successive digits in a decimal expansion as providing successively finer
information about the location of a point on the line. As an example, consider the
decimal

3.14159265358979323 . ...

The whole number part of this number, namely 3, locates the point somewhere in
the interval [3, 4] from 3 to 4 (including the endpoints, 3 and 4). The digits to the
right of the decimal place are instructions about how to locate this number more
precisely. To interpret the 1 just to the right of the decimal place, we should picture
the interval between 3 and 4 as being divided into 10 equal subintervals, namely

[3.0, 3.1], [3.1, 3.2], [3.2, 3.3], [3.3, 3.4], [3.4, 3.5],
[3.5, 3.6], [3.6, 3.7], [3.7, 3.8], [3.8,3.9], [3.9, 4.0].

The .1 in this decimal expansion tells us that the number belongs in the second in-
terval, [3.1, 3.2], from 3.1 to 3.2. To use the next digit, we should further subdivide
the interval [3.1, 3.2] into ten equal subintervals, namely

[3.10, 3.11], [3.11, 3.12], [3.12, 3.13], [3.13, 3.14], [3.14, 3.15],
[3.15, 3.16], [3.16, 3.17], [3.17, 3.18], [3.18, 3.19], [3.19, 3.20].

Then the 4 in the second place to the right of the decimal point tells us that the num-
ber is somewhere in the fifth of these intervals, namely in the interval [3.14, 3.15]
from 3.14 to 3.15. Each succeeding decimal digit has an analogous interpretation.
Any initial segment of the decimal expansion locates the number in a certain inter-
val. We then should break up this interval into 10 equal subintervals, and the next
digit in the decimal expansion tells us in which of these 10 subintervals the number
lies. If students carry out this process for some examples, they should come to ap-
preciate that the first few decimal places locate the number to sufficient accuracy for
most simple purposes, and indeed, that it is rather difficult to resolve an interval into
ten subintervals after only a few steps of this procedure, and essentially impossible
after only a few more. Our most powerful microscopes allow us to continue the pro-
cess for several more places, but after 10 to 20 places, depending on how large the
starting size was, the remaining decimal places lose physical meaning. A conclu-
sion that should be made explicitly is that it is quite remarkable that our symbolic
computational system is capable of producing arbitrarily long decimal expansions
for many of the numbers that arise in the course of computation, including 7, ¢, v/2,
1/3, etc.
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