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Series Preface

The eighth volume of the series Advances in Mathematics Education on “Mathe-
matics Curriculum in School Education” edited by Yeping Li and Glenda Lappan
commences from one of the most important perspectives on mathematics education
in school, namely questions on the curriculum. Curricular structures are decisive for
the organization and structure of mathematics education, as they directly influence
teaching and learning processes. However, despite this strong influence of the cur-
riculum on education in general and learning-and-teaching processes, extensive em-
pirical research has not been carried out so far. The international comparative studies
on mathematics and science education implemented by the IEA already introduced
the differentiation of the intended, the implemented and the achieved curriculum
in the Second International Study on Mathematics and Science Education (SIMS).
However, these distinctions have not led to extensive studies comparing these differ-
ent kinds of curricula. Studies accompanying the Third International Mathematics
and Science Study (TIMSS) brought forward the cultural dependency of the cur-
riculum and pointed out the difficulty in finding a common curricular core for the
school subject of mathematics all over the world.

This is one of the foundation points of the present book, in which contributions
from Eastern and Western mathematics educators are collected. In this respect, the
book represents an extension of an issue of ZDM—The International Journal on
Mathematics Education on ‘Curriculum Research to Improve Mathematics Teach-
ing and Learning: Practices and Approaches in China and the United States’ edited
by Yeping Li and Gerald Kulm in 2009, which was restricted to China and the USA.
The present book contains a collection of studies on mathematics curriculum from
more than ten education systems across the world with additional reflective chapters
across various countries.

With this impressive overview on curricular practices all over the world this book
will provide an insightful overview on the role and the influence of the mathematics
curriculum internationally, which the reader will hopefully find interesting.

Gabriele Kaiser
Bharath Sriraman

Hamburg, Germany
Missoula, USA
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Introduction and Perspectives



Mathematics Curriculum in School Education:
Advancing Research and Practice
from an International Perspective

Yeping Li and Glenda Lappan

Abstract Mathematics curriculum, often a focus in education reforms, has not re-
ceived extensive research attention until recently. To advance relevant research and
practice in mathematics curriculum, this book is designed to survey, synthesize, and
extend current research development on mathematics curriculum in different educa-
tion systems. In this introduction chapter, we highlight the background of this book
project, its purposes, and what can be learned from reading this book.

Keywords Curriculum research · Education system · International perspective ·
Mathematics curriculum · School education · School mathematics

Introduction

School education is organized to provide students with structured learning experi-
ences. Mathematics curriculum, when viewed as an outline of teaching and learn-
ing requirements for content and performance, is put in place to structure students’
learning experiences in school education (Schmidt et al. 1997). In order to im-
prove students’ learning experiences and outcomes, mathematics curriculum and
its changes have often been a main focus in large educational reforms in the history
of mathematics education in many education systems. Ironically, curriculum has not
been a focus in mathematics education research until recent years. For example, the
first Handbook on Mathematics Teaching and Learning (Grouws 1992) published
by the U.S. National Council of Teachers of Mathematics (NCTM) in 1992 does not
have a chapter on mathematics curriculum. However, the curriculum issue has at-
tracted more and more attention with the release of NCTM Standards (1989, 2000)
and the U.S. National Science Foundation’s efforts in promoting and evaluating new
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curriculum material development over the years. Consequently, the Second Hand-
book on Mathematics Teaching and Learning (Lester 2007) contains one chapter
specifically related to curriculum (see Stein et al. 2007).

Given the importance of mathematics curriculum in school education, it is not
surprising that mathematics curriculum and its impact on teaching and learning have
received increasingly more research attention both in the United States and interna-
tionally (e.g., Leung and Li 2010; Li and Kulm 2009; Schmidt et al. 1997; Senk
and Thompson 2003). For example, the Third International Mathematics and Sci-
ence Studies (TIMSS) examined curriculum materials and specified the process of
curriculum transformation as a guideline to conceptualize the relationship between
curriculum analysis and students’ learning (e.g., Schmidt et al. 1997, 2002). While
students’ performance was viewed as the achieved curriculum, what is provided in
curriculum guidelines was treated as the intended curriculum. The results obtained
from TIMSS curriculum studies and relevant others illustrated the unique value of
examining mathematics curriculum in school education in an international context
(e.g., Schmidt et al. 2002).

Education systems differ in many ways, including the social-cultural context and
specific motivations behind curriculum reforms. However, across education sys-
tems, curriculum changes are inevitably connected to a range of common factors
throughout the process of school education; including policy, curriculum develop-
ment, school context, teachers’ knowledge, classroom instruction, and student learn-
ing. The inclusion and connection of multiple contributing factors arising in the pro-
cess of school education make the improvement of mathematics education through
curriculum changes an extremely complex process. Thus a basis of sound research is
thus very important for designing and guiding needed curriculum changes. Learn-
ing and sharing of mathematics curriculum and its changes in different education
systems should provide us with a unique lens to advance curriculum research and
practice from an international perspective.

Recent curriculum studies have indeed expanded to explore a range of important
topics, including policy issues in school mathematics (e.g., Reys 2006; Usiskin and
Willmore 2008), curriculum development and analysis (e.g., Hirsch 2007; Usiskin
and Willmore 2008; Valverde et al. 2002), teachers’ use of curriculum materials
(e.g., Gueudet et al. 2012; Remillard et al. 2009), and curricular impact on students’
learning (e.g., Senk and Thompson 2003). Given the increasing number of curricu-
lum studies, it becomes important to survey, synthesize, and extend current research
development on mathematics curriculum. The development of this book project re-
flects this growing research interest in mathematics curriculum on these important
topics. This led to the book’s structure of an introduction followed by four parts (i.e.,
Parts II to V) with different, yet connected, focuses on policy, curriculum develop-
ment and analysis, teachers and teaching, and student learning. Moreover, this book
is also designed to connect with recent international studies that have documented
curriculum practices in different education systems across the world. In particular,
this book was initiated and motivated by the following two further reasons.

First, this book presents an extension of a thematic issue of ZDM on mathe-
matics curriculum (“Curriculum Research to Improve Mathematics Teaching and
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Learning: Practices and Approaches in China and the United States” edited by Li
and Kulm 2009). As the thematic issue of ZDM focuses on curriculum practices and
approaches, relevant studies illustrate curriculum practices in China (e.g., teachers’
lesson planning, textbook development) that are interestingly different from many
of others in other systems such as in the United States. With limited knowledge
available about many aspects of mathematics curriculum across education systems,
this book contains a collection of studies on mathematics curriculum from more
than ten education systems across the world.

Second, this book also builds upon another previous work on mathematics cur-
riculum and teacher education in East Asia (Leung and Li 2010). In particular, in
that work, changes and issues in mathematics curriculum in six selected education
systems in East Asia (Chinese Mainland, Hong Kong, Japan, Singapore, South Ko-
rea, and Taiwan) were included and discussed. Surprisingly, although these six ed-
ucation systems in the same region share many similarities (e.g., system structures
and students’ high achievement in mathematics), their mathematics curricula differ
in many ways including curriculum development trajectories and what is valued for
students to learn. The differences reinforce the notion that curriculum is a system
and cultural artifact that cannot be detached from its system and cultural context (Li
and Leung 2010). This book thus contains a collection of chapters in Parts II to V
with a focus on curriculum research and practice in individual education systems.

Developing and editing this thematic book also builds upon our ongoing work
and interests in mathematics curriculum development and research (e.g., the widely
distributed middle school standards-based Connected Mathematics Project curricu-
lum developed by Lappan et al. 2014a, 2014b; Hirsch et al. 2012; Leung and Li
2010; Li and Kulm 2009). At the same time, we would very much like to let readers
know that editing this international volume is our second collaboration as co-editors.
Our first collaboration was in 2002, a special issue of the International Journal
of Educational Research (Li and Lappan 2002). Through editing international vol-
umes, we appreciate the great opportunities of learning from our contributors across
the world then and now. We are convinced that taking an international perspective,
as this book does, provides a unique lens for international readers to reflect, discuss,
and advance curriculum research and practice in different education systems.

What Can Readers Expect to Learn from Reading the Book?

Examining and Understanding Mathematics Curriculum in School
Education as Presented in Individual Chapters

This book is structured in six parts. The simplest way of reading the book is to fol-
low the book’s structure as outlined with several major topics related to curriculum
research and practice. Readers can expect to learn about recent curriculum research,
perspectives, and practices on topics ranging from policy to student learning in many
different education systems.
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The first part provides an introduction and related research perspectives, and is
made up of four chapters. This introduction chapter is the first, and includes back-
ground and purposes. The second chapter by Hugh Burkhardt provides an overview
and discussion about possible issues along the process of designing, developing, and
implementing curriculum. Hugh argues that some deep-seated problems at school
system level should be addressed for making intended curriculum changes a re-
ality. In the third chapter, Barbara Reys highlights current curriculum changes as
happened in a specific educational system (the United States), which are reflected
mainly in how curriculum standards are established and students’ learning outcomes
are assessed. Chapter 4 by Alan Schoenfeld provides an overview and reflection on
worldwide curriculum changes across educational systems. The diverse changes in
curriculum, as a system and cultural artifact, across selected education systems led
Alan to conclude that there is no single worldwide trend in curricula.

For each of Parts II to V, the inclusion of prefaces should provide readers with
an overview of and some insights into these parts. In general, the second part con-
tains a collection of five chapters that examine policy issues related to mathematics
curriculum that are in operation in different education systems. Specific topics in-
clude the process of curriculum decision-making, curriculum changes as imposed
by system-wide curriculum standards, curriculum policy, and education changes
viewed from a historical perspective. The three follow-up parts contain a similar
number of chapters from different education systems but with focuses on “curricu-
lum development and analysis” (Part III with six chapters), “curriculum, teacher,
and teaching” (Part IV with six chapters), and “curriculum and student learning”
(Part V with five chapters), respectively.

Part VI is the last section for cross-national comparison and commentary. Chap-
ter 27 by Zalman Usiskin provides a summary of the results from several large-scale
international studies over the past 48 years, with a focus on U.S. students’ mathe-
matics performance. He argues that international comparisons of students’ perfor-
mance cannot be a fair assessment of the achieved curricula of different countries,
with many other contributing factors and restrictions in place. Finally, there are two
commentary chapters contributed by scholars: one from the East and one from the
West. These two chapters help to draw together the research reported in Parts II to V,
and to reflect on what we can learn from this international collaborative publication
effort and on possible research directions for the future.

Cross-Examining and Reflecting on Mathematics Curriculum
in School Education from an International Perspective

Readers can learn more beyond what is provided in individual chapters through
reading and reflecting across chapters in the book. As a collection, this book pro-
vides diverse perspectives and approaches that are developed and used in more than
ten education systems. It is important for readers to take further steps to cross-
examine and reflect on issues that are pertinent to their interest. Here we would like
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to highlight the following four aspects that are important to the broad international
readership interested in mathematics education and curriculum studies.

(1) Identifying and understanding what is important in mathematics for teaching
and learning in different education systems

We know that school mathematics as a subject and school mathematics as a cur-
riculum are two closely related but different concepts. On the one hand, school
mathematics as a subject is what every student is expected to learn. It refers to the
same body of mathematics knowledge and logic across different system and cultural
contexts. For example, “3 + 2 = 5; 2 × 5 = 5 × 2” are true no matter whether they
are taught in Africa, Asia, or the US with the use of different languages or manipu-
latives. On the other hand, school mathematics as a curriculum is specified and orga-
nized differently across education systems (or even within a single education system
such as the U.S.; see Reys 2014). There is no single curriculum that works equally
well for every student or every system, and the reason is quite straight forward:
curriculum is a system and cultural artifact that reflects values, history, students’
learning, and cultural contexts embedded in different system contexts (e.g., Kulm
and Li 2009; Schoenfeld 2014). The dual nature of school mathematics suggests to
us to go beyond possible surface differences in school mathematics to examine and
understand what is important in mathematics for teaching and learning, an impor-
tant topic of research for mathematics educators to cross-examine and understand
mathematics curricular contributions to students’ learning.

Over the past two decades, students’ mathematics performance has been assessed
through several large-scale international studies. One popular approach is to iden-
tify and specify certain content topics and performance expectations in curriculum
that are important across many education systems (e.g., TIMSS). However, what
students have learned as reflected in the assessment results can be different from
what is expected in the intended curriculum. The issue of identifying and specifying
what is important in school mathematics can and should be examined and addressed
at different levels: the intended, textbook, implemented, assessed, and achieved cur-
riculum (e.g., Schmidt et al. 1997; Travers and Westbury 1989). Across these levels
along the process of curriculum development and implementation, there are often
mismatches (Burkhardt 2014). Thus, readers should be aware of the specific cur-
riculum level when trying to identify and understand what is important in mathe-
matics for teaching and learning. For example, chapters in Parts II and III provide
examples of what mathematics is identified as important for teaching and learn-
ing in the intended curriculum or textbooks. Possible content specifications can be
on what mathematics topics are required in school education, when certain content
topics are placed at specific grade levels, or how certain mathematics content top-
ics are specified for teaching and learning. Readers can find various specifications
both within and across education systems. As an illustration, Zanten and Van den
Heuvel-Panhuizen (2014) examined textbooks’ presentations of the content topic of
subtraction up to 100 that is required very broadly in the Dutch intended curriculum.
Their analyses of two Dutch textbook series revealed dramatic differences in their
content treatment and the performance expectations of this same content topic. The
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content specification differences among the Dutch intended curriculum and these
two Dutch textbooks suggest not only the complexity of curriculum issues, but also
the importance of specifying the curriculum level when identifying and examining
mathematics that is required and important for teaching and learning.

Moreover, Dylan Wiliam (2014) reminds us that both our understanding of the
nature of mathematics and what mathematics is important for teaching and learning
evolve over time, especially with the increased use of technology in mathematics
and mathematics education. It is unrealistic to find or define a universal curriculum
that works all the time across education systems. Yet it is realistic and desirable
to identify or develop world-class mathematics curricula that can help students to
achieve their greatest potential.

(2) Understanding mathematics curriculum and its changes that are valued over
time in different education systems

Readers may quickly notice that mathematics curriculum varies from system to
system and over time. Thus, it is not surprising if a worldwide trend in mathematics
curriculum is not readily identifiable (Schoenfeld 2014). In fact, such diversity is
also evident for several high-achieving education systems in the same region (e.g.,
Li and Leung 2010; Wong et al. 2014). For example, Japan, Korea and Singapore
share some similarities in certain aspects of mathematics curriculum policies, but
differ in others (Wong et al. 2014). Also, policy-making in these systems is often
influenced by different factors over time, relating to specific values, politics, and
history in different education systems.

However, curricular differences across system and cultural contexts do not rule
out the great value of learning from each other, but place a strong cautious note for
what can be learned from a specific education system. With this understanding in
mind, readers should be able to learn more when reading across chapters.

(3) Identifying and analyzing curriculum practices that are effective
Efforts to improve students’ mathematics performance have led to ever-increased

interest in identifying and learning possible best practices, including curriculum.
It is undeniable that curriculum plays a key role in guiding and structuring stu-
dents’ learning of mathematics. Questions are often asked about curriculum such
as, what mathematics is important for students to learn (as discussed above as the
first point), how mathematics content topics can be placed and sequenced for teach-
ing and learning at different grade levels, and how school mathematics can be orga-
nized and structured in ways to best facilitate teaching and learning. The diverse ap-
proaches practiced in different education systems provide unique opportunities for
readers to learn and examine different practices that are effective in specific system
contexts. For example, Lee (2014) discusses curriculum development practices in
Singapore that have evolved from a deductive approach to a mixed model approach
that contains elements of both the deductive and inductive approaches. He illustrates
how school-based curriculum innovations contribute to the deductive approach typ-
ically used in a centralized education system. Similar changes have also taken place
in China, where local education administrations are given more responsibilities in
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curriculum development and implementation with more textbook choices (Li et al.
2014; Liu and Li 2010).

In contrast to curriculum practices in centralized education systems such as China
and Singapore, several decentralized education systems have moved in the oppo-
site direction. For example, common curriculum standards are now developed and
implemented in Australia and most states of the US (Anderson 2014; Reys 2014;
Stephens 2014; Wu 2014). These seemingly opposite moves in curriculum practices
actually suggest a middle-ground approach that is now welcomed and used in both
centralized and decentralized education systems.

Readers are also encouraged to go into the details about specific curriculum prac-
tices, such as approaches used in textbook development and content presentation
(e.g., Cai et al. 2014; Even and Olsher 2014; Li et al. 2014), and teachers’ im-
plementation of curriculum (e.g., Huang et al. 2014; Stein et al. 2014; Takahashi
2014). Learning about specific curriculum practices that are effective in certain con-
text should encourage us to think more about what is possible in our own context.

(4) Identifying and examining effective infrastructure for curriculum development
and implementation

Mathematics curriculum does not simply stay at the policy level as intended,
but goes throughout the whole process of school education including textbooks, the
implemented, assessed, and achieved curriculum. Curriculum is an essential element
that helps make school education into a structured experience for students. Thus, the
connections and alignments of different levels of curriculum along the process of
school education are very important, but its research is long overdue. As Fey (2014)
points out, reforming the intended curriculum is often taken as the simplest and most
common strategy for seeking improvement in school education. Yet, such efforts
often fail to lead to expected changes. Systematic research is missing to develop and
examine effective infrastructure for the entire process of curriculum development
and implementation.

Readers can quickly realize that such systematic research would be a massive
undertaking. In fact, it is not clear to us whether such research can be productive,
given that curriculum is just one contributing factor to the improvement of students’
learning. However, we encourage readers to pay close attention to different curricu-
lum practices that are presented in different parts of the book. Although no direct
connections are readily available for different curriculum practices discussed in var-
ious chapters, it is the overarching idea that should guide readers to explore and
identify different practices that might be pieced together for effective curriculum
development and implementation. It should be pointed out that this is another rea-
son for how we have structured the book with four distinctive yet closely related
curriculum parts.

Significance and Limitations

In summary, this book is positioned to make unique contributions to a growing body
of mathematics curriculum studies and provides a platform for mathematics educa-
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tors all over the world to share and discuss different curriculum practices, both those
that were effective and those that were less successful. We would like to emphasize
the following points. First, chapters in this book present and discuss system-based
curriculum approaches and practices. This helps readers not only to learn and under-
stand curriculum approaches and practices in a specific system and cultural context,
but also to reflect on possible advantages and restrictions of different curriculum ap-
proaches and practices. Second, the book is organized into chapters with a structure
of parts that is consistent with the process of curriculum development and imple-
mentation. It is important for readers to read not just individual chapters or parts
but also across different chapters and parts. Identifying possible connections among
diverse curriculum practices can thus be made possible for considering systematic
improvement. Third, this book is not restricted to the mathematics curriculum itself,
but includes topics related to mathematics teaching and learning. Such a compre-
hensive picture allows readers to see the complexity of curriculum issues, and also
various possibilities for helping make curriculum changes a success.

Meanwhile, we are also aware of the limitations of this book. The inclusion of
different education systems does not imply any specific representations, but rather
illustrates diversity. Specific curriculum approaches and practices, as presented and
discussed in different chapters, are important sources of knowledge but are not pre-
specified. Thus, it is unclear whether specific approaches and practices are represen-
tative in selected education systems. Nevertheless, this book takes an important step
to promote the sharing and exchange of different curriculum research and practices
across education systems. Advancing curriculum research and practice from an in-
ternational perspective provides us with a unique opportunity that is otherwise not
available within an education system.
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Curriculum Design and Systemic Change

Hugh Burkhardt

Abstract This chapter describes and comments on the large qualitative differences
between curriculum intentions and outcomes, within and across countries. It is not a
meta-analysis of research on international comparisons; rather the focus is the rela-
tionship between what a government intends to happen in its society’s mathematics
classrooms and what actually does. Is there a mismatch? In most countries there
is. Why? This leads us into the dynamics of school systems, in a steady state and
when change is intended—and, finally, to what might be done to bring classroom
outcomes closer to policy intentions. Two areas are discussed in more detail: prob-
lem solving and modeling, and the roles of computer technology in mathematics
classrooms.

Keywords Curriculum change · Curriculum design · Curriculum goals ·
Curriculum implementation · Pushback · Modeling · Systemic change · Technology

“Curriculum” and Curriculum Change

The term “curriculum” is used with many different meanings. In the US it often
means a textbook series, in the UK the set of experiences a child has in school
classrooms. Neither of these fits the purposes of this chapter, which is concerned
with the interrelations and differences between the variant definitions set out, for
example, by the Second International Mathematics Study (Travers and Westbury
1989). I want to distinguish and compare the:

“intended curriculum”: that described in official documents carrying the status of
policy;

H. Burkhardt (B)
Shell Centre for Mathematical Education, University of Nottingham, Nottingham, NG8 1BB, UK
e-mail: Hugh.Burkhardt@nottingham.ac.uk

H. Burkhardt
University of California, Berkeley, USA

Y. Li, G. Lappan (eds.), Mathematics Curriculum in School Education,
Advances in Mathematics Education, DOI 10.1007/978-94-007-7560-2_2,
© Springer Science+Business Media Dordrecht 2014

13

mailto:Hugh.Burkhardt@nottingham.ac.uk
http://dx.doi.org/10.1007/978-94-007-7560-2_2


14 H. Burkhardt

“tested curriculum”: the range of performances covered by the official tests, partic-
ularly when the results have serious consequences for students’ or teachers’ future
lives;

“implemented curriculum”: what is actually taught in most classrooms.

The “achieved curriculum”, what most students actually learn, would take us into
much too large a field of research. Other chapters address this.

Thus the focus in this paper is on the path from government intentions, usually
set out in policy documents, to the actual pattern of teaching and learning activities
in classrooms—some typical, some that are unusually innovative.

As always, studying the steady state tells you little about causation. Accordingly,
I look at two areas where there has long been general international agreement on the
need for change in mathematics curricula: problem solving and modeling, and the
roles of computer technology. I have benefited from special issues of the Zentralblatt
für Didaktik der Mathematik, in which distinguished authors from around the world
describe what has happened over recent decades to problem solving and to modeling
in their own curricula.1

Curriculum Goals in Mathematics

Around the world people seem to have much the same goals for the outcomes of
a mathematics education. Students should emerge with a reliable command of a
wide range of mathematical skills, a deep understanding of the concepts that un-
derlie them, and an ability to use them, flexibly and effectively, to tackle problems
that arise—within mathematics and in life and work beyond the classroom. Stu-
dents should, as far as possible, find learning and using mathematics interesting and
enjoyable.

If all these “goods” were commonly achieved, mathematics education would be
just an interesting academic field of study, rather than a centre of social concern and
political disputation. Far from that nirvana, we are still much closer to the historical
picture of school mathematics. 100 years ago, there was good middle class em-
ployment for all those who could “do mathematics”. Command of the procedures of
arithmetic was enough for employment as a clerk or bookkeeper. Command of alge-
bra, a rare accomplishment, gave access to professions like engineering or teaching.
But in today’s world, those skills are far from enough; arithmetic is largely done
with technology, while jobs in finance require higher-level skills involving analysis
of data and of risks, using prediction based on models—hence the widely agreed
goals summarized in the first paragraph.

In seeking to get closer to these goals different groups have very different
priorities—shown, for example, by the “as far as possible” in the sentence on

1My thanks to Kaye Stacey, Michel Doorman, Berinderjeet Kaur, Akihiko Takahashi and, particu-
larly, Gabriele Kaiser, the editor of ZDM.
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student feelings about mathematics. Indeed, one of the striking results from the
Third International Mathematics and Science Study (TIMSS) is the anti-correlation
between attitude and performance: East Asian students appear to combine high-
achievement with a dislike of mathematics, stronger in both respects than those
in lower-achieving countries.2 It is fair to say that student enjoyment of mathe-
matics, while seen as desirable, if only for motivation, is rarely given high prior-
ity. The next few paragraphs set out attitudes characteristic of various groups that
promote their priorities for teaching and learning mathematics, more or less effec-
tively.

“Basic skills people” focus on the importance of students’ building fluency and
accuracy in standard mathematical procedures, moving over time through the four
operations of arithmetic on whole numbers, fractions and decimals to manipulating
algebraic expressions. Calculators are for use in other subjects. This group recog-
nizes the ultimate importance and satisfaction of being able to use these skills in
solving problems that arise outside the classroom but they are happy to defer this
until the procedural skills have been “mastered”. For most students this gratification
is deferred indefinitely. This curriculum consists of routine exercises, supplemented
by routine “word problems”. “Basic skills people” cannot understand why students
find these problems so difficult.

“Mathematical literacy people” occupy the opposite end of the spectrum of prior-
ities. They see mathematics as primarily a toolkit of concepts and skills that, learned
and used properly, can help people understand the world better and make better deci-
sions. They want students to develop their mathematics with close links to real world
problems. They believe skills need to be rooted in solid conceptual understanding,
so those that are not used every day can be refreshed when needed. They accept
the research evidence (see e.g. Brown and Burton 1978) that successful perform-
ers do not remember precisely the procedures they have been taught but have the
understanding to reconstruct and check them. Calculators and computers should be
used freely. Understanding should be consolidated through concrete illustrations of
the concept in action. This curriculum spends time on the development of modeling
skills: formulation of mathematical models of new problem situations, transforming
them to give solutions, the interpretation of solutions and of data, and explanation
of what has been learnt.

“Technology people” start from the way mathematics is done outside the
classroom—with the unquestioning use of computing devices. They believe that
mental arithmetic is important for estimation but would only use pencil and paper
for sketching diagrams and graphs, for formulating models, and for recording re-
sults. They accept the research that shows that concepts can be learned faster and
understood more deeply through carefully designed uses of technology. They also
believe that this research justifies the return of programming to the math curriculum.

2This, like every other statement in this chapter, is a trend; it is not true for everyone in each group.
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They, too, would focus curriculum on rich problem situations, particularly from the
real world.

“Investigation people” focus on mathematical reasoning and see the beauty of
mathematics itself as the main driver for students to develop conceptual understand-
ing and reasoning skill. They are less concerned with the real world, seeing the
inexactitude of modeling as clouding that beauty. Their curriculum is dominated by
a rich variety of mathematical microworlds that students are led to explore, discov-
ering properties of and patterns in such systems—from “odd and even numbers”
through “the 10 by 10 multiplication table” to non-commuting algebras. Skills are
learned as they are needed and fluency built by their repeated use in diverse situa-
tions.

There is general acceptance that each of these aspects of learning mathematics
should have a place; the balance of the intended curriculum in each school system
reflects the tensions among these groups. Those mainly influenced by their own
education tend to the first of the positions listed; more sophisticated thinkers about
mathematical education tend to the later views.

The curriculum areas that I will discuss are examples where the mismatch be-
tween policy intentions and what happens in most classrooms is stark. “Problem
solving” and “modeling” are suitable choices because, over many decades, the dif-
ference between declared curriculum intentions and the classroom outcomes has
been not just large, but qualitative. “Technology” shows a striking double mismatch,
both between aspirations and practice and between the real world and mathematics
classrooms.

I will not discuss a universal priority area: the development of concepts and skills.
Even here, there are mismatches: for example, all intended curricula recognize that
conceptual understanding is important while, in contrast, learning procedural skills
dominates in many classrooms. These matters are discussed in other chapters.

Problem Solving and Modeling

I have chosen “problem solving” and modeling3 as the first area to study because for
many decades these have been widely accepted goals for curriculum improvement
in mathematics across much of the developed world. The need seems unanswerable;
yet, observing at random in classrooms in any country, one is unlikely to see stu-
dents engaged in tackling rich non-routine problems requiring substantial chains of
autonomous reasoning by the student. In this section we outline something of the
history in this area, looking for plausible explanations of the limited progress that
has been made.

3Modeling, the now-standard term for the use of mathematics in tackling problems from the world
outside mathematics, uses the same practices as mathematical problem solving—plus a few more.
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What Is Problem Solving?

Why have I put “problem solving” in quotes? Because, even within mathematics
curricula, the phrase is used by different people with different meanings. At its most
basic level it is commonly used for “word problems” that are intended to be routine
exercises presented in the form of a sentence or two; such word exercises normally
appear in the curriculum unit where the method of solution is taught. I use “problem
solving” in the very different sense, illustrated in Figs. 1 and 2,4 that is now widely
accepted in the international mathematics education community.

This defines a “problem” as a task that is:

Non-routine: A substantial part of the challenge is working out how to tackle the
task. (If the student is expected to remember a well-defined method from prior
teaching, the task is routine—an exercise not a problem.)

Mathematically rich: Substantial chains of reasoning, involving more than a few
steps, are normally needed to solve a task that is worth calling a problem.

Well-posed: Both the problem context and the kind of solution required are clearly
specified. (In an “investigation” the problem context is defined but the student is
expected to pose questions as well as to answer them; investigations are implicit in
the following discussion.)

Reasoning-focused: Answers are not enough; in problem solving students are also
expected to explain the reasoning that led to their solutions and why the result is
true.

These properties make a problem more difficult than a well-defined exercise on
the same mathematical content. So, for a problem to present a challenge that is com-
parable to a routine exercise it must be technically simpler, involving mathematics
that was taught in earlier grades and has been well-absorbed by the students. Prob-
lem solving depends on building and using connections to other contexts and to
other parts of mathematics.

Various problem solving approaches to Boomerangs are shown in the samples of
student work in Fig. 3, two of which show students “inventing” standard graphical
and algebraic approaches to linear programming.5

From the above it will be clear that what is a problem depends on a student’s prior
experience. A problem becomes an exercise if the student has seen, or been taught,
a solution. Equally, some rich curricula regularly present as problems some tasks

4These examples were developed by the Shell Centre/Berkeley Mathematics Assessment Project,
see http://map.mathshell.org.uk/materials/index.php. The “expert tasks” under the “Tasks” tab epit-
omize problem solving. Boomerangs, Figs. 2 and 3, is from a MAP formative assessment lesson-
lesson on problem solving.
5None of the solutions in Fig. 3 is fully correct and complete—a design choice that makes them
a better stimulus for classroom discussion, because the students are put into a critiquing “teacher
role”, which is more proactive than merely understanding someone else’s solution. The more so-
phisticated solutions are beyond most students’ problem solving at this level, but are there to show
the potential of more powerful mathematics.

http://map.mathshell.org.uk/materials/index.php
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Fig. 1 Table tiles—a problem solving task

Fig. 2 Boomerangs—a problem solving task

that will become exercises when new techniques are taught in later years. For ex-
ample, pattern generalization tasks like Table Tiles in Fig. 1 become exercises if and
when students have learned the “method of differences”. Similarly, the Boomerangs
task in Fig. 2 becomes a straightforward exercise when you have been taught linear
programming.
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Fig. 3 Sample student solutions from the Boomerangs lesson

Problem Solving around the World

In 2007 ZDM produced special issues (Törner et al. 2007) in which contributors
from around the world described the position of problem solving in their country’s
curriculum. The pictures presented were broadly similar. Problem solving is rec-
ognized as an element that should have a substantial place in the mathematics cur-
riculum but, in practice, it plays little or no part in the pattern of learning activities
in most classrooms. This subsection gives a flavour of my reading of the articles.
These extracts are no substitute for reading these rich pictures of history, research
and practice.

For England, Alan Bell and I offer a rather gloomy picture of a current situa-
tion, largely driven by the 1989 National Curriculum, which the then-government
required to be based on “levels” described in terms of detailed content criteria. Be-
cause the difficulty of a task depends on many factors, the wish to give students
their best chance of achieving a higher “level” led inevitably (see Burkhardt 2009,
Sect. 2B) to testing the criteria in their simplest form—as short items on each cri-
terion. Problem solving, still seen as important in principle, disappeared from the
high-stakes public examinations and, consequently, from most classrooms.

We noted some hope of improvement through recent changes in the National
Curriculum with an emphasis on “key processes” and an explicit recognition that
non-routine problems have various sources of difficulty, as listed above. Improved
examinations have now appeared in pilot form but performance on the problem
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solving tasks has been weak—not surprising since teachers have little experience
in this area. The 1980s remain the high-point for problem solving and modeling in
England,6 though even then implementation was patchy.

From Australia, Clarke, Goos and Morony noted that the collaboration between
states has, at various times, produced position statements that represent a form of
national curricular consensus, including the view that

Problem solving is the process of applying previously acquired knowledge in new and un-
familiar situations. Being able to use mathematics to solve problems is a major reason for
studying mathematics at school. Students should have adequate practice in developing a
variety of problem solving strategies so they have confidence in their use.

And yet

video studies of grade 8 mathematics classrooms in Australia show little evidence of an
active culture of problem solving.

Again the 1980s saw an outstanding development in problem solving through the
VCE (Victoria Certificate of Education) school leaving examinations in Mathemat-
ics, which produced significant change throughout secondary schools (Clarke and
Stephens 1996; Burkhardt 2009).

Current examinations (addressing students at different levels) are innovative and
of high quality, containing tasks that probe concepts and skills. The lower level has
a strong applications emphasis while all students have access to computer-algebra
systems for part of the examination. But the tasks are essentially routine.

From the Netherlands, Doorman, Drijvers, Dekker, van den Heuvel-Panhuizen,
de Lange, and Wijers present a similar picture.

As in primary education, problem solving in secondary mathematics education has only a
marginal position. In the introduction to this paper, it has already been pointed out that even
an application and modeling-oriented curriculum like the one for Mathematics A tends to
standardize problem-solving tasks into routine assignments. The national examination does
not encourage paying much attention to problem solving skills. Textbooks usually do not
address problem solving as a result of examination demands, designing teacher and student
proof activities, and the time need for designing problem solving activities.

They report some exceptional textbooks and initiatives outside the mainstream, such
as the national “Mathematics A-lympiad: an experimental garden for problem solv-
ing” (Freudenthal Institute 2010) which, in many schools, plays a role in the school-
based component of national assessment. Many mathematics tasks are set in more
realistic contexts than in other countries.

These authors make an important point—that, to stimulate and sustain problem
solving in a curriculum, “an important challenge is the design of good problem solv-
ing tasks that are original, non-routine and new to the students”. This is an ongoing
challenge, at least until a population of tasks has been developed that is large enough
for teaching them all to be an ineffective strategy (Daro and Burkhardt 2012).

6Equally, until the 1950s the Geometry examinations for the highest achieving 20 % of 16 year old
students included proofs of standard Euclidean theorems, each followed by a non-routine applica-
tion of the theorem—an example of solving problems with a well-controled “transfer distance”.
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There are some interesting variations on the global trend sketched above.
From Hungary, Julianna Szendrei paints a more encouraging picture, albeit a

mixed one. The examination at the end of secondary schools includes a non-routine
problem as one of seven tasks. This influences some secondary school teachers to
include such problems in the classroom as well. Lower secondary teachers prefer
to use routine problems in the classroom. However, the government requires assess-
ments at ages 10, 12 and 14 that contain problem solving as well. Though the results
are not public, this motivates teachers to prepare children for problem solving.

Problem solving in the culture of Hungarian teachers also involves an approach
to teaching: “not to show routine problems directly but to hide them a little”.

Let us prepare all the three digit numbers using the digits 2, 3, 5. Let us choose one of these
numbers randomly. What is the probability of the event that the number will be odd?

Almost all Hungarian teachers know how to teach in this way but only about 10 %
of them will do so in their classroom.

This looks rather like the picture from China, where Jinfa Cai and Bikai Nie
write:

The purpose of teaching problem solving in the classroom is to develop students’ problem
solving skills, help them acquire ways of thinking, form habits of persistence, and build
their confidence in dealing with unfamiliar situations. Second, problem-solving activities in
the classroom are used as an instructional approach that provides a context for students to
learn and understand mathematics. In this way, problem solving is valued not only for the
purpose of learning mathematics but also as a means to achieve learning goals.

They describe as typical the “teaching with variation” approach, in that the transition
from routine problems is supported by gently increasing the transfer distance in
various ways, including “. . . three problem-solving activities: one problem, multiple
solutions; multiple problems, one solution; and one problem, multiple changes”.7

Situation. A factory is planning to make a billboard. A master worker and his apprentice
are employed to do the job. It will take 4 days by the master worker alone to complete the
job, but it takes 6 days for the apprentice alone to complete the job. Please create problems
based on the situation. Students may add conditions for problems they create.
Posed problems:

1. How many days will it take the two workers to complete the job together?
2. If the master joins the work after the apprentice has worked for 1 day, how many addi-

tional days will it take the master and the apprentice to complete the job together?
3. After the master has worked for 2 days, the apprentice joins the master to complete the

job. How many days in total will the master have to work to complete the job?
4. If the master has to leave for other business after the two workers have worked together

on the job for 1 day, how many additional days will it take the apprentice to complete
the remaining part of the job?

5. If the apprentice has to leave for other business after the two workers have worked to-
gether for 1 day, how many additional days will it take the master to complete the re-
maining part of the job?

7The authors add “However, there is little empirical data available to confirm the promise of ‘teach-
ing with variation’ ”.
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6. The master and the apprentice are paid 450 Yuans after they completed the job. How
much should the master and the apprentice each receive if each worker’s payment is
determined by the proportion of the job the worker completed?

The picture presented here reflects an approach to teaching concepts and skills that
can be found in other countries (see e.g. Swan 2006); it is a long way from the
holistic problems exemplified in Figs. 1 and 2.

From Japan, Keiko Hino focuses on how ideals are reflected in approaches to
lesson structure at a research level, partly reflected in lesson study, but reports on
some evidence on its scale of implementation:

The TIMSS video study identified the lesson patterns as cultural scripts for teaching in
Germany, Japan, and the US (Stigler and Hiebert 1999). They identified the Japanese pattern
of teaching a lesson as a series of five activities: reviewing the previous lesson; presenting
the problem for the day; students working individually or in groups; discussing solution
methods; and highlighting and summarizing the major points (p. 79). Here, a distinct feature
of the Japanese lesson pattern, compared with the other two countries, was that presenting
a problem set the stage for students to work on developing solution procedures. In contrast,
in the US and in Germany, students work on problems after the teacher demonstrates how
to solve the problem (U.S.) or after the teacher directs students to develop procedures for
solving the problem (Germany). This pattern, or the motto of Japanese teaching, has been
called “structured problem solving” by Stigler & Hiebert.

School leaving examinations are replaced by entrance examinations, set by different
universities, that vary in difficulty. I find no suggestion that they involve non-routine
problem solving.

From Germany Reiss and Törner describe an active program of curriculum and
professional development on problem solving and, particularly, modeling that is
“work in progress”.

The situation in Germany now parallels that of the United States some years ago. Stanic and
Kilpatrick (1989, p. 1) get to the point when stating: Problems have occupied a central place
in the school mathematics curriculum since antiquity, but problem solving has not. Only
recently have mathematics educators accepted the idea that the development of problem-
solving ability deserves special attention.

Finally, from the USA, as well as the implementation challenges, conflict over the
intended curriculum has been a major factor. In the “math wars” a politically active
group from outside mathematics education demand a curriculum focused on stu-
dents’ developing fluent manipulative skills. Alan Schoenfeld summarizes it thus:

What optimism one might have regarding the re-infusion of problem solving into the US
curriculum in meaningful ways must come from taking a long-term perspective.

The recent widespread adoption of Common Core State Standards that emphasize
mathematical practices featuring reasoning, problem solving and modeling gives
some grounds for hope—but, given all the political and institutional barriers, not for
holding one’s breath.

In reviewing these extracts, it is notable that the countries that give the most opti-
mistic picture of implementation describe a relatively unambitious form of problem
solving. The “teaching with variation” problems from China, for example, are rather
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like the “exercises with a twist that makes you think” that we see in England. Prob-
lems like the examples at the beginning of this section, involving more substantial
chains of problem solving and reasoning, are still rare.

Problem Solving: The Challenges

Why is this pattern the way it is? What are the factors that impede the implementa-
tion of problem solving?

Testing traditions have a role, at least in those countries that have high-stakes tests.
These have a strong influence on what is taught and valued in classrooms. Some
people feel it is “unfair” to give students non-routine problems in tests, though ev-
idence shows that score distributions for well-engineered tasks are similar to those
for exercises. Designing non-routine tasks, year after year, presents a challenge
to examination providers that they are happy to avoid; it is much easier to recy-
cle minor variants of standard problems. However, since many countries have no
high-stakes tests, this cannot be the main factor in the absence of problem solving.

Equity concerns play a role in most advanced societies. “We must give all kids the
best chance to reach high standards”. Since ‘high standards’ are usually seen in
terms of the mathematical content covered, this supports the focus on short routine
exercises. Further, since this fragmentation obscures the meaning of mathematics,
it does not help disadvantaged students whose parents may not pressure them into
persisting with, to them, meaningless activities in pursuit of long-term goals.

Difficulty Complex non-routine problems, which must be technically easier, make
some people concerned that in problem solving “the math is not up to grade”. They
want students to be learning more techniques rather than “wasting time on stuff
they already know”. This issue is sometimes referred to as “acceleration” versus
“enrichment”.

Teaching challenges Handling non-routine problems in the classroom presents
teachers with substantial challenges, both mathematical and pedagogical, that are
not met in a traditional curriculum. Concepts and skills can be taught in the stan-
dard “XXX” approach: explanation by the teacher or the book, a worked example,
then multiple imitative exercises. This teacher-centered approach cannot be used
for problem solving, where students must work out their own approach to each
problem.
Early materials to support teachers of problem solving simply provided teachers
with some interesting problems and general guidance, based on the Polya (1945)
“strategies” for problem solving. Schoenfeld (1985) showed that this is not enough;
effective problem solvers need more detailed “tactics”, elaborating the strategies
for specific types of problem. For example, the strategy “Try some simple cases”
is more powerful if you know what is “a simple case”: perhaps “low n” in pattern
generalization problems, but “end games” in game problems. More sophisticated
and supportive materials have been developed over succeeding decades. We de-
veloped more powerful support for problem solving in “The Blue Box” (Problems
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Fig. 4 The modeling process

with Patterns and Numbers, Swan et al. 1984), the first package to integrate exam-
ples of examination tasks with teaching materials and do-it-yourself professional
development materials for teachers. This approach proved popular and effective.
The sophistication of materials to support teachers in facing these challenges has
developed over the last 30 years (see, for example, Swan et al. 2011). It is now fair
to say that, as a field, we know how to enable typical teachers to handle non-routine
problem solving in their classrooms.

System change challenges and how they might be more effectively tackled will be
discussed below.

Modeling: the Further Challenges

Modeling justifies a separate coda to this section for three main reasons: it is the
activity at the core of the utility of mathematics; its history has been rather different
from that of pure mathematical problem solving; it is the focus of PISA, the now-
dominant measure for international comparisons.

Modeling is problem solving that involves the processes, summarized in Fig. 4,
that are involved in taking the world outside mathematics seriously. Real world
problems are often messy—you can’t address everything. Part of the modeling chal-
lenge is to identify the features of the situation that you need to analyze, select the
essential relevant variables, and represent the relationships between them with math-
ematics. Only then will you have a well-posed mathematical problem to solve.8 The
ability to interpret the solution and evaluate the model requires an understanding of
the practical situation and the ability to select what data is most relevant, to collect
and analyze it.

All countries say that they want students to be able to use their mathematics in
everyday life situations; yet the special issues of ZDM on modeling (Kaiser et al.

8The earlier examples, though they are related to practical problems, have been taken to this “well-
posed” stage—the reason to call them problem solving not modeling.
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2006) present a kaleidoscopic picture of work in the community of innovators (see
also www.ICTMA.net) but little on modeling in typical classrooms. It is not unrea-
sonable to infer that the situation is, at best, no better than for problem solving.

This fits the picture from other sources. For example, in ZDM Henry Pollak and
I (Burkhardt and Pollak 2006) report on the history of modeling in England and the
US over the last 50 years—from the diverse early explorations that we and others
began in the 1960s, through the development of exemplar courses to the present
day. We noted some hopeful signs: the growing awareness of the importance of
mathematical literacy and the growth of PISA. Nonetheless, the impact in typical
UK and US classrooms is minimal.

What are the factors, beyond those listed for problem solving, that impede im-
plementation?

The real world is an unwelcome intruder in many mathematics classrooms. “I’m
a math teacher, not a teacher of . . . .”.9 The clean abstraction of mathematics is
something that attracted many mathematics teachers, particularly at the higher lev-
els. Teaching mathematics, they say, is demanding enough without the messiness
of modeling reality. This attitude also reflects concern about their ability to han-
dle other areas of knowledge, at least with the same authority and control as for
mathematics itself. In modeling, there are rarely “right answers”. (There are wrong
ones!)

Concerns about getting and handling real data which require skills that are new to
many mathematics teachers.

The time modeling takes is a cause for concern for teachers facing curricula that
are usually already too full. While all problem solving involves a time-scale longer
than the few-minute exercises that dominate in many classrooms, it is possible to
work through some interesting well-posed problems in 15 minutes or so. Modeling
an interesting problem situation with attention to reality usually needs longer than
this.

Again, the 1980s was a high point, with successes like Numeracy through Problem
Solving (Swan et al. 1987-89), which supported students modeling real life problems
in group projects.

Why “Technology” Remains Peripheral

Mathematics has long been done with microprocessor-based technology everywhere
—except in the mathematics classroom. While a doctor from a century ago would
be astonished and bemused in a hospital today, a teacher would be quite at home
watching most current mathematics classrooms.

9This contrasts with the attitude of teachers of English, who welcome the opportunity to link the
technical and stylistic aspects of language with the student’s world.

http://www.ICTMA.net
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In business, accounting, scheduling and stock control, not to mention check-
out tills, are all computer-based. In industry, CAD-CAM systems are at the heart
of design and manufacturing. Most routine repetitive tasks are done by computer-
controlled machines. In research, where it all began, computers are everywhere.
Why has school mathematics not changed to reflect this?

In addition to the roles of technology in doing mathematics, the last half-century
has seen the development of a huge range of educationally powerful software
for learning mathematics. The early efforts were behaviorist “learning machines”,
building fluency through simple exercises with instant feedback (and built-in test-
ing). These “integrated learning systems” are still around, but the reinforcement they
provide doesn’t help those many children whose conceptual understanding is some-
what “dis-integrated”. In contrast, the variety of software designed as a supportive
learning resource is impressive. Perhaps most important for stimulating learning are
the “microworlds” that offer domains for investigation by students.

The best known of these, because they cover a large domain, are the Euclidean
Geometry programs: Judah Schwartz’s Geometric Supposer, Jean-Michel Laborde’s
Cabri Geometre, Nick Jackiw’s Geometer’s Sketchpad and their followers. These
enable an investigative approach to the learning of Euclidean Geometry in which the
students play a much more active role than in the traditional learning of theorems
and their proofs.

There are many smaller investigative microworlds that simulate specific situa-
tions in mathematics or science. From the late 1970s the British project ITMA,
Investigations on Teaching with Microcomputers as an Aid, developed a wide range
of such software. Rosemary Fraser’s Jane is a “function machine” that invites con-
jecture and the weighing of evidence; this work showed that the concept of func-
tion as a consistent input-output process is natural for children no older than seven,
providing a natural route into algebra through functions. Richard Phillip’s Eureka
is about a man taking a bath. It links a cartoon, a 4-command programming lan-
guage10 that controls the bath sequence, and a line graph of the depth of water
against time. A research program on teachers use of these and other classics showed
their power (Burkhardt et al. 1988). Teachers with little experience of handling non-
routine problem solving in their classroom moved quite naturally from the tradi-
tional directive roles (manager, explainer, task setter) into the supportive roles that
are essential for teaching problem solving (counselor, fellow student, resource). The
single computer screen took on some of the traditional roles, hence the “teaching
aid” name for this mode of use.

More familiar are computer game modes, some of which have significant math-
ematics content beyond behaviourist skills training.

The mathematical software tools themselves can be used to promote learning.
Spreadsheets and programming languages provide environments that help students
explore problems, and learn to design algorithms for modeling the real world, and

10T ∼ tap on/off, P ∼ plug in/out, M ∼ man in/out, and S ∼ sings/stops singing—because it is
important to recognize that there are some variables that do not affect the quantity of interest, in
this case water level.
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for investigations in pure mathematics. As a curriculum element, such activities
equip students with tools that will be used in life beyond the classroom.

Why are these powerful tools for doing and for learning mathematics still only
used in a small minority of classrooms in most countries?

How effective these learning activities are depends on the teacher and, one would
expect, on the textbooks that embody the intended curriculum. This brings us to a
big surprise: there are no published mathematics curricula that exploit the potential
of technology. Why? At least three powerful forces have contributed to this: cost,
equity and, perhaps most important, mismatched timescales.

Timescale mismatch: The timescale of change for computer technology is short,
with new devices appearing every few years; in contrast, curriculum changes take
a decade or two from initial discussions to widespread implementation.11

Cost: When a new technology is introduced, it is expensive.12 The cost of equip-
ping every child in a class seems prohibitive. As the price comes down, new tech-
nologies appear that offer much greater educational possibilities. Each implies a
substantial curriculum and professional development program, if teachers are to
learn how to exploit its potential.

Equity: Students and school systems give a high priority to fairness, to trying to
give all kids the same opportunities. The challenge of equipping all schools in a
short time makes it difficult for school systems to require any specific technology
as part of the intended curriculum.

And there is always conservatism. While the importance of technology in mathe-
matics is accepted at a rhetorical level, when it comes to deciding on the intended
curriculum, politicians are reluctant to abandon traditional goals.13 Perhaps they
find traditional values in education play well with electorates, particularly for math-
ematics where many parents feel insecure. “Look what it did for me”. But is fluency
in pencil-and-paper arithmetic still a sensible priority for children, particularly those
who struggle? In this sense, the mismatch for technology is different from that for
problem solving and modeling in that, even in the intended curriculum, its place is
far from clear.

There are signs that the situation may be changing. The basic tablet computer
is getting cheaper and offers a stable platform that can offer a very wide range of
support for learning and teaching. School systems are talking of “the post-textbook
era” and publishers are responding by supporting the development of technology-
based curricula.

11For example, in the 1980s the National Council of Teachers of Mathematics developed “stan-
dards”, setting out curriculum goals, the National Science Foundation funded the development of
curricula and assessment in the 1990s, while substantial impact in classrooms began from 2000
onwards.
12The first 4-function calculator I used cost $450 ∼ several thousand dollars in current money.
13Against the advice of the mathematics education experts, the British Government insisted on
retaining fluent “long division” as an essential skill in the National Curriculum.
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On the other hand, the timescale mismatch continues to present problems. Within
a few years the focus has moved from laptops to tablets and smartphones. The design
opportunities for any of these platforms are immense but they are rather different—
and realizing their potential will take many times longer than publishers’ deadlines
usually allow.

The fundamental challenge remains: to move school mathematics closer to the
way math is done in the world outside. Whatever happens next, this will remain an
exciting area.

Systemic Change: Failures and Ways Forward

Why does this mismatch persist? Why are the activities in mathematics classrooms
still so like those of a century ago? I have listed some of the factors that help to ex-
plain. In this section I will argue that the problems lie mainly at school system level,
describe some important causes of failure in implementation, and suggest possible
ways forward. Key failures include: underestimating the challenge; misalignment
and mixed messages; unrealistic pace of change; pressure with inadequate support;
inadequate evaluation in depth; and inadequate design and “engineering”. A chal-
lenging list.

These deep-seated problems, involving as they do multiple constituencies with
well-grooved attitudes and modes of working, have no well-established solutions.
However, we know enough to set out a path that has real prospects of improving the
convergence between intentions and outcomes. In the following, I shall discuss each
of them in turn.

Underestimating the Challenge

When countries are concerned about education, there are intense and ongoing de-
bates about what should go into the curriculum. There is much less discussion as to
how to get it to happen. It is assumed that once the decisions have been made and
a process of implementation specified, things will work out as intended.14 Curricu-
lum changes of the kinds discussed in this chapter involve fairly profound changes in
the professional practice of many people across a range of constituencies: textbook
writers, test designers, professional development leaders and, particularly, teachers.
All these need to be not just motivated but enabled to meet the new challenges. Fur-
ther, some may feel threatened, producing “pushback”, overt or covert, against the
change. To have a reasonable chance of realization, a change must have (at least)

14As the Mathematics Working Group finished its design of the original 1989 National Curriculum
in England, I asked a senior civil servant why we should expect it to happen; she replied “But it’s
the law of the land”!
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the consent of teachers, principals, curriculum directors, superintendents, the rele-
vant professions, and the public. Some groups, within or outside the school system,
may disapprove of the change and work to undermine it—the US “math wars” being
an extreme example.15

Misalignment and Mixed Messages

It is important to avoid mixed messages by ensuring close alignment of learning
goals, curriculum, teaching materials, professional development support, and as-
sessment. A common problem arises when the curriculum intentions are broad and
deep, the textbooks and professional development only partly reflect that, and nar-
row official tests have consequences for teachers or students. It is not difficult to
guess which message is likely to influence teaching most strongly. Yet it is common
to ignore the effect of high-stakes tests on the implemented curriculum, seeing them
as “just measurement”, and to underfund key elements, notably professional devel-
opment. Progress will depend on enhancing awareness of the central importance of
alignment and of the engineering needed to achieve it.

Unrealistic Pace of Change

The design of an implementation program has many aspects that clearly need at-
tention, including all those mentioned above. One that is commonly ignored is the
planned pace of change. This is often grotesquely misjudged, again due to a mis-
match of timescales. Politicians feel the need to be seen to “solve” problems—and
before the next election. As we have seen, the timescales for the design, develop-
ment and implementation of new curriculum elements, assessments and professional
development programs are much longer than this.

There is much to be said for an ongoing program of improvements of the kind
that is seen as normal in other spheres of public policy: health care and the mil-
itary, for example. There are many advantages in the incremental introduction of
small but significant steps that address major weaknesses in the curriculum. Unlike
“big bang” changes, this approach does not fundamentally call in question the es-
tablished practice of the professionals, be they teachers, principals or the leadership
of the school system. Professional development can be focused on the few weeks
of challenging new teaching and learning involved. Most teachers find innovation
on this scale stimulating and enjoyable; though many will be relieved to get back to
the comfort zone of their established practice, they usually welcome the next incre-
ment when it comes along, six months or a year later. Most important, a qualitative

15Paul Black (2008) describes the process of consensus building across communities behind a
successful curriculum innovation, Nuffield A-level Physics.
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change that is modest in scale can be done well, in contrast with major changes
that so often degenerate back into “business as usual”. Burkhardt (2009) describes a
successful example of this approach: the introduction of new task-types into a high-
stakes examination, supported by teaching and professional development materials.
The materials came to be known as The Blue Box (Swan et al. 1984) and The Red
Box (The Language of Functions and Graphs, Swan et al. 1985).16 They included
exemplar test tasks, materials for the three weeks of teaching, and a do-it-yourself
professional development package.

Gradual change approaches have been used in various ways. “Replacement units”
have been used in California and elsewhere. The introduction of “coursework” into
British examinations was of this kind: 25% of the examination score was based
on student performances in class. Portfolio assessment was introduced in some US
states. It is important to note that these and other successful initiatives have often
not survived, often for unconnected reasons arising from systemic changes.

Pressure without Support

Pressure and support need to be balanced if improvement is to happen as intended.
That both are important is widely accepted but the amount of each is often deter-
mined by financial and political considerations that are not guided by likely cost-
effectiveness. Normally pressure costs less than support, so “accountability” sys-
tems, largely based on tests, are a favourite tool of policy makers. Conversely, ef-
fective support systems normally involve teachers and other professionals regularly
working outside the classroom on their professional development.

Professional development support is recognized rhetorically as essential but im-
plementation is almost always inadequate, constrained by politically-determined fi-
nancial limits. Typically, a few sessions will be specifically funded, or it may simply
be left to existing structures to fit new demands into their current programs, them-
selves usually inadequate. Yet the timescale for becoming an accomplished teacher
of problem solving and modeling, or for learning about how to exploit the multi-
ple opportunities that technology affords, is decade-long, with an ongoing need for
professional development support.

Regular time for professional development in the teacher’s week has financial and
logistic implications. The main cost of an education system is the cost of having a
teacher in every classroom, which reinforces the simplistic view that other activities
are “time off” from a teacher’s job. To an administrator an hour a week is 4 %
increase in this major cost. Average class size, the complementary variable, is so

16The Blue and Red Boxes are still widely regarded as classics. In 2008, one of the first “Eddies”,
the $10,000 prizes for excellence in educational design of the International Society for Design and
Development in Education, was awarded to Malcolm Swan, its lead designer, for The Red Box.
(The other went to an Editor of this book.)
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controversial that a small increase to compensate for professional development time
is rarely discussed.17

In contrast to this attitude, “continuing professional development” for doctors is
a requirement of their continuing license to practice, taken into account in financial
planning.

Evaluation in Depth

The standards for evaluation of the outcomes of interventions are abysmal. Curricu-
lum materials are reviewed by inspection, only rarely using evidence on their effect
on student learning and attitude. Professional development programs are evaluated
by the perceptions of those who took part, not on evidence of change in the teachers’
classroom practice—presumably the key goal. Studies of effects on student learning
often use tests that cover only a subset of the stated learning goals, usually using
narrow state tests.

In education, there are no equivalents of consumer magazines like Consumer
Reports that test products systematically, let alone government bodies like the US
Food and Drug Administration (FDA) or the British National Institute for Clinical
Excellence (NICE) which evaluate medicines. This reflects the limited acceptance
that education can be a research-based field. Making it so depends on improving
evaluation in both range and depth.

This situation reflects various factors. Studies in depth are expensive, involving
observation and analysis of what happens in many classrooms, as well as the learn-
ing outcomes.18 Yet it is only such studies that provide a sound basis for choosing
curriculum materials and, even more important, the formative feedback to inform
for the next phase of improvement.

Equally, there are not yet enough good instruments for such a program to pro-
vide a sound research basis for such judgments. Broad spectrum tests of mathemat-
ical concepts, skills and practices, including problem solving, modeling and other
forms of mathematical reasoning have been developed, but there is no accepted set
that most studies use. For professional development, we need better protocols for
classroom observation and analysis.

In the absence of better evaluation tools and methods, studies have fallen back on
inadequate measures that are widely accepted for quite different purposes, usually
accountability. The evaluation picture for the NSF-funded curricula had to be pieced

17Japan, where a substantial part of the teacher’s week is spent in lesson planning and lesson study,
has larger classes. In the US and UK teachers and their unions are profoundly skeptical that the
trade-off would be sustained. “They’ll cut the PD again after a year without reducing the class
sizes”. This exemplifies a whole set of other system issues.
18I estimate that a thorough formative evaluation of some NSF-funded curricula and some tra-
ditional comparators would require funding comparable to the original development program,
roughly $100 million.
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together (Senk and Thompson 2003) from a large number of separate studies. To-
gether they gave a result that was fairly unambiguous, but not clear enough to com-
mand the acceptance it deserved. The results on the widely accepted narrow tests
were comparable with those from other curricula, but these tests did not assess the
broader performance goals that were the raison d’etre for these curricula. The stud-
ies that showed substantial gains on broad spectrum tests did not receive the same
attention, probably because they were fewer and the tests were “non-standard”.

We need to go beyond this, to look behind the outcomes in depth at the range of
what happens throughout the process, in classrooms, and in the associated profes-
sional development. We need to know how the outcomes depend on the processes
and the variables: students, teachers, school and district environments, and system
structures. This information will provide a sound basis for future development.

Design and “Engineering”

Realizing a planned curriculum change is an unsolved problem in most school sys-
tems; nonetheless, a lot is known about what to do and what not to do. The smooth
implementation of a substantial change in the curriculum requires a pathway of
change for all the key groups along which they can move. Ideally, all should feel that
the change is, in a broad sense, in their interest; this limits pushback to outsiders—
often formidable enough. A change program like this requires a well-engineered
mixture of pressure and support on each of the groups involved, with the tools and
processes that will enable all those involved to succeed. This is clearly a major de-
sign and development challenge; it is rarely recognized as such.

In a rational outcome-focused world, pressure and support should be developed
with policy, with the goals matched with the resources available. However, this is
a constraint that, in education, politicians are so far unwilling to contemplate. As a
result of the political sense of urgency, policy decisions on innovation are usually
developed with some “consultation” but without either exploratory design or careful
development. Viewed strategically like this, it is not surprising that few changes
work out as intended.

The last decade has seen the growth of a more organized community of profes-
sional designers in mathematics and science education, supported through the Inter-
national Society for Design and Development in Education and its on-line journal
Educational Designer. However, as we have seen, much more remains to be done to
raise standards—above all, policy makers’ awareness of the contribution that high-
quality engineering can make to realizing their goals.

In Summary

This chapter has argued that we know enough, and have the tools, to enable typical
teachers with reasonable support to deliver a mathematics education for their stu-
dents that is vastly better than most of them get currently. That is good news. Less
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encouraging is the evidence that the major problems in the way of implementation
are at system level, involving the factors just described.

Since design and development at system level is inevitably larger in scale than,
for example, classroom studies, progress will require substantial commitment, prob-
ably at a political level. History in other fields suggests (Burkhardt 2006; Burkhardt
and Schoenfeld 2003) that, while persuasion is important, large scale research fund-
ing will follow only from unmistakable examples of successful impact—like an-
tibiotics in medicine or radar and operational research in military science. Breaking
out of this “chicken and egg” situation will require the creation, identification and
trumpeting of successful examples like some of those mentioned above.
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Mathematics Curriculum Policies and Practices
in the U.S.: The Common Core State Standards
Initiative

Barbara J. Reys

Abstract In the U.S. three curriculum strategies are being used to improve school
mathematics programs and student learning outcomes: (a) the movement to com-
mon standards; (b) advances in technology-based instructional resources; and (c) the
pressure of accountability measured by end-of-year assessments. Together, these
strategies are creating a “perfect storm” for significant changes in mathematics cur-
riculum. Elements of the reform strategy are reviewed and discussed. In addition, an
argument is made for systematic monitoring of the initiative in order to learn about
its impact and inform future policy decisions.

Keywords Mathematics · Curriculum · Standards · Textbooks · Digital ·
Assessments

Introduction

Current efforts to improve the K-12 educational system in the U.S. and promote
increased student learning in mathematics employ a “standards-based” reform strat-
egy. That is, the reform agenda seeks to “establish clear goals for student achieve-
ment through the establishment of standards and related assessments, generate data
to improve teaching and learning, create incentives for change through rewards and
sanctions, and provide assistance to low-performing schools” (Goertz 2009).

Confrey and Maloney (2011) describe standards and high-stakes assessments as
policy-imposed “bookends” of a reform strategy designed to stimulate change (see
Fig. 1). In this system, success is defined by the extent to which student scores on an-
nual assessments increase and eventually match or exceed international benchmarks.
What happens between the bookends of this system is the hard work of educational
leaders and teachers—designing, and implementing instruction that supports student
learning of mathematics. Key features of the “internal” work (central column) of a
standards-based accountability system are: instructional practices and curriculum
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Fig. 1 Standards-based
school reform strategy

materials that teacher’s use to engage students and formative assessments to inform
instructional modifications and plan for individual needs. These internal features are
highly dependent on the knowledge and skills of teachers and are influenced by the
nature and extent of their initial and ongoing professional development as well as
by the support provided to teachers within curriculum materials.

In this paper, I provide a summary of how the standards-based reform strategy is
currently being structured and implemented in the U.S. In particular, several key cur-
ricular tools of the system are highlighted: standards, textbooks, and assessments.
Although instructional practices (the processes of teaching) are not directly dis-
cussed in this paper, it is not because of lack of importance. Indeed, I acknowledge
that teaching is at the heart of any effort to improve student learning. However, cur-
rent school improvement initiatives in the U.S. are focused primarily on curriculum
(initially with curriculum standards) rather than teaching. Therefore, this paper will
focus on the influence of standards, textbooks, and assessments and how these cur-
riculum tools function as levers to promote and advance improvement in the U.S.
educational system.

The Intended Curriculum: Standards for Mathematics Learning

Content standards consist of (a) a negotiated settlement among authorized experts concern-
ing the specification of what a person should know or be able to do, (b) with consideration
of how that is to be measured and/or documented, and (c) as a means of modulating or ef-
fecting change within the system of education and restricting excessive variation. (Confrey
2007, pp. 6–7)

Governance for educational policies in the U.S., including the establishment of cur-
riculum standards (the core content of school mathematics), resides at the local
(state or district) level. The level of local authority varies from state-to-state depend-
ing on the state’s governance structure and constitutional authority. For example,
some states such as North Carolina, Texas, and California exert control for aspects
of curriculum regulation such as standard setting, textbook review, and assessment
of student learning at the state level. Other states such as Nebraska and Colorado
defer control for these decisions to the local school district. The U.S. federal gov-
ernment has very limited authority on curriculum decisions, although it has exerted
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influence through mandates associated with the distribution of particular federal re-
sources.

Curriculum standards for school mathematics were first developed nationally
by the National Council of Teachers of Mathematics (NCTM) in the late 1980’s
(NCTM 1989) and refined over the past two decades (NCTM 2000, 2006), launch-
ing a broad and far-reaching curriculum reform initiative in the U.S. From 1989 to
2010 hundreds of state and district level committees, with varying levels of gover-
nance authority, worked diligently to apply the suggested NCTM Standards to local
and state-level curriculum documents. In 2001 the No Child Left Behind (NCLB)
federal legislation advanced this movement, requiring states to articulate curricu-
lum standards for mathematics learning and to regularly (annually in grades 3–8
and once during high school) assess the extent to which students are learning the
mathematics outlined in the standards.

While some states (e.g., Virginia) were monitoring student learning through an-
nual end-of-grade or end-of-course assessments prior to NCLB, most states’ ac-
countability systems were less aggressive. For example, Missouri administered as-
sessments at particular points in time along the K-12 continuum (Grade 4, 8 and 10).
However, since the passage of NCLB, all states are required to design, adminis-
ter and report to the public on annual assessments, grades 3–8 and once in high
school. In establishing state-level curriculum standards, most states drew heavily
from source documents such as the NCTM Standards (1989 and 2000). However,
nearly all have worked independently, resulting in variation across state-level cur-
riculum standards, and in the format and focus of annual assessments. Therefore, by
2009 the situation could accurately be described as 50 states with 50 different sets of
curriculum standards using 50 different assessments to monitor learning outcomes.

An example of the variation across state standards is illustrated in Fig. 2. It pro-
vides a summary of the grade at which addition and subtraction of fractions is intro-
duced and when proficiency is expected as outlined in 42 state standards documents
in 2006 (Reys 2006). As noted, some state standards introduced computation with
fractions (with common fractions such as 1/2) as early as grade 1 while others began
instruction on the topic in grade 3 or 4. Some state standards included an expectation
of fluently computing (all operations) with fractions by the end of grade 5 and other
state standards included this expectation at grade 8. In fact, state standards differed
regarding when addition and subtraction of fractions was introduced (ranging from
grade 1 to grade 7), the number of years this topic was developed (ranging from 1 to
6 years), and the grade level at which students were expected to be proficient with
addition and subtraction of fractions (ranging from grade 4 to grade 7). The varia-
tion of learning goals across states lead to several unintended outcomes including:
large textbooks that cover many topics, repetition from grade to grade (to accom-
modate variation in learning goals across state standards), and superficial attention
to many topics.

The central goal of NCLB is to ensure that, by 2014, 100 percent of students are
proficient in mathematics. High stakes annual assessments developed and admin-
istered by each state are the primary gauge as to how the standards-based reform
strategy is working. Based on state assessments, student performance in most states
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Fig. 2 Summary of grade level at which state level standards (prior to CCSSM) indicated profi-
ciency with additional and subtraction of fractions

(at all grade levels) has risen since the enactment of NCLB in 2002. However, based
on a common measure of student performance in mathematics (the National Assess-
ment of Educational Progress or NAEP), administered to a representative sample of
students in each state every five years, the evidence does not support state claims of
consistent and steady growth. That is, there is not a strong correlation between per-
formance of students on state assessments and performance on NAEP (Bandeira de
Mello et al. 2009).

From a policy perspective, NCLB had the desired effect of focusing school re-
form efforts on advancing student learning, as measured by annual end-of-year as-
sessment instruments. However, since NCLB left the setting of standards and the
creation of assessments up to individual states, implementation has varied and the
results are difficult to interpret. Implementation of NCLB has also been very costly
and called upon resources (monetary and personnel) that few states can afford to
sustain.

Research such as that reported in The Intended Mathematics Curriculum as
Represented in State-Level Curriculum Standards: Consensus or Confusion? (Reys
2006) called attention to the variability of grade level learning goals in mathematics
across a variety of topics. It helped promote national discussions about the lack of
agreement on what mathematics content should be taught as well as when it should
be the focus of instruction.

In March 2009 state governors agreed that collaboration on the development
of common learning goals (standards), Grades K-12, in mathematics and En-
glish/language arts was necessary to increase the quality and rigor of content stan-
dards. The National Governors Association (NGA) and the Council of Chief State
School Officers (CCSSO) commissioned a writing group to first describe goals for
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Table 1 NCTM Process Standards, Mathematical Proficiency, and CCSSM Standards for Mathe-
matical Practice

NCTM (2000) Adding It Up (2001) CCSSM (2010)

Problem solving Strategic competence Make sense of problems and persevere
in solving them.

Reasoning Adaptive reasoning Reason abstractly and quantitatively

Connections Conceptual understanding Look for and express regularity in
repeated reasoning.

Communication Procedural fluency Construct viable arguments and critique
the reasoning of others.

Representations Productive disposition Look for and make use of structure
Use appropriate tools strategically
Attend to precision
Model with mathematics

college and career readiness and then, using those goals, develop standards for
Grades K-12 mathematics and English language arts. The authors of the mathe-
matics standards drew upon a variety of expertise and resources, including: mathe-
matical content experts, cognitive scientists, and mathematics education researchers
and practitioners. Standards from countries such as Singapore and Japan, whose
students performed well on the Trends in International Mathematics and Science
Study (TIMSS), were also reviewed. In addition, the authors studied “learning pro-
gressions detailing what is known today about how students’ mathematical knowl-
edge, skill, and understanding develop over time” (Common Core State Standards
Initiative [CCSSI] 2010, p. 4). Mathematicians also contributed progressions based
on mathematical analysis of key topics (e.g., fractions) and these progressions also
influenced the standards. In June 2010, 15 months after the governors’ meeting,
the Common Core State Standards for Mathematics (CCSSM) was released (see
http://www.corestandards.org/).

CCSSM includes two types of learning goals—standards for mathematical prac-
tice and standards for mathematical content. The standards for mathematical prac-
tice address eight “habits of mind” that students should develop over the course of
K-12 schooling. They include a focus on problem solving and reasoning, a primary
goal of mathematics education reform initiatives in the U.S. since the publication
of NCTM’s Agenda for Action (1980). A list of the eight practices is included in
Table 1. The table also includes NCTM’s process standards and the elements of
mathematical proficiency outlined in Adding It Up (2001). As noted, the mathemat-
ical practices are not completely new to the lexicon of mathematics education and
are certainly not independent of one another. Rather, CCSSM reinforces the impor-
tance of these overarching mathematical ideas.

The mathematics content of CCSSM is organized by grade (K-8) and by concep-
tual category in the high school. At each grade, several key ideas are the primary
focus. For example, at grade 4, three critical areas are targeted:

http://www.corestandards.org/
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(1) Develop an understanding of and fluency in multi-digit multiplication, and an
understanding of dividing to find quotients involving multi-digit dividends;

(2) Develop an understanding of fraction equivalence, addition and subtraction of
fractions with like denominators, and multiplication of fractions by whole num-
bers;

(3) Understand that geometric figures can be analyzed and classified based on their
properties, such as having parallel sides, perpendicular sides, particular angle
measures, and symmetry.

To date, all but a few states (e.g., Alaska, Minnesota, Nebraska, Texas, and Virginia)
have adopted the CCSSM. For the first time in the United States, a significant ma-
jority of schools, teachers, and students will focus on common and, in Grades K-8,
grade-level specific learning goals for mathematics. In addition, states have come to-
gether as part of one of two state-led consortia to develop new assessments aligned
to CCSSM (see more about the assessment consortia in a later section of this paper).

What began with a federal policy initiative (NCLB) has now moved to state-led
collaboration on the two critical “bookends” of the standards-based reform strategy.
Common standards coupled with common grade-level assessments aligned with the
CCSSM are likely to impact other important elements critical to students’ mathe-
matical learning. In particular, this initiative will impact the content and nature of
curriculum materials and policies related to course-taking and graduation require-
ments.

The Written Curriculum: Trends in Mathematics Textbook
Development

Historically, mathematics textbooks serve as a tool for translating curriculum stan-
dards into practical guidance for teachers. In fact, throughout the past 50 years,
textbooks have been a staple in American classrooms. That is, teachers use the text-
book (student or teacher edition) daily to plan and deliver lessons. In most schools,
each student is provided a mathematics textbook at the beginning of the school year
to use in class and at home, conveying to parents the activities that take place in the
mathematics classroom. Other than teacher salaries and transportation costs, text-
books represent the next largest share of educational costs in the U.S. For example,
in 2009 K-12 school districts spent over 8 billion dollars on textbooks (Association
of American Publishers 2010).

Mathematics textbooks have also played a key role as a school improvement
strategy. For example, from 1990–98 the National Science Foundation funded sev-
eral large-scale curriculum development projects to create and test new textbook
models (see Senk and Thompson 2003). These materials differed from publisher-
generated textbooks in their content and pedagogical focus (see Trafton et al. 2002).
Key features of the NSF-funded curriculum materials are summarized in Fig. 3
(Hirsch 2007). Materials such as these, which focus on conceptual understanding
and student engagement, differ from traditional American textbooks in that they
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• Updated content to include data analysis, probability, and, in the high school curricula,
topics from discrete mathematics

• Focus on “big ideas” across grade levels and multiple representations
• Applications that provide a connection between mathematics and the world in which

students live and consider interesting
• Connections among ideas across mathematical strands and grade levels
• Incorporation of technological tools, especially calculators
• Attention to issues of equity and access
• Active engagement of students through investigations of important mathematical ideas

and solving more-challenging problems
• Focus on depth over coverage to promote deeper understanding of important mathemat-

ical ideas
• Support for teachers to become stimulators and guides of inquiry
• Learning opportunities for teachers through extensive teacher guides and professional

development opportunities
• Assessment embedded in the curriculum materials and used to guide instruction

Fig. 3 Key features of NSF-funded K-12 mathematics textbooks

are “research-based.” That is, they are developed based on a cycle of initial lesson
preparation, pilot testing in classrooms, feedback from teachers, and revision be-
fore final publication (something not generally done with publisher-generated text-
books).

Regardless of the nature, philosophy or source of funding of textbook materi-
als, authors have been constrained by the lack of national consensus on grade-level
learning expectations as well as the concern with getting an adequate market share.
That is, in order to address the many diverse standards of states, authors of mathe-
matics textbooks needed to include a wide range of mathematics content in a single
textbook to respond to many varied state standards (Seeley 2003). The result was
a collection of lessons focused on concepts and skills that “aligned” with the stan-
dards of many states but often failed to focus on or develop in-depth mathematical
ideas across grades. American mathematics textbooks are generally larger and focus
on more topics per grade than textbooks in other countries. In fact, the average page
length of a U.S. 4th grade student mathematics textbook is 530 pages compared to
4th grade mathematics textbooks in other countries participating in the TIMSS study
which average 170 pages (Schmidt and Valverde 1997; Reys and Reys 2006).

Reviews of textbooks conducted by the American Association for the Ad-
vancement of Science and the U.S. Department of Education characterized many
publisher-developed middle school mathematics textbooks as “unacceptable” with
regard to content emphasis (AAAS 2000). Furthermore, evaluators found that,
“many textbooks provide little development in sophistication of mathematical
ideas from grades 6 to 8” and “most of the textbooks are inconsistent and often
weak in their coverage of conceptual benchmarks in mathematics” (AAAS 2000,
p. 1).

Most U.S. mathematics textbooks from Grade 3-high school are non-consumable.
That is, they are owned and retained by the school each year so that they can be used
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by subsequent groups of students for up to 8–10 years before being replaced. In this
system, schools typically purchase new textbooks in one discipline (e.g., science,
language arts, reading, social studies, and mathematics) each year; thereby distribut-
ing the financial cost somewhat evenly from year to year. Textbooks are replaced
because they deteriorate physically and/or because content emphasis shifts or new
teaching approaches are emphasized. However, there was generally no single time
(month or year) when all U.S. schools adopted new mathematics textbooks. This
meant that textbook publishers produced materials that were continuously mar-
ketable in states with different adoption timelines.

For many U.S. teachers, the textbook (teacher’s edition) is the primary resource
used to plan daily mathematics instruction (Weiss et al. 2001). It serves as a “scope
and sequence”—determining what mathematics content is taught and often in what
order. In addition to guiding the content of a course and providing a sequence of ma-
jor topics, textbooks also play an important role in providing activities and instruc-
tional ideas to the teacher on how to engage students in studying topics presented.
They serve as a set of lesson plans for the teacher to use in presenting the mate-
rial, complete with sample problems, diagrams, worked out examples, and home-
work assignments. The textbook influences what content is taught and the amount
of time—usually a reflection of the number of pages—that is devoted to the topic
(Chávez 2003). Given the limited amount of preparation in mathematics that most
elementary teachers have and the shortage of teachers certified to teach mathemat-
ics at the middle and secondary schools, for a large segment of the teaching corps
the mathematics textbooks being used in school are the de facto mathematics pro-
gram. The major role the textbook plays was succinctly reflected by a middle school
teacher who referred to the textbook as “the bible in math for my students.”

On the other hand, there are many anecdotal reports of teachers who “throw out
the textbook” and assemble their own instructional materials based on their expe-
rience and beliefs about what is important and what will motivate students (Seeley
2003). To cloud the issue further, Chávez (2003) reports that teachers in the same
school or district use the same textbook very differently. In fact, one of the truisms
of teaching in the United States is that teachers exercise great autonomy in mak-
ing decisions about their classroom practice. Therefore, students in the same school
or district are likely to experience a different mathematics curriculum, depending
on decisions made by the teacher. Teacher variability in the enacted curriculum is
acknowledged by Kilpatrick (2003):

Two classrooms in which the same curriculum is supposedly being “implemented” may
look very different; the activities of teacher and students in each room may be quite dis-
similar, with different learning opportunities available, different mathematical ideas under
consideration, and different outcomes achieved. (p. 473)

In spite of the acknowledged role of textbooks, until recently (cf. Schoenfeld
2002; Senk and Thompson 2003) little research has studied the effects of textbooks
on students’ learning of mathematics. Kilpatrick (2003) described some of the chal-
lenges of researching the impact of textbooks on student learning and called for
additional scholarly work in this critical area.
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With the adoption of CCSSM by all but a few states, attention is turning to de-
velopment of textbooks to support teachers’ instruction of the CCSSM. Publishers
have been eager to respond, some revising existing materials to incorporate the new
standards and others creating whole new sets of instructional materials based on the
new standards.

Coupled with the emergence of CCSSM is the growing attention to the use of
technology as a way to design and deliver instructional materials for students and
teachers. On the one hand, some publishers are “digitizing” existing textbooks—
that is, creating e-versions (e.g., pdf documents) of textbook lessons and loading
them onto a website for access by students and teachers. On the other hand, some
individual authors and innovative tech companies are developing internet-based e-
textbooks and/or platforms that take full advantage of the power, flexibility and
adaptability of the medium to deliver lessons, problems, activities and other class-
room material for use by teachers and/or students. For example, Inkling (a technol-
ogy company whose goal it is to “reinvent the way people learn”) has developed
a platform by which to deliver textbooks. Working initially in the college textbook
market, the company’s motto is that, “textbooks don’t have to be text and they don’t
have to be books.”

Technology, including digital textbooks, has the potential to revolutionize school
(and out-of-school) learning experiences for students and teachers. However, that
potential has not yet been realized. Chad Dorsey of the Concord Consortium, sum-
marizes the situation in this way,

Whispers of a technology revolution in teaching and learning are becoming audible. . .
Digital textbooks provide some of the loudest of these rumbles, and the benefits seem
clear. Heavy backpacks would be banished forever. Content would be annotated, high-
lighted, and shared. Interactive aspects would accentuate the text. But these are far
from enough . . . too often we see examples heralded as the education of tomorrow that
are simply surface-level implementations that fail to deliver technology’s true potential.
(http://www.concord.org/publications/newsletter/2011-fall/perspective)

What is currently available to most U.S. teachers are digital versions of traditional
textbooks. Originally produced as a hardbound textbook, some of the materials have
been digitized (produced in electronic format) so that they can be accessed dur-
ing or after school. In fact, it is not uncommon to walk into a U.S. mathematics
classroom today and not see a textbook at all. Rather, the teacher works from a
Smart Board display, drawing from the digital textbook resources and supplement-
ing these resources with other materials found on various internet sites. More re-
cently, the announcement by Apple of a new textbook authoring tool, iBooks2, cou-
pled with collaboration of the largest textbook publishing companies has brought
new attention to digital textbooks. Utilizing iBooks2, McGraw-Hill, Pearson, and
Houghton Mifflin Harcourt have created a few high school math and science text-
books using the new technology, offering them to consumers for $15 per book (see:
http://www.apple.com/education/ibooks-textbooks/publishers.html).

The pressure to focus instruction on what is valued (that is, what is measured on
the end-of-year test) has increased the likelihood that teachers will venture outside
their school adopted textbook, particularly if they believe that the textbook does not

http://www.concord.org/publications/newsletter/2011-fall/perspective
http://www.apple.com/education/ibooks-textbooks/publishers.html
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adequately address key topics. Digital textbooks make it easier to do so as the range
and amount of supplemental resources available from the publisher and from other
internet sites is almost unlimited.

In response to CCSS, several philanthropic groups (e.g., the Gates Foundation)
have contributed to teacher use of a variety of instructional resources (rather than
a single textbook) by sponsoring projects to create and provide supplementary,
internet-based instructional materials (individual lessons or unit of instruction) at
no charge. In addition, commercial textbook publishers are offering digital textbook
formats to schools and this movement is likely to accelerate to the point that in the
not-too-distant future, traditional hard-bound mathematics textbooks will no longer
be found in U.S. classrooms. Instead, student laptops or e-tablets will provide access
to instructional resources for both teachers and students.

The Assessed Curriculum: Trends in Mathematics Assessment

As noted earlier, standards-based reform uses annual student assessments as the
primary means of monitoring student learning outcomes and holding schools ac-
countable for student learning. Specifically, No Child Left Behind ushered in, for
the first time in many states, a highly structured state system of annual assessments
(at each grade, grades 3–8, and one time in high school). These assessments began
in 2002 and continue today under the original framework of NCLB. As with cur-
riculum standards, each state in the U.S. has governance over the assessments used
since 2002 to measure student learning within their state. That is, each state has ei-
ther constructed an assessment based on their own state standards or purchased the
services of an assessment developer to design such an assessment system.

Results of the annual state assessments are routinely published locally and
statewide for the public to examine. The results are used to gauge school progress
and, if necessary, to trigger sanctions. For example, if a school fails to have a suffi-
cient number of students assessed as “proficient” in mathematics for three years in a
row, the school must notify parents that students are eligible for additional services
(e.g., tutoring) or that they may transfer to another school in the district.

According to NCLB, all students within all schools must be “proficient” in read-
ing and mathematics by 2014. If not, schools whose students do not achieve pro-
ficiency suffer increasingly high-stakes sanctions, including closure. As 2014 ap-
proaches, it is clear that all schools will not reach the NCLB goal. In fact, given the
current law, virtually no schools will reach the goal. The U.S. Congress is currently
working to modify the law. In the meantime, the U.S. Department of Education is
considering proposals by individual states for “waivers”—that is, permission to opt
out of the NCLB requirements. Proposals for waivers must outline what processes a
state will put into place instead of the NCLB mandates in order to increase student
learning and prepare students for college and career readiness.

As noted, NCLB operates at the federal level, however, until recently, curriculum
standards and assessments were created and managed at the state level. That is, prior



Mathematics Curriculum Policies and Practices in the U.S. 45

to the CCSSM initiative, there were 50 different sets of state standards for mathe-
matics and 50 different assessments aligned to these state standards. Additionally,
each state set a cut score (determination of passing mark) for the assessments. Given
this system, it is virtually impossible to compare student performance across states.

As a follow-up to the state-led development of common standards for mathemat-
ics, in 2011 the U.S. Department of Education funded two state consortia to develop
assessments aligned with CCSSM. As with the development of common standards,
the work is based at the state, rather than federal level. That is, two different con-
sortia of states have been working for the past several years to design assessment
systems that will be used within the states, in most cases replacing the existing state
developed assessments.

The two state consortia are Partnership for Assessment of Readiness for Col-
lege and Careers (PARCC) and the SMARTER Balanced Assessment Consortium
(SBAC). Both consortia are committed to developing technology-based mathemat-
ics assessments for students in grades 3–12 that provide valid, reliable, fair measures
of students’ progress toward and attainment of the knowledge and skills required for
college and career readiness as defined by CCSSM. These assessments will be ready
for use in the 2014–15 school year. Each state-led consortia has developed an as-
sessment framework (see: http://www.smarterbalanced.org/wordpress/wp-content/
uploads/2011/12/MathContentSpecifications.pdf and http://www.parcconline.
org/sites/parcc/files/PARCC%20MCF%20for%20Mathematics_Fall%202011%20
Release.pdf) that will guide test development. The SBAC will include summative
assessments administered in the last 12 weeks of the school year consisting of a
computer adaptive test and a set of performance tasks. In addition, optional interim
assessments will be available to school districts to monitor student progress toward
the learning goals outlined in CCSSM. The PARCC assessment system includes
four components, each computer-delivered: two summative, required assessment
components designed to assess student progress in achieving the CCSSM learning
goals; and two non-summative, optional assessment components designed to pro-
vide information to inform instruction, interventions, and professional development
during the school year. In the meantime, states will continue to use current state
assessments, reporting on student proficiency annually, as defined by NCLB.

A Research Agenda for Monitoring the Impact of the CCSS
Initiative

Given the major policy initiative of CCSSM, it is critical that data be gathered to
understand the impact on the system and gauge its success in supporting increased
student learning and college/career readiness (Weiss and Heck 2011). With support
of the National Science Foundation, Weiss and Heck developed a priority research
agenda that includes a set of case studies, investigations of relationships, and status
studies to address the following broad questions:

(1) How is the mathematics education system responding to the introduction of the
CCSSM?

http://www.smarterbalanced.org/wordpress/wp-content/uploads/2011/12/MathContentSpecifications.pdf
http://www.smarterbalanced.org/wordpress/wp-content/uploads/2011/12/MathContentSpecifications.pdf
http://www.parcconline.org/sites/parcc/files/PARCC%20MCF%20for%20Mathematics_Fall%202011%20Release.pdf
http://www.parcconline.org/sites/parcc/files/PARCC%20MCF%20for%20Mathematics_Fall%202011%20Release.pdf
http://www.parcconline.org/sites/parcc/files/PARCC%20MCF%20for%20Mathematics_Fall%202011%20Release.pdf
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(2) What happens, and for whom, as a result?
(3) How can the CCSSM and future standards be improved?

The agenda prioritizes research that monitors responses to CCSSM and documents
the impact of these responses. Some of the priority questions include:

• How are curriculum materials changing in response to the CCSSM?
• How are teachers interpreting the CCSSM and developing their capacity for im-

plementing them?
• To what extent are the CCSSM influencing classroom practice?
• How are consortia assessments being developed, and how are they affecting the

mathematics education system?
• What is the relationship between CCSSM-influenced classroom practice and stu-

dent outcomes?

To date, some information regarding state-level actions in response to CCSSM is
available. For example, a survey of state education leaders conducted by Kober and
Stark (2011) indicates that the transition to CCSSM has been slow. In fact, many
states indicated “they do not expect to fully implement major changes in assessment,
curriculum, teacher evaluation, and teacher certification until 2013 or later, or to
institute a requirement for local districts to implement the common standards until
that time.” (p. 1). Regarding teacher responses to CCSSM, Schmidt (2012) reports
that while 80 percent of teachers surveyed indicate that CCSSM is “pretty much the
same” as their former curriculum standards, only about half of elementary teachers
(60 percent of middle school teachers and 70 percent of high school teachers) feel
well prepared to teach the topics in CCSSM. Clearly, much work is needed to support
the goals of the CCSSM initiative.

Summary

In the U.S. three curriculum-focused strategies are being utilized to improve school
mathematics programs: common standards (CCSSM), advances in technology-
based instructional resources, and accountability assessments. Together, these
strategies are creating a “perfect storm” for significant changes in mathematics
curriculum. These changes are intended to advance student learning and enable
all students to be college- and career-ready. Whether or not the reform strategy has
the desired effect depends on many factors. Perhaps the most important questions
are, can and will the U.S. educational system support the transition to CCSSM and
CCSSM-aligned assessments with high quality curriculum materials and profes-
sional development? Will the CCSSM-aligned assessments provide good measures
of student learning? Finally, can the standards-based system be managed so that it
can evolve and improve over time?
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Reflections on Curricular Change

Alan H. Schoenfeld

Abstract Within any national perspective, curricular change may be viewed as evo-
lutionary, with curricula evolving in ways responsive to the surrounding political and
intellectual environments. There is, however, less global coherence than any intra-
national perspective might suggest. Historical and political contexts matter, just as
ecological niches do in evolutionary biology. This chapter begins with a meta-level
discussion describing the consequential nature of (typically national) values, goals,
and cultural context and traditions as shapers of curricula. It then proceeds with a
discussion of curricular trends in the United States over the past decades, and thumb-
nail descriptions of changes in the Netherlands, Great Britain, Germany, France,
China, and Japan. A concluding discussion reflects on the diversity of curricular
directions worldwide, and suggests some ways in which we can profit from it.

Keywords Curriculum · Curriculum change · High stakes assessment ·
International trends

I begin with two meta-level issues.

Issue 1: Values and goals—typically, at the national level—are consequential.

If “rich and powerful mathematical understanding” were a straightforward goal,
then curricula worldwide would presumably be aiming for it. But, the fact that a
nation’s rankings on TIMSS and PISA can differ significantly suggests that some
national curricula emphasize skills more than mathematical modeling and problem
solving (the rough foci of TIMSS and PISA, respectively) and vice-versa. Thus, for
example, Russia scored above the United States (and above average) on the TIMSS
8th grade 2007 test, while it scored below the U.S. (and below average) on the PISA
2009 mathematics exams (Mullis et al. 2008; OECD 2010). The differences are not
huge (scores on any two mathematics tests will correlate to a significant degree),
but they reflect non-trivial differences in curricular emphases in the two nations.
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A nation such as the Netherlands, which emphasizes modeling and applications,
would expect to do relatively well on PISA. Nations that do not have such emphases
(the U.S. among them) would not expect to do as well.

This should not be surprising. Stigler and Hiebert (1999) indicated that there is
much greater pedagogical variability between nations than within nations. The same
is the case with regard to curricula, especially in nations where there is essentially
one curriculum, specified by a national agency such as a ministry of education.
Different nations aim in different directions.

This is consequential with regard to both pedagogy and curricula. In China and
Korea, for example, curricular specifications and standards have focused largely
if not exclusively on content, and the primary pedagogical “ideal” is a beautifully
constructed lecture, which makes the mathematics involved absolutely clear to the
students (Li and Huang 2013; Park and Leung 2006). The teacher may check in with
students to determine their understanding, but it is the teacher’s responsibility to lay
out the curriculum content, and the student’s responsibility to master what has been
presented. In contrast, a significant trend in the U.S. has been to break away from
this direction—to provide students with opportunities to engage with mathematical
ideas and to develop some of the core mathematics (under the teacher’s careful guid-
ance) for themselves. Some American curricula, then, have been evolving to provide
such support structures. This differs from curricular practice in some (but not all: cf.
Japan) Asian nations. Indeed, the contrast between Japanese and Chinese curricula
provides an indication of significantly different trends in those two nations. Many
Japanese lessons depend very heavily on the orchestration of student responses to
carefully chosen problems, while comparably rich Chinese lessons emphasize the
unfolding of the mathematics from the teacher.

In sum, different national premises about the nature of thinking and learning lead
to different premises about the most effective forms of instruction, which lead to
different forms of curricula. Here is an illustrative anecdote. In my problem solving
courses I have students work together in small groups for a significant part of class,
before I discuss the work that has emerged and move things forward. One of my
students, who comes from Korea, expressed bafflement at the class organization.
“Why am I listening to other students,” she said, “when you know so much more
than we do? Shouldn’t you be telling us about the mathematics?”

Issue 2: Cultural context and traditions are consequential.1

Curricula are tools, to be used in the hands of teachers. Like any tools, their effec-
tiveness depends on the preparation of those who will be using them. Those who
construct curricula make assumptions about the people who will be using them, and
construct the curricula accordingly. Thus, a particular curriculum may work well in
certain contexts and be problematic in others.

1What follows contains broad generalities. I am describing trends, in the way that (for example)
Stigler and Hiebert (1999) describe trends.
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Consider Singaporean curricula. There is no questioning the effectiveness of Sin-
gaporean teaching: Singaporean students have consistently scored near the top on
both TIMSS and PISA. Singaporean textbooks are models of clarity, and some
school districts in the U.S. have tried to adopt them—with mixed success. Why?
To put it bluntly, Singaporean texts are designed for Singaporean teachers. Those
teachers know the curriculum, and (broadly speaking) they are well versed in the
relevant mathematics. Thus, having a “lean” textbook is not an issue: teachers can
be trusted to flesh out the examples and make connections between the examples
and the underlying mathematical concepts by themselves. In contrast, teachers in
the U.S. tend not to have the kinds of backgrounds that would enable them to make
good use of the Singaporean texts. Textbooks in the U.S. tend to be “fat” because
textbook publishers make the assumption that American teachers require support in
implementing curricula. If the publisher expects something to happen in the class-
room, then explicit guidance for that event is likely to be presented in the text.

National pedagogical style also makes a huge difference—see, for example, the
contrast between the TIMSS videotapes of American and Japanese mathematics
classrooms. For many years in the US, “traditional” instruction followed what Lap-
pan and Phillips (2009) called the “show and practice” model of instruction, in
which a teacher demonstrates and explains a particular procedure, and students are
then given extensive practice at working similar examples. Traditional textbooks in
the U.S. were designed to support this approach. Many texts offered a “two page
spread” per lesson. The student edition contained worked examples on two facing
pages demonstrating the procedures to be learned, and a series of exercises for the
students to complete. The teacher’s edition contained the student edition as an inset,
surrounded by a pre-made lesson plan for the teacher that contained descriptions of
the sequence of activities, timing for the lesson, things to highlight, possible assign-
ments, and answers and/or worked-out solutions to the exercises in the inset. Thus,
teachers could teach a lesson by opening the text to the day’s two-page spread and
following the script it embodied. Given the factory model of much mathematics in-
struction in the U.S.—a typical secondary teacher might be responsible for teaching
five or six classes with 30 students each, with three different course preparations—
such easy-to-pick-up-and-use texts were in essence a survival tool for many teach-
ers.

This teacher-plus-textbook picture must be seen against the backdrop of teacher
preparation and the opportunities for professional development in the US. Typically,
a candidate for a teaching license in the U.S. can either obtain certification as an ed-
ucation major during a 4-year baccalaureate career or in a 1-year post-baccalaureate
teacher certification program. During the teacher preparation program, the candi-
date will typically observe and discuss instruction by a “master teacher,” and then
“take over” the master teacher’s classroom instruction for some weeks. This is the
entirety of the candidate’s pedagogical apprenticeship. Once hired, the teacher will
tend to have classroom autonomy—but little opportunity to interact with colleagues,
either during the workweek or during (rare) “professional development days.” (Lor-
tie 1975 likened the insularity of teaching to that of an egg crate, with each separate
cell its own private province, insulated from the others.) Within this context, “ready-
to-use” curricula make it possible for the teacher to get through the day. Given that
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extended opportunities to learn on or outside the job are rare in the US, more ambi-
tious curricular goals have to be supported by more ambitious curricula that provide
extensive support.

This picture stands in stark contrast to the national norms in Japan. To over-
simplify somewhat, the assumption underlying the professional development of
teachers in Japan is that even the most talented beginning teachers will require a
decade of supported professional growth before they become truly expert teachers.
The work setting for teachers in Japan is radically different from the work setting
for teachers in the U.S. Working with colleagues is defined as part of one’s respon-
sibilities, and the workweek is arranged so that some percentage of one’s official
work time is spent collaborating with one’s colleagues.

The Japanese practice of lesson study (see, e.g., Fernandez and Yoshida 2004) ex-
emplifies the difference. Obvious contrasts between the social contexts represented
by lesson study and typical U.S. practice are that (1) teachers in Japan are given time
to collaborate on lesson design as part of their defined work, in contrast to the isola-
tion experienced by most U.S. teachers; and (2) the lesson as designed is taught by
one member of the lesson study team and observed and refined by the entire team. In
particular, that means that Japanese classrooms are open to knowledgeable visitors
as a matter of practice. This openness provides opportunities for beginning teachers
to learn by observation, discussion, and practice—opportunities that are typically
not available for teachers in the U.S.

There is more. Typically, lessons in the U.S. are focused on the mathematics, or
the mathematical activities, that students are to experience. In the U.S. a good lesson
is typically considered to be one that contains an engaging activity or series of activ-
ities that highlight the important mathematical content and practices to be learned.
At least as represented in the literature (Fernandez and Yoshida 2004; Takahashi
2004), a major focus of lesson study lessons concerns not just the mathematics it-
self, but student thinking about the mathematics. Questions that shape lesson design
include, what understandings do students bring to the topic? what choice of exam-
ples will best reveal student understandings? how can one build on what is solid, and
lead students to see the limitations or errors in what they understand? how can a les-
son be sequenced to help students see connections across ideas, and to build deeper
understandings? Building and using such lessons calls for mathematical knowledge,
every bit as much as the content-oriented lessons in the U.S. But, content knowledge
is not enough to make such lessons succeed. Thus, teachers steeped in lesson study
approach the lessons with a different mindset than teachers who have not benefit-
ted from that cultural surround. This is one reason that attempts to use lesson study
in the U.S. have generally not succeeded. Unless the introduction to lesson study
provides mechanisms for U.S. teachers to become comfortable with the “student
thinking focus” of lesson study lessons, and the cultural surround provides oppor-
tunities for shared think time and development, the skills sets of U.S. teachers are
likely to put them in a position where they are not prepared to implement lesson
study in the ways Japanese teachers do.

To be clear, I am talking about structural and cultural issues here. The cultural and
administrative contexts of education in the U.S. result in most teachers having lim-
ited opportunities to develop certain kinds of skills. In some other nations teachers
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have much greater opportunity to develop those skills. The differences have nothing
to do with the inherent capacity of teachers, or how hard they work. A secondary
teacher in the U.S. may meet with 6 classes of 30 students during the workday. In
addition to planning for the next day’s lessons, that teacher will, if he or she spends
just one minute per student looking over homework, spend three hours during the
evening doing so. Part of the challenge in the U.S. context is that the workday is
defined in ways that deny teachers the opportunities to grow professionally that are
available to teachers in other nations.

A final contextual factor that must be considered as a component of teacher pro-
fessionalism is teacher autonomy. The starkest current contrast may be between the
U.S. and Finland. In Finland, trust in adequately prepared teachers, school systems
willing to take responsibility for educational outcomes, and adequate resources are
the key:

Experience from Finland . . . suggests that it is not enough to establish world-class teacher
education programs or pay teachers well. Finland has built world-class teacher education
programs. And Finland pays its teachers well. But the true Finnish difference may be that
teachers in Finland may exercise their professional knowledge and judgment both widely
and freely. They control curriculum, student assessment, school improvement, and commu-
nity involvement. (Sahlberg 2012, p. 4)

Trends in those directions since the 1990s, says Sahlberg, are the main reasons for
the stellar performance of the Finnish educational system. By contrast, the U.S.
has seen strong trends in precisely the opposite direction. As elaborated below,
the “standards” championed by the National Council of Teachers of Mathematics
(1989) were intended in the following sense:

A standard is a statement that can be used to judge the quality of a mathematics curriculum
or methods of evaluation. Thus, standards are statements about what is valued. (NCTM
1989, p. 2)

However, the “standards movement,” epitomized by the federal “No Child Left
Behind” law (U.S. Department of Education; see http://www2.ed.gov/nclb/landing.
jhtml) came instead to focus on “accountability”—the idea that students, schools,
districts and states must meet certain standards or suffer the consequences. Stan-
dards became targets for performance, with rewards for meeting or exceeding them,
and penalties for failing to do so. Federally enforced policy moved in reverse of the
direction taken by Finland: in districts that failed to meet statewide standards (as
determined by statewide examinations), teachers and schools were given less and
less autonomy. In many schools “teaching to the test” became the norm, essentially
negating the very idea of teacher autonomy.

In summary, values, goals and context matter. Different nations (if they oper-
ate at the national level; some devolve significant authority to states, provinces, or
other such entities) emphasize different aspects of mathematical proficiency in their
standards or curricula. The teaching forces in various nations have significantly dif-
ferent levels of preparation before they enter the classroom, comparably different
opportunities for professional development or growth, and radically different levels
of autonomy in structuring what takes place in their classrooms. A curriculum well
suited to one context will be poorly suited for another. There is no “one size fits all”

http://www2.ed.gov/nclb/landing.jhtml
http://www2.ed.gov/nclb/landing.jhtml
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and no one curriculum direction, given the diversity of contexts in which teachers
do their work. Attempts to move educational systems in any particular directions
will have to be suited to the local educational ecologies—or (see the concluding
discussion) conscious efforts will need to be made to alter those local ecologies.

Curricular Stories

Prologue: There Is More than Can Be Summarized in a Chapter

The forces that shape curricular evolution, and the tangled histories that result, are
far more complex than can be dealt with in a chapter of this length (Just one ex-
ample: As (some of) the U.S. was becoming enthralled with the kinds of lessons
exemplified in the TIMSS videos of Japanese classrooms, the Japanese ministry of
education was backing off from some of the underpinnings of those lessons.) Fine-
grained detail is impossible here, but it exists. For a general overview of curriculum
change in 15 nations spanning the globe, see Törner et al. (2007). That volume fo-
cuses on problem solving, but in that context, national curricular histories are given.
In particular, my article (Schoenfeld 2007) provides a more extended discussion of
trends in the U.S. up to 2007 than I can give here. I summarize those telegraphically,
and then give more detail about events over the past half dozen years.

The United States

I think it is fair to say that for the most part, mathematics education received lit-
tle attention during the bulk of the 20th century save for times when the nation
was in crisis.2 After World War II broke out, for example, the U. S. Office of
Education and the National Council of Teachers of Mathematics (NCTM) jointly
characterized the level of mathematical competency that schools needed to pro-
vide prior to students’ entry into the military (see NCTM 1943). Likewise, the
cold war had a significant impact on mathematics education. Following the launch
of Sputnik in 1957, science and mathematics education were seen as major na-
tional security issues; in response to the Soviet threat, alliances of scientists, math-
ematicians, and educators produced novel curricula in the sciences and mathemat-
ics. In mathematics, the School Mathematics Study Group or SMSG curriculum
(see http://www.lib.utexas.edu/taro/utcah/00284/cah-00284.html) exemplified what

2It was this perception that led to the formation of the Mathematical Sciences Education Board
(MSEB) at the National Research Council. MSEB “was established in 1985 to provide “a contin-
uing national overview and assessment capability for mathematics education.” (National Research
Council 1989, p. ii) The idea was to keep mathematics education from being put back on the “back
burner” after the flurry of attention it was getting in the wake of the Japanese “economic miracle”
of the 1970s.

http://www.lib.utexas.edu/taro/utcah/00284/cah-00284.html
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came to be known as the “New Math”—which was perceived to have “failed” over
the course of the 1960s and was replaced by a decade of “back to basics” instruction
in the 1970s.3

The next crisis was economic rather than military. The “Japanese economic mir-
acle” of the 1970s threatened to unseat the U.S. as the world’s dominant economic
power. The iconic response was the production of the report A Nation at Risk (Na-
tional Commission on Excellence in Education 1983), which described the crisis as
follows:

Our Nation is at risk. Our once unchallenged preeminence in commerce, industry, science,
and technological innovation is being overtaken by competitors throughout the world . . . If
an unfriendly foreign power had attempted to impose on America the mediocre educational
performance that exists today, we might well have viewed it as an act of war. We have, in
effect, been committing an act of unthinking, unilateral educational disarmament. (p. 1)

In addition to the economic crisis, there was evidence of American students’ poor
mathematical performance on the Second International Mathematics Study (McK-
night et al. 1985a, 1985b, 1987). These could be seen as a mandate for change.

Change came. For political reasons (see Schoenfeld 2004, 2007) this change
was stimulated not by the government, but from the National Council of Teach-
ers of Mathematics, which undertook the task of creating a nationwide statement
of high quality expectations—“standards”—for mathematics curriculum and evalu-
ation. The NCTM’s (1989) Curriculum and evaluation standards for school math-
ematics, which was grounded in the research of previous decades, opened up sig-
nificant new territory. Previous discussions of curriculum desiderata focused on the
content—the body of mathematics students should learn. The Standards broke new
ground, focusing on mathematical processes as well as content. As in previous docu-
ments, the Standards listed (by grade band) the essentials of number, patterns, mea-
surement, geometry, algebra, and pre-calculus (for college-intending students) that
students should learn. But for every grade band, the first four standards concerned
essential processes: mathematics as problem solving; as communication; as reason-
ing, and mathematical connections. Being able to think mathematically, as well as
knowing certain bodies of mathematics, became part of the goal of a mathematics
education. This was revolutionary.4

Aware of the fact that commercial publishers would not produce “standards-
based” curricula on their own, the National Science Foundation supported the de-
velopment of curricula aligned with the standards. Fast forward twenty-plus years,
and standards-based curricula—which, although varied in style, are all demonstra-
bly different from the “traditional” curricula that predominated in 19895—hold a

3This is a gross over-simplification. Some of the ideas behind the creation of the New Math, such
as attention to mathematical structure and the idea of “hands on” mathematics (parallel to “hands
on” activities introduced in all of the alphabet curricula) live on to this day.
4And, it was controversial, giving rise to the “math wars.” I will not discuss those here; see Schoen-
feld (2004, 2007).
5Roughly speaking, the “traditional” curricula placed significant attention on conceptual and pro-
cedural knowledge, focusing on the bodies of skill that students were intended to master, and their
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significant portion of the curriculum market. (Some estimates are that 25 % of the
texts sold nationwide are standards-based, but publishers are notoriously secretive
about sales figures and various hybrids exist, so it is hard to know what the actual
figure might be.) What is not in doubt, however, is the main finding of the research
literature: students who studied curricula that offered a balance of concepts, proce-
dures, and problem solving did as well on tests of skills as students who studied
from skills-oriented curricula, and far better on tests that called for using concepts
and doing problem solving (Senk and Thompson 2003; Schoenfeld 2007). Here we
shall simply stipulate that finding, and address two questions:

1. What are some of the main changes that characterize the standards-based curric-
ula?

2. What trends have shaped the evolution of curricula over the past two decades,
and what changes may they produce over the decade to come?

1. What are some of the main changes that characterize the standards-based cur-
ricula?

The 1989 NCTM Standards provided curriculum standards by grade bands (grades
K-4, grades 5–8, grades 9–12), rather than by grade. They were also pedagogically
agnostic, in that a wide range of pedagogical strategies were consistent with the in-
tentions of the Standards. Thus they provided tremendous latitude in interpretation:
As long as they were consistent with the broad outlines of the content standards in
the Standards and paid specific attention to the process standards, curricula could
claim to be standards-based. The NSF-supported standards-based curricula reflected
a broad range of approaches and foci.6 These included experiential, hands-on cur-
ricula, curricula that focused on applications, and curricula that used large thematic
units in order to provide rich “surrounds” for the mathematical content they offered.
Once again, I am painting with a very broad brush when I make statements about
trends in those curricula. But, there were some clear trends. In what follows I draw
very heavily on Lappan and Phillips (2009). Lappan and Phillips describe the his-
tory and development of the Connected Mathematics Project (CMP) curriculum,
a widely distributed middle school standards-based curriculum. I also draw on ex-
changes with Zalman Usiskin and Diane Resek, who, respectively, played pivotal
roles in the University of Chicago School Mathematics Project (2009) (which pro-
duced the preK-6 series Everyday Mathematics and UCSMP texts for middle and
high school) and the Interactive Mathematics Project curriculum.

Lappan and Phillips describe their goals as follows:

conceptual underpinnings. Standards-based curricula placed a greater emphasis on the process
standards discussed above: problem solving, communication, reasoning, connections.
6This was done in part because it makes good sense to have a range of models when trying some-
thing new, and in part in order to avoid putting NSF in the position of advancing a “national cur-
riculum,” which would have been extremely dangerous politically (see Schoenfeld 2004, 2007).
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All students should be able to reason and communicate proficiently in mathematics. They
should have knowledge of and skill in the use of the vocabulary, forms of representation,
materials, tools, techniques, and intellectual methods of the discipline of mathematics. This
knowledge should include the ability to define and solve problems with reason, insight,
inventiveness, and technical proficiency. (Lappan and Phillips 2009, p. 4)

For many educators today, these goals—which are, I believe, shared by all of the
standards-based curricula—may seem unexceptional. Of course one wants students
to be powerful mathematical thinkers! But from the vantage point of the 1970s and
to some degree the 1980s, they represent a major paradigm shift. No longer is the
sole focus of the curriculum the specifics of the content that students should learn.
That content is part of a student’s “mathematical tool kit,” with which the student
solves problems,7 reasons, and communicates.

This stance has not only curricular but also pedagogical implications. Standard 1
in NCTM’s (1991) Professional standards for teaching school mathematics, entitled
“Worthwhile Mathematical Tasks,” says:

The teacher of mathematics should pose tasks that are based on—

• sound and significant mathematics;
• knowledge of students’ understandings, interests, and experiences;
• knowledge of the range of ways that diverse students learn mathematics;

and that

• engage students’ intellect;
• develop students’ mathematical understandings and skills;
• stimulate students to make connections and develop a coherent framework for mathemat-

ical ideas;
• call for problem formulation, problem solving, and mathematical reasoning;
• promote communication about mathematics;
• represent mathematics as an ongoing human activity;
• display sensitivity to, and draw on, students’ diverse background experiences and dispo-

sitions;
• promote the development of all students’ dispositions to do mathematics. (NCTM 1991,

p. 25)

Although this is presented as a curricular challenge it is also a fundamental profes-
sional development challenge. Having students grapple successfully with “worth-
while mathematical tasks” of the type described above requires a significant shift in
classroom activity structures. Crafting environments in which students feel comfort-
able grappling with tasks that they do not necessarily know how to solve, often in
small groups (remember the communication goals!), and providing enough support
so that students do not flail but are not simply told “how to do it,” is an enormous
pedagogical challenge. This challenge is faced by teachers working with any of the

7All curricula have students solve problems, of course. But for pre-standards curricula, those prob-
lems were typically exercises similar to the examples students had been shown how to solve. In
the new curricula, “problem solving” came to mean working on problems for which the precise
solution methods had not been demonstrated.
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standards-based curricula. Consider, for example, what it takes to orchestrate a pro-
ductive conversation about problem 1.1 from the Connected Mathematics text given
in Fig. 1.

Lappan and Phillips (2009) describe the challenges of designing tasks, such as
Fig. 1, that present enough of the real world context so that the challenges can be
meaningful, but do not, in asking students to perform various tasks, provide non-
mathematical distractions. Resek (January 10, 2012) notes the degree of support
required for differing classrooms—with “warm-ups” being useful for some class-
rooms to remind students of relevant skills and understandings, while they may be
superfluous in others. The challenges of tailoring curricula to student needs should
not be underestimated. Nor should the challenges of teacher knowledge. It is one
thing to show students how to implement a particular procedure and monitor their
execution of it, in “show and practice” mode. It is quite something else to be pre-
pared to respond in the moment to the things students say (some seemingly sensible,
some not) in ways that build on and shape their current understandings.

To take a somewhat different perspective on changes in curricula, let me move
from goals to beliefs. Volume 40 of the UCSMP Newsletter, which introduced the
third edition UCSMP materials, provided a recap of “some beliefs underlying the
UCSMP Pre-K-12 curriculum.” Here I cite three:

3. The scope of school mathematics should expand at all levels, including number
and operation, algebra and functions, geometry and measurement, probability
and statistics, and discrete mathematics.

4. The classroom should reflect the real world both in the choices of activities and
problems and the choices of methods (paper and pencil, calculator, computer).

5. Students learn best when they are actively involved in their learning, and usu-
ally need practice and review over time in order to achieve mastery. (UCSMP
Newsletter, 40, p. 1.)

These, too, reflect general trends in standards-based curricula, and are broadly con-
sistent with the trends in the NCTM Standards documents (1989, 1991, 1995, 2000).

Finally, in terms of curricular criteria (in the U.S.), I note that the NCTM doc-
uments (particularly the 1991 NCTM Professional standards for teaching school
mathematics) placed much greater emphasis on supporting classroom discourse
around the relevant mathematics. This too makes significant demands on teachers.
But it also makes significant demands on curriculum designers, in that curricula
should provide the affordances for such classroom discourse. Thus, for example,
one sees the following “criteria for a mathematics task” in the Connected Mathe-
matics Project:

In our work a good task is one that supports some or all of the following:

• The problem has important, useful mathematics embedded in it.
• Investigating the problem should contribute to the conceptual development of important

mathematical ideas.
• Work on the problem promotes the skillful use of mathematics.
• The problem has various solutions paths or allows different decisions or positions to be

taken and defended.
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Fig. 1 Problem 1.1 from Bits and Pieces II, CMP 2
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• The mathematical content of the problem should build on and connect to other important
mathematical ideas.

• The problem requires higher-level thinking, reasoning, and problem solving.
• The problem should engage students and encourage classroom discourse.
• The problem creates an opportunity for the teacher to assess what his or her students are

learning and where they are experiencing difficulty. (Lappan and Phillips 2009, p. 8)

In sum, standards-based curricula—a significant chunk of the textbook market in
the U.S., but not a majority—have moved in very clear directions, consistent with
the directions outlined in the various NCTM Standards documents. But what of the
rest, and what is to come? There we must discuss politics.

2. What trends have shaped the evolution of curricula over the past two decades,
and what changes may they produce over the decade to come?

I introduce the issue of politics with a quote from a piece I wrote at the turn of the
century.

In the political arena, “standards” may be evolving from a progressive to a conservative
force. The move toward standards catalyzed by the National Council of Teachers of Math-
ematics was designed to focus on mathematical understanding. However, in the very recent
past “standards” have been adopted as rhetorical banners for programs of testing and ac-
countability. Many states have instituted strict testing regimens. . . These accountability tests
tend to focus on the mastery of facts and procedures, since that is what can be tested cheaply
and easily. . . Since the accountability measures are “high stakes,” teachers feel compelled
to focus on them, with a corresponding de-emphasis on the aspects of mathematics learning
(reasoning, representation, problem solving, communication, making connections) that are
not tested. (Schoenfeld 2001, p. 274)

This turned out, alas, to be prophetic. In 2001 the U.S. congress passed PL 107-
110, the No Child Left Behind Act, known as NCLB. Paying homage to a political
tradition of states’ rights, NCLB said that each State was entitled to establish its own
set of standards, and its own tests of those standards. But, to receive federal funding,
the state had to produce a plan that would result in 100 % of its students being
proficient (as measured by the state test) by 2014. Because of this, Hugh Burkhardt’s
coinage, WYTIWYG (“What You Test Is What You Get”) became increasingly true
nationwide. When test scores determine whether a student passes to the next grade,
whether a teacher gets a raise or gets fired, whether a principal keeps his or her
job, whether a school or school district has its management replaced, then testing
drives the curriculum. If the tests do not represent high quality mathematics, then the
quality of instruction suffers. It takes a brave teacher to teach for complex problem
solving skills when the high stakes assessments focus on more mundane skills.

Consider, for example, the California State Tests. The entire test is multiple
choice. Figures 2 and 3 offer two typical items from the Algebra I test.

These problems are trivial—and representative. For the past decade, tasks like
this have been shaping instruction in California. That is about to change, and not
just in California.

The largest change in the American educational landscape of the past decade
is the emergence of the Common Core State Standards in Mathematics (CCSS-M;
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Fig. 2 Released item from
the CST

Fig. 3 Released item from
the CST

see www.corestandards.org/the-standards/mathematics). Because of a strong tradi-
tion of states’ rights, suggestions of national standards, curricula and/or testing in
the U.S. would provoke extremely strong resistance. Thus the successor to NCLB,
called the “Race to the Top,” set no mandate—but, it offered funding to consortia
of states that produced collections of “high standards” and plans to meet them. The
National Governors’ Association and the Council of Chief State School Officers
obtained funding to create a set of “voluntary” standards that were offered to all
the states. States had the option to adopt the CCSS-M standards (which were likely
to be “pre-approved” by the government), or they could join a consortium to craft
their own. Ultimately all but five states (Alaska, Minnesota, Nebraska, Texas, and
Virginia) adopted the CCSS-M, making them a de facto set of national standards.

The CCSS-M specify content progressions at the grade level. This may require
some rearrangement on the part of curriculum developers who want to be “standards
compliant.” At least as important, however, is the fact that CCSS-M maintain the
previous commitment to classroom activities that engage students doing mathemat-
ics. In the language of CCSS-M, the desired activities are called practices, but the

http://www.corestandards.org/the-standards/mathematics
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The rough sketch graph shown above describes what happens when 3 athletes A, B, and C enter a
400 metres high hurdles race.

Imagine that you are the race commentator. Describe what is happening as carefully as you can.
You do not need to measure anything accurately.

Fig. 4 Hurdles Race

CCSS-M commitment to NCTM’s framing of problem solving, reasoning and proof,
communication, representation, and connections, as well as the NRC’s (2001) con-
cepts of adaptive reasoning, strategic competence, conceptual understanding, pro-
cedural fluency, and productive disposition, are made clear.

In short, there is great continuity with the process-oriented view that was a key
component of the NCTM Standards volumes and the standards-based curricula. The
question is, how much will the emphasis on practices matter in classrooms? The
answer, assuming WYTIWIG, is that what happens in classrooms will be a function
of the assessments that students and teachers face. Here too there is a new landscape.

As part of the Race to the Top, Federal funding supported the development of
two assessment consortia, the Smarter Balanced Assessment Consortium (SBAC;
see www.smarterbalanced.org/) and the Partnership for Assessment of Readiness
for College and Careers (PARCC; see www.parcconline.org/). Roughly half of the
states that have adopted the Common Core State Standards have signed up with each
of the two assessment consortia, and will be using their assessments. Thus, rather
than there being a patchwork of assessments across the nation, there will be (save
for the five non-CCSS states) just two.

Both consortia have issued sets of specifications describing their intended assess-
ments. As noted below, there is significant potential for things to change, so nothing
that follows should be taken as carved in stone. But if things stay as they are now,
things will be very different than they have been—at least in some states.

Consider, for example, the task “Hurdles Race,” given in Fig. 4.
Content-wise, Hurdles Race demands a good deal more than the tasks in Figs. 2

and 3. To deal with it successfully, students must interpret distance-time graphs in a
real-world context. This includes realizing that “to the left” is faster in the context of
a distance-time graph (the racer whose graph crosses the d = 400 line to the left has

http://www.smarterbalanced.org/
http://www.parcconline.org/


Reflections on Curricular Change 63

reached that mark in less time). It means interpreting the point where two runners’
graphs cross as meaning that, at that point in the race, the two runners are tied. It
means recognizing that runner C was ahead at the beginning of the race, and that the
horizontal line segment in C’s graph indicates that C has stopped moving forward
(presumably having tripped over a hurdle).

Moreover, the student must put all of this information together in an explanation
that respects the chronology of the graph. This calls for perseverance. It calls for
producing a coherent narrative that does justice to a real-world event. This is the
kind of task that is likely to appear on the SBAC assessments: see SBAC (2012).8

The key to understanding the character of the SBAC summative assessments lies
in their reporting structure. Typically, a mathematics test reports one score for a
student. In contrast, the SBAC assessments are intended to report four scores, along
the following dimensions:

Dimension 1, concepts and procedures: “Students can explain and apply mathe-
matical concepts and interpret and carry out mathematical procedures with pre-
cision and fluency.”

Dimension 2, problem solving: “Students can solve a range of complex well-posed
problems in pure and applied mathematics, making productive use of knowledge
and problem solving strategies.”

Dimension 3, reasoning: “Students can clearly and precisely construct viable argu-
ments to support their own reasoning and to critique the reasoning of others.”

Dimension 4, modeling: “Students can analyze complex, real-world scenarios and
can construct and use mathematical models to interpret and solve problems.”

Given that the tests will be “high stakes,” classroom activities are likely to fall more
in line with these dimensions of mathematical activity. Note that this is entirely con-
sistent with the goals for curricula quoted above from Lappan and Phillips (2009),
and, more generally with the two volumes of NCTM standards, the CCSS-M (by
design), and, in broad-brush terms, the standards-based curricula.

There are similarities and differences for the PARCC draft specifications. Some-
what in parallel, the PARCC summative assessments have three classes of tasks:

Type I: Tasks assessing concepts, skills and procedures;
Type II: Tasks assessing expressing mathematical reasoning;
Type III: Tasks assessing modeling / applications.

However, it is not clear whether PARCC will assign separate scores to student pro-
ficiency on tasks of types I, II, and III. PARCC appears to have committed itself to
computer-based tests: sample tasks may be found, for example, through the links at
http://www.parcconline.org/samples/mathematics/high-school-mathematics. Some
of the questions (e.g., the golf balls” modeling task), given the technological
medium, look very different from an “essay test” with the same questions and pose
different demands.

8Hugh Burkhardt and I were the lead authors of the SBAC content specifications.

http://www.parcconline.org/samples/mathematics/high-school-mathematics
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Because of the power of high stakes tests to drive curricula, it is hard to know
where instruction in the U.S.—not just curricula—will be heading over the next
decade. As I write, SBAC has not fully adopted the specs discussed above or re-
leased sample tests. (Sample items have been released.) Ultimately, what does get
adopted will in large measure be a political decision. To date, PARCC has released
even less information. Moreover, it is not yet clear how well the SBAC and PARCC
assessments are aligned with each other. How they will drive curricula, and in what
directions, remains to be seen.

Snapshots of other Nations

As noted above, curricular trends vary substantially across the globe, as do the tra-
ditions underlying them and the support structures for implementing them. Here I
offer either summaries or quotes in response to my requests for information about
trends in various nations. See the ZDM special issue Problem solving around the
world—summing up the state of the art (Törner et al. 2007) for additional detail.

The Netherlands

Paul Drijvers (personal communication, May 21, 2012) reported that trends in Dutch
mathematics education are diverse.

On the one hand, we still have investigation tasks in secondary school (e.g., see http://www.
fisme.science.uu.nl/alympiade/en/welcome.html and http://www.fisme.science.uu.nl/
wisbdag/, the latter only in Dutch). Also, the new 2015 curriculum explicitly mentions
problem solving and modeling skills, in the frame of overall “thinking activities.” . . . Most
textbooks for secondary school still make use of many contexts, even if these problem situ-
ations are in many cases far from realistic and their use is very limited, and may even have
a tendency to just ‘dress up’ the mathematics.

On the other hand, there is an important back-to-the-basics movement, with a strong focus
on arithmetic and algebraic by-hand skills, knowledge on how to carry out rules for simpli-
fication, solving equations, and differentiation. From this perspective, the realistic approach
is questioned and we see textbook series and national examinations following this trend.
The role of technology is criticized as well. The ministry is introducing examinations in
arithmetic skills in addition to the mathematics national examinations.

Great Britain

There is a significant amount of detail in Hugh Burkhardt’s chapter in this vol-
ume, “Curriculum Design and Systemic Change.” Burkhardt’s jaundiced summary
of problem solving (personal communication, May 21, 2012) is that curricular work
on problem solving “goes back to 1870, peaks in 1945, with a false dawn in the

http://www.fisme.science.uu.nl/alympiade/en/welcome.html
http://www.fisme.science.uu.nl/alympiade/en/welcome.html
http://www.fisme.science.uu.nl/wisbdag/
http://www.fisme.science.uu.nl/wisbdag/
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1980s, [and was] choked off by the National Curriculum.” This is not unlike the
history of mathematical modeling, in which there have been a number of exemplary
projects (existence proofs) but nothing that has had lasting impact and is deeply
embedded in current curricula. More generally, there appears to be a certain level
of entropy: the National Curriculum has had various revisions since 1989, with the
most recent promised revisions under the Tory government delayed.

Germany

Germany appears to be somewhat in a state of flux, according to information from
Guenter Toerner and Kristina Reiss. In some ways, the situation appears to parallel
the situation in the U.S. (though with significant allowances for cultural context,
teacher support, etc.):

The state of the education system and its prospects for development have become the sub-
ject of increasing debate in Germany since publication of the TIMSS results . . . In recent
months, the Forum Bildung, a working party set up by the German federation and states
to elaborate recommendations for educational reform, and the tremendous response to the
PISA study . . . have given this debate an intensity and a range not seen in years. (German
Federal Ministry of Education and Research 2004, p. 7)

With sixteen Bundesländer and perhaps 50 different curricula at primary, lower sec-
ondary, and upper secondary school (gymnasium), the quest for national standards
and coherence has been a challenge; it is difficult to paint a simple picture of current
events. Yet, there are trends. Modeling and applications are getting more attention
than before. And, perhaps most interestingly, there is a change in language: German
standards now emphasize competencies rather than knowledge. Competencies are
defined as “cognitive abilities and skills possessed by or able to be learned by indi-
viduals that enable them to solve particular problems, as well as the motivational,
volitional and social readiness and capacity to utilise the solutions successfully and
responsibly in variable situations” (Weinert 2001, p. 27).

One sees, then, moves toward coherence grounded in a set of standards that em-
phasize a broader set of competencies than descriptions of content knowledge.

France

The French, as Artigue and Houdement (2007) indicate, have a curricular and didac-
tic history that is at some remove from the traditions of the other nations discussed
in this chapter. Problem solving per se has never been a major theme in French
curricula, although problems themselves play a central role. Artigue and Houde-
ment indicate that the dominant theoretical frames in French didactic research are
Brousseau’s theory of didactic situations (Brousseau 1997) and Chevallard’s anthro-
pological theory of didactics (Chevallard 1992). Both of these theoretical orienta-
tions bring unique perspectives to classroom activities in France: Brousseau’s by
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virtue of the core idea that classroom activities can be structured in ways that are in-
herently mathematical, and that reveal student conceptions to the teacher (see, e.g.,
Schoenfeld 2012), Chevallard’s by way of situating classroom actions within the
larger context of school, schooling, and society. These, of course, are developments
over the past quarter century; and they have not fully permeated the French school
system. In another paper, for example, Artigue (2011) traces the history of the high
school teaching of calculus in France as an example of curricular change. That paper
documents seven distinct periods of instruction over the course of the 20th century.

China

Chinese mathematics education has its own very strong traditions, which tend to
separate curricular development in China from that in other nations. As Cai and Nie
(2007) indicate, “research in China has been much more content and experience-
based than cognitive and empirical-based.” (p. 459) That said, it should be noted that
the tradition of honoring and sharing beautifully designed lessons—with journals
devoted to such activities—flourishes in China, as a robust complement to the kind
of research done in the West.

But, curricula in China are changing rapidly, partly as a function of deliberate
study of some practices in the West. Liu and Li (2010) report that, prior to 2001,
“mathematics education in China held an important but simplified objective: acqui-
sition of knowledge and skills.” (p. 11) From 1996 to 1998 the Chinese undertook
the systematic study of curricula in Western nations, and curriculum reform and
curriculum standards for all disciplines were released in 2001. There were major
changes, these being the first three:

1. Curriculum objectives: moving away from over-emphasizing knowledge acquisition to
emphasizing the formation of students’ positive attitudes toward learning, so that students
can learn how to learn and develop positive attitudes in the process of learning basic knowl-
edge and skills.
2. Curriculum structure: moving away from over-emphasizing content-based subjects, hav-
ing too many school subjects and lack of integration. School curriculum needs to be struc-
tured with balance, comprehensiveness, and selectivity.
3. Curriculum content . . . needs to emphasize its connections with students’ life and knowl-
edge development in science and technology, pay close attention to students’ interests and
their experiences, and carefully select those basic knowledge and skills needed for students’
life-long learning.” (Liu and Li 2010, p. 14)

One can be sure that, although these goals echo those from the west, their instanti-
ation in curricular practice will take root in ways that are unique to Chinese context
and history.

Japan

For my final example we return to the somewhat more familiar territory. For
many years American mathematics educators have been inspired by aspects both
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of Japanese curriculum and professional development, e.g., the ideas that one rich
problem could be the source of a whole lesson’s activities, and that (at least at the
elementary level, through lesson study) teacher communities could serve as the
ongoing homes for the professional development of the teaching force. As Hino
(2007) portrays it, Japanese mathematics educators were strongly influenced by the
NCTM’s recommendations that “problem solving should be the focus of school in-
struction,” from the 1980s on. Some would argue that the Japanese, with help from
their Ministry of Education (which revises the Course of Study every 10 years) were
more successful than the U.S. in doing so.

Here too, it would be a mistake to assume stability or unidirectionality. As
Koyama (2010) notes in his chronological survey of Japanese curricular trends, there
have been some significant changes, even after the adoption of “problem solving”
as a major theme. Here is Koyama’s survey of the two decades from 1988 to 2007.

• Integration of Cognitive and Affective Aspects (1988–1997)
In 1989 the Courses of Study were revised to integrate cognitive and affective as-

pects. For example: . . . “To help students develop their abilities to consider daily life
problems insightfully and logically, and thereby foster their attitudes to appreciate the
way of thinking mathematically, and to willingly make use of the above mentioned qual-
ities and abilities in their lives.”

• Latitude through Intensive Selection of Teaching Contents (1998–2007)
During these ten years, such problems as ‘un-schooling’ and ‘classroom in crisis’

have became quite notable and they were attributed to the excessively stressed life of
students. Therefore the Courses of Study were revised and the teaching and learning con-
tents were slimmed down intensively. About 30 % of mathematical content was removed
from elementary school and lower secondary school levels. (Koyama 2010, p. 62)

Discussion

I trust that the snapshots above have made one point clear: there is no single world-
wide trend in curricula. Curricula are, in deep ways, a function of a nation’s history
and culture, its governance structures, and the kinds of support given teachers in
their professional lives. Moreover, within any one nation, one sees radical shifts
over the course of time—often in contradictory directions. This raises two ques-
tions: (1) is there such a thing as progress? And (2) what can one do, profitably,
with the great diversity of curricular trends that one sees worldwide?

Is there Such a Thing as Progress?

I believe so. When I entered the field as a researcher, the dominant paradigm for
classroom research was the process-product paradigm, which was essentially corre-
lational; curricula were similarly evaluated by controlled experiments; we had little
or no idea of how to understand a student’s 20-minute attempt at problem solv-
ing, much less the blooming complexity of the classroom; and, curricula focused on
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content, with little or no explicit attention to the concepts of mathematical think-
ing processes or practices. Over the decades since the 1970s, our understanding of
learning and teaching has grown dramatically—and, there has been a lovely dialec-
tic between what we understand and the evolution of curricula over that time period.
The 1989 NCTM Curriculum and evaluation standards were inspired by research,
and set the stage for the first wave of standards-based curricula. There is clear evi-
dence (e.g., Senk and Thompson 2003) that they make a difference. The evolution of
standards in the U.S., from the 1989 Standards to the 2000 volume of Principles and
Standards to the Common Core State standards, represents increasing sophistication
as well as a better understanding of the political surround that envelops curricular
practices.

One can hardly be sanguine about the role (or power) of politics; it can be a
powerful force both for the benefit of students and to their detriment. But, looking
at curricula now in place in the U.S. as opposed to the one I learned from, one
sees significant progress. There are many ups and downs, and retrogressions—but
on average, curricula are more mathematically rich, as well as being tailored to be
accessible to a far larger proportion of the school population. That is in the U.S.,
but I am reasonably confident that comparable statements (regarding the long view)
could be made across much of the globe.

What can one do, profitably, with the great diversity of curricular trends that
one sees worldwide?

As I have noted, it is a mistake to think one can simply import good curricula or ef-
fective pedagogical practices from one country into another. Singaporean textbooks
“work” because Singaporean teachers are well prepared to teach from them, for
example. So, what can one do?

Cross-national comparisons are tremendously valuable in helping one to under-
stand one’s strengths and one’s weaknesses, and also to realize that things don’t
necessarily have to be the way they are. I grew up, for example, assuming that the
“ninth grade algebra, tenth grade geometry, eleventh grade advanced algebra” cur-
riculum was the only way to do things. It was a surprise to discover that the U.S.
was a singular point in that regard, and that most of the world offered integrated cur-
ricula. And, when I began studying problem solving, I was astounded by the chal-
lenges offered by the Russian and Hungarian problem books. It would have been
unthinkable at the time to imagine that such problems could be offered to students
in the U.S. But, once one realizes that such things can be done, doors are opened.
The same goes for structural supports for the professional development for teachers,
and organizing the contexts of work in ways that become learning communities for
teachers (cf. Japan and Finland).

There is, of course, a substantial amount of cross-national comparative research.
But, I think it could be expanded or focused in ways that would be beneficial to
all concerned. For one thing, it would be good to be much more explicit about the
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goals and underpinnings of the exams that are used for cross-national comparisons
(TIMSS and PISA). Better yet, it would be good to construct exams that explicitly
aim at assessing the wide range of understandings that represent the union of mathe-
matical goals for students, and that report out different dimensions of mathematical
proficiency. The dimensions of concepts and procedures, problem solving, produc-
ing and critiquing reasoning, and mathematical modeling would seem to be a good
start in this direction.

Alongside this, the systematic study of how different nations are organized sys-
temically with regard to mathematics education could help all of us learn from one
another. Some of this information exists, but not in a way that supports a meaningful
and potentially productive compare-and-contrast across nations, or the meaningful
adaptation of ideas and artifacts from one culture to another. One could imagine a
project in which teams of scholars from nations across the globe put together the
following kinds of information about each nation:

• What is the history of curricular change?
• How does curriculum change take place? Who makes decisions, and how are support

structures put in place? What are the impediments to change?
• What is the role of research in the process?
• What are the systemic levers (e.g., high stakes testing) for supporting change and how

powerful a (positive or negative) role do they play?
• The nature and processes of change: are they stable and evolutionary (as Japan was for

many years), unpredictable (as the U.S. has been), or something in between?
• Systemic affordances and constraints—what resources are available; what kinds of

changes are plausible, given systemic organization and resources; what kinds of changes
would be difficult because of various limiting factors?

• As one major example, consider teaching as a profession:

– How well are teachers regarded, how well paid are they?
– What opportunities for learning and professional development do teachers have?
– How knowledgeable are teachers? How well prepared might they be for implementing

problem solving, supporting robust mathematical conversations among students, etc.?
– What is the career trajectory of teachers? What are the demographics of the teaching

force? (For example, in the U.S., 50 % of new teachers leave the profession within 5
years—a higher percentage in urban districts.)

• Case studies of curriculum change: what succeeded, for what reasons (in terms of orga-
nization, supports, etc.); what did not succeed, for what reasons?

With such information it might be possible to understand, for example, how
Japanese lesson study functions as a form of professional development and what
cultural and intellectual support structures are necessary for it to be productive; what
kinds of preparation and what kinds of structural supports are necessary for teachers
to make effective use of Singaporean curricula; what kinds of teacher preparation,
societal incentives, and institutional “surrounds” are needed in order for the kinds
of teacher autonomy heralded in Finland to be productive; and so on. Understand-
ing the culturally embedded nature of curricular change in other nations may enable
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people to think more productively about how to foster effective curriculum change
within their own cultural and educational ecologies.
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Part II
Curriculum and Policy



Preface

As information sharing has become virtually instantaneous, the policies that drive
curriculum and examples of specific curriculum have become available to both de-
velopers and policy makers around the world. Writers have access to ideas that can
impact current and future editions of curricula and of testing. However, this is a
two way street. Policy makers who hold the power to influence the curriculum need
the assessments that are created and used to evaluate what students have learned.
This raises the question of whether the testing actually gives the field information
or establishes the boundaries for what curriculum writers can create to help teachers
engage students in the study of mathematics. In the case of the US, the relatively
new Common Core State Standards for Mathematics (CCSSM) has instigated revi-
sions of nearly all established curricula across the 50 States. The timeline for the
first CCSSM assessments has driven this round of curriculum revision in the US.
If the CCSSM remains stable for a few years, it is likely that the development and
revision of current curricula will intentionally reflect the CCSSM. However, what is
unknown at present is whether the CCSSM will remain stable or will be revised to
reflect changes in policy as US Presidents change. From a broader international per-
spective, one thing is certain: curricula from around the world are likely to have an
influence on curriculum writers, regardless of where they reside. The results of this
influence can be a significant improvement in the quality of schooling for students
regardless of the country in which they reside. The worldwide melting pot for policy
and curricula has the potential to raise the level of mathematical understanding and
use across the world in significant ways. It is in this spirit that this part of the book
provides rich information for us to learn about different policy and perspectives that
are developed and used in various educational systems around the world.

In 2008, Charles M. Payne published a book entitled “So Much Reform, So Little
Change.” The subtitle is “The Persistence of Failure in Urban Schools.” In the book
he articulated “impediments to program implementation”. Here are three of his con-
cerns: inappropriate pace and scale of change (a tendency to try to do too much too
quickly), discounting the social and political environment, and a lack of program
coherence. For readers who have curriculum development experience, these three
ring especially true. Change is hard. Teachers who have established certain routines
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in their classrooms over time find it difficult to give students the freedom to do more
proposing, thinking, solving and articulating results. However, unless the students
are charged with and allowed to do the thinking and reasoning, the mathematics de-
veloped is unlikely to be accessible to them in new situations. Consequently, change
is necessary for improving students’ learning of mathematics, not only at the policy
level but also throughout the process of curriculum development and implementa-
tion. Learning about different policies and perspectives that are developed and used
in different educational systems can certainly help us to reflect on our own curricu-
lum policy and practice.

The chapters in this section reflect the state of the curriculum in 9 education sys-
tems across the world. A thread through all of the system reports is a focus on the
articulation of system policies and the expected impact of the curriculum on student
performance. By examining the differences in system policies and how such policies
may affect the performance of students in different system contexts, we get a pic-
ture of different cultures and different expectations. We also have an opportunity to
consider new ideas and ways of engaging students that may have significant impact
on their learning.

In Chapter 5, Khoon Yoong Wong, Masataka Koyama, and Kyeong-Hwa Lee
describe mathematics curriculum policies in Japan, Korea, and Singapore. The sim-
ilarities and differences among the policies in these three education systems raise
interesting questions for consideration. For example, can a curriculum that is de-
signed for and used in a particular education system be used with the similar ex-
pected results in another system? Other than language, what are the obstacles to be
overcome for such a transition of curriculum to succeed? Based on a framework
proposed in this chapter, the authors emphasize the importance of studying mathe-
matics curriculum policies and suggest further research in this topic area.

Chapter 6, contributed by Hak Ping Tam together with five other scholars, fo-
cuses on the Chinese mainland, Hong Kong, and Taiwan. These education systems
have had longstanding success in producing students who excel in mathematics, and
they share many similarities in terms of system structures and the general process
of curriculum development and implementation. Yet, changes in curriculum policy
and practices have been frequent from time to time to address different issues in
these three education systems. As the interaction among education systems around
the teaching and learning of mathematics has escalated, the spread of mathematics
materials designed in different education systems around the world has also esca-
lated. This wealth of information has the potential to improve the understanding and
use of mathematics across the world. Examining the decisions made in these three
systems gives insight into the similarities and differences and the possible results of
these differences, and raises questions for other systems to consider.

In Chapter 7, Hung-Hsi Wu discusses the potential impact on curriculum in the
US where nearly all of the 50 states have made a commitment to the Common Core
State Standards, CCSSM. In such a decentralized education system, CCSSM func-
tions as a leading force in changing curriculum development and practices in most
states of the country. Wu specifies the challenges in helping teachers in the curricu-
lum implementation process. The national testing will reflect the CCSSM and will
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provide a picture of students’ facility with mathematics across the US. This kind of
information is likely to be a wakeup call for states with underperforming students.
In the long run, the CCSSM testing may stimulate greater attention to university
teacher education, mathematics education, and to the support of practising teachers.

Chapters 8 and 9 provide curriculum information about Brazil and Australia, but
from different perspectives. Chapter 8 focuses on educational directives and public
policies related to mathematics education in Brazil, whereas Chapter 9 considers the
recent development of the Australian mathematics curriculum and what challenges
teachers face in their instantiation of the curriculum into classroom lessons.

Taken together, these chapters give us insight into mathematics education in dif-
ferent systems across the world. They also present us a charge to improve what we
are offering to teachers and students in our mathematics programs at all levels. Ad-
ditionally, the information in these chapters can give test developers and curriculum
writers information and a challenge to create tests and curriculum that can support
a World-class education for students and their teachers in all systems.

Michigan State University, USA Glenda Lappan
Texas A&M University, USA Yeping Li
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Mathematics Curriculum Policies:
A Framework with Case Studies from Japan,
Korea, and Singapore

Khoon Yoong Wong, Masataka Koyama, and Kyeong-Hwa Lee

Abstract Mathematics curriculum policy (MCP) can be differentiated from mathe-
matics curriculum by the former’s focus on the objectives of mathematics education
and practices implemented at different systemic levels by different groups of stake-
holders to bring about those objectives, whereas the latter covers mostly mathe-
matics curriculum standards, resource materials, and teaching strategies. Not much
has been written about MCP in different education systems. In this chapter, we at-
tempt to fill this “gap” by proposing a framework to cover four aspects of MCP:
(a) policies about mathematics curriculum, the “what”? (b) agents who are engaged
in policy-making, the “who”? (c) factors that influence the design of MCP within a
particular “environment”, and (d) future directions of MCP. We will illustrate these
four aspects by citing our experiences with MCP in three Asian countries, namely,
Japan, Korea, and Singapore. Further research in mathematics curriculum policy can
be stimulated through in-depth descriptions of intra-national experiences of policy
formulation and implementation and inter-national analyses of similar experiences.

Keywords Mathematics curriculum policy · Japan · Korea · Singapore ·
Policy-making

Introduction

Policies matter. They are statements, actions, or decisions that apply to a well-
defined group of people to serve a fairly long-term goal in terms of years rather
than weeks or months. They are “designed to bring about desired goal” (Trowler
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2003, p. 95). Policies should be differentiated from expedient administrative acts or
quick fixes that may not be aligned with these goals and espoused principles.

Curriculum policies specifically direct what to teach in schools, how to teach it,
who does the teaching, and who the learners are. Mathematics curriculum policies
are discipline specific and overlap with general curriculum policies in broad educa-
tion and socio-political contexts within a country. They include policies about those
aspects of mathematics curriculum that differ from policies for other disciplines
such as sciences, languages, and arts.

However, “mathematics curriculum policy” (MCP) is less written about than
mathematics curriculum. Mathematics curriculum (MC) has been studied exten-
sively in terms of intended standards, textbooks and curriculum materials, imple-
mented classroom practices, and achieved outcomes. This disparity in coverage be-
tween MCP and MC becomes quite evident as we are not able to locate seminal
papers about MCP from literature and search engines. In this chapter, we attempt to
fill this “gap” by proposing a framework to cover four aspects of MCP: (a) policies
about mathematics curriculum, the “what”? (b) agents who are engaged in policy-
making, the “who”? (c) factors that influence the design of MCP within a particular
“environment”, and (d) future directions of MCP. We will illustrate these four as-
pects by citing our experiences with MCP in three Asian countries, namely, Japan,
Korea, and Singapore. However, space for this chapter does not allow us to discuss
the implementation of these policies: dissemination of policies to the target audi-
ences and their buy-in, training of teachers and curriculum leaders to implement
the policies, processes for monitoring compliance of policies, refinement of policies
with time as a new cycle of policy-making or their repeal, and other related matters.

Contents of Mathematics Curriculum Policies: The “What”?

In the past two decades, international comparative studies such as the Trends
in International Mathematics and Science Study (TIMSS) and the Programme
for International Student Assessment (PISA) have stimulated major reforms in
mathematics curriculum in many countries. Reports on high performing school
systems such as the two McKinsey reports (Auguste et al. 2010; Barber and
Mourshed 2007) have advanced important issues that are relevant to MCP, such
as the recruitment of qualified teachers. National reports from several countries
have also highlighted the importance of joining the global movement to de-
fine 21st century literacy and skills for future generations of students who will
grow up in the digital world. Examples include The Partnership for 21st Century
Skills in the United States (http://www.p21.org/overview), the Japan! Rise again!
(http://www.mext.go.jp/english/elsec/index.htm), and the 21st Century Competen-
cies (21CC) in Singapore (http://www.moe.gov.sg/media/press/2010/03/moe-to-
enhance-learning-of-21s.php). These frameworks call for the inculcation of creative
thinking and problem solving, use of information and communication technologies

http://www.p21.org/overview
http://www.mext.go.jp/english/elsec/index.htm
http://www.moe.gov.sg/media/press/2010/03/moe-to-enhance-learning-of-21s.php
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(ICT), and communication and collaboration skills. These competencies are ex-
pected to be included in the mathematics curriculum, and they form crucial items in
MCP.

In addition to the generic 21st century competencies mentioned above, some
policies specific to the mathematics curriculum in Japan, Korea, and Singapore are
listed in Table 1. They constitute the “contents” or “what” of MCP. This list is not
exhaustive but it does highlight some important policies that are common to the
three countries. Some of these policies may be more important in some countries
than others, and paying attention to differential details in similar policies can help
educators search for new possibilities for their own countries.

Agents and Policy Formulation of Mathematics Curriculum
Policies: The “Who”?

In these three countries, different agents are responsible for formulating MCP. Ta-
ble 2 is a framework we have designed to highlight and compare the main agents
and their roles and responsibilities in the three countries.

These agents work at different levels of the country’s education system and their
responsibilities likewise vary considerably across the countries. The roles included
in this framework cover the development of vision statements, values, and contents
of the policies, negotiating between conflicts of these values and contents among
different stake-holders, sourcing for evidence to support certain policies, proposing
guidelines for policy implementations, producing curriculum documents, obtaining
buy-in from other relevant parties, and so forth. The framework summarises the
agents at five organisational levels, viz. nation, regions, teacher education institutes,
schools, and classrooms. However, we will concentrate on official education agents,
acknowledging that in some countries, non-official and non-education agents, such
as professional associations, textbook publishers, commercial providers of ICT re-
sources, politicians, journalists, community leaders, and even parents may play sig-
nificant roles in debating curriculum matters, including the allocation of resources
to support curriculum implementation and reforms.

In Table 2, the scope and levels of the responsibilities of respective agents
towards MCP at a specific organizational level are indicated by three numbers:
1 = Low, 2 = Moderate, 3 = High. These levels, though quite crude, allow for
rough comparisons of the relative degrees of involvement in MCP across the three
countries. A more refined approach will contribute toward more in-depth compara-
tive analyses of these agents and roles in other countries.

In Japan, the Course of Study (CS) for mathematics as a national mathematics
curriculum has been revised and reissued approximately once every ten years since
the establishment of the Japanese Constitution and the Fundamental Law of Edu-
cation in 1947. The history of mathematics education in Japan seems to follow the
worldwide trends of mathematics education, like a pendulum swinging back and
forth, with its own specific features in each period reflecting the Japanese culture
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Table 1 Some key mathematics curriculum policies in Japan, Korea, and Singapore

No. Mathematics
Curriculum Policies

Japan Korea Singapore

1. Mathematics is
taught in . . .

• Japanese. • Korean. • English.

2. Mathematics is a
compulsory subject.

• Grades 1 to 10. • Grades 1 to 10. • Grades 1 to 10.

• About 5 hours per
week at primary and
about 3.5 hours per
week at lower
secondary levels.
About 1500 hours of
instruction in
mathematics in 10
years.

• About 4 hours per
week at primary and
4 hours per week at
secondary levels.
About 1500 hours of
instruction in
mathematics in
10 years.

• About 5 hours per
week at primary and
4 hours per week at
secondary levels.
About 1600 hours of
instruction in
mathematics in 10
years.

• Choices of
different syllabuses
from Grade 11
onwards.

• Choices of
different syllabuses
from Grade 11
onwards.

• Choices of
different syllabuses
from Grade
5 onwards.

• Grades 11 & 12,
about 95 % of
students take
mathematics.

3. Mathematics
curriculum is guided
by a framework.

• The Course of
Study with
“mathematical
activities” at the
centre, facilitated by
four components:
concepts, skills,
mathematical
thinking, and
attitude.

• “Creativity and
Character-building”
facilitated by
mathematical
process, consisting
of problem solving,
reasoning, and
communication.

• “Pentagon”
framework with
problem solving at
the centre, facilitated
by five components:
concepts, skills,
processes,
metacognition,
attitude.

4. Use of calculators
and ICT in
mathematics
teaching and
assessment.

• ICT including
calculators and
computers needed
for teaching but not
for assessment/
public examination.

• Grade 7 onward
for teaching not
assessment

• Scientific
calculator
compulsory for
Grade 5 onward for
teaching and public
examination.

• Grades 11 & 12;
graphic calculator
for teaching and
public examination.

• ICT is widely used
in teaching.
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Table 1 (Continued)

No. Mathematics
Curriculum Policies

Japan Korea Singapore

5. Mathematics
teachers are
“specialist” in
mathematics.

• Primary:
generalist.

• Primary: generalist • Primary: generalist
(3 subjects) and
specialist
(2 subjects).

• Secondary:
specialist.

• Secondary:
specialist

• Secondary:
specialist (2
subjects).

and economic situation surrounding mathematics education at that time (Koyama
2010). For each revision, a Central Council for Education in the Ministry is estab-
lished to discuss and advise on educational policy in general for changing/reforming
education in Japan. This Council is made up of 30 members who are representa-
tives from various agents such as universities, boards of education, schools, parent-
teacher associations, regional governments, sports organizations, journalists, and in-
dustry. Then, a Curriculum Subdivision of the Council is established to advise on the
development of national standards according to the Central Council’s advice. After
receiving the Curriculum Subdivision’s advice and the input from special working
groups for each school subjects, the Ministry compiles the CS for schools. Further-
more, the Ministry compiles curriculum guides in which the objectives and contents
of each school subject are explained in detail, and instructional materials in which
teaching methods are suggested. Any revisions to the CS have to be based on the
basic national education policy of “education for all” established in the Japanese
Constitution and also with the goals and principles of education prescribed by the
Fundamental Law of Education. In 1998, the Curriculum Council submitted the final
report to the Minister of Education for revising the 1989 CS under the slogan “Zest
for Living” put up by the Central Council for Education. As a result of this revision,
the Ministry added such new items into the CS for mathematics as “through mathe-
matical activities,” “enjoy mathematical activities” and “cultivate their basis of cre-
ativity through mathematical activities” (Ministry of Education, Japan 1999). On
the other hand, in order to introduce the so-called five-day week schooling system
and create a time period for “integrated study” as a new course, the number of hours
for mathematics was reduced by about 15 %, and about 30 % of the mathematical
content was removed so as to foster students’ positive attitude toward mathematics
and provide students with time for doing mathematical activities that might promote
their creative thinking in the limited time. However, in February 2006, the Japanese
Government changed the Fundamental Law of Education slightly to include an item
for explicitly emphasizing the importance of “acquiring basic knowledge and skills,
cultivating thinking-judging-representing ability, and fostering positive attitude to-
ward learning” in education. Then, in March 2008, the Ministry of Education, on the
basis of a final report submitted by the Central Council for Education, revised the
1998 CS (Ministry of Education, Japan 2008). In the latest CS, the standard number
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Table 2 Roles of agents and organizations in mathematics curriculum policies in Japan, Korea,
and Singapore

No. Organizational Levels Japan Korea Singapore

1. Macro-level: Nation • Central Council
for Education
authorized by
Ministry of
Education, Culture,
Sports, Science and
Technology
determines national
curriculum policy
(3).

• Curriculum
Planning and
Development Board
(CPDB) authorized
by Ministry of
Education, Science
and Technology
(MEST) and
National Curriculum
Division at MEST
design national
curriculum to cover
primary to
pre-university levels
(3).

• Curriculum
Planning and
Development
Department of the
Ministry of
Education; its
subject specialists
design national
curriculum to cover
primary to
pre-university levels
(Grades 1 to 12) (3).

• Curriculum
Council designs the
framework for
curriculum and
assessment to cover
primary to
pre-university levels
(Grades 1 to 12) (3).

• University
Admission Division
at MEST and
Division for
Educational
Evaluation at Korea
Institute for
Curriculum and
Evaluation (KICE)
determine
assessment policies
of public
examinations (3).

• Singapore
Examinations and
Assessment Board
(SEAB) determines
assessment policies
of public
examinations (3).
These assessment
standards are
aligned with the
curriculum
standards.

• Ministry of
Education subject
specialists with
some professors and
teachers design
national curriculum
for each school
subject (3).

2. Meso level,
intermediate: Regions

• Municipal
Education Board
encourages and
monitors each
school to implement
curriculum and
assessment policies
(2).

• Municipal
Education Board
encourages and
monitors each
school to implement
curriculum and
assessment policies
(1).

• Zone and cluster
superintendents (1).
They do not
determine policies
but are charged to
implement them in
local schools. They
often initiate new
projects such as
Action Research for
schools in their
zones and clusters.
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Table 2 (Continued)

No. Organizational Levels Japan Korea Singapore

3. Meso level: Teacher
education institutes

• More than 50
national institutes
and more private
institutes for
primary and
secondary teacher
education; some
educators are
members of
Curriculum Council
(2).

• 11 national
institutes for
primary teacher
education; 14
national institutes
for secondary
teacher education
and 23 private
institutes for
secondary teacher
education; some
educators are
members of CPDB
(2).

• National Institute
of Education is the
sole teacher
education institute;
its educators are
members of
curriculum review
committees (2).

4. Meso level: Schools • Principal and
subject teachers plan
scheme of work (2).

• Principal and
subject teachers plan
scheme of work (2).

• Heads of
departments and
committee plan
scheme of work (3).

5. Micro-level: Classrooms • Teachers
implement
curriculum and
assessment policies
(1).

• Teachers
implement
curriculum and
assessment policies
(1).

• Teachers plan and
implement daily
lessons to comply
with national
policies (1).

of hours for school mathematics is increased and students’ mathematical activities
are emphasized more than before. These changes to the Fundamental Law of Educa-
tion and the CS necessarily forced teachers to reflect seriously on their educational
philosophy and teaching methods for school mathematics.

The Korean national mathematics curriculum has been revised nine times since
the establishment of the Republic of Korea in 1948. The main agent for reform is
vested in the hands of the Curriculum Planning and Development Board (CPDB)
authorized by the Ministry of Education, Science, and Technology (MEST). This
Board is comprised of mathematicians and mathematics educators from teacher
education institutes, mathematics teachers, and curriculum officers at the MEST.
The consulting committee comprises engineers, economists, chief executive offi-
cers, parents, mathematicians, and educators and they offer advice on mathematics
curriculum revision. Most revisions were influenced by worldwide trends: for ex-
ample, the 3rd curriculum announced in 1973 (Grades 1–9) and 1974 (Grades 10–
12) was heavily influenced by the “New Math movement” (Paik 2004; Park 2011).
The 7th curriculum was announced in 1997 and had been implemented by 2006.
This curriculum was characterized as a “differentiated curriculum” based on ability
grouping. After the 7th curriculum, two revisions were completed: one in 2007 and
one in 2011. Both revisions were named for the year the curriculum was announced;
“the revised curriculum in 2007” and “the revised curriculum in 2011”. The revised
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mathematics curriculum in 2011 was dubbed the “creativity-oriented mathematics
curriculum”. Consequently, creativity development is considered a crucial goal in
this revised curriculum (MEST 2011). “Mathematical process” covering problem
solving, reasoning, and communication was introduced as an independent dimen-
sion to combine with content in the revised curriculum in 2011. The “grade band”
system is adopted to provide textbook editors with more leeway for organizing con-
tents. The Korean mathematics curriculum has been uniformly maintained and its
overall revision process has been determined by national level planning and devel-
opment based on feedback from teachers. However, compared to other countries,
Korea has a very short history of modern mathematics education and a short cur-
riculum revision term while adopting worldwide trends. Hence, one major concern
of Korean mathematics educators is to build their own philosophy of mathematics
curriculum to match the unique Korean education environment.

In Singapore, the first national mathematics curriculum for primary and sec-
ondary levels was introduced after self-government in 1959 (Ministry of Educa-
tion, Singapore 1959). This curriculum unified different branches of mathematics
(Arithmetic, Algebra, Euclidean Geometry, and Trigonometry) into a single sub-
ject that “knows no racial barriers” (McLellan 1957). Since then, the contents of
the secondary mathematics curriculum have been dominated by the examination
syllabuses of the Singapore-Cambridge GCE Ordinary Level (O-Level) and the Ad-
vanced Level (A-level) examinations. In 1990, the Ministry of Education devel-
oped the “pentagon” mathematics curriculum framework with problem solving as
its central focus, and this became widely known internationally as a key feature of
so-called “Singapore Math.” The curriculum is regularly reviewed by the Ministry
of Education. To do this, the Curriculum Planning and Development Division of
the Ministry of Education forms syllabus review committees comprising senior cur-
riculum officers at the Ministry, mathematics educators from the NIE, polytechnic
lecturers, and senior mathematics teachers from selected schools. These commit-
tees also gather feedback using questionnaires and focus-group discussions with
mathematics teachers and look at mathematics standards from many countries, both
East and West, including translations of curriculum documents from other languages
into English. The revised curriculum must also be aligned with other initiatives in-
troduced by the Ministry at that time, for example, to promote thinking through
the “Thinking Schools, Learning Nation” initiative in 1997 and engaged learning
with the “Teach Less, Learn More” projects in 2004. Minor revisions were imple-
mented in 2000 and 2006 (Wong and Lee 2009). Another revision is likely to be
implemented in 2013, and this latest version will probably give stronger empha-
sis to everyday applications of mathematics and mathematical modelling and will
extend the “pentagon” framework to Junior College (JC) level. To help teachers
provide differentiated instruction in mathematics lessons, this latest edition will in-
clude a collection of learning experiences for mathematics lessons, compiled from
submissions by school teachers and other educators. This regular revision helps to
keep Singapore’s curriculum up-do-date with changes in national policies and inter-
national best practices.
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Factors Influencing Mathematics Curriculum Policies: The
“Environment”

Policy-making is a complex process involving the balance and trade-off of numerous
factors. It also depends on who are involved in policy making at the time. These
factors have different impacts on the policy-making process in different countries,
and it is not easy to distinguish between Eastern and Western factors. These factors
include the following:

• Historical, such as current policies might have been designed and in use for many
years and found to be effective; how one particular policy has changed over the
years and why?

• Mathematics curriculum policies embedded within the overall education system.
• Curriculum policies respond to emerging social, cultural, political, demographic,

and economic changes in the country.
• Resources such as textbooks, budget; this might affect policies about using cal-

culators and ICT.
• Number and quality of mathematics teachers.
• Internationalisation or globalisation, e.g., changes in policies in response to

TIMSS and PISA.
• Theories and beliefs about learning including traditional folk psychology.
• Research from local and international, evidence-based policy-making; to what

extent research has been considered by the agents? Do they engage in new re-
search?

This chapter does not allow for an extensive treatment of these factors in each
country. Hence, we have decided that each country will elaborate on one factor that
is particularly influential in that country for further deliberation.

In Japan, it is very important for mathematics curriculum policy that the Japanese
Government amends the Fundamental Law of Education to include an item that ex-
plicitly emphasizes the importance of “acquiring basic knowledge and skills, culti-
vating thinking-judging-representing ability, and fostering positive attitude toward
learning” in education. There is no doubt that the issues concerning mathematics
curriculum and students’ mathematical performance identified by the TIMSS and
PISA (National Institute for Educational Policy Research, Japan, 2004) influenced
the changes of educational law and general curriculum policy in Japan. The lat-
est curriculum revision in the general curriculum policy emphasizes three points:
(a) fostering “Zest for Living”, (b) balancing the acquisition of basic knowledge
and skills with the cultivation of a thinking-judging-representing ability, and (c) fos-
tering an open mind and healthy body by enriching moral and physical education.
The latest 2008 CS emphasizes mathematical activities in the teaching and learning
of mathematics so that through their mathematical activities, students acquire ba-
sic mathematical knowledge and skills, cultivate their thinking-judging-representing
ability, and foster their positive attitude toward learning mathematics. In particular,
for the first time, the CS incorporates mathematical activities into the mathematics
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curriculum from Grades 1 to 10 as “content” to be taught and learned. For exam-
ple, in the case of lower secondary school mathematics, in learning each content of
“numbers and algebraic expressions”, “geometrical figures”, “functions”, and “mak-
ing use of data”, and in learning the connection of these contents, students should be
provided with opportunities to do mathematical activities like the following: (a) ac-
tivities for finding out and developing the properties of numbers and geometrical
figures based on previously learned mathematics, (b) activities for making use of
mathematics in daily life and society, and (c) activities for explaining and com-
municating to each other in an evidenced, coherent and logical manner by using
mathematical representations (Ministry of Education, Japan 2008). This description
explains how mathematics curriculum policy is embedded within the overall educa-
tion system and how the policy changes in response to TIMSS and PISA from the
perspective of internationalization or globalization.

In Korea, the revised mathematics curriculum of 2011 was designed based on the
detailed discussion about Korean students’ specific performances in recent TIMSS
and PISA. This illustrates how Korean mathematics curriculum policy is strongly
influenced by results of international mathematics assessments. Firstly, while Ko-
rean students had a high level of achievement in the assessments, the percentage
of correct answers for constructed response items was relatively low. Secondly, the
students showed negative attitudes toward mathematics (MEST 2011). To deal with
these issues, teaching and learning that emphasizes mathematical process and math-
ematical creativity is now encouraged in the curriculum. Appropriate mathematics
education should consider students’ differing levels and propensities for learning
and encourage “mathematical processes”, and these themes are explicitly included
in the curriculum document. Furthermore, the reason for adopting “grade band” is
to allow authors to write textbooks that take note of the students’ differing abil-
ity levels. Many students in Korea traditionally attend private educational institutes
(tuition classes or cram schools) for drilling in problem solving and advanced learn-
ing. This practice has increased the burden on students and their parents and weak-
ened the role of public education. To address this problem, Korea has decreased
the amount of learning content and emphasized a more interesting introduction of
mathematical contents for students through the use of concrete materials since the
4th mathematics curriculum (MEST 2011; Shin and Han 2010). This example shows
how socio-cultural factors have influenced Korean mathematics curriculum policy.
In addition, given the rapid changes in the ICT environment such as internet and
mobile phone, teaching and learning methods utilizing these technological tools are
highly recommended in the revised mathematics curriculum in 2011.

A brief history of Singapore’s mathematics curriculum has already been given
above. In an earlier analysis (Wong et al. 2001), a situated socio-cultural model
was proposed to explain the development of mathematics education in Brunei
Darussalam, Malaysia, and Singapore over the past five decades in terms of his-
torical background, key political events, language issues related to medium of in-
struction (English and mother tongue languages in Singapore), education struc-
ture and aims, cultural mores, and global influences. This section examines a sys-
temic level factor that addresses the issue of providing diverse pathways for stu-
dents through the education system. For students in Singapore Junior Colleges (JC,
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Grades 11–12) that provide pre-university education, this diversity was tackled in
the review of the JC curriculum in 2002. It led to the current curriculum which
was first implemented in 2006. This curriculum stresses breadth and flexibility
(http://www3.moe.edu.sg/cpdd/alevel2006/). There are 12 JCs, with about 20,000
students and 1,800 teachers. To cater to the different needs and aptitudes of JC
students, most subjects—including Mathematics—are offered at three levels: H1,
H2, and H3. H1 Mathematics is taken by students who wish to study business,
economic, and social sciences in the university. Its contents, to be delivered over
120 hours, cover Functions and Graphs, Differential and Integral Calculus of one
variable, Probability, Binomial and Normal Distributions, Sampling and Hypothe-
sis Testing (normal), Correlation, and Linear Regression. H2 Mathematics prepares
students for university study of Mathematics, Physics, and Engineering. It includes
all the topics in H1 Mathematics and the additional topics: Sequences and Series,
Complex Numbers, Permutations and Combinations, and Poisson Distribution. It
requires 240 hours of study. H3 Mathematics is for students who have a special ap-
titude and passion for mathematics. There are two main options: (a) to study topics
in Graph Theory, Combinatorics, and Differential Equations taught by the respective
JC and take the Singapore-Cambridge GCE A-Level in H3 Mathematics, or (b) to
take a module in Numbers and Matrices or Linear Algebra taught and assessed by
the local universities. The emphasis of H3 Mathematics is on mathematical mod-
elling and proofs. Students must take H3 Mathematics together with H2 Mathemat-
ics. The required curriculum hours for H3 Mathematics vary from 120 to 240 hours.
This description explains how mathematics curriculum policy has been embedded
within the overall education reform at the systemic level.

Future Directions about Mathematics Curriculum Policies

In this section, we will briefly examine two approaches to developing future research
and conceptualisation of MCP in order to address the lack of research in mathemat-
ics curriculum policies as reported in the literature and to stimulate development of
this field of inquiry.

The first approach is to focus on one or two future directions in MCP within each
country according to the author’s own observations and interpretations of what is
likely to be significant in his/her own country in the coming years. These analytic
analyses should begin with in-depth descriptions of the intra-national contexts using
constructs that are readily understood in international discourse about policies and
standards. The framework in Table 2 and the discussions above could be taken as
embryonic forms of this kind of analysis. New systemic and reliable data about
MCP should be gathered to enrich such comparative analyses.

The second approach is to translate important local documents from the country’s
language into English for wider international dissemination and discussion. These
documents often provide important insiders’ perspectives of the respective systems,
and their translations by educators who are conversant in the local languages and

http://www3.moe.edu.sg/cpdd/alevel2006/
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have worked in the respective systems will enable outsiders to gain access to these
perspectives and nuances of policies and practices. We have made use of documents
in the Japanese and Korean languages that are not readily available to the inter-
national mathematics education community to explicate the policies in those two
countries. Unlike Japan and Korea, Singapore has used English extensively in edu-
cation and such translation is not a major issue there.

Summary and Conclusions

Policies and practices are intricately related. The same policy can be implemented
in different ways, as illustrated by several examples described above. An imperative
lesson to learn from the numerous factors that impinge in different ways on the
translation of policies into practices as discussed above, is to pay special attention
to the context under which the practices are designed and implemented at the micro,
meso, and macro levels. We believe that this insight is valid for policies and practices
in East and West mathematics education systems, although this claim would be more
credible with inclusion of cases from the West.

An important aspect of mathematics curriculum policies is reflected in the curric-
ular materials developed to articulate the intended curriculum standards, contents,
and goals. Current analyses of these documents, as evident in the TIMSS and other
comparative studies, take the form of categorization of curricular elements and the
frequencies of occurrence. There are limited attempts to link these results back to
the intended policies, some of which might have to be inferred from documents.
More sophisticated methodologies need to be developed to study these links. In ad-
dition, curriculum documents are the outcomes of much discussion and negotiation
that have taken place at numerous committees and meetings but are never reported
for public information. To spur further research and gather more in-depth data for
scholarly analysis, key agents of MCP should be interviewed to understand their
assumptions, views about mathematics values in the national education system, and
personal experiences. This is akin to conducting task-based interviews to understand
student’s mathematical thinking, an approach that has led to sound practical impli-
cations about teaching and learning. Thus, a similar methodology to probe policy
formulation could bring about significant knowledge concerning MCP and its prac-
tices, in particular, new ways to promote effective teaching and meaningful learning
of mathematics for students in the 21st century. Likewise, policymakers who are
charged with formulating policies that impact these students need to be cognizant of
the assumptions and evidence that underpin the policies that they may wish to bring
about.

From a policy perspective, several obstacles to enhancing student achievement
need attention: translating evidence-based findings into policy statements; determin-
ing the levels of policy implementation that work best (local, regional, national); ob-
taining international collaboration such as memorandum of understanding (MOU)
between countries or institutes; identifying resources and cost constraints for policy
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implementation; and establishing priority options. These are just some of the nu-
merous issues that constitute the “contents” of the MCP that need to be addressed.
Indeed, MCP is an exciting field of inquiry waiting to be developed, and we hope
that this chapter with its three case studies will stimulate this development.

Authors’ Disclaimer The views expressed in this chapter are those of the authors’ and do not
necessarily reflect the official views and policies of the respective ministries of education.
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Decision Making in the Mathematics Curricula
among the Chinese Mainland, Hong Kong, and
Taiwan

Hak Ping Tam, Ngai-Ying Wong, Chi-Chung Lam, Yunpeng Ma, Lije Lu,
and Yu-Jen Lu

Abstract As in many other places, the mathematics curricula in the Chinese main-
land, Hong Kong, and Taiwan underwent reform at the turn of the millennium, ad-
dressing the various political, social, and educational needs of these regions. These
reforms were not smooth and resulted in many heated debates and, recently, at-
tempts have made to adjust the mathematics curricula in response to these debates.
The initiation of change, strong reactions, and adjustments by the policy makers
can be better understood by looking into the decision-making system and process
of curriculum development in these three educational systems. In this chapter, we
shall look at decision making in the mathematics curriculum among the three ed-
ucational systems from three different perspectives: how curriculum decisions are
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made in these regions; what issues they aim to tackle; and why the implementation
of curriculum changes has been problematic.

The historical development of the mathematics curricula in these three re-
gions will first be portrayed. Building on this background, the general curriculum
decision-making mechanism in these three regions will be delineated and imple-
mentation problems discussed. At the end of the chapter, the authors will attempt to
draw lessons one can learn from these historical accounts.

Keywords Mathematics curriculum · Curriculum reform · Curriculum decision
making · Curriculum implementation · Education in Chinese regions

How a Curriculum Is Developed and then Implemented in the
Classroom

The Chinese mainland, Hong Kong and Taiwan have all followed a center–periphery
curriculum development system (Association for Curriculum and Instruction of Tai-
wan 2000; Ma 2008; Morris 1996; Morris and Adamson 2010) for a long time.
Though the situation varies across systems, the school curriculum is developed by
an agency in the government and then disseminated to schools for implementation
at the classroom level; or a special committee is commissioned to be responsible for
developing the curriculum that must then be approved before it can be made official.
Under this center–periphery system, the official curriculum development agency is
given the responsibility of designing a curriculum for a large number of schools.

Among the three educational systems, Hong Kong is by far the smallest in terms
of geographical size, number of schools, and student population. Nevertheless, it
still has over 800 primary schools and nearly 500 secondary schools. Students come
from very diverse backgrounds, with different levels of academic motivation, inter-
est and competency. Catering to this learning diversity in Hong Kong is a serious
challenge to the curriculum developers (Lam and Chan 2011). It is not at all difficult
to appreciate the severity of this challenge also in the other two educational systems,
which are much bigger in size with a much wider range of physical terrain and so-
cial composition. Indeed, the demand for a school curriculum that better caters to
the diverse needs of the students has become a major issue in all three systems (Lam
et al. 2012; Lin 2004).

The Chinese Mainland

Before 2000, the mathematics curriculum of the Chinese mainland was based on
centralized decisions in which the government played a leading role (Ma 1998).
There were seven editions of mathematics syllabi published from 1949 to 1992.
Only a few experts took part in the decision-making process, which was led by the
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educational administration department. In June 1985, the Department of Elemen-
tary Education and the Department of Secondary Education of the State Education
Commission made an in-depth study in various areas, including the local economy,
education, the status of culture development, current teaching plan, teaching outline,
textbooks, and teaching situation (Ma 1992). Accordingly, the Instructional Plan for
Compulsory Primary School and Junior High School (draft) was prepared. The doc-
ument was then sent out to the educational administrative departments and schools
in all provinces, autonomous regions and municipalities in order to gather feedback.
After gathering their views, the document was revised repeatedly and the (draft)
Instructional Plan was finalized and submitted to the Party Group members of the
Department of Secondary Education for endorsement. Furthermore, instructional
plans based on the draft were developed by experts organized by the Department
of Secondary Education for all subjects. In 1990, the Basic Education Department
again organized expert panels to revise the Instructional Plan. During the revision
process, principals, teachers, and scholars were invited to offer suggestions and the
draft was published in the China Education Daily, soliciting recommendations and
feedback from the public. Subsequently, the Instructional Plan for Compulsory Pri-
mary School and Junior High School was eventually worked out. So, one can clearly
see that the Compulsory Education Curriculum Plan and the instructional syllabi
were developed by a few experts working in government department.

The Basic Education Curriculum Reform, which took place in 2000, was also
led and organized by the government educational administrative department. The
only difference was procedural; experts of different fields were invited to participate
in the analyses and discussion at various stages of the development, without wait-
ing till the final stage. The curriculum designers, including university academics,
teaching-researchers, in-service teachers from primary and junior high schools, sci-
entists, and sociologists all contributed views from their professional perspectives.
Each task group, the mathematics subject group included, began with the nature of
individual subjects, then made analyses of the status quo, conducted comparative
studies, and investigated both societal and children’s needs. All these procedures
laid the theoretical foundation of curriculum development. In the subject of math-
ematics, the expert think tank included mathematicians, mathematics curriculum
experts, and mathematics teachers from both the primary and secondary education
sectors. Finally, after more than a year’s discussion, the Mathematics Curriculum
Standards for Compulsory Education (Trial version) were crafted.

The curriculum implementation process also underwent changes. In the early
days, the documents were simply sent out for implementation across the country.
Teachers were seen as not having the knowledge or skills to implement new changes
so teacher training was organized so as to help teachers understand the curriculum
and teaching better. However, as maintained by Guskey (2002), this kind of defi-
ciency model for teacher development seldom works.

The implementation was further complicated by the fact that China is a vast coun-
try, with very diverse levels of economic and social development (Ma et al. 2006).
Having one universal curriculum with a single set of textbooks for the whole coun-
try made instruction very difficult for practicing teachers. Therefore, beginning in
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the 1980s, the government allowed more publishers to develop textbooks. Having a
variety of textbooks helped teachers adapt the curriculum for their students, though
this was not a panacea. All these moves increase the chance of the curriculum being
implemented in the classroom, though there is still a large gap between the intended
and implemented curricula.

Taiwan

The educational system in Taiwan adopts a one-size-fits-all official curriculum pol-
icy for general students. Different departments within the Ministry of Education
(MOE1 Taiwan) have always been responsible for overseeing all matters in relation
to the development of the official curricula at the school level. However, there is no
special division within the MOE (Taiwan) that is in charge of the actual develop-
ment and write-up of school curricula for any subject. Instead, such duties are basi-
cally delegated to external groups that are responsible for designing and writing the
new curricula. Though the actual procedures for curriculum development may vary
across time, there is commonality with respect to the underlying mechanisms. Typ-
ically, the process starts off with the MOE (Taiwan) summoning a group of scholars
and administrators to form a steering committee to take care of setting up general
principles and operational guidelines for curriculum development. Meanwhile, sev-
eral scholars will be appointed by the MOE (Taiwan) with each of them playing the
role as a convener for a school subject according to his/her expertise. Each convener
will then assemble a group of scholars and teachers to serve on the sub-committee
for the subject under his/her responsibility. The typical size of a sub-committee
amounts to about fifteen members. After a consensus has been reached about the
coverage of topics as well as their contents, several members will be commissioned
to write up various portions of the curriculum and then everything is compiled into a
draft document. All documents must then be submitted to the MOE (Taiwan), which
will appoint a review committee to audit the manuscripts for approval. After all cur-
ricular documents for a learning stage have been approved, the curriculum will be
made official via a decree from the MOE (Taiwan) for subsequent implementation in
schools. Developmental procedures for the 1993 primary curriculum in the format
of a flow chart is used as a concrete example and presented in Fig. 1.

In the past, the production of textbooks in Taiwan was under the authority of the
National Institute for Compilation and Translation (NICT), which is the agency re-
sponsible for the compilation and translation of all academic and cultural materials.
All students used the same set of textbooks and teaching materials. However, start-
ing in 1991, the MOE (Taiwan) began to allow primary textbooks for the Arts and
Activities courses to be compiled by interested parties other than the NICT. This
measure was extended to the other subjects at primary level in 1996. Later, in 1999

1Since the government bodies concerned across the strait are both called Ministry of Education,
we add ‘China’ and ‘Taiwan’ to distinguish them.
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Fig. 1 Development procedures for the 1993 primary mathematics curriculum in Taiwan (MOE
Taiwan 1993)
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and 2000, the policy was extended to junior and senior high schools. This policy is
now known as the one guide—multiple sets of textbooks policy under the current cur-
riculum, which opened up the responsibility of developing textbooks to commercial
publishers and practicing teachers. One of the main purposes behind this policy was
to give teachers the freedom to select their own school-based textbooks according
to the needs of their classrooms. Accordingly, the NICT changed its role to simply
auditing the manuscripts submitted by commercial publishers for their suitability to
be used as textbooks (Tam 2010).

For a new curriculum to be successfully implemented in classrooms, supporting
efforts must be provided by various concerned parties towards this end. Moreover,
such measures must help emphasize the characteristics of the curriculum and facil-
itate the achievement of its objectives. For example, the 1993 mathematics curricu-
lum is more child-centered and allows for individual differences in learning. There-
fore, some educators promoted the idea of using problem posing, group discussion,
questioning, and argumentation between students and teachers, as well as coming
to a consensus regarding the knowledge they were trying to learn in the classrooms
(Wu and Lin 1997). Since these practices were quite different from those in the
previous curriculum, many training materials, in the form of instructional hand-
books and videos, were produced. However, professional development workshops
that supported the then new curriculum were scant. This curriculum will be further
discussed in a later section.

Hong Kong

All the school curricula are developed and issued by the Curriculum Development
Council (CDC), an advisory body set up by the government to oversee school cur-
riculum matters. Though theoretically these documents are only recommended for
use, in reality schools are expected to adopt them. Besides the curriculum docu-
ment, there are other means to actualize this, including school inspections, textbook
control, and high stakes examinations. Another means is government subsidy. Most
schools in Hong Kong are ‘subsidized’ schools, not run by the government but by
religious bodies or non-government organizations; their funding, however, comes
from the government. Schools may adapt these centrally developed curricula into
‘school-based curricula’; however, they have to do so along the CDC guidelines. So
curriculum development is centralized.

However, this does not mean that the CDC is the only force shaping the school
curriculum. There are other organizations and stakeholders who can influence the
planned and implemented curriculum in the school sector. For example, high level
education advisory bodies, such as the Education Commission, which is responsible
for the formulating of education policies in Hong Kong, could have a strong say in
the school curriculum. In fact, it was the Education Commission that suggested
the new academic structure of three-year junior high, three-year senior high and
four-year undergraduate study in 2004. After the adoption of this new academic
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structure, the senior secondary mathematics curriculum was developed, though all
these recommendations have to be channeled back to the CDC for the actual design.

The basic CDC structure was established in 1972. At that time, it was named
the Curriculum Development Committee, under which were the primary and sec-
ondary level mathematics CDCs of which the principal inspectors automatically be-
came chairs. It was reconstructed into the Council in 1988. At its lower level were
a number of coordinating committees, three of which were responsible for primary,
secondary, and sixth form level curricular matters. These coordinating committees
were chaired by school principals, with officials providing administrative support.
Under each coordinating committee were a number of subject committees. These
subject committees were responsible for the development of subject curricula. In
the case of mathematics, there were a total of three subject committees, namely pri-
mary, secondary, and sixth form. The subject committees were chaired by practicing
teachers, the officials taking up the role of vice-chair and providing secretarial sup-
port. Most of the members were practicing teachers. This can be viewed as a gesture
of democratization and a response to the emergence of a great number of pressure
(concern) groups due to the rise of local awareness in the 1970s. The colonial gov-
ernment tried to incorporate these forces into the establishment by inviting some of
these key persons into these committees, though they attend these committees in a
personal capacity only (Tang et al. 2007).

Theoretically, CDC members, whether official or non-official, were vested with
the power to decide curricular matters. In reality, they functioned more as consul-
tation bodies, feeding the governmental inspectorate advice on curriculum develop-
ment. Morris (1996) pointed out that these subject committees were in the hands of
the officials for a number of reasons. First, all non-official members were recom-
mended and appointed by the government. Second, the non-official members had
limited terms, usually no more than six years, while officials served the commit-
tees for longer, giving them a stronger influence. Moreover, being the only full-time
members, the officials set the agenda and carried out all the groundwork.

With the establishment of the Curriculum Development Institute in 1993, an ad-
ministrative department under the Education and Manpower Bureau,2 the Curricu-
lum Development Council was further restructured in 1999. First, all the subjects
were grouped under eight Key Learning Areas (KLA). For example, subjects such as
geography, history, Chinese history and economics were grouped into the Personal,
Social and Humanities KLA. Mathematics, fortunately, was treated as an indepen-
dent KLA. Secondly, the line between primary and secondary was broken—the
mathematics Curriculum Development (KLA) Committee takes care of the mathe-
matics curricula from primary up to senior high levels. The moderating committees
were trimmed away. The three-tier system was condensed to two tiers. When there
was a need, for example developing a new curriculum or a new form of assessment,

2There were various restructurings of the government body taking care of education, bearing differ-
ent labels at different times. For simplicity’s sake, we can treat ‘Education Department,’ ‘Education
and Manpower Bureau,’ and ‘Education Bureau’ as synonyms.
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Fig. 2 The Hong Kong Curriculum Development Council structure (adapted from CDI 2009)

a task force would be set up under the KLA committee. Once the task was com-
pleted, the task force would be dissolved. Such change allowed the officials to have
an even stronger say in the actual design of curriculum matters because the task
forces were all ad hoc. The present structure is shown in Fig. 2.

There is another line of curriculum development, via public examinations. In ear-
lier days, there was an Examination Section within the Education Department, tak-
ing care of various public examinations except for matriculation.3 The Hong Kong
Examinations Authority was then established in 1977, taking over public exami-
nations gradually, including Certificate and matriculation levels. For mathematics,
there are now subject committees at various levels. Their job is to review the exam-
ination syllabi, set regulations and directions for examination papers, and conduct
post-mortem reviews. It was renamed the Hong Kong Examinations and Assessment
Authority (HKEAA) in 2002, indicating that it also takes care of (‘internal’) assess-
ments as well as public examinations. In subsequent years, the subject committee
underwent ‘downsizing,’ and fewer academics were incorporated.

To ensure the examination syllabi are aligned with the official school curricu-
lum, when a curriculum is to be included in the public examination—say for exam-

3At the time the matriculation examinations were in the custody of the universities.
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ple the Diploma of Secondary Education Examination—a ‘One-committee’ which
comprises members from both the CDC Working Group and the HKEAA subject
committee will be set up to work out the curriculum and assessment guides.

To many teachers, textbooks, rather than the official curriculum and assessment
guides, are the ‘curriculum documents,’ as they rely heavily on textbooks in their
teaching. Interestingly, textbooks are not produced by the government. In Hong
Kong, textbooks are produced by merchants (publishers). Though there were orig-
inally textbook censorships, the target was Chinese language and civic education
rather than the more politically neutral subject of mathematics (Wong and Tang
2012). Nevertheless, textbooks are still written according to the official curriculum
guide since the Education Bureau has a list of recommended textbooks. There have
been incidents where textbooks can still pass the review (and be put onto the recom-
mended list) without following the curriculum guides strictly, and also schools can
choose textbooks not on the list. However, to play it safe, textbook producers would
obviously try their best to keep the textbooks in line with the official curriculum and
assessment guides.

Another means by which the government influences the implemented curriculum
is through the high stakes examinations. Students’ performances in public examina-
tions have significant impact on their further studies and career. Hence, both students
and parents are very concerned about performance in public examinations. If teach-
ers do not teach according to the test, they may be challenged. This inserts indirect
control on textbook production too. In a sense, teachers use textbooks to help stu-
dents pass examinations. To get the market share, textbook developers will naturally
try their best to gear the contents of their books to the examination syllabus, which is
in fact a shadow of the curriculum document. In sum, the government is controlling
the curriculum, textbooks, and day-to-day teaching via high stakes examinations.
This proves to be very effective (Fig. 3).

Summary

When designing a curriculum, the developers have to accommodate the demands
of various stakeholders. In the case of mathematics, these include, for example,
the societal expectations of the competency of the school leavers, the interests and
needs of the students, the expectations of the parents, and the views of the mathe-
maticians and mathematics educators. People very often hold different curriculum
ideologies (Eisner 2002; Schiro 2008). Some adopt a social efficiency view towards
the school curriculum, while others see the important role of the school curriculum
in transmitting discipline knowledge. How to accommodate these different demands
or orientations is a challenge to curriculum developers.

Since the 1990s, there has been a demand on the schools to prepare the younger
generation for the challenges posed by globalization and the advent of the knowl-
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Fig. 3 Forces influencing the curriculum and its implementation in Hong Kong

edge society in these three educational systems (Lam et al. 2012; MOE China 2001;
Wu 2003). Internationally, there has been a strong voice promulgating the impor-
tance of nurturing generic skills4 (see, for example, Delors et al. 1996; Wong et al.
2004). Hence, in the 1990s, the three educational systems, in the Chinese mainland
and Hong Kong in particular, were facing a series of problems in mathematics teach-
ing and learning that include learner diversity, child-centeredness,5 and nurturing of
non-mathematics-specific generic skills to varying degrees.

To understand these challenges and the potential conflicts in meeting these de-
mands, it is necessary to briefly review the historical development of the mathemat-
ics curricula in these three systems.

4In Hong Kong, the generic skills of collaboration, communication, creativity, critical thinking,
information technology, numeracy, problem solving, self-management, and study skills were iden-
tified (CDC 2002).
5In brief, we aim at facilitating students to become active learners and owners of learning. ‘Teacher-
led’ and ‘student-centeredness’ may not be in total conflict (Huang and Li 2009; Wong 2004).
More recent discussions have focused on ‘learning-centeredness’ rather than ‘learner-centeredness’
(Watkins 2008). For simplicity, in this chapter we treat student-centeredness, learner-centeredness,
and child-centeredness as synonyms though there could be subtle differences among these terms.
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The Evolution of the Mathematics Curricula in the Three
Educational Systems

The Chinese Mainland

Background

In the Chinese mainland, education was under strong Russian influence in the 1950s
because of the strong political ties between China and Soviet Russia during that
period. Computation skills and basic mathematics knowledge were highly empha-
sized. In particular, the 1963 syllabus was a landmark of the Two Basics. During the
Cultural Revolution (1966–1976), schooling was disrupted. A series of new curricu-
lum initiatives were launched in the mid-1980s and the 1990s as a way to relieve
students’ learning burden and to modernize the curriculum in light of international
trends. Another trend was to loosen the rigid, centralized control. In 1992, the pol-
icy of one curriculum—diversified sets of textbooks was implemented. A variety
of teaching materials were used in class. More than six different sets of textbooks,
each with its own characteristics, were published. By 1997, this decentralized pol-
icy was further extended to diversified curricula—diversified textbooks. Zhejiang
province and Shanghai were granted the autonomy to develop their own curricula
(Wong et al. 2004). However, despite these changes, the mathematics curriculum in
the mid-1990s was still highly academic and discipline-oriented. The examination
pressure exerted on students was still high. Most teachers saw teaching as helping
students jump over examination hurdles instead of developing their innate poten-
tial. Curriculum was highly centralized and teaching was conventional (Shi and Ma
2009).

There have been ten different versions of the mathematics curriculum since 1949,
as shown in Table 1. From this table, we see educational opportunities opening up
to the public and allowing diversity across the country. The mathematics curricu-
lum went from the earlier versions of the pro-Russian curricula in the 1950s to the
re-vitalized curriculum in the mid-1970s after the cultural revolution and then sub-
sequent revisions in the 1980s. The curriculum underwent another major reform in
2000 to meet the needs of compulsory education. While the details of this history
can be found in Shi and Ma (2009) and Lam et al. (2012), we will focus our attention
on the latest round of curriculum reform in 2000.

Curriculum Reform at the Turn of the Millennium

There were several missions of the Mathematics Curriculum Standard of the Com-
pulsory Education published in 2001. It tried to align the primary and secondary
mathematics curriculum into a coherent set for the nine-year compulsory educa-
tion. Furthermore, students’ all-round development was stressed. Affects, values,
and abilities were addressed as well as mathematical knowledge and skills. Sepa-
rate sections were devoted to knowledge and skills, mathematical thinking, problem
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Table 1 The evolution of the mathematics curriculum in the Chinese mainland

Primary School Junior Secondary School

1950: Primary School Temporary Arithmetic
Curriculum Standards (Draft)

1950: A concise outline of Mathematical
textbook (Draft)

1952: Primary School Arithmetic Teaching
Program (Draft)

1952: Junior Secondary School Mathematics
Teaching Program (Draft)

1956: Primary School Arithmetic Teaching
Program (Revised Draft)

1954: Junior Secondary School Mathematics
Teaching Program (Revised Draft)

1963: Full-time Primary School Arithmetic
Teaching Program (Draft)

1963: Full-time Junior Secondary School
Mathematics Teaching Program (Draft)

1978: Primary School Mathematics Teaching
Program (Trial)

1978: Ten-year Full-time Junior Secondary
School Mathematics Teaching Program (Trial)

1986: Full-time Primary School Mathematics
Teaching Program

1986: Full-time Junior Secondary School
Mathematics Teaching Program

1992: Full-time Primary School Mathematics
Teaching Program of Nine-year Compulsory
Education (Trial)

1992: Full-time Junior Secondary School
Mathematics Teaching Program of Nine-year
Compulsory Education

2000: Full-time Primary School Mathematics
Teaching Program of the Nine-year
Compulsory Education (revised version)

1996: Full-time Regular Senior Secondary
School Mathematics Teaching Program (Trial)

2001: Mathematics Curriculum Standard of the Compulsory Education (experimental version)

2011: Mathematics Curriculum Standard of the Compulsory Education (revised version)
(ready for implementation)

solving, and affective attitudes. Connecting mathematics with the real world, de-
veloping cultural values, mathematics communication, and thinking processes were
emphasized. Along this line, four basic abilities were identified: basic knowledge,
basic skills, basic thinking ability, and basic activity experience.

During the experimentation process, however, the original ten-year implementa-
tion plan for nationwide curriculum reform was shortened to five years to speed up
the change process. Textbook development and teacher preparation failed to cope
with the rapid pace of dissemination and implementation. Though the reform did
bring about changes in student learning, it encountered opposition from practic-
ing teachers and criticisms from scholars. The debate reached its climax as another
renowned mathematician, Boju Jiang, a professor at the Peking University and a
Fellow of the National Science Academy, put forth a petition during the National
People’s Congress and Chinese People’s Political Consultative Conference in 2005,
calling for a halt to the implementation of the new mathematics curriculum (Lam
et al. 2012).

In response to this, the Ministry of Education of China reviewed the situation.
After extensive deliberations, the above four basics were once again reaffirmed (Shi
and Liu 2007). In the course of discussion, the long-standing product–process issue,
including how to nurture non-mathematical (cross-subject) abilities through math-
ematics, was once again a focus of attention. The product–process debate can be
traced back at least to the 1970s when the Modern Mathematics reform went down-
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hill. The former refers to mathematical contents and the latter the learning process,
including the so-called ‘process abilities’ (higher-order thinking skills or generic
skills).6

Taiwan

Background

Nine-year compulsory education has been in place in Taiwan for more than 40 years.
Although it was stated in the official curricular documents that the primary and sec-
ondary mathematics curricula should be connected, they were, for many years, de-
veloped separately. Careful alignment was therefore called for. From 1949 to 2003,
the primary and junior high school mathematics curricula have been revised seven
and eight times respectively. The changes in curricula have been quite rapid, espe-
cially in recent years. In brief, Taiwan followed the Modern Mathematics Movement
in the 1960s; the use of teaching aids (manipulative) was advocated in the reform
in the 1970s; and child-centeredness was the theme of the reform in the 1990s. The
curriculum introduced in 1993, often referred to as the constructivist curriculum,
aroused heated debate about its effectiveness. In 2000, Taiwan started to implement
a new single mathematics curriculum, the Grade 1–9 curriculum (temporary edi-
tion). The major aims of the new curriculum included organizing the content for the
nine-year compulsory period as an integrated whole (Chung 2005; Tam 2010) as
well as simplification of coverage and level of difficulty from the previous curricu-
lum.

A Microcosm of the Reform in Taiwan

Rather than spreading thinly the discussion of changes to various curricula, this
section will focus on discussing the transition into and out of the 1993 curriculum
as a microcosm of the reform in Taiwan. This curriculum is chosen because of its
relevancy to constructivism, which is deemed more familiar to international readers.
Moreover, the transitions with respect to this curriculum were quite strongly related
to changes in the social environment and the expectations of various parties. In
Table 2, major events that were relevant to various curricula are presented so as to
build up a context for subsequent discussion.

After martial law was lifted in 1987, an environment that fostered pluralistic
thinking towards various political and social issues surfaced. Over time, ideas re-
garding educational reforms began to take shape. In 1988, the Ministry of Education
(Taiwan) announced its decentralization of textbook policy. This liberalization also
spread into the realm of curriculum design.

6Refer to Wong et al. (2004) for more details.
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Table 2 The timeline of transition of various elementary and junior high school curricula in Tai-
wan

Curricula Year Major events

Elementary Junior high

1968
edition

1968 edition 1968 • Implementation of nine years compulsory education

1972 edition 1972

1975 edition

1983 edition 1983

1985 edition

1987 • Lifting of martial law

• Civil educational reform groups began to form

1989 • Beginning of the decentralization of textbooks policy
(starting with art and skill related subjects at the junior
high level)

• Announcement of a new elementary mathematics
curriculum standards to be released in 1993

1993
edition

1993 • Release of the 1993 curriculum standards

1996 • Implementation of the 1993 edition and the beginning
of constructive math in elementary school

• Beginning of the decentralization of textbooks policy
for primary mathematics

2000 Grade 1–9
curriculum (temporary
edition)

2000 • Nine Year Curriculum (temporary edition) was
announced, which would be implemented by stages
starting from Grade 1 in 2001

2002 • Beginning of the decentralization of textbooks for
junior high mathematics

• Nine year curriculum temporary edition was initiated
in Grade 7

• MOE halted the constructive math approach in
elementary school

2003 Grade 1–9
curriculum (formal
edition)

2003 • Formal edition of the Nine Year Curriculum was
launched

At that time, demand for educational reform began to surface from the society
at large. Moreover, the 1975 curriculum had been around for quite some time. Thus
in 1989, the MOE (Taiwan) announced that a new edition of primary mathematics
curriculum would be made public in 1993 and be implemented in 1996. Towards
this end, the convener of the 1975 mathematics curriculum design sub-committee
was again appointed by the MOE (Taiwan) to serve as the convener for the 1993
curriculum (Pan 2007). This committee was entrusted with full autonomy to devise
the curriculum. Whereas the 1975 curriculum was organized according to Piaget’s
cognitive theory, classroom instruction was teacher-centered and oriented towards
the use of manipulatives. The main focus of the 1993 curriculum was not on con-
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structivism either, as can be observed from the fact that only the verb form of ‘con-
struct’ appeared in the curriculum standards (MOE Taiwan 1993). Moreover, it only
appeared in three places in the 42-page manuscript. Though there were arguments
that constructivist approaches were only advocated in the corresponding textbooks
rather than in the curriculum itself, higher-order thinking skills (connections, com-
munications, etc.) were inevitably the heart of the reform.

Later, in 1991, the convener of the curriculum committee was being recruited
to serve as the chief editor for compiling the standard version of mathematics text-
books. In order to promote the idea of student-centeredness, the new textbooks pre-
sented different tactics for students to solve the same problems. Some of these tac-
tics might look clumsy on the surface, but they were not meant to be an end in
themselves but rather were intended to become the stepping stones for students to
learn formal mathematics (NICT 2002a, 2002b). Since this arrangement deviated
significantly from past practices, teaching manuals with detailed explanation were
prepared at various times to supplement the 1993 curriculum. Some of these doc-
uments were very thick; one even amounted to over 700 pages. At that time, the
decentralization policy was at its beginning stage. With few experienced textbook
writers to be found, commercial publishers had to refer to the standard version while
compiling their own version of textbooks. Furthermore, there were not enough train-
ing workshops organized for in-service teachers to support the then new curriculum.

Complaints by parents to the MOE (Taiwan) began to surface in the year 2000
(MOE Taiwan 2003). In 2002, serious doubts concerning the effectiveness of the
1993 curriculum were mounted by various parties, including parents, academics,
and legislators. Debates on its relative merits and problems were launched on spe-
cific websites, in newspapers, and in open forums organized by the MOE (Tai-
wan). The weaknesses commonly raised included ‘constructivist mathematics dumb
down students’ and ‘it made simple computations into complicated procedures’ (Pan
2007). An important reason for this impression was that many teachers required their
students to strictly follow the tactics presented in the textbooks. Apparently, some
of them did not realize that those tactics should later yield to the formal approach
of doing mathematics. Insufficient teacher training unfortunately contributed to the
ousting of the 1993 curriculum.

Hong Kong

Background

Modern mathematics was brought into the Hong Kong secondary school mathe-
matics curriculum in the 1960s. In line with the Western trend of back to basics,
the unified mathematics syllabus was released in 1985 (Wong and Wong 2001).
As for primary mathematics, Hong Kong extended the original arithmetic curricu-
lum to a mathematics curriculum in 1967 and brought in various notions of child-
centeredness based on initiatives such as Nuffield mathematics in the United King-
dom. This was further enhanced by the promotion of the metric system in 1973.
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Table 3 The evolution of the mathematics curriculum in Hong Kong

Year Primary Secondary

1964 Modern Mathematics

1967 From arithmetic to mathematics

1973 Metric system

1975 Syllabus published by Curriculum
Development Committee (draft)

1983 Syllabus published by Curriculum
Development Committee: Activity approach

1985 Basic mathematics curriculum

1995 Target Oriented Curriculum

1997 Holistic review of the mathematics curriculum

2001 New primary and secondary mathematics curriculum and assessment guides

2009 New senior secondary school system

The reduction of complex computations in the inter-conversion of units left further
room for hands-on activities. After accumulating some years of experience through
experimentation, the 1983 version of the primary school mathematics curriculum
was finally established. In this version, teaching strategies were recommended for
each topic, clearly directing teachers toward the child-centered approach (Tang et al.
2007). To tackle a range of problems arising from the implementation of free and
compulsory education, the Target Oriented Curriculum, which was basically an
outcome-based curriculum, was proposed. That aroused heated debate and resulted
in a holistic review of the mathematics curriculum. The evolution of the Hong Kong
mathematics curriculum is depicted in Table 3.

The Dispute that Arose from the Target Oriented Curriculum

As elite education was shifted to universal education in the late 1970s, various issues
such as learning motivation and students’ deviant behaviors arose in the mid-1980s.
In particular, learning diversity was deemed one of the major issues. To address this,
the Target Oriented Curriculum was put forth, which involved a standardization of
the curriculum (Wong et al. 2004). Theoretically, individual learners could advance
their learning step-by-step at their own pace, with diagnosis in every step. This ini-
tiated heated debates, the foci of which were fragmented learning and frequent as-
sessments (which were often high stakes). Most seriously, individual subjects were
structured to conform to a cross-subject curriculum framework, penalizing subject
autonomy.

The Target Oriented Curriculum debate culminated in a group of academics
(mathematics educators) publishing their statements in a press conference, which
was rather rare in Hong Kong (Wong 2010; Wong et al. 2004; Wong and Tang
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2012). Government officials responded very positively and launched a holistic re-
view of the mathematics curriculum from primary up to senior secondary level in
1997. Two research studies (one on international comparison and one on the views
of various stakeholders) were commissioned. Hearings were held and with the draft-
ing of 10 position papers, the final report was published at the end of 1999. The
whole process lasted two and a half years, which changed the general impression
that curriculum reforms were often done in haste. Furthermore, the curriculum de-
velopment was based on solid scientific research and consultations. Along with the
review, two new syllabi, one for the primary level and one for the secondary level,
were issued (Wong 2010).

The Millennium Educational Reform

Just as the mathematics holistic review was about to publish its report, a group of
education policy makers (above the subject level) initiated a bigger educational re-
form, which involves restructuring the education system, curriculum structure, and
assessment mechanisms. The underlying ideas are learning to learn, stressing pro-
cess abilities, and decompartmentalizing. Since many of these changes are structural
and fundamental, it overrides some of the recommendations of the mathematics
holistic review. In particular, the trimming down of subjects is one of its objectives
and the original senior secondary curriculum structure (which allows students to
take 5–10 subjects) is changed to ‘4 + (2 to 3X)’. The ‘4’ refers to the four compul-
sory subjects, Chinese, English, mathematics and Liberal Studies, and the X’s are
the electives. Other curriculum initiatives include school-based assessment, the use
of ICT, project learning, and the grouping of physical education, visual arts, music,
service learning, and conventional extracurricular activities into a slot called Other
Learning Experience (CDC 2002). There are ongoing debates on various issues and
we still need time to evaluate the effectiveness of the educational reform and how it
actually affects learning and teaching (Wong 2010).

Summary

From the portrayal of the evolution of the mathematics curricula in these three re-
gions, it can be seen that there are some similarities in the desired direction of math-
ematics curriculum and the underlying conflicts. The product–process dichotomy
is one. Others include subject-specific objectives and the development of cross-
disciplinary generic skills. This involves power hierarchy as well (see discussions
below). Child-centeredness is another central issue, which relates to how much
should be included in the curriculum (Cai and Wong 2012). How much freedom
should be given to the teachers, or do modes of teaching need to be specified in
the curriculum documents? Obviously textbooks are another focus of discussion.
These issues are not new and not confined to the latest round of curriculum reform.
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Different extents of these discussions can be seen throughout the history of mathe-
matics curriculum development among these three educational systems, as will be
discussed in the following section.

What Lessons We Can Learn from these Three Regions

The Process of Curriculum Making

Curriculum theorists such as Schiro (2008) have pointed out that people hold dif-
ferent conceptions of curriculum. As people have diverse views and expectations of
what curriculum goals should be and what the means of achieving educational goals
are (Pajares 1992), curriculum planners often face the challenge of how to accom-
modate these diverse views and even conflicting demands. The cases of these three
systems illustrate the same kind of challenges. The curriculum concerns the high
stakes of various parties, including government officials, practicing teachers, educa-
tors, mathematicians, and even parents. Accommodating them has been a challenge.

As seen above, curriculum development is highly centralized in all three educa-
tional systems. In Hong Kong, for example, curriculum policies are held firmly in
the hands of the Education Bureau and the advisory bodies including the Educa-
tion Commission and the CDC. These central agencies’ moral and political roles
are negotiating a compromise between the demands and expectations of the various
stakeholders such as politicians, business people, teachers, academics, students, and
parents. The majority of CDC members are principals, in-service teachers, univer-
sity academics, and leaders from various walks of life. By having representatives
from a number of sectors, it is hoped that the views of various stakeholders will
be represented and hence considered in the process. Further views will be solicited
through informal consultation when there is a need. However, research studies have
shown that officials dominate through control of the membership and the agenda of
the curriculum development process (Fok 2005; Morris 1996).

On the Chinese mainland, the hot debate in the mid-2000s on what kinds of math-
ematics should be taught and what teaching strategies should be adopted also reflects
the conflict of values between different stakeholders. After the implementation of
the mathematics curriculum in 2001, divergent views surfaced and, as mentioned
above, the debate reached its climax in 2005. These views reflected very differ-
ent perspectives and beliefs towards both mathematics and mathematics education.
That includes the value, purpose, content, teaching, and assessment method of the
mathematics curriculum. For instance, some people disagreed on the arrangement of
mathematics content and insisted that putting the curriculum contents into the four
strands of number and algebra, shape and space, statistics and probability, practice
and integrative application in fact fragmented mathematical knowledge. Some re-
flected that the teaching methods were too complicated. The spiral approach slows
down those who are talented, underestimating students’ abilities (He 2006; Jiang
2005). This reflects a subtle shift of target audience (‘end user’ of the curriculum)
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too: from basically nurturing potential mathematicians and scientists to ‘mathemat-
ics for all.’

There are several features of the curriculum-making process worth noticing in
Taiwan. First of all, the MOE (Taiwan) delegates a great deal of freedom to the
curriculum design committee to decide the coverage and content of the curricu-
lum according to their expert judgment. Such autonomy and freedom reflects the
MOE (Taiwan) policy of respecting the professionals. It was only during rare situa-
tions that mathematicians and mathematics educators could not resolve the dispute
over the coverage of the Grade 1–9 curriculum and the MOE (Taiwan) stepped in
to make a decision. The current situation is that different scholars have different
philosophies of how the curriculum should be assembled, thus each curriculum will
represent a particular ideology that might not be agreeable to other groups. In order
to minimize unnecessary ideological clashes later, it would be most helpful if the
curriculum design committee could post a draft for review by various stakeholders
before finalizing it.

Secondly, it is observed that changes in the social environment together with ex-
pectations from the concerned parties have played non-trivial roles in influencing
curriculum development in Taiwan. On one hand, this reflects that the MOE (Tai-
wan) has paid more attention to opinions from external groups. Yet the worry is
that too much influence might be enacted on educational policies from various pres-
sure groups. Currently, social pressure has contributed to rapid changes in curricula
within a short period of time. A mechanism should hence be set up to weigh various
opinions for their values. In addition, a blueprint is needed for long-term curriculum
development.

Thirdly, the termination of the 1993 curriculum illustrated the well-known claim
that teachers’ preparation is the key to the success of a curriculum. Even though
instructional guides had been compiled for teachers, they did not guarantee suc-
cessful implementation of a new curriculum, nor did they replace the need for full-
scale teacher training. Furthermore, mere dissemination of teaching manuals was
not enough to enable teachers to understand how the curriculum should be imple-
mented in the classrooms, particularly when some manuals amounted to over 700
pages. This reading was simply too demanding for busy teachers. Instead, system-
atic in-service teacher development programs should be organized for teachers prior
to and during the institution of a new curriculum. These should be planned during
the curriculum-making process.

The Consultation Mechanism

As curriculum development in all three systems is highly centralized, consultation
is of utmost importance in generating a curriculum that is acceptable to, if not wel-
comed by, the stakeholders. Curriculum designers have to make sure that imple-
mentation is possible when it comes to the hands of the teachers. The change in
the curriculum development process (of involving experts and practicing teachers at
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the stage of development rather than waiting till the final product) in the 2000 revi-
sion in the Chinese mainland addressed this issue. In Hong Kong, there have been
a number of advisory bodies such as the CDC, but the ‘chemistries’ in meetings
become crucial. As mentioned above, the ways in which the members are identi-
fied and appointed essentially decide the outcome. Furthermore, whether members
are given ample opportunities to express their views, whether their voices are suf-
ficiently heard, and how officials dominating the agendas and discourse also affect
the outcome of the decision-making process are important questions. Some have
pointed out the limitations of the so-called ‘elite consultation’ where the elite and
those articulate in speech essentially dominate the floor in public ‘town-hall con-
sultations.’ The same may be true within committees. Practicing teachers who feel
they are of inferior social status and academic standing very often do not have the
courage or chance to voice their preferences and demands.

For the curriculum developers, basing curriculum development on solid ground
is important too. As seen above, in the Chinese mainland, baseline research is tradi-
tionally done before designing a new curriculum. The research might include cross-
national curricular comparisons, in-depth investigations on the nature of individual
subjects and the status quo of the society as well as children’s needs. However, not
enough emphasis has been laid on empirical studies. In most cases, including those
not confined to the Chinese mainland, no formal needs analyses are performed when
a new subject curriculum is designed. As mentioned above, the holistic review of the
mathematics curriculum in Hong Kong in the late 1990s served as the needs analysis
of the design of the new curriculum in the early 2000s. The holistic review not only
reviewed other countries’ state of mathematics curriculum, but also identified teach-
ers’ and mathematicians’ views, the learning problems and behavior of the students,
the supports provided by the parents to their children, and parents’ and employers’
views of youngsters’ mathematics competencies through a number of large-scale
surveys as well as interviews. The findings of the holistic review provided food for
thought in guiding the direction of the curriculum reform. This may explain, in part,
why the Hong Kong mathematics curriculum reform led to less controversy in the
early 2000s (for details, refer to Wong 2010).

The Subject and the Generic: Conflict or Cooperation

At the turn of the millennium, higher-order thinking was once again stressed. The
subject-based curriculum was seen as compartmentalizing knowledge taught in
schools. As mentioned earlier, this product–process issue is not new (Wong 2010;
Wong et al. 2004). Though there had been arguments that individual subjects have
full capacity to nurture the so-called generic skills, cross-subject abilities earned
higher regard. This is not solely an academic matter when there is a top-down
power relationship in the curriculum policy-making mechanism. Subject commit-
tees are always placed under the leadership of general committees. What makes the
matter worse is that the high-level officials responsible for curriculum reforms are
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generalists rather than subject specialists. In Hong Kong, the subject-level commit-
tees have been busy fulfilling the orders of the high-level committees for the past
twenty years. Such top-down decisions happened from the launching of the Ad-
vanced Supplementary Level Curriculum, that of the core curriculum (later turned
into the ‘Tailored syllabus’), the Target Oriented Curriculum in the 1990s, down to
the grosser educational reform in the 2000s, including the New Senior Secondary
School curriculum, the Basic Competency Assessment, and the School Based As-
sessment (though the School Based Assessment has been postponed in the sub-
ject of mathematics). These might have distracted the subject curriculum develop-
ers’ attention from delving into the core mission—improving the subject curricu-
lum.

There had always been a call for ‘doing away with mathematics’ under the influ-
ence of educational progressivism (Morris 1996), though sometimes the voice was
louder and other times not as loud. The creation of the new compulsory subject Lib-
eral Studies in Hong Kong shows the belief that this newly created subject is more
effective in training generic skills than other well-established subjects. In a sense,
subject curricula are means to meet the goals of building up students’ generic skills
and thus often receive a lower regard. If this kind of mentality prevails, the quality
of the mathematics curriculum may suffer in the future.

There is an issue that Hong Kong did not come across: the role of mathemati-
cians in curriculum development. There is always an impression that those who
failed to become mathematicians became mathematics teachers/educators. Though
this assertion is not without challenge, it seems to be a common belief around the
world. However, Hong Kong is a small place where mathematicians and mathemat-
ics educators generally live in harmony. There have frequently been collaborations
between them. Apparently this is not the case in many other parts of the world.
The California Math War, in simplistic terms, was a struggle between mathemati-
cians and mathematics educators. The same is true for other ‘math wars,’ such as
the ones in the Japanese and the Chinese mainland (though some refrain from call-
ing the Chinese situation a war) (Lam et al. 2012). This is also the case in Tai-
wan when the mathematics curriculum within the Grade 1–9 Curriculum transited
from the temporary edition to the formal one. One should not dispute the impor-
tance of the subject matter in curriculum development. The views of the mathe-
maticians should be respected. However, as pointed out earlier, different sectors
(including mathematicians) have to realize that the target users of the school cur-
riculum have been expanded as school education becomes part of general edu-
cation. Besides maintaining a mathematics flavor in the school mathematics cur-
riculum, it should serve to build a path of mathematization, allowing students to
depart from the world around them and gradually progress into the mathematics
world (Wong et al. 2004). There is, nevertheless, a positive aspect that lies be-
neath this apparent conflict. This conflict reflected that both the mathematicians
and mathematics educators cared very much about what and how mathematics was
taught in classrooms. What is needed is a way to communicate and work together
smoothly.
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The Curriculum (Document)—A Starting Point or a Consolidation
of Experimentation

In the above sections, we repeatedly emphasize that curriculum policy-making in
these educational systems is top down and show that the government is dominating
the whole process. One may see this from another angle. Are practicing teachers
mature enough to bring up ideas for the betterment of classroom teaching? Profes-
sional bodies ought to serve a crucial role too. Do we have a professional body that
takes a role beyond mere teacher unions? Would it be better for the government to
work hand in hand with schools? In Hong Kong, during the heat of the Target Ori-
ented Curriculum debate, the Hong Kong Association for Mathematics Education
published an unofficial curriculum (Fung and Wong 1997), which was beneficial to
the moving forward of the mathematics curriculum. Ideas were shared in seminars
and workshops and among the teachers. Through better exchange of ideas, the cen-
tral curriculum may accommodate the preferences of the teachers, and also build in
elements that facilitate its implementation.

Furthermore, after a new curriculum is designed, it is usually sent to the schools
in the form of an official document. Teachers are expected to be implementers
of curriculum policies decided by the central agencies. Even though teachers in
three different systems might view their autonomy and professional view differ-
ently, school-based curriculum development in major subjects, mathematics be-
ing one, rarely exists (Lam and Yeung 2010), except perhaps in the case of Tai-
wan where it is explicitly specified in the Grade 1–9 Curriculum (MOE Taiwan
2003). Under such a center–periphery curriculum development model, implemen-
tation of the new curriculum has been far from smooth (Lin and Zhang 2006) de-
spite the fact that some supporting measures, such as teacher training, were pro-
vided.

Preparing teachers for implementing a new curriculum is a headache. One of
the crucial issues that hindered the Modern Mathematics curriculum’s implementa-
tion in Hong Kong in the 1960s was that there were so many teachers, and teacher
training could not be done overnight. There were not enough workshops and some
teachers could only learn new things in the evening and had to teach the next morn-
ing (Wong and Wong 2001). The problem is even more serious in the other two
systems where the teacher community is much bigger. Rushing through the teacher
preparation process in the Chinese mainland in the early 2000s was detrimental to
the curriculum reform. Teachers were seen as lacking the pedagogical skills to en-
act the reform and hence were required to attend short courses on how to deliver
the curriculum reform initiative. Such courses are seldom effective in helping teach-
ers change their beliefs and teaching approaches (Guskey 2002). Furthermore, the
feedback loop from the practicing teachers on the curriculum reform to the curricu-
lum planners and government officials was not effective, thus adversely affecting
the chance of timely adjustments to the new curriculum.
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Conclusion

The three educational systems have undergone a series of curriculum reforms over
the past fifty years. The design and implementation processes have never been
smooth. Nevertheless, it is evident that a more democratic process of curriculum de-
velopment involving more people before and during various reforms has emerged.
This alone does not guarantee a smooth implementation process; indeed, building
consensus is not easy at all. A curriculum development system that allows more
stakeholders to share their opinions may help, but the professional input in the needs
analysis is also essential.

Designing a curriculum at the policy level is only the first step. It is the teacher
who needs to implement the curriculum. Teacher professionalization is essential
(Stigler and Hiebert 1999). All other factors, textbooks included, are means to facil-
itate this. One of the main purposes of curriculum reform should be the nurturing of
a learning community among the teachers. Nevertheless, more and more attention is
paid to teachers’ competence, including knowledge and beliefs. We believe that all
these play a more crucial role than producing the curriculum document itself (Cai
and Wong 2012).
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Potential Impact of the Common Core
Mathematics Standards on the American
Curriculum

Hung-Hsi Wu

Abstract In June of 2010, the Common Core State Standards in Mathematics (CC-
SSM) were introduced in the U.S. Long before the advent of the CCSSM, Ameri-
can schools had a de facto national mathematics curriculum, namely, the curriculum
dictated by school mathematics textbooks. While there are some formal differences
among these books, the underlying mathematics is quite similar throughout. The re-
sulting curriculum distorts mathematics in the sense that it often withholds precise
definitions and logical reasoning, fails to point out interconnections between major
topics such as whole numbers and fractions, and employs ambiguous language that
ultimately leads to widespread non-learning. The CCSSM make a conscientious at-
tempt to address many of these problems and, in the process, raise the demand on
teachers’ content knowledge for a successful implementation of these standards.
This article examines, strictly from an American perspective, some of the mathe-
matical issues (primarily in grades 4–12) that arise during the transition from the
de facto curriculum to the curriculum envisioned by the CCSSM. Although the CC-
SSM would seem to be strictly an American concern, these mathematical issues
transcend national boundaries because there are very few deviations in the K-12
curriculum across nations (for the K-8 curriculum, see p. 3-31 to p. 3-33 of National
Mathematics Advisory Panel 2008).

Keywords Common Core Standards · Curriculum · Content knowledge ·
Definition · Reasoning

Introduction

In the unending search for improvement in mathematics education in the U.S. for the
last half century, one thing seems to have been consistently overlooked; namely, the
fact that there has been a de facto American mathematics school curriculum since
the demise of the “New Math” in the early 1970s. This is the curriculum encoded
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in school textbooks. There are many textbooks, of course, and they are guided by
quite different philosophical outlooks ranging from “traditional” to “reform”. Nev-
ertheless, the underlying mathematics is, overall, quite similar. While such a claim
may startle some, the element of surprise will disappear the minute one considers
for instance, the uniform lack of emphasis in school textbooks on giving precise
definitions to concepts1 and, even more significantly, the same lack of emphasis on
basing logical reasoning on precise definitions. If even this does not drive home the
point, consider further the ambiguity of the meaning of fraction, multiplication or
division of fractions, “variable”, congruence, similarity, etc. How many textbooks
explain how to multiply two fractions strictly on the basis of the definition of a
fraction?2 How many textbooks explain why any two circles are similar using a
precise definition of similarity? And so on. This body of mathematical knowledge,
contained in an overwhelming majority of school textbooks, will be henceforth re-
ferred to as Textbook School Mathematics (TSM). (See Wu 2011a and 2011c, for
a fuller discussion.) It will be seen from subsequent discussion that TSM, in the
words of the Common Core State Standards for Mathematics (2010),3 page 3, “dis-
torts mathematics and turns off students”. More pertinent is the fact that much of
the recent mathematics education crisis can be traced to the omnipresence of TSM
in the school curriculum. The purpose of this article is to critically examine, strictly
from an American perspective, several key areas of this de facto national curriculum
from the vantage point of the CCSSM, highlight the deleterious effect of TSM, and
give an indication of how the CCSSM—if they are faithfully implemented—might
lead us out of the TSM jungle.

This de facto national curriculum has not been part of national dialog thus far
for at least two reasons. The obvious one is the large grain size that is normally
used in such general discussions. The other reason is very germane to this article:
until recently, the issue of content in school mathematics education has not been on
the frontline of this dialog. The failure to recognize this existence of the de facto
national curriculum does carry serious consequences, however. In the writing of
state or national mathematics standards, for example, the focus has always been
on the optimal placement of standard mathematical topics in a certain grade band,
e.g., addition of fractions in grades 4–6, solving linear equations in middle school,
triangle congruence criteria in high school, etc. The general expectation is that if
the statement of the desired outcome (e.g., learn the addition of fractions and use it
to solve problems) is phrased correctly, clearly, and in a grade-appropriate manner,
and if it is faithfully implemented, progress will ensue (see, e.g., Carmichael et al.

1It should be understood that this article is primarily concerned with the mathematics in textbooks
of grades 4–12. The need for correct and grade-appropriate definitions is no less acute in K-3; for
example, one does not want young children to be taught that a decimal is a number with a decimal
point. Nevertheless, a short article such as this cannot adequately attend to all the instructional
subtleties in those early grades.
2As an illustration of how definitions can be effectively used in mathematical reasoning even in a
topic as elementary as fraction multiplication, one may consult Chap. 17 of Wu (2011b).
3Hereafter referred to simply as CCSSM.
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2010, especially the Foreword). Such expectations ignore the havoc that has been
wrought by TSM in the school curriculum. Take, for example, the 2000 standards in
grade 5 of California on the addition of fractions (p. 53 of Mathematics Framework
for California Public Schools 2006):

2.0 Students perform calculations and solve problems involving addition, subtraction, and
simple multiplication and division of fractions and decimals:
2.3 Solve simple problems, including ones arising in concrete situations, involving the ad-
dition and subtraction of fractions and mixed numbers (like and unlike denominators of 20
or less), and express answers in the simplest form.

The statement of this standard is mathematically correct,4 and its placement in grade
5 is pedagogically unassailable, but now look what happens when it passes through
the TSM melting pot and re-emerges in school textbooks:

1. Students are told to add fractions without being told precisely what adding frac-
tions means, partly because there is no definition of a fraction as a number (this
is universal practice).

2. Students learn the skill of adding fractions, either by drawing pictures but not
given a formula (cf. Lappan et al. 1998a), or by being given a formula that uses
the Least Common Denominator (Bennett et al. 2001; Andrews et al. 2002). The
reasoning is either not given or not given with focus and clarity.

3. When students are presented with a problem such as “How much water is in
the bucket if you first pour in 2 3

7 gallons and then another 3 2
9 gallons”, they

dutifully use the method in step 2 only because “addition” is supposed to be used
on account of the word “and”, not because they know why.

There is a discussion in Wu (2011b), p. 221 and p. 228, about the correct definition
of fraction addition and the reason why the Least Common Denominator should not
be used to define the addition of fractions.

In any case, this is a glaring illustration of how good mathematical intentions are
undermined by TSM-based implementations. There are countless examples of this,
three major ones will be discussed at some length in a later section. The moral is
that, until we eradicate TSM from the school curriculum, any mathematical standard
that calls for the teaching of a mathematical topic in a certain grade will do nothing
but rearrange the mathematically flawed presentations in TSM. Though not entirely
appropriate, the proverbial “rearranging the deck chairs on the Titanic” does come
to mind: it captures the zeitgeist of the situation.

The need to confront TSM in writing a set of standards was unimagined until the
CCSSM came along. Anticipating the usual thinking of TSM, the CCSSM succeed,
on the whole, in prescribing how each topic should be taught in a mathematically
acceptable way. For example, here is how the CCSSM treat the addition of fractions:
they ask that this skill be spread out through three grades. With drastic oversimpli-
fication, the CCSSM prescription goes something like this:

4Although one may quibble with the restriction on the denominators used.
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In Grade 3, understand a fraction as a number on the number line and interpret m
n

as m

copies of 1
n

; represent fractions on a number line diagram and explain equivalence of frac-

tions in special cases, e.g., 1
3 is the same point on the number line as 2×1

2×3 .
In Grade 4, explain why a fraction a

b
is equivalent to a fraction n×a

n×b
by observing that they

are the same point on the number line. Also define addition of fractions as joining parts
referring to the same whole. Then for two fractions with the same denominator, m

n
+ k

n
=

m+k
n

.
In Grade 5, add and subtract fractions with unlike denominators by replacing given frac-
tions with equivalent fractions, so that we have fractions with the same denominator. For
example, 2

3 + 5
4 = 8

12 + 15
12 = 23

12 , which is joining copies of 1
12 together.

Altogether, these standards guide students through three grades in order to help them
understand the meaning of adding fractions. (For a more detailed presentation of
how these standards can be implemented in the school classroom, one may consult
pp. 9–13, 19–28, and 24–28 in Wu 2011d.)

The end result is that addition is putting things together, even for fractions, and
this mathematical development ends with the formula,

a

b
+ c

d
= ad + bc

bd
,

with no mention of Least Common Denominator. What is obvious is that this pre-
sentation on adding fractions does not distort mathematics, and cannot be accused
of turning students off because adding fractions is now seen to be no different from
adding whole numbers: it’s just putting things together.

In order to overcome TSM, the CCSSM have to be prescriptive, but the unprece-
dented prescriptive nature of CCSSM has provoked, not surprisingly, concerns about
the possibility of stifling innovation and individualization (see, for example, page 6
of Institute for Research on Mathematics and Science Education 2010). My inter-
pretation of the situation is that, if all the innovations of the past decades could not
produce a curriculum that does justice to mathematics, then it is time to try to pre-
scribe a way out of this predicament. If we succeed in implementing the CCSSM
and eliminating TSM in the process, then the time will come for a hundred flowers
to bloom.

In a short article such as this, it is not possible to discuss TSM in detail, much
less also discuss how the CCSSM try to counteract the ill effects of TSM. What I
will do is to describe—in the broadest terms—some of the most salient features of
TSM in the next section, and then discuss in greater detail three specific examples of
how the CCSSM have responded to the challenge of TSM in the following section.
The last section will contain a few comments about the potential impact of these
proposed changes on teachers.

Now a word about citations of literature. To the extent that I am putting the whole
system of school mathematics education under a microscope, any explicit citation
in support of a particular statement is bound to give the false impression that I am
targeting an author or a book. If I had a choice, I would rather not give any citations.
However, the minimum requirement of scholarship dictates that I must, and the only
way I can deal with this requirement is to enforce the policy of not citing any one
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source more than twice. Because this is a sensitive subject, I must add two more
remarks in order to round off the picture. My citations were guided largely by what
happened to be available to me at the time of writing, so that the presence or absence
of a particular textbook or textbook series in the list of references has no significance
beyond this fact. In addition, the quality of the cited textbooks varies, and it must not
be assumed that each of them has all, or even most, of the flaws that are discussed
in this article. I hope the reader will keep the last fact in mind.

Overview

The purpose of this section is to give a brief indication of some of the problems
with TSM in the K-12 curriculum.

The main topics of grades K-4 are place value and the whole number algorithms.
In the de facto national curriculum, too often the standard algorithms are presented
as faits accomplis that require neither motivation for their learning nor a clear ex-
planation of why they provide the correct answers. More recently, these algorithms
are downplayed in various ways: they are either buried in a host of other algorithms,
or all the ingredients that lead to them are presented but the ultimate conclusions
(the algorithms themselves) are not singled out, or they are de-emphasized in fa-
vor of invented algorithms (e.g., Bell et al. 2008 and Kliman et al. 2006). Con-
sequently, the fluent execution of the standard algorithms is also de-emphasized.
What all these misguided approaches have in common is their failure to recognize
the main mathematical message of these algorithms, which is to reduce all whole
number computations to single-digit computations. The standard algorithms reduce
a complicated task (the computation with multi-digit numbers) to a series of simple
tasks (the computation with single-digit numbers) through the skillful use of place
value. When the standard algorithms are taught from this perspective, they become
a conduit to learning about two fundamental aspects of mathematics, namely, the
need for logical reasoning and the fact that mathematics thrives on the reduction of
the complex to the simple. See, for example, Chap. 3 of Wu (2011b).

The CCSSM provide a remedy for the existing situation to a large extent.
Concerning the multiplication algorithm, for example, they begin with a (too of-
ten neglected) definition of multiplication as repeated addition, e.g., 5 × 7 as
7 + 7 + 7 + 7 + 7 (Standard 3.OA 1 in CCSSM 2010), and then ask for the multi-
plication table to be committed to memory (Standard 3.OA 7 in CCSSM 2010) in
grade 3. The three basic laws of operation (commutative, associative, and distribu-
tive) are also introduced in grade 3. In grade 4, the CCSSM ask for the multiplica-
tion of “a whole number of up to four digits by a one-digit whole number,” and the
multiplication of “two two-digit numbers, using strategies based on place value and
the properties of operations” (emphasis added; see Standard 4.NBT 5 in CCSSM
2010). Finally in grade 5, students learn to multiply any two whole numbers. When
the multiplication algorithm is taught in three grades as described, so that each step
of this sophisticated algorithm is given ample time to be internalized by students,
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there is less of a chance that the teaching will be done by rote. This is all that one
can ask for in a set of standards.

As mentioned earlier, the underpinning of these algorithms is place value, the
fact that, for example, the 3 in 372 represents 300 and 7 is 70 while 2 is 2. From
a mathematical perspective, it may be more effective to explain to students, in a
pedagogically appropriate way, the real reason that place value is needed: namely, to
make it possible to count to any number, no matter how large, by limiting ourselves
to the use of only ten symbols: 0,1,2, . . . ,8,9 (see Chap. 1, Sect. 1.1 in Wu 2011b).
Thus place value is a property of the Hindu-Arabic numeral system we use and not
a property of whole numbers. Exposing children to this fact at an early age would
reinforce the importance of reasoning in mathematics. This is an idea that is worth
exploring in the future.

The dominant topics of grades 4–6 (roughly) are fractions, decimals, and elemen-
tary geometry. There is no better illustration of the failure of the de facto national
curriculum than the teaching of fractions. Fractions are students’ first serious entry
into abstractions. In their learning progressions, this is the first time that they can no
longer rely on counting with their fingers (as they used to do with whole numbers)
to relate what they are learning to their tactile experiences. They need detailed and
careful guidance—including precise definitions of all the concepts as well as per-
suasive reasoning—in order to compensate for the loss of reliance on their fingers.
Unfortunately, the response of the de facto national curriculum is to offer informa-
tion that is at once confusing (e.g., a fraction is a part of a whole, a ratio, and a
division) and misleading (the arithmetic operations on fractions bear no relation to
those on whole numbers). In place of the precise definition of a fraction, it offers
analogies, i.e., a fraction is like a piece of pizza or a shape in pattern blocks. In place
of precise definitions for the arithmetic operations of fractions, it offers only algo-
rithms and (of course) little explanation because it is impossible to explain anything
that has not been precisely defined. The situation as described is so universal that no
citation need be given: just open any school textbooks and this is all there is to see.

The same story is pretty much true of the teaching of decimals. Teaching deci-
mals as an extension of whole numbers by the use of tenths, hundredths, etc.—but
separate from fractions—is just another form of teaching-by-analogy. (Once again,
this practice is so universal that no citation is necessary.) Indeed, this kind of teach-
ing is only good for decimals with at most two decimal digits (pennies and dollars),
so students do not get a precise conception of what a decimal is. In addition, such
teaching is intellectually dishonest because, even for decimals with only three dec-
imal digits such as 0.127, the nomenclature of “one tenth and 2 hundredths and
7 thousandths” hides the fact that 0.127 is by definition a sum of fractions:

0.127 = 1

10
+ 2

100
+ 7

1000

Unfortunately, TSM has never been careful to teach decimals only after the addi-
tion of fractions has been defined. Historically, as well as conceptually, a decimal
is a fraction whose denominator is a power of 10. Once decimals have been inte-
grated in this way into the domain of fractions, everything becomes simpler, be it the
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comparison of decimals or the computational algorithms with decimals, especially
multiplication and division. (One can consult Sects. 12.3, 13.4, 14.2, 15.3, 17.2, and
18.4 of Wu 2011b.)

If I fault the de facto national curriculum for the flawed instruction on fractions,
it is because the instruction is incommensurate with our expectations that students
acquire a robust knowledge of fractions. If all we ask of students is that they achieve
a passing acquaintance with the terminology of fractions, know roughly what they
are, and be able to use them in simple everyday situations, then what TSM has to of-
fer may just be good enough. Unfortunately, sophisticated word problems involving
percent, ratio and rate await students in the sixth and seventh grades, and students
need a thorough understanding of the division of fractions for their solutions, which
in turn requires a solid foundation in the multiplication of fractions. The de facto
national curriculum simply does not support this kind of learning. What we have is
therefore a situation in which TSM teaches students only a little, but expects them
to learn a lot. This sets students up perfectly to fail.

This fraction-decimal situation calls for change, and again the CCSSM have met
this challenge to a large extent. Although fractions are introduced informally in
grades 3 (as it should be), the recognition that a fraction is a point on the number
line is encouraged from the beginning and the various basic theorems such as equiv-
alent fractions are explained on this basis. Likewise, the arithmetic operations on
fractions are defined and their algorithms explained in terms of the number line.
The amount of details about the teaching of fractions that one finds in the CCSSM
is unprecedented, and it raises the hope that a more sensible school curriculum on
fractions will follow. As for decimals, the CCSSM state explicitly in grade 4, “Un-
derstand decimal notation for fractions, and compare decimal fractions.” In other
words, students are asked to learn that 0.127 is just a notation for the fraction 127

1000 .
Thanks to the CCSSM, the teaching of decimals is now firmly integrated into the
teaching of fractions. (For the details for both fractions and decimals, consult Wu
2011b, Part 2.)

The other major topic of grades 4–6 is geometry, which is devoted mainly to the
introduction of the basic vocabulary and the derivations of basic formulas pertaining
to area and volume. The de facto national curriculum turns geometric instruction in
these grades into a vocabulary-memorizing ritual, and not a very accurate one at that
(see, for example, Andrews et al. 2002, or Bennett et al. 2001). For example, the
statement in the CCSSM about “classifying two-dimensional figures in a hierarchy
based on properties” (italics added; Standard 5.G 4) is a pointed reminder that the
controversy about whether a square is a rectangle or whether a parallelogram is a
trapezoid should be laid to rest. On the other hand, one of the most glaring omissions
in the TSM presentation of area and volume formulas is the explanation of why the
area of a rectangle with fractional side lengths is the product of the side lengths.
This theorem, which is critical to the understanding of the concept of area as well as
the concept of fraction multiplication in school mathematics (see pp. 62–64 of Wu
2010a), seems to be missing in all existing textbooks and standards (e.g., Bell et al.
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2008; National Council of Teachers of Mathematics5 2000, and NCTM 2006). It is
to the credit of the CCSSM that they explicitly call for this explanation (standard
5.NF 4). Along this line, let it be mentioned that there is a common error in the proof
of the area formula for a triangle:

area = 1

2
(base × height)

The argument given in textbooks, in an overwhelming majority of the cases, is only
valid when the altitude meets the base, but not when the altitude falls outside the
base, i.e., meets the line containing the base at a point outside the base (cf. Fuson
2006, and Kliman et al. 2006). Unfortunately, if the area formula for a triangle is
not known to hold in the latter case, i.e., when the altitude falls outside the base,
it would be impossible to derive the area formula for a general trapezoid (see, for
example, Wu 2012, pp. 33–36 for the details). Corrections on this level are beyond
the capability of a set of standards, even the CCSSM, but such curricular issues point
to the overall logical oversight in TSM. An additional contribution of the CCSSM is
their attempt to give at least an informal definition of area and volume. See Standard
5.NF 4 and Standard 5.MD 3 of CCSSM. Length and area are usually presented only
as intuitive concepts in TSM in the elementary and middle grades, and this fact may
be the cause of the well-known confusion concerning perimeter and area among
students.

The emphases in grades 6–7 are on word problems involving percent, ratio, rate,
and rational numbers. Before discussing these word problems, one must point out
a grievous omission in the de facto national curriculum: the failure to make ex-
plicit the so-called Fundamental Assumption of School Mathematics (FASM), see
Chap. 21 of Wu (2011b). In essence, this is the statement that, although we only
know how to compute with fractions (and later on, rational numbers) at this point,
we can extrapolate formally the computational algorithms to all positive real num-
bers (respectively, all real numbers). FASM is conceptually important in the context
of real-world problems about ratio and rate, and especially in algebra. The former
often explicitly brings up numbers that are not necessarily fractions (e.g., the ratio
of the circumference to the diameter of a circle). As to the latter, even the simplest
identity such as

1

x − 1
− 1

x + 1
= 2

x2 − 1

begs the question: what does this mean when (for example) x = π if students are
only taught the division of one rational number by another? (In this instance, one
has to point out that FASM is not made explicit in CCSSM either.)

Problems involving percent, ratio, and rate are notorious for the amount of mis-
understanding they elicit from students. The research on the probable cause of non-
learning in ratio and rate has led to the emphasis on so-called proportional reason-

5Hereafter referred to as NCTM.
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ing. As this will be discussed at some length in the example on Rate and Propor-
tional Reasoning in the next section, we will merely mention the fact that, because
these concepts have never been clearly explained (defined) in the de facto national
curriculum, students cannot be in any position to provide solutions based on mathe-
matical reasoning. Indeed, if there is no definition, there can be no valid reasoning.
As the computer dictum goes: Garbage in, garbage out.

It must be pointed out that, although the CCSSM try valiantly to make some
sense of this whole circle of ideas, they have not made any positive contributions in
this direction. See the standards in 6.RP of grade 6 and 7.RP of grade 7. On the other
hand, the CCSSM have made great strides in elucidating another murky concept in
the de facto national curriculum: the concept of an “expression”. It would, however,
be more appropriate to discuss this during the discussion of algebra below.

The teaching of rational numbers6 hinges on how negative numbers are integrated
into students’ knowledge of fractions. The de facto national curriculum relies mainly
on manipulatives (e.g., the use of counters of different colors to represent positive
and negative integers), analogies, and patterns (Usiskin et al. 1998, or Collins et al.
1998). The CCSSM acquit themselves particularly well in this regard by their in-
sistence on the use of the number line and reasoning based on the general laws of
operations (commutative, associative, and distributive laws) rather than patterns or
manipulatives. See Standards 6.NS 5 and 6, and 7.NS 1 and 2. This is particularly
true of the careful guided tour through the treacherous terrain of multiplication and
division of rational numbers in Standard 7.NS 2. If so desired, one can consult Wu
(2011c) for a leisurely discussion of teaching (−a)(−b) = ab that is consistent with
the CCSSM.

Grade 8 is a pivotal grade in the school mathematics curriculum, because it is in
this grade that a decision is usually made as to whether the whole grade should be
devoted to so-called Algebra I or simply make a beginning towards algebra. Now it
must be said that there is no natural law that says students’ learning of mathematics
would suffer irrevocably if all the standard topics of Algebra I were not covered in
grade 8. Moreover, what has been glossed over in any such discussion is the fact
that the teaching of Algebra I in grade 8 according to TSM is accomplished at an
unconscionable cost: it omits any mention of similar triangles, thereby cutting out
the mathematical underpinning that connects the geometry of lines to the algebra of
linear equations. Consequently, students are forced to learn by rote that one can get
the slope of a line by choosing any two points on the line, and they are also forced
to memorize by brute force the four forms of the equation of a line (often without
success). We will examine further this issue in the example on Slope of A Line in
the next section.

In addition to the omission of any serious discussion of similar triangles, the
middle school geometry curriculum according to TSM is a mélange of informal

6In the education literature, the term rational numbers is generally taken to mean fractions. In
mathematics, the term means positive and negative fractions. Because rational number is one of
the most basic concepts in mathematics, it is best that people in education do not arbitrarily change
accepted mathematical terminology.
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and disconnected discussions of diverse topics. Thus the concepts of translations,
reflections, and rotations are taught as fun activities that heighten our sensibilities
in art appreciation, e.g., Escher’s prints. But are they relevant to mathematics? That
is not so clear (see, e.g., Chap. 9 of Davison et al. 2001 or Eicholz et al. 1995).
Congruence is just “same size and same shape”, and its relationship with transla-
tions, reflections, and rotations may or may not be mentioned in passing (cf. Larson
et al. 1999). Likewise, similarity means “same shape but not necessarily the same
size”, and no effort is made to show how this definition is related to the definition
of similar triangles in terms of equal angles and proportional sides. In the rare event
that such an attempt is made, it is not done in a mathematically disciplined way (cf.
Lappan et al. 1998b).

The above discussion points to two serious gaps in the de facto national curricu-
lum: an explanation of why the graph of a linear equation of two variables is a line,
and a smooth transition from middle school geometry to the high school geome-
try. Given the traditional curricular structure of the Algebra I-Geometry-Algebra II
sequence in high school, the CCSSM had to solve the knotty problem—in the stan-
dards of grade 8—of how to restructure the middle school geometry curriculum so
that it provides a geometric foundation to fill both of these gaps. We now give a
brief description of the restructuring (it is entirely consistent with the one given in
Wu 2010a).

The CCSSM accomplish this goal by asking for an intuitive exploration and dis-
cussion of translations, reflections, and rotations and for a definition of congruence
as a finite composition of these rigid motions in the eighth grade (Standards 8.G
1–3). The CCSSM also call for an intuitive exploration and discussion of dilations,
and the definition of a similarity transformation as the composition of a dilation and
a congruence; then they call for an informal proof, in grade 8, that two triangles are
similar if two pairs of angles are equal (Standards 8.G 4–5). The latter is the critical
fact needed for the proof that the definition of the slope of a line is well-defined,
and that the graph of a linear equation in two variables is a line (see, for example,
Wu 2010b, Sect. 4). Then in high school, the definitions of translations, reflections,
rotations, and dilations are formalized and congruence and similarity transforma-
tions are defined as in the eighth grade. These precise definitions can now serve to
prove the usual criteria for triangle congruence (Standards G-CO 5 in high school
geometry) and triangle similarity (Standards G-SRT 2–3 in high school geometry).
At this point, the usual development of Euclidean geometry may be pursued if so de-
sired. In particular, translations, reflections, rotations, and dilations—basic concepts
in advanced mathematics—are now fully integrated into school geometry as foun-
dational concepts rather than as afterthoughts, and the proofs of theorems in plane
geometry are now grounded in the tactile concepts of these basic transformations
rather than in a set of abstract axioms. See Wu (2010a and 2012).

In the context of teaching algebra, grade 8 is, of course, more than just the teach-
ing of linear equations. This is also where other foundational algebraic concepts are
developed and, among these, none is more basic than the proper use of symbols. It
can be said that the de facto national curriculum really goes astray at this juncture:
instead of making a smooth transition from arithmetic to algebra by carefully intro-
ducing the concept of generality and showing why the use of symbols is inevitable,
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this curriculum places the spurious mathematical concept of a “variable” front and
center. On this shaky foundation, it introduces the concepts of algebraic expres-
sion, equation, and solving equations. This curricular development in TSM leads to
misconceptions that make the learning of algebra unnecessarily difficult. To a very
large extent, these misconceptions have been removed in the CCSSM. Specifically,
the preamble to the high school algebra standards on p. 62 of CCSSM (2010) states:

An expression is a record of a computation with numbers, symbols that represent num-
bers, arithmetic operations, exponentiation, and, at more advanced levels, the operation of
evaluating a function.

Back in grade 6, standards 6.EE 2c and 6.EE 6 already begin to clarify what a
variable really is (i.e., a descriptive piece of terminology for a symbol) and what
an expression is. Furthermore, standard 6.EE 5 clarifies what an equation is and
standard A-REI (in high school algebra) explains what it means to solve an equa-
tion. These will be further discussed in the example on Solving Equations in the
next section (for the details, see Wu 2010b, Sects. 1–3). Because of the ubiquity of
equations and expressions in introductory algebra, these are genuine contributions
to improving student learning.

We only have space to briefly mention the high school curriculum. It goes without
saying that the de facto national curriculum has its usual share of flaws, e.g., lack
of clarity and purpose in presenting the laws of exponents (e.g., Chaps. 7 and 9 of
Hoffer et al. 1998, and Chap. 8 of Larson et al. 2007), failure to define a parabola
correctly (e.g., Chap. 8 of CME Project: Algebra 1 2009, and Chap. 5 of Hoffer
et al. 1998), failure to underscore the importance of completing the square in the
study of quadratic functions (e.g., Chap. 5 of Holliday et al. 2008, or pp. 215–220
and 491–504 in Murdock et al. 1998), lack of clarity in presenting inverse functions
and logarithms (e.g., Sects. 7-2, 9-1, and 9-2 in Holliday et al. 2008, or Sect. 7.4 in
Murdock et al. 1998), etc. But let us address the global problems. In most schools,
the traditional curriculum of Algebra I-Geometry-Algebra II is used, while some
others follow the American integrated curriculum.7 While the artificial separation
of the former into a full year of algebra or geometry is undesirable in principle, the
latter has also been criticized for its imprecision, mathematical incoherence, and
lack of mathematical closure, at least judging by what has been produced thus far
(see e.g., Gray undated and Wu 2000). The CCSSM chose to stay neutral on this
issue by listing only what they call “conceptual categories” and leave the precise
articulation of the high school curriculum to each state. This then leaves room for a
third kind of curriculum that could possibly avoid both kinds of pitfalls, namely, one
that is aligned with what is done in Japan (see, e.g., Kodaira 1992, 1996, 1997) and
other Asian countries in the Far East. To achieve this goal, one has to be aware of
the need to structure mathematical topics in the CCSSM coherently. Moreover, one

7It is sometimes claimed that, because other nations adopt an integrated curriculum, so should we.
This claim is misleading because the integrated curriculum of other nations is very different from
the American integrated curriculum. The former is organized according to the internal development
of mathematics whereas the latter seems to revolve around applications or “real world” problems.
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must be aware of the omissions of some standard topics in the conceptual categories
of the CCSSM, e.g., the concept of the discriminant of quadratic polynomials, the
explicit definitions of certain key concepts such as similarity and inverse functions,
the fundamental algebraic properties of the exponential and logarithmic functions,
etc. A full discussion of these issues would require a separate article.

Some Examples

The purpose of this section is to give a more detailed discussion of three key topics
in school mathematics to illustrate the main difference between TSM and the cur-
riculum envisioned by the CCSSM. In the first two of these (Solving Equations and
Slope of A Line), the CCSSM excel, but in the third (Proportional Reasoning and
Rate), the CCSSM do less well. I hope the choices I have made reflect my desire to
give a balanced view of the CCSSM.

Solving Equations

What does it mean to solve an equation? To simplify the discussion, let us take a
simple linear equation 4x−3 = 2x. According to TSM, solving an equation requires
a confrontation with a “variable”. From a typical textbook, we have the following:

A variable is a letter used to represent one or more numbers. An algebraic expression
consists of numbers, at least one variable, and operations. An equation is a mathematical
sentence formed by placing the symbol “=” between two algebraic expressions. A solution
of the equation is a number so that when it is substituted for the variable in the equation,
the equality is true. (Collins et al. 1998, pp. 800–808)

In this view of algebra, a variable is something distinct from numbers. Since all
that students know up to this point are numbers (and geometry), a variable is a
mysterious object. That said, here are the usual steps for solving 4x − 3 = 2x:

Step 1: −2x + (4x − 3) = −2x + 2x.
Step 2: 2x − 3 = 0
Step 3: (2x − 3) + 3 = 0 + 3
Step 4: 2x = 3
Step 5: x = 3

2

How do we justify Step 1 (adding −2x to both sides), for example, if we don’t know
what a variable is? Since a variable is a mystery, the equality 2x − 3 = 4x is even
more of a mystery. Adding the “variable” −2x to both sides deepens the mystery.

There seem to be three strategies in TSM to deal with this mysterious step of
removing 2x from both sides. First: Invoke the principle (first enunciated by Eu-
clid) that equals added to equals remain equal (Larson et al. 2007, p. 154). This
is comforting until one asks what is “equal”? If we don’t know what either side
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means, how do we know they are “equal”? Second: Use algebra tiles to “model”
this solution of 4x − 3 = 2x. Thus let a green rectangle model a variable and a red
square model −1. Then it seems “natural” that, if we remove two green tiles on the
left (i.e., adding −2x), we should also remove two green tiles on the right (Bellman
et al. 2007, p. 133).

Third: Use a balance scale to “model” the equation 4x −3 = 2x. It seems “obvious”
that if we remove 2x (whatever it is) from both weighing pans, the pans will stay in
balance (Larson et al. 1999, p. 66).

The other steps are justified in exactly the same way, making analogies using the
intuitive meaning of “equality”, algebra tiles, or balance scales.

These analogies are useful psychological ploys to win students’ trust, but mathe-
matics has to explain why something is true by logical reasoning, not by making sly
suggestions about why it might be true because of analogies. By replacing reasoning
with analogies, TSM guarantees that the fear of variables will live on.

The correct way to solve equations is well-known and very simple (cf. Wu 2010b,
Sect. 3), but it took the CCSSM to finally incorporate it into a set of standards:

• (Grade 6, EE 5) Understand solving an equation or inequality as a process of
answering a question: which values from a specified set, if any, make the equation
or inequality true? Use substitution to determine whether a given number in a
specified set makes an equation or inequality true.

• (High school Algebra, A-REI 1.) Explain each step in solving a simple equation
as following from the equality of numbers asserted at the previous step, starting
from the assumption that the original equation has a solution. Construct a viable
argument to justify a solution method.

Let us see what it means to solve an equation from this perspective. The key idea
is what may be called the Basic Protocol in the use of symbols: What a symbol
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stands for must be clearly stated when a symbol is introduced (Wu 2010b, p. 9).
Armed with this idea, we can start anew. Let x be a real number. An equation with
x, such as 4x − 3 = 2x, is a question asking whether the two numbers 4x − 3 and
2x are equal as numbers. It could be true, or it could be false. To solve the equation
4x − 3 = 2x is to determine all the numbers x for which the equality is true.

We now show how to correctly solve 4x − 3 = 2x, but the principle holds in
general (e.g., for polynomial equations). We first assume that there is a solution,
i.e., there is a number xo so that 4xo − 3 = 2xo. Because we are now dealing with
numbers, the previous five steps make perfect sense. Thus, starting with 4xo − 3 =
2xo, we get:

Step i: −2xo + (4xo − 3) = −2xo + 2xo.
Step ii: 2xo − 3 = 0 (by use of the assoc. law for numbers)
Step iii: (2xo − 3) + 3 = 0 + 3
Step iv: 2xo = 3 (by use of the assoc. law for numbers)
Step v: xo = 3

2

Are we done? No. We have not proved that 3
2 is a solution of x − 3 = 2x, only

that if there is a solution, it must be equal to 3
2 . Having narrowed down the possible

candidates to 3
2 , we can now complete the solution process by proving that 3

2 is a
solution with a simple computation:

4

(
3

2

)
− 3 = 2

(
3

2

)

because both sides are equal to 3. This shows that the previous Steps 1–5 are a
procedurally correct way to solve the equation. More importantly, this shows that
Steps 1–5 actually make sense provided they are taught, not as computations with
a mysterious quantity called a variable, but as computations with numbers.8

According to TSM:

Understanding the concept of variable is crucial to the study of algebra, and that a ma-
jor problem in students’ efforts to understand and do algebra results from their narrow
interpretation of the term. (NCTM 1989, p. 102)

On the contrary, a variable is not a mathematical concept. Imposing it on students
as a mathematical concept can only obstruct their learning of algebra.

8Although our purpose is to expose the mathematical flaws of TSM, a side remark about the related
pedagogical issue of how to implement the correct mathematics in the school classroom may not be
out of place. In the context of solving equations, one may ask whether school students must solve
equations in this formal and turgid fashion each time an equation is solved. The simple answer is
no, because pedagogical common sense must be exercised. One suggestion is to explain in great
detail—the first time an equation is solved—what the process described in Steps i–v is all about.
When the teacher feels comfortable that the students have understood the process, then they should
be allowed to abbreviate their work more or less as in Steps 1–5 on page 130 above.
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Slope of a Line

The concept of the slope of a line is a staple of grade 8 mathematics. In TSM, the
definition of slope is the following: Let L be a nonvertical line in the coordinate
plane and let P = (p1,p2) and Q = (q1, q2) be distinct points on L. Then the slope
of L is defined to be p2−q2

p1−q1
.

Is this well-defined, i.e., does it make sense? Not yet, because if A = (a1, a2) and
B = (b1, b2) are also on L, is the slope of L equal to a2−b2

a1−b1
?

In other words, is it true that p2−q2
p1−q1

= a2−b2
a1−b1

?
This question must be answered because slope is supposed to be a property of the

line L and not of the two points P and Q on L that happen to be chosen. Students
need the assurance that, if they happen to choose A and B on L, they still get the
same number. Unfortunately, this question is not even raised in TSM, much less
answered.

The proof of the equality p2−q2
p1−q1

= a2−b2
a1−b1

requires the concept of similar triangles:
�ABC ∼ �PQR. Assuming this similarity, then the proportionality of correspond-
ing sides says

PR

AC
= QR

BC
.

Since the length of PR is p2 − q2, the length of AC is a2 − p2, etc., the equality
is seen to be equivalent to the previous equality at least when the line L is slanted
to the right, as shown. If L is slanted to the left, then the proportionality of the
corresponding sides translates into the equality of the negative of the slopes, and the
same conclusion prevails.

The TSM definition of slope confuses the slope of two chosen points on L with
the slope of L.

This kind of teaching-by-rote of slope has serious consequences in mathematics
learning. According to a recent survey of students’ understanding of straight lines in
algebra by Postelnicu and Greenes (2012), the most difficult problems for students
are those requiring the identification of slope of a line from its graph. One can
well imagine that if students do not realize they can use any two points on the
line to compute its slope, they would be confused about “how to measure rise and
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run” (Postelnicu and Greenes, ibid.). The need for better teaching of the concept of
slope is therefore real. Moreover, without a correct definition of slope, one cannot
show that the graph of a linear equation ax + by = c is a (straight) line and the
connection between the geometry of the line and the algebra of the equation will
remain undeveloped. Students are therefore reduced to memorizing, by brute force,
how to write down the equation of a line. Many are not successful.

The CCSSM prescribe a way out of this impasse. The standards in grade 8 ask
that the following be done to make sense of “slope” as well as lay a foundation for
high school geometry.

• Introduce rotation, reflection, translation (in the plane) and their compositions
intuitively through hands-on activities, and define congruence as a composition
of (a finite number of) rotations, reflections, and translations.

• Introduce dilation intuitively through hands-on activities, and define similarity
as the composition of a dilation followed by a congruence.

• Give informal proofs of the basic criteria of triangle congruence.
• Give an informal proof of the AA criterion of similar triangles: if two triangles

have two pairs of equal angles, then they are similar.
• Use the AA criterion to show that the slope of a line is well-defined.
• Use the AA criterion to prove the Pythagorean Theorem.

See Chaps. 4–6 in Wu (2010a), and the discussion of grade 8 in Wu (2012), for
details.

The purpose of the emphasis on intuitive geometry is for students to gain the
necessary geometric intuition as a preparation for the more rigorous course of high
school geometry.

Rate and Proportional Reasoning

Proportional reasoning is supposed to be the “capstone of elementary school math-
ematics and the gateway to higher mathematics” (National Research Council 2001,
p. 242). This term has come to mean “understanding the underlying relationships in
a proportional situation” (p. 241 of National Research Council 2001). Mathematics
is about making explicit assumptions and then drawing logical conclusions from
those assumptions. Unfortunately, what happens in TSM is that the “relationship in
a proportional situation” is often hidden from students, thereby making it impossible
for learning to take place. For example, consider the following prototypical problem
in proportional reasoning:

A group of 8 people are going camping for three days and need to carry their own water.
They read in a guide book that 12.5 liters are needed for a party of 5 persons for 1 day.
How much water should they carry? (NCTM 1989, p. 83)

Students cannot reason proportionally if they are not told that each person is as-
sumed to drink roughly the same amount of water every day. Indeed they know
from personal observations that different people drink different amount of water
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each day (at least before they get brainwashed by TSM), and therefore, without such
an explicit assumption, they cannot possibly “think proportionally”. Once this as-
sumption is made explicit, however, students can experiment with, or can be shown,
the numerical pattern in order to achieve some conceptual understanding of the sit-
uation. For example:

Let � be the number of liters each person drinks each day, then two persons
drink �+� = 2� liters a day, three persons drink �+�+� = 3� liters a day, . . . ,
persons drink �+�+�+�+� = 5� liters a day. Since we are given 5� = 12.5,
we have � = 2.5 liters. Thus 8 people would need roughly 8 × 2.5 = 20 liters
per day, so that they should carry 3 × 20 = 60 liters for three days.

This solution may not appear to be related to “relationships in a proportional
situation”, but, because it can be reformulated as follows, it is: For every positive
integer n,

what n persons drink in 1 day

n
= n�

n
= �.

Since the ratio � is independent of n, we see that

what 5 persons drink in 1 day

5
= what 8 persons drink in 1 day

8
,

as both are equal to �. We now see explicitly the equality of two ratios. In particular,
making use of the given fact that 5 persons drink 12.5 liters, we get

12.5

5
= what 8 persons drink in 1 day

8
.

Therefore, what 8 persons drink in one day = (8×12.5)/5 = 20 liters. In three days,
8 persons drink 3 × 20 = 60 liters, as before.

In retrospect, we see that the correctness of the following proportion,

what m persons drink in 1 day

m
= what n persons drinks in 1 day

n
,

for any positive integers m and n is a matter of logical reasoning once the needed
assumption is revealed to students, but it is not any kind of a priori conceptual un-
derstanding that students can develop outside the mathematical framework. If we
want students to learn to reason proportionally, then we should cleanse the curricu-
lum of TSM and accord reasoning its rightful place.

A second kind of defect in the teaching of proportional reasoning is the inatten-
tion to precise definition. For example, here is another prototypical problem:

Which is the better buy: 12 tickets for $15.00 or 20 tickets for $ 23.00? (NCTM 2000, p. 221)

Students need to be told, either in the problem itself or in general, the following
two pieces of information: (i) all tickets in each price group cost the same amount,
and (ii) “better buy” means “the lower price per ticket”. While neither is worth
mentioning to an adult, an adolescent may well be learning his or her way in life
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at this point and therefore may not be aware of this information (or at least not the
latter). In mathematics, one must strive for total clarity. Again, once these two facts
are made explicit, students will see that,

if one ticket costs d dollars, 2 tickets cost d + d = 2d dollars, . . . , and 12
tickets cost 12d dollars. Thus if 12d = 15, then d = 1.25 dollars. Similarly
if another ticket costs s dollars, 2 tickets cost s + s = 2s dollars, . . . , and 20
such tickets cost 20s dollars. Thus if 20s = 23, then s = 1.15 dollars.

It follows that 20 tickets for $23.00 is the better buy.
In both cases, TSM is guilty of withholding information and forcing students

to make guesses. Mathematics is not about making the right kind of guesses, only
about logical reasoning on the basis of an explicitly given hypothesis. It is also
manifest that, once the proper information is supplied and students can see the rea-
soning behind such proportional reasoning problems, the solutions become entirely
straightforward and therefore learnable. Let us therefore focus on removing these
artificial obstacles imposed by TSM on learning.

The preceding problems are examples of a whole class of discrete problems on
proportionality, in the sense that there is a “natural unit” to use in each problem
(namely, one person or one ticket) and, furthermore, it is not necessary to go beyond
this “natural unit” (there is no such thing as “0.3” person or 3

4 ticket). For such dis-
crete problems, the CCSSM do passably well by isolating the natural unit and the
unit rate; see Standards 6.RP 1, 2, and 3a. However, there is another class of prob-
lems on proportionality, the so-called continuous problems where there is no natural
unit; they are exemplified by constant speed, constant rate of water flow, constant
rate of lawn mowing, etc. We can easily appreciate why there is no “natural unit”
to measure time, for example: hour, minute, second, milli-second, micro-second,
pico-second, etc., are all legitimate units to use for this purpose. These problems are
special cases of what are known as “rate problems”. For convenience, we will use
rate to mean continuous rate in the rest of this article.9 We now turn our attention
to these rate problems.

There are serious mathematical issues with the way rate problems are treated
by TSM. The fact is that TSM conflates rate with constant rate. To understand
this statement, we begin with a description of the underlying mathematics of the
situation, one that requires calculus and is therefore not one that we can use with
middle school students. For the sake of clarity, we will use speed exclusively in this
discussion, but the idea is of course the same for other kinds of rate. Let f (t) be the
function that describes the distance of an object at time t , traveling along a (straight)

9Note that we treat “rate” as a generic term that refers to a class of phenomena; each of the phe-
nomena will have to be defined individually but there is a good reason not to try to define what
“rate” means. Indeed, the general definition of “rate” as the derivative of the “work function” (a
function of time) requires calculus; see the discussion of speed in the next paragraph. TSM makes
believe that a term that requires calculus for its definition can nevertheless be bandied about in
K-12 as a precise concept. This is the reason why “rate” problem inspires such fear and loathing
in schools.
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line, from a fixed point O . Then the speed of the object at time t is the derivative
f ′(t); the object is said to have constant speed s if s is a fixed number and f ′(t) = s

for all values of t . What is worth observing is that if the speed is not constant, the
speed f ′(t) varies with t and there is no hope of expressing the speed (“rate”) as
the ratio of two numbers. On the other hand, if the speed is a constant s, then one
can describe the “constant speed s” for middle school students without resorting to
calculus, as follows. Define the average speed over a time interval [u,v] to be

difference in distance at time u and at time v from O

length of the time duration from u to v
= f (v) − f (u)

v − u
.

Then an equivalent definition for the object to have constant speed s is that its
average speed over any time interval is equal to s. If we know that the speed is
constant and is equal to s, then we can simply refer to s as the speed of the object.
In case of constant speed, then (and only then) is the rate (speed) the ratio of two
quantities, as in the preceding equation.

With this understood, we can now gain a better understanding of how “rate” is
mishandled by TSM. The following is a sample of some attempts to define “rate” by
various textbooks; please take note that constant rate is implicitly assumed in each
case.

A rate is a ratio that involves two different units. A rate is usually given as a quantity per
unit such as miles per hour. This is called a unit rate. (Eicholz et al. 1995, p. 232)

A quantity is a rate when its unit contains the word “per” or “for each” or some synonym.
(Usiskin et al. 1998, p. 493)

A rate can be thought of as an extended ratio, a ratio which enables us to think beyond the
situation at hand, to imagine a whole range of situations in which two quantities are related
in the same way. (Lamon 1999, p. 204)

A rate is a comparison of the measures of two different things or quantities. The measuring
unit is different for each value. (Van de Walle 1998, p. 293)

In TSM, rate problems have to be done by assuming the constancy of rate, but be-
cause constant rate is never defined in TSM, no reasoning is possible in the solution
of these problems. Instead, students are asked to memorize the following trinity of
formulas,

speed = distance/time

time = distance/speed

distance = time × speed.

What is not commonly realized is that there is in fact no need to memorize any-
thing in this situation, because the first is the definition of speed (when it is known
to be constant), and the other two are consequences of the definition of division.
Moreover, the resulting solution-by-rote is completely unnecessary because once
“constant speed” is precisely defined, the solution can be obtained by mathematical
reasoning. As illustration, consider the following problem:
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John’s grandpa enjoys knitting. He can knit a scarf 30 inches in 10 hours. He always knits
for 2 hours each day.

1. How many inches can he knit in 1 hour?
2. How many days will it take Grandpa to knit a scarf 30 inches long?
3. How many inches long will the scarf be at the end of 2 days?

Explain how you figured it out.
4. How many hours will it take Grandpa to knit a scarf 27 inches long? Explain your

reasoning.

It is clear that, as is, the problem cannot be solved (except for part 2). Indeed, without
knowing how much he knits in each of the ten 1-hour intervals, there is no way to
answer part 1. Now, suppose we use the above definition of constant rate of knitting,
and add the assumption that grandpa knits at a constant rate. Let us say he knits �

inches in a particular 1-hour interval, then the average rate of his knitting over this
1-hour interval would be �

1 = � inches per hour. But his average rate of knitting
over a 10-hour interval, according to the given data, is 30

10 = 3 inches per hour.
By the assumption of constant rate, the two average rates are equal and therefore
� = 3 inches in that 1-hour interval and, by assumption, in any 1-hour interval. The
other parts can be solved similarly. We have therefore solved the problem by use
of reasoning when the assumption of constant rate is added (perhaps this is what
proportional reasoning means in TSM?).

Observe the commonality between the problem of knitting and the previous prob-
lem of 8 people camping: both become solvable only after the assumption of con-
stant rate has been added.

To summarize, I hope I have explained clearly the flaws of “proportional reason-
ing” as it is understood in TSM. I wish I could say that the CCSSM are forceful
and emphatic in exposing the need for a precise definition of constant rate as well as
prescribing a remedy, but it must be said that while the CCSSM try to make sense
of this circle of ideas, they have not made any serious headway. See Standards 6.RP
3b and 3c, and Standards 7.RP 1 and 2. I should also add that there is no need for
the CCSSM to be perfect in order to be worthy of support.

The previous remark concerning the need to add an assumption that all rates
are constant rates might give the impression that the de facto national curriculum
tries to make believe that every rate is constant in the real world. This is in fact
not the case, because it does try to make students aware that even “speed” need
not be constant. One cannot give a better illustration of this fact than to quote a
2011 test item for grade 8 in NAEP (National Assessment of Educational Progress
undated):

3. For 2 minutes, Casey runs at a constant speed. Then she gradually increases her speed.
Which of the following graphs could show how her speed changed over time?
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Here, the “speed” in the phrase “she gradually increases her speed” is clearly not
one that is constant (regardless of the fact that the concept of variable speed can-
not be defined in K-12). Thus TSM treats speed as automatically constant on the
one hand, and wants students to be aware of non-constant speed on the other. Such
blatant inconsistency is among the many reasons that TSM has to go.

Concluding Remarks

To recap, we may describe the state of the American school mathematics curricu-
lum as follows. For several decades, there has been a de facto national mathematics
curriculum: the curriculum articulated in the school textbooks. The mathematics
in these books is quite uniform in terms of its violation of the basic principles of
mathematics (cf. the prefatory article To the Reader in Wu 2011b), and we call it
Textbook School Mathematics (TSM) to distinguish it from mathematics. For a long
time, the school mathematics curriculum in each state has been drawn from TSM, so
any significant curricular improvement will be difficult as long as TSM is recycled
from generation to generation the way it is at present. Because commercial interests
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control textbook publishing, a direct attempt to change textbooks may be impossible
without some outside stimulus. The CCSSM could be that needed stimulus. If they
can spearhead a vigorous professional development program—nationwide—that al-
lows our teachers to solidify their content knowledge, teachers will ultimately reject
textbooks based on TSM. Then we can look forward to TSM’s demise.

Such guarded optimism, however, is predicated on the assumption that the CC-
SSM are here to stay. The collapse of the “New Math” movement in the 1970’s
is a warning that unless the CCSSM can be implemented effectively in schools by
knowledgeable teachers, the collapse of the CCSSM will also be inevitable. The sur-
vival of the CCSSM is therefore contingent upon our ability to produce a sufficiently
large corps of mathematically knowledgeable teachers. To all who are dedicated to
making good school mathematics education a reality, the inter-dependence of the
survival of the CCSSM and the availability of knowledgeable teachers should spur
us to fight for serious, content-based professional development across the nation.
We may add that the professional development must be one that can help teachers
overcome their prolonged immersion in TSM.

Thus far, there seems to be little awareness of the seriousness of the problem in
both the education and mathematics communities, much less the will to bring about
this kind of professional development. The difficulty of such an undertaking can-
not be overstated. Given that our teachers are brought up on TSM in schools, and
given that colleges and universities have done little to help preservice teachers real-
ize that TSM is not mathematics, there is not likely to be significant change in the
teacher pipeline anytime soon. As to teachers in the field, they are doubly betrayed:
first by the sudden shift in our demand on their content knowledge, and then by
our refusal to offer assistance. They are asked by the CCSSM to offer definitions to
concepts that have never been properly defined for them: fractions, decimal, percent,
expression, congruence, similarity. . . They are asked to offer explanations for skills
that they were forced to learn by rote, such as invert and multiply, (−a)(−b) = ab,
−a
b

= a
−b

= − a
b

, writing the equation of a line, locating the minimum of a quadratic
function. . . They are asked to teach certain facts as definitions and others as theo-
rems, and they are uncertain which is which because TSM has never drawn a clear
line between the two e.g., which of the following is a theorem and which is a defi-
nition?

a

b
= a ÷ b,

k

�
× m

n
= km

�n
,

a0 = 1,

0! = 1,

two lines are perpendicular if the product of their slopes is −1,

the graph of a quadratic function is a parabola.
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They are also asked to look for structure in mathematics (p. 8 of CCSSM 2010),
but they have always been taught to consider whole numbers, fractions, and rational
numbers as “different numbers” rather than as an orderly progression; length, area,
and volume as distinctly different concepts rather than as special cases of geometric
measurements; algebra as a separate subject from arithmetic rather than as a natural
extension. . . They stand helpless, and our inaction keeps them helpless.

We can either wait for the inevitable collapse of the CCSSM, or we can firm up
our resolve and confront the beast that is professional development. Which will it
be?

Acknowledgement I am grateful to Larry Francis for his corrections and useful suggestions.
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Brief Considerations on Educational Directives
and Public Policies in Brazil Regarding
Mathematics Education

Antonio Vicente Marafioti Garnica

Abstract Taking into consideration the historical context, this chapter consid-
ers Brazilian public policies related to mathematics teaching as they are embed-
ded in broader educational policies, while also reflecting on how Brazil has been
influenced—more in the past than the present—by foreign models. For a brief
overview, we turn first to the curricular directives and the changes they have un-
dergone. This discussion will reveal how education policies in Brazil have suffered
from a lack of continuity of programs aimed at developing, implementing, and mon-
itoring these policies, as well as regional inequalities in a country where income in-
equalities are huge and the cultural diversity is immense. Finally, in general terms,
we discuss some points of convergence and divergence between mathematics edu-
cation research in Brazil, its application within schools, and its effect on the public
policies that shape the Brazilian educational system.

Keywords Educational public policies · Brazil · Mathematics education · History ·
National reforms and programs · Curriculum · Math teachers formation

The Proposal of This Text

Public policies related to education and mathematics education cannot be studied
appropriately without taking into consideration the historical context and socio-
cultural influences of the field from which they originated and to which the policies
apply. The case is no different for Brazil or on the international scene, nor is it dif-
ferent in regard to mathematics teaching in the various courses that compose school
programs.

Thus, the present chapter considers public policies related to mathematics teach-
ing as they are embedded in broader educational policies, while also reflecting on
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how Brazil has been influenced by foreign models, perhaps more in the past than
the present.1

For a brief overview of public policies in Brazil related to mathematics teach-
ing, we turn first to the curricular directives and the changes they have undergone.
This discussion will reveal how education policies in Brazil have suffered from a
lack of continuity of programs aimed at developing, implementing, and monitoring
these policies, as well as regional inequalities in a country where income inequal-
ities are huge and the cultural diversity is immense. Finally, in general terms, we
discuss some points of convergence and divergence between mathematics education
research in Brazil, its application within schools, and its effect on the public policies
that shape the Brazilian educational system.

An Overview of Curriculum Development for Mathematics
Teaching in Brazil

The Brazilian educational model only became consolidated as a “system”—a broad
network of actors, institutions, constructions, and circumstances that act according
to general guidelines dictated by specific legislation for different levels of school-
ing2—in the 1950s. However, evidence can be found of the beginnings of an edu-
cational policy for the primary level at the end of the 19th century, with the con-
stitution of the so-called School Groups, clearly based on the American teaching
model of three R’s—“Reading, wRiting, and aRithmetic”—and also in the 1930s
with the establishment of the first university, the University of São Paulo.3 Mathe-
matics teaching at the secondary and university levels followed mainly French mod-
els, as the didactics manuals clearly attest. Primary school teachers were educated in

1The consolidation of solid educational and mathematics education research centers in Brazil,
mainly in the final decades of the 20th century, appears to have at least challenged this external
theoretical dependence by encouraging thinking about education that, despite being an open di-
alogue with sources from various origins and schools of thought, contributed to questioning its
own processes. An overview of the development of mathematics education research in Brazil, in
particular, can be found in D’Ambrosio and Borba (2010).
2In general, the progressive grade system in Brazilian schools underwent few structural changes
with respect to programs and courses, despite frequent changes in nomenclature and classifications.
In this chapter, to facilitate understanding of the system by foreign readers, we use the expressions
“primary education” to signify the first five years of school (the initial grades, which consisted
of only four grades until 2009), “secondary education” to signify the seven years following the
primary grades, and “higher education” to refer to the university level. “Basic education” in Brazil
refers to the first nine years of schooling, and “middle school” refers to the last three years (high
school) which precede the university level.
3The first Brazilian university, in the sense of an educational complex of higher learning com-
posed of a significant number of different fields managed under a single organizational model, was
founded in 1934 in the city of São Paulo, the capital of the state which until today is the largest
economic power in the country. Prior to this, there was a small and disperse network of higher
education institutions that offered mainly the “classic” fields of engineering, law, and medicine,
although it was common at the time for sons of the upper class to study in Europe.
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Normal Schools in the 19th century (so called because they were institutions where
the norms of civility were to be promoted). Courses for secondary and university
level teachers only became available in the 1930s and were based more on the pro-
grams aimed at primary level teachers than on the teacher education program at the
first Brazilian university.

At least thirty years passed between the time the first university program was
established to educate secondary level teachers and the consolidation of such pro-
grams in universities throughout Brazil. The number of secondary schools grew at a
dizzying pace in the 1950s before there were enough teachers to meet the demand,
and the proliferation of universities with teacher education programs only occurred
in the 1960s.4

Mathematics education in secondary schools in Brazil was divided among three
basic courses until the end of the 1930s—algebra, arithmetic, and geometry—with
no “mathematics” course, as such. Historians of mathematics education agree that
the first movement to modernize mathematics teaching in Brazil took place when
these three courses were unified and came to be known in the schools by a single
name: “mathematics.” The three subjects were to be taught at the same time, with
the unifying thread being the concept of function. For the teaching of geometry,
Euclides Roxo, a central figure in this 1931 reform, proposed that the deductive fo-
cus should be preceded by a practical approach. In addition to the reformulation of
the program, this reorganization was characterized by a well-founded series of di-
dactic guidelines for teachers and school administrators. The 1931 reform provided
the basis for the elaboration of a collection of textbooks, written by the same Eu-
clides Roxo, in which the links between the three components of the mathematics
curriculum essentially followed the guidelines proposed. However, the reform, as
well as the textbooks that were a reflection of it, was short-lived. Little more than a
decade later, in 1942, changes in public policy dismantled Roxo’s initial proposal,
which, according to Pires (2008), illustrated how curricular decisions in Brazil have
historically been marked by questionable procedures on the part of some groups or
individuals, influenced by political issues.

The second half of the 20th century was characterized, according to Pires (2008),
by three very distinct phases: the first, from 1960 to 1980, corresponds to the period
in which the Modern Math Movement (MMM)5 euphorically established itself in
Brazil, introduced by groups promoting a “new” educational reform; the second,
from 1980 to the mid-1990s, is characterized by the emergence, in some states, of
a discourse contrary to the MMM, leading to some reformist activities (essentially
a counter-reform movement) based on this counter-discourse; and, finally, a third
phase which began in 1995 with the publication, at the national level, of the first set
of systematic directives developed for the Brazilian school system.

4Until the end of the 1960s and beginning of the 1970s, emergency teacher training programs were
common, for primary as well as secondary level teachers, but the lack of secondary school teachers
was conspicuous.
5In some countries, Modern Mathematics Movement is also known as New Math Movement.
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The MMM was implemented in Brazilian schools through an intense policy of
production and distribution of textbooks. Thus, it was mainly thanks to a set of
teaching manuals that the MMM directives effectively entered the classroom. The
MMM was presented to teachers and school administrators in short courses that
were insufficient to meet the demand and maintain the expected pace, as there were
few teachers prepared to face the demands imposed by the new contents and ap-
proaches. The criticisms faced by the MMM on the international scene were inten-
sified internally at a time when the schools were still coping with the mere technical
implementation of the proposal. Working with Modern Math at that time meant
“teaching set theory.” Teachers did not comprehend the idea behind Modern Math,
much less the criticisms of it.

It was this general climate of discontent that allowed the emergence of the pro-
posals, most of them regional, that guided mathematical curricula in the 1980s and
90s for the primary grades and the initial secondary level grades. Mathematics came
to be seen—at least in the programs and directives during these two decades—as
having a double function: “as necessary for practical activities that involve quanti-
tative aspects of reality—such as those that deal with sizes, counting, measurement,
and calculation techniques—and as being necessary for the development of logical
reasoning, ability to abstract, generalize, and transcend what is immediately perceiv-
able”6 (Pires 2008, p. 22). Integration of the contents was also sought and, inspired
by Bruner, the spiral approach to teaching was defended. The directives stated that
evaluation should not be limited only to passing or failing, but should diagnose the
learning process to suggest changes in teaching activities. Nevertheless, Pires con-
cludes that the new discourses that condemned repetitive practicing of skills and
memorization of algorithms while defending problem-solving as a methodological
basis, comprehension of concepts and procedures, and balance between arithmetic,
geometry, and algebra encountered implementation difficulty due to deeply rooted
conceptions, such as mathematics learned through repetitive practice and solving ex-
ercises based on a given model. These “new” curricula were regionalized, proposed
by states and cities. If, on the one hand, this strategy favored greater flexibility and
allowed curricula to attend to different needs in different contexts, on the other hand
it also clarified regional differences, and the regions characterized by greater social
and economic development, like the south and southeast, proved to be more capable
of developing alternative curricular approaches based on current academic research.
“Thus, it was found that the deep social segmentation that resulted from the unequal
distribution of income in Brazil was also an obstacle to access to education and to
the development of contemporary, high quality teaching programs” (p. 25).

Only in the 1990s did national curricular directives emerge for all levels of teach-
ing that aspired to break the limiting mechanisms detected in the earlier policies.
Still, implementation of these proposals met with yet other serious obstacles. Ac-
cording to Pires:

Very decisive factors, such as low teacher salaries, turnover of school personnel, and espe-
cially poor teacher education interfered negatively in the development of the process. One

6Quotes translated from the original in Portuguese.
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of the marks of Brazilian public policies relative to curricular issues is the lack of actions
aimed at curricular implementation, as though the new ideas would be transformed into
practice with a wave of the magic wand. Another mark is the lack of monitoring and eval-
uation of the innovations proposed, which makes it impossible to judge them adequately
and document mistakes and correct moves. These gaps have provoked a sort of ‘eternal’
situation characterized by prescriptive curricula (the official ones) and real curricula (those
implemented by teachers in the classroom). Thus, a phenomenon common to the different
levels of the educational system (federal, state, and municipal) is the periodic introduc-
tion of curricular changes that are supported neither by preceding concrete experiences nor
the involvement of teachers who are the protagonists of their implementation. (Pires 2008,
pp. 39–40)

So in practical terms, then, how are the curricular directives for education in
Brazil operationalized? The curricular proposal determined by federal legislation
in the National Curricular Parameters for Basic and High School Teaching is still
enforced. These documents establish the directives for all schools in the country and
function as a national curriculum in the sense of outlining, based on the literature,
themes and ways of approaching the contents of all the disciplines composing the
school programs at each grade level.

With respect to mathematics, the Curricular Parameters for the basic education
level indicate a need to move beyond the linear organization of contents and in-
terconnect them, inspired by the metaphor of constructing knowledge like a web.
Contents are addressed in blocks (Numbers and Operations; Space and Form; Sizes
and Measures; Information Handling7), and general didactic guidance is provided,
including discussion of possible obstacles to learning and ways to overcome them.
The Curricular Parameters for the middle and high school level approach mathemat-
ical contents as instruments for developing abilities and competencies. The compe-
tencies should be organized according to three principal aspects: “Representation
and communication, aimed at developing communication skills; Investigation and
comprehension, with the objective of developing the ability to question natural and
technological processes, identifying regularities, presenting interpretations, and lay-
ing the groundwork for the development of reasoning and the capacity to learn; and
Sociocultural contextualization, aimed at understanding and using science as an el-
ement for interpretation and intervention, and technology as systematic knowledge
of practical sense” (Pires 2008, p. 235).

The mathematical contents addressed in the schools remain essentially very sim-
ilar to previous programs: the curriculum proposes a new way of addressing them
and even changes the sequencing, but does not fundamentally change the themes.
The Modern Math Movement played an important role in this sense when it in-
cluded in the list of “classic” contents some themes considered to be “current” in
the 1960s such as the discussion of matrices and a more contemporary approach to
geometry and equation systems, which is still used today. More recently, the empha-
sis on themes related to the block “Information Handling” led to the emergence of

7“Information Handling” (“Tratamento da Informação” in Portuguese) is how is known a block of
content that covers statistics, probability, and combinatorial analysis, similar to what in the NCTM
Principles and Standards is called “Data Analysis and Probability” (Campos and Lima 2012).
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approaches and contents that had previously been somewhat overlooked in elemen-
tary education, and there was a significant parallel increase in research on statistics
education. In general, the contents are not addressed using a radically formal model;
the emphasis in textbooks and curricular guides is not on formal demonstrations or
rigorous proofs. Greater emphasis has been given to the processes of conjecture,
experimentation, testing, exemplification, and validation. In the earlier grades, prin-
cipally, the attempt is to work in a way that approximates students to the mathe-
matical contents using operationalization and problem-solving more than rigor in
language and formal argumentation. This approach continues into high school, with
the appropriate modifications.

While the official documents at the federal level address more general questions
related to teaching the various disciplines, the regional curricular guides (state or
municipal) have fulfilled the role of operationalizing these directives, providing
teachers with strategies for specific interventions and theoretical details that com-
plement the general guidelines and effectively prepare them for the classroom.

Finally, it is worth noting that “debate and research about curricular questions are
not yet a tradition in the community of mathematics educators” (Pires 2008, p. 39).
While some research has been conducted in this field, studies have either focused
on very general questions, such as the need for and/or appropriateness of official
curricula, or more specific issues, such as those that address the teaching of spe-
cific contents and ways of implementing given approaches (for example, research
on the use of information and computer technology, the emphasis to be given to a
given specific mathematical content, or the importance and potential of strategies
involving problem-solving).

School Makes a Difference

Evaluation of educational systems focuses on strategies to improve teaching sys-
tems, results, and impacts, endeavoring to support public policy in education.
Among other findings, data collected on the Brazilian system of basic education—
implemented beginning in 1995—revealed “a persistent disparity among the condi-
tions in schools attended by students of different social and ethnic origins,” despite
significant improvements with respect to the “universalization of the school8 and de-
mocratization of the composition of the study body.” According to Ortigão (2008),
evaluations have nevertheless shown that “school makes a difference” in Brazil,
contrary to studies carried out in the 1950s and 60s, which suggested that “students’
performance was strongly determined by their socio-economic context and schools
could do little or nothing to change this reality.” In general, evaluations of the Brazil-
ian educational system suggest that (a) the physical conditions of the school and the

8Ninety-seven percent of children aged 6 to 14 years have access to the educational system today
in Brazil.
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school environment have a considerable impact on student outcomes;9 (b) the sim-
ple habit of requesting and correcting homework implies improvements in students’
mean results; (c) in those schools where teachers have higher educational levels, stu-
dents with higher socio-economic levels benefit more from this characteristic; and
(d) when teachers emphasize problem-solving as a teaching strategy in mathemat-
ics class, students tend to perform better in this subject.10 In summary, the research
on the Brazilian education system as a whole shows that schools differ not only in
the diversity of pedagogical and administrative approaches adopted, but mainly in
the variety of internal practices and structures such as the environment, the level of
teachers’ commitment, and the emphasis given to teaching and learning processes.
School makes a difference, and in a country characterized by clear socio-cultural
differences, public policies should pay closer attention to the differences among the
schools.

A Research Project to Update the Debate

According to D’Ambrosio and Borba:

The participation of Brazil in World War II as part of the so-called Allied Forces was de-
cisive for the strong pursuit of national unity. Measures were adopted in this period that
resulted in the unification of the entire educational system, including religious schools
and schools maintained by communities of German, Italian, and Japanese immigrants. The
result was the emergence, in the second quarter of the twentieth century, of a homoge-
neous educational system, subordinating public, private, and religious schools to official
programs defined by special commissions of the National Ministry of Education, to be ap-
plied throughout the country, from the Amazon region to the prairies of Rio Grande do Sul.
These programs, aiming at cultural unification, disregarded seasonal specificities (school
periods were the same), cultural and environmental contexts (the program was rigorously
the same), and labor and professional needs, according to specificities of the productive sec-
tors. For example, the extractive economy of the north would follow the same programs of
the rural south or the industrialized central east. This standardization was applied at all edu-
cational levels, from elementary school to higher education. This scenario started to change
in the fourth quarter of the twentieth century. (D’Ambrosio and Borba (2010), p. 274)

This standardization, which undervalued the cultural and economic differences
among the various regions of this vast country, certainly implied the need for adjust-
ments, which one moment may manifest themselves as subversions of public policy,
and another moment express possible ways to carry out this standardization. Prelim-
inary results of a research project that has been underway since 2002, aimed at un-

9“Differently from what one observes in more developed countries, the conditions of infrastructure
and environment of the schools constitute relevant factors for raising academic outcomes” (Ortigão
2008, p. 85).
10It has been shown that an emphasis on problem-solving results in improved mathematical knowl-
edge appropriation by students. However, this knowledge is not appropriated by everyone in the
same way—students with above-average socio-economic levels benefit more, obtaining better re-
sults than their classmates of lower socio-economic status.
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derstanding the mechanisms behind public policies related to teacher education, re-
inforces the belief that the Brazilian education system is hostage to socio-economic
inequalities. The project11 strives to document the conditions under which mathe-
matics teacher education and practice occurred, or are occurring, the different ways
teachers are/were engaged in their teaching practice, how they appropriate(ed) and
use(d) teaching materials, and how they either follow(ed) or subvert(ed) the legisla-
tion in force. It is a broad mapping process involving a large number of researchers
and a great diversity of information, given that historical records can contribute to
understanding regarding the centers and the extremes when one considers the socio-
cultural aspects that require the consideration of teachers, students, other workers,
and lawmakers.

According to Garnica (2010), three findings from this project are important for
the study of public policy in Brazil related to mathematics education: (a) the lack
of an identity for mathematics teachers and, consequently, the impossibility of clas-
sifying their trajectory in “cycles”; (b) the characterization of processes of teacher
education for mathematics teachers in Brazil as resulting from policies designed to
meet urgent needs, in which transience becomes a constant; and (c) the erroneous
discourse of teacher education policies which says teaching is founded on condi-
tions of equality, when in fact opportunities are very unequal.

Regarding the teacher’s identity, it is necessary to point out that we begin with
the assumption that every identity is a reading, and that, therefore, there is nothing
like “the identity” of someone or something. There is a plurality of perspectives ac-
cording to which we “read” the other, and in this reading we attribute an identity
to him/her. Each subject is, in itself, multi-identity. I attribute a given identity to
someone according to the lens through which I view the world. Thus, it becomes
impossible to group mathematics teachers under a single heading, as though one
could define a stable identity capable, therefore, of being subjected to global policies
and pressures of the same nature and intensity. Testimonies from teachers through-
out Brazil clearly show the diversity of difficulties they face, of the successes they
promote, of the challenges they face daily in the classroom. Each region, city, and

11The project “Mapping of mathematics teacher education and practice in Brazil” (Garnica et al.
2011) is being conducted by a group of researchers with the objective of understanding the way
policies related to teacher education and practice are effectively implemented in different regions of
the country. It is characterized by distinct methodologies, among them oral history. What is known
today as “oral history” is a research methodology which, in Brazil, has been widely used in the
field of cultural studies by sociologists, anthropologists, and historians. In Brazil, although there are
earlier records of research developed using this approach (the Brazilian Association of Oral History
was founded in 1975, and the application of this resource by universities and other institutions
became quite evident in the 1980s), only recently—in the first years of the 21st century—does oral
history emerge as a method applied to mathematics education research. A certain ambiguity should
be noted with respect to the expression “oral history” which, at first glance, induces one to place
this rigorous research procedure specifically within the territory of history. In Brazil, it would be
more correct to refer to it as a “qualitative research approach that links orality and memory,” given
that, in this country, the influence of historians (who are still arguing over whether oral history is
a field, a technique, or a method) is relative, given the influences coming from the social sciences,
for example.
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school imposes very special conditions for classroom practices, for the ways mean-
ing is attributed to everything surrounding these practices, and for the way textbooks
are employed. We must therefore use caution when speaking of THE mathematics
teacher, and it would be more prudent to specify, for each study and for each pro-
posed intervention, WHICH teacher we are talking about, WHICH teachers will be
our spokespersons, and to WHICH teachers certain public policies are directed.12

This would preclude us, for example, from considering a priori, as being the target
of public policies, an idealized teacher, devoid of geographic, sociological, political,
economic, and personal specificities. Studies regarding elements/characteristics that
are common to what we refer to as mathematics teachers remain the order of the day,
as do studies about different types of interventions (for example, the development of
textbooks that meet diverse geo-socio-cultural needs as well as “common” or “min-
imal” curricular directives) that take into account the multiplicity of mathematics
teachers that we hope to reach in a national education system.

With respect to the urgency that has historically characterized the implemen-
tation of teacher education programs in Brazil, one of the more important initia-
tives that stands out is the Campaign for the Improvement and Dissemination of
Secondary Education (Campanha de Aperfeiçoamento e Difusão do Ensino Se-
cundário—CADES), a mathematics teacher education program implemented in the
1950s to meet the demand resulting from the expansion in secondary education at a
moment when the educational system was becoming consolidated in Brazil. Teach-
ers educated at Normal Schools (and therefore prepared to teach only at the primary
school level), and professionals from various other fields (such as engineering, ac-
counting, pharmacy), enrolled in specific courses during the school vacation and,
upon passing the necessary exam, were allowed to teach at the secondary school
level until specific, university-level teacher education programs became available in
their regions. Since the few universities existing at that time were unable to meet
the demand,13 CADES was, in fact, an extremely efficient model for mass teacher
education from a quantitative point of view and because of its agility. It was not
successful in the education of teachers, in a strict sense, as its activities were limited
to “formalizing” teaching practice by regularizing the situation of professionals and
ended up promoting the continuity of practices that were anachronistic and incon-
sistent in the face of the demands imposed by curricular changes, for example. The
interruption of CADES led to increasing competition for openings in special week-
end courses which were offered by some private institutions mainly in the 1970s
and 80s, but which later lapsed. This model of “teacher education,” characterized by
urgency and a lack of human, conceptual, and technical resources, still exists today
in various states in Brazil, albeit under different names.

12Therefore, thinking of a “life cycle” of Brazilian teachers becomes a futile exercise in fiction. In
the not-so-distant past, this expression served to categorize teachers’ practice from the beginning
to the end of their careers, temporally and linearly, with important consequences for educational
research.
13There are records of serious teacher shortages in official bulletins at the end of the 1960s, more
than 30 years after the founding of the first Brazilian university.
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Discourses defending equality are common throughout the history of education
in Brazil—equal access as well as quality of teaching offered in the various modes of
education for teachers and students. Such discourses indicate a lack of awareness of
the differentiations promoted implicitly by educational policies, and the expression
“equal conditions” always echoes very positively: students in rural schools were
provided with the “same conditions” as students in urban areas; technical school
students would have the “same conditions” to face the demands of life as regu-
lar middle school students; students living in the Northeast would have the same
conditions as students in the Southeast with respect to jobs and wages as long as
they passed through the school system. It can be noted, however, that the discourse
of equal conditions was never accompanied by the implementation or defense of
strategies that promote equal opportunities.14

On the Other Hand . . .

Despite the negative aspects of public policy in Brazil related to education, and
mathematics education in particular, some successful strategies have made it pos-
sible to circumvent the fragility of Brazil’s relatively new educational system. The
continental dimensions of the country and the marked cultural differences of the
states that compose it, as well as the schools which reflect this diversity, have not
prevented the State from implementing actions such as the free distribution of text-
books that have undergone rigorous evaluation by the federal government. The Na-
tional Textbook Program (Plano Nacional do Livro Didático—PNLD) is one of the
public policy success stories in Brazil.

The first commission formed in Brazil with the objective of paving the way for
the production, importation, and utilization of textbooks was created in 1938 (Car-
valho 2008). Today the evaluation of school textbooks in all fields of knowledge is
carried out in partnership with universities and is based on the quality of the ma-
terials produced and on the synchronicity between the relevant legislation, modern
trends in teaching, and the conceptual correctness of the contents. Publishers submit
their books to the PNLD for evaluation and, if approved, they are recommended and
purchased by the federal government, which distributes them for free to all public
schools in the country. One of the largest programs for free textbook distribution
in the world, the PNLD delivered 105 million “recommended” books to 140,000
schools in 2009. Evaluation of mathematics textbooks is based on current trends

14The history of teaching in rural schools in Brazil is an excellent example of this disparity between
“having conditions” and “giving opportunities.” In the past, students living in rural areas had the
conditions to enroll in primary school AS LONG AS they were able to get to the city to complete
the last year of primary education; and they were evaluated with the same rigor and depth as stu-
dents in urban schools, by the same teachers, EVEN THOUGH the percentage of repeating grades
was much higher in rural schools, EVEN THOUGH rural students rarely managed to finish all the
grades, EVEN THOUGH the urban authorities and public policies never took into consideration
the different “times” and “ways” of living in rural areas.
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in research regarding mathematics teaching and learning, and involves researchers
and teachers at various teaching levels, coordinated by mathematics educators. Nat-
urally, the evaluation conducted by PNLD was based on recommendations in the
official documents, and focused not on minimum contents, but rather on the deter-
minations regarding the competencies and abilities to be developed in each grade.

Graduate programs in Brazil are also evaluated by a specific agency of the federal
government, the Coordination for the Improvement of Higher Education Personnel
(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES), which
was founded in 1951, the same year the National Council for Scientific and Tech-
nological Development (Conselho de Desenvolvimento Científico e Tecnológico—
CNPq) was created. Both federal agencies evaluate and fund research projects, and
most states also have governmental agencies dedicated to this end. The first grad-
uate program in mathematics education in Brazil was created in 1983 at the State
University of São Paulo (UNESP) in the city of Rio Claro. Today there is a consid-
erable network of research centers in the field, many of which offer specialized and
graduate-level studies aimed not only at preparing researchers, but also providing
continuing education for practicing teachers. Currently, graduate programs are asso-
ciated with both public and private universities and have been submitted to system-
atic evaluation since 1976. They are based on the teaching and scientific productivity
of the students and professors, which emphasizes the vital need for researchers to
be engaged in regional efforts that promote the growth and development of research
centers to better serve the population. In the specific case of graduate programs in
mathematics education, special attention is given to serving schools that provide
basic education, and the involvement in research activities of students enrolled in
undergraduate teacher-education courses is highly encouraged. Policies regarding
teacher education for all levels of teaching have been carefully taken into account
by mathematics education researchers in Brazil, a concern which is reflected in the
rapid development of lines of research that focus directly on preparing teachers.

There is, however, an established common-sense discourse that claims research
in mathematics education has been ineffective in provoking significant changes in
the state of affairs in national education with respect to the mathematics classroom
and the teaching and learning of mathematics. In my opinion, this is a pseudo-
discourse that does not hold up in the face of the facts.

The history of the educational system in Brazil is characterized by various
changes in legislation and program proposals for the different teaching levels, and
today the system and the strategies being implemented are very different from those
of the past. Today, the graduate programs in mathematics education are perfectly in-
tegrated with international research agendas and Brazilian researchers are involved
in defining the directives for preparing teachers at all levels. The time of importing
theories and materials is behind us, as we have abandoned the role of mere con-
sumers and assumed the role of partners and participants in the international centers
that, until recently, disseminated guidelines that we followed unquestioningly. To-
day we are aware of our own needs. These changes in the educational scene are
the result of the efforts of a wide range of actors, including members of the re-
search community who, despite the lack of a clear, consolidated directive and the
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absence of a strong professional society that intervenes in a critical and politically
significant manner, have participated in the definition of public policy, programs,
textbooks, and teaching strategies.

Not everything has changed as we would have liked, however. History, which
teaches us how things stay the same or change over time, clearly reveals the points
at which advances have been made and those characterized by stagnation or retreat.
The difficulties that plague the national educational system in Brazil and affect pub-
lic policies related to the teaching of mathematics are many and varied, although
one advantage of the current situation is that we have the maturity to face the issues
and diagnose the problems. Below, I outline, in general terms, some of the issues
currently underlying the public policy problems in Brazil today related to education
and mathematics education, with an emphasis on the aspects that contribute to the
disconnection between research proposals and reality in the classrooms:

(a) The practices and discourses currently in force in the classroom are strongly
characterized by conservatism. Teachers and administrators in the school sys-
tem, as a general rule, consider it impossible or undesirable to step outside their
comfort zone and abandon well-known, familiar practices. The school is, in this
sense, subversive: it subverts recommendations for changes in legislation and
educational directives. The array of alternatives offered to the schools as possi-
ble ways of countering existing negative situations are incorporated and adapted
to the predominant conceptions in the educational institutions, rather than serv-
ing to change them. Curiously, these “subversive” day-to-day practices are not
addressed by research in the fields of education and mathematics education.

(b) There is little research on public schools in Brazil.15 Considerable research is
conducted IN the public schools, with data collected IN the public schools,
pointing to changes FOR the public schools, but little research is conducted
ABOUT public schools related to education as well as mathematics education.
Even fewer studies have been conducted regarding the public school as a work-
place, as a space inhabited daily by the professionals educated in the university

15The educational system in Brazil is free; public education at the elementary, high school, univer-
sity, and graduate level is free and administered by a complex network of secretariats and agencies.
However, there is a distortion with respect to the quality of public education that often escapes
the eyes of foreigners: the distinction regarding quality (or the discourse about quality) when the
public system is compared with the private system. Public elementary and high schools are often
characterized negatively. Speaking about public schools brings to mind a series of problems, such
as: violence (physical as well as symbolic); poor student performance in state, national, and inter-
national assessments; poorly prepared teachers, which leads directly to poorly prepared elementary
students; poor infrastructure; and low teacher salaries. The private elementary and high school sys-
tem is considered to be far superior. At the university level, however, the situation is radically
different: the public universities (state and federal) are institutions of excellence in teaching and
research. Students undergo highly competitive exam processes to gain entrance. The private uni-
versity system is considered very inferior, with the exception of a few more traditional institutions.
One of the phases of this distortion is reflected in the fact that a large proportion of the students
who studied in public schools, who tend to be from the lower income brackets, do not gain admis-
sion to the public universities, which end up serving predominantly students who studied in private
schools and are, therefore, mostly from the more privileged classes.
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programs which have been the subject of considerable research in the field of
mathematics education.

(c) In addition to the public school being a work “place” or “space” that has been
the subject of little research, it is also a “place/space” of work that is not ho-
mogenous, neither in terms of its physical premises nor in relation to the com-
munity it serves, its organizational and administrative structures, location, and
identity of the teachers.16 Thus, public schools are not a singular entity, which
has many implications for research, including the impossibility of approach-
ing public schools using standardized or generalist conceptions, theories, and
methodologies.

(d) There are no movements or effective, consolidated political entities in Brazil
that bring mathematics educators together to interfere more decisively in ed-
ucation policy. Such institutions, rather than seeking consensus, could serve
to promote discussion, create representative forums of debate, and generate
positions—albeit mutable and dynamic—as a way of defining directives that
consider the diverse actors in the mathematics education scene in Brazil. While
we may have influenced public policy, we have not done so in a systemic, legit-
imate, and representative manner.

(e) It should also be considered that conceptions do not change from one moment
to the next. We note that, since the 1830s, in the middle of the debate regard-
ing the need to expand schooling in Brazil, teacher education has been pointed
to as a constraint to the quality of schools. So it is no accident that it was at
this moment in history, specifically 1835, that Normal Schools were created.17

Has anything changed in the teacher education scenario since then? Certainly
there have been changes, but the crucial issues discussed at that time are still
debated today. Despite being one of the more economical strategies to achieve
quality education in the schools, teacher education is addressed carelessly in
educational policy. I am not speaking here of blaming only the system (which is
normally considered a large and abstract administrative monster), but ourselves
as well: university researchers who have done little or nothing, in our graduate

16It should be pointed out that the national system, given the territorial expanse of the country
and the enormous social, cultural, and economic differences of each region, is composed of small,
medium, and large schools located in small, medium, and large cities, rural and urban areas, serving
communities of different economic levels, administered by directors with varying expectations
based on gaps in the legislation and the biases present in the directives emanating from the State.
Because of the low salaries, teachers generally work in more than one school, often being forced to
adapt to systems that are clearly distinct, as in the case of private and public schools. Teachers are
unable to complete all of their work in school given the time limitations and difficult conditions.
17Normal schools were secondary educational institutions that prepared teachers for the primary
school levels—teachers who were expected to know the “norms” (therefore, the name Normal
School) for teaching scientific, technical, and moral principles to children. The Normal School
model adopted in Brazil was parallel to the École Normale model in France, born during the
French Revolution, but later re-created during Napoleon Bonaparte´s time. The first university-
level Teaching Licensure programs in Brazil, aimed at educating teachers for the high school and
university levels, were not modeled after the directives of the first university, but rather the old
Normal Schools.
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programs or even teacher education programs, to intervene in policies related
to the careers, working conditions, and salaries of elementary and high school
teachers. This discussion escapes us. These interventions are removed from our
concerns, with negative consequences for the relationship between researchers
and the schools.

Transitory, but Possible, Conclusions

Education policies in Brazil, and specifically those related to mathematics teaching,
suffer from various problems. In this brief history of the re-structuring of curricula
in Brazil, one can easily perceive the transitory nature of the decisions and diffi-
culties of implementation that quickly render them outdated. The standardization of
programs and curriculums is also a serious problem that must be faced in a country
of such great dimensions and cultural diversity and such glaring inequalities in in-
come distribution. In essence, it is more urgent to promote reforms to minimize the
huge regional inequities than it is to promote specific educational reforms. While it
is true that various researchers in Brazil, known for their competence in the fields
of education and mathematics education, have participated in the development, im-
plementation, and monitoring of public policies, reflecting the most recent trends
and scientific developments in mathematics education, it is also true that this has
occurred in a more or less individualized manner, given that there is no consistent
system that organizes these interventions based on the community. From this per-
spective, we have acted contrary to what we have declared is needed: we have failed
to listen to mathematics educators and to teachers so that policies are implemented
in a way that everyone agrees on, giving legitimacy to our proposals, and perhaps
increasing their chances for success.
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The Australian Curriculum: Mathematics—How
Did it Come About? What Challenges Does
it Present for Teachers and for the Teaching
of Mathematics?

Max Stephens

Abstract The Australian Curriculum: Mathematics which incorporates the content
descriptions and proficiencies from Foundation Year to Year 10 came into being
in December 2010 when all Australian governments—the national government and
the governments of the eight States and Territories—gave their approval to the draft
which had been in circulation for nearly two years. Prior to that, each State and Ter-
ritory had responsibility for developing and implementing its own curriculum. In
2008, an Australian Curriculum and Reporting Authority (ACARA) was also estab-
lished to coordinate and oversee the development of national curricula in all areas
of compulsory schooling, and to move towards an agreed upon national curriculum
for Years 11 and 12. The formation of ACARA and the adoption of an Australian
Curriculum: Mathematics (2010) are interpreted as a result of major transformations
of an Australian federalist model over the past twenty years, shaped in large degree
by the demands of national assessment and school reporting. This chapter examines
how this came about, what has been achieved within Australia’s ongoing federalist
framework, and also points to some future challenges for teachers in implementing
the national curriculum in mathematics.
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Setting the Australian Context

It is important to understand some key features of the Australian governmental and
educational context in which the Australian Curriculum: Mathematics was devel-
oped in the period from 2008 through 2010, and in which it will continue to be
framed. At the most basic level, Australia is a federation of six States and two Terri-
tories with an over-arching Commonwealth (Australian) government based in Can-
berra. These constitutional arrangements clearly distinguish Australia from coun-
tries like Singapore, Japan, England and China where the curriculum is framed and
promulgated at a national level by an agency established by and responsible to the
respective national government. On the other hand, Australia operates quite dif-
ferently from the USA, where despite a union between Washington and the fifty
States, 15,000 local school districts are responsible for the day-to-day administra-
tion of school education and contribute an important share of the funding of schools
through local property taxes. In Australia, for over 140 years, responsibility for pub-
lic education including the curriculum has remained with the States, following the
passing of various State Education Acts in the 1870s providing for free, compulsory
and secular public education. The funding of public education is largely contained
with State budgets, even though taxation, principally through income taxes and com-
pany taxes, is controlled by the Commonwealth government, and disbursed to the
States and Territories under agreed upon funding formulae. Property taxes exist at
local level but play no role in the funding of school education.

Until the 1960s, the Australian government played virtually no role in public ele-
mentary and high school education—there being no minister responsible for school
education and no national education authority. Since that time, the Australian fed-
eral model has seen a shift in the balance of powers between the States and the
Commonwealth, with the national government taking a more active role in policy
development and national accountability for educational expenditure, in partnership
with the States and Territories, with the creation and steady growth in importance
of a federal Department of Education, Employment and Training (DEET). These
changing relationships make Australia different, in my opinion, to Canada which
also operates a federal model but where individual Provinces appear to retain a
greater degree of independence in the running of schools and in deciding what will
be taught.

However, the emergence of an Australian Curriculum, and in particular of an
Australian Curriculum: Mathematics, does not imply that the States and Territories
have been edged out of school education. Each State will be responsible for the
implementation of the Australian Curriculum: Mathematics in all schools. Several
states commenced implementation, in part, during 2011 and others will begin during
2012, with all State and Territories agreeing to implement the Australian Curriculum
(Mathematics) by 2013.

Since the Australian Curriculum: Mathematics is not intended to occupy all
available teaching time, State Education authorities may wish to add additional con-
tent, where necessary. This is likely, for example, in providing for different courses
in Years 9 and 10 to suit different cohorts of students—some of whom may be plan-
ning to specialise in Mathematics in the remaining two years of high school, whereas
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other students will be expected to continue with mathematics through to the end of
school as part of their general education. Moreover, State and Territory curriculum,
assessment and certification authorities continue to be responsible for the structure
and organization of their senior secondary courses and will determine how they will
integrate the Australian Curriculum content and achievement standards into their
courses. Australian senior secondary courses, taken in Years 11 and 12, serve a dual
purpose: first to certify the successful completion of secondary school, and second
to provide the principal—and usually the sole—basis of selection into universities
and university courses, as well as entry into courses of continuing technical and vo-
cational education. In contrast to many other countries, Australian universities do
not conduct their own entrance examinations.

Federalist Approaches to the Mathematics Curriculum

Starting in the late 1980s, the various levels of state and national government began
working together to create more consistent approaches to the teaching and learning
of mathematics. It was argued, for example, that a lack of consistency in the tim-
ing in which mathematical content was introduced and taught created problems for
those children who moved from one state’s jurisdiction to another in the course of
their schooling. In addition, the growing status and importance of international as-
sessments such as TIMSS provided a rationale for more coherent approaches across
the states and Territories. However, any move to develop a national curriculum was
not taken seriously. In December, 1990, for example, A National Statement on Math-
ematics for Australian Schools was completed as a joint project of the States, Ter-
ritories and the Commonwealth of Australia. This project had been initiated by the
Australian Educational Council with the purpose of providing a framework around
which all school systems and schools might review and build their own mathemat-
ics curricula. Over the next twenty years, various working groups, representative of
all levels of governments and of the non-government schools, continued to develop
statements of consistency for the mathematics curricula of the States and Territories
in the absence of a national curriculum. A major impetus for this continuing work
was the growing importance given to State-based assessment and reporting of stu-
dent achievement in Mathematics and English, and the use of these assessments as
a condition of federal funding of education.

From the early 1990s, with eight different forms of State-based achievement test-
ing (initially at Years 3 and 5, and subsequently extending to Years 7 and 9), the
then federal Minister decided to develop benchmarks of achievement that could be
used to provide a consistent reporting base to the national government as a basis
for its funding of education. The debate and policy focus on a national curriculum,
student assessments and school reporting was re-invigorated in 2005 when State
and Territory education authorities were required by the national government to im-
plement Statements of Learning in subject areas, such as Mathematics, which had
been agreed to by the Ministerial Council for Education, Employment, Training and
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Youth Affairs (MCEETYA), along with other requirements for student assessment
and school reporting (Australian Government 2004).

The Schools Assistance Bill 2008, which provided Australian Government fund-
ing for non-government schools contained similar conditions of funding. These con-
ditions were also embedded in National Education Agreements for Australian Gov-
ernment funding for government school systems. What was significant in these new
arrangements was the additional requirement for reports about individual school
performance, as determined by the Minister. It was no coincidence that this was the
year in which the State and Territory governments, along with the Australian Gov-
ernment, agreed to establish ACARA with a mandate to develop an agreed upon
national curriculum in all school subjects, with mathematics being in the first group
to be so developed. To readers who are not familiar with this new federalist model,
it is important to identify some of the key steps along the way.

These federalist approaches over the past twenty five years cannot be viewed as
the province of any one Australian political party. From the late 1980s, they were
moved forward by a national Labor government, and then from 1996 to 2007 by
a Liberal/National Coalition government, which was followed by a returned Labor
government, still in office at the time of writing. Over the same twenty-five year
period, the political complexions of the various State and Territory governments
were also changing.

Three Declarations on the Way to an Australian Curriculum
(1989–2008)

The establishment of ACARA in 2008 was the culmination of a long period of
policy debates—in the case of the national curriculum, the debates date back to the
1980s when the then Minister for Employment, Education and Training called for
a common curriculum framework that would set out ‘the major areas of knowledge
and the most appropriate mix of skills and experience for students in all the years of
schooling’ (Dawkins 1988).

Three important declarations or statements by the Ministers of Education rep-
resenting the eight States and Territories and the national (Commonwealth) gov-
ernment of Australia the first being the Hobart Declaration in 1989, the next the
Adelaide Declaration in 1999, and the last the Melbourne Declaration in 2008,
show significant changes in thinking about the meaning of “national curriculum”
and “national assessment”. The first was the Hobart Declaration on Schooling
(MCEECDYA 1989) named after the city in which the Australian Education Coun-
cil met that year for its sixtieth meeting. In that statement, the ministers agreed for
the fist time to improve Australian schooling within a framework of national col-
laboration which embraced:

• Common and agreed upon national goals for schooling in Australia
• (An) Annual National Report on schooling
• National collaboration on curriculum projects
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• Establishing the Curriculum Corporation of Australia
• The goal of a common age of entry for Australian schools
• Improving the quality of teaching.

The Curriculum Corporation was intended to be a clearing house for publications to
be shared among the States and Territories and to commission new publications. It
had no role in curriculum development. Indeed, the very notion of a “national cur-
riculum” is entirely absent from the Hobart Declaration, with its clear commitment
to collaboration among the States, Territories and the Commonwealth. Among the
above goals that directly relate to the teaching and learning of mathematics, one of
the stated goals of schooling was “to develop in students skills of numeracy, and
other mathematical skills”. The term ‘numeracy’ was not defined, but was generally
taken to refer to an ability to use mathematics purposefully in other school subjects,
in contexts outside school, and for older students in relation to their future work and
life. Indirectly, the Annual National Report on schooling was intended to monitor
schools’ achievement and their progress towards meeting the agreed upon national
goals. It was intended to report on school curriculum (for this, read what the individ-
ual States were doing), participation and retention rates, student achievements, and
the application of financial resources to schools. Reporting on student achievement
would rely entirely on whatever measures of achievement were in place at the time
in individual State and Territories.

In particular, the Ministers reported that “work has been proceeding through a
working party to seek to attain the highest standards of national curriculum, com-
mon principles and agreed areas of national collaboration. These will now be de-
fined for the Mathematics curriculum taught in Australian schools (i.e. as taught
by the individual States and Territories). The statement of common principles will
identify the knowledge and skills to which all students are entitled, recognize areas
of strength and weakness in the mathematics curriculum, and develop recommen-
dations for future collaborative action” (MCEECDYA 1989). The Ministers said
that the findings of this process would be presented for public discussion. Signif-
icantly, they added: “Their use will not be compulsory (my emphasis) but where
agreement is reached after full consideration then it is likely that government and
non-government systems and schools will use them” (MCEECDYA 1989). It was
also agreed that further mapping would continue in the “key curriculum areas of
Science, Technology, and English Literacy.”

The Hobart Declaration was superseded ten years later by the Adelaide Decla-
ration on National Goals for Schooling in the Twenty-First Century (MCEECDYA
1999). The spirit and letter of federalist collaboration evident in the Hobart Dec-
laration is maintained in this relatively brief declaration. The Ministers’ Adelaide
Declaration set out eight agreed upon key learning areas through which students
were expected to attain high standards of knowledge, skills and understanding in
the compulsory years of schooling. These key learning areas were specified as: the
Arts, English, Health and Physical Education, Languages other than English, Mathe-
matics, Science, and Studies of Society and Environment. The Ministers’ only other
direct reference to Mathematics was to say that in terms of the curriculum, “stu-
dents should have attained the skills of numeracy and English literacy, such that
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every student should be numerate, able to read, write spell and communicate at an
appropriate level” (MCEECDYA 1999). Responsibility for monitoring and report-
ing on students’ attainments in all these respects was left to the States and Territories
using their own particular forms of assessment and testing.

However, by 2008, the preceding federalist model was transformed and national
agreement on action was strikingly evident when, in their Melbourne Declaration
on Educational Goals for Young Australians (MCEECDYA 2008), the Ministers
agreed to take definite steps to “promoting world class curriculum and assess-
ment” (my emphasis). Absent from this statement are references to non-binding
agreements, as in the Hobart and Adelaide Declarations. In a wide-ranging 20-page
document, the Ministers stated that “State, Territory and Commonwealth govern-
ments will work together with all school sectors to ensure world class curriculum
in Australia” (p. 13). This will require different levels of implementation: a national
curriculum, together with curriculum specified at State and Territory, and at local
levels. In recognition of the continuing roles of States and Territories, the Ministers
said that “schools and school systems are responsible for delivering curriculum pro-
grams” (p. 14) that reflect agreed upon learning areas with appropriate flexibility,
and the same paragraph singles out English and Mathematics “as being of funda-
mental importance in all years of schooling and as the primary focus of schooling
in the early years” (p. 14).

The Melbourne Declaration makes an explicit reference to national assessment
for the first time when it says: “To ensure that student achievement is measured in

meaningful ways (my emphasis), State, Territory and Commonwealth governments
will work with all school sectors to develop and enhance national and school level
assessment that focuses on assessment for learning, assessment as learning and as-
sessment of learning to assess student achievement against goals and standards”
(p. 14). This statement is followed immediately by a commitment to strengthen ac-
countability and transparency, justified in terms of supporting schools and students,
for informing parents and families and the community, and also for governments in
order to “analyse how well students are performing, identifying schools with partic-
ular needs, to determine where resources are most needed to lift attainment, and to
conduct national and international comparisons of approaches and performances”
(p. 17). The Ministers reference to measurement “in meaningful ways” could be
read in the context of difficulties experienced in the years following the Hobart
Declaration (1989) when the eight State and Territory governments tried to com-
pare students’ achievement nationally, while still using their own forms of testing. It
may also be an implied reference to instances where student achievement appeared
to rise over time when smaller States changed from one assessment instrument to
another. In 2008, National Assessment of Performance in Literacy and Numeracy
(NAPLAN) commenced, replacing all current individual assessment regimes of the
States and Territories. It can be argued that. NAPLAN made a national curriculum
inescapable.

Prior to the Melbourne Declaration (2008), a National Curriculum Board (NCB)
was created by the Australian Government in 2007 to be responsible for carrying
forward the initiatives for developing “world class curriculum and assessment”. The
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NCB was essentially a committee of officials with no statutory power. In Octo-
ber 2008, the Australian Curriculum, Assessment and Reporting Bill (Parliament
of Australia 2008) was introduced and enacted creating the Australian Curriculum
and Reporting Authority (ACARA) as “an independent statutory authority” which
“will manage the creation and implementation of the national curriculum, national
student assessment and reporting of school education outcomes” (p. 1). As an inde-
pendent statutory authority, ACARA derives its plan of work from the Ministerial
Council representing all Australian governments and all school sectors. The Min-
isterial Council approves ACARA’s budget with 50 % coming from the Common-
wealth and the other 50 % coming from the States and Territories. This ensures that
ACARA is independent of any one government. ACARA, which is not an agency
of the national (Australian) government acting alone, reflects a new Australian fed-
eralist model where responsibility for curriculum and assessment is no longer the
exclusive responsibility of the States and Territories. This evolutionary shift gives
the national government, acting through ACARA, a greatly enhanced role.

Key Features of the Australian Curriculum: Mathematics

In implementing the Australian Curriculum: Mathematics, there is a consensus that
it should not be too prescriptive and that there needs to be flexibility in order to
cater to local needs (Kelly 2008). The States and Territories, in their proposal for a
national curriculum, successfully argued that:

. . . a national curriculum will benefit if there is flexibility for states and schools to innovate
and adapt and to share their experiences of what approaches achieve the best results. A
level of autonomy for individual schools and teachers to make professional decisions about
curriculum drives the high performance level of a large number of government, Catholic
and Independent schools across jurisdictions.

. . . whatever common curriculum standards (that is, what students are expected to achieve in
mathematics, science etc.) are adopted by jurisdictions, it is important to allow for flexibility
in schools catering for different groups of students to achieve these standards in different
ways. This is not an argument for lower standards for some students. On the contrary, it
is an argument for flexibility in teaching approach and, in some cases, content in order to
reach the standards in different settings. (Council for the Australian Federation 2007).

The federal Minister of the time, Julia Gillard, moved to address these concerns,
assuring schools that the national curriculum will ‘allow teachers the flexibility to
shape their classes around the curriculum in a way that is meaningful and engaging
for students’ (Gillard 2008). Minister Gillard also recognised particular concerns:

The national curriculum, once agreed upon and completed, will be compulsory.
But it will not mean that every school will be required to teach the same subjects,
line by line, in the same way (Gillard 2008).

The Australian Curriculum: Mathematics does not set out in detail how lessons
should be taught each day. This would require a very large and intricate document,
which would be difficult to apply across the range and variety of schools and stu-
dents’ backgrounds. State and national curriculum documents serve a variety of
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purposes. They are intended to express an expectation or broad agreement about
what should be taught and in what order, and how some key ideas are to be de-
veloped. They are intended to set out what children are expected to know and be
able to do’ and so provide an agreed upon framework for school and system-wide
assessments. They are not recipes for teaching in any day-to-day sense. There is
always a gap between what is expressed in curriculum documents and how teach-
ers give shape to their lessons. Occasionally, these documents may recommend or
suggest particular ways of teaching particular topics. For example, to support its
teachers to implement the Australian Curriculum: Mathematics, the State of New
South Wales—Australia’s most populous State—has produced a five-hundred page
syllabus document (Board of Studies 2012). This document can be accessed by
teachers in other parts of Australia should they wish to use it. On the other hand,
the State of Tasmania—Australia’s smallest State—has implemented the Australian
Curriculum: Mathematics from 2012 using the document in its ACARA format. In
yet a further example of federalist approaches to implementation, the State of Vic-
toria has “re-badged” the Australian Curriculum: Mathematics for its teachers as
AusVELS (Victorian Curriculum and Assessment Authority 2012).

Content Areas and Priories in Australian Curriculum:
Mathematics

How does the Australian Curriculum: Mathematics differ from its preceding State
and Territory documents? A nationally-funded review by Donnelly (2005) and oth-
ers showed inconsistencies in depth of treatment and the ways in which content
was specified across Year levels in the various State and Territory curriculum docu-
ments. In curriculum documents prepared by the majority of Australian States and
Territories, mathematical content was present in Bands or Levels which were in-
tended to cover two years of schooling. As a result, the level of detail sometimes
appeared scanty or too general when compared with the Mathematics curricula of
Japan (Japan Society for Mathematical Education 2000) and Singapore (Ministry
of Education 2007). By contrast, the Australian Curriculum: Mathematics specifies
content according to each year level from the Foundation Year to Year 10. Never-
theless, it is important to understand that the Australian Curriculum: Mathematics
is a consensus document within a continuing federalist model.

One of the key features of the Australian Curriculum: Mathematics (2010) is
that content is described for each year level, from Foundation Year to Year 10, using
three common content categories: Number and Algebra, Measurement and Geome-
try, and Statistics and Probability. In addition, four Proficiency Strands, Understand-
ing, Fluency, Problem-solving, and Reasoning, are expected to guide teaching and
learning at all year levels, across all areas of content.

The following section will compare the content descriptions of the Australian
Curriculum: Mathematics with related sections from one of the State-based cur-
riculum documents, namely the Victorian Essential Learning Standards (VELS,
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Table 1A Australian curriculum—foundation year, measurement and geometry

Content descriptions Elaborations

Use direct and indirect
comparisons to decide which is
larger, heavier or holds more and
explain reasoning in everyday
language (CMMG006)

Comparing objects directly by pacing one object against
another to determine which is larger or longer or by pouring
from one container to the other to see which one holds more
using suitable language associated with measurement
attributes, such as “tall” and “taller”, “heavy” and “heavier”,
“holds more” and “holds less”

Table 1B VELS level 1, measurement, chance and data

Learning focus Standards

(S)tudents learn to compare
common objects using terms such
as longer, heavier, fuller and
hotter

Students compare length, area, capacity and mass of familiar
objects using descriptions such as longer, taller, larger, holds
more and heavier. They make measurements using informal
units such as paces for length, hand spans for area, glasses
for capacity and bricks for weight.

DEECD 2008). As discussed earlier, the VELS is typical of other State-based docu-
ments in using Levels, covering a two-year period, instead of year-by-year elab-
orations. Each level of the VELS is organized according to Learning focus and
Standards of performance. The VELS Mathematics domain is organized in five di-
mensions: Number, Space, Measurement, Chance and Data, Working Mathemati-
cally, and Structure. The Australian Curriculum: Mathematics uses three content
descriptions—Number and Algebra, Measurement and geometry, and Statistics and
Probability—to describe the knowledge, skills and processes that teachers are ex-
pected to teach and students expected to learn. These descriptions do not prescribe
approaches to teaching, but “are intended to ensure that learning is appropriately
ordered and that unnecessary repetition is avoided” (ACARA 2010, p. 3). Content
elaborations are also given “to illustrate and exemplify content and assist teachers to
develop a common understanding of the content descriptions. They are not intended
to be comprehensive content points that all students need to be taught” (ACARA
2010, p. 4).

Tables 1A and 1B compare what the two documents prescribe in Measurement
for the first year of school. There is a high degree of consistency. Both descriptions
are detailed, unambiguous, and measureable (Donnelly 2005). VELS Level 1 is also
intended to apply to the first year of school only. Interestingly, VELS includes an
informal comparison of areas which is not explicitly included in the Australian Cur-
riculum: Mathematics until Year 2.

Tables 2A and 2B compare the two documents in terms of how students in Year 3
are expected to relate knowledge of number facts and relationships for single-digit
numbers to mental computation involving larger numbers. This is clearly and unam-
biguously explained in the Australian Curriculum: Mathematics, where the expres-
sion “always result in the same answer” is intended to introduce the idea of equiva-
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Table 2A Australian curriculum—year 3, number and algebra

Content descriptions Elaborations

Recall addition facts for single
digit numbers and related
subtraction facts to develop
increasingly effective mental
strategies for computation
(ACMNA055)

Recognise that certain single digit number combinations
always result in the same answer for addition and subtraction,
and using this knowledge for addition and subtraction of
larger numbers using suitable language associated with
Combining knowledge of addition and subtraction facts and
partitioning to aid computation [for example
57 + 19 = 57 + 20 − 1]

Table 2B VELS level 3, structure

Learning focus Standards

(Students) learn to use number
properties to support computations
(for example, the use the commutative
and associative properties for adding
or multiplying three numbers in any
order or combination

Students understand the meaning of “=” in
mathematical statements and technology displays
(for example to indicate either the result of a
computation or equivalence). They use number
properties in combination to facilitate computation
[for example, 7 + 10 + 13 = 10 + 7 + 13 = 10 + 20]

lence. The elaborations illustrate how this might be applied to developing effective
mental strategies. While the VELS expressly refers to equivalence, its references
to “number properties” are more general. But the link to computational efficiency
is quite clearly shown. This content is expected to be covered by VELS in Years 3
and 4.

In Statistics and Probability, the Australian Curriculum: Mathematics, as shown
in Table 3A, encourages the use of secondary data from the media and elsewhere
to examine how statistics is used to convey messages and how these messages need
to be examined carefully with respect to the claims being made and the assump-
tions made in collecting data, particularly through sampling. On the other hand,
VELS Level 4 (covering Years 5 and 6)—shown in Table 3B—treats sampling only
indirectly in relation to the collection of primary data through questionnaires and
surveys. Incidentally, VELS level 5 Measurement, chance and data has a reference
to “Students take samples in order to make inferences and predictions about a popu-
lation” (DEECD 2008, p. 27). Explicit treatment of the distinction between a sample
and its population is given by VELS Level 6, intended for Years 9 and 10 (DEECD
2008, p. 36). These differences could be considered variations in timing and em-
phasis, but the Australian Curriculum: Mathematics places a stronger emphasis on
utilising case studies and illustrations from the media and advertising to support the
study of Statistics and Probability in the upper primary and early secondary years.

In its treatment of linear and non-linear relations, the Australian Curriculum:
Mathematics provides more detailed advice than VELS. Tables 4A and 4B set out
the content descriptions and elaborations for linear and non-linear relations for Year
9 and Year 10. VELS Level 6 is intended to cover both these year levels. Teachers
will see continuities between the content described in Table 4C from VELS Level
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Table 3A Australian curriculum—year 6, statistics and probability

Content descriptions Elaborations

Interpret secondary data
presented in digital media and
elsewhere (ACMSP148)

developing an understanding of sampling and the ability to
interpret secondary data in order to critique data-based claims
made in the media, advertising and elsewhere investigating
data representations in the media and discussing what they
illustrate and the messages the people who created them might
want to convey considering the need for sampling and
recognising when a census of an entire population is not
possible or not necessary, and identifying examples of
sampling in the media

Table 3B VELS Level 4, Measurement, chance and data

Learning focus Standards

Students plan and conduct questionnaires
to collect data for a specific purpose

Students recognise and give consideration to different
data types in forming questionnaires and sampling

6 and what is recommended for Year 9 and 10 in the Australian Curriculum: Math-
ematics. However, differences between the two documents are more pronounced in
this respect: not only does the latter provide greater detail, it also recognizes a need
for more challenging content at this Year level for some students. The Australian
Curriculum: Mathematics achieves this by providing an additional level of content,
entitled Year 10A, which while optional “is intended for students who require more
content to enrich their mathematical study whilst completing the common Year 10
content” (ACARA 2010, p. 6). Year 10A content descriptions in regard to Linear
and non-linear relationships include: Describe, interpret and sketch parabolas, hy-
perbolas, circles and exponential functions and their transformations (ACMNA267);
Solve simple exponential equations (ACMNA270); Apply understanding of polyno-
mials to sketch a range of curves and describe the features of these curves from their
equation (ACMNA268); and Factorise monic and non-monic quadratics expressions
and solve a wide range of quadratics equations derived from a variety of contexts
(ACMNA269). These descriptions recognise that at Year 10 some students require
considerably more challenging content than is contained in the “common Year 10”
descriptions. This is clearly a limitation of VELS Level 6.

The Australian Curriculum: Mathematics, by opting for Year-by-Year descrip-
tions of content, has an advantage over State-based documents which are, in most
cases, based on Levels covering two years. Teachers reading the Australian Curricu-
lum: Mathematics are intended to see clear continuities between what is currently
prescribed in their current State curricula, but they can also expect more detail, less
scope for ambiguity, and some definite changes of emphasis. Two areas of changed
emphasis are discussed in the following section.
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Table 4A Australian curriculum—year 9, linear and non-linear relationships

Content descriptions Elaborations

Find the distance between two points located on a
Cartesian plane using a range of strategies, including
graphing software (ACMNA214)

investigating graphical and algebraic
techniques for finding distance

Find the midpoint and gradient of a line segment
(interval) on the Cartesian plane using a range of
strategies, including graphing software
(ACMNA294)

investigating graphical and algebraic
techniques for finding midpoint and
gradient

Sketch linear graphs using the coordinates of two
points (ACMNA215)

determining linear rules from suitable
diagrams, tables of values and graphs and
describing them both using words and
algebra

Sketch simple non-linear relations with and without
the use of technology (ACMNA296)

sketching parabolas, hyperbolas and
circles

Challenges for Teachers and Teaching

This section will examine two content Strands, (Number and Algebra, and Proba-
bility and Statistics) and their implications for different approaches to teaching and
learning. (The third Strand of Measurement and Geometry may present fewer chal-
lenges for teaching and learning since it largely reiterates the content prescribed in
preceding State and Territory curricula.) As mentioned before, the inclusion of these
two strands from Foundation Year to Year 10 reflects similar efforts to promote a
closer integration between Number and Algebra evident in many other national cur-
riculum documents, and an increased emphasis on the teaching of Statistics and
probability which is also present in a number of national curriculum documents—
the USA (see NCTM 2006) and China (see, Ministry of Education 2001, 2011)
providing just two examples.

Number and Algebra

A more coherent and integrated treatment of Number and Algebra in the elemen-
tary and junior high school years raises some challenges for teachers and teaching.
Several questions are uppermost in this analysis. How is this expectation interpreted
by teachers? Does it imply, as some elementary teachers may think, that there is
now less time for teaching Computation? What advantages does a more integrated
treatment of Number and Algebra offer students to understand more deeply num-
bers and number operations, especially in the middle and upper elementary years?
And how is this more unified treatment of Number and Algebra intended to assist
students to make a smoother transition to a more formal study of algebra in the



The Australian Curriculum: Mathematics—How Did it Come About? 169

Table 4B Australian curriculum—year 10, linear and non-linear relationships

Content descriptions Elaborations

Solve problems involving
linear equations including
those derived from formulas
(ACMNA235)

solving equations that are the result of substitution into
common formulas mathematics and elsewhere, including those
that involve rearrangement

checking the solution by substitution into the equation

Explore the connection
between algebraic and
graphical representations of
relations such as simple
quadratics, circles and
exponentials using digital
technology as appropriate
ACMNA239

identifying, matching and describing algebraic and graphical
representations of parabolas, rectangular hyperbolas,
exponential functions and circles, including those that have
undergone a single transformation sketching the graphical
representations of parabolas, exponential functions and circles

Solve linear equations
involving simple algebraic
fractions (ACMNA240)

solving a wide range of linear equations, including those
involving one or two simple algebraic fractions, and checking
results by substitution representing word problems, including
those involving fractions, as equations and solving them to
answer the question

Solve simple quadratic
equations using a range of
strategies (ACMNA241)

developing an understanding that many relationships are
non-linear and that these can also be represented graphically
and algebraically identifying the connection between algebraic
and graphical solution of equations (for example understanding
that the x-intercepts are the solutions of f (x) = 0 exploring the
method of completing the square to factorise quadratic
expressions and solve quadratic equations

secondary school? To illustrate these points, let us examine how teachers might ap-
proach teaching the following two elements of the Number and Algebra Strand in
Year 4 and in Year 5:

Year 4: Use equivalent number sentences involving addition and subtraction to find un-
known quantities (ACMNA083)

Year 5: Use equivalent number sentences involving multiplication and division to find un-
known quantities (ACMNA121)

Two contrasting teaching approaches will be discussed. The first might be called
a minimalist teaching approach; where the emphasis is focussed on using compu-
tation and equivalence to obtain a correct answer to number sentences, involving
subtraction such as 39 − 15 = 41 − �, for instance, or a sentence involving mul-
tiplication such as 5 × 18 = 6 × �. In this minimalist approach, teachers would
encourage students to simplify each number sentence by calculating the value of the
known pair of numbers, [24 in the subtraction sentence, and 90 in the case of the
multiplication sentence] and then ask what unknown number on the right hand side
will be needed to give these results, leading to 17 for the subtraction sentence and
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Table 4C VELS level 6, structure

Learning focus Standards

Students work with functions
(for example, linear, quadratic,
reciprocal, exponential)
simple transformation of these
functions, their graphs, and
related algebraic properties.

Students identify and represent linear quadratic and exponential
functions by table, rule and graph (all four quadrants of the
Cartesian coordinate system) with consideration of independent
variables, domain and range. They distinguish between these
types of functions by testing for constant first difference,
constant second difference or constant ration between
consecutive terms . . . They use and interpret the functions in
modelling a range of contexts.

They recognise and explain the roles of the relevant constants in
the relationships f (x) = ax + c, with reference to gradient and
y axis intercept, f (x) = a(x + b)2 + c, and f (x) = cax

15 for the multiplication sentence. Some teachers might think that this is all that is
needed to use equivalent number sentences involving subtraction (or multiplication)
to find unknown quantities. However, this minimalist approach omits important op-
portunities to extend students’ understanding of equivalence and its embodiment in
different operations.

A mathematically richer approach would be to look more deeply at the structure
of these and related equivalent number sentences; noticing especially at how the
direction of compensation changes according to the operations involved. In this al-
ternative approach, students are encouraged to refrain from calculating and to look
at the numbers either side of the equivalent sign. Some students will express their
reasoning verbally, using rich and varied forms of mathematical thinking such as:
“Because 41 is two more than 39, I have to put a number that is two more than 15
in order to keep the same difference”. Other students will express their thinking by
using arrows to connect related numbers, 39 to 41 and 15 to the unknown number,
concluding that it has to be two more than 15. Other students may write A1 beneath
39 and A2 beneath 41, and place B1 under 15 and B2 under the unknown number,
reasoning that “Since A2 is two more than A1, B2 has to be two more than B1”.
Some students will explicitly use words such as “equivalent” or “to keep both sides
equivalent”. In all these cases, students know that they are dealing with equivalent
differences. These students also know that the direction of compensation used the
case of subtraction or difference operates in the opposite way to sentences involving
addition. Likewise, for the multiplication sentence, students can be encouraged to
notice that since 18 is three times the value of 6, the missing number has to be three
times 5 in order to maintain equivalence. The fact that the 6 is one more than 5 in
the multiplication sentence is not important, whereas the multiplicative relationship
between 6 and 18 is all important to reaching a solution.

Unlike the minimalist approach discussed earlier, these approaches focus on im-
portant and generalizable features of sentences involving the same number opera-
tions. These features are intended to support students’ computational fluency, and
also to prepare them for algebraic thinking. Research, such as by Carpenter and
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Franke (2001) and by Mason et al. (2009), endorse this approach. These possibili-
ties will be quite new to many Australian elementary and junior secondary teachers.
Implementation of the Australian Curriculum: Mathematics will need to open up
teachers’ vision to these ideas.

Statistics and Probability

For the Statistics and Probability Strand, different challenges arise for teachers and
teaching. The precedence given to Statistics in the title underscores a difference
with Chance and Data as used in the National Statement on Mathematics for Aus-
tralian Schools (AEC 1990), and with the various State curricula, where, for exam-
ple, VELS (DEECD 2008) uses a content heading Measurement, chance and data.
Many teachers in the upper elementary and junior high school years, who have been
accustomed to thinking about probability from a purely theoretical or computational
perspective, will need help to develop their understanding of variability and the ef-
fects of sampling, which are consequences of the new emphasis on interpreting sec-
ondary data presented in digital and printed media. Research by Watson and Nathan
(2010) and by Stephens and Zhang (2011), show how teachers can be assisted to
think about the effects of sample size on variability of data, and to connect their
teaching of probability and statistics to key mathematical ideas such as ratio and
proportion. For elementary teachers, in particular, the focus needs to move away
from merely collecting and recording data, and to attend more to developing dif-
ferent ways of representing and interpreting data. All teachers will need a clearer
appreciation of the key idea of variability and its impact on interpreting data that
has already been gathered.

These two illustrations are intended to show that, while the Australian Curricu-
lum: Mathematics contains no radical innovations, it has clearly moved beyond ex-
isting State and Territory documents; and it can be expected to challenge current
levels of practice and mathematical understanding of many teachers. That is its chal-
lenge and opportunity for the teaching and learning of mathematics in Australian
schools.

What Does the Australian Curriculum: Mathematics Offer to
Teachers and Schools?

For the first time in Australian school education, an agreed upon national curriculum
sets out clearly for all schools what should be taught and assessed in Mathematics
at all levels of schooling from Foundation Year (Kindergarten) to Year 10. Across
these eleven years, three continuous content strands—Number and Algebra, Mea-
surement and Geometry, and Statistics and Probability are used. Four Proficiency
strands also run across the eleven years with specific elaborations at each year level
in Understanding, Fluency, Problem solving, and Reasoning.
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The decision to elaborate the curriculum year by year represents a clear departure
from the practices of almost all of the States; which had generally used their curricu-
lum documents to describe standards of achievement or outcomes which might be
attained by most students over a period of two years. These previous documents, the
Victorian Essential Learning Standards (VELS) for instance (DEECD 2008), used
six levels to describe the curriculum from Foundation Year (Level 1) to Year 10
(Level 6) using two-year intervals encompassing Years 1 and 2, Years 3 and Year 4,
and so on. In England and Wales, the National Curriculum Mathematics (Depart-
ment of Education 2010) uses only four Key Stages or levels to describe its content
for students from the beginning of school to age 16.

While the Content described under Numbers may have been evident in many
State-based documents, the joining of Number and Algebra in the primary school
years is an important new emphasis. Likewise, the important place given to Statistics
and Probability gives a more consistent emphasis to statistical representation and
the introduction of probability in the primary years than has been the case in many
State-based documents. Some State-based documents included a separate strand on
Mathematical thinking. The three Proficiency Strands of the Australian Curriculum
are intended to achieve the same purposes.

Smaller States and Territories, which in the past may have experienced difficulty
in resourcing the development and updating of their own curriculum, now have ac-
cess to an agreed upon national curriculum. All States and Territories will also have
access to supporting publications and associated teacher development resources.
Publishers also can be confident in producing for a national market. In the past, any
publisher aiming for a national market had to make significant adjustments in con-
tent, timing and terminology to account relatively small differences in curriculum
between the States and Territories, which were still significant in terms of teacher
acceptance.

Finally, in ACARA there is an independent statutory agency that can undertake
systematic evaluations of the current curriculum and initiate revisions in a planned
and systematic manner. In the former State-based regimes, reviews and revision
were subject to government priorities and changes of government where previously
agreed upon priorities might easily be swept aside.

What Have Been Some Drawbacks of the Current Process?

The Australian Curriculum: Mathematics, while an undoubted national achieve-
ment, has been the result of a consensus process by representatives of government
and non-government schools, who were subject as well to inevitable time con-
straints. The final statement had to be more or less consistent with what was already
contained in the pre-existing State documents; no big departures from current prac-
tice could be expected. Moreover, the input of the mathematics education research
community which was subject to the same government set timelines was uneven.
In Australia the mathematics education research community is not adept at dealing
with short response timelines set by bodies such as ACARA.
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Is the Australian Curriculum: Mathematics the “world class curriculum” that was
promised in the 2008 Melbourne Declaration? Given only two years to prepare, it
is unreasonable to expect something world class to be prepared in this time using
a federalist consensus process. World class Mathematics curricula, such as those of
Singapore, China and Japan, are developed over much longer time cycles—up to ten
years—with careful input from teachers and schools and usually in the hands of a
highly expert group of specialists nominated by respective Ministries of Education.
Australia needs to learn from the processes used in these other countries.

What Lessons Can Be Learned for the Future?

While 2012 has seen the trialling of the Australian Curriculum: Mathematics in sev-
eral of the States, all States and Territories have agreed to fully implement the new
curriculum from 2013. Already several publications in the area of assessment, such
as Rich Assessment Tasks in Mathematics: Years 5 to 8, published by the Catholic
Education Office of Melbourne (2011), have aligned student performances with the
Content Descriptions of the Australian Curriculum: Mathematics and the Standards
currently used in the VELS. This has reassured teachers of the high degree of con-
sistency and continuity between current assessment practice based on VELS and
what the Australian Curriculum: Mathematics expects students to learn.

The fact that Australian Curriculum and Assessment Authority (ACARA) has
successfully worked with the States and Territories to develop common and agreed
upon courses in Mathematics for the final two years of school does not replace the
various State-based assessment and certification procedures. These courses are to be
implemented by the States and Territories during 2015–2016. There are no proposals
for a national system of certification and assessment. The Results of the final-year
high school assessments, across the States and Territories, are currently moderated
in a national system which allows students to apply for entry into any Australian
university regardless of their state of origin; and those arrangements will continue.

However, the four agreed upon courses in Mathematics for Years 11 and 12
(ACARA 2012), to be implemented in 2015–2016, will be important in reducing
current variations in content and in the range of Mathematics courses on offer to se-
nior high school students in the different States. One course, entitled Mathematical
Methods, includes algebra, introductory calculus, trigonometry and statistics, and
is intended to provide a broad course for the majority of students who wish to un-
dertake university courses in the mathematical sciences, science and economics. A
second course, entitled Specialist Mathematics, which must be taken in conjunction
with the first is intended to provide more advanced treatment of these topics, espe-
cially in calculus, for a subset of students who intend to undertake more specialised
mathematical and statistical studies beyond school. A third course, entitled General
Mathematics, has a strong foundation in descriptive statistics and in non-calculus
applications of mathematics. It is intended to support those students who may wish
to pursue courses in business, and the humanities. A fourth course, entitled Essential
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Mathematics, is intended to support students who need to apply basic mathematical
techniques in their other school subjects and to support future vocationally oriented
studies and training. In the past, this latter group of students may have ceased to
study any Mathematics after Year 10, and many may have “dropped out” of school
altogether. Continuing to engage these students implies that Essential Mathematics
be taught in more vocationally oriented contexts and using very different teaching
and learning approaches than from what might be expected in the first three courses.

The adoption by ACARA of these four nationally agreed upon courses for Math-
ematics in the senior high school years (Years 11 and 12) will require some dif-
ferentiation of content for students in Year 10, and possibly Year 9, to reflect their
different academic pathways, and who need to make appropriate choices about the
kind of mathematics that is most likely to be relevant to their continuing studies and
aspirations beyond school.

The fact that ACARA is funded 50 % by the Commonwealth and 50 % by the
States and Territories exemplifies the new federalist model and is intended to en-
sure that ACARA is robust enough to weather any changes of government at na-
tional or state level in the next five years. ACARA will continue to reflect a bal-
ance of responsibilities between the States, Territories, and the Australian (Com-
monwealth) governments, being especially responsive to the needs of schools and
students across Australia; and fostering high quality mathematics education in all
Australian schools.
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Part III
Curriculum Development and Analysis



Preface

Learning and Sharing of Best Practices in Curriculum
Development

It is now common knowledge that curriculum varies across educational systems and
also affects mathematics teaching and learning. For example, TIMSS curriculum
studies revealed remarkable differences in content topic and requirement inclusion
across education systems (e.g., Schmidt et al. 1997, 2002). However, few may con-
sider the possibility of identifying and learning best practices in curriculum design
and development, which is often operated behind content topic selection and pre-
sentations. In fact, curriculum design and development are often taken as normal
practice but not a topic for research that examines possible ideas behind practice.
Much remains to be studied and understood about curriculum design and develop-
ment that are in operation across education systems and possible best practices in
developing curriculum. Chapters published in this part provide us great opportuni-
ties to learn diverse ideas and practices in curriculum development, textbook design,
and changes in curriculum development over the years in different system contexts.

In Chapter 10, Roger Howe proposes an integrated approach for first grade arith-
metic. Howe emphasizes the importance of building a solid foundation during first
grade for students learning mathematics. He highlights the coordinated development
of three pillars: conceptual understanding of addition and subtraction through word
problems, computational skills based on place value understanding, and the coordi-
nation of counting numbers and measurement numbers. The development and use of
these ideas are not restricted by specific system contexts. Instead, Howe points out
that these ideas are built upon what we can learn from mathematics textbooks in East
Asia and are also consistent with the Common Core State Standards in Mathemat-
ics in the United States. Howe also provides a sketch of the possible development
of these ideas after the first grade.

Chapter 11, contributed by Judy Anderson, highlights changes in curriculum de-
velopment from state control to increased central control and accountability mea-
sures in Australia. The first national curriculum in mathematics has been developed,
together with national testing in grades 3, 5, 7 and 9. This presents a shift simi-
lar to the movement in the U.S., where a de-centralized education system adopts a
more centralized approach in developing curriculum and monitoring the results of
curriculum implementation. Given the fact that states are still responsible for cur-
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riculum implementation, new opportunities and challenges are clearly in place for
improving students’ achievement with new curriculum as expected.

Marc van Zanten and Marja van den Heuvel-Panhuizen focus on textbooks as
part of curriculum development in Chapter 12 to illustrate dramatic differences in
opportunities provided to students in learning mathematics. They analyze two Dutch
textbook series on the topic of subtraction up to 100, in terms of their alignment
with the intended curriculum on content and performance expectations. According
to the authors, textbooks provide a day-to-day guideline for mathematics teaching
and learning in classrooms. However, the Dutch government does not regulate text-
book development and publishing, except to specify broad content coverage in the
intended curriculum. The inconsistence and difference suggest that textbooks should
be carefully considered in the process of curriculum development.

The three follow-up chapters in this part relate to three education systems in East
Asia. Chapter 13 by JeongSuk Pang focuses on curriculum changes in South Ko-
rea and highlights the trends and challenges in curriculum development over the
years in the Korean context. Ngan Hoe Lee outlines curriculum development prac-
tices in Singapore evolved from a deductive approach to a mixed model approach in
Chapter 14. Possible advantages and contributing factors to the success of the mixed
model approach are specified through three case studies. In Chapter 15, Yeping Li,
Jianyue Zhang and Tingting Ma focus on mathematics textbook design and devel-
opment practices in China. With the important role of textbooks in guiding daily
instruction, textbook development and its alignment with the intended curriculum
have been seen as a critical part of curriculum development over the years in China.
Specific textbook design practices and on-going improvements present an interest-
ing case for others to know and use to reflect on their own practices.

Common features across these three education systems in East Asia include (a)
they all have a centralized education system, and (b) students in these three edu-
cation systems consistently show high mathematics performance in large-scale in-
ternational comparative studies. But are there possible best practices in curriculum
development that can be identified and learned from these three education systems?
While we believe that readers can learn much more from reading all six chapters
included in this part, we would like to share the following two points.

(1) Curriculum is a system-cultural artifact that is developed with specific pol-
icy guidance and cultural values in an education system. For example, centralized
education systems (e.g., China) specify common curriculum requirements that may
put certain restrictions on curriculum design, but tend to provide some flexibility at
the local level for curriculum development (e.g., Liu and Li 2010). It is not feasible
to examine curriculum design and development, at a macro level, out of its system-
cultural context. Thus, it is important to take a holistic approach to examine and
understand curriculum design and development as situated in each of the selected
system contexts.

(2) At a micro level, curriculum design and development (including textbooks)
play an important role in shaping what is taught and learned in classrooms in many
education systems (e.g., Howson 1995; Schmidt et al. 1997, 2002). Relevant efforts
to examine mathematics textbooks have led to research interest in various aspects
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of textbook content presentation and organization. Results from previous studies re-
vealed possible similarities and differences in mathematics curriculum development
(e.g., textbooks) in multiple dimensions that ultimately present different opportuni-
ties and challenges for teaching and learning (e.g., Leung and Li 2010; Li 2008).
Thus, the chapters included in this part provide readers with a platform to cross-
examine possible similarities and differences in curriculum design and development
across these selected education systems.

As the chapters in this part provide rich information about different aspects of
curriculum design and development in different system contexts, readers should be
able to learn much from reading these chapters. At the same time, readers still need
to justify whether specific practices in curriculum development in a specific system
context may be feasible (or can even be taken as the best practice) in one’s own
system context.

Texas A&M University, USA Yeping Li
Michigan State University, USA Glenda Lappan
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Three Pillars of First Grade Mathematics,
and Beyond

Roger Howe

Abstract An integrated approach to first grade arithmetic is described. It consists of
a coordinated development of the three pillars of the title, which are (i) strong con-
ceptual grasp of the operations of addition and subtraction through word problems,
(ii) computational skill that embodies place value understanding, and (iii) coordina-
tion of counting number with measurement number. The ways in which these three
parts interact and reinforce each other is discussed. This approach is highly consis-
tent with CCSSM standards recently released in the United States by the Council of
Chief State School Officers.

In a second part, a sketch is given of a further development of these key ideas
in later grades. Increasing understanding of the arithmetic operations leads to in-
creasing appreciation of the sophistication and underlying structure of place value
notation, eventually making links with polynomials. Linear measurement becomes
the basis for developing and exploiting the number line, which later supports co-
ordinatization. Throughout, consistent attention should be given to interpreting and
solving increasingly involved word problems. Successful intertwining of these three
strands supports the later learning of algebra, and its links to geometry.

Keywords Word problems · Place value · Counting-measurement coordination ·
Number line

For nearly all students, first grade is the beginning of dedicated intensive instruction
in mathematics. Since later mathematics learning builds on earlier learning, getting
started right is important. Since arithmetic is the main focus of mathematics educa-
tion in elementary school, first grade should concentrate on giving students a good
start in arithmetic. Some would argue that geometry or data or early algebra should
also get attention, and there is probably room time to do something about some of
these (and the Common Core State Standards in Mathematics (CCSSM) (CCSSO
2011) calls for some), but starting arithmetic off right is the essential task of first
grade.
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This is not as simple as it might sound. Getting going in arithmetic involves more
than learning how to compute. It entails developing a broad conception of the opera-
tions of addition and subtraction, one that includes all the main contexts where these
might be used, and one that supports thinking of addition and subtraction as well-
defined things with specific properties, about which we can reason. It also entails
going beyond situations that are described by counting, to see how arithmetic ap-
plies to the arena of measurement. The connection of arithmetic to geometry through
measurement both enlarges the conception of arithmetic and provides concrete and
conceptual tools to help students think about arithmetic.

In the domain of computation, the overarching idea is that of place value. The
standard conception of place value in the U.S. tends to be rather limited: it is fre-
quently treated as a vocabulary issue, that students should know the value of each
place in a multi-digit number. However, the principle of place value controls essen-
tially all aspects of arithmetic computation and estimation. Students should even-
tually come to appreciate and be able to exploit the ubiquitous influence of place
value. A good start in first grade can help students reach that goal.

The discussion below of computation and place value is substantially influenced
by our reading of East Asian texts and education literature. In particular, we em-
phasize the value of addition and subtraction within 20 (Ma 1999) as a context for
learning the addition and subtraction facts. This also has been recognized by CC-
SSM, which has this topic as an explicit standard at grades 1 and 2.

These considerations lead to three main ingredients that are key to starting off
right in arithmetic. They are:

(I) A robust understanding of the operations of addition and subtraction.
(II) An approach to arithmetic computation that intertwines place value with the

addition/subtraction facts.
(III) Making connections between counting number and measurement number.

Below we enlarge on each of these topics. In two supplemental sections, we will
sketch ways in which these basic themes might extend to later grades.

A Robust Understanding of the Operations of Addition and
Subtraction

Addition is often described as combining and subtraction as taking away, but the
types of situations in which these operations are used are more varied than these
brief descriptions would suggest. Mathematics educators have articulated a taxon-
omy of one-step addition and subtraction word problems.

The CCSSM has adopted a version that recognizes 14 types. The types fall into
three main categories: change, in which some number changes over time; compar-
ison, in which the difference between two quantities plays a role; and part-part
whole, in which some quantity or collection of objects made up of two parts. These
broad classes are similar to those discussed in Adding It Up (Kilpatrick et al. 2001),
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based on Children’s Mathematics (Carpenter et al. 1999), and also to the discussion
in Fuson’s paper (2005).

Each of the first and second types can be divided into two subtypes. In problems
involving change over time, the initial quantity can either increase or decrease. Sim-
ilarly, in comparisons of quantities, one quantity can be described either as more or
less than the other one. In part-part whole problems, the two parts play equivalent
roles, so these form just one family.

Finally, for each of the four subtypes of change or comparison problems, one can
pose three different questions, according as to what is unknown. Thus, for change-
increase problems, one can ask to find the final total, the amount of change, or the
initial amount. For comparison problems, one can ask to find the larger quantity, the
smaller quantity, or the difference. For part-part-whole problems, since the two parts
play equivalent roles, there are only two questions: what is the size of the whole, or
what is the size of an unknown part. In all, this gives 2 × 2 × 3 + 2 = 14 types.

Here are examples of selected types:

Change-increase, total unknown: Shana had three toy trucks. For her birthday,
she got four more toy trucks. How many toy trucks did she have then?

Comparison-more, smaller unknown: Shana has seven toy trucks. She has four
more toy trucks than her friend Molly. How many toy trucks does Molly have?

Part-part whole, part unknown: Shana has a collection of seven toy trucks. She
keeps them on two shelves in her bedroom. There are four trucks on the top shelf.
How many trucks are on the lower shelf?

The full taxonomy, with all 14 subtypes (plus a fifteenth, of a different nature), is
given as table I on page 88 of the Common Core State Standards (CCSSO 2011).

Although an adult may think of these types of problem as quite similar, mathe-
matics educators have shown that young children find them quite different (Carpen-
ter et al. 1999). For example, consider the problem

Change-increase, original amount unknown: Shana had some toy trucks. For her
birthday, she got four more toy trucks, and then she had seven. How many toy
trucks did she have before her birthday?

This type of problem turns out to be difficult for many young students to think about,
because they are unsure how to model it. To solve the Change-increase, total un-
known problem, they can count out three tokens, then four more tokens, then count
all the tokens to find the answer. To deal with the Change-increase, change un-
known, they can proceed similarly after some thought. They lay out seven counters
to represent the total, and three next to them to represent the original amount. Then
they count the unmatched counters in the total. (Effectively, they have converted the
change problem to a comparison problem.) However, with the Change-increase,
original amount unknown, they have trouble getting started. At this stage, the fact
that a sum does not depend on the order in which the addends are combined (the
commutative property of addition), is still to be learned.

The importance of presenting all types of addition and subtraction problems is
clear if we take into account that a tremendous amount of learning takes place
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through examples. Children acquire vocabulary at the rate of several words each day
(for passive vocabulary; see http://en.wikipedia.org/wiki/Vocabulary). Mostly, they
do not look them up in the dictionary. Rather, they learn them by seeing them used
in context, that is, through examples of how a word is used. It is important to obey
the maxim of example sufficiency, especially in teaching abstract concepts, which
are the main content of mathematics. By example sufficiency, I mean giving a broad
enough array of examples to provide a well-rounded representation of the concept.
A famous example of example insufficiency is the case of triangles. In brief presen-
tations of the concept of triangle, frequently only one example, that of an equilateral
triangle with a horizontal base, is given. Perhaps then it should not be surprising
that studies have found that many second or third grade students will not identify
non equilateral triangles, or even equilateral triangles with non-horizontal bases, as
being triangles. With foundational concepts, such as addition and subtraction, which
will form the base on which many further ideas are built, it is especially important
to present a well-rounded collection of situations where addition or subtraction can
be used. Thus, care should be taken in first grade to introduce all types of one-step
addition/subtraction word problems, and to use them all repeatedly throughout the
year with larger numbers as student technique in symbolic calculation improves.

Sometimes, the use of only a limited number of the simplest problem types is
justified on the basis that young students have limited reading skills, and that math-
ematics must be presented in ways that they can understand. This point of view
might seem to have increased validity today, when so many students are classified
as ELL (English-language learners). However, I would argue that mathematics word
problems are as important for their potential to improve reading skills and thinking
skills as they are for teaching arithmetic technique. In fact, word problems are the
glue that binds mathematics to the real world, and studying them from a language
arts point of view, as passages that we want to understand, is as important as solving
them. Oral presentation and class discussion can be a vehicle for this, as well as
individual reading.

In class discussion, comparative analysis may be an effective tool. Comparing
and contrasting pairs of problems, then discussing all three of one of the triples of
problems, and ending with comparison of pairs of triples, may give students a sense
for the territory of addition and subtraction in a way that just solving problems one
at a time could not achieve. A somewhat subtle side benefit of this kind of activity
may be that some students come to think of addition and subtraction as having an
existence independent of calculation, that is, they may realize that the expression
3 + 8 is a valid name for a number whether or not we calculate to find that it is 11.
This kind of understanding supports algebra.

Comparison problems require a special note of caution. In almost all uses of
numbers that occur in everyday life, numbers function as adjectives: two hats, or
two dollars, or two train rides all can be interpreted readily; however, “two” by
itself does not have a clear meaning. Without a unit to refer to, the meaning of “two”
is incomplete. Correspondingly, when we discuss addition, we understand (usually
tacitly) that the numbers we are adding all refer to the same unit. The statement
“3 dimes and 4 nickels equals 2 quarters” is perfectly intelligible. However, the

http://en.wikipedia.org/wiki/Vocabulary
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equation 3 + 4 = 2 violates our usual understandings of arithmetic. The source of
the problem here is that each number is referring to a different unit. To write an
equation that expresses the desired relationship, we should make sure that all terms
are denominated in the same unit. For example, if we express each coin, nickel,
dime and quarter in terms of their value in pennies, we can write a correct equation:

3 × 10 + 4 × 5 = 2 × 25.

Since ignoring the unit is usually does not cause trouble when dealing with whole
numbers, units may often be suppressed in first grade and second grade texts. This
can even serve a positive purpose, by emphasizing that arithmetic is independent of
the unit: 4 apples and 3 apples make 7 apples, and likewise, 4 trucks and 3 trucks
make 7 trucks. However, lack of unit awareness can wreak havoc during the study
of fractions.

If they are not formulated carefully, comparison problems may seem to violate
the same-unit principle. In such problems, one is often asked to compare the number
of birds with the number of worms, or the number of children with the number of
cookies. It may then seem that we are subtracting birds from worms, or the other
way around, in contravention of the consistent unit principle. What is going on in
these problems is more complicated. The problem scenario implicitly sets up a cor-
respondence between the two sorts of things being compared, at some rate (often
one-to-one). This implicit correspondence converts (implicitly, of course!) one of
the quantities to the other, and subtraction takes place among the quantities of the
type that is in abundance. However, this under-the-table correspondence may well
be too subtle or confusing for young students to grasp. For this reason, it is advisable
to formulate comparison problems so that they are about quantities of essentially the
same type. For example, it is easier to assimilate “green apples” and “red apples”
under the umbrella unit “apple” than it is to think of “tickets” and “people” as being
essentially the same. Note that in the comparison example given above, all numbers
referred to toy trucks.

An Approach to Arithmetic Computation that Intertwines Place
Value with the Addition/Subtraction Facts

Place value is the central concept of arithmetic computation. It is not simply a vocab-
ulary issue, of knowing the ones place, the tens place, and so on; it is the key organiz-
ing principle by which we deal with numbers. Place value, together with the Rules
of Arithmetic, specifies the key aspects of how we perform addition/subtraction and
multiplication/division (i.e., the algorithms of arithmetic). The vital role of place
value is attested to by this quotation from Carl Friedrich Gauss (1777–1855), often
named the greatest mathematician since Newton:

The greatest calamity in the history of science was the failure of Archimedes to invent
positional notation. (Eves 2002)
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Two-digit numbers, and their addition and subtraction, is the topic where students
first engage seriously with place value. The main ingredients in learning two-digit
addition and subtraction are:

(a) learning the addition/subtraction facts: knowing the sum of any two digits (that
is, the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and, given the sum and one of the
digits, knowing the other digit;

(b) understanding that a two-digit number is made of some tens and some ones; and
(c) in adding or subtracting, you work separately with the tens and the ones, except

when regrouping is needed.

Specifically, item (c) comprises two situations:

(i) in adding, when you get more than 10 ones, you convert 10 of them into a ten,
and combine that with the other tens; or

(ii) in subtracting, if the ones digit you want to subtract is larger than the ones digit
you want to subtract from, you must convert a ten into 10 ones, and subtract
from the resulting teen number.

The main US method for teaching this topic has been

(a) learn the addition/subtraction facts by memorization; and
(b) learn the column-wise algorithm for performing the operations.

These are often treated separately, with little or no rationale given for either, and
no connections between the two. In recent years, increased use of base ten blocks
has probably increased understanding of the regrouping process for some students.
However, the learning of the addition facts remains primarily a memorization pro-
cess, unconnected with the other parts of the package, in particular with regrouping.
It is desirable and possible to combine the two key steps in such a way that they
support each other, and are both connected to the fundamental principle of place
value. We sketch the main steps in this development.

(1) Learn the addition and subtraction facts to 10.

This learning should be fluent, robust and flexible. This means understanding that
3 + 4 = 7, and 7 − 4 = 3, and also, that, if you have 4 and want 7, you need 3; and
being able to produce any of these statements more or less automatically. (In the
U.S., these variants are sometimes referred to as “related facts”.) Instruction should
be accompanied by many concrete and pictorial illustrations of the relationships
involved.

In learning the facts to 10, it is valuable to spend time thinking about all the
possible ways to decompose a given number, for example to note that

5 = 4 + 1 = 3 + 2 = 2 + 3 = 1 + 4.

Besides improving fluency, this work highlights structural facts, such as the com-
mutative rule for addition, which reveals itself here in the symmetry of the possible
expansions of 5: each decomposition is paired with another in which the addends



Three Pillars of First Grade Mathematics, and Beyond 189

are in the opposite order. (Problems that call for all the possible ways to decompose
a whole number into two smaller whole numbers are recognized as a fifteenth type
of addition and subtraction problem in the Table I of the Common Core Standards,
as cited above.)

(2) Learn the teen numbers as a 10 and some ones.

In Chinese this is quite easy, because the number names express this directly: ten
and one, ten and two, ten and three, and so on, up to two tens, and onward. It will
involve more work in the US, since the number names are not as helpful. There
will have to be class discussion about hearing the 10 in “teen”, and hearing the 3 in
“thir”, so that students can think “ten and three” when they hear “thirteen”. Similar
work will have to be done with the other teen numbers. There will probably have to
be some special talk about how “eleven” and “twelve” are pretty dumb names, but
you just have to live with them, and think “ten and one” quietly to yourself when
you hear “eleven”.

Besides the names, the notation will need explicit attention. The fact that the 1 in
13 stands for ten, and the 3 stands for the three additional ones will probably have to
be taken note of repeatedly. We agree not to write the 0 in the ten, to save time and
space, but we put the 1 on the left of the three, and this is just a short way of writing
10 + 3. If our number names reinforced this, learning would probably be quicker
and easier, but with sufficient reminders, we can hope that students will retain the
idea.

Some amount of work with the teen numbers should be done to help students
become comfortable with them. Adding and subtracting a teen number and a single
digit, not involving regrouping, asking which number comes just before or just after,
asking which of two teen numbers is larger, are examples of exercises to increase
familiarity. With regard to ordering, and adding that does not cross decades, students
may observe spontaneously that only the ones digit is involved, and that, as far as
this digit is concerned, everything is “just like” the parallel single digit behavior. If
no student offers this, pointing it out may be helpful.

(3) Learning the higher addition facts.

This is known in East Asia as “addition and subtraction within 20” (Ma 1999). The
importance of this topic for providing important connections in the learning of place
value is recognized by the adoption of this term in the Common Core Standards in
grades 1 and 2 (CCSSO 2011).

Now that the teen numbers are understood in terms of their base 10 structure, the
focus returns to single-digit addition and subtraction, and learning the addition and
subtraction facts when the total exceeds 10. Here the key point is not memoriza-
tion of the higher addition facts, but understanding how to produce them, and their
connection to place value notation. So, for example, to add 6 + 7, a student should
think in terms of making a 10. From stage (1), it is known that starting from 6, one
needs 4 more to make 10. One gets the 4 from the 7, and since one also knows that
4 + 3 = 7, there are 3 left over from the 7, so one gets 10 and 3 more, or 13. The
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formal expression of this in terms of symbolic manipulation uses the Associative
Rule of addition to change the form of the sum:

6 + 7 = 6 + (4 + 3) = (6 + 4) + 3 = 10 + 3 = 13.

However, at this stage, such niceties can be ignored. Similarly, in subtracting a one-
digit number from a two-digit number, one may have to unmake or break apart the
10. There are (at least) two different ways that a student might think about this;
either one is valid. These are illustrated in the following computations.

13 − 7 = 13 − (3 + 4) = (13 − 3) − 4 = 10 − 4 = 6,

or

13 − 7 = (10 + 3) − 7 = (10 − 7) + 3 = 3 + 3 = 6.

(4) Learn that two-digit numbers are made of some tens and some ones.

When students are fairly fluent in the addition/subtraction facts and making/un-
making 10, attention can then move to larger numbers. The key understanding is
that a two-digit number is made of some tens and some ones.

Thus, 43 = 40 + 3 is 4 tens and 3 ones. The main work is probably in getting
students to think of each -ty number as indicating a certain number of tens. Then
the general two digit number is gotten by appending some ones, and this is fairly
clearly indicated in the name. Again students need to learn to think beyond the
names: “twenty” is 2 tens; “thirty” is 3 tens; “forty” is 4 tens; and so forth. The
names and what they mean should again be connected with the notation: the 10s
digit tells the number of tens, and the 1s digit tells the number of ones.

For many students, a fair amount of counting with verification, that indeed 20
is 2 tens, forty is 4 tens, and so forth, may be required to solidify confidence in
the equivalence. As the counting is being done, the benefits of grouping by some
manageable amount, which for us is 10, should be promoted. In fact, if counting
gets interrupted, the advantage of having made groups of 10 should be evident, in
greatly reducing the amount that must be recounted. A hundreds chart can also be
useful in this work. In working with a hundreds chart, it may be helpful to point
out that a given number tells the number of spaces in the chart up to and including
that number. This observation can also be helpful when studying computation (step
5 below), especially in interpreting the effect of adding 1 or adding 10 to a general
two-digit number. Some educators advocate having a hundreds chart in which the
numbers with a given tens digit run down a column (rather than across a row, which
seems to be the more common form).

Manipulatives such as 10-rods and 1-cubes may be helpful in making two-digit
numbers tangible and accessible. Often such manipulatives are handled by arranging
them in loose groupings, on a mat or other area designated for the work. However,
it is probably a good idea to have students do some of this work in the context of
linear measurement, with the 10-rods and cubes arranged into a linear train. Among
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other advantages, this will emphasize that the various rods and cubes are indeed
united into a single quantity, with length corresponding to the size of the number.
The measurement model for numbers is discussed further below.

Attention should also be paid to ordering two-digit numbers—thinking about
which of two numbers is larger. Here the simple principle is, that the 10s digit deter-
mines the relative size of two two-digit numbers, except when both numbers have
the same 10s digit, in which case, you look at the 1s digit. Since the size difference
between the 10-rods and the cubes is starkly apparent when all are assembled into a
train, the measurement or length model of numbers, constructed by trains of 10-rods
and cubes, can provide a physical and visual way of thinking about the relative sizes
of numbers and the order relation.

(5) Add/subtract two-digit numbers by combining tens with tens and ones with
ones.

This can be done in stages: add and subtract 1 or 10 from a two-digit number,
add/subtract single digit numbers or multiples of ten from a two-digit number,
add/subtract two-digit numbers without regrouping, add/subtract single digit num-
bers to or from two-digit numbers when regrouping is required, and finally, the gen-
eral case of adding or subtracting two-digit numbers with regrouping. When adding
(or subtracting) a single-digit number to (or from) a general two-digit number, if
regrouping is required, the corresponding addition fact should be emphasized. Both
the reasoning and the mechanics of regrouping have already been learned while
learning the addition facts beyond 10.

Manipulatives such as 10-rods and cubes can of course be used to model addi-
tion and subtraction. Again, arranging these rods and cubes into trains and working
in terms of the length model for numbers can help students think about addition
and subtraction. See section “Making Connections Between Counting Number and
Measurement Number” for more details.

The ability to work independently with the tens and the ones should enable many
students to do two-digit addition and subtraction mentally. To find 53 + 29, a stu-
dent could say “50 + 20 is 70, and 3 + 9 is 12, and 70 + 12 is 82.” To compute
64 − 36, one could subtract 30 from 64 to get 34, reducing to the problem 34 − 6,
which is 20 + 14 − 6, which one knows is 20 + 8 = 28, since one has learned how
to compute 14 − 6 as part of addition and subtraction within 20. (We note that this
subtraction method, in which the largest place is subtracted first, will work in gen-
eral. Of course, it may involve more rewriting than the standard algorithm; but for
two-digit numbers, it seems quite manageable.)

It should be mentioned that many of the activities in steps 4 and 5 are present
in various U.S. curricula, though perhaps without the unifying viewpoint provided
by addition and subtraction within 20 (step 3). They are also presented in teacher
training courses (Beckmann 2008; Van de Walle 2006).
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Making Connections Between Counting Number
and Measurement Number

One of the main arenas of application of mathematics is in measurement. Numbers
used in measurement, in contrast to counting, may not be whole numbers. They can
be rational numbers (meaning quotients of whole numbers), usually represented by
fractions (possibly also with a negative sign), or even stranger numbers.1

Geometrical measurement is so different from the context of counting, that the
classical Greeks did not think of the numbers involved in measurement as numbers,
and reserved the term ratio for numbers in the context of geometrical figures (Klein
1992). It was only after the invention of symbolic algebra by Francois Viète around
1600 that the notion of number was expanded to include the numbers that arise
in measurement. A few decades later, this development led to the invention of the
coördinate plane by René Descartes, and to the strong linkage between number and
geometry that we take for granted today.

The history of mathematics can be a good guide to what is important and what is
difficult in learning mathematics. The difficulties evinced by the Greeks, combined
with our post-Renaissance understanding that they are joined at the hip, indicate that
it is necessary to help students explicitly to bridge the intuitive gap between number
and geometry, and that this should start early. There are several benefits to starting
in first grade. In particular, this can already help students think geometrically about
two-digit numbers. Also, it can help prepare students to appreciate the metric nature
of the number line (or ray), the use of which is called for explicitly by CCSSM in
second grade.

In the course of civilization, people have learned to measure a huge variety of
quantities, and several of the most important (area, volume, weight, time, speed,
etc.) are dealt with in school. The most basic and probably simplest type of mea-
surement is linear measurement: measurement of length or distance. Most adults
probably think of linear measurement in terms of using a ruler. However, one should
first lay a foundation by getting students to think of length or distance in terms of
the familiar counting numbers, and to model addition by concatenation of length—
laying rods end to end. (This can be viewed as a case of the part-part-whole aspect
of addition.)

This process lends itself well to work with manipulatives in first grade. The basic
materials needed are a collection of unit cubes, and rods with the same cross section
as the cubes, but of various lengths. All whole number lengths from 1 to 20 would
afford exploration of addition and subtraction within 20, in other words, a measure-
ment analog of the addition and subtraction facts. Cuisenaire rods can probably be
useful, but they don’t have the full range of lengths, and their colors may be a dis-
traction. Besides cubes, a generous supply of rods of length 10 is desirable. Unifix
cubes might also be used, although these do not come with the ready-made larger

1Irrational numbers, which, with a few exceptions such as some square roots, π and e are not
encountered by non-mathematicians, but which can be articulated into an elaborate hierarchy.
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lengths. It might be a productive class activity to assemble cubes into rods of various
lengths, which could then serve as templates for activities related to addition.

A first activity would be just measuring the length of various rods in terms of
the cubes. It might be a good exercise to see if students could learn to recognize
various lengths without having to measure. The rods might be marked with their
lengths to facilitate later work (or if Cuisenaire rods are being used, many students
will probably learn to associate lengths with the colors).

In learning to measure, students should come to appreciate the importance of
lining up the cubes carefully, face to face, with no gaps. For some students, this
may require a substantial amount of practice. If Unifix cubes are used, it could be
instructive to have several groups of students produce bars with the same number of
cubes, and to compare their lengths, noting the importance of having the cubes fit
tightly for consistent length.

After students have gained familiarity with measuring the rods, and have come to
associate a definite length with a given rod, along with associated ideas of order—
that longer rods have greater measured lengths—addition and subtraction can be
studied. Students should get used to the idea that addition corresponds to putting
bars together end-to-end, aka the combination of lengths. Subtraction corresponds
to the comparison of lengths: placing two rods side-by-side, and measuring the un-
matched part of the longer rod. After a reasonable amount of work like this, the rea-
sons for these correspondences between length measurement and arithmetic should
be discussed. Ideally, a student will volunteer the basic reason: we have defined
length in terms of measurement by unit lengths, and the collection of units needed
to measure a combination of lengths is just the union of the collections that measure
each of the individual lengths. Similar reasoning applies to subtraction.

Once addition and subtraction are interpreted in terms of lengths, one can begin
to use the length model to bolster understanding of place value. One can introduce
10-rods as a convenient way to simplify the measuring process. The ease of laying
down one 10-rod instead of carefully lining up ten unit cubes should be apparent to
students. The expression of the teen numbers as a 10 and some 1s is readily modeled
with a 10-rod and some cubes, and the modeling of the addition and subtraction facts
beyond 10, as well as the making (in addition) and unmaking (in subtraction) of a
10 can be illustrated concretely in terms of length.

At some point, the possibility of measuring other lengths—lengths of pencils,
lengths and widths of book covers, various body parts, and anything else that attracts
class attention—should be explored. Longer things can be measured as students
become accustomed to dealing with larger numbers. (Such activities might also be
used as part of introducing larger numbers.) At least some measurement should
be done using unit cubes only, so that the huge savings in effort afforded by use
of 10-rods instead of only using unit cubes is made evident. Reporting of results
of measurement should include units—so many cubes long. If the cube sides are
of a standard length, such as a centimeter, this term could be used. Whether it is
necessary or advisable at this point to consider different units of length needs study.

Objects in the class environment will typically not be exactly whole numbers
of units in length. Often it is advocated to have students say that a given object is
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“about 14” units long. However, I would favor reporting the length as “between 14
and 15” if it is more than 14, or “between 13 and 14” if less. This kind of lan-
guage serves to highlight the need for more numbers than whole numbers in the
realm of measurement. Indeed, a teacher could tell students that later they will learn
about other numbers (fractions, mixed numbers, rational numbers) that can be used
to measure more accurately. If the length model for addition and subtraction (and
better, its interpretation in terms of the number line, to be introduced later) is well
absorbed, it can serve as an anchor for interpreting addition and subtraction of frac-
tions, because although the symbolic representation of addition is substantially more
complicated for fractions than for whole numbers, the geometric representation in
terms of combination of lengths is uniform.

When students are used to thinking of addition in terms of combining lengths,
and are familiar with 10-rods, the length model for addition can be coordinated
with base 10 notation. Students can make trains consisting of 10-rods and cubes, to
represent two-digit numbers. The convention should be established that the standard
way to do this is always to have the 10-rods together on one side of the train (say the
left), and the cubes together on the other (the right). This arrangement best displays
the base ten structure of the number.

When numbers so represented are added by combining the trains end-to-end,
students will probably observe that the resulting train is not in standard form: the
10-rods of the train on the right are to the right of the cubes of the train on the
left. To put the train in standard order, these rods and cubes must be rearranged.
The resulting train will be seen, perhaps after sufficient teacher direction, to be the
result of “combining the tens and combining the ones”, just as in the other contexts
where two-digit addition is studied. Also, if the sum has more than ten cubes, the
regrouping process can be modeled physically by replacing ten of the cubes by one
10-rod. If students fail to do so, it probably should be explicitly noted by the teacher
that this process preserves the total length.

The analog of this process for subtraction should also be done carefully. When
no regrouping is required, the trains of 10-rods and cubes can be compared to each
other, and it should be checked that this yields the same answer as the full train
comparison. When regrouping is required, one can convert a 10-rod to cubes to
supplement the cubes in the minuend, before comparing with the cubes in the sub-
trahend. As with addition, the results of the separate comparison processes for the
10-rods and the cubes should be verified to give the same result as the whole train
comparison.

This kind of work with lengths can strengthen the learning of arithmetic by rein-
forcing symbolic work and work with unstructured collections of objects. Equally
important, it should get children used to the idea that measurement is a natural do-
main for application of number ideas. It should prepare them well for introduction
of the number line, whose concrete realization is the ruler, as a tool that can be used
to measure anything without the need to form trains at all, in second grade.
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Beyond First Grade

Above we have argued that coördinated attention to word problems, place value is-
sues in base ten arithmetic, and linear measurement as a domain for number and
arithmetic, can form the core of first grade mathematics instruction that gives stu-
dents a good start. In the remainder of this note, we will sketch how these three
topics might continue to develop and support further mathematics learning in later
grades.

Second Grade

In many ways, second grade is a continuation and consolidation of first grade, and
completes the first stage of mathematics learning. The 3 pillars discussed above
remain highly relevant.

The study of addition and subtraction continues, the main advances being pro-
gression to more complex problems, and to 3 digit numbers. This is the next stage
of a gradual increase in the number of digits students are expected to cope with.
CCSSM calls for 4th grade students to deal with numbers up to 1 million, and 5th
grade students to also handle decimal fractions to thousandths. CCSSM is superior
to many of the state standards that it has replaced, in calling explicitly for students
to “Understand the place value system” in fifth grade.2

Word Problems Use of the full array of one-step addition and subtraction word
problems should continue, amplified by the introduction of some two-step problems.
Some problems might ask for addition of three or even four numbers. For example,
for her birthday, Shana could get toy trucks from two or even three different people;
or she could get some toy trucks for her birthday, and then some more for Christmas;
or both.

The reader may convince him/herself by experimentation, that of the 14 types
of one-step addition and subtraction problems discussed above, most pairs can be
combined to make a two-step problem, so that there are potentially almost 200 (14×
14 = 196) two-step addition and subtraction problems. This should make obvious
the futility of any “key word” approach to dealing with word problems, and also
indicate the rich potential, both for mathematics and language arts, that analysis of
multistep problems affords.

Place Value In dealing with 3-digit addition and subtraction, one should continue
to develop the ideas introduced in first grade:

2However, the final stage of understanding, in which the base ten units are written as powers of
10 using exponential notation, linking place value notation with polynomial algebra, can not take
place before 6th grade, when exponential notation is first introduced (6.EE 1).
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(i) Work with expanded form, adding the 1s, the 10s, the 100s independently, with
regrouping at the end, as needed. The point should be made that regrouping
from 10s to 100s is strictly parallel to regrouping from 1s to 10s, because 100
is made of ten 10s.

(ii) Work with addition and subtraction in parallel, and observe that regrouping in a
subtraction problem just reverses the regrouping in the corresponding addition
problem.

(iii) The situations that require regrouping are considerably more varied than in the
two-digit case, and probably require some systematic study. There may be no
regrouping; regrouping only from ones to tens; addition of multiples of ten re-
quiring regrouping of tens to hundreds; addition of general numbers with no
regrouping of ones, but regrouping from tens to hundreds; regrouping of both
ones and tens; and the most complicated case, when the tens add to 90, and
then a carry from the ones place makes this exactly 100, leaving a zero in the
tens place of the sum. This last situation may be called “rollover”, by anal-
ogy with the change in mechanical odometers when 1 is added to a number
with 9 in the 10s place (and perhaps larger places also). This should be studied
explicitly, along with the corresponding subtraction situation, which requires
“borrowing past a zero”. Second grade may be a good time to consolidate ad-
dition and subtraction algorithms (although CCSSM waits until 3rd grade to
ask for fluency). It probably would be a good idea to delay algorithm develop-
ment until all these different cases have been considered, and then discuss how
the usual right-to-left addition procedure handles all cases in one comprehen-
sive method. Subtraction of course is considerably less comfortable, because
of the rollover/borrowing past a zero issue, and more discussion of alternative
approaches might be helpful.

(iv) Work with manipulatives should include base ten block work (ones cubes, ten-
rods and hundred-flats) for student seat work, but also, in some whole class
work, with cubes, ten-rods and hundred-rods (meter sticks can double as these)
for forming linear trains representing 3-digit numbers. The same kind of rear-
ranging and trading that was done for two-digit numbers should be continued
here, including some of the more difficult symbolic cases, such as borrowing
past a zero. One big advantage of forming trains to represent 3-digit numbers is
that it emphasizes the size relations between 100s and 10s, as well as 10s and
1, making very visible that the 100s are the dominant part of any such num-
ber. This point should be made explicitly. Working with trains also shows that
arithmetic can take place wholly in terms of the line—two dimensions (or 3,
later used for blocks representing 1000 in the standard base ten block sets) are
not a necessity, only a convenience, allowing easy manipulation of the blocks.

(v) In comparing numbers, students should learn that the number of 100s deter-
mine which of two numbers is larger, except when both numbers have the
same number of 100s, in which case the 10s must be considered, and the 1s
only when both numbers also have the same number of 10s.

The Linear Measurement Connection The counting-linear measurement con-
nection should be strengthened and elaborated. We have already mentioned above
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that trains of 100-rods, 10-rods and 1-cubes should be created to represent three
digit numbers, and combined to illustrate addition, and compared for subtraction.
However, in second grade, linear measurement should become a major topic (see
CCSSM Standards (2.MD.1 through 6)) and the number line (actually, the number
ray, since at this stage, it will go only in one direction from the zero or base point or
origin, which will be on one end of the stick or rod that embodies the line) should
be introduced, essentially as a ruler.

The connection of the number ray with measurement should be emphasized. Es-
pecially, the idea that a number on the number ray represents a length—the distance
from the origin (the end), as a multiple of the unit length—should be carefully es-
tablished in students’ minds. To bring home the necessity to choose a unit, number
lines based on several different unit lengths should be used at various times, with
explicit attention to specifying the unit. Taking the centimeter as unit will probably
afford maximum compatibility with base-ten manipulatives. In the linear measure-
ment context, the effect the choice of unit length has on the number obtained by
measurement should also get attention—the larger the unit, the smaller the asso-
ciated number, for a given length. A dramatic example would be that a single digit
number of meters is also hundreds of centimeters. In the U.S., taking the inch as unit
will afford a good tie-in with commonly encountered measurements, and later on,
converting from feet or yards to inches, or from miles to feet or yards, can provide
a source of multiplication and division problems.

The number ray should be used in conjunction with addition by lining up trains
of base-ten blocks, and it can be observed that, if you position the trains along the
ray with so that the end point of one train coincides with the end of the ray, then the
other end of the second train will fall on the number that gives the sum—the number
line functions as a computer! (This could be the first stage in rediscovering the slide
rule, which could make a great manipulative in the later grades.)

Introducing the number ray and relating it to length is a main task of second
grade, a key stage in a long learning trajectory that culminates with Cartesian coör-
dinates and infinite decimal expansions. Some later stages in this development are
discussed below.

Another key job of second grade that prepares for later work is to raise the con-
sciousness of students concerning units. Linear measurement is a context where this
issue clearly needs addressing, but it is relevant in many other contexts also. As we
have discussed above in connection with comparison word problems, in everyday
life, we don’t really encounter naked numbers, but rather, any number we meet has
a unit attached, and it expresses quantity in relation to that unit. In the early stages
of learning addition, it may be advisable to suppress attention to units, in order to
concentrate on the number relationships being established. Also, when dealing with
whole numbers, the relevant unit is often clear and does not need to be pointed out.

However, attention to units is essential when learning fractions. Many fallacies,
including claims of the sort

1/2 + 1/3 = 2/5 (not!) (1)
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involve lack of attention to the unit. The error in this statement is analogous to our
discussion of nickels, quarters and dimes in section “A Robust Understanding of the
Operations of Addition and Subtraction”. An equation like (1) is often justified with
a picture such as

AB + ABB = AABBB (2)

The first group is taken to represent 1/2 (the number of As compared to the total
number of symbols), the second is taken to represent 1/3, and the last collection
represents 2/5. Addition is taken as union of sets.

What is wrong with Eq. (1)? A grouping such as AB can provide one reasonable
way to represent a fraction, but to avoid confusion, it is essential to see that the 1/2
refers to the first collection as unit, the 1/3 refers to the second collection as unit,
and the 2/5 refers to the third collection, the union of the first two, as unit. In order
to use a consistent unit, we could choose a single symbol as the unit. Doing this, we
see that the above equation of sets translates to the numerical fact

(1/2) × 2 + (1/3) × 3 = (2/5) × 5,

or

1 + 1 = 2,

which is indeed a true equation.3

In summary, both for purposes of learning the basics of linear measurement,
and in preparation for dealing successfully with fractions in third grade, a major
duty of second grade is to develop in students an awareness of units, especially, the
predilection to ask and the ability to keep track of what the unit is in a given context,
and to use units in a consistent fashion.

Third Grade and Later

Third grade, in contrast to second, presents a profusion of new ideas: multiplication
and division; fractions; and area measurement. The relations between these new
concepts must be presented in carefully orchestrated ways to promote successful
learning of each. It is beyond the scope of this essay to detail the key relationships
that need exploration, or even the key features of each of the new ideas. We will
limit ourselves to sketching how our trio of fundamental constituents of first grade
mathematics continue to support learning in this new and richer environment.

3Alternatively, if we select the 5-element set as the unit, then the first two sets represent 2/5 and
3/5 respectively, and the equation would read

(1/2) × (2/5) + (1/3) × (3/5) = 2/5,

which is also a true equation, representing 2/5 as a weighted average (not a sum!) of 1/2 and 1/3.
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Word Problems To give students a good perspective on the uses of multiplication
and division, a varied collection of one-step multiplication and division problems
should be presented, with discussion and analysis, mirroring what was done for
addition and subtraction in grades 1 and 2. Page 89 of CCSSM gives a table of com-
mon multiplication and division situations, and all should be represented in word
problems.

Multiplication and division are subtler operations than addition and subtraction
and harder for students to internalize. In particular, although as a numerical oper-
ation multiplication is commutative, the two factors typically play different roles,
and may well have different units attached.4 Even in the simplest context, usually
used in giving the first definition of multiplication, that of combining equal groups,
one factor counts the number of things in one group, and the other factor counts the
number of groups. In the standard interpretation of, say 3 × 5 as the combination
of equal groups, the 5 represents the number in each group, and the 3 represents
the number of groups. In this interpretation of multiplication, it is far from obvious
that 3 groups of 5 have the same number as 5 groups of 3. Thus, on a conceptual
level, the commutativity of multiplication is somewhat surprising. The fact that mul-
tiplication is indeed commutative should receive explicit attention. A good way to
justify it is to use arrays, observing that a, say, 5 by 3 array becomes a 3 by 5 array
when rotated by 90◦.

Corresponding to the distinct roles of the two factors in multiplication, mathe-
matics educators recognize two types of division. One is partitive, or sharing, di-
vision, in which a quantity is to be divided into a given number of groups, and the
question is, what size will these groups be. The other is quotative, or measurement
division, in which the size of the groups is specified, and the question is, how many
groups can be formed. Parallel problems of the two types with the same numbers
should be given, and it should be observed, that the numerical value of answer to
both types of question is the same, although what the answer designates will be
different. In this work, careful attention to units is especially relevant.

Third grade should also see large numbers of two-step problems, including some
that involve any pair of the four operations. There are several hundred different pos-
sible types already for two-step problems, so the work required for understanding
the problem will increase. Discussions of how to figure out what the problem is
asking for, and what needs to be done to answer it, will have to be an important
part of instruction, and ongoing as the problems become more complex. The work
of Lieven Verschaffel and colleagues (Verschaffel et al. 2000) has documented the
worldwide failure of mathematics instruction to enable students to adequately inter-
pret word problems.

Later grades should see problems of increasing complexity, eventually arriving
at word problems that require algebra for their solution by 7th or 8th grade. In fact,
the boundary between arithmetic and algebra is somewhat fuzzy, and problems that
might seem to require algebra can often by solved using only arithmetic supported

4The unit attached to the product is then the product of the units attached to the factors.
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by a sufficiently insightful analysis (Howe 2010). It may be valuable for students
to consider such problems, and to see parallel solutions. The Singapore bar model
method (Singapore Ministry of Education 2009) is another approach to solving a
broad class of problems that in the U.S. are most commonly handled by algebra.
Singapore students start learning how to use this method in 3rd grade, when they
are given problems such as

There are 36 students in a class. There are 8 more boys than girls.
How many girls are in the class?

Some Singaporean students become so skilled at using bar models that it is diffi-
cult to get them to abandon the model method in favor of symbolic algebraic ap-
proaches (Singapore Ministry of Education 2006). Something similar could happen
with students who become highly skilled at solving word problems using arithmetic
methods. Such students should be challenged with problems of increasing difficulty,
until they reach a point when the systematic nature of symbolic algebra becomes so
advantageous that they use it willingly.

Place Value and Computation Acquisition of multiplication allows students to
deepen their understanding of place value, eventually revealing its depth and its
connection to polynomial algebra.

In grades 1 and 2, students work with the expanded form, such as

243 = 200 + 40 + 3,

and learn that, in addition and subtraction, they can combine the parts of like mag-
nitude, using only the single-digit addition and subtraction facts, followed by any
necessary regrouping. We will call the numbers like 200 and 40 and 3, with only one
non-zero digit, single place numbers. Thus, the expanded form of a base ten number
expresses it as a sum of single place numbers.

Once students start learning about multiplication, they can begin to appreciate
the multiplicative structure of single place numbers. In third grade, they can realize
that each single place number is a multiple of a base ten unit, which is a single
place number whose non-zero digit is 1. Thus, 200 = 2 × 100 and 40 = 4 × 10 and
3 = 3 × 1. This allows students to refine the expanded form to

243 = 200 + 40 + 3 = 2 × 100 + 4 × 10 + 3 × 1.

Thus they would now think of 243 as being made of two 100s, and four 10s, and
three 1s. They were in effect using this structure in adding and subtracting, but now
they have a language to express what they were doing.

In fourth grade, students should refine their understanding of the base ten units,
seeing the ones larger than 10 as repeated products of 10s. Thus,

100 = 10 × 10, 1,000 = 10 × 10 × 10, 10,000 = 10 × 10 × 10 × 10,
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and so forth.5

Understanding the structure of base ten units supports the appreciation of the
quantity aspect of place value: each base ten unit is ten times as large as the next
smaller unit (the place to the right), and only 1/10 as large as the next larger one
(the place to the left). In particular, as one moves to the right in the places, the value
of the unit shrinks by 10 at each step. This can support the idea of continuing places
to the right of the 1s place, and making

1/10 = (1/10)×1, 1/100 = (1/10}×(1/10), 1/1000 = (1/10)×(1/100),

and so forth; thus it prepares for thinking about and dealing with decimal fractions.
The final stage of understanding the place value system can be presented in sixth

grade, when whole number exponents are introduced. This allows the shorthand
notation

1 = 100, 10 = 101, 100 = 102, 1000 = 103,

and so forth. In combination with the earlier work on the structure of single place
numbers, this permits the last stage in the progression

243 = 200 + 40 + 3

= 2 × 100 +4 × 10 +3 × 1

= 2 × (10 × 10) +4 × 10 +3 × 1

= 2 × 102 +4 × 101 +3.

The last stage in this progression shows that a base 10 number can be regarded
as a “polynomial in 10”. In 6th grade, it probably would serve mainly as an appli-
cation or example of the use of exponential notation. However, it also highlights
the sophistication involved in base ten place value notation, which implicitly uses
all the operations of algebra (addition, multiplication, exponentiation), just to write
numbers. The full implications of the final expression can be profitably investigated
in 8th grade when the algebra of polynomial expressions is discussed. Students can
verify that, if a base ten number is turned into a polynomial, by the recipe

243 → 2x2 + 4x + 3,

and if calculations (addition, subtraction, multiplication) are done with the resulting
polynomials, and then 10 is substituted for x, the usual numerical answer will be

5At this point, it might be a good idea explicitly to discuss the issue of associativity of multi-
plication, that it does not matter how we group the factors in these (or any) repeated multipli-
cations, the result will not depend on the grouping. Thus, 10,000 = 10 × 1000, but just as well,
10,000 = 100 × 100. In fact, associativity of multiplication is a somewhat subtle property, and its
justification using geometric models involves volumes of 3 dimensional bricks. See for example
(Epp and Howe 2008) for a fuller discussion.
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obtained. For some students, this observation can provide an “Aha!” moment that
will tie together eight years of study of mathematics.

The discussion above of course is quite standard mathematics, and in earlier years
this author tended to treat the five-stage progression above as common knowledge.
However, there is evidence that many students arrive in college without even stage 2,
the basic expanded form, as part of their intellectual toolkit (Thanheiser 2009), and
the value of making this progression explicit, and to give it emphasis in the curricu-
lum is supported by Teachers of India (2012). Also, the lack of understanding even
of the basic meanings of the places by mid-elementary students was documented by
Kamii (1986) long ago.

Linear Measurement and the Number Line The connections of arithmetic with
linear measurement developed in grades 1 and 2 are the beginnings of a long devel-
opment of the intimate relationship between number and geometry. In third grade,
the basic understanding of the number ray established in second grade would allow
studying the nature of fractions from a geometric viewpoint. Although the array and
area models will play an important role in helping students understand and work
with fractions, the number line can also contribute.

The understanding that the numbers on the number ray tell distances from the
endpoint/origin provides a sound basis for placing fractions on the line. The CCSSM
advocates understanding fractions as multiples of unit fractions. Thus,

2/3 = 2 × (1/3), 5/3 = 5 × (1/3),

and so forth. To locate 1/3 on the number line, one should divide the unit interval
into 3 equal parts. Then the other end of the part with one end at 0 is 1/3 of the
way from 0 to 1, and so should be labeled as 1/3. Then 2/3 is the point that is two
1/3 intervals from 0, and 5/3 is the point that is five 1/3 intervals away from 0.
Repeating this process for all multiples of 1/3, one finds that they form a system
of equally spaced points, very much like the whole numbers, except three 1/3s
fit inside each unit interval—we could say they are three times closer together, or
three times as dense, or only 1/3 as far apart. It is of course the same for whole
number multiples n/d = n × (1/d) of any fixed unit fraction 1/d . They form a
system of equally spaced points on the number line, each one at distance 1/d from
its neighbors, with d intervals inside the unit interval. Thus, the number line affords
a compelling visualization of the systematic nature of the multiples of a fixed unit
fraction.

Two ideas crucial to understanding and working with fractions are

(i) repeated subdivision, and
(ii) reconstitution.

Repeated subdivision involves understanding that a unit fraction such as 1/5, which
resulted from subdividing the original unit into 5 equal pieces, constitutes a new
unit that can itself be subdivided. The result of the subdivision will then be a unit
fraction, with denominator equal to the product of the two denominators. Thus, if
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we divide 1/5 into fourths, the result will consist of (1/4) × (1/5) = 1/20. The
general relationship is

(1/e) × (1/d) = 1/ed

Reconstitution is the reverse process to repeated subdivision. Just as 4 copies of 1/4
make 1, the unit, so also 4 copies of 1/20 = (1/4) × (1/5) make 1/5. In symbols,
we would write 4 × (1/20) = 1/5. The general relationship is

e × (1/ed) = 1/d, or e/ed = 1/d.

The second form of the relationship shows that reconstitution is the justification for
the symbolic move of “canceling the same factor from numerator and denominator”.

These relationships should be illustrated in a variety of contexts so that students
can see how they work and get used to working with them. The number line can
be one of those contexts, and the regular subdivisions of the line provided by the
whole number multiples of a unit fraction can be used to show many examples
of repeated subdivision and reconstitution, by considering the relationship between
the subdivision given by the multiples n/d of a given unit fraction 1/d , and the
multiples m/ed of a unit fraction whose denominator is a multiple of d . This study
can also contribute to the understanding of how to add fractions. For example, if one
works with 1/6, then since 6 = 3 × 2, reconstitution would tell us that 1/2 = 3/6.
Since also 6 = 2 × 3, reconstitution would also tell us that 1/3 = 2/6. Thus, we
could conclude that

1/2 + 1/3 = 3/6 + 2/6 = 5/6.

This kind of formula can also be shown explicitly on the number line. An impor-
tant pedagogical consideration here is that the linear measurement interpretation of
fraction addition is exactly the same as whole number addition: it is combination
of lengths. Similarly, subtraction of fractions amounts to comparing lengths. This
consistency over different types of numbers, when the symbolic representations and
the necessary manipulations may seem dissimilar, can provide a firm basis for un-
derstanding and reasoning.

With the introduction of signed numbers, the number ray must become the num-
ber line, that is, it must be (in principle) infinite in both directions. Currently, the
typical practice is not to distinguish between the number line and the number ray,
and to use the term “number line” for both, but if the distinction were made, the
change in terminology could provide a signal that something new is going on.

On the doubly infinite line, the origin loses its distinguished position as the end-
point, because there is no endpoint. Thus, the origin must now be specified explic-
itly. That done, we see that distance from the origin no longer specifies a unique
point—for each distance, there are two possibilities, on either side of the origin.
To distinguish between them, we must introduce the idea of orientation: left, right,
or positive, negative. The need for specifying orientation should be given a lot of
emphasis, including the use of ‘trick’ problems such as

James, Randolph and Rebecca live on Elm Street.
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If James lives 2 blocks from Randolph, and Rebecca lives 3 blocks from James,
how many blocks does Rebecca live from Randolph?

To deal successfully with signed numbers, several conceptual changes in student
thinking about numbers are necessary. The most obvious, of course, is the under-
standing that a number no longer simply gives information about magnitude, but
also about direction (which in one dimension reduces to a dichotomy: left, right;
plus, minus). This necessary revision gives rise to another surprise: addition and
subtraction become merged into a single operation, with subtraction of a given num-
ber amounting to addition of its additive inverse (aka negative or opposite). Thus,
we think of 2 − 6 as 2 + (−6). Also, for the first time, subtraction can be performed
with any two numbers: 1 − 2 now makes as much sense as 2 − 1.

Signed numbers are introduced in CCSSM in 6th grade, which is also the grade
in which simple algebraic expressions are introduced. Thus, in 6th grade, students
are asked to understand expressions such as

2 + x, and 2x,

as meaning “Pick a number x and add 2 to it”, and “Pick a number x and multi-
ply it by 2”; or somewhat more colloquially, “Add 2 to any number,” and “Multiply
any number by 2”. The change in point of view is perhaps somewhat subtle, but it
is highly significant, and it must be given enough attention to ensure that students
grasp it. Instead of thinking of addition, or multiplication, as a binary operation,
something we do with two numbers, we are asked to think of “adding 2”or “multi-
plying by 2” as a unary operation, something we do to any single number.

Thinking of “adding 2” as an operation on any number allows us to think of it as
a transformation of the number line, a recipe that takes each point, corresponding to
some number x, and moves it to the point corresponding to 2 + x. If students study
what this operation does to many points, they may be able to formulate themselves
what this transformation does: it moves each point 2 units in the positive direction
(to the right, in the usual orientation of the number line). In other words, it is a
translation of the number line through 2 units to the right. Similar work with adding
−2 should reveal it as a translation of the number line through 2 units to the left.
This provides a graphic understanding of the fact that adding −2 undoes adding 2,
so that it is the same as subtracting 2.

This transformational view of addition can be reinforced by use of a slide rule
to add and subtract numbers, by sliding one copy of a number line along a par-
allel copy. Care should be taken to correlate this new perspective on addition and
subtraction with the original understandings of combining and comparing lengths.
For adding or subtracting any given pair of numbers, they amount to essentially the
same thing. The difference is, when thinking of “adding 2” as a transformation, we
are fixing one addend, and letting the other vary.

The operation of “multiplying by 2” likewise can be visualized as a transforma-
tion of the number line. Again, by looking at many examples, we can see that it
takes any number and moves it to a number that is twice as far away from the origin.
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Thus, “times 2” is a stretching of the number line by a factor of 2, from the origin
(which does not move). Also, it preserves direction: positive numbers go to positive
numbers, and negatives go to negatives. Students should be made to notice that by
this transformation, the length of every interval is doubled, not just the intervals with
one end at the origin. This is the geometric embodiment of the Distributive Rule.

When this transformational interpretation is extended to fractions, it provides a
way of seeing that multiplying by 1/d is the same as dividing by d , so that, in the
rational numbers, multiplication and division are two aspects of the same operation.
More precisely, division by a given number is the same as multiplication by its
reciprocal.6 This relationship is built out of two more basic ones:

(i) For a whole number d , division by d is the same as multiplication by 1/d ; and
(ii) Multiplication by a fraction n/d amounts to multiplication by n, and multipli-

cation by 1/d , and it does not matter which is done first.

Combining statements (i) and (ii) produces: multiplying by n/d amounts to multi-
plying by n and dividing by d , in either order.

The ideas that

(i) division by a given number is the inverse of multiplication by that number, and
(ii) division by a given number may be accomplished by multiplication by the re-

ciprocal, which combine to
(iii) division by a given number is the same as multiplication by the reciprocal,

are the key ingredients in the “invert and multiply” rule for division by fractions.
Multiplication by negative numbers, a well-known trouble spot, fits easily and el-

egantly into the transformational viewpoint (Friedberg and Howe 2008). The main
observation is that multiplication by −1 is reflection across the origin. Every num-
ber goes to its negative. Then multiplication by −2 would be multiplication by 2,
followed by reflection across the origin (or the other way around—it doesn’t matter,
since multiplication is commutative). In this picture, it is clear why the product of
two negative numbers is positive: reflecting twice across the origin leaves orienta-
tion unchanged. For many students, this geometric insight into the nature of mul-
tiplication by negative numbers may be more convincing than a formal symbolic
argument.

These geometric/transformational interpretations of the operations, and their
connections with the basic algebraic expressions are not explicitly emphasized in
the CCSSM, and the ability of students to grasp the transformational viewpoint is
not well documented. However, the picture afforded by these ideas is quite com-
pelling, and the connections to more advanced mathematics are also strong. In par-
ticular, this viewpoint fits very well with the CCSSM emphasis on transformations
in geometry. It seems possible that some students could benefit from the “multipli-
cation is stretching” idea from the time multiplication is introduced, in 3rd grade,

6Unfortunately, this basic principle is not explicitly enunciated in the CCSSM. One hopes that this
defect will be remedied in the next revision.
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and that it could form a useful supplement to the “repeated addition” and array/area
interpretations that are explicitly recommended by CCSSM.

A final place where the number line can provide a useful interpretation of a nu-
merical construction is in decimal expansions. In fact, it is hard to imagine devel-
oping a firm grasp of decimal expansions without invoking the number line. Essen-
tially, decimal expansions provide an address system on the number line. We should
think of successive digits in a decimal expansion as providing successively finer
information about the location of a point on the line. As an example, consider the
decimal

3.14159265358979323 . . . .

The whole number part of this number, namely 3, locates the point somewhere in
the interval [3, 4] from 3 to 4 (including the endpoints, 3 and 4). The digits to the
right of the decimal place are instructions about how to locate this number more
precisely. To interpret the 1 just to the right of the decimal place, we should picture
the interval between 3 and 4 as being divided into 10 equal subintervals, namely

[3.0, 3.1], [3.1, 3.2], [3.2, 3.3], [3.3, 3.4], [3.4, 3.5],
[3.5, 3.6], [3.6, 3.7], [3.7, 3.8], [3.8, 3.9], [3.9, 4.0].

The .1 in this decimal expansion tells us that the number belongs in the second in-
terval, [3.1, 3.2], from 3.1 to 3.2. To use the next digit, we should further subdivide
the interval [3.1, 3.2] into ten equal subintervals, namely

[3.10, 3.11], [3.11, 3.12], [3.12, 3.13], [3.13, 3.14], [3.14, 3.15],
[3.15, 3.16], [3.16, 3.17], [3.17, 3.18], [3.18, 3.19], [3.19, 3.20].

Then the 4 in the second place to the right of the decimal point tells us that the num-
ber is somewhere in the fifth of these intervals, namely in the interval [3.14, 3.15]
from 3.14 to 3.15. Each succeeding decimal digit has an analogous interpretation.
Any initial segment of the decimal expansion locates the number in a certain inter-
val. We then should break up this interval into 10 equal subintervals, and the next
digit in the decimal expansion tells us in which of these 10 subintervals the number
lies. If students carry out this process for some examples, they should come to ap-
preciate that the first few decimal places locate the number to sufficient accuracy for
most simple purposes, and indeed, that it is rather difficult to resolve an interval into
ten subintervals after only a few steps of this procedure, and essentially impossible
after only a few more. Our most powerful microscopes allow us to continue the pro-
cess for several more places, but after 10 to 20 places, depending on how large the
starting size was, the remaining decimal places lose physical meaning. A conclu-
sion that should be made explicitly is that it is quite remarkable that our symbolic
computational system is capable of producing arbitrarily long decimal expansions
for many of the numbers that arise in the course of computation, including π , e,

√
2,

1/3, etc.
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Forging New Opportunities for Problem Solving
in Australian Mathematics Classrooms through
the First National Mathematics Curriculum

Judy Anderson

Abstract Although the Federal government in Australia has tried on previous oc-
casions to exert a greater influence on curriculum development, curriculum devel-
opment was the responsibility of each of the eight states and territories until quite
recently. The new Labour Government in 2007 has employed increased central con-
trol and accountability measures, with national testing in grades 3, 5, 7 and 9 from
2008, publication of school results on a MySchool website, and the development of
the first national curriculum in English, Mathematics, Science and History. States
are still responsible for implementation, but the new funding model means they
must comply with national curriculum implementation up to grade 10. Developing
the first national curriculum for mathematics has been a challenge, but a plan of
mathematics learning for each grade level organised into three content strands has
now been developed. In addition, four proficiency (or process) strands describe the
actions associated with doing mathematics. Since problem solving has been a key
component of previous curriculum documents and there is evidence of limited use
of complex problem solving in some Australian mathematics classrooms, the repre-
sentation of problem solving in curriculum documents is examined in this chapter to
explore whether the new national curriculum for Australia forges new opportunities
for teachers and students.

Keywords National curriculum · Historical perspectives · Problem solving ·
Proficiencies · Teacher interpretation · Authentic problems

How difficult can it be to develop a national mathematics curriculum in a country
with fewer than 23 million people? The Australian experience over the past 50 years
exposes a rocky road to success. However, this has not deterred the Federal govern-
ment who, in 2008, began yet another attempt to develop the first national curricu-
lum in English, Mathematics, Science and History—designed to improve quality,
equity and accessibility (McGaw 2010). After much debate and consternation, the
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first national curriculum for mathematics was endorsed by state and territory Minis-
ters of Education in December 2010. The development of this curriculum required
navigating the obstacles of divided responsibilities for education between the state
and Federal governments, as well as negotiating many stakeholder concerns.

This chapter presents a brief historical account of the development of the first
national mathematics curriculum in Australia, and outlines the challenges presented
at various phases of the curriculum development process. For clarification, I use
the term ‘curriculum’ to represent the official policies or plans of mathematics con-
tent to be taught in schools—also referred to as “the intended curriculum” (Ro-
bitaille et al. 1996) or the “specific set of instructional materials that order content”
(Clements 2007, p. 36).

Because of its importance in mathematics teaching and learning (Schoenfeld
2007) and because there is evidence of limited use of complex problem solving
in Australian classrooms (Hollingsworth et al. 2003), this chapter also examines the
ways problem solving has been described and presented to teachers in previous cur-
riculum documents and reports research identifying teachers’ interpretation of the
curriculum advice about teaching problem solving. Finally, the chapter considers
whether the first national curriculum for mathematics provides new problem-solving
opportunities for Australian students and teachers, particularly since “problem solv-
ing is one of the most fundamental goals of teaching mathematics, but also one of
the most elusive” (Stacey 2005, p. 341).

The Australian Context

Before the national curriculum was developed, each of the eight Australian states
and territories used state-developed curriculum documents. Some were broad frame-
works allowing for school-based curriculum development (e.g., South Australia)
while others were more detailed and highly prescriptive (e.g., New South Wales
[NSW]). Usually separate curriculum documents were developed for the elemen-
tary grades (the first six or seven years of schooling), the secondary grades (in most
states from grades 7 to 10), and the senior secondary grades (11 and 12). There is no
middle school structure in Australia, although some independent schools that cater
to students from the first years of schooling to grade 12 have used state-based cur-
riculum to design alternative experiences for students in the middle years (typically
grades 5 to 8).

Usually state-based curriculum documents in Australia present the school math-
ematics curriculum as lists of topics or ‘content’ and a set of ‘processes’. Content
includes the fundamental ideas of mathematics, historically grouped into such topics
as number, algebra, measurement, geometry, and chance and data. While processes
include the actions associated with using and applying mathematics to solve a range
of problem types including applications of mathematics in authentic contexts and
other non-routine problems.

Problem solving is recognised as an important life skill involving a range of
processes including analysing, interpreting, reasoning, predicting, evaluating, and
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reflecting. It is either an overarching goal or a fundamental component of the school
mathematics curriculum in many countries (Stacey 2005). One of the challenges in
curriculum development is to present the mathematics curriculum in a way which
encourages teachers to embrace reforms or new approaches to teaching and learn-
ing. One new approach was the introduction of problem solving into curriculum
documents in Australia in the late Eighties but there has been limited evidence of
complex problem-solving opportunities in elementary classrooms (e.g., Anderson
et al. 2004) or in secondary classrooms (e.g., Hollingsworth et al. 2003). Because
of the diversity of curriculum documents in the Australian context, in this chapter I
examine the evolution of problem solving in one state (New South Wales [NSW])
context and compare this with the new Australian curriculum approach.

Historical Perspective of Australian Curriculum Development

I present a brief historical perspective to set the context for the development of
the first national Australian curriculum since as Kennedy (2005, p. 1) notes, “the
school curriculum is tightly bounded by the social, political and economic contexts
in which it is located”. This overview is necessarily brief and seeks to identify key
drivers of curriculum change, particularly those impacting mathematics.1

In Australia, the constitutional responsibility for curriculum resides with the
state and territory governments who have “jealously guarded their curriculum
sovereignty, overtly or passively resisting attempts to engineer national approaches”
(Reid 2005, p. 39). However, curriculum has become a “state and Commonwealth
[Federal] political football” (Yates et al. 2011b, p. 4) with the Federal government
making several unsuccessful attempts at implementing a national curriculum. Reid
(2005) argues the lack of success goes beyond the political agenda to the lack of
an adequate rationale for a national curriculum, a failure to develop a rigorous the-
oretical base for the curriculum, and a failure to consider key aspects of managing
curriculum change. Others have argued there has also been a lack of consultation
with key stakeholders (e.g., Ellerton and Clements 1994). Reid (2005) outlines four
phases in the move towards a national curriculum, particularly after 1963 when the
Federal government in Australia began to fund aspects of school education.

In the first phase (1968–1988) the Federal government sought to influence the
state-based curriculum using ‘indirect’ approaches by funding projects for the
production of resources for teachers and students. During this phase, the Math-
ematics Curriculum and Teaching Program [MCTP] (Lovitt and Clarke 1988)
was developed to address concerns about the teaching of mathematics in Aus-
tralia and in particular, to address issues about students’ attitudes to mathematics

1For a more detailed historical account of curriculum development in Australia, I recommend
Yates et al. (2011a) and Marsh (2010). Both volumes describe case studies of curriculum change
in particular states and territories as well as the prevailing political agendas leading to the rejection
of earlier attempts at national curriculum development.



212 J. Anderson

and the diversity of students’ needs, as well as shallow teaching and narrow as-
sessment practices (Lovitt and Clarke 2011). To support teacher professional de-
velopment, the program identified and captured good practice in a collection of
exemplary lessons—these resources have been sold internationally and are now
available online through the Maths300 website (http://www.maths300.esa.edu.au/).
While widely recognised as an outstanding resource, it is debatable how much in-
fluence this resource has had on addressing the concerns and issues mentioned
above, particularly given these same issues continue to be raised (see for exam-
ple the AAMT Position on National Curriculum in Mathematics at http://www.aamt.
edu.au/Publications-and-statements/Position-statements/National-Curriculum).

The second phase of national curriculum development (1988–1993) saw the de-
sign of Statements and Profiles in each of eight key learning areas including math-
ematics. A detailed historical account of the failure of the Australian Education
Council [AEC] to develop and then endorse the national curriculum is contained
in The National Curriculum Debacle (Ellerton and Clements 1994). Through refer-
ence to meeting minutes, letters, and personal accounts of events over this period,
Ellerton and Clements describe the key issues associated with the failure of this
enterprise as:

• the lack of a strong and agreed upon theoretical base, in particular the use of an
outcomes-based education approach which the authors align with behaviourist
principles suggesting this was “totally at odds with the directions and findings of
mathematics education research over the past two decades” (p. 7);

• a lack of consultation with key stakeholders in the curriculum development pro-
cess, in particular lack of involvement with mathematicians and mathematics ed-
ucators; and

• being guided by the national curriculum approach in the United Kingdom, which
was reported in 1994 as ‘disastrous’.

While Ellerton and Clements argue that the approach was strongly influenced by de-
velopments in the United Kingdom [UK] at that time, there was a significant differ-
ence between the two countries regarding curriculum control. The UK Government
had “the constitutional authority to impose a national curriculum” whereas the Aus-
tralian Government did not and had to “negotiate and persuade” (Piper 1989, p. 22).
According to Ellerton and Clements, if the AEC had more closely considered the
national Curriculum and Evaluation Standards for School Mathematics (National
Council of Teachers of Mathematics [NCTM] 1989) developed in the United States
of America, the approach would have been far more acceptable to those who were
so strongly opposed to the enterprise.

The first stage of development of the Statement and Profiles began with mathe-
matics and involved a mapping of state and territory curriculum documents to iden-
tify similarities and differences. At the time there were

. . . large differences in the ways in which school mathematics was organised in the different
states and territories. For example, four systems (Victoria, South Australia, Tasmania, and
the Australian Capitol Territory) did not mandate any aspect of the mathematics curricu-
lum, and in these systems, centrally issued guidelines served as the basis for school-based

http://www.maths300.esa.edu.au/
http://www.aamt.edu.au/Publications-and-statements/Position-statements/National-Curriculum
http://www.aamt.edu.au/Publications-and-statements/Position-statements/National-Curriculum
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curriculum development for primary school mathematics. In New South Wales, Queens-
land and Western Australia, however, the aims and content of primary school mathematics
were centrally specified, mandatory, and were backed up by centrally specified notes and
suggestions. (Ellerton and Clements 1994, p. 52)

While this attempt at developing a national curriculum failed, the mathematics State-
ments and Profiles were used as a framework to guide curriculum development in
some states. Identified legacies from these documents include an increased empha-
sis on mental computation, an increased focus on probability and statistics, and the
articulation of a separate strand of ‘processes’ in most state and territory curriculum
documents (Morony 2011). These processes tended to be included in a ‘working
mathematically’ strand (e.g., Board of Studies NSW 2003), which also included
reference to problem solving. Further elaboration of the approaches taken to em-
bed problem solving into curriculum documents in NSW is examined later in this
chapter.

The third phase (1993–2003) witnessed a return to indirect Federal government
involvement where significant funds were devolved to schools to support profes-
sional development in the move towards a national curriculum, similar to the first
phase. Through the Australian Government Quality Teaching Program [AGQTP],
projects were funded to focus on literacy, numeracy, mathematics, science and/or
technology. This phase led to many school- and system-based projects focused on
numeracy and/or mathematics throughout Australia (Vincent 2004).

The fourth phase began in 2003 with the Federal Minister for Education suggest-
ing the need for a common school starting age, common assessments for grade 12,
and the need for a common curriculum in all states and territories. Another map-
ping exercise was undertaken to identify overlap and difference between state and
territory curriculum documents, leading to the development of four Statements of
Learning in English, Mathematics, Science and Civics. These ‘statements’ intro-
duced the notion of ‘national curriculum consistency’ guiding national testing in
literacy and numeracy from 2008 in grades 3, 5, 7 and 9.

The rationale for one curriculum for all Australian students was to improve qual-
ity, equity and accessibility. The rhetoric suggested “a national curriculum would
play a key role in delivering quality education” and that it would be “world class”
(ACARA 2010a). Further, one curriculum would mean:

• a united focus on how student learning can be improved to achieve national goals;
• greater attention devoted to equipping students with skills, knowledge and capa-

bilities necessary to enable them to effectively engage with and prosper in society;
• more efficient development of high quality resources; and
• greater consistency for mobile student and teacher populations. (ACARA 2010a)

The curriculum development process began in 2008 with four academics writing
framing papers in English, Mathematics, Science and History—Professor Peter Sul-
livan from Monash University was the author of the early papers for mathematics
and a lead writer for the first Australian mathematics curriculum. A brief account of
the development of the first national curriculum for mathematics is presented in the
next section with the outcome of the process of development in this phase achieving
more than in any earlier attempt.
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The Development of the First Mathematics Curriculum in
Australia

The process of development of the first national curriculum for mathematics by the
National Curriculum Board [NCB] began with a Framing Paper for Mathematics
(NCB 2008). Based on stakeholder feedback, the Shape of the Australian Curricu-
lum: Mathematics (NCB 2009) guided the writing of the curriculum with content
for each year of schooling, and achievement standards presenting a continuum of
typical growth. The Shape paper outlined the goals, key terms and structure of the
new curriculum. The structure included three content strands—Number and alge-
bra, Measurement and geometry, and Statistics and probability—as well as four
proficiency (or process) strands—understanding, fluency, problem solving, and rea-
soning (adapted from Kilpatrick et al. 2001).2

Three key issues were to be addressed in the development of the first Australian
mathematics curriculum. First, improve quality and address concerns about the ‘syn-
drome of shallow teaching’ (Hollingsworth et al. 2003) by engaging more learn-
ers with complex problem solving. Second, improve equity and address differen-
tial mathematics achievement among particular groups of students. For example,
from PISA 2009 data, differences in performance were related to socio-economic
status, geographical location and cultural background (particularly between non-
Indigenous and Indigenous students) (see Thomson et al. 2010). Third, increase
accessibility with “a commitment to ensuring that all students experience the full
mathematics curriculum until the end of Year 10” (NCB 2009, p. 10). This third
effect challenges the common practice of ‘streaming’ or ‘tracking’ which typically
leads to offering a limited mathematics curriculum for groups of students consid-
ered not able to learn more challenging mathematics content. For example in NSW,
earlier curriculum documents differentiated the mathematics curriculum in grades 9
and 10.

The drafted mathematics curriculum for grades up to 10 was released for consul-
tation in May 2009. Also during this period, the National Curriculum Board became
a statutory body, the Australian Curriculum, Assessment and Reporting Authority
[ACARA], responsible for curriculum and associated accountability processes in-
cluding national testing. Feedback to ACARA on the draft curriculum was extensive
with many recommendations supported by evidence from research. For example,
Siemon (2011) indicated the ‘number’ content did not clearly identify and articulate
the ‘big ideas’, including numeration. She suggested there were inconsistencies in
content sequencing and language, particularly because different people wrote dif-
ferent sections of the draft document. Sadly, as can often occur with curriculum
development, Siemon suggested the task “became one of managing competing in-
terests rather than making hard, futuristic decisions based on research and practical
experience” (p. 68).

2For a more detailed account of the development of the first national mathematics curriculum
document, see Anderson et al. (2012), and for a detailed critique of sections of the curriculum
document, see Atweh et al. (2012a, 2012b).
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Table 1 The definitions for each of the proficiencies (ACARA 2010b, p. 3)

Understanding Students build a robust knowledge of adaptable and transferable
mathematical concepts. They make connections between related concepts
and progressively apply the familiar to develop new ideas. They develop an
understanding of the relationship between the ‘why’ and the ‘how’ of
mathematics . . .

Fluency Students develop skills in choosing appropriate procedures, carrying out
procedures flexibly, accurately, efficiently and appropriately, and recalling
factual knowledge and concepts readily. Students are fluent when they
calculate answers efficiently, when they recognise robust ways of
answering questions, when they choose appropriate methods . . .

Problem Solving Students develop the ability to make choices, interpret, formulate, model
and investigate problem situations, and communicate solutions effectively.
Students formulate and solve problems when they use mathematics to
represent unfamiliar or meaningful situations . . .

Reasoning Students develop an increasingly sophisticated capacity for logical thought
and actions, such as analysing, proving, evaluating, explaining, inferring,
justifying and generalising. Students are reasoning mathematically when
they explain their thinking, when they deduce and justify strategies used
and conclusions reached . . .

Additional concerns included the inadequate representation of the proficiency or
process strands in the content descriptions, the need for further reduction of con-
tent to provide time for more problem solving and modelling, the poor sequencing
of some content, and the need to further consider current research (AAMT 2010;
Mathematics Education Research Group of Australasia 2010; Siemon 2011). In ad-
dition, the consultation process was limited to feedback from teachers at large on
only one draft of the curriculum, suggesting a lack of transparency (Morony 2011).
However, it should be noted here that ACARA regularly consulted with small num-
bers of teachers who represented a broad range of professional associations and
systems.

After revisions, the Australian Curriculum: Mathematics was released online in
December 2010 with opportunities for schools to trial some aspects of the curricu-
lum and provide feedback to the writers so that revisions could be made during
2011 (ACARA 2010b). The final document presents mathematics for Foundation
(the first year of schooling) to Year 10. There is evidence that some issues raised
during the consultation have been addressed with a review of the sequencing of con-
cepts within the three content strands, and organisation of content into sub-strands.
In addition, the embedding of the proficiency strands was revised with the use of
more ‘actions’ at the beginning of content statements. The definitions of each of the
proficiencies (see Table 1) highlight the types of verbs used to represent the actions
recommended.

Atweh et al. (2012a, 2012b) argue that while the proficiencies are described as
‘actions’, their descriptions as presented in Table 1 suggest a different interpretation.
They state, “these articulations imply that the proficiencies describe dimensions of
student performance within mathematics rather than a type of experience they have
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in its study” (p. 7). This may be because the proficiencies were informed by the
work of Kilpatrick et al. (2001) who explained, “proficiency” was used to describe
what “it means for anyone to learn mathematics successfully” (p. 5). The language
used in the proficiency descriptions describes the outcomes of successful learning
rather than the potential actions or experiences. Clearly it is still up to teachers to
determine how this might occur and what experiences will be necessary to support
the development of these proficiencies.

While the initial Framing Paper and the subsequent Shape paper articulated a
vision for mathematics curriculum few would disagree with, many now feel “there
is little to distinguish it from the content of 20 years ago” (Morony 2011, p. 64).
Coupled with this, Thornton (2011) argues that in the curriculum documents for
mathematics,

. . . the rationale and aims do little to convey a sense of what the practice of mathemat-
ics is really like and continue to promote an absolutist view of mathematics as a body of
knowledge that needs to be taught and has little or no room for questioning. (p. 75)

Atweh and Goos (2011), and Siemon (2011) question whether the curriculum is
‘futures oriented’ and prepares young Australians for a 21st Century world. Irre-
spective of these criticisms, Australia now has a national mathematics curriculum
for the first eleven years of schooling.

It is unclear whether this first national curriculum has addressed the challenges of
improving quality, equity, and accessibility. As noted above, the final product does
present content that is similar to the documents used previously by some states and
territories so the question remains as to whether the quality has improved. Producing
equitable learning outcomes and improving accessibility will depend very much on
how the curriculum is implemented by teachers at the local school level (Atweh and
Singh 2011)—clearly teachers will need more support if any real change is to ensue
and differential outcomes are to be addressed. Sullivan (2012) argues that

. . . the challenge of equity can be addressed by focusing on depth of learning rather than
breadth, by specifically supporting the learning of those students who need it and by ex-
tending more advanced students within the content for that level rather than isolating such
students into different classes. (p. 175)

However, the embedding of the proficiencies (which include problem solving) into
the content statements offers some hope. This may assist teachers in overcoming
the ‘syndrome of shallow teaching’ if they follow the recommendations and provide
students with increased opportunities to engage in complex problem solving. The
Melbourne Declaration on Educational Goals for Young Australians (MCEETYA
2008, p. 8) also informed the development of the national curriculum. Goals for 21st
Century learners suggested they “are creative, innovative and resourceful, and are
able to solve problems”. One way to engage and motivate students in mathematics
is through problem solving and investigations (Schoenfeld 2007).

The following sections of this chapter examine the evolution of problem solving
in curriculum documents from one Australian state, NSW, and consider whether the
national curriculum approach to problem solving forges new opportunities for stu-
dents and teachers in mathematics classrooms. I draw on Lester’s (1994) reflections
of 25 years of problem-solving research in reviewing this evolution.
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The Evolution of Problem Solving in NSW Curriculum
Development

Curriculum documents typically promote reform-oriented approaches and recognise
the importance of engaging students in worthwhile mathematics through a range of
actions or processes. For example, the Principles and Standards for School Math-
ematics (NCTM 2000) includes standards related to five processes—problem solv-
ing, reasoning and proof, communication, connections, and representations. Similar
processes have been included in NSW curriculum documents with the most recent
including a range of processes under the umbrella term “Working Mathematically”.
This section documents the evolution of problem solving in the curriculum docu-
ments in NSW, and examines some of the research into teachers’ knowledge and
understanding of the curriculum approach to problem solving in that state.

In NSW, problem solving was made explicit for the first time in the mathemat-
ics curriculum documents or syllabuses developed and introduced into elementary
(NSW Department of Education 1989) and junior secondary (Board of Secondary
Education [BSE] NSW 1989) classrooms in the Eighties. In the introduction to the
elementary syllabus, problem solving and applications were described as important
components of mathematics teaching and learning and a problem was described as
having three characteristics:

• there is a goal to be reached
• an obstacle prevents ready solution
• the solver is motivated to reach a solution. (NSW Department of Education 1989, p. 22)

In both the elementary and the lower secondary curriculum documents, advice was
provided on how problem solving could be implemented including the possibilities
associated with teaching for problem solving, teaching about problem solving and
teaching through problem solving (Siemon and Booker 1990). The lower secondary
document included problem solving as one of six strands and included examples of
problem types. It also advised that problem solving should involve interpretation,
use of a range of heuristics, and evaluation of solutions. To support teachers, text-
book writers developed chapters devoted to practising particular problem-solving
strategies (e.g., Barry et al. 1988) or they presented problems associated with par-
ticular content at the end of each chapter.

Alongside the development of the curriculum, teaching support documents were
produced to assist the implementation of problem solving in classrooms. However,
implementation was limited (Anderson 1996, 1997)—a popular approach in lower
secondary contexts was to timetable one lesson a week on ‘problem solving’ with
sets of problem-solving tasks set up in a special classroom or ‘laboratory’. Students
referred to their lessons as either ‘mathematics’ or ‘problem solving’ so that problem
solving was viewed as an add-on to the curriculum and not integrated into regular
mathematics lessons as a way of learning and a way of doing mathematics. Perhaps
this situation was mirrored in the USA as reflected in Lester’s (1994) comments.

To date, no mathematics program has been developed that adequately addresses the issue of
making problem solving the central focus of the curriculum. Instead of being given coherent
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programs with clear direction, teachers have had to be satisfied with a well-intentioned
melange of story problems, lists of strategies to be taught, and suggestions for classroom
activities. (p. 661)

A revised curriculum for grades 9 and 10 was released in NSW in 1996 with three
differentiated courses (advanced, intermediate, and general). Curriculum documents
provided advice about problem-solving processes and heuristics with the introduc-
tory pages referring to problem solving as “a major aspect of mathematics” accom-
panied by the recommendation for teachers to consider “four important elements
of solving problems” (BOS NSW 1996, p. 14), mirroring Polya’s (1945) phases.
Instead of a problem solving strand, the curriculum writers adopted the term math-
ematical investigations with the advice students should undertake an investigation
associated with Chance and data as well as “one other, longer investigation which
might take up to five hours” (p. 173).

The term ‘working mathematically’ was also introduced into NSW curricu-
lum at this time. This introduction appeared to be informed by the document
Mathematics—A Curriculum Profile for Australian Schools (Curriculum Corpo-
ration 1994) where working mathematically was described as comprising six
processes—investigating, conjecturing, using problem-solving strategies, applying
and verifying, using mathematical language, and working in context, each with their
own outcomes and presented as a developmental continuum across all of the years
of schooling. However, the term ‘working mathematically’ in the NSW grade 9 and
10 syllabus was presented as an objective with no clear description of the associated
knowledge, skills or understandings.

The content was presented in each strand as detailed statements with ‘applica-
tions, suggested activities and sample questions’. These sample questions repre-
sented activities not typically found in available textbooks, thus providing oppor-
tunities for students to engage in higher-level thinking tasks and investigations of
mathematical ideas (see the example presented in Fig. 1). As Anderson (2002) notes,
this appeared to be an attempt to align problem solving with the content in a more
explicit manner.

In revisions to NSW curriculum in the late Nineties when an outcomes-based
approach was adopted (BOSNSW 1998, 1999), working mathematically was also
introduced into the elementary grades curriculum. More clearly aligned to the Pro-
file document (1994), working mathematically was described as encompassing the
processes of questioning, problem solving, communicating, verifying, reflecting and
using technology (BOSNSW 1998). There was no similar list in mathematics cur-
riculum documents for the secondary grades. It is evident from Table 2 that, because
of the development of each of these curriculum documents at different times, the ap-
proach to mathematics curriculum design for the first 11 years of schooling in NSW
was inconsistent, sending mixed messages to teachers of mathematics, particularly
in relation to the implementation of problem solving.

At this stage, I pause to include a reflection from Lester (1994) on what should
occur in mathematics classrooms to address the lack of engagement with problem
solving. Based on his review of the research into problem solving, Lester suggested
there were five clear messages about improving this situation for teachers and stu-
dents.
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N2: Consumer Arithmetic N2: Consumer Arithmetic
Content Applications, suggested activities and sample

questions
iv) Consumer Problems iv) Consumer Problems
Learning experiences should provide students
with opportunity to:
• identify best buys
• compare the cost of loans using flat and re-

ducible interest for a small number of re-
payment periods

• find the value of an item after certain time
period of depreciation or appreciation

• . . .

Students should:
• devise and compare strategies to determine

best buys in a realistic context
• compare the cost of the same item in dif-

ferent sizes: does the ratio of cost to size
remain constant as the size of the item in-
creases?

• Use a spreadsheet and graph to investigate
the effect of different repayment schedules
on the cost of a housing loan

• . . .

Fig. 1 Content and applications for Consumer Arithmetic from the Number strand of the Ad-
vanced Years 9 and 10 Syllabus (BOS NSW 1996, pp. 80–81)

Table 2 Names of the strands for the elementary and secondary school curriculum documents in
NSW

Grades K to 6
(BOSNSW 1989)

Grades 7 and 8
(Board of Secondary Education
NSW 1989)

Grades 9 and 10
(BOSNSW 1996)

Working Mathematically Problem solving Working Mathematically

Number Number Number

Algebra Algebra

Statistics Chance and data

Space Geometry Geometry

Measurement Measurement Measurement
(including trigonometry)

1. Students must solve many problems in order to improve their problem-solving ability.
2. Problem-solving ability develops slowly over a prolonged period of time.
3. In order for students to benefit from instruction, they must believe that their teacher

thinks problem solving is important.
4. Most students benefit greatly from systematically planned problem-solving instruction.
5. Teaching students about problem-solving strategies and heuristics and phases of problem

solving does little to improve student’s ability to solve mathematics problems in general.
(p. 666)

To send clear messages to teachers, Lester’s list suggests problem solving needs to
be embedded in curriculum documents from the early years of schooling, with rec-
ommendations for regular, well-planned learning experiences for students. While
there was considerable advice in the NSW curriculum documents of the late Eight-
ies and the Nineties, problem solving was still presented as a separate strand or in-
cluded as a process of working mathematically, and was usually represented within
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Table 3 Working mathematically processes (BOSNSW 2003, p. 16)

Process Description of the Process

Questioning Students ask questions in relation to mathematical situations and their
mathematical experiences

Applying
Strategies

Students develop, select and use a range of strategies, including the
selection and use of appropriate technology, to explore and solve problems

Communicating Students develop and use appropriate language and representations to
formulate and express mathematical ideas

Reasoning Students develop and use processes for exploring relationships, checking
solutions and giving reasons to support their conclusions

Reflecting Students reflect on their experiences and critical understanding to make
connections with, and generalisations about, existing knowledge and
understanding

content strands as examples of activities or ‘good questions’. Depending on one’s
view of what problem solving is, this was not necessarily visible to teachers (An-
derson 2005). The curriculum documents in NSW listed problem-solving strategies
and heuristics and emphasised the phases of problem solving—none of these ap-
proaches were supported by the research into improving students’ problem-solving
competence according to Lester (1994).

Beginning in 2000, all of the mathematics curriculum documents from Kinder-
garten to grade 10 were revised together to ensure “consistency, continuity and co-
herence” (Anderson 2002, p. 14). Led by the author, the curriculum development
process began by mapping content from the three existing sets of curriculum doc-
uments, removing overlap and repetition, and realigning content based on research
into developmental continua of learning (e.g., Harel and Confrey 1994). Mathe-
matical ideas for all curriculum documents up to grade 10 were grouped into the
content strands—number, algebra, data, geometry, and measurement. One process
strand, working mathematically, was used to describe the mathematical actions or
processes associated with doing mathematics. The overarching description of work-
ing mathematically included reference to problem solving:

Students will develop knowledge, skills and understanding through inquiry, application of
problem-solving strategies, including the selection and use of appropriate technology, com-
munication, reasoning and reflection. (BOSNSW 2003, p. 12)

The working mathematically processes included questioning, applying strategies,
communicating, reasoning and reflecting (see Table 3 for a description of each pro-
cess). Anderson and Bobis (2005) argued that when teachers use rich tasks in mathe-
matics lessons so that students are engaging with all of these processes, the students
are likely to be experiencing more complex problem-solving situations.

While much of the mathematical content remained the same as in previous cur-
riculum documents, the new curriculum approach required teachers to review their
practice by:
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Area
MS3.2
Selects and uses the appropriate unit to
calculate area, including the area of squares,
rectangles and triangles

Key Ideas
Select and use the appropriate unit to calculate
area
Recognise the need for square kilometres and
hectares
Develop formulae in words for finding area of
squares, rectangles and triangles

Knowledge and skills Working Mathematically
• recognising the need for a unit larger than

the square metre
• identifying situations where square kilome-

tres are used for measuring area eg a suburb
• recognising and explaining the need for a

more convenient unit than the square kilo-
metre

• measuring an area in hectares eg the local
park

• using the abbreviations for square kilometre
(km2) and hectare (ha)

• recognising that one hectare is equal to
10 000 square metres

• selecting the appropriate unit to calculate
area

• apply measurement skills to everyday situa-
tions eg determining the area of the basketball
court (Applying Strategies)

• use the terms ‘length’, ‘breadth’, ‘width’ and
‘depth’ appropriately (Communicating, Re-
flecting)

• extend mathematical tasks by asking ques-
tions eg ‘If I change the dimensions of a rect-
angle but keep the perimeter the same, will
the area change?’ (Questioning)

• interpret measurements on simple plans
(Communicating)

• investigate the areas of rectangles that have
the same perimeter (Applying Strategies)

Fig. 2 Content for the Measurement strand, Area sub-strand for grades 5 and 6 (BOSNSW 2003,
p. 123)

1. assessing students’ current knowledge and planning learning experiences in-
formed by the developmental continuum regardless of the grade they were in
at school;

2. designing programs that enabled students to be extended in their learning rather
than stopping at some predetermined endpoint which occurred in the previous
curriculum with its differentiated three course structure for grades 9 and 10;

3. designing lessons that integrated the process strand, working mathematically,
with the content so that problem solving became a central focus of learning; and

4. using a range of assessment strategies that included assessment for learning as
well as assessment of learning (BOSNSW 2003).

To encourage teachers to integrate the working mathematically processes into every-
day learning experiences for students, examples were listed beside the appropriate
content in the curriculum document—see Fig. 2 for an example for the Measurement
strand, Area substrand. Each example was labelled with one or more processes to
assist teachers in their understanding of each term.

Beginning in 2004 the revised curriculum was implemented in NSW class-
rooms. Extensive professional development was provided by school system per-
sonnel, professional associations, and private providers including the University of
Sydney (Anderson and Moore 2005). Professional learning experiences focused on
the new curriculum approach, particularly how embedding working mathematically
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into mathematics lessons would provide students with increased problem-solving
opportunities.

To investigate if teachers understood this approach and whether it assisted them
in the integration of working mathematically into classroom practice, Cavanagh
(2006) interviewed 39 secondary mathematics teachers of grades 7 to 10 from a
range of school contexts across NSW. While a small number of teachers had em-
braced the working mathematically approach, most had limited understanding and
reported few changes to their practice. In the elementary school context, Anderson
and Bobis (2005) surveyed 40 teachers of Kindergarten to grade 6 to evaluate their
understanding of working mathematically. Based on their responses to open-ended
questions about the working mathematically processes, only two teachers appeared
to have a comprehensive understanding of all five processes with another five teach-
ers revealing a good understanding of most. Eight teachers who reported planning
working mathematically experiences for their students in most lessons were also in-
terviewed to confirm their knowledge and understanding of the curriculum. While
these studies explored the curriculum knowledge of a small number of teachers,
they revealed the majority of teachers had a limited understanding of working math-
ematically and problem solving as they were represented in the NSW curriculum
documents.

To summarise, in the NSW context, problem solving has been described in cur-
riculum documents since 1989. Problem solving was first represented as a separate
strand with accompanying advice about teaching problem-solving processes, heuris-
tics and the phases of problem solving. Examples of problems were frequently pre-
sented. During the Nineties, problem solving was included in a working mathemati-
cally strand and typically described as a set of processes. To assist the integration of
problem solving with content, curriculum documents presented lists of ‘good ques-
tions’ or ‘activities’. Given this evolution of representations, there is still limited
evidence of implementation in mathematics classrooms in NSW. Similar changes
have occurred in the curriculum documents in other states and territories in Aus-
tralia with mixed success (for further information see Clarke et al. 2007; Stacey
2005). Therefore, a valid challenge in developing the first national curriculum was
to determine how problem solving should be represented to assist teachers and in-
crease the level of implementation in classrooms. Handal and Herrington (2003)
argue

Successful curriculum change is more likely to occur when the curricular reform goals
relating to teachers’ practice take account of teachers’ beliefs. (p. 65)

While I acknowledge teachers’ beliefs filter curriculum advice, I also agree with
Kennedy (2009) who states curriculum should articulate the “valued knowledge,
skills and beliefs that will benefit young people in the future” (p. 278). Most teach-
ers believe problem solving is an important life skill and that it should be included
in the school curriculum (Anderson 2003, 2005; Anderson and Bobis 2005; Ca-
vanagh 2006). Our challenge is to find effective ways to represent problem solving
in curriculum documents so that teachers feel better equipped to respond positively
to the advice (Stacey 2005; Sullivan 2012). The challenge for curriculum developers
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Table 4 The proficiencies in the Australian national mathematics curriculum matched to the
names used by Kilpatrick et al. (2001)

Australian Curriculum Proficiency Strands Mathematical Proficiencies (Kilpatrick et al. 2001)

Understanding Conceptual understanding

Fluency Procedural fluency

Problem solving Strategic competence

Reasoning Adaptive reasoning

Productive disposition

is to clearly articulate the expected standards for both content and problem solving
at each grade level and to assist teachers by integrating the content with problem
solving so that problem-solving approaches to teaching and learning mathematics
are explicit and easily understood.

The Approach to Problem Solving in the First Australian
Mathematics Curriculum

As reported earlier in this chapter, the Australian curriculum for mathematics has
three content strands (Number and algebra, Measurement and geometry, Statistics
and probability) and four process strands which are based on four of the five pro-
ficiencies described by Kilpatrick et al. (2001) (see Table 4). In this section, the
approach taken to embed problem solving into the new national curriculum will
be reviewed to determine whether it provides new opportunities for teachers and
students.

As noted in the Shape of the Australian Curriculum: Mathematics (NCB 2009,
p. 5) document, the term ‘working mathematically’ was not considered to ade-
quately represent the full range of actions so the new proficiencies have been adapted
from the mathematical proficiencies proposed by Kilpatrick et al. (2001). Sullivan
(2012) argues

. . . the four proficiencies . . . provide a clearer framework for mathematical processes than
“working mathematically” and are more likely to encourage teachers and others who assess
student learning to move beyond a focus on fluency, however, there will need to be support
for teachers if they are to incorporate them into the curriculum. (p. 175)

While there needs to be a balance of the proficiencies in mathematics classrooms
(Sullivan 2011), if problem solving and reasoning are to be promoted as important
components of the curriculum it is necessary to reconsider the advice from Lester
in 1994 and the types of problems used by teachers in mathematics lessons must be
carefully considered (Clarke 2009; Sullivan 2011). Curriculum developers recognise
that providing problem-solving experiences is critical if students are to be able to
use and apply mathematical knowledge in meaningful ways. It is through problem
solving that students develop deeper understanding of mathematical ideas, become
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more engaged and enthused in lessons, and appreciate the relevance and usefulness
of mathematics.

In the new Australian Curriculum: Mathematics (ACARA 2012) problem solv-
ing is described as follows.

Students develop the ability to make choices, interpret, formulate, model and investigate
problem situations, and communicate solutions effectively. Students formulate and solve
problems when they use mathematics to represent unfamiliar or meaningful situations, when
they design investigations and plan their approaches, when they apply their existing strate-
gies to seek solutions, and when they verify that their answers are reasonable. (p. 6)

For students to become the successful problem solvers that this description suggests,
they will need to actively engage with a range of important processes during math-
ematics lessons. For this to occur teachers will need to select tasks, which allow
for student choice about the mathematics they might use and the problem-solving
strategies they select to model and investigate mathematical situations. Importantly,
they also need to be able to effectively communicate their solutions. According to
the NCTM Standards (2000, p. 52) “problem solving means engaging in a task
for which the solution method is not known in advance”. So problem solving fre-
quently involves investigating new and somewhat challenging situations that require
time and effort. Problem solving needs to be more than just doing questions that are
applications of the mathematics students are learning right now.

To aid teacher understanding of the proficiencies in the Australian curriculum,
the following statement is presented at each grade level:

The proficiency strands Understanding, Fluency, Problem Solving and Reasoning are an
integral part of mathematics content across the three content strands Number and Algebra,
Measurement and Geometry, and Statistics and Probability. The proficiencies reinforce the
significance of working mathematically within the content and describe how the content is
explored and developed. They provide the language to build in the developmental aspects
of the learning of mathematics.

Under this statement, a brief description is presented for each of the proficiencies,
which is appropriate to the grade level. While there is a statement for every grade
level, Table 5 presents the description for problem solving for some levels.

These statements include actions associated with learning mathematics and com-
bine types of problem-solving tasks with the content relevant for the particular
grade. Several of these statements mention “authentic problems” or “authentic situ-
ations”, neither of these terms is defined for teachers so while the statements gener-
ally suggest engagement with problem-solving experiences, they may not be neces-
sarily clear. Atweh and Goos (2011) offer the suggestion that “authentic activities”
would involve “using examples from the real world of the student”. At the grade 10
level, problem solving refers to applying formulae and procedures. Depending on
student understanding, these could be routine applications and have limited oppor-
tunity for problem solving as defined in the curriculum document.

In addition to these problem-solving statements, the content descriptions also
include some reference to solving problems. This was the strategy used by the cur-
riculum writers to embed problem solving into the content and to address the con-
cern that teachers believe problem solving is an added extra. Table 6 presents some
examples for the Number and Algebra strand at different grade levels.
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Table 5 Problem-solving statements at the beginning of several grades (ACARA 2012)

Grade Problem Solving statement

Foundation Problem solving includes using materials to model authentic problems,
sorting objects, using familiar counting sequences to solve unfamiliar
problems, and discussing the reasonableness of the answer

2 Problem solving includes formulating problems from authentic situations,
making models and using number sentences that represent problem
situations, planning routes on maps, and matching transformations with
their original shape

4 Problem solving includes formulating, modelling and recording authentic
situations involving operations, comparing large numbers and time
durations, and using properties of numbers to continue patterns

6 Problem solving includes formulating and solving authentic problems
using numbers and measurements creating similar shapes through
enlargements, representing secondary data and calculating angles

8 Problem solving includes formulating and modelling, with comparisons of
ratios, profit and loss, authentic situations involving areas and perimeters of
common shapes and analysing and interpreting data using two-way tables

10 Problem solving includes calculating the surface area and volume of a
diverse range of prisms, finding unknown lengths and angles using
applications of trigonometry, using algebraic and graphical techniques to
find solutions to simultaneous equations and inequalities, and investigating
independence of events and their probabilities

Table 6 Examples of embedding problem solving into content descriptions in Number and Alge-
bra at several grade levels (ACARA 2012)

Grade Content descriptions in Number and Algebra which refer to problem
solving

1 Represent and solve simple addition and subtraction problems using a
range of strategies including counting on, partitioning and rearranging
parts.

3 Apply place value to partition, rearrange and regroup numbers to at least
10 000 to assist calculations and solve problems

5 Solve problems involving multiplication of large numbers by one- or
two-digit numbers using efficient mental, written strategies and appropriate
digital technologies

7 Recognise and solve problems involving simple ratios

9 Solve problems involving simple interest

10 Solve problems involving linear equations, including those derived from
formulas

Table 6 reveals that there has been an attempt to embed problem solving into
content, but it is possible teachers may interpret these statements as ‘simple word
problems’. Anderson (2005) found many teachers believed they were implementing
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problem solving as required in the curriculum by presenting students with a range
of word problems—many of the examples teachers provided were lower order ap-
plications requiring little mathematical thinking for students who were able to read
and interpret the language in the problem.

It should be noted here that a review of the content descriptions and their elabo-
rations across all grade levels reveals “a heavy focus on” the first two proficiencies
of understanding and fluency and “to a lower level on reasoning and problem solv-
ing” (Atweh and Goos 2011, p. 221). Atweh et al. (2012a, 2012b) analysed all of
the content elaborations for grade 8 and found that while 56 % related to fluency,
only 12 % related to problem solving and 7 % to reasoning. Further, they suggest
that the problem solving elaborations are limited in their scope and “may not inspire
teachers to appreciate the importance of these proficiencies and to think of valuable
and exciting ways in which they can be used or developed in the classroom” (p. 9).

The Australian national curriculum does provide advice about problem solving
that is different to previous documents, particularly when compared to the NSW
context. There is an overarching definition of problem solving, there are statements
about problem solving at each grade level, and problem solving has been embedded
into several content descriptions. This may provide new opportunities for teachers
to engage their students with more problem solving in mathematics lessons. At this
early stage of implementation of the new Australian curriculum, no research has
been published into teachers’ use of the new curriculum documents. It will be crit-
ical to examine the impact of this approach to determine whether it assists teachers
and improves the level of engagement with problem solving in Australian mathe-
matics classrooms.

It is certainly true that Australia does have its first national curriculum for mathe-
matics and it was implemented in some schools in some jurisdictions in 2012. How-
ever, how it is being implemented in each state and territory differs. Several states
(e.g., NSW and Victoria) are using the new national curriculum as a framework to
develop their own curriculum documents. Implementation in these locations will
follow in 2013 or 2014. Others are providing teachers with extensive professional
development to use the national curriculum as a planning document for school-
based curriculum (e.g., Australian Capital Territory). Given that the responsibility
for curriculum implementation rests with the state and territory governments, it is
not surprising the approaches to curriculum delivery and teacher support varies. It is
historically difficult to change deeply held beliefs and practices, so the implementa-
tion of the national curriculum varies depending on which state you visit.

While there appear to be new opportunities for Australian teachers and students
to engage in more complex problem solving in the new national curriculum, the
fundamental issue of clarity on the meanings of ‘problem’ and ‘problem solving’
appears to remain—although research is needed to ascertain whether this is the case.
From her review of problem solving in the mathematics curriculum documents from
several countries as well as some Australian states in 2005, Stacey recommended:

Research could examine whether and how these curriculum structures from different coun-
tries influence teachers’ understanding of the goals of teaching mathematics, and whether
these different understandings make a real difference in the attention that teachers give to
mathematical problem solving beyond the routine. (p. 345)
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It is a shame this recommendation was not heeded—it would have assisted the cur-
riculum developers of the first national curriculum in Australia. But it is not too late
to further explore the ways problem solving is represented in other countries and
whether alternative approaches may better support teachers’ understanding.
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Freedom of Design: The Multiple Faces
of Subtraction in Dutch Primary School
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Abstract Mathematics textbook series largely determine what teachers teach and
consequently, what students learn. In the Netherlands, publishers have hardly any
restrictions in developing and publishing textbooks. The Dutch government only
prescribes the content to be taught very broadly and does not provide guidelines
on how content has to be taught. In this study, the consequences of this freedom
of design are investigated by carrying out a textbook analysis on the topic of sub-
traction up to 100. To examine the relationship between the intended curriculum
and the potentially implemented curriculum, we analyzed the mathematical content
and performance expectations of two Dutch textbook series. In order to get a closer
view of the learning opportunities offered, the learning facilitators of the textbook
series were also analyzed. The results of the analysis show that the investigated
textbook series vary in their agreement with the intended curriculum with respect to
content and performance expectations. The textbook series reflect divergent views
on subtraction up to 100 as a mathematical topic. Furthermore, they differ in the
incorporated ideas about mathematics education, as shown in the learning facilita-
tors they provide. Consequently, the examined textbook series provide very different
opportunities to students to learn subtraction up to 100.
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Introduction

Textbooks are of great importance in mathematics education. They mediate between
the intended curriculum (the statutory goals of education) and the implemented cur-
riculum (the actual teaching in classrooms). Therefore, textbooks are referred to as
the potentially implemented curriculum (Valverde et al. 2002). Mathematics text-
book series largely determine what teachers teach and, consequently, what students
learn (Stein and Smith 2010). Although teachers’ teaching is not always in align-
ment with the textbook they use (Weiss et al. 2002), the textbook is for many teach-
ers the decisive source to realize their mathematics teaching. In the Netherlands,
textbooks have a determining role in daily teaching practice. In recent studies it was
found that 94 % of the teachers indicate that a textbook is the main source of their
teaching (Meelissen et al. 2012) and at least 80 % of primary school teachers are
following more than 90 % of the textbook content (Hop 2012).

The intended curriculum and what shows up in a textbook series is not always
the same. Textbooks are not only influenced by educational goals, but also by other
factors such as commercial considerations, concerns about underprepared teachers
(Weiss et al. 2002) and the existence of different ideas about the nature of mathe-
matics that should be emphasized, as well as what instructional approaches should
be applied (Reys and Reys 2006). Differences may appear during the transition from
the intended curriculum to the potentially implemented curriculum, particularly in
countries where there is no centralized textbook design.

In the Netherlands, there is no authority which recommends, certifies or approves
textbook series before they are put on the market. Thus, publishers have hardly
any restrictions in developing and designing textbook series. In order to investigate
the consequences of this freedom of design, we examined in two textbook series
how the Dutch intended curriculum is ‘translated’ into content in the form of tasks,
performance expectations, and learning facilitators. To unambiguously determine
the possible consequences of this freedom of design, we chose an apparently simple
and straightforward mathematical topic for our analysis: subtraction up to 100.

Context and Focus of the Study

Textbook Development in the Netherlands

Freedom of educational design in a way follows from the Dutch constitutional ‘free-
dom of education’. Originating from an arrangement that gave parents the right to
found schools in accordance with their religious views, freedom of education has
been laid down in the Constitution since 1917. Nowadays, it also allows schools to
be founded based on particular pedagogical and instructional approaches.

Because of the freedom of education, the government is rather restrained in giv-
ing instructional prescriptions. This means that the Ministry of Education prescribes
only the ‘what’, the subject matter content to be taught, and not the ‘how’, the way
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in which this content is to be taught. Not having guidelines for the ‘how’ gives
textbook authors the opportunity to bring in their own views and ideas on teaching
mathematics.

There is another reason why textbook authors can express their own interpreta-
tions. For several years the ‘what’ in the intended mathematics curriculum was only
described very broadly in the Core Goals for primary school (OCW 1993, 2006). It
was not until 2009 that the Core Goals were extended with the Reference Standards
(OCW 2009), describing in more detail what students should be able to at the end
of primary school. However, there is still room for interpretation. For example, the
Reference Standards state that students should learn to calculate using a standard
method, but they do not prescribe what standard method should be taught.

There are ten textbook series1 for teaching primary school mathematics on the
market in the Netherlands. The newest have all been released between 2009 and
2012. Several have a history of earlier editions, including two that date back to the
1970s and 1980s,2 when a reform movement in mathematics education was being
enacted in the Netherlands. This reform movement was aimed at developing an alter-
native for the then prevailing mathematics education, which had a very mechanistic
character, and in which teaching began at a formal, symbolic level. To give chil-
dren a better basis for understanding mathematics, Freudenthal and the Wiskobas
group developed a new approach to mathematics education in which, among other
things, the use of contexts to encourage insight and understanding played a crucial
role. This reform, which was later called ‘Realistic Mathematics Education’ (RME)
(e.g., Van den Heuvel-Panhuizen 2001), was largely supported by reform-oriented
textbook series.3 Until recently all Dutch textbooks series were based more or less
on this approach to teaching mathematics and they were all labeled by their pub-
lishers as ‘realistic’. However, due to a debate that has taken place in the Nether-
lands since 2007 criticizing the RME approach in favor of a return to the traditional,
mechanistic approach (Van den Heuvel-Panhuizen 2010) some textbook series have
adapted their content (more emphasis on algorithms4) and teaching approach (more
attention to repetition5) in their new editions. Moreover, new textbook series have
been released that are presented as an alternative for realistic textbook series, that re-
store the traditional mechanistic approach with only one calculation method for each

1‘De Wereld in Getallen’, ‘Pluspunt’, ‘Rekenrijk’, ‘Alles Telt’, ‘Talrijk’, ‘Wis en Reken’, ‘Wiz-
wijs’, ‘Reken Zeker’, ‘Rekenwonders’ en ‘Het Grote Rekenboek’.
2‘De Wereld in Getallen’ developed from 1975 on, and Pluspunt, the development of which started
in 1985.
3This underlines the crucial role that mathematics textbooks have in the Netherlands.
4A folder released for the textbook series ‘De Wereld in Getallen’ (4th edition) and ‘Pluspunt’
(3rd edition) says “Algorithms get more attention and are gradually built up until the classic long
division appears.” (All translations of folders and examples from textbooks are done by the authors
of this chapter.)
5A folder released for the textbook series ‘De Wereld in Getallen’ (4th edition) and ‘Pluspunt’ (3rd

edition) says: “There is much more room for practice, repetition and automatization.”
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operation and a step-by-step approach with a focus on repetition.6 Furthermore, a
new textbook series which is a Dutch version of a textbook series developed in Sin-
gapore7 was published. Thus, as a result of the debate about mathematics education,
the corpus of Dutch mathematics textbooks series has become very diverse.

Subtraction in the Dutch Intended Curriculum

According to the current Dutch Core Goals for primary school mathematics, chil-
dren have to “learn to use mathematical language and have to gain numeracy and
mathematical literacy” (OCW 2006, p. 37). Mathematical language includes arith-
metical and mathematical terms and notations. Mathematical literacy and numer-
acy refer to, among other things, coherent insight in numbers and a repertoire of
number facts and calculation methods. Furthermore, the Core Goals indicate that
children “learn to ask mathematical questions and formulate and solve mathemat-
ical problems [. . . ] and explain the solutions in mathematical language to others”
(OCW 2006, p. 39). Concerning the basic operations, the Core Goals mention that
students learn to calculate both in smart ways and using standard methods (OCW
2006, p. 43). Specifically concerning subtraction up to 100, the Core Goals state that
children “learn to quickly carry out the basic calculations in their heads using whole
numbers, at least up to 100, with additions and subtractions up to 20[. . .] known by
heart” (OCW 2006, p. 43).

The Dutch Reference Standards for mathematics (OCW 2009) distinguish three
types of knowing: ‘knowing-what’, ‘knowing-how’ and ‘knowing-why’. With this
in mind, the Standards can be considered a description of what Valverde et al. (2002,
p. 125) call “expectations of performance” which refers to “what students should be
able to do with content.” ‘Knowing-what’ relates to knowledge of number facts and
calculation methods. Subtraction up to 100 includes mental calculation, both us-
ing standard methods and using properties of numbers and operations. Furthermore,
students learn to subtract both by taking away and by determining the difference.
‘Knowing-how’ refers to making functional use of particular number facts and cal-
culation methods, including using standard methods with insight in real-life situa-
tions and converting context situations to bare number problems. ‘Knowing-why’
refers to understanding. This includes, for example, knowledge about the opera-
tions, such as knowing that the commutative property does not apply to subtraction
as it does to addition.

6A folder released for the textbook series ‘Reken Zeker’ says: “Practice, practice and more prac-
tice”, “One strategy for all children”. A folder released for the materials of ‘Het Grote Rekenboek’
says: “This textbook series gives an answer to the recent criticism on mathematics education.”
7A folder released for the textbook series ‘Rekenwonders’ says: “This is the Dutch edition of an
extremely successful and internationally praised Singaporean textbook.”
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A Mathedidactical Analysis of Subtraction up to 100

Subtraction as a Mathematical Concept

Relationships between whole numbers can be additive and multiplicative. These
relationships ensure that one can think of and reason within an interrelated number
system instead of having to deal with an innumerous set of individual loose numbers
(Kilpatrick et al. 2001). The additive and multiplicative relationships interconnect,
combine, and generate numbers.

Addition and subtraction refer to additive number relationships. This implies
that the numbers involved reflect a part-whole relationship. Combining parts into
a whole can be considered an addition, whereas taking a part from a whole can be
considered a subtraction. Furthermore, the operation of subtraction is the inverse of
addition: subtraction undoes addition and vice versa (if a + b = c, then c − b = a).

Although subtraction is mostly associated with removing a part from a whole, it
has two phenomenological appearances: taking away and determining the difference
(Van den Heuvel-Panhuizen and Treffers 2009). The two manifestations of subtrac-
tion reflect two meanings of subtraction. These two different semantic structures can
nevertheless be expressed by the same symbolic representation: c − b = a. Written
as a minuend minus a subtrahend it can literally stand for taking away b from c, but
it can also represent comparing c and b to find the difference, for example, by adding
on. So, depending on the semantic structure behind the symbolic representation, the
answer to a subtraction problem can have two different meanings: a remainder and
a difference (Usiskin 2008).

Just like the minus symbol in the symbolic representation c − b = a does not
always mean taking away, the operation of subtraction is not exclusively restricted
to problems in which the minus symbol appears (Freudenthal 1983). For example,
problems with a + symbol in the form of · · · + b = c and a + · · · = c can be solved
by a subtraction operation. These latter problems are actually subtraction problems
in an addition format (Selter et al. 2012).

Calculation Methods for Subtraction up to 100

The methods that can be applied for carrying out subtractions up to 100 can be
described from both the number perspective and the operation perspective (Van den
Heuvel-Panhuizen 2012; Peltenburg et al. 2012) (see Fig. 1).

From the operation perspective, subtraction problems up to 100 can be solved by
(1) taking the subtrahend away from the minuend, (2) adding on from the subtra-
hend until the minuend is reached, and (3) taking away from the minuend until the
subtrahend is reached. These procedures are respectively called: direct subtraction
(DS), indirect addition (IA), and indirect subtraction (IS) (De Corte and Verschaffel
1987; Torbeyns et al. 2009).
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Fig. 1 Two perspectives for describing calculation methods for subtraction up to 100

The number perspective describes how the numbers involved are dealt with.
Roughly speaking, there are three strategies: splitting, stringing, and varying. Al-
though researchers do not always use the same wording—for example, other ex-
pressions can be found in Klein et al. (1998) and Torbeyns et al. (2009)—there is
broad agreement about the general meaning of these strategies. In the splitting strat-
egy, the minuend and the subtrahend are split into tens and ones and then the tens
and ones are processed separately. In the stringing strategy, the minuend is kept in-
tact and the subtrahend is decomposed in suitable parts which are subtracted one
after another from the minuend. When a varying strategy is applied, the minuend
and/or the subtrahend are changed to get an easier subtraction problem. Although
in theory all three strategies can be combined with each of the four procedures,
not all combinations are common or suitable (see for a more detailed discussion,
Peltenburg et al. 2012).

DS can be applied with both splitting (e.g. 67 − 41 is solved by 60 − 40 = 20
and 7 − 1 = 6, followed by 20 + 6 = 26) and stringing (e.g. 67 − 41 is solved
by 67 − 40 = 27 and 27 − 1 = 26). Both the IA and IS procedures can also be
combined with splitting and stringing. For example, in the case of 67−41, applying
IA with a splitting strategy means calculating 40 + 20 = 60 and 1 + 6 = 7, and
then 20 + 6 = 26. Combining IA with a stringing strategy means calculation is
41 + 9 = 50 and 50 + 10 = 60 and 60 + 7 = 67, followed by 9 + 10 + 7 = 26.
Although this latter method can require more steps (when there is a large difference
between minuend and subtrahend), the advantage of the stringing strategy is that the
problem is not split into two problems. The starting number is kept as a whole.

For subtraction problems that require crossing the ten, applying a DS procedure
combined with splitting easily leads to the mistake of reversing the ones (e.g., in the
case of 75 − 38, 70 − 30 is frequently incorrectly followed by 8 − 5). This mistake
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does not happen when DS is combined with stringing. Even more convenient is
applying an IA or IS procedure combined with stringing, for example, when there
is a small difference between the minuend and the subtrahend, such as in the case of
62−58. Solving these problems by a stringing strategy combined with IA (58+2 =
60 and 60 + 2 = 62, followed by 2 + 2 = 4) or with the less common IS procedure
(62 − 2 = 60 and 60 − 2 = 58, followed again by 2 + 2 = 4) are easier methods that
are less sensitive to errors.

Finally, the varying strategy implies multiple operations. Applying this strategy
means that a problem is solved through changing it into another problem by making
use of properties of numbers and operations. For example, a problem like 77 − 29
can be solved by first calculating 77 − 30, followed by 47 + 1 = 48.

Learning Facilitators for Subtraction up to 100

According to Kilpatrick et al. (2001), mathematical proficiency involves five inter-
woven and interdependent components, including conceptual understanding; proce-
dural fluency; formulating, representing and solving mathematical problems; having
the capacity for reflection and justification; and seeing mathematics as useful and
worthwhile. Following this interpretation of mathematical proficiency—which is
also reflected in the Dutch intended curriculum—implies that performance expec-
tations should not be restricted to carrying out routine procedures, but also include
flexible application of calculation methods, strategy choice, and contextual interpre-
tation of outcomes (Verschaffel et al. 2007).

Applied to the learning of subtraction up to 100, this means that students should
be offered opportunities to build a broad mental constitution of subtraction, in-
cluding the different semantic structures, symbolic representations, and calculation
methods of subtraction. Textbooks can contribute to this broad constitution of sub-
traction by including didactical support in their exposure to subtraction up to 100,
such as sufficient contexts and models.

Contexts First of all, contexts can present students with situations in which sub-
traction emerges as a mathematical concept in a rather natural manner. The role
of contexts is to add meaning to this mathematical concept in order to support the
development of understanding. This can happen especially when the contexts that
are used are not restricted to word problems in a stereotyped text frame, but instead
come in a variety of forms and refer to students’ real-life knowledge (De Corte and
Verschaffel 1987). Thus, students can become aware that subtraction can apply to
all kinds of situations, reflecting different meanings of subtraction. For example,
eating cookies and ascertaining how many are left, filling an album with photos and
determining how many can still be included, and figuring out how many centimeters
a particular person is taller than another person. These contexts which refer to dif-
ferent semantic structures of subtraction can prompt students to use either the DS or
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the IA or IS procedure.8 By manipulating the variety in contexts, textbooks can sup-
port students’ understanding of the different semantic structures of subtraction and
learning various calculation methods to solve subtraction problems (see also Fuson
1992). We refer to this use of contexts as ‘contexts for supporting understanding’,
which we distinguish from the use of contexts for just applying subtraction meth-
ods. The latter reflects a performance expectation rather than a form of didactical
support. To make a clear distinction between these two functions of contexts, in this
study we interpreted contexts for supporting understanding as contexts that serve as
a source for something new to be learned, such as a new calculation method.

Models Besides contexts, models are also important to support students’ learn-
ing of subtraction up to 100. This is especially true for carrying out calculation
methods and specifically applies to the strategies that are used. A requirement for
making this support of models effective is that the models that are used match the
strategies used (Van den Heuvel-Panhuizen 2008). Models and strategies should be
epistemologically consistent. This means that, for example, the splitting strategy and
the stringing strategy each have their own supporting models. The splitting strategy,
which is strongly related to the cardinal aspect of numbers, can best be supported by
a group model that also reflects the cardinal aspect, like base-10 arithmetic blocks.
Likewise, the stringing strategy, which is strongly related to the ordinal aspect of
number, finds its supportive model equivalent in line models such as a number line.
A line model is also suitable for visualizing and supporting a varying strategy. For
example, in the case of 78 − 29 this means first making a backward jump of 30,
followed by a forward jump of 1. As stated earlier, solving 78 − 29 by a splitting
strategy easily leads to the mistake of reversing the ones. A line model would not
help to overcome this difficulty, because dealing separately with the 70 and the 20,
and the 8 and the 9 on a number line does not make sense. In other words, in teach-
ing calculation methods, strategies and models should match, otherwise models do
not have the supportive function they are assumed to have. Consequently, depending
on the strategy that is intended, textbooks should give more attention either to group
models or to line models.

Symbolic Representations Building a broad mental constitution of subtraction
also requires that students are offered various symbolic representations of subtrac-
tion. Besides the standard representation c − b = · · · , students should also have
opportunities to deal with alternative symbolic representations such as c − · · · = a

and a + · · · = c. These problems make it clear that the operation symbol in a prob-
lem can have different meanings (Fuson 1992), and is not per se equivalent to the
operation that can be applied to find the solution of that problem. The different sym-
bolic representations reflect the part-whole aspect of additive number relationships

8This use of contexts should fade away after some time. After all, even though a context can steer
a certain calculation method, in term, in the decision what calculation method will be used, not the
context, but the numbers involved play a key role.
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and the link between addition and subtraction. Furthermore, it supports the under-
standing that the = symbol does not only mean ‘results in’ but also ‘is equivalent
to’. According to Fuson (1992), textbooks do not always pay much attention to the
different meanings of the equal and operation symbols.

Research Questions

The purpose of this study is to reveal the consequences of freedom of design for
Dutch textbooks as the potentially implemented curriculum for primary school and
for the learning opportunities that students are offered. Focusing on subtraction up
to 100, we came up with the following research questions:

1. Do Dutch mathematics textbooks reflect the content of the Dutch intended cur-
riculum concerning subtraction up to 100?

2. Do Dutch mathematics textbooks reflect the performance expectations of the
Dutch intended curriculum concerning subtraction up to 100?

3. What learning facilitators for learning subtraction up to 100 are incorporated in
Dutch mathematics textbooks?

Method

To answer the research questions, a textbook analysis was carried out in which we
examined two Dutch textbooks series. The analysis focused on three perspectives:
the mathematical content, the performance expectations and the learning facilitators.

Textbook Materials Included in the Analysis

To include the full scope of didactical approaches in the Netherlands in our analysis
we examined two recently developed textbook series that, although from the same
publisher, are clearly positioned in two contrasting approaches to mathematics edu-
cation (see section “Textbook Development in the Netherlands”). The first textbook
series, called ‘Rekenrijk’ (RR) (Bokhove et al. 2009), is a RME-oriented textbook
series. The name ‘Rekenrijk’ means both ‘kingdom of arithmetic’ and ‘rich arith-
metic’. The second textbook series, called ‘Reken Zeker’ (RZ) (Terpstra and De
Vries 2010), is a new textbook series that is presented as an alternative for realistic
textbook series. The name of this textbook series means ‘arithmetic with certainty’.

Because subtraction up to one hundred is mainly taught in grade 2, the textbook
analysis was carried out with textbook materials from this grade only. We analyzed
all materials for grade 2 that are meant for all students. Textbook materials meant
for evaluation, and subsequent optional lessons for repetition or enrichment, were
not included in our analysis.
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Fig. 2 Framework for textbook analysis

Framework for Textbook Analysis

To analyze the textbook materials we developed a framework containing the per-
spectives of content, performance expectations, and learning facilitators (see Fig. 2).
Most categories within these three perspectives were initially formulated on the ba-
sis of the Dutch intended curriculum for subtraction (see section “Subtraction in the
Dutch Intended Curriculum”) and our mathedidactical analysis of subtraction up to
100 (see section “A Mathedidactical Analysis of Subtraction up to 100”). Several
subcategories were established after an initial round of the analysis, based on what
we actually found in the textbook series.

Content

The perspective of content involves problem types, problem formats, and seman-
tic structures of the problems presented in the textbook materials. Regarding the
problem types we made a subdivision based on the number domain involved. We
incorporated relevant prerequisite knowledge for subtraction: decomposing num-
bers up to 10 and counting backwards with tens. For the format of the problems
we made a distinction between bare number problems and context problems. The
semantic structure of problems refers to the two phenomenological appearances of
subtraction.



Freedom of Design: The Multiple Faces of Subtraction in Dutch Primary School Textbooks 241

Performance Expectations

Regarding performance expectations, we included knowing subtraction facts, carry-
ing out subtractions, applying subtractions and understanding subtraction. The first
two categories correspond to ‘knowing-what’, the third to ‘knowing-how’ and the
fourth to ‘knowing-why’, as described in the Dutch Reference Standards. Knowing
subtraction facts is subdivided into knowing subtraction facts up to 10 and know-
ing subtraction facts up to 20. Carrying out subtractions is subdivided into using
standard calculation methods (DS combined with splitting or stringing) and alterna-
tive calculation methods (e.g., IA combined with stringing or MO combined with
a varying strategy). This distinction is in agreement with the Dutch intended cur-
riculum. Applying subtractions refers to using already learnt subtraction facts and
calculation methods in context problems. For the category ‘understanding’ we dis-
tinguished ‘giving explanations’ and ‘choosing an appropriate method’, based on
performance expectations found in the first round of analysis, that go beyond know-
ing, carrying out and applying subtractions, and unambiguous apply to understand-
ing.

Learning Facilitators

With respect to learning facilitators, we included degree and structure of exposure,
based on the importance of the amount and sequencing of content in textbooks
(Valverde et al. 2002). We included didactical support in exposure based on our
mathedidactical analysis. The subcategory ‘use of textual instructions’ was added
after the first round of the textbook analysis, again based on what we found in the
textbook series that can also be considered as supporting learning.

Unit of Analysis

In both textbooks series, the content is organized in lessons meant for one mathe-
matics hour. These lessons are subdivided into sets of tasks. In our study, we use
the term ‘task’ to refer to the smallest unit that requires an answer from a student.
Because the amount of tasks vary per set of tasks (see Fig. 3), and content and per-
formance expectations may vary per single task, we used the task as unit of analysis.

Analysis Procedure

First, we identified all subtraction-related tasks. After an initial round of analy-
sis was carried out, we added the following subcategories: ‘giving explanations’,
‘choosing an appropriate method’ and ‘use of textual instructions’. Then, the first
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Fig. 3 RR set of 4 tasks (above, RR-book 4b-1, p. 30) and RZ set of 11 tasks (below, RZ-book 4c,
p. 26). In the Netherlands, K1, K2, grade 1 and grade 2 are respectively called group 1, 2, 3 and 4

author of this chapter coded all subtraction-related tasks according to the final ver-
sion of our framework. Each task received several codes. For the content, a code
was given for the problem type, the problem format, and the semantic structure of
the problem. For the performance expectations, each task was first coded as know-
ing subtractions facts, carrying out subtractions or applying subtractions. If neither
of these sub-categories was applicable, no code was given. Next, for each task, if
applicable, a code was given for the category understanding of subtractions. For the
learning facilitators, the degree of exposure was determined from the number of
tasks. Because the tasks were counted in consecutive lessons, we got an overview of
the distribution of the subtraction-related tasks. This also made it possible to reveal
the structure of exposure, i.e., the sequence in types of tasks and in level of abstrac-
tion. Finally, for each task it was checked which subcategories of didactical support
were applicable.

A reliability check of the coding was based on an independent coding by
two teacher-trainees. To that end we used a selection of about one tenth of all
subtraction-related tasks in which all categories of the framework were included.
The two teacher-trainees reached a 93 % agreement. The agreements between each
of the teacher-trainees and the first author were respectively 93 % and 95 %.
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Results

Content

A substantial difference between the two textbook series for grade 2 is the number
of tasks included. The total number of tasks in RR is 5331, whereas RZ has 7051
tasks. However, of these amounts of tasks the proportion of subtraction-related tasks
is about the same in both textbooks: RR contains 22 % subtraction tasks (1166 tasks)
and RZ 20 % (1440 tasks).

Types of Problems

Both grade 2 textbook series concentrate more on tasks involving subtraction be-
tween 20 and 100, and less on tasks involving subtraction up to 10 and up to 20 (see
Table 1). Regarding subtraction up to 20, RR offers more tasks that require bridging
the ten than RZ. Within subtraction tasks up to 100, the number of tasks that require
bridging a ten is larger in RZ, but relatively RR offers more tasks concerning this
type of problem (in RR: 378 out of 572 tasks, is about 66 %; and in RZ: 480 out of
1096 tasks, is about 44 %).

The amount of attention to the prerequisite knowledge for these problems differs.
Regarding decomposing numbers up to 10, RR has a substantial number of such
tasks and RZ almost none. For counting backwards with tens (e.g., 46; 36; 26), RR
has very few tasks, while RZ has none. When we checked whether, for example,
decomposing numbers up to 10 is already dealt with in grade 1, we found that both
textbook series did indeed put more of an emphasis on this prerequisite knowledge
in grade 1 than in grade 2. However, the RR booklets for grade 1 have 418 such tasks,
while RZ offers only 167 in its first-grade booklets. So, with respect to providing
prerequisite knowledge for subtraction up to 100, there is a large difference between
the two textbooks series.

Format of Problems

Both textbook series contain far more bare number problems than context problems
(see Table 2). However, RR encloses much more context problems than RZ, both
relatively and absolutely, even though in RZ the total number of subtraction tasks is
larger than in RR.

Semantic Structure of Problems

In both textbook series, only a minority of the tasks reflect a clearly distinguishable
semantic structure. Both textbook series address subtraction as taking away, but
subtraction as determining the difference is only dealt with in RR (see Table 3).
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Table 1 Types of problems in subtraction-related tasks in RR and RZ in grade 2a

Types of problems RR-tasks RZ-tasks

f % f %

Prerequisite knowledge 130 11 % 5 0 %

Decomposing numbers up to 10 107 9 % 4 0 %

Backwards counting with tens 23 2 % 1 0 %

Subtraction up to 10 153 13 % 78 5 %

Subtraction up to 20 311 27 % 261 18 %

Without bridging the ten 79 7 % 135 9 %

Bridging the ten 232 20 % 126 9 %

Subtraction up to 100 572 49 % 1096 76 %

Without bridging a ten 194 17 % 616 43 %

Bridging a ten 378 32 % 480 33 %

Total number of subtraction-related tasks 1166 100 % 1440 100 %

aSome percentages do not seem to add up to 100. This is due to rounding off

Table 2 Format of problems in subtraction-related tasks in RR and RZ in grade 2

Format of problems RR-tasks RZ-tasks

f % f %

Bare number problems 1026 88 % 1415 98 %

Context problems 140 12 % 25 2 %

Total number of subtraction-related tasks 1166 100 % 1440 100 %

Table 3 Semantic structure of problems in subtraction-related tasks in RR and RZ in grade 2

Semantic structure RR-tasks RZ-tasks

f % f %

Taking away 210 18 % 403 28 %

Determining the difference 53 5 % 0 0 %

Both taking away and determining the difference 28 2 % 0 0 %

No distinguishable semantic structure 874 75 % 1037 72 %

Total number of subtraction-related tasks 1166 100 % 1440 100 %

Performance Expectations

Both textbook series contain tasks that clearly focus on certain performances. RR
contains 1081 and RZ contains 800 clearly distinguishable performance expecta-
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Table 4 Performance expectations reflected in subtraction-related tasks in RR and RZ in grade 2a

Performance expectations RR-tasks RZ-tasks

f % f %

Knowing subtraction facts 346 32 % 229 29 %

Knowing subtraction facts up to 10 258 24 % 55 7 %

Knowing subtraction facts up to 20 88 8 % 174 22 %

Carrying out subtractions 513 47 % 546 68 %

Using standard methods 413 38 % 546 68 %

Using alternative methods 100 9 % 0 0 %

Applying subtractions 111 10 % 25 3 %

Understanding subtraction 111 10 % 0 0 %

Choosing an appropriate method 74 7 % 0 0 %

Giving explanations 37 3 % 0 0 %

Total number of performance expectations 1081 100 % 800 100 %

aIn some tasks we distinguished two performance expectations (e.g., carrying out a subtraction and
explaining the calculation method). See also Table 1 note

tions (see Table 4). In both textbook series, most emphasis lies on performance
expectations related to carrying out subtractions, followed by knowing subtraction
facts. RR contains more expectations on applying subtractions than RZ. Expecta-
tions regarding understanding were only found in RR.

Knowing Subtraction Facts

RR contains more performance expectations for knowing subtraction facts than RZ.
In RR, most emphasis is on knowing subtraction facts up to 10. In RZ, most empha-
sis is on knowing subtraction facts up to 20.

Carrying out Subtractions

Using Standard Methods In both textbook series students are expected to learn
one standard method for carrying out subtractions up to 20 and up to 100, namely DS
combined with stringing. However, the textbook series differ in the way that students
are supposed to notate their calculations. In the case of tasks that involve bridging a
ten, both textbooks suggest the notation of in-between steps or in-between answers.
In RR this is done by writing down under the subtrahend how it is decomposed or
by keeping track of the taken-away steps on an empty number line (see Fig. 4).

In RZ, the students have to notate the first in-between answer directly after the
= symbol, which is supposed to be followed by the remaining part that has to be
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Fig. 4 DS combined with
stringing in RR (RR-book
4b-1, p. 57)

taken away (see Fig. 5). Although the symbolic representation that results in the end
is mathematically correct (in fact it describes two equivalent subtractions), notating
the calculation in this way implies that students have to perform several in-between
steps mentally.

Using Alternative Methods Only in RR are students expected to learn alternative
subtraction methods also, namely, the procedures IA and IS and a varying strat-
egy (see Fig. 6). Although RZ contains missing number tasks (e.g., 28 − · · · = 23)
which could prompt IS, this textbook series does not otherwise pay attention to this
procedure or to any alternative method.

Applying Subtractions

In both textbook series, contexts are used for the application of calculation methods
that are presented earlier. RR offers such contexts more than four times as often as
RZ (see Table 4). Both textbook series use contexts that refer to real life situations.
In RZ all contexts concern taking-away situations, presented by a series of similar
sentences. RR offers contexts referring both to taking away and determining the
difference, presented in various ways (see Fig. 7).

Fig. 5 DS combined with stringing in RZ tasks up to 20 and up to 100 (RZ-book 4c, p. 71; p. 74)
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Fig. 6 IA (left), IS (middle) and a varying strategy (right) in RR tasks (RR-book 4b-2, p. 61; 4b-1,
p. 2; 4b-2, p. 78)

Fig. 7 Context problems in RR reflecting taking away (left) and determining the difference (right)
(RR-book 4b-2, p. 37; p. 78)

Understanding Subtraction

In RR, we found 111 tasks explicitly offering directions or questions to prompt stu-
dents’ reasoning (see Table 4). These tasks include questions for students to explain
their thinking (e.g., ‘Hoe heb je dit uitgerekend?’ [How did you calculate this?]),
visualize their calculation method or choose an appropriate calculation method for
a given subtraction with certain numbers (see Fig. 8). In RZ, we did not find clearly
distinguishable performance expectations regarding understanding.

Learning Facilitators

Degree of Exposure

As mentioned before, RZ provides more subtraction-related tasks (1440) than RR
(1166). Figure 9 displays how these tasks are distributed over time (covering the
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Fig. 8 RR tasks that prompt students to choose an appropriate strategy (RR-book 4b-2, p. 64)

36 weeks of a school year). Both textbooks provide five mathematics lessons each
week. The bars in the diagram indicate the number of subtraction tasks per lesson.
Every third week in RR and every fourth week in RZ are not filled in (the gray
areas). These weeks are meant for evaluation, followed by repetition or enrichment
work, and were not included in our analysis.

In RR, the degree of exposure varies: in weeks 1, 7 and 34 relatively more atten-
tion is paid to subtraction than in other weeks. In week 1, this concerns the repetition
of prerequisite knowledge presented in grade 1, namely number decomposing up to
10. In weeks 7 and 34, a new step in the learning of subtraction is taken. Week 7 is
the first time that students encounter subtraction up to 100 and week 34 is the first
time that IA is applied to subtraction up to 100. RZ has a fixed pattern of weekly
lessons in which 50 to 70 subtraction tasks are offered, with the exception of two
periods of three weeks in which almost no attention is paid to subtraction.

Structure of Exposure

Sequence in Types of Problems Table 5a and 5b show how the main types of
tasks are distributed over the school year. The gray shading indicates the number of
certain types offered: the darker the gray, the larger the number of tasks. The tasks
in both textbook series increase in difficulty during the course of the school year.
RZ reaches the most difficult types of tasks earlier than RR.

Sequence in Level of Abstraction Both textbook series provide bare number
problems, context problems (see Table 2) and tasks with supporting models (see
Table 6). However, there is a difference regarding the provided context problems.
Both textbook series contain context problems to apply earlier learned subtraction
methods (which we consider a performance expectation), but only RR also contains
contexts for supporting understanding of subtraction (see Table 6).
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Table 5a Sequence in types of problems in subtraction-related tasks in RR

Table 5b Sequence in types of problems in subtraction-related tasks in RZ

To get an image of the sequence in level of abstraction, we zoomed in on one
particular type of task, namely subtraction up to 20 bridging 10. Figure 10 shows
the sequence in level of abstraction of this type of task in the first ten lessons in
which it is included. Every black box represents one set of these tasks. Figure 10
illustrates that the sequence in level of abstraction differs between the two textbook
series. RR starts with contexts for supporting understanding, followed by tasks with
models and then contexts for application. Only in the sixth lesson are bare number
tasks provided for the first time. RZ has a different sequence in which bare number
tasks and tasks with models are alternated. In contrast with RR, the textbook series
RZ begins with bare number tasks. Another difference is that RR provides students
with context problems for application several times, while RZ does this only once
within the first ten lessons.

Didactical Support in Exposure

Both textbook series offer tasks that provide some form of didactical support. In RR,
this is the case in 821 of the total of 1166 subtraction-related tasks (about 70 %) and
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Fig. 10 Sequence in level of abstraction regarding subtraction up to 20 bridging 10 in RR (above)
and RZ (below)

Table 6 Types of didactical support in RR and RZ in grade 2a

Didactical support RR-tasks RZ-tasks

f % f %

Use of contexts for supporting understanding 29 4 % 0 0 %

Use of models 423 52 % 108 39 %

Arithmetic rack 102 12 % 0 0 %

Arithmetic blocks 0 0 % 98 35 %

Number line (structured) 11 1 % 10 4 %

Number line (empty) 305 37 % 0 0 %

Number strip 5 1 % 0 0 %

Use of textual instructions 369 45 % 172 61 %

Instructions how to solve the task 186 23 % 108 39 %

Choices offered for solving the task 146 18 % 64 23 %

Reflection-eliciting questions 37 5 % 0 0 %

Total number of tasks with didactical support 821 100 % 280 100 %

aSee Table 1 note

in RZ, this is the case in 280 of the 1440 subtraction-related tasks (about 19 %) (see
Table 6).9

Use of Contexts for Supporting Understanding Although both textbook series
contain context problems, only in RR do some of the provided contexts serve as a
source for new topics to be learned, thus supporting understanding of subtraction
(see Table 6). An example is shown in Fig. 11, in which subtracting as adding on
(IA) is introduced and related to taking away (DS).

9The use of various symbolic representations of subtractions was not included in this count, be-
cause by definition every bare number task has some form of symbolic representation.
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Fig. 11 Relating IA and DS in RR (RR-book 4a, p. 24)

Fig. 12 RR use of the arithmetic rack for subtraction up to 20 (left) and the empty number line for
subtraction up to 100 (right) (RR-book 4a-1, p. 58; 4b-2, p. 78)

Use of Models RR uses the arithmetic rack as the dominant model for subtraction
up to 20 and the empty number line for subtraction up to 100 (see Fig. 12). RR uses
the empty number line for all calculation methods: stringing combined with DS; IS;
IA; and varying (see Fig. 4, Fig. 6, and Fig. 8). In the case of IA, the visualization
on the empty number line does not always match the symbolic representation (in
18 of 48 tasks), as can be seen in Fig. 12 (right). In this example, the students are
invited to apply an adding on procedure (IA), but the number line (that refers to
73 − · · · = 68 or to 68 + · · · = 73) and the symbolic representation · · · − 68 = · · ·
do not match to this procedure nor to each other.

RZ uses (pictures of) base-10 arithmetic blocks as the only model for subtrac-
tion up to 100 (see Fig. 13). For subtraction up to 20, the structured number line is
used also. Although base-10 blocks and the stringing strategy are not epistemologi-
cally consistent, RZ uses base-10 blocks as its only supporting model to provide DS
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combined with stringing, which is the only calculation method that is taught in this
textbook series (see section “Carrying out Subtractions”). Furthermore, RZ does not
always use this model consistently; sometimes the base-10 structure is not used for
subtracting tens (in 11 of 43 tasks, see Fig. 13 [middle]) while at other times it is (in
32 of 43 tasks, see Fig. 13 [right]).

Use of Various Symbolic Representations Besides the standard representation
c − b = · · · , both textbook series present little alternative symbolic representations
of subtractions. Only RR contains subtraction-related tasks in an addition format (12
of 1166 tasks), to relate subtraction and addition and to elicit subtraction as adding
on (IA) (see Fig. 6 [left]). On the other hand, missing number subtractions (e.g.,
19 = 20 − · · · and 26 − · · · = 21) are only dealt with in RZ (44 of 1440 tasks).

Use of Textual Instructions Both textbooks provide students with textual instruc-
tions on how to solve subtractions and offer choices for solving tasks. Reflecting-
eliciting questions were only found in RR (see Table 6).

Textual instructions on how to solve subtractions that were found are instruc-
tions to use a specific calculation method or how to carry out a specific calculation
method. In RR, most of these instructions (120 out of 186) concern subtractions up
to 20, and include first subtracting down to 10 and then subtracting the rest (e.g.,
“First take away to ten”, see Fig. 12 [left]). In RZ, most of the instructions (35 out
of 108) concern subtractions up to 100, and are about first subtracting the tens and
then subtracting the units (e.g. “Step 1: First take away the tens. Step 2: Then take
away the units”, see Fig. 5 [left]).

Both textbook series offer students choices on how to perform certain tasks.
A choice that both offer is whether or not to use a model for solving the task (in
RR 53 out of 146 choices offered and in RZ 21 out of 64). The other choices that are
offered are rather different in nature. In RR this involves choosing an appropriate
calculation method: for instance, to use either a stringing or a varying strategy (see
Fig. 8) or to take more or less jumps when using the stringing strategy (in the re-
maining 93 out of 146 choices offered). In RZ, the remaining 43 (out of 64) choices
concern whether or not to use scrap paper.

Questions that prompt students to think and reason about tasks were only found
in RR. Examples are: “How did you calculate this?”; and “What has 15 − 9 got to
do with these pictures?” and “And what have the number lines got to do with them?”
(see Fig. 11).

Concluding Remarks

Our analysis revealed that freedom of design can result in varying agreement of the
potential implemented curriculum with the intended curriculum. In our framework,
seven categories—covering content and performance expectations—are related to
the intended curriculum. With respect to subtraction up to 100, in three of these
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Fig. 14 Agreement of RR and RZ with the Dutch intended curriculum regarding subtraction up to
100

categories (types of problems, format of problems and knowing subtraction facts),
the textbook series RR and RZ are comparable in their agreement with the Dutch
intended curriculum. However, in the other four categories, the fit of RR to the
intended curriculum is closer than that of RZ. Figure 14 summarizes our findings.

Regarding the content (research question 1), both textbooks series present sub-
traction problems up to 100, and both textbook series offer bare number problems
as well as context problems. RZ offers more bare number tasks and RR offers more
context problems. In deviation of the intended curriculum, RZ only addresses one
semantic structure of subtraction. In contrast, RR deals with both.

The degree in which the two textbook series reflect the performance expecta-
tions of the intended curriculum (research question 2) also differs. RR offers more
tasks on knowing subtractions in total, but RZ presents more tasks on knowing sub-
tractions up to 20. In both textbooks, students are expected to learn the standard
calculation method of DS combined with stringing. Only RR expects students to
learn alternative calculations methods as well. The way that RZ notates in-between
answers can easily lead to incorrect notations (e.g. 12 − 3 = 12 − 2 = 10 − 1 = 9
instead of 12 − 3 = 10 − 1 = 9), especially when students interpret the = symbol
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Fig. 15 Learning facilitators for subtraction up to 100 in RR and RZ

only as ‘results in’ and not as an equivalence symbol. Both textbook series em-
ploy context problems for application of subtraction, but only in RR is this done by
presenting various forms of contexts and by including both semantic structures of
subtraction. Finally, only RR contains explicit performance expectations regarding
understanding of subtraction.

The two textbook series also differ in the learning facilitators they offer students
(research question 3). Figure 15 summarizes our findings on this research question.

RZ offers a larger amount of subtraction-related tasks and reaches more difficult
types of tasks at an earlier stage. However, RR spends more tasks on prerequisite
knowledge and uses contexts for supporting understanding as the first step in the
sequence of level of abstraction, resulting in offering a solid base for the learning
of subtraction up to 100. Furthermore, RR offers almost three times as much di-
dactical support compared to RZ. This includes forms of didactical support that are
absent in RZ, namely contexts for supporting understanding, textual instructions for
choosing appropriate calculation methods, and reflection-eliciting questions. An-
other shortcoming of RZ is that it uses base-10 arithmetic blocks for supporting
stringing, which means that model and strategy are not epistemologically consistent.
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To a certain degree, a similar inadequacy applies also to RR when using a partic-
ular symbolic representation of subtraction which does not match the presentation
on the empty number line. Both examined textbook series do only provide very few
tasks involving various symbolic representations of subtraction. The textbook series
differ with respect to the textual instructions they provide. RZ offers instructions on
how to proceed, whereas RR provides instructions that prompt students to reflect.

Our analysis made it clear that freedom of design can result in a potential curricu-
lum that may deviate from the intended curriculum. The two examined textbook se-
ries differ noticeably in their view on subtraction up to 100 as a mathematical topic.
RZ reflects a limited view including one semantic structure, one meaning, and one
calculation method. RR supports students’ development of a broad mental constitu-
tion of subtraction, including both meanings and both semantic structures, as well
as various calculation methods. Furthermore, our results show that the incorporated
ideas of the two textbook series about mathematics education (RR is presented as
a RME-oriented textbook series and RZ as an alternative to this approach) actually
result in different learning opportunities for students. It really makes a difference for
students whether or not they are offered a broad mental constitution of subtraction,
whether or not they are given reflection-eliciting questions, and whether or not there
is a match between models and symbolic representations or calculation methods.

Of course, what is in the textbook is not necessarily similar to what is taught in
class. However, following Valverde et al. (2002, p. 125), we think that “how content
is presented in textbooks (with what expectations for performance) is how it will
likely be taught in the classroom.” Therefore, textbook analysis can provide an in-
side view in how a subject might be taught. As such, textbook analyses are a crucial
tool that can preserve us from having teaching practices not in agreement with the
intended curriculum and that do not offer students the desired learning opportunities.
How necessary such analyses are was shown when a textbook analysis disclosed that
higher-order problem solving is lacking in Dutch mathematics textbooks (Kolovou
et al. 2009), even though it is part of the Dutch intended curriculum.

In the present textbook analysis on the topic of subtraction it was again revealed
that the textbook matters. The examined textbook series contain different learning
opportunities. Disclosing these opportunities is as important as examining the effi-
cacy of textbooks. After all, when students cannot encounter particular content along
with sufficient learning facilitators, we cannot expect them to learn this content.
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Changes to the Korean Mathematics
Curriculum: Expectations and Challenges

JeongSuk Pang

Abstract This chapter provides an overview of mathematics curriculum develop-
ment and explores the key features of the recent curricular changes in Korea. As
such, it first presents a brief history of Korean mathematics curriculum development
and highlights the key characteristics. This chapter then elaborates on the most re-
cent curricular changes and trends in terms of why teach mathematics, what to teach
in mathematics, how to teach mathematics, and when to teach mathematics. The
underlying factors behind such changes and trends are reflected upon. This chapter
closes with a discussion of the expectations and significant challenges pertaining to
the recent curriculum development and implementation in the Korean context.

Keywords Mathematics curriculum · Curricular change · Mathematics education
in Korea · Objective of teaching mathematics · Instructional methods · Curriculum
implementation

Introduction

Korean students have demonstrated their superior mathematics achievement in re-
cent international comparative studies such as TIMSS and PISA (e.g., Mullis et al.
2012; Organisation for Economic Co-operation and Development 2010). Many fac-
tors may account for the high achievement, such as well-developed curricular mate-
rials, high-quality teachers, an exam-driven culture, and parental support of educa-
tion.

Mathematics curriculum plays a crucial role in students’ learning mainly because
it describes what is to be taught in school mathematics. This is especially true for
countries like Korea where a national curriculum is developed and textbooks must
be aligned with the curriculum in order to be approved by the government (Pang
2008). As most Korean teachers use mathematics textbooks as their main instruc-
tional resources, it is important to develop high-quality textbooks on the basis of a
sound national mathematics curriculum.
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The mathematics curriculum in Korea has been altered by various driving forces
over time. Such adjustments, similar to those in other countries, reveal the ever-
changing values of teaching and learning of school mathematics (Liu and Li 2010;
National Council of Teachers of Mathematics [NCTM] 2000; Shin and Han 2010).
For instance, practicing routine mathematical skills for optimal performance was
the focus of an earlier curriculum, but this became problematic, because it is not as
meaningful for students. More recently, the mathematics curriculum has emphasized
students’ sense-making processes over achieving skill automaticity.

The purpose of this chapter is to introduce mathematics curriculum development
in Korea with an emphasis on recent curricular changes for grades 1 to 12. This
chapter first presents a brief history of Korean mathematics curriculum development
and changes, highlighting the key characteristics at each iteration. It then elaborates
the most recent curricular changes and underlying factors. This chapter probes some
characteristics of Korean mathematics curriculum development and discusses ex-
pectations as well as several challenges with regard to curriculum development and
implementation.

A Brief History of the Korean Mathematics Curriculum

This section provides a brief but concise review of the Korean mathematics curricu-
lum from the first teaching syllabus in 1946 to the most recent revisions in 2011.
Table 1 summarizes the history of Korean mathematics curriculum (Ministry of Ed-
ucation [MOE] 1997; Ministry of Education and Human Resources Development
[MEHRD] 2007; Ministry of Education, Science, and Technology [MEST] 2011;
Park 1991). As seen in Table 1, Korean mathematics curricula have undergone many
alterations and modifications, sometimes influenced by educational movements in
other countries such as the United States of America [USA].

Each curriculum reveals characteristics which were valued in teaching and learn-
ing mathematics at that time. For instance, the first mathematics curriculum in the
1950s was centered on everyday life situations. Mathematical content needed to
be directly related to real-life problems so that students were expected to calculate
everyday problems associated with purchasing items. The second mathematics cur-
riculum in the 1960s emphasized the structure of mathematics over the previous
practical usefulness. The third curriculum in the 1970s continued to promote the
new mathematics emphasis on a well-structured approach based on the abstract and
deductive nature of mathematics. The fourth curriculum in the early 1980s prior-
itized the acquisition of accurate knowledge and skills over understanding mathe-
matical logic. Both the fifth mathematics curriculum in the late 1980s and the sixth
mathematics curriculum in the early 1990s added problem-solving ability to the
acquisition of basic mathematical concepts and skills as the centerpiece of school
mathematics. The name of the subject was changed from arithmetic to mathematics
in this period, suggesting that learning mathematics should go beyond practicing
basic numerical skills, toward developing logical thinking in multiple content areas
and application ability.



Changes to the Korean Mathematics Curriculum: Expectations and Challenges 263

Table 1 Brief history of Korean mathematics curriculum with key characteristics

Curriculum Announcement Characteristics

Teaching syllabus 1946 • Syllabus listed the main topics to be taught

• Difficult and excessive content for students

1st 1955 • Subject matter-centered curriculum

• Mathematics in everyday life emphasized

2nd 1963 • Experience-centered curriculum

• The system of mathematics emphasized

3rd 1973 • Discipline-centered curriculum

• Influenced from the ‘new math movement’ in the USA

• Nature and structure of mathematics emphasized

4th 1981 • Influenced from the ‘back to basics movement’ in the
USA

• Mathematics content reduced

• The importance of problem solving highlighted

5th 1987 • Problem solving-centered curriculum

• Mathematics content further reduced

• Rigid use of symbols de-emphasized

6th 1992 • Preparation for information society

• Mathematics content still further reduced

• Multiple assessment methods emphasized

7th 1997 • Learner-centered curriculum with level-based
differentiated structure

• Mathematics content rationalized

• Students’ activity, interest, and confidence emphasized

• Multiple learning tools, instructional methods, and
assessment methods emphasized

revision 2007 • Mathematics content further rationalized

• Mathematical thinking and communication ability
emphasized

• Various values of mathematics and affective aspects of
learning mathematics emphasized

revision (2009) 2011a • Creativity-centered curriculum

• Students’ character-building emphasized

• Mathematical process strengthened

• Mathematics content reduced

• The structure of grade bands suggested

aThe revision in 2009 was related mainly to the management of the overall curriculum. Subject
curriculum, including mathematics curriculum, was announced only in 2011
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The seventh mathematics curriculum in the late 1990s was substantially different
from previous curricula in that it had a level-based differentiated structure (MOE
1997). The national curriculum consisted of two parts: (a) common core (or com-
pulsory) curriculum for all students from the first to the tenth grade with a total
of 20 different levels, and (b) selective curriculum with different topics and diffi-
culty levels in the last two years of high school (e.g., practical mathematics, prob-
ability and statistics, or differentiation and integration). This change was driven by
the increased concern regarding substantial differences between students in terms
of mathematical ability, and the desire to better cater to individual learning needs
(MOE 1998). Lew (1999) regarded the seventh mathematics curriculum as ground-
breaking compared to previous curricula.

The seventh curriculum was progressively revised in 2007, 2009, and 2011. Note
that the mathematics curriculum was changed only in 2007 and 2011, because the
revision in 2009 dealt with the overall direction and management of all national
curricula across subject matters. For instance, in order to raise the creative talent
required in a future society, the 2009 revision called for re-examining the effective-
ness of learning in school, nurturing students’ character, reinforcing students’ core
competencies, and supporting schools’ diversity (MEST 2009). That is to say, the
mathematics curriculum, like other subject-matter curricula, was revised in 2011 so
as to be aligned with the national curriculum announced in 2009. For convenience,
the term the ‘2011 revision’ or ‘2011 curriculum’ is used for this chapter. As these
recently revised curricula are important to understand the trends in the development
of Korean mathematics curriculum, a detailed description and analysis will follow
in next section.

Recent Changes and Trends in the Korean Mathematics
Curriculum

This section elaborates on the recently developed mathematics curricula. One of the
big issues in revising a mathematics curriculum is selection and sequence of content.
However, the focus here is not to list key changes in each mathematics content area
across grade levels (see Lew 2008 for the seventh curriculum; see also Shin and Han
2010 for the 2007 curriculum; see also Lew et al. 2012 for the 2011 middle school
curriculum), but to analyze curricular changes and their underlying factors. For this
purpose, this section consists of four sub-sections dealing with significant changes
and underlying motives in terms of objectives, content, instructional methods, and
sequence across grades of school mathematics.

Changes in Why Teach (Objectives)

There are three main objectives of teaching mathematics in Korea, which have been
consistently emphasized over curricular changes:
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(a) the acquisition of mathematical knowledge and skills,
(b) the enhancement of mathematical thinking ability, and
(c) the cultivation of problem-solving ability and attitude (MOE 1998; MEST

2008).

In the 2007 and 2011 revisions, the following four objectives were added to these
main objectives.

First, mathematical communication ability was added through the 2007 revi-
sion. To be clear, mathematics communication ability was mentioned in the seventh
curriculum as an ability to foster students’ mathematical power, but it was not ex-
plicitly emphasized as one of the main objectives of teaching mathematics (MOE
1998). Although mathematical communication ability is necessary to deepen one’s
mathematical thinking and to discuss one’s ideas with others, it is often reported
that Korean students were silent and passive in mathematics lessons in compari-
son to their USA and Australian counterparts (Clark and Hua 2008). The increased
concern about the lack of mathematical communication in the classroom led its pro-
motion as one of the main objectives of teaching mathematics.

Second, students’ positive attitude toward mathematics was highlighted through
the 2007 revision. Korean mathematics curricula have focused more on the cognitive
aspects than the affective aspects of teaching mathematics. In fact, affective dimen-
sions such as interests in and concerns of mathematics were addressed only from the
fifth curriculum in the late 1980s (MEST 2008). However, fostering students’ atti-
tudes toward mathematics was only secondary to developing their cognitive abili-
ties. This tendency in school mathematics went through considerable condemnation
with the release of data from the Trends in International Mathematics and Science
Study [TIMSS] (e.g., Kim et al. 2008; Mullis et al. 2008; Park et al. 2004) and the
Programme for International Student Assessment [PISA] (e.g., OECD 2007, 2010).
These international comparative studies showed that Korean students consistently
achieved high scores not only in mathematical skills and procedures but also in
problem-solving, but had very low interest and confidence in mathematics. Such
negative attitudes toward mathematics have been problematic. This led curriculum
developers to highlight that students need to appreciate the value of mathematics and
develop positive dispositions toward mathematics as articulated in the objectives of
school mathematics (MEST 2008).

Third, mathematical creativity is emphasized in the 2011 revision. This is a
natural consequence because the term creativity has been highlighted as a way to
secure national competitiveness, resulting in the slogan of the national curriculum
in 2009 (MEST 2009). To be clear, creativity per se has been mentioned since the
seventh mathematics curriculum (MOE 1997) but it was not made explicit in the
objectives of school mathematics until 2011. Creativity, which was emphasized
mainly for gifted students, is now reconsidered for all students. Differentiating it
from general creativity, the construct of mathematical creativity has been studied
(Kim et al. 2009). Problem-solving, communication, and reasoning are described
as three key sub-abilities, necessary for fostering students’ mathematical creativity
(MEST 2011).
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Finally, students’ character-building through school mathematics has been
added in the 2011 revision. This is also a natural consequence of the 2009 revision of
national curriculum intended to strengthen education by building students’ charac-
ter. In fact, the Presidential Advisory Council on Education, Science, & Technology
urged us to raise global, creative, and cultured person and emphasized not only cre-
ativity but also character as the key constructs of curriculum revision (Hwang et al.
2011). Given the characteristics of the discipline of mathematics, the main discus-
sions in revising the curriculum were related to the nature of mathematical creativ-
ity rather than students’ character-building (Kim et al. 2009). However, a ‘creative
experience-activity’ which has been introduced since 2009 for building students’
character on the basis of sharing and caring was not enough. Such an activity was
regarded as subordinate and incidental to subject matter which occupies most of the
school learning. If we meant to raise students’ character through school education,
such expectation needs to be explicitly included in all subjects including mathemat-
ics (Jeong and Kang 2011). In addition, as school violence has recently become a
serious social issue in Korea, the curricular emphasis on students’ character-building
is expected to be addressed in every subject. The nature of character which can be
raised through school mathematics has been studied. For instance, Kwon and her
colleagues (2011) suggested honesty, responsibility, consideration, courage, pos-
session, patience, fairness, cooperation, and harmony.

Changes in What to Teach (Content)

Revisions of mathematics curriculum documents are frequently related to changing
the content. As seen in Table 1, a consistent and noticeable direction of revisions
to Korean mathematics curricula since the fourth curriculum has been to reduce
learning content. However, actual changes in the curriculum were related to shifting
grade levels according to the difficulty of the content to be taught rather than to
reducing the total amount of content per se. For instance, in the seventh curriculum
as much as 30 % reduction of mathematical content was originally intended to allow
for optimization of student learning, but the mathematics curriculum developers
were not able to comply with the general policy (Paik 2004). To make matters worse,
optional topics provided for mathematically advanced students were taught to all
students because such topics appeared in the textbooks and it has been a common
belief that all content in the textbooks should be covered in mathematics lessons
(Pang 2002). Consequently, it is reported that the amount of content to be mastered
in school mathematics has always been perceived as excessive, resulting in a heavy
studying-load for students and a high teaching-load for teachers (Hwang et al. 2011;
MEST 2008).

Given this, the 2007 revision presented only the core content which would be
taught to all students, so the amount of mathematics content was reduced by omit-
ting any optional topics for either advanced or underachieving students (MEHRD
2007). The teacher was instead expected to adapt the content in the curriculum to
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meet with various levels of students’ mathematical knowledge and understanding,
their varying future study plans, and the particular conditions of the given school
contexts (MEST 2008).

Two additionally compelling factors led to the reduction of the learning content
in the recent mathematics curriculum. First, as the school week has been reduced
from 6 days to 5 days, a significant reduction of learning content was necessary.
Second, the total amount of mathematical content needed to be reduced in order to
enhance students’ mathematical thinking, communication skills, and creativity. It
has been reported that teachers typically rush to cover all topics in the limited time
available (Kim et al. 2009). Teaching fewer mathematics topics in greater depth,
instead of teaching more topics in a cursory manner, is preferred.

Given this, as much as 20 % of the learning content was reduced in the 2011 re-
vision. There have been many discussions to determine what to reduce in the math-
ematics curriculum (Hwang et al. 2011). Some topics that only appeared once in
the grade level or were disconnected across grade-levels were omitted from the cur-
riculum. This included figures in a position of line symmetry and point symmetry,
finding patterns with building-blocks, addition and subtraction of length, volume
conversion, relationship between volume and capacity, continued ratio, approxima-
tion, binary system, cumulative frequency, and flow charts (MEST 2011).

Another strategy used to reduce the total amount of the learning content was the
reconstruction of the mathematics topics to be taught. For instance, in the 2011 re-
vision both three-digit and four-digit numbers are introduced in grade bands 1–2 as
a way to foster students’ understanding of the principle of decimal notation (see the
section ‘changes in when to teach’ with regard to grade bands). This is a sharp con-
trast to the 2007 revision where the numbers up to 100 were addressed in grade 1,
those up to 1000 were addressed in grade 2, and those up to 10000 were in grade 3.
Consequently, addition and subtraction within the specific range of numbers were
bound to the specific grade levels in the previous curriculum. However, the 2011
revision enables us to deal with numbers more effectively and to focus on the mean-
ing of place-value and operations applicable to multi-digit numbers. In a similar
vein, integers and rational numbers are addressed simultaneously by considering the
characteristics of the number system and its operations in grade bands 6–8. Math-
ematical concepts such as equations or inequalities and their application to solving
various real-life problems are integrated into the same strand, instead of presenting
them separately.

Whereas some topics were omitted or reduced in the 2011 revision, as described
above, other topics were further elaborated. Such topics included number sense over
mere calculation, operational sense through estimation over complex computation,
understanding of the principles of calculation over practicing skills, effective use of
calculator over complicated calculation, understanding of measurable attributes over
calculation related to such attributes, addressing the concept of possibility instead
of probability at elementary grades, and mathematical justification instead of formal
rigorous proof in geometry (Shin et al. 2011).



268 J.S. Pang

Fig. 1 Hierarchical structure among mathematics subjects in high school

Another significant change in what to teach occurred in the selective curriculum
in grades 11 and 12. Note that in the seventh curriculum the common curriculum
was applied to all students from the first to the tenth grade, while the selective cur-
riculum was designed for students of grades 11 and 12. The selective curriculum
included ‘Practical Mathematics’, ‘Mathematics I’, ‘Mathematics II’, ‘Calculus’,
‘Probability and Statistics’, and ‘Discrete Mathematics’ (see Paik 2004 for the con-
tent of these subjects). In principle such curriculum differentiation was intended to
tailor the mathematics content to students’ needs and capabilities. In practice, how-
ever, students tended to choose their mathematics subjects in a way that would allow
them to achieve the highest scores possible in the high-stakes college entrance ex-
amination, rather than to prepare for their career path and future study (Choi et al.
2004). This led us to make significant changes in terms of mathematics subjects and
the paths to those subjects in the 2007 revision. For instance, high school students
who plan to study liberal arts or social sciences at university are expected to take
‘Mathematics I’ followed by ‘Calculus and Basic Statistics’, whereas others who
plan to study natural sciences are expected to take ‘Mathematics I’, ‘Mathematics
II’, followed either by ‘Integral and Statistics’ or by ‘Geometry and Vector’ (Shin
and Han 2010).

However, these new mathematics subjects were criticized from the beginning
because of their lack of mathematical hierarchies and connections, unnecessary rep-
etitions, and difficulties in implementation in schools (Park et al. 2010). This led
us to reconstruct the hierarchical structure among mathematics subjects in high
school (MEST 2011). Given the differences in students’ mathematical abilities,
three levels (i.e., basic, general, and advanced) were presented and their corre-
sponding subjects recommended. In the basic level for students who have diffi-
culties in learning general high school mathematics, ‘Fundamental Mathematics’
is suggested. In the general level for typical high school students, six mathemat-
ics subjects are suggested such as ‘Mathematics I’ and ‘Probability and Statis-
tics’. For the advanced level students, ‘Advanced Mathematics I’ and ‘Advanced
Mathematics II’ are suggested. Figure 1 summarizes the designated levels and their
corresponding mathematic subjects with the suggested learning paths (Park et al.
2010).
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Changes in How to Teach (Instruction)

As mentioned above, major revisions in mathematics curriculum are usually related
to changes in content. However, recent consecutive revisions focus on how to teach
mathematics or pedagogy. Such remarks are closely connected to the changes in the
objectives of teaching school mathematics.

For more than a decade, four instructional aspects have been consistently empha-
sized in mathematics curriculum documents (MOE 1997; MEHRD 2007; MEST
2011). First, meaningful questions as a basis for productive mathematical commu-
nication need to be raised in mathematics lessons. It is recommended that teachers
use appropriate open-ended questions to provoke students’ creative responses.

Second, mathematical concepts and principles need to be emphasized in
lessons. Mathematical constructs need to be addressed using various real-life, social,
or natural phenomena. It is also recommended that students discover mathematical
constructs for themselves by using manipulative materials or exploratory activities.
One of the main reasons students believe mathematics is difficult and not interest-
ing results from a prevalent teaching approach in which mathematics is taught in
an abstract, disconnected collection of facts and procedures to be learned and re-
produced on command (MEST 2008). This led us to emphasize the importance of
students’ investigating mathematical situations using their own methods in mathe-
matics classrooms, even though such methods may sometimes include ineffective
or unproductive processes.

Third, problem-solving ability needs to be fostered in mathematics lessons. For
this purpose, the following elements are emphasized:

(a) problem-solving is taught across all content strands;
(b) students need to investigate problem contexts and employ appropriate methods

on the basis of mathematical knowledge and thinking strategies to solve a given
problem;

(c) the methods and processes employed during problem–solving and problem–
posing are just as important as finding solutions; and

(d) students need to investigate mathematical concepts and principles, and general-
ize them while solving problems.

Finally, students’ positive disposition toward mathematics, specifically their in-
terest and confidence in mathematics, needs to be nurtured through mathematics
lessons. Students are also expected to acknowledge the value and necessity of math-
ematics by exploring mathematics through various contexts. Given that students’
perceptions of the value of mathematics are limited to a set of tools to use in other
subjects and for future study or for everyday practical purposes as in the mathe-
matics topics learned in elementary grades (Kim and Pang 2007), a more proactive
treatment to increase students’ appreciation of mathematics has been called for.

In the 2007 revision of mathematics curriculum, two more instructional remarks
were added (MEHRD 2007). First, the following three methods were suggested to
enhance mathematical communication ability:
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(a) students understand and use correctly mathematical representations such as
terms, symbols, tables, and graphs;

(b) students communicate efficiently with others by explaining mathematical ideas
with verbal and writing activities and by representing them visually; and

(c) students acknowledge that communication is crucial in learning and using math-
ematics by clarifying and reflecting on their thinking through representing and
discussing mathematics.

These instructional methods were added to specify the new objective; fostering
students’ communication ability in mathematics. One of the greatest challenges in
Korea has been to change the prevalent teaching style from teacher presentations of
mathematics as a highly structured subject to be learned and reproduced by com-
pliant, quiet students (Pang 2009; Park and Leung 2005), to an emphasis on mathe-
matical communication in the curriculum especially for secondary school teachers.

Second, the following two methods were suggested to enhance mathematical
thinking and reasoning ability:

(a) students infer mathematical facts with induction or analogy, and justify or prove
them; and

(b) students analyze mathematical facts or statements, organize mathematical rela-
tions, and reflect on their own thinking process.

Although the enhancement of mathematical thinking ability has been a consistent
objective of school mathematics, its implementation was only explicitly described
in the 2007 revision.

In the 2011 revision of the mathematics curriculum, two additional instructional
remarks were added (MEST 2011). First, the following four cautionary notes were
implied to nurture mathematical creativity:

(a) mathematics instruction should emphasize mathematical problem solving, rea-
soning, and communication ability;

(b) mathematical tasks producing various ideas are to be used to stimulate students’
divergent thinking;

(c) students solve a given problem with various methods and then compare them;
and

(d) students recognize the necessity of mathematical concepts or terms and define
them, instead of receiving them by the teacher.

Note that in Korea mathematical creativity has been recommended mainly for
gifted students. As the new curriculum is intended to foster mathematical creativity
for all students through school mathematics, instructional suggestions need to be
further developed and disseminated to support implementation.

Second, the following three methods were suggested for students’ character-
building:

(a) students respect different solution methods and opinions posed by their peers;
(b) students cultivate literacy as democratic citizens by representing logically their

mathematical ideas and by making reasonable decisions; and
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(c) students acknowledge that the process is of great significance in solving a math-
ematics problem.

As students’ character-building is a new objective in the mathematics curriculum,
instructional suggestions also need to be further investigated.

Changes in When to Teach (Progression)

A significant change in the mathematics curriculum in Korea has involved the grad-
ual introduction of greater flexibility as to when specific mathematics topics are to
be taught. As an example, Table 2 shows how the recent three mathematics curric-
ula allocated the topics of number and operations in grades 1 and 2. Whereas the
1997 curriculum specified grades and semesters for each topic, the 2007 curriculum
recommended only the grades. For instance, in the 1997 curriculum, numbers up to
100 were to be taught in the second semester of the first grade, but in 2007, the same
topic can be taught in either semester. Furthermore, the 2011 curriculum uses grade
bands so that the same topic can be taught at any time during grades 1 and 2.

One of the most significant changes to the 2011 Korean mathematics curriculum
is the presentation of the mathematics content in 5 grade bands, 1–2, 3–4, 5–6, 7–9,
and 10–12. The use of grade bands in other countries such as the United Kingdom
[UK], China, Hong Kong, Singapore, and the USA was reviewed (Kim et al. 2009).
The grade bands were addressed in Korea to increase the effectiveness of mathe-
matics learning on the part of students and to provide flexibility in constructing and
implementing a school curriculum on the basis of mutual connection and coopera-
tion across grades (MEST 2009).

The use of these grade bands is expected to provide textbook developers with
greater flexibility in topic organization. In fact, similar topics in previous mathe-
matics textbook series were often separated inefficiently across grades due to the
specified grade levels according to each content strand (Pang 2008). This problem
is expected to be solved by the use of grade bands. That is to say, the Ministry sets up
core topics per each grade band on the basis of curriculum studies (i.e., Kim et al.
2009; Hwang et al. 2011; and Shin et al. 2011 in order for the 2011 curriculum).
Textbook authors can determine when each topic is introduced in each semester for
their textbooks.

The idea of grade bands may have greater impact on secondary than elementary
students. Whereas only one mathematics textbook series is used in the elementary
schools in order to serve as the bottom-line for instruction, various textbook series
are available in the secondary schools. Note that even secondary mathematics text-
books have to be assessed and certified by the government who has already specified
the guidelines for what is to be included. On one hand, this policy would prevent
secondary students from experiencing a major difficulty in their transition from el-
ementary school so far as textbook usage is concerned. On the other hand, such
specific guidelines resulted in rather similar secondary textbooks in nature (Pang
2008).
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Table 2 Curriculum placement of particular number and operations topics for grades 1 and 2 in
three mathematics curricula

Curriculum Grade-
Semester

Topics in the Strand of Number & Operations

1997 1-1 • Numbers up to 50

• Addition & subtraction with simple numbers

• Use of addition & subtraction

1-2 • Numbers up to 100

• Use of various methods of counting numbers

• Addition & subtraction with one-digit numbers

• Addition & subtraction with two-digit numbers (without regrouping)

• Use of addition & subtraction

2-1 • Numbers up to 1000

• Addition & subtraction with two-digit numbers

• Introduction of multiplication

• Use of addition & subtraction

2-2 • Multiplication facts

• Addition & subtraction with three-digit numbers

• Use of addition, subtraction, & multiplication

2007 1 • Numbers up to 100

• Addition & subtraction with simple numbers

• Addition & subtraction with two-digit numbers

2 • Numbers up to 1000

• Addition & subtraction with two-digit numbers

• Addition & subtraction with three-digit numbers

• Multiplication

• Understanding of fraction

2011 1 ∼ 2 • Numbers up to four-digits

• Addition & subtraction with two-digit numbers

• Multiplication

For the alignment to the 2011 mathematics curriculum, the policy of textbook
development is changed from government-certified to government-approved. This
is expected to result in variations of the types of mathematics textbooks that are
developed. For instance, middle school students may learn mathematics through
content-specific textbooks such as a ‘function’ or ‘geometry’ textbooks in place of
‘mathematics for the seventh grade’. Similarly, high school students may choose
different academic tracks and complete different mathematics subjects according to
their needs and interests.

Another noteworthy aspect is that the difficulty or challenge of a specific mathe-
matics topic influences when to teach such content. For instance, understanding of
the relationship among various quadrilaterals, which was previously taught in the
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fourth grade, has been moved to middle school. Similarly, the concept of sets and
their operations, which was taught in the middle grades, is now placed in the high
school levels.

Not only has the difficulty in learning a specific topic been considered, but also
the mathematical arrangement among related topics. For instance, fractions as equal
partitioning of continued quantity, which were previously taught in second grade,
have been moved to grade band 3–4 in order to meet with students’ understanding
and to be integrated with other meanings of fractions such as equal partitioning
of discrete quantity. Similarly, the concept of equations and their basic properties,
which was taught in sixth grade, has been moved to grade band 7–9 so as to be
combined with linear equations at middle school. Stem-and-leaf plots, which were
taught independently in the fifth grade, have been moved to grade band 7–9 in order
to be taught with other statistical graphs.

Conclusion and Discussion

Similar to other countries, national mathematics curriculum development in Korea
has embraced reform initiatives. For more than a half century, the Korean mathemat-
ics curricula have sought to encourage the implementation of significant changes
with sometimes conflicting emphases. The main changes in any particular curricu-
lum have reflected what was valued in school mathematics at the particular time
it was developed. This section examines some characteristics of recent curricular
changes in Korea and discusses challenges in the future.

First, a thorough review of content in the mathematics curriculum has been called
for. The recent revision of mathematics curriculum includes significant changes in
the scope and range of content. For instance, calculation skills for mathematical pro-
ficiency that have been traditionally emphasized in elementary mathematics are sub-
stantially less emphasized and the concepts of sets and its operations that have been
taught in middle school are now introduced in high school. It is unclear whether
these changes to placement of content in the curriculum are sound, so systematic
research is required to assess the efficacy of these changes and their impact on stu-
dents, teachers and schools.

Second, the process of actively engaging in doing mathematics has been empha-
sized in recent revisions. Up to the sixth curriculum, problem-solving was empha-
sized. Since then, however, other aspects of mathematical processes such as mathe-
matical thinking, communication, and creativity have been added to the curriculum.
These changes were informed by studies on the key competencies required in future
society as well as a review of mathematics curricula in other countries such as USA,
UK, Japan, Hong Kong, and Singapore (Kim et al. 2009). Up to now, mathematical
processes have been described as educational objectives and their related instruc-
tional notes have been mentioned at the end of the curriculum document. However,
they are neither positioned equally with the content domains nor specified in terms
of expectations across grade bands. Given this, a major challenge for teachers will
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be how to promote such mathematical processes as well as emphasize the mathe-
matical content.

Third, since the seventh curriculum in 1997, the ‘learner-centered’ curriculum
has been a consistent slogan. What students need to learn and how they learn math-
ematics, beyond which mathematical topics are important, have been important fac-
tors in the curriculum design (Hwang et al. 2011). As described, students’ overall
understanding and difficulty in learning a mathematical concept has been the basis
for organizing and positioning the concept in the curriculum. In addition, students’
various mathematical abilities have been a big concern in the curriculum design.
In particular, in the seventh curriculum, teaching mathematics according to stu-
dents’ ability groups was seriously introduced but gave rise to many problems in
implementing it in secondary schools such as psychological resistance to the spe-
cial complimentary courses for underachieving students and lack of mathematics
teachers who could teach different groups of students in terms of their mathematical
abilities and levels (MEST 2008). This led us to withdraw students’ level-based dif-
ferentiated structure in the 2007 revision and to give individual schools and teachers
more flexibility in organizing mathematics instruction tailored to their students’ spe-
cific needs and levels in the given school context. Given this change, systematic and
comprehensive surveys on students’ learning of mathematics are required to ana-
lyze the strengths and weaknesses of the recent curriculum in comparison with the
previous one.

Fourth, not only cognitive aspects in learning mathematics but also affective di-
mensions have been emphasized in recent curricular revisions. We do not anticipate
any substantial change in the near future in students’ negative disposition toward
mathematics because of continuing learning pressure on the subject and the high-
stake examination-driven culture. Given the traditional proverb; a person who knows
something cannot beat a person who likes it, and the person who likes it cannot beat
a person who enjoys it, consideration of students’ affective dimensions in mathe-
matics learning will continue in the curriculum design.

Fifth, the national mathematics curriculum is to be specified through instruc-
tional materials such as textbooks, workbooks, and teacher manuals. The most re-
cently developed curriculum offers more flexibility for textbook developers than be-
fore. It will be challenging for textbook authors to arrange mathematics topics and
present them efficiently within and across the new grade bands. As the policy for
secondary mathematics textbooks has changed into a government-approval system,
various types of textbooks are expected. Emerging issues in the review and selection
of mathematics textbooks will need to be examined in the Korean context.

Sixth, the alignment of a mathematics curriculum to other related elements is im-
portant. Developing an effective mathematics curriculum is just a starting point. It
needs to be connected to quality instructional materials, efficient classroom teach-
ing by well-educated teachers, and students’ performance measured by appropriate
assessment methods (Reys et al. 2010). Since the most recently revised curriculum
is implemented step-by-step in schools from 2013, the outcomes are yet to be mea-
sured. Because of the challenging nature of the updated curriculum, many issues
will be raised in specifying it through instructional materials, implementing it in the
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classroom, and assessing its impact on students’ mathematical learning. We need
to take serious consideration of how to assess the effectiveness of the curricular
changes specifically with regard to students’ mathematics achievement.

The Korean national curriculum has been perceived as a vital factor contribut-
ing to students’ superior performance in mathematics in international comparative
studies. In fact, OECD (2010) reports Korea as an outstanding case showing that
students’ achievement can be further enhanced over the current top-ranked level on
the basis of effective implementation of educational policies. Among many con-
textual factors, high expectations of students’ achievement and full support from
parents as well as the overall quality of teachers (Park 2010; Shin and Han 2010)
will continue to be the solid foundation of implementing a deliberate and ambitious
national mathematics curriculum agenda in school. However, like other countries in
East Asia, we must also deal with long-pending problems such as boosting students’
self-confidence in mathematics and promoting their positive attitude toward mathe-
matics. This chapter is expected to provoke more discussion on the similarities and
differences with regard to the curriculum development and underlying factors across
different education systems.
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The Singapore Mathematics Curriculum
Development—A Mixed Model Approach

Ngan Hoe Lee

Abstract Singapore has a history of having a national mathematics curriculum,
which is produced and disseminated by the Ministry of Education, exemplifying
a deductive approach towards mathematical curriculum development (Olivia, De-
veloping the curriculum, 2009). This Chapter presents, through three case studies of
school-based curriculum innovations, how the development of mathematics curricu-
lum in Singapore has evolved from a deductive to containing elements of both the
deductive and inductive approaches—a mixed model approach. Through the eyes of
the three case-studies, advantages to such a mixed model approach towards mathe-
matics curriculum development will be presented. Key contributing factors for the
success of such a mixed model approach will be elicited through an analysis of these
case studies as well.

Keywords Singapore mathematics curriculum · Models of curriculum
development · School-based curriculum innovation

Introduction

As observed by Olivia (2009, p. 126), models of curriculum development may
generally be classified as deductive or inductive. Deductive models of curriculum
development proceed “from the general (e.g., examining the needs of society) to
the specific (e.g., specifying instructional objectives)” (Lunenburg 2011a). Tyler’s
(1949) classic work provided an apt example of a deductive model of curriculum
development. On the other hand, inductive models of curriculum development start
with the actual “development of curriculum materials and leading to generalization”
(Lunenburg 2011b). Taba’s (1962) Five-Step Sequence to curriculum development
exemplifies an inductive model.

Lee’s (2008a) analysis of the impact of National Building Initiatives on the Sin-
gapore Mathematics Curriculum Development leads one to believe that the devel-
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opment of Singapore’s National Mathematics Curriculum may have taken a deduc-
tive approach. This belief is further reinforced by the fact that Singapore’s National
Mathematics Curriculum is centrally controlled by Singapore’s Ministry of Educa-
tion, which produces and disseminates the Curriculum. This is not surprising, as
Lunenburg (2011a) observed that most curricular makers adhere to this approach
to curriculum development. The deductive approach allows the broader needs of
society to be addressed in the curriculum, reflecting the generally held essentialist
philosophy towards education. As Olivia (2009, p. 160) pointed out, the essentialists
seek to adjust men and women to society. With Singapore being a young nation, a
deductive approach toward curriculum development will help ensure the necessary
changes to the education system are effected in order to meet nation-building needs
(Lee 2008a).

However, as intellectual capital increasingly becomes the basis for competitive
advantage of companies and nations, Singapore’s Ministry of Education (MOE) an-
nounced in 1999 (The Straits Times, 10 July 1999) that Singapore would “move to-
wards ability-driven education to help the individual pupil recognize and make use
of his talents and abilities”. To further encourage teachers to focus on the develop-
ment of the individual pupil, the Prime Minister, Mr. Lee Hsien Loong called on Sin-
gapore teachers to “teach less, so that our students could learn more” at the National
Day Rally in 2004. In response to this call to “Teach Less, Learn More” (TLLM),
many school teachers have embarked on a number of interesting school-based cur-
ricular innovations to cater to the specific needs of the pupils in their respective
schools. To better support and catalyze such school-based curriculum innovations
(SCIs), the Ministry of Education has developed a yearly package to participating
schools, and which is available to all schools to apply for over a period of 3 years
(Ministry of Education 2008, January 8). The package includes monetary funding
as well as training in research methodology of a teacher, called the Research Ac-
tivist (RA), from each participating school. The RAs worked with curriculum spe-
cialists to explore and document the innovations in their respective schools. Such
SCIs, which were referred to as Ignite! Projects, appear to be more aligned with an
inductive approach to curriculum development. As Lunenburg (2011b) noted, the
inductive approach has incorporated “a postmodern view of curriculum, because
they are temporal and naturalistic”.

The centrally controlled National Mathematics Curriculum coupled with school-
based mathematics curriculum innovations have created a new mathematics cur-
riculum that is evolving in some Singapore schools. This new mathematics curricu-
lum starts with the actual development of curriculum materials to target the specific
needs of the pupils from the respective schools, but that is also aligned with the
National Mathematics Curriculum. The development of such mathematics curricu-
lum appears to have element of both deductive and inductive approaches—a mixed
model approach.

The work of three schools, presented as case studies, will provide some insights
to the process involved in this mixed model approach.
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Case Study 1—The Role of Multiple Intelligences in the
Mathematics Classroom

The first case study traces the extensive work carried out by one primary school in
an effort to develop a school-based curriculum initiative into a school programme
over a three-year period to meet the needs of its pupils (Lee and Abdul Rasip 2010).

It was generally observed in the year 2007 that the motivational level of pupils to
learn mathematics was relatively low. The school’s performance in mathematics in
the national examination was also below the national average. An initiative was then
spearheaded by relevant members of the School’s Senior Management Committee
(comprising the Principal, two Vice-principals, the Head of Mathematics Depart-
ment as well as senior Mathematics teachers) to investigate how teacher-developed
activities based on Gardener’s theory of multiple intelligences (MI) (Gardner 1985,
1993) could better address the interest of the pupils in learning mathematics.

The timing of the Initiative enabled it to be considered one of the Ignite! Projects
funded by the Ministry of Education package to support and catalyse such efforts
in schools (Ministry of Education 2008, January 8). The funding not only allowed
the school to purchase necessary services to aid implementation of the initiative, it
also allowed the school to assign an RA to take charge of the implementation of the
Ignite! Project. The officially appointed RA was provided with time allowance and
opportunities for professional development in the area of planning, implementing,
and evaluating of the Ignite! Projects, which were mainly planned and managed by
the Ministry of Education. The professional development included areas such as
curriculum development and research methodology.

The planned Ignite! Project, which was carried out as an action research in the
first semester of 2008, sought to provide insight to the research question: Will the
use of Multiple Intelligences in the teaching of Mathematics result in an increase
in pupils’ motivation and engagement, and a positive impact on their attitude and
achievement in the subject? To better manage and evaluate the Project, which was
new to the teachers in the school, and after considerations were given to timetable
constraints, only four classes of Primary 4 pupils were involved—2 experimental
and 2 comparison classes. The intervention was also confined to the teaching of
the topic “Fractions”. The dominant MIs of the four classes of pupils were first
determined by using the Branton Shearer’s Multiple Intelligences Developmental
Assessment Scales (MIDAS). MIDAS helps to provide individual and class profiles
of strengths and limitations in the various MIs as proposed by Gardner. While the 2
comparison classes continued with their lessons as usual, the teachers for the 2 ex-
perimental classes, together with the RA and a mathematics curriculum consultant,
planned, implemented and evaluated mathematics lessons that tapped on dominant
MIs of the respective experimental classes using the class profile generated from
MIDAS.

At the same time, with the help of experts in psychometrics, MOE developed
a new instrument- the PETALS™ Scale, which is a localized context to measure
pupils’ engagement levels in the classrooms. The Scale has three subscales, namely
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Table 1 Comparison of
pretest and post-test mean
scores for the PETALS™
scale

Engagement
Subscale

Mean / SD Standardized Mean
Difference (SMD)Post-test Pretest

Behavioral 78.1 / 18.2 75.4 / 15.1 0.18

Cognitive 77.0 / 15.8 72.4 / 16.9 0.27

Affective 81.1 / 15.0 76.4 / 17.7 0.31

Behavioral, Cognitive, and Affective engagement levels. The RAs were trained to
administer as well as analyze the scores for their own respective Ignite! Projects.

Consequently, the school decided to use the PETALS™ Scale as a proxy mea-
surement of the level of engagement of the pupils from the two experimental classes.
A comparison of the pretest and post-test mean scores for the PETALS™ Scale is
shown in Table 1.

As seen in Table 1, though the Behavioral Subscale only reflected a slightly
greater than small effect size1, the other two subscales indicated that the SCI might
have contributed to a medium effect size on the Cognitive and Affective Engage-
ment levels.

To examine the impact of the SCI on the mathematical achievement of the pupils,
a comparison of the scores for the experimental classes and the comparison classes
in a review test on “Fractions”, which was conducted at the end of the intervention,
was made. To check for equivalence, the pupils score in the end-of-year mathematics
examination in 2007 was used (refer to Table 2). As the school was also interested
in examining possible differential impact on the different ability groups (the classes
were made up of low- and middle-ability pupils, as reflected by their mathematics
examination scores), the analysis was carried out by grouping the pupils into Low-
and Middle-Ability.

As the effect size for the comparison of the 2007 end-of-year mathematics exam-
ination mean scores for the experimental and comparison classes is generally small,
the experimental and comparison classes may be considered as equivalent in terms
of mathematics achievement, for both the Low-ability and Middle-ability groups.

Table 2 Comparison of 2007 end-of-year mathematics examination mean scores

Low-Ability Group Middle-Ability Group

Experimental
Classes
(N = 30)

Comparison
Classes
(N = 32)

Experimental
Classes
(N = 38)

Comparison
Classes
(N = 40)

Mean / SD 33.3 / 12.1 30.8 / 12.9 63.5 / 9.7 64.6 / 10.7

SMD 0.19 −0.10

1According to Cohen (1988, pp. 284–288), SMD = 0.10 is a small effect size, SMD = 0.25 is a
medium effect size, and SMD = 0.40 or larger is a large effect size.
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Table 3 Comparison of mean scores for the review test on fractions

Low-Ability Group Middle-Ability Group

Experimental
Classes
(N = 30)

Comparison
Classes
(N = 32)

Experimental
Classes
(N = 38)

Comparison
Classes
(N = 40)

Mean / SD 34.6 / 19.8 22.6 / 16.9 71.5 / 14.8 62.1 / 17.1

SMD 0.71 0.55

Table 4 Comparison of
engagement mean scores for
the PETALS™ scale between
experimental and comparison
classes

Engagement
Subscale

Mean / SD Standardized Mean
Difference (SMD)Experimental

Classes
Comparison
Classes

Behavioural 78.1 / 18.2 66.6 / 17.3 0.66

Cognitive 77.0 / 15.8 62.2 / 20.6 0.72

Affective 81.8 / 15.0 71.0 / 17.9 0.60

Table 3 provided a comparison of the mean scores in the Review Test on Frac-
tions for the experimental and comparison classes, for both the Low- and Middle-
ability groups.

Table 3 reflected a large effect size for both the Low- and Middle-Ability Groups,
with a much larger effect size for the Low-Ability Group. It appeared that the impact
of the planned Project on the Low-Ability Group is much greater than that on the
Middle-Ability Group. The result prompted the School to extend the Project for
the second semester of 2008 and to involve both the experimental and comparison
classes in another round of the Project planned around the teaching of the second
semester topic “Decimals” (Lee et al. 2008). The purpose of the extended Project
was to evaluate the long-term effect of the Project, and to examine for the likelihood
of a Hawthorne effect. Consequently, a comparison of the engagement levels and
performance in a Review Test on Decimals between the experimental classes and
comparison classes at the end of the extended Project were carried out, as shown in
Tables 4 and 5 respectively.

As reflected in Tables 4 and 5, all the comparisons registered large effect sizes,
pointing to a high level of likelihood that the Project has a long term positive impact
on pupils’ engagement levels and mathematics achievements; it is unlikely that the
impact was merely a case of a Hawthorne effect.

In fact, the Project livened up the mathematics classrooms of the experimental
and comparison classes so much that it captured the attention of parents and teach-
ers who made requests for the SCI to be extended to other classes and levels. The
Principal, Vice-principals, and Head of the Mathematics Department decided, af-
ter considering the feedback and working around the constraints, that the Project
be rolled out as part of the School’s mathematics programme to all the classes at
Primary 1, 4, and 5 in 2009. Classes at the Primary 4 level were chosen to further
extend the Project carried out in 2008 so that the teachers involved could build on
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Table 5 Comparison of mean scores for the review test on decimals between experimental and
comparison classes

Low-Ability Group Middle-Ability Group

Experimental
Classes
(N = 30)

Comparison
Classes
(N = 32)

Experimental
Classes
(N = 38)

Comparison
Classes
(N = 40)

Mean / SD 61.1 / 17.4 46.1 / 16.1 84.7 / 7.5 76.4 / 13.6

SMD 0.93 0.61

the earlier resources developed for the topics “Fractions” and “Decimals” to other
topics. Classes at the Primary 5 level in 2009 included the four classes of pupils
in the experimental and comparison classes for the Project conducted in 2008. It
was a way for the school to ensure continuity in the mathematics curriculum for
this group of pupils when the programme got rolled out to the Primary 5 classes
in 2009. A teacher who was directly involved in the Project conducted in 2008 was
also tasked to lead the teachers in rolling out the programme to the Primary 5 classes
in 2009 as a way to build on the existing expertise that then resided in the school.
Primary 1 classes were also involved as the Primary 1 mathematics teachers felt
that the way the existing Primary 1 mathematics lessons were structured resembled
closely the principles of the Project. Because the roll-out of the Project as part of the
School’s mathematics programme to Primary 1, 4 and 5 classes was well-supported
by the School’s Senior Management Committee, and relevant expertise—both out-
side and within the School’s context—was made available arising from the Project
implemented during the previous years, this new element in the School’s mathe-
matics curriculum was well received by all concerned: pupils, teachers and parents.
Consequently, the school decided to fully roll out the Project as part of the School’s
mathematics curriculum in 2010, with the exception of the Primary 6 mathemat-
ics classes. The key consideration in excluding the Primary 6 pupils was the fact
pupils at this level, all pupils would need to take the national examination—Primary
School Leaving School Examinations (PSLE) to proceed to Secondary Schools. As
much of the content would have been covered during the first five years in Primary
Schools, most of the Primary 6 teachers concentrated more on helping pupils to
consolidate their learning.

Multiple Intelligences in Mathematics is now featured prominently on the
School’s website as one of the key features of the School’s Mathematics Curricu-
lum—reflecting a 3-year evolution of a Project to part of the School’s Mathematics
programme. In fact, the school, with special encouragement from the Principal her-
self, has also carried out a longitudinal study of the pupils involved by tracking
the School’s passing rate for mathematics in the national examination (PSLE), and
noted a 20 % increase when the first batch of pupils who were exposed to the MI ap-
proach graduated in 2010 (Engaging Multiple Intelligences in the Math Classroom
2011).
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Fig. 1 The framework for
the Singapore mathematics
curriculum (Ministry of
Education 2006, p. 12)

Case Study 2—Multi-model Representation and Pupils’
Conceptual Understanding

The second case study traces the continual work of a primary school to develop
a school-based mathematics curriculum that promotes the multi-modal representa-
tions to improve pupils’ conceptual understanding in mathematics.

At the end of 2009, as part of the school’s needs assessment to improve on the
teaching of learning of mathematics, teachers observed that, although pupils at the
lower primary may be able to reproduce the required “answers” during assessment,
there was usually a lack in depth of conceptual understanding in Mathematics. This
has been reflected by pupils’ inability to explain and justify their answers when
solving mathematics problems in their daily work, as well as during tests and exam-
inations. In fact, the Singapore Mathematics Curriculum advocates the importance
of addressing conceptual understanding through the national Mathematics Curricu-
lum Framework, as depicted in Fig. 1.

The Singapore Mathematics Curriculum Framework summarises the essence of
mathematics teaching and learning in Singapore schools:

Mathematical problem solving is central to mathematics learning. It involves the acquisition
and application of mathematics concepts and skills in a wide range of situations, including
non-routine, open-ended and real-world problems. The development of mathematics prob-
lem solving ability is dependent on five inter-related components, namely, Concept, Skills,
Process, Attitudes and Metacognition. (Ministry of Education 2006, p. 12)

The Curriculum (Ministry of Education 2006, p. 13) advocates that “[S]tudents
should develop and explore the mathematics ideas in depth, and see that mathemat-
ics is an integrated whole, not merely isolated pieces of knowledge”. Wong (2004)
pointed out the importance of the multi-modal representation approach to promote
such deeper understanding of mathematics concepts. In fact, the concrete-pictorial-
abstract (C-P-A) development of concepts, which encourages the use of concrete,
pictorial and abstract representations of concepts in mathematics, is advocated in
the Singapore Primary School (Ministry of Education 2006, p. 7). However, it was
generally agreed among the teachers that the promotion of concrete representations
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Fig. 2 Folder for the
curriculum package (case
study 2)

in the mathematics classroom was lacking. Furthermore, Ng (2009) pointed out, and
teachers agreed, that when concrete materials are used to cater to the needs of the
concrete learners at the Primary levels, “great care must be demonstrated to show
how the concrete representations are linked to their abstract forms”. In an effort
to address these issues with appropriate funding, the teachers submitted their idea
for an appropriate SCI for consideration as an Ignite! Project in 2010, for which
approval was granted.

Under the leadership of an appointed RA from the school, who was also a math-
ematics teacher, the teachers came together in the early part of 2010 to develop and
tailor-make a set of concrete manipulatives, along with accompanying lesson plans,
to facilitate the teaching of fractions at the Primary 2 level for three weeks at the
beginning of Semester 2. The planned Ignite! Project aimed to improve the con-
ceptual understanding of fractions at the Primary 2 level by promoting the use of
and emphasizing linkages between concrete, pictorial, and abstract representations
of concepts. As part of the curriculum package for the project, a Folder (Fig. 2) was
developed to facilitate the teachers to adopt such an approach so as to encourage a
greater level of acceptance by the teachers concerned.

The Folder allowed the teachers to get pupils to place concrete manipulatives,
trace the outline of the manipulatives, and write the abstract symbol on it—thus
encouraging not only the use of concrete, pictorial, and abstract representations of
concepts, but also facilitating the comparison and linkage of the different represen-
tations of concepts. At the same time, a pictorial representation of the fraction strips
with the corresponding abstract representation of the respective representation in
symbols was included as a permanent feature of the folder as the teachers felt that
this was much needed for the intended content to be covered under the Project.

As in Case Study 1, the RA was provided with time allowance and opportunities
for professional development in the area of planning, implementing and evaluating
of the Project. Armed with the new-found knowledge in conducting action research,
the RA led his team of teachers to adopt the Comparison Group Post-test research
design. As the RA was teaching a Primary 2 Class, his class of mixed abilities
pupils was conveniently assigned as the experimental class and another class of
mixed ability was assigned the comparison class. The equivalence of the two classes
was checked using their pupils’ end-of-year Primary 1 mathematics examination
scores in 2009. As reflected in Table 6, the SMD of 0.05 gives a small effect size;
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Table 6 Comparison of 2009
end-of-year primary 1
mathematics examination
mean scores

Experimental
Class
(N = 29)

Comparison
Class
(N = 29)

Mean / SD 82.9 / 13.7 82.0 / 17.2

SMD 0.05

Table 7 Comparison of
mean scores for fractions
post-test

Experimental
Class
(N = 29)

Comparison
Class
(N = 29)

Mean / SD 22.1 / 3.7 22.0 / 4.1

SMD 0.02

in other words, the two classes could be considered as equivalent in terms of their
mathematical achievements.

A 30-mark 21-item pen-and-paper Fraction Post-test consisting of multiple
choice and open-ended questions was administered to determine the difference in
the two classes’ conceptual understanding of fractions. The questions included in
this Post-test, which required pupils to interpret the concept of fractions in various
modes of representation, are closely related to the concepts learnt and exercises as-
signed during the 3-week intervention period of the Project. A comparison of the
mean scores for the two classes in this Post-test is shown in Table 7, as the two
classes were considered to be equivalent in terms of mathematical achievement.

The SMD of 0.02 in Table 7 shows that there is only a negligible effect size
in terms of the difference in the mean scores for the Fractions Post-test. The RA
attributed the negligible difference in performance in the Fractions Post-test to the
short duration of the Project, albeit a positive effect size. And, in anticipation of such
an outcome, he has also included as part of the data collection reflective journal en-
tries for all pupils from both classes to complete at the end of each lesson during the
intervention period. The Journal required pupils to write a letter to his/her friend to
tell him/her about the mathematics lesson that the pupil had in school. As observed
by Tan et al. (2011)

Pupils in experimental group showed the ability to write “richer” reflections. They were able
to describe with more details and their reflections were more focussed and were evidently
related to the learning outcomes of the lessons.

In fact, the Team also observed that pupils in the experimental class not only re-
membered the manipulatives that were used during the lesson, they were also able
to describe their learning using these manipulatives. This provides further evidence
of a possible positive impact of the concrete manipulatives on pupils’ conceptual
understanding of fractions.

As in Case Study 1, the team also included the use of the PETALS™ Scale, the
instrument that all the RAs were trained to administer and analyze for their respec-
tive Ignite! Projects, as a proxy measurement to compare the level of engagement
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Table 8 Comparison of
engagement mean pre-scores
for the PETALS™ scale
between experimental and
comparison classes

Engagement
Subscale

Mean / SD Standardized Mean
Difference (SMD)Experimental

Class
Comparison
Class

Behavioral 85.1 / 15.3 83.8 / 15.0 0.09

Cognitive 77.3 / 23.0 78.6 / 19.0 −0.07

Affective 84.6 / 23.4 85.6 / 18.3 −0.05

Table 9 Comparison of
engagement mean post-scores
for the PETALS™ scale
between experimental and
comparison classes

Engagement
Subscale

Mean / SD Standardized Mean
Difference (SMD)Experimental

Class
Comparison
Class

Behavioral 88.3 / 10.5 83.5 / 17.5 0.27

Cognitive 82.4 / 14.9 80.4 / 20.0 0.10

Affective 88.5 / 13.9 89.3 / 14.9 −0.05

of pupils from the two classes. Tables 8 and 9 provided comparisons of the Engage-
ment Mean Pre- and Post-scores for the PETALS™ Scale between Experimental
and Comparison Classes as the instrument was administered to both classes before
and after the intervention.

The SMDs obtained in Table 8 indicated a negligible effect size for all the 3 sub-
scales of the PETALS™ Scale, pointing towards a reasonable assumption that both
classes are equivalent in terms of the three types of engagement. It is thus reasonable
to compare simply the Mean Post-scores for the PETALSTM Scale between exper-
imental and comparison Classes for some insight to the impact of the intervention
on the engagement levels of the pupils (Table 9). An SMD of −0.05 for the Affec-
tive Engagement subscale indicated a negligible effect size of the intervention on
Affective Engagement of the pupils. As pointed out by the RA, this could have been
contributed by the short duration of the intervention which may not have sufficient
time to impact the pupils affectively. On the other hand, the SMD for the Behavioral
and Cognitive subscales registered a positive but medium and small effect size re-
spectively. The intervention appeared to have a positive though small impact on the
cognitive engagement of the pupils, and a positive and reasonable level of impact
on the behavioral engagement of the pupils on their mathematics learning.

The Team even went on to look for longer term impacts of the intervention on the
pupils’ mathematics achievement by comparing the 2010 mean end-of-year mathe-
matics examination scores for the two classes (Table 10). An SMD of 0.2 reflected
a small to medium effect size, pointing towards a reasonable level of longer term
impact of the intervention on the pupils’ mathematics achievement. Given that the
difference in the mathematics achievement between the two classes were negligi-
ble prior to the intervention (Table 6) and the team has good knowledge of what
transpired between the mathematics lessons of the two classes during the second
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semester of 2010, the team expressed confidence in attributing the improvement in
the mathematics achievement of pupils in the experimental class to the Project.

In fact, the RA was so encouraged by the outcome of the project that he decided
to embark further to help his pupils in the learning of fractions in the following
year. With the ease and availability of information and communication technology
(ICT), the RA looked towards tapping on the use of ICT tools to further enhance
the C-P-A approach in promoting conceptual understanding and engagement of his
pupils in learning fractions. Ng (2009) observed that the range of ICT, including
virtual manipulatives, is available to help motivate and engage children in learning
process. Mindellhall et al. (2008) observed that virtual manipulative as a virtual
representation of a physical manipulative and through various dynamic processes
may help develop mathematical conceptual understanding. Thus, in 2010, the RA
embarked on an extension of the project to determine the impact of the use of virtual
manipulatives on the learning of fractions (Lee and Ferrucci 2012).

Despite the completion of the Ignite! Project in 2009, the RA sought clearance
and support from the School’s Senior Management Committee to continue his work
on the extension of the Project. Equipped with the skills for implementing and eval-
uating of SCIs and the support of the Curriculum Advisor (CA) as a result of the
previous year’s involvement in the Ignite! Project, he was able to secure approval
to continue with his extended Project. However, as the Ignite! Project was formally
completed; he would have to continue with the work without a team assigned to
him. Consequently, the RA decided to work around the Primary Three mathematics
classes under his charge in 2010, in which were some of the pupils involved in the
original Ignite! Project. This, as the RA pointed out, would provide some continuity
in the way fractions are taught to these pupils.

In the extended Project, the RA, with the guidance of the CA, made use of the vir-
tual manipulative Fractions (Collars et al. 2007) to introduce the Primary 3 pupils to
the concept of equivalent fractions. In the planned lesson for this extended project,
the teacher, who is also the RA, used a laminated circle as a concrete material to
first introduce the concept of equivalent fractions, and then linked the concrete rep-
resentation of equivalent fractions with the virtual representation using the virtual
manipulative Fractions. The teacher also constantly linked the representations to the
pictorial and abstract representations of equivalent fractions, in both cases.

As the RA was interested in investigating for a possible differential impact of
the intervention with different ability pupils, the lesson was conducted to two of
the RA’s Primary 3 classes, one of higher (3A) and one of lower (3F) mathematics
ability, as reflected by their 2009 end-of-year mathematics examination scores. As

Table 10 Comparison of
2010 mean end-of-year
mathematics examination
scores

Experimental
Class
(N = 29)

Comparison
Class
(N = 29)

Mean / SD 75.9 / 16.9 71.5 / 21.9

SMD 0.2
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Table 11 Comparison of
fraction pre-test mean score
for the two classes

3A
(N = 40)

3F
(N = 38)

Mean / SD 18.8 / 1.7 16.7 / 2.2

SMD 1.0

Table 12 Comparison of
mean number of equivalent
fraction of 1

3 listed by pupils
of the two classes

3A
(N = 40)

3F
(N = 38)

Mean / SD 5.6 / 3.2 4.3 / 2.9

SMD 0.4

the concept of fractions was first introduced at Primary 2, a Fraction Pre-test, based
on concepts in fractions taught in Primary 2 was administered to both classes to
determine if the two classes are indeed different in their entering behavior for the
lesson. Table 11 provided a comparison of the Fraction Pre-test mean scores for the
two classes. The SMD of 1.0 reflected a large effect size, indicating that the two
classes were indeed different in terms of achievement in the entry-level knowledge
for the planned lesson, with 3A achieving a higher level than 3F.

As a measure of the level of mathematics achievement of the pupils after the
intervening lesson, the pupils in both classes were required to use either the concrete
manipulative or the virtual manipulative to find 8 equivalent fractions of 1

3 . Table 12
provided a comparison of the mean number of equivalent fraction of 1

3 that pupils
of the two classes listed for the given task.

The SMD of 0.4 in Table 12 did reflect a large effect size of the mathematics
achievement between the two classes after the intervention, measured by proxy us-
ing the number of equivalent fractions of 1

3 that the pupils were able to list. However
this effect size is much smaller than that when comparing the Fraction Pre-test mean
scores for the two classes (Table 11). It appeared that the use of the virtual manipu-
lative may have narrowed down the achievement gaps of the two groups.

To determine the level of engagement of the pupils, an Engagement Survey was
conducted. The Survey is a modified version of the PETALS™ Scale. The RA has
decided to modify the PETALS™ Scale based on the experience of using it for the
Ignite! Project in 2010. The items in the Scale were not changed in content, but the
language was simplified for some and the Likert 11-point Scale is reduced to one
with only 3 points so as to cater to the language and cognitive needs of the targeted
pupils. As there were 5 questions for each subscale, the maximum score for each
subscale is 15. Table 13 gave a breakdown of the mean scores for the 3 subscales in
the Engagement Survey for the 2 classes.

The engagement level for the 3 subscales as shown in Table 13 is in agreement
with the observation made by the RA during the lessons; both point toward a high
level of engagement among the pupils in the 2 classes. As more than 90 % of the
pupils chose to use the virtual manipulative over the concrete manipulative, the RA
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Table 13 Breakdown of the
mean score for the 3
subscales in the engagement
survey for the 2 classes

Engagement
Subscale

Mean / SD

3A 3F

Behavioral 13.0 / 0.6 13.3 / 0.5

Cognitive 12.1 / 0.7 13.4 / 0.5

Affective 13.8 / 0.5 14.2 / 0.4

attributed the slightly higher engagement scores of Class 3F to a possible inflated
self-report score due to the use of the virtual manipulative. The RA also observed
that the virtual manipulative facilitated the process of trial and error in finding the
equivalent fractions of 1

3 —an encouragement for the weaker pupils who often do
not succeed at their first trial with problems. This might have also contributed to the
narrowing achievement gaps between the two groups.

The RA has expressed that he was much encouraged by the outcome of the ex-
tended project and would continue to source for ways to improve the school’s math-
ematics curriculum so as to further enhance pupils’ conceptual understanding and
engagement in mathematics learning. He was also excited about the school’s acqui-
sition of a classroom set of iPads in the year 2012, and he has been looking at the
possibilities of making use of the ease and dynamism that such an electronic de-
vice could offer in classrooms to better facilitate the multi-modal representation of
mathematical concept to help enhance conceptual understanding of his pupils fur-
ther. He also shared that the professional development he acquired from the initial
involvement in the Ignite! Project has equipped him well in planning, implement-
ing, and evaluating SCI. However, he felt that his lone effort, coupled with teaching
and administrative responsibilities was limiting his desire in his work in this area. In
order to rally more teachers to join him in his pursuit, he felt that the key pedagog-
ical approach—the C-P-A development of concepts, needed to be re-examined in
the light of the availability of such pedagogically rich ICT tool. In other words, the
C-P-A approach needed to be reframed to include the role of virtual representations
to better allow teachers to appreciate and integrate the use of virtual manipulatives
in promoting conceptual understanding in the mathematics classrooms.

Case Study 3—Developing a Metacognitive Scheme to Help
Pupils Kick-Start Mathematics Problem Solving

The third case study provides an insight to the impact on SCIs that the structure
and culture left behind by the legacy of Ignite! Projects. It described the holistic and
continuous approach by a primary school to develop a metacognitive scheme to help
their pupils kick-start mathematics problem solving.

As in Case Study 2, during school’s needs assessment to improve on the teaching
of l mathematics at the end of 2010, the teachers observed that although pupils
were explicitly taught problem-solving heuristics, they consistently fared poorly in
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solving non-routine problems. It was reflected by the often blank spaces left by
pupils when they encountered such tasks in their daily work, tests or examinations.
This often eventually took a toll on pupils’ mathematics achievement scores, as
marking of pupils’ working is structured in such a way that credit will be awarded
to both the process and product for such tasks. Thus, the teachers felt strongly that
there was a need to help pupils to kick-start their mathematics problem solving.

Polya, who is probably best known for making mathematics problem solving as
the focus of mathematics instruction, proposed the following four-phase model for
mathematics problem solving (1957):

1. Phase 1: Understanding the problem
2. Phase 2: Devising a plan
3. Phase 3: Carrying out the plan
4. Phase 4: Looking back

As such, helping pupils to kick-start their problem solving processes would prob-
ably require an address of the first two of Polya’s four-phase model. In fact, in a
study of Singapore students by Kaur (1995), she found that students encountered
the following difficulties in mathematics problem solving:

• Lack of comprehension
• Lack of strategy knowledge
• Inability to translate the problem into a mathematical form

Lee (2008b) found that the Problem Wheel (Fig. 3) could serve well as a
metacognitive scheme to help pupils kick-start their problem solving processes
and hence boost their confidence in solving problems. The Wheel provided pupils
with the necessary prompts (Table 14) to better ask relevant questions and be more
aware of and monitor their comprehension, and hence understanding of, the problem
posed. It also helped pupils to regulate the use of their resources, in terms of knowl-
edge and skills that they have learnt, to translate the problem into a mathematical
form and to develop a plan to solve the problem.

Given the relevance of the Problem Wheel in addressing the needs of the school
and the fact that the Wheel also addresses the issue of metacognition in the math-
ematics classroom—a key component of the Singapore Mathematics Curriculum
(Fig. 1), the School decided to embark on an SCI by adapting and refining the Wheel
to meet the needs of the School. In an effort to secure necessary funding to embark
on the SCI, the School submitted the idea for an appropriate SCI for consideration
as an Ignite! Project in 2011, for which approval was granted.

A team was formed to oversee the Ignite! Project. As in the previous two Case
Studies, the team comprised of an officially appointed RA from the school, who was
also a mathematics teacher—new to the profession but an enthusiastic teacher. He
was supported by three other key members in the team—an experienced mathemat-
ics teacher as well as the Vice-principal and the Head of the Mathematics Depart-
ment of the School. The Team examined the Problem Wheel further and decided to
modify it into the STARtUP (STARt Understand and Planning) Scheme as shown
in Fig. 4 (Hong et al. 2012).
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Fig. 3 The problem wheel (Lee 2008a, 2008b)

Table 14 Examples of generic question prompts pupils were encouraged to use for each compo-
nent of the problem wheel

Component of the
Problem Wheel

Examples of Question Prompts

Given What is / are given to us in this problem?

What do we know about the problem?

What value(s) is / are given to us in this problem?

Find What are we supposed to find in this problem?

Which value(s) is / are we supposed to find as the answer to this
problem?

Picture Can we draw a picture to represent this problem?

What would we draw to represent this problem?

Topic Which is / are the topic(s) that we have learnt might help us to
solve this problem?

Can you list the topic(s) that we have learnt which would help us
to solve this problem?

Formula(e) Which formula(e) we have learnt that might be needed for us to
solve this problem?

Can we list the formula(e) that we have learnt which would help us
to solve this problem?

As pointed out by Hong et al. (2012), “The ‘Topic’ and ‘Formula(e)’ compo-
nents in the original Problem Wheel were replaced with ‘Heuristic(s)’ and ‘Start’
in STARtUP as non-routine problems are generally not topic-specific and there are
few, if any, formulae to be learnt at Primary Four. ‘Start’ was added as a motivating
slogan”.

After looking into the constraints of timetabling and teacher involvement, it was
decided that the Project would involve pupils at the Primary 4 level. Two intact
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Fig. 4 The STARtUP scheme (Hong et al. 2012)

mixed ability classes, one to serve as the experimental and the other the compari-
son class, participated in the study. The Project sought to determine the impact of
the Scheme on these pupils’ problem solving performance. The pupils in the Ex-
perimental Class were exposed to 6 sessions, spanned over a 6-week period—one
session per week, on the use of the STARtUP Scheme to solve non-routine prob-
lems. In the first session, the Experimental Class was explicitly taught Polya’s 4-
phase approach towards problem solving as well as the various components of the
Scheme. For each of the subsequent 5 sessions, the pupils in the Experimental Class
were encouraged to use the Scheme to kick-start their problem solving process for
the task assigned to them. The same tasks were used for pupils in the Comparison
Class during these 6 weeks of intervention, and Polya’s 4-phase approach was also
explicitly taught to these pupils. However, pupils in the Comparison Class were not
introduced to the Scheme.

As a measure of the impact of the Project on pupils’ problem solving perfor-
mance, a problem-solving test comprised of 5 non-routine problems tasks was ad-
ministered both as a pre- and post-test to both the Classes. The level of understand-
ing and planning exhibited by the pupils were each assessed via the aggregate scores
based on a set of rubrics adapted from Charles et al. (1987), with scores ranging
from 0 to 2, applied to each of the tasks. Success in problem solving was measured
by the total score obtained in the Test out of the full score of 20 marks. The marking
scheme for the Test was structured as in normal tests and examinations in the local
context, whereby credit will be awarded to both the process and product for such
problems. Tables 15 and 16 provided a comparison of the mean scores obtained by
the two classes for all three measures in the pre- and post-test respectively.
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Table 15 Comparison of
mean pre-scores for the
problem solving test between
experimental and comparison
classes

Measure Mean / SD Standardized Mean
Difference (SMD)Experimental

Class
(N = 31)

Comparison
Class
(N = 32)

Understanding 4.3 / 2.3 4.4 / 2.6 −0.04

Planning 4.0 / 2.5 3.8 / 2.7 0.07

Success 6.9 / 4.8 7.2 / 5.2 −0.06

Table 16 Comparison of
mean post-scores for the
problem solving test between
experimental and comparison
classes

Measure Mean / SD Standardized Mean
Difference (SMD)Experimental

Class
(N = 31)

Comparison
Class
(N = 32)

Understanding 5.0 / 2.7 4.4 / 2.4 0.25

Planning 4.9 / 2.9 4.2 / 2.6 0.27

Success 8.2 / 5.5 7.0 / 4.7 0.26

The SMDs obtained in Table 15 reflected negligible effect sizes for all the mea-
sures associated with the problem solving pre-test. In other words, the two classes
could be considered as in equivalent for these measures. Consequently, a compari-
son of the mean scores of these measures for the problem solving post-test would
be sufficient to examine the impact of the intervention. Table 16 showed that there
was a medium effect sizes for all these measures associated with the problem solv-
ing post-test. There appeared to be positive and reasonable level of impact of the
intervention on pupils’ level of understanding and planning phases during prob-
lem solving as well as their problem solving achievement. As pointed out by Hong
et al. (2012), though the STARtUP Scheme does not guarantee success in helping
pupils of all abilities to solve all kind of mathematics problems, it appeared to have
helped pupils to kick-start their problem solving processes, and in fact seemed to
have also contributed to the overall success of the pupils’ problem solving perfor-
mance.

Again, as in Case Studies 1 and 2, the team also included the use of the
PETALS™ Scale—the instrument that all the RAs were trained to administer and
analyze for their respective Ignite! Projects, as a proxy measurement to compare
the level of engagement of pupils from the two classes. Tables 17 provided compar-
isons of the Engagement mean scores for the three PETALS™ subscales between
Experimental and Comparison Classes when the instrument was administered to
both classes before the intervention as a pre-test.

As reflected in the SMDs obtained in Table 17, except for the Affective Engage-
ment subscale, which registered a small effect size, the other two subscales both
registered large effect sizes. Consequently, the two classes may not be considered
equivalent for the two Engagement subscales: Behavioural and Cognitive. For these
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Table 17 Comparison of
engagement mean pre-scores
for the PETALS™ scale
between experimental and
comparison classes

Engagement
Subscale

Mean / SD Standardized Mean
Difference (SMD)Experimental

Class
Comparison
Class

Behavioral 69.0 / 16.3 76.7 / 18.8 −0.41

Cognitive 67.9 / 21.4 74.9 / 18.2 −0.38

Affective 78.9 / 16.5 81.5 / 17.3 −0.15

two subscales, a comparison of the respective mean gain scores, albeit with a greater
error margin, when the PETALS™ Scale was administered as a post-test will be
made to examine the impact of the intervention on these two measures. Table 18
provided a comparison of the relevant mean post-scores for the three PETALS™
subscales between Experimental and Comparison Classes.

The SMDs obtained in Table 18 reflected a medium to large effect size for the
Behavioral subscale, a medium effect size on Cognitive subscale, while a negligible
one on the Affective subscale of the PETALS™ Scale. It appeared that the interven-
tion has resulted in a positive way to the behavioral and cognitive engagement but
no apparent difference in the affective engagement of the pupils.

The apparent lack of the impact the intervention had on the affective engagement
of the pupils might have resulted in the observed short-term impact of the Scheme on
the pupils. Despite the encouraging performance in the Problem Solving post-test by
the pupils in the Experimental Class, these pupils did not seem to have internalized
the Scheme after the intervention. Though some found the Scheme to be helpful in
capturing the key information of a problem solving task to kick-start the process,
some expressed that they found it a hassle to write down the information given
in the problem and what is to be found (Hong et al. 2012). It appeared that the
pupils may not have been able to appreciate the value of such a Scheme in kick-
starting their problem solving process, and thus did not consciously put the Scheme
to practice.

Consequently, the Team decided to embark on further efforts to improve on the
Scheme as well as the teaching of the Scheme to help pupils better develop it into
part of their productive problem-solving habits of mind. Despite the completion of
the Ignite! Project, the Team remained intact, still comprised of the Vice-principal,

Table 18 Comparison of the relevant mean post-scores for the PETALS™ subscales between
experimental and comparison classes

Engagement
Subscale

Type of
Score

Mean / SD Standardized Mean
Difference (SMD)Experimental

Classes
Comparison
Classes

Behavioral Gain Score 1.2 / 18.5 −6.3 / 24.1 0.31

Cognitive Gain Score −0.3 / 16.4 −5.9 / 23.4 0.24

Affective Post-Score 78.4 / 18.2 78.0 / 22.0 0.02
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the Head of the Mathematics Department, the Senior Mathematics teacher and the
RA, and tasked to tackle the problem as an SCI for 2012. With the support of
the Curriculum Advisor (CA), each of team members maintained the same role as
before—the Team functioned essentially as in the case when they were handling the
Ignite! Project: The Vice-principal as the key administrative resource person, the
Head of Mathematics Department as the key curriculum resource person, the Senior
Mathematics teacher as the key pedagogical resource person, and the RA as the key
research resource person. The structure and culture in implementing, planning, and
evaluating SCIs laid down by the Ignite! Projects appeared to have taken roots in
the school.

Observations and Discussion

The examination of the three Case Studies revealed that all these SCIs needed to
address the A-B-C-D-E-F of school-based curriculum development (Lee 2008b):

Analysis of Needs In all the three cases reviewed, the SCIs started with an anal-
ysis of the pupils’ needs—the first in the Taba’s (1962) Five-Step Sequence to cur-
riculum development that exemplifies that of an inductive model. In Case Study 1,
the motivational level of the pupils in the School to learn mathematics was iden-
tified as relatively low. On the other hand, Case Study 2 diagnosed that pupils at
the lower primary is lacking in depth of conceptual understanding in Mathemat-
ics. Finally, in Case Study 3, teachers observed that although pupils were explicitly
taught problem-solving heuristics, they consistently fared poorly in solving non-
routine problems, and felt strongly that there was a need to help pupils to kick-start
their mathematics problem solving. These, as Taba (1962) pointed out, reflected the
“gaps, deficiencies, and variations in [pupils’] backgrounds” that are diagnosed by
the teachers concerned.

Bridging of Theory and Practice For each of the needs identified in the three
Case Studies, there were conscious and explicit attempts made by the respective
teams to source for the relevant and appropriate theoretical underpinnings to ex-
plain and close up the gaps in the teaching and learning of mathematics. The Team
involved in Case Study 1 looked into the literature on teaching and learning styles
before they chanced upon the theory of multiple intelligences to address the mo-
tivational level of the pupils in the learning of mathematics (Lee et al. 2008). The
role of representation theory in promoting conceptual understanding was the focus
of the theoretical background that motivated the Team in Case Study 2 to consider
the explicit and contextual use of concrete and virtual manipulatives in the math-
ematics classroom (Tan et al. 2011, and Lee and Ferrucci 2012). The search for a
tried and tested scheme that helped pupils kick-start their problem solving prompted
the Team in Case Study 3 to use the Problem Wheel as a basis to develop such a
scheme (Hong et al. 2012). All these demonstrated the efforts of the practitioners,
who were spearheading these SCIs, to bridge the gap between theory and practice
in the mathematics curriculum development.
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Fig. 5 Intra-&
inter-organisational factors
contributing to the
sustainability of school-based
curriculum initiatives (Lee
and Abdul Rasip 2010)

Collaborators Identification Lee (2008b) pointed out that “for successful school-
based curriculum development to occur, it is important to identify a collaborator in
the school who not only takes on a personal interest in such an endeavor, but is
also able to rally and lead a team of teachers in such a process”. It appeared that in
all the three cases, the RA, who was not only given time and opportunities to de-
velop himself/herself professionally in but when the Projects have been completed,
also taken on the leadership role of planning, implementing and evaluating SCIs
in the respective schools. However, as Lee and Abdul Rasip (2010) observed, the
intra- and inter-organisational factors also contributed to the sustainability of SCIs
(Fig. 5). The bridging of theory to practice established by the inter-organizational
linkage of the RA and the CA must also be facilitated by the administrative support
provided by school management personnel within the context of the school con-
cerned for SCIs to be sustainable. The active and direct involvement of the Principal
in Case Study 1 and that of the Vice-principal and Head of Mathematics Department
in Case Study 3 have, in both cases, equipped the RA with the necessary support to
continually improve and work on the SCI within a systematic structure.

Delineating of Objectives As Olivia (2009, p. 409) observed, “[A]s curricu-
lum planners, we wish changes in education to take place for the better”, and
“[E]valuation is the means for determining what needs improvement and for pro-
viding a basis for effecting that improvement”. And, in refining his model of cur-
riculum development, validating curriculum goals and objectives were listed as part
of the main types of curriculum evaluation (Olivia 2009, p. 447). In fact, in all the
three Case Studies presented, there were clear objectives delineated for each SCI,
presented in the form of research questions. Case Study 1, for example, was primary
concerned with the level of pupils’ engagement. Though there were also efforts to
examine the impact of the SCI on the mathematical achievement of the pupils, the
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Team was quick to point out that the interest was more of determining the possi-
ble impact of an increase in engagement levels of the pupils, if any observed, may
have on the mathematical achievement of the pupils. In fact, in one of the meetings
to review the progress of the SCI, a teacher in the Team shared her concern if the
observed increased level of interest among her pupils during the mathematics class
would be translated into higher achievement scores in mathematics. The Principal,
who chaired the meeting, was quick to direct the teacher to the primary objective of
the SCI—the engagement levels of the pupils, and advised the teacher to focus her
work on the primary objective of the SCI. The reassurance from the school man-
agement personnel not only helped the Team to focus on the objective of the SCI,
it also helped to reassure the Team to move further from what they perceived as a
more practice-oriented approach towards teaching mathematics. This example fur-
ther established the importance of the intra-organisational factor in the sustainability
of SCI. However, it must also be emphasized that the evaluation of the primary ob-
jective of the SCI has been facilitated by the development of the PETALS™ Scale
for the local context. The availability of such contextualized instrument encouraged
to venture into SCIs that investigated variables that otherwise might not be easily
measurable. This has been observed in all the three Case Studies presented here—
engagement levels of the pupils, which otherwise may be an abstract concept to the
practitioners, were examined by all the Teams.

Embedding into National Curriculum In all the three Case Studies presented,
the Teams concerned were quick and conscious to ensure that their respective SCIs
were well aligned with the Singapore Mathematics Curriculum Framework (Fig. 1).
The Team in Case Study 1, when addressing the engagement and motivational lev-
els of the pupils justify their focus via the Attitudes component of the Framework.
Case Study 2’s focus on promoting conceptual understanding through multi-modal
representation sought to focus the Concept component of the Framework. And, fi-
nally, Case Study 3’s work on equipping pupils with a metacognitive framework to
kick-start their problem solving process addressed both the Metacognition and Pro-
cess components. Lee (2008a) observed that the Singapore Mathematics Curricu-
lum Framework, developed in 1990, survived, with minor modification, the major
curriculum review for the 2001 (and in fact also for the 2007) curriculum. One of
the key reasons for the Framework’s survival, he noted, was its rigour and robust-
ness in presenting the philosophy and principles underlying decisions made about
what mathematics education should equip our students with. Thus, as the schools
sought to develop their own mathematics curriculum to better meet the needs of their
pupils, conscious effort was made to ensure that the school mathematics curriculum
was embedded into the national curriculum, with the national curriculum taking on
the role of a quality controller.

Framework Establishment for School-Based Curriculum Lee (2010) referred
a curriculum framework as “a succinct description of the philosophy of the cur-
riculum and helps to establish the important aspects of learning and teaching”. He
pointed out that due to the succinctness of the curriculum framework, it is often
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conveniently employed as the “ruler’ in guiding the implementation curriculum de-
velopment initiatives. Clearly, the theory of Multiple Intelligences served as a cur-
riculum framework for Case Study 1. In fact, the school has been much encouraged
by the role it played in the school’s mathematics programme that there were plans to
examine the appropriateness of extending it as a possible curricular framework for
other programmes in the school. For Case Study 3, the STARtUP Scheme appeared
to have taken on the role of the Framework for the SCI, and there was conscious
effort on the part of the Team to revised and refine the Framework based on an eval-
uation of the SCI. Case Study 2 appeared to have tap on the C-P-A pedagogical
approach as the Framework for their Ignite! Project. However as the RA consider
the role of virtual manipulatives in the extended project, the concern of the RA for a
need to reframe the C-P-A approach to better include the role of virtual representa-
tion reflected a need for a new Framework to be established to better guide the RA
in the implementation of the SCI.

In all the three case studies, the schools analyzed the specific needs of their re-
spective pupils’ needs to supplement the National Mathematics Curriculum with
learning experiences so as to better cater to the pupils’ needs. The National Math-
ematics Curriculum provided the objectives and content (Ministry of Education
2006), which as pointed out earlier, are deductively derived at. Lunenburg (2011c)
observed that curriculum can be organized into three major components: objectives,
content, and learning experiences. Learning experience refers to the interaction be-
tween the learner and the external conditions in the environment to which he/she can
react (Tyler 1949, p. 63). Tyler (1949) outlined five general principles in selecting
learning experiences. Of these, one states that the learning experience must “fit” the
students’ needs and abilities; the teacher must begin where the pupil is ability-wise
and that prior knowledge is the starting point for new knowledge. In fact, the inclu-
sion of learning experiences in the Singapore National Mathematics Curriculum is
one of the key features in the newly revised curriculum which will be implemented
from the year 2013 onwards (Ministry of Education 2012a, 2012b). However, the
learning experiences derived from these case studies are different from those re-
flected in the revised 2013 Singapore National Mathematics Curriculum. The learn-
ing experiences reflected in the revised National Mathematics Curriculum are stated
“in the mathematics syllabuses to influence the ways teachers teach and students
learn so that the curriculum objectives can be achieved”. On the other hand, the
learning experiences from the three case studies were derived inductively and fol-
lowed Taba’s (1962) Five-Step Sequence to curriculum development closely:

1. Producing pilot units
2. Testing experimental units
3. Revising and consolidating
4. Developing a framework
5. Installing and disseminating new units

Thus, in all the three case studies presented, the development of the mathematics
curriculum for each school contains elements of both the deductive and inductive
models. The objectives and content that are aligned with the National Mathematics



The Singapore Mathematics Curriculum Development—A Mixed Model Approach 301

Curriculum are deductively developed while the learning experiences, which are the
key products of the SCIs, are inductively developed. Each of these schools seems
to have developed their “unique” school mathematics curriculum through a mixed
model.

Conclusion and Implications

This analysis of the three case studies is meant to shed some light to the Singa-
pore’s mixed model approach towards mathematics curriculum development in the
school. Despite a history of having a national curriculum, deductive in approach and
assuming a one-size fits all philosophy, and having performed well in international
comparative studies on pupils’ mathematics achievement, the evolving needs of so-
ciety has created a need to re-examine this centrally-controlled system. The effort
to encourage teachers to vary the school-based mathematics curriculum within the
constraints of the national curriculum called for a more inductive approach that view
each pupil as an individual is contradictory to the essence of the national curriculum
that teachers are familiar with. However, it appears that the deliberate planning and
careful execution of the Ignite! Projects have yielded some positive results in this
effort to promote the meeting of the top-down and bottom-up approaches. The result
appears to hold the best of both worlds—the quality assurance of a national curricu-
lum and the creativity of school-based curriculum to meet the needs of the learners.
Three key areas appear to have contributed to such an effective enculturation of SCIs
within this centrally-controlled system:

• Support of the SCIs by school management
• The identification and professional development of a RA to facilitate the process

of SCIs within each school
• The development of suitable instruments for evaluation of SCIs

As countries seek to improve on their mathematics curriculum and some begin
see the value of a centrally directed mathematics curriculum guidelines, such as
Australia’s effort to establish a national mathematics curriculum and USA’s Com-
mon Core State Standards initiative, it is hoped that the case studies presented help
to provide some insights, through the Singapore experience, on how the individual
pupils’ mathematical development need not necessarily be compromised in such a
system.
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School Mathematics Textbook Design
and Development Practices in China

Yeping Li, Jianyue Zhang, and Tingting Ma

Abstract In this chapter, we present and discuss school mathematics textbook de-
sign and development in China, with a special focus on high school mathematics
textbooks. Textbook development in China has its own history. This chapter high-
lights several design guidelines and common development practices used in select-
ing, presenting, and organizing content in mathematics textbooks over time. With
the recent curriculum reform in China, we also discuss some new developments
in designing high school mathematics textbooks. The implication of these Chinese
practices in textbook development are then discussed in a broad context.

Keywords China · Curriculum reform · Mathematics textbook · School
mathematics · Textbook design · Textbook development

Introduction

It is generally recognized that developing and using textbooks can serve as an im-
portant channel for promoting changes in teaching and learning mathematics (e.g.,
Ball and Cohen 1996; Beagle 1973; Hirsch 2007; Weiss et al. 2002). Although text-
books’ effectiveness in improving classroom teaching and learning relates to many
factors, including the teachers who use them (e.g., Kilpatrick 2003; National Re-
search Council [NRC] 2004), the textbook quality itself is often an important con-
cern to many teachers and educators (e.g., American Association for the Advance-
ment of Science [AAAS] 2000; Kulm 1999; Trafton et al. 2001). Efforts to de-
velop new, high-quality textbooks have received ever-increasing attention and sup-
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port over time (e.g., Senk and Thompson 2003). In contrast, there are a very limited
number of studies available that examine and discuss textbook design and the pro-
cess of textbook development. In fact, during the 10th International Congress of
Mathematics Education (ICME-10) held in Denmark in 2004 (Fan et al. 2008), the
development and research of mathematics textbooks was the topic of a Discussion
Group for the first time in the history of the International Commission on Mathemat-
ical Instruction (ICMI). As textbook development is a process that integrates many
different considerations in content and instruction, a better understanding of text-
book design and development practices helps enhance the quality of the textbooks
being developed. Because many issues related to textbook design and development
(e.g., “the relationship between mathematics curriculum standards/syllabi and text-
books” and “possibly good practices and approaches in presenting and organizing
content in textbooks”) are not restricted to specific regions, in this chapter we fo-
cus on the guidelines and practices used in developing mathematics textbooks in
China.1

China’s case becomes especially interesting since textbooks play a very impor-
tant role in developing effective classroom instruction and teachers’ knowledge in
Chinese education overall, and especially in mathematics (e.g., Ding et al. 2012;
Li and Li 2009; Ma 1999; Wang and Paine 2003). Ma found that Chinese teachers
even consider their use and study of textbooks the most important of the factors con-
tributing to their professional growth over the years. Ma’s findings suggest that Chi-
nese textbooks have been well accepted and are adhered to by teachers and students
for day-to-day classroom instruction, and have been very successful in promoting
mathematics teaching and learning in China. The important role of textbooks in
mathematics teaching and learning has undoubtedly led to the emphasis placed on
developing high-quality textbooks for Chinese education.

Although some studies are now available that reveal various features of mathe-
matics textbooks from China (e.g., Fan et al. 2004; Li 2000, 2007), much remains
unknown to outsiders about the design considerations and development practices of
mathematics textbooks. Mathematics textbook development in China should pro-
vide useful information for curriculum developers and mathematics educators in
many other education systems to reflect on their own textbook design and develop-
ment practices.

The following sections are organized into four parts. In the first part (Sec-
tion “School Mathematics Textbook Development: Issues and Focuses”), we out-
line issues and focuses on school mathematics textbook development. Descrip-
tions of some issues in mathematics textbook development in the international
context are provided in this part to help outline further discussions of mathemat-
ics textbook development in China. The second part (Section “General Charac-
teristics of Mathematics Textbook Development in China Before 2000”) provides
detailed descriptions of various characteristics of mathematics textbook develop-
ment in China before the dramatic curriculum reform taking place in 2000. Pre-

1If not specified otherwise, China refers to the Chinese mainland in this chapter.
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vious practices and approaches commonly used in selecting, presenting and orga-
nizing content in mathematics textbooks are addressed and discussed. With recent
curriculum reform taking place in China, the third part (Section “Developing Sec-
ondary Mathematics Textbooks in the Context of the Mathematics Reform After
2000”) focuses on the new development in designing and authoring mathematics
textbooks, with an emphasis on secondary mathematics textbooks. In the last part
(Section “Concluding Remarks”), we conclude the article with discussions on text-
book design and development practices in China, as well as possible directions for
research.

School Mathematics Textbook Development: Issues and Focuses

Similar to many other education systems, curriculum is a key component in Chi-
nese education. Because of its centralized education system, China uses nation-
wide unified curriculum standards (previously called the “teaching and learning
syllabus”) which provide guidelines for all teaching and learning activities at dif-
ferent grade levels and serve as a direct channel for major education reforms. Math-
ematics textbooks have been developed in alignment with the unified curriculum
standards, and play an important role in guiding day-to-day teaching and learn-
ing activities in classrooms across the system. Given the large impact that text-
books wield on daily classroom teaching and learning, textbook quality is pre-
dictably important in the eyes of education policy makers, schoolteachers, and stu-
dents.

A recent effort to examine textbook development in the United States has placed
a focus on textbook design principles and development processes (Hirsch 2007). In
particular, those textbook development teams, funded by the US National Science
Foundation (NSF), were asked to contribute and share explicitly how they designed
and developed their textbooks. The book edited by Hirsch (2007) includes contri-
butions from four textbook development teams at the primary school level (Kinder-
garten through Grade 5), four at the middle school level (Grades 6–8), and seven
at the high school level (Grades 9–12). The book’s emphasis on design principles
and development processes for textbooks at all grade levels in school mathemat-
ics is consistent with the focuses of Discussion Group on mathematics textbooks
(DG14) during the ICME-10 (Fan et al. 2008). Similar focuses were also taken by
Pang (2008) when she discussed mathematics textbook design and implementation
in South Korea. Thus, in this chapter, we focus on similar issues in the case of China.
The following three aspects are used as a guideline to frame our discussion in this
chapter.

(1) The typical process of textbook development.
(2) General considerations in textbook structural design and content selection.
(3) General guidelines for authoring textbooks in terms of content organization and

presentation.
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General Characteristics of Mathematics Textbook Development
in China Before 2000

The Typical Process of Textbook Development

Back in the 1950s, the Chinese Ministry of Education (MOE) founded the People’s
Education Press (PEP): a specialized organization dedicated to studying, authoring,
and publishing textbooks for primary and secondary school education as well as a
contact for designing and revising the “National Mathematics Teaching and Learn-
ing Syllabus”. Since then, the PEP, under the direct administration of the MOE, has
taken a leading role in curriculum development in China.

Because the PEP played a major role in textbook development before 2000, some
common practices were formed along the way. For instance, authoring textbooks
had always followed the process of “research, authoring—review, experimental
use—revise, publish—experimental use again, review—revise again, . . . ” strictly.
During this process, it was emphasized that great efforts are needed to prepare the
text, review and experimentally use it several times.

One major feature in developing textbooks was to learn from other education
systems and consider different opinions. For instance, since 1961 researchers and
authors have begun to reflect on previous textbook development experiences and,
more recently, conducted international comparative studies on teaching require-
ments, content, and method and content organization (Wei 1996). In the 1980s a
national investigation was also conducted to examine the need for mathematics es-
sential knowledge and techniques based on the economic and social development
in China. The investigation involved sixteen vocations including engineering, water
and electricity, aerospace, and agriculture. Questionnaires on mathematics knowl-
edge requirements were collected from 692 engineers, technicians, or administra-
tors and more than 300 experts from over 60 higher education institutes. Further-
more, 76 journals were randomly selected from 21 categories; and the mathematics
knowledge used in the articles of those journals was categorized. Findings indicated
that knowledge other than existing mathematics in curriculum materials should be
added; including probability, statistics, calculus, optimization, linear programming,
vectors, and analytic geometry.

Structural Design of Textbooks—Combination or Separation

There has always been heated discussion on the structure of mathematics textbooks
in China, which mainly involves two questions: (1) Which approach is better; a sep-
arated, subject linear organization or an integrated, gradual organization? (2) What
may be the overall design guideline, in consideration of these two different ap-
proaches?

Traditionally, separated content branches such as “algebra”, “plane geometry”,
“solid geometry” and “analytic geometry” have been adopted in Chinese textbooks.
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The guidelines for arranging mathematical content in different branches are as fol-
lows:

For algebra: content is organized as developing from number → expression →
equation → function, constant to variable, concrete to abstract, simple to complex.
“Function” is the core concept throughout the textbook.

For plane geometry: content is arranged as going from relationships between
lines, equal or unequal relation → circle → similar triangles → solving triangles
→ measurement (e.g., circumference and area).

For solid geometry: content is organized as developing from lines and planes →
polyhedron, evolving shape. If we take relative positions as a theme, contents are
then organized from ‘line and line’ → ‘line and plane’ → ‘plane and plane’.

To connect plane geometry and solid geometry, it is emphasized to extend the
main properties of geometry from plane to solid, and from simple to complex.

For plane analytic geometry: content is arranged as emphasizing its transitional
function from elementary mathematics to advanced mathematics by focusing on the
integration of number and shape and its comprehensive application. It can be placed
in a later part of the high school mathematics curriculum. Content organization can
be arranged from Cartesian coordinate → polar coordinate; line → conic section;
standard equation → general equation.

Since the late 1990s, all the above content divisions have been integrated into
one subject—mathematics. The guidelines for the course structure include: reducing
the number of mathematical curriculum branches; modernizing the course content;
helping students learn the “Two Basics”;2 and facilitating students’ application of
mathematics knowledge. Principles for content arrangement include: (a) integrat-
ing all mathematical branches into one course; (b) proceeding step by step from
simple to complex, shallow to deep, based on students’ learning curves and abili-
ties; (c) strengthening the systematic characteristic of textbook content; (d) separat-
ing the contents into two parts with different emphases for junior and senior high
schools respectively; (e) integrating with related science subjects.

Textbook Content Selection

Changes to mathematics curriculum and textbooks have been made frequently.
There are various reasons for the changes in Chinese mathematics curriculum and
textbooks. One lasting concern is to reduce students’ learning burden and improve
teaching quality.

General Guidelines of Textbook Content Selection

Standards of textbook content selection that are used in China include the following
considerations:

2“Two Basics” refer to basic knowledge and skills in school mathematics that are often identified
and emphasized in Chinese mathematics curriculum (e.g., Zhang 2006).
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First, is it the basic knowledge of algebra, geometry, statistics and probability?
Second, is it widely used in everyday life, production and technology activities?
Third, is it prerequisite knowledge for students’ future study?
Fourth, is it feasible for students to learn?
The above considerations are generally accepted in many other education sys-

tems as well. However, the application of the standards can vary due to different
natures of specific content topics and different understanding of the standards. The
following sub-section will provide several examples of textbook content changes
over the years.

Selection and Arrangement of Examples and Exercise Problems

An important principle in selecting and arranging examples and exercise problems is
matching the exercise problems with the provided example problems. Memorizing
and understanding basic concepts is highlighted with the use of similar problems
and therefore the difficulty of study is reduced.

At present, the textbook differentiates exercise problems by difficulty to meet
various students’ needs. Problems are divided into group A and group B: A is fun-
damental and B is focused on applying the “two basics”, improving students’ ability
and meeting high-achieving students’ extra needs. Chapter review problems (also in
A and B groups) and “self tests” are designed to help students study and examine
their progress.

Besides textbooks, there are other additional curriculum materials, such as exer-
cise problem books. In those books, challenging worked-out examples and exercise
problems are provided for capable students.

General Guidelines and Highlights for Organizing and Presenting
Content in Mathematics Textbooks

Logical Order of Mathematics Knowledge

This is a textbook compilation method: textbook content is arranged according to
content logic connections in quantity and spatial forms. For example, in junior high
algebra textbooks, rational number, real number, algebraic expression, linear equa-
tion and quadratic equation are introduced to prepare students for learning algebra
transformations and solving equations. Function is then introduced. In senior high
school, knowledge of algebraic expressions, equations, and inequalities are devel-
oped first and then the following concepts are introduced: exponential functions,
logarithmic functions, trigonometric functions, sequences, induction, permutation
and combination, probability and statistics, and basic calculus.

The logical order of mathematical concepts is also emphasized. In textbook de-
velopment, there is an unwritten rule that states: a mathematical concept without
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a strict definition cannot be used. Every concept must be defined with previously
introduced terms. For instance, concepts such as square roots and real numbers are
defined before introducing the Pythagorean Theorem.

Introducing Concepts Clearly

Chinese textbook authors take the understanding of mathematical concepts as a nec-
essary condition to learning mathematics well. Without understanding, students can-
not apply concepts to solve problems. Therefore, Chinese textbook authors consider
“introducing concepts clearly” the most important feature of textbooks. Various ap-
proaches have been developed and used, such as starting from examples of previ-
ously learned concepts, explaining concepts with real-world examples, or introduc-
ing concepts through comparison with related concepts. For instance, the concept
of “irrational numbers” is introduced in a Chinese textbook as follows (Secondary
School Mathematics Section 2001a, pp. 154–155):

The textbook begins with the review of “rational numbers can be written in forms
of finite decimals or circulating decimals” and provides examples.

Second,
√

2,
√

3, 3
√

2, −√
7, and π are used to illustrate the existence of infinite,

non-repeating decimals.
Third, infinite, non-repeating decimals are defined as irrational numbers.
Fourth, students are asked to think about the following questions; “Are

√
4,

− 3
√

27 irrational numbers? Are all numbers with radical signs irrational numbers?”
Finally, irrational numbers are classified.
In the above process, the definition of an irrational number is introduced through

a comparison of irrational numbers with rational numbers by examples. π is used
deliberately, as an example to explain that irrational numbers are not always num-
bers with radical signs. Questions are also raised to help students understand that
“numbers with radical signs are not necessarily irrational numbers”. This sequence
of steps presents competently the idea of introducing concepts clearly.

Important Points, Hinge Points, and Difficult Points

In textbook development important points, hinge points, and difficult points of con-
tent are highlighted.

Important points refer to mathematical knowledge that plays an important role in
the current content level and further studies. It is necessary to devote more time and
effort to introducing such knowledge. For example, in middle school algebra, impor-
tant points include rational number computation, solving linear equations, quadratic
equations and systems of equations. In plane geometry, the properties of plane fig-
ures are important points.

A hinge point indicates significant mathematics content, which influences stu-
dents’ understanding of other relevant mathematics content knowledge to a great
extent. Such content points should receive great instructional attention in order to
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Fig. 1 Two intersecting lines

foster students’ conceptual understanding in depth. For example, identical transmu-
tation of algebra expressions is a hinge point in middle school algebra. The text-
book thus places much emphasis on the inclusion of various types of worked-out
examples and a large number of exercise problems with various levels of cognitive
demands.

Difficult points refer to mathematical knowledge that is hard for students to un-
derstand. Ways to deal with such contents include the use of more real-life examples,
emphasis on visualization, relevant knowledge preparation in advance, and step-by-
step exercises. For example, proof in plane geometry is a difficult point, which is
demonstrated in textbooks as containing the following several steps across several
content sections (Secondary School Mathematics Section 2001b):

First, in the section of “intersecting lines and opposite vertical angles”, “opposite
vertical angles are equal” is derived first from informal reasoning and then through
a formal proof.

As shown in Fig. 1, ∠2 and ∠1 are complementary; and ∠3 and ∠1 are comple-
mentary. Because both ∠2 and ∠3 are complementary angles of ∠1, therefore ∠2 is
equal to ∠3 since complementary angles of the same angle are the same. Similarly,
∠1 is equal to ∠4.

Then a formal proof is introduced:
∵ ∠2 and ∠1 are complementary; ∠3 and ∠1 are complementary (Definition of

adjacent complementary angles).
∴ ∠2 = ∠3 (Complementary angles of the same angle are equal).
By repeatedly demonstrating the above process from reasoning to proof in the

content of parallel lines, a norm of proving is developed.
Second, in the section of “proposition, theorem, and proof”, concepts such as

propositions, true or false propositions, axioms, theorems, and proofs of axioms
and theorems are introduced together with examples of writing formal proof process
(i.e., Known → To be proved → Analyze → Prove).

Third, in the “triangle” chapter, topics such as “theorem of the sum of a triangle’s
internal angles” and “congruent triangles” are included and discussed to strengthen
geometrical proving.

Basic Mathematical Skills

Emphasis on basic skills is presented with the inclusion of worked-out examples and
exercise problems. Problem analysis is emphasized in the worked-out examples in
textbooks to show how to analyze and solve them and why certain methods are used.
Problem analysis in worked-out examples is followed by problem solution proce-
dures, which show students a problem’s solution step by step. Corresponding basic
skill exercises are provided after worked-out examples so as to consolidate concepts
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and methods. For instance, in the section of “Using the method of substitution to
solve a binary linear system of equations” (Secondary School Mathematics Section
2001a), worked-out examples and exercise problems are arranged as below:

Example 1 Solve the system of equations

{
y = 1 − x, (1)

3x + 2y = 5. (2)

Problem analysis: y is equal to 1 − x in Eq. (1); therefore, y in Eq. (2) can be
substituted by 1 − x, which transforms Eq. (2) into a linear equation.

Example 2 Solve the system of equations

{2x + 5y = −12, (1)

x + 3y = 8. (2)

Problem analysis: consider substituting one unknown with an algebraic expres-
sion containing the other unknown. In Eq. (2), the coefficient of x is 1, therefore,
Eq. (2) can be transformed by denoting x with an algebraic expression of y. Then
such a substitution can be put into the Eq. (1).

The above examples introduced the method of substitution. The underlying basic
thinking of this method is by means of “substitution” to eliminate one variable. The
following procedures are usually used,

(1) Choose one equation containing one unknown with a simpler coefficient from
the system of equations and substitute the unknown, for instance, y, with an
algebraic expression containing x, that is, the form of y = ax + b;

(2) Substitute y for y = ax + b in the other equation and get a linear equation of x;
(3) Solve this linear equation and get the value of x;
(4) Substitute x in y = ax + b with the value of x and then get the value of y to

obtain the solution of the system of equations.

Example 3, solving the system of equations with more complicated coefficients, is
then provided.

Relevant exercise problems are provided and they can be divided into the follow-
ing four types:

Type 1, transform 2x +y = 3, 5x −2y +12 = 0 into the form of denoting y with
an algebraic expression that contains x;

Type 2, solve the system of equations;
Type 3, solve word problems that can be transformed into systems of equations;
Type 4, solve non-traditional problems. For example, the solutions to

{ ax+by=8,

ax−by=2
are x = 5, y = 3. What are the values of a and b?
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In summary, worked-out examples are first provided with different coefficients
that are arranged from easy to difficult. Exercise problems are provided in a large
quantity and corresponding to the worked-out examples.

Emphasis on Improving Students’ Mathematical Ability

Chinese textbook authors pay close attention to improving students’ mathematical
abilities, and focus on computation, logic and reasoning, and spatial visualization.
Textbook authors believe that students’ abilities are developed together with “Two
Basics” training and problem solving. In the process of problem solving, students’
abilities of observation, comparison, analysis, synthesis, abstraction and generaliza-
tion and their thinking habits of induction, deduction and analogy are developed
through analyzing quantitative relationships in problems and reasoning on various
solution methods. In addition, connections between different concepts, for exam-
ple, solving geometric problems with algebraic methods, or investigating function
graphs with geometric knowledge can develop students’ mathematical abilities as
well. Thus, exercise problems are carefully selected and arranged in textbooks.

System-unified Common Requirements with Elective Contents

With the use of the national teaching and learning syllabus and university entrance
examinations in China, textbooks mainly focus on system-unified common require-
ments, though they are flexible to some extent. Less flexibility and more common re-
quirements are presented in textbooks for middle school than those for high school.
The elective contents in middle school textbooks include:

(1) “Reading” for broadening students’ knowledge, such as “decomposing
quadric trinomial with the method of making square”, “complex fraction” and “why√

2 is not a rational number?”
(2) “Thinking about it” to develop students’ thinking and improve their abilities

to analyze and solve problems, through enhancing knowledge connections.
(3) “Trying it” to improve students’ abilities to handle practical tasks and inter-

ests in geometric learning. For example, on a piece of paper, if we draw a line l, and
randomly take a point P on it and a point Q not on it. Through folding the paper,
we get a perpendicular line l1 of line l so that line l1 should (a) pass through point
P ; or (b) pass through point Q. How many folding lines can we get?

Furthermore, the second group of exercise problems (i.e., group B) is included to
strengthen the applications of “Two Basics”, improve students’ abilities, and meet
the needs of high-achieving students.

Summary of Textbook Design and Development Practices Before
2000

Chinese primary and secondary curriculum has adopted a national unified model.
Chinese school textbooks were also nationally unified for a long period of time. As
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a major resource for teachers and students, textbooks played a significant role in
Chinese primary and secondary teaching and learning. Consequently, the Chinese
government emphasized textbook development through organizing the specialized
educational press and convening experts to develop textbooks. Much experience has
been accumulated, especially in the following aspects:

(1) It is emphasized that textbooks need to embody mathematics education ob-
jectives. That is, “Two Basics”, intellectual and ability, and ideological education
should all be treated as significant and important, and they should supplement each
other.

(2) When developing and selecting instructional objectives and textbook con-
tents, social needs (after graduation, students have to seek jobs or pursue further ed-
ucation) and the intellectual development of students should be the two main consid-
erations. The selected contents must be fundamental, useful for production, science,
and technology, and connected with higher education. The content requirements
should have a certain flexibility to accommodate individual differences among the
students.

(3) Instructional objectives and textbook contents should be updated to align with
social and knowledge development, but priority ought to be given to strengthening
“Two Basics”. Reform can not be completed in one day; instead, textbooks should
be relatively consistent during a certain period. It would benefit teachers to mas-
ter textbooks and use them to improve teaching quality. It is better to “revise” or
“supplement” textbooks rather than completely change everything in the textbooks.

(4) The organization of textbook content should consider the connections and
relations between mathematics knowledge (e.g., connection and difference between
numbers and shapes), and also take into account cognitive and intellectual devel-
opment of students. With regard to the organization of textbook content, linear cur-
riculum and spiral curriculum content organizations have their own advantages and
disadvantages. Linear organization of textbook content avoids repetition, but some
content knowledge are not easily obtained by students; spiral organization of text-
book content fits students’ cognitive development, but may cause unnecessary repe-
titions. Consequently, linear organization should be taken as the main approach with
some difficult contents being arranged spirally.

(5) Textbook authors should pay close attention to the relationship between learn-
ing and the application of mathematics knowledge, as well as the implementation of
the principle of learning for application.

Developing Secondary Mathematics Curriculum Textbooks
in the Context of the Mathematics Reform After 2000

The Need for Developing New Textbooks to Meet Mathematics
Curriculum Reform Requirements

At the beginning of the 21st century, China embarked on a new round of basic ed-
ucation curriculum reform. In 1999, the Ministry of Education began to design the
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new basic education curriculum for the 21st century. School mathematics in China
has experienced dramatic changes, especially since 2001. In 2001, the new Curricu-
lum Standards for the nine-year compulsory education were formally established
for experimentation. The ongoing “standards-based education reform” specifies the
mathematics knowledge and ability requirements for students, advocates the ad-
vancement of students’ conceptual understanding, basic skills, problem solving si-
multaneously and the improvement of teaching quality.

Because the previous mathematics curriculum focused on knowledge acquisi-
tion, textbooks failed to meet the needs of society’s development. Some contents
in previous textbooks were “complicated, difficult, insignificant and outdated” with
few options available for students. The curriculum implementation lacked flexibil-
ity and opportunities for self-directed learning. Because too much attention was
paid to the drilling of “Two Basics”, students were restricted in the development
of creativity and critical thinking. It is advocated that new mathematics textbooks
should be fundamental, diversified and selective. The textbooks should help arouse
students’ interest in learning mathematics, help students to study mathematics ac-
tively, develop students’ potential in creativity through learning basic knowledge,
improve students’ mathematical thinking when trying to understand mathematics,
and raise students’ awareness of applying mathematics knowledge in everyday lives.
The new expectations placed on textbooks have inevitably called for changes in text-
books.

New Textbook Development

Purposes

The primary aims of the reform include changes to curriculum systems, structure,
and content in order to construct a new basic education curriculum system for teach-
ing and learning development (Liu and Li 2010). There are specific tasks textbook
development should include. First, textbook reforms should be oriented towards the
exploration of knowledge and student development, based on their prior knowledge
and creative teaching. Second, textbook content should meet the requirements of the
curriculum standards, embody physical and cognitive development of primary and
secondary school students, and reflect social, political, economic and technological
needs. Third, textbook contents should be presented in various ways to facilitate stu-
dents’ active engagement in activities such as observation, experimentation, survey,
and communication. Fourth, the adoption and use of diversified curriculum materi-
als for primary and secondary schools should be advocated. Education institutions
and publishing companies are encouraged to develop textbooks that are aligned with
the national curriculum standards.

Diversification of curriculum materials has been achieved by developing new
reform-oriented school mathematics textbooks. In particular, nine series of middle
school mathematics textbooks and six series of high school mathematics textbooks
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have been developed with approval from the education administration in China.
With the brief history of the development of new textbooks in the context of math-
ematics curriculum reform, it is difficult to summarize and discuss specific design
principles and practices that may be common to different textbook series. To illus-
trate the diversity of new textbooks, we describe some features of selected reform-
oriented high school mathematics textbooks in the following sub-sections.

Features of Selected Reform-Oriented High School Mathematics Textbooks

People’s Education Press’s High School Mathematics Textbooks (Version A)

A team effort to develop a series of high school mathematics textbooks was
carried out by the People’s Education Press. The textbook development in this
project basically follows the process of “literature review–theoretical framework
construction–textbook development–experimental use of textbooks–results and
reflection–textbook revision”. Based on literature review and relevant researches in
this project, the team expects to explore the design and development of mathemat-
ics textbooks that can help students learn mathematics in an active way, integrating
teacher-guided and student-centered teaching and learning. Specific instructional
strategies and methods are designed and integrated in mathematics textbooks to
help actively engage students in the classroom. The team develops high school
mathematics textbooks, and examines their scientific accuracy, rationality and ef-
fectiveness with experimental use. Through analyzing the data collected from the
experiments and summarizing feedbacks from teachers and students, the results are
used as guidelines for textbook revisions.

Several aspects have been emphasized in developing new textbooks. They in-
clude the following four aspects. Some specific examples are also provided to illus-
trate the changes.

(1) Placing more emphases on context, mathematical thinking, and application.
Introducing context, mathematical thinking and application are intended to in-

tegrate mathematical logic and students’ thinking. Students’ thinking and cogni-
tive development are emphasized as well as the development logic of mathematical
knowledge. In this way, mathematics content is not only organized by algorithms,
but also by students’ cognitive development.

Example: changes in introducing the concept of function.
In previous textbooks, the concept of “function” was introduced through the se-

quence of “set and corresponding → mapping → function”. Mathematical logic
was highlighted such as “mapping is a special case of corresponding”, and “func-
tion is a special case of mapping”. Consequently, students felt that the concept of
function was abstract and disconnected from their lives.

In new textbooks, “function” is introduced through “real-life examples” with an
emphasis on “function is a mathematical model descriptive of the rules of change in
the real world”. By going through the process from “analyzing features of real-life
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examples” to “summarizing common features to understand the concept of func-
tion”, students learn to apply the concept of function into analyzing and solving
problems.

(2) Problematizing mathematics.
Problematizing mathematics in textbooks is intended to improve students’ cre-

ative spirit and ability in knowledge applications. In the new mathematics textbooks,
content introduction is changed from the simple form of ‘given’ to include some new
sections, such as “observation”, “think about it”, and “exploration” that are set up to
pose questions in order to facilitate students’ thinking and exploration. During that
process, students experience the joy of discovery and creativity in mathematics.

(3) Emphasizing the guidance for developing mathematical reasoning.
The new mathematics textbook authors tried to change the approach from “what

is it?” without providing explanation of “why is it?” in the previous textbooks to
“guide students’ mathematical reasoning”.

Example: changes in introducing “the basic properties of inequality”.
In previous textbooks, the content was introduced through the following se-

quence: “stating eight basic properties of inequality → proving the properties of
inequality → working through examples → doing exercises”.

In new textbooks, an introduction is presented as an advanced organizer: two
real numbers, a and b, can have one of the following relationships: a < b, a = b

or a > b. These relationships are represented as: a < b ⇔ a − b < 0; a = b ⇔
a − b = 0; a > b ⇔ a − b > 0. These equivalent forms are called basic facts about
the magnitude of real numbers.

Inequality and equality are basic quantity relationships. Equality is described
with an equal sign and an unequal sign for inequality. To solve problems involv-
ing equality, we need to use the basic properties of equality. Similarly, we need
to use the properties of inequality to solve problems involving inequality. Because
both “equal to” and “unequal to” refer to relationships of numbers and expressions,
we can explore inequality properties with an approach similar to those used in dis-
cussing equality properties.

Question #1: can you recall the basic properties of equality?
Question #2: what is the approach used in discussing equality properties? (Hint:

“invariance” in operations.)
Question #3: based on the discussion about the basic properties of equality, can

you guess the basic properties of inequality?
Question #4: the proof of the basic properties of equality is mainly based on

“basic facts” (Note: this permeates axiom reasoning). Can you give the proof based
on the “basic facts”?

(4) Emphasizing connections among different content knowledge.
With more emphasis on connections among different content knowledge, stu-

dents are exposed to various approaches to obtaining conceptual understanding.
Example: changes in presenting and organizing the content of vector.
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In previous textbooks, it was directly stated that mathematical operations such
as addition and subtraction can be performed with vectors. The addition of vectors
satisfies the communicative law and the associative law, etc.

In new textbooks, introduction is first provided as numbers can be operated. In
light of the physical features of vector and number operations, the concept of vector
operation is introduced.

Then, derived from the concept of displacement in physics and the experiment of
the composition of forces, the “addition of vectors” is introduced. A follow-up ques-
tion is raised to encourage students to think more about it: “Number operations and
operation laws are closely connected since operation laws simplify operations and
addition satisfies the commutative and associative laws. Are there similar operation
laws for vector addition?” Students can then be guided to derive their conclusions.

Hunan Education Press Version of High School Mathematics Textbooks

Features of the Hunan Education Press version of high school mathematics text-
books include: focusing on inter-relationship among different mathematics contents
and stressing underlying thinking and methods of various mathematics contents.
For instance, other textbooks often lack a common theme for connecting contents
such as trigonometry, analytic geometry, and complex numbers. This textbook series
treats vectors as a unifying theme. Focusing on the concept of vector, the textbook
introduces various contents such as trigonometry, analytic geometry, and complex
numbers coherently.

This textbook series also gives prominence to mathematical methods rather than
simply deleting contents to reduce students’ burden. Newly added contents such as
vectors are helpful for students to learn other contents and solve problems. Learn-
ing vectors well is useful for plan geometry, analytic geometry, solid geometry,
trigonometry, complex numbers and even high school physics. In this way, although
students learn new contents, their burden of learning other contents is actually re-
duced. Sufficient exercise problems are also included in the textbook to further fa-
cilitate students’ learning of the mathematical methods.

The textbook series stresses the importance of geometry and the inter-relationship
between numbers and geometric shapes. Specifically, the textbook emphasizes the
importance of geometrical visualization in the introduction and explanation of math-
ematical reasoning and algebraic operations. For instance, complex numbers are
generally introduced as i2 = −1 from the algebraic perspective in mathematics
textbooks. However, the Hunan Education Press version textbook introduces com-
plex numbers through geometric transformations. Therefore, students come to know
that explorations of geometric transformations can lead to complex numbers. Such
an introduction relates numbers and geometry, embodies mathematical thinking and
makes the content easier for students to understand.

The textbook series introduces mathematical knowledge through questioning stu-
dents. In attempting to solve the problems, students learn concepts and algorithms
and develop theoretical awareness. The mathematics experiments included in the



320 Y. Li et al.

textbooks involve students in activities. While thinking about and doing mathe-
matics, students realize the needs of mathematical concepts, experience failure or
success in exploration and discovery, and trace the development of mathematical
knowledge. In this way, students explore more mathematical knowledge by them-
selves than in being led by teachers.

This textbook series emphasizes the expression of mathematical concepts. Based
on practice and research in mathematics education, this series presents rigorous
mathematical concepts with easy access. For example, it provides the elementary
expression of fundamental theorems of calculus and relatively rigorous proofs. In
this way, students can understand the essence of the significant outcome in the his-
tory of mathematics, even if they do not have the opportunity to learn more calculus.
It is also helpful for students who are going to learn more calculus in their further
studies. This series does not decrease the difficulty for easiness nor abandon rigor of
mathematics. It does not increase the difficulty for the sake of rigor of mathematics,
either.

The textbook series also gives prominence to in-depth thinking on mathematical
problems and discovering the fun in mathematics. For example, it raises the possi-
bility of an operation in which 0 is a divisor by introducing a new number. Such
a question may promote critical thinking among students about the rules of intro-
ducing new numbers in the system of numbers, and thus elevate their mathematical
habit of mind.

Last, the textbook series includes and arranges mathematical experiments for
high school students. Besides mathematics experiments in the text, the textbook
authors also include experiments in the exercises following the text. In this way,
students are provided with opportunities to understand the text more deeply through
observation, experimentation and induction. This also encourages students to seek
evidence to verify the new mathematics knowledge in the text. For example, after
introducing the concept of definite integrals, the textbook arranges an experiment to
calculate the area of a circle using a computer. Other experiments include extended
exercises integrating mathematics and physics. For instance, students are required
to draw the reflection of parallel rays through spherical mirrors to observe the light
gathering power of spherical mirrors. Another instance is to observe sine curves
using spring vibration, based on Hooke’s law.

Beijing Normal University Press’s Version of High School Mathematics Textbooks

There are several important features for this version of textbooks. They are high-
lighted as follows.

First, function is taken and used as the core concept connecting almost all con-
tent areas in high school mathematics, including function and equations, inequali-
ties, linear programming, algorithms, derivatives and their applications, and random
variables in probability and statistics. It is important to understand these content
areas from the perspective of functions. At the same time, learning these contents
deepen students’ understanding of functions.
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Second, geometry is used to develop students’ abilities of observation and rea-
soning. In this series, geometry integrates logical thinking and visual imagination
using texts, pictures, and graphs. Two parts of geometry content are designed as
follows: (1) the content of geometric shapes is designed and arranged as to devel-
oping students’ visual imagination. (2) logical thinking is integrated into geometric
content.

Third, operations are fundamental to mathematics. In this series, operations and
methods of operation are significant and indispensable. The textbook introduces two
components of operations: first, objects of operation; second, rules of operation. Ob-
jects of operation include numbers, variables or algebraic expressions, exponents,
logarithms, trigonometric functions, and vectors. Rules of operation include asso-
ciative law, commutative law, distributive law and “a + (−a) = 0”. The textbook
focuses on operations of various contents, including exponential operation, algorith-
mic operation, trigonometric function operation, vector operation (including plane
and space vectors), complex number operation and derivative vectors.

Fourth, in terms of statistics and probability, the textbook series focuses on the
following content areas with students’ active involvement: the ability to deal with
data, the process of gathering and analyzing data, case studies in statistics, inductive
thinking and random sampling in statistics.

Summary of New Textbook Development After 2000

Grounded in Chinese mathematics education traditions, the reform-oriented high
school mathematics textbooks discussed above show distinctive features. These
newly developed textbook series contain not only specific considerations in con-
tent selection and mathematical treatment, but also aspects of students’ learning
and cognitive development. In a way, these new textbooks embody expectations for
teaching and learning that are advocated in the mathematics curriculum reform. In
contrast to previous textbook development in China, the involvement of many ed-
ucators and researchers promotes the development of multiple textbooks available
for students and teachers. However, there are no specific studies that have been re-
ported to empirically document possible advantages and disadvantages of these new
textbooks.

The most widely adopted and used high school mathematics textbook series is
developed by People’s Education Press (Version A). Based on the marketing data
collected by PEP, more than 60 % of high school students in China are using math-
ematics textbooks published by PEP (Version A). Yet, this particular series lacks
solid empirical evidence to document its effectiveness, though some data collection
has been conducted in recent years.

In fact, the development of many new textbooks in China was a bit rushed (Li
2008). With the formal release of the new curriculum standards in 2001, some text-
book developers took less than one year’s time to develop and publish their new
textbooks. The quality of the new textbooks has become a concern. The ‘rushed’
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development of textbooks further suggests the importance of quality control, which
can and should be supplemented with empirical data collected from textbooks’ ex-
perimental uses.

The Integration and Use of Technology in Mathematics Textbooks
and Instruction

The above discussion does not provide specific information about the use of technol-
ogy in mathematics textbooks and instruction. The integration and use of technol-
ogy did not receive much attention before 2000, but the situation in China changed
dramatically after 2000. The integration and use of technology in mathematics in-
struction in China can be outlined as going through three different stages over the
years.

The first stage can be characterized with the use of electric equipment in class-
room instruction, such as slide projectors, projectors, and TV sets. The use of such
electric equipment helps the presentation of mathematics content, but not necessar-
ily changes the way of how students learn. There are also very limited impacts on
students’ learning content and their thinking.

The second stage can be characterized as computer-assisted teaching and learn-
ing. With the advancement of technology, more and more teachers have changed
their views about the use of technology in classroom instruction. Teachers also be-
come used to computers, which provides the base for the follow-up stage of using
information technology.

The third stage can be designated as the integration of information technology
and mathematics instruction. In addition to scientific calculators and computers,
many other technology equipment (e.g., graphing calculators, internet) is also used.
Many more software and applications become readily available for teaching and
learning almost all contents in high school mathematics. For example, multi-media
teaching courseware is made available for selected chapters of People’s Education
Press version textbook. Teachers are able to use the courseware to teach high school
mathematics in interactive ways. In addition, the software of “Scilab” developed
collaboratively by China and France is also used as a platform for mathematics
teaching and learning. As free software, “Scilab” can be downloaded by teachers
and schools from the official website. The publisher plans to develop many more
textbook-related courseware that will be free to all teachers and students to down-
load and use. Figure 2 shows the textbook introduction of information technology
use for collecting water temperatures and building a function model.

Concluding Remarks

The above discussions and summaries outline a number of guidelines and practices
used in developing mathematics textbooks in China. Because textbook development
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Fig. 2 Collecting water temperatures and building a function model (People’s Education Press
textbook)

was viewed more of a profession before 2000, it is clear that Chinese textbook devel-
opers have accumulated many practical experiences in textbook development. These
accumulated experiences in textbook development should provide a rich source of
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information for textbook writers and mathematics educators in other education sys-
tems to reflect on their own practices.

At the same time, textbook development itself has undergone many changes in
China. Although various changes to textbooks happen all the time, the recent cur-
riculum reform in China has brought the biggest change in textbook development.
Before 2000, textbooks were mainly focused on mathematical knowledge itself.
Specifically, presentation and organization of mathematics content in textbooks fo-
cused on knowledge accuracy and connections. Because textbooks have an impor-
tant role in guiding day-to-day classroom instruction in China (e.g., Li et al. 2009a),
students’ high achievement and teachers’ textbook use with fidelity suggest that Chi-
nese textbooks were effectively implemented. Although textbooks were developed
by a group of professionals housed in a large education press, textbook development
was mainly an experience-based practice. It becomes important to elevate accumu-
lated experience in Chinese textbook development for theoretical awareness.

After 2000, however, more attention has been given to students and their needs,
which is reflected in textbook development with both content adjustment and con-
siderations for teaching and learning in classrooms. Efforts are needed to focus on
meeting the needs of students with diverse socioeconomic background, especially
those coming from rural areas.

In contrast to practices before 2000, textbook development and publication is
now open to all publishers. It is not only a few full-time professionals housed in a
large education press, but experienced teachers and university professors, that be-
come the main working force of textbook development in China. The situation there-
fore becomes more and more similar to other education systems, such as the United
States (Hirsch 2007). As diversity can certainly promote creativity and competition
in textbook development, changes in textbook developers would eventually benefit
the improvement of textbook quality and thus mathematics teaching and learning
in classrooms. Yet, textbook development still remains largely an experience-based
practice in China. The successful changes in curriculum reforms in China may re-
quire specific strategies and considerations (e.g., Huang 2004). With recent growing
interest in the quality and process of textbook development, making textbook de-
velopment a scientific endeavor becomes a significant challenge to educators and
researchers in many education systems, including China.

Knowing and understanding curriculum and textbook development cannot be
separated from the social and political contexts of a system (Apple 2004). The
situation in China is no exception. Although we intended to focus and frame our
discussions on several aspects of textbook development more from an academic
perspective (see Section “School Mathematics Textbook Development: Issues and
Focuses”), the history of textbook development in China suggests that changes in
mathematics textbooks and textbook development are closely related to social and
political changes in the system over the years (Li et al. 2009b). Our inclusion and
discussion of textbook development in China over the years helps highlight the im-
portance of attending to the contextual changes in the educational system. By doing
so, we encourage mathematics educators and curriculum developers in other educa-
tion systems to reflect on their own practices.
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Finally, it is important to point out that textbook development itself is not a result
by itself, but a process that aims to produce high-quality textbooks. Textbook de-
velopment closely relates to textbook studies that examine the quality of textbooks
and their impact on teaching and learning mathematics. Efforts to improve textbook
development can be informed and facilitated by the ever-growing research interests
in examining and documenting teachers’ use of textbooks and use of textbooks in
students’ learning (e.g., Ding et al. 2012; Li et al. 2009a; Stein et al. 2007). Further
research is needed on textbook development, the connection of textbook develop-
ment and textbook use, and the impact of textbook development on teaching and
learning mathematics.
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Part IV
Curriculum, Teacher, and Teaching



Preface

When leaders of local, regional, or national school systems seek improvement in
the yield of their educational efforts, there are several natural opportunities for ac-
tion. The simplest and most common strategy is to define a new scope and sequence
for the intended curriculum. In school mathematics this usually means introduc-
ing important new topics of study, changing the order and timing of presentation
for familiar topics, and occasionally deleting topics that are judged to be no longer
important. A more challenging but very attractive goal is improving the quality of
classroom instruction to reflect the latest findings from research on student develop-
ment, learning, and teaching.

Choosing a course of action is actually the easy part of any school improvement
initiative. The real challenge is translating those intentions into everyday class-
room reality. The implementation phase of reform requires ‘selling’ the plans to
concerned teachers and the wider school community, preparing appropriate instruc-
tional and assessment materials, providing professional development for teachers,
and sustaining support for innovations. Then any responsible school improvement
actions should be studied carefully to see whether they are achieving their goals.

The six chapters in this section provide a variety of perspectives on the process
of improving school mathematics by reform of curriculum and teaching. Through
analyses of case studies in Israel, the United States, England, Japan, and China
they offer insights into the challenges of developing, implementing, and evaluating
change in the content objectives and teaching of K-12 mathematics.

Developing Instructional Materials: Throughout the nineteenth century and much
of the twentieth century, classic school mathematics textbooks were typically writ-
ten by individuals or small author teams, and the books became known by the names
of those authors. However, in the past 50 years, that tradition has given way to a
more corporate style of text production in which books become known by publisher
or curriculum development project name, rather than by the names of contributing
authors. Textbooks developed by project teams are now typically the result of col-
laboration among mathematicians, mathematics education researchers, curriculum
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development specialists, and teachers. But the role of teachers is mainly to test and
react to pilot versions of textbooks written by others.

The first chapter in this section, by Ruhama Even and Shai Olsher, describes a
technology-enhanced form of collaborative textbook development The Integrated
Mathematics Wiki-book Project. With the aim of making teachers more active par-
ticipants in textbook production, researchers at the Weizmann Institute in Israel de-
veloped a web-based process that invited and enabled teachers to contribute ideas
and specific suggestions for revision of the first edition of an Integrated Mathemat-
ics textbook for middle grades.

The Even and Olsher chapter describes the functionality of their Wiki tool and the
ways that teachers took advantage of the opportunity to participate actively in its use.
It also describes some of the inevitable tensions in a process designed to produce
instructional materials that meet the perceived needs of many different kinds of
teachers and students and in which ideas of teachers and curriculum development
‘experts’ clash.

Fidelity of Implementation: Any attempt to improve mathematics education by a
change in curriculum or teaching faces a very substantial challenge in also changing
the beliefs and practices of teachers. Because most reform initiatives over the past
several decades have combined new content objectives with fundamental changes in
standard teaching patterns, students of the reform process have paid close attention
to the fidelity with which new curriculum materials are implemented.

The second chapter in this section, by Mary Kay Stein, Julia Kaufman, and Miray
Tekkumru Kisa, describes a theoretical scheme and a practical research tool for
studying teacher learning and changes in practice. It then reports the results from
applying the scheme to the study of two specific reform initiatives.

The study tool looks at three main qualities of curriculum use: (1) the extent to
which new instructional materials are actually used as the basis of classroom ac-
tivity; (2) the congruence of classroom activity and the instructional philosophy of
the materials; and (3) the quality of enacted instruction. Findings from the appli-
cation of this curriculum research tool are then used to understand the effects of
different curriculum implementation strategies applied in schools and districts. The
result is a very insightful description of what it takes to make meaningful changes
in curriculum and teaching.

The third chapter of this section, by Margaret Brown and Jeremy Hodgen, re-
counts experiences in two major reforms of curriculum and teaching in England.
The first was a National Numeracy Strategy that attempted a highly prescriptive plan
for curriculum content and pacing and a template for daily mathematics lessons.
The implementation of the strategy was systematic and standardized in order to
reach more than 100,000 teachers in more than 17,000 schools. An accountabil-
ity program that included external tests with results published in the national press
monitored the implementation of reform. The analysis of results from this national
initiative provides important insights into the process and prospects of such highly
prescriptive top-down reform actions.

The Brown and Hodgen analysis of the National Numeracy Strategy is comple-
mented by their report of findings from a parallel Leverhulme Numeracy Research
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Project that studied the effects on teachers and teaching and a Cognitive Accel-
eration through Mathematics Education project that attempted to change teaching
through a ‘bottom up’ process. Those two research projects reveal the difficulty of
making broad and deep changes in long-standing patterns of mathematics teaching
at the elementary level, but offer some hope that a school based change process is
more feasible than a large-scale systemic strategy.

Content Analysis: The fourth chapter, by Jinfa Cai, Bikai Nie, John Moyer, and
Ning Wang, makes the case for careful content analysis as a tool in curriculum de-
sign, teaching, professional development, and research. The rationale for this claim
is made by contrasting two different approaches to fundamental ideas in algebra,
with a focus on the concept of variable.

After describing the conceptions of the variables that underlie typical Standards-
based and more traditional middle grades curricula, the authors show how those dif-
ferences shape the definition and development of other important ideas in algebra.
They then present research results showing how the two approaches affect classroom
teaching and student learning, they discuss the interplay of intended, implemented,
and attained curricula, and they describe certain issues in the methodology of cur-
riculum research.

Implementation Strategy: The fifth chapter in this section, by Akihiko Takahashi,
addresses the challenges of the effective implementation of change in mathemat-
ics curriculum and teaching. It describes the ways that a single public elementary
school in Japan used lesson study to introduce mandated changes in the national
course of study. Because the new Course of Study emphasized the importance of
promoting mathematical thinking and exposition, the lesson study groups focused
on production and study of research lessons aimed at that goal. The Takahashi paper
describes the resulting lesson study process in great detail.

Textbook Effects: The final chapter in this section, by Rongjin Huang, Z. Ebrar
Yetkiner Ozel, Yeping Li and Rebecca V. Osborne, focuses on the role of textbooks
in shaping the content and teaching of school mathematics. Through a case study of
fraction division in Chinese classrooms, they explored Remillard’s ideas about the
ways that teachers use and/or interpret curriculum materials.

After reviewing prior theoretical and empirical research on learning trajectories,
mathematical tasks, and pedagogical representations, the Huang et al. study exam-
ined the ways that a sample of Chinese teachers developed student understanding
and skill in fraction division. In particular, the investigators looked for similari-
ties and differences in the ways different teachers approached their instructional
task. They looked to see how the observed teaching corresponded to and made use
of developments of fraction division in the available text materials. The results of
their work offer others some guides to studying the important interactions between
teacher judgments and actions and textbook presentations of mathematical ideas.

Taken together, the six chapters of this section offer many insights into the widely
varied activities required by development, implementation, and evaluation of re-
form in curriculum and teaching of school mathematics. Some suggest new ways of
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thinking about the design of curricula and instructional materials. Others focus on
the challenges of implementing innovations effectively. All provide fresh ideas for
tackling the central tasks of school mathematics improvement.

University of Maryland, USA James Fey



Teachers as Participants in Textbook
Development: The Integrated Mathematics
Wiki-book Project

Ruhama Even and Shai Olsher

Abstract This chapter examines how the conventional relationships between teach-
ers and textbooks may be expanded so that teachers become more genuine partic-
ipants in the process of textbook development. The Integrated Mathematics Wiki-
book Project is used as a vehicle for investigating this matter. First, the work envi-
ronment provided for teachers is described. Then, the chapter focuses on the ways
in which teachers participated in the joint editing of a textbook they were using in
class, during the first year of the project. The analysis focuses on three aspects that
characterize the unique work environment provided for the teachers: (1) designing
a textbook for a broad student population, (2) preparing a new textbook by making
changes to a textbook designed by expert curriculum developers, and (3) consulting
with professionals that are not part of the teachers’ usual milieu.

Keywords Textbook development · Teachers as curriculum developers · Teachers
and textbooks · Wiki-book · Wiki

The relationships between teachers and textbooks are generally associated with cur-
riculum enactment and teachers’ use of curriculum materials. Less prevalent is the
association of teachers with curriculum development and textbook preparation. The
aim of this chapter is to examine how the conventional relationships between teach-
ers and textbooks may be expanded so that teachers become more genuine partic-
ipants in the process of textbook development. The Integrated Mathematics Wiki-
book Project is used to examine how this challenge maybe addressed, focusing on
the ways in which teachers participated in a unique opportunity made available to
them to jointly edit a textbook they were using in class.

After appraising research on the relationships between teachers and textbooks,
which provide a basis for conducting this work, we describe the Integrated Math-
ematics Wiki-book Project, in which this research is situated. Then, we report on
the ways in which teachers participated in the joint editing of a textbook they were
using in class, during the first year of the project. The study reported in this part
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of the chapter focuses not on the changes teachers suggested for the textbook, but
instead on teachers’ ways of participating in the joint editing of a textbook.

Background

Research on the relationships between teachers and textbooks usually focuses on
how textbooks influence classroom instruction. This research examines how teach-
ers use curriculum materials and how a written curriculum is transformed into class-
room reality (e.g., Manouchehri and Goodman 1998; Remillard 2005; Remillard
et al. 2009; Stein et al. 2007). Accumulating research in a number of countries
suggests that curriculum materials, textbooks in particular, considerably influence
classroom instruction: teachers often follow teaching sequences suggested by cur-
riculum programs, and base class work mainly on tasks included in textbooks (e.g.,
Eisenmann and Even 2009, 2011; Grouws et al. 2004; Haggarty and Pepin 2002).
Research also reveals discrepancies between the written and the enacted curriculum.
For example, Stein et al. (1996) showed that cognitively challenging mathematical
tasks tend to decline into less demanding, procedural exercises when implemented
in class. Even and Kvatinsky (2010) suggest that teachers who adopt different teach-
ing approaches, to some extent, make different mathematical ideas available for
students to learn, even when they use the same textbooks. Such research on the rela-
tionships between teachers and textbooks reflects prevalent views and assumptions
about the teacher’s role, usually regarding the teacher as a curriculum enactor and
user of curriculum materials furnished by expert developers.

Yet, in contrast to their central role in curriculum enactment, teachers usually
play a rather insignificant role in the development of textbooks. Indeed, some text-
book authors are teachers, and as part of the process of curriculum development,
selected teachers are often recruited by curriculum developers to teach an experi-
mental version of a new curriculum program in order to gather information about
how students deal with the tasks posed, to estimate the time needed to work on
tasks in class, and to construct a conjectured learning trajectory (Clements 2002;
Cobb 1999; Gravenmeijer 1998; Hershkowitz et al. 2002; Schwarz and Hershkowitz
1999; Simon 1995). Still, obviously, only a minute number of selected teachers can
actually participate in the development of textbooks in these ways. Thus, the voice
of the vast majority of teachers remains unheard and most teachers rarely influence
textbook preparation or development.

In reflecting on the insignificant role that teachers play in the development of text-
books and their central role in using them in class, we feel that the conventional re-
lationship between curriculum developers and teachers is basically unidirectional—
from curriculum developers to teachers. Teachers’ aspirations about desired text-
books as well as adjustments that they make in textbooks—based on their experi-
ences, their knowledge and beliefs about mathematics and its teaching and learning,
as well as their acquaintance with the system in which they teach and with their own
students—often remain unknown to curriculum developers.
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The Integrated Mathematics Wiki-book Project aims to expand the traditional
unidirectional connection between curriculum developers and teachers into a bidi-
rectional relationship: to stem also from the teachers to the curriculum developers.
Thus, it aspires to offer teachers a way to become more genuine participants in the
process of textbook development. In the following section we first describe the In-
tegrated Mathematics Wiki-book Project. Then we report on a preliminary study
that examines teachers’ ways of participating in editing and producing a wiki-based
revised version of the mathematics textbook they used in class, in an environment
offered to them during the first year of the project.

The Integrated Mathematics Wiki-book Project

Background

As a country with a centralized educational system, the Israeli school curriculum is
developed and regulated by the Ministry of Education. In 2009 the Ministry of Edu-
cation launched a new national junior-high school mathematics curriculum (Min-
istry of Education 2009). The new national curriculum comprises three strands:
numeric, algebraic, and geometric. It stresses problem solving, thinking, and rea-
soning for all students, and approaches mathematics teaching in junior-high schools
in a spiral approach.

In response to the introduction of the new national junior-high school mathemat-
ics curriculum, the mathematics group in the Department of Science Teaching at the
Weizmann Institute of Science began developing a new comprehensive junior-high
school mathematics curriculum program entitled Integrated Mathematics (Matem-
atica Meshulevet). The curriculum development team comprises experienced math-
ematics curriculum developers and mathematics teachers. At the time of this writ-
ing, the experimental edition is being used in more than 250 schools throughout
Israel, and the team works closely with hundreds of teachers all over the country
who need help in adapting to a new curriculum. The Integrated Mathematics Wiki-
book Project uses the Integrated Mathematics textbooks as a point of departure. The
first author is the head of the Integrated Mathematics Project and the Integrated
Mathematics Wiki-book Project; the second author is a leading team member of the
Integrated Mathematics Wiki-book Project.1

1The project is part of the Rothschild-Weizmann Program for Excellence in Science Teaching,
supported by the Caesarea Edmond Benjamin de Rothschild Foundation. Other team members
include Michal Ayalon, Gila Ozruso-Haggiag, and Edriss Titi.
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Project Objectives and Focus

The main objective of the Integrated Mathematics Wiki-book Project is to expand
the conventional relationships between teachers and curriculum developers, which
are mainly unidirectional—stemming from curriculum developers to teachers. To
this end, the Integrated Mathematics Wiki-book Project invites teachers who use
the Integrated Mathematics Program to collaborate in editing the textbooks they
use in their classes and to produce, as group products, revised versions of these
textbooks—wiki-based revised textbooks that are suitable for a broad student pop-
ulation, and not only for students in a particular teacher’s class.

An additional goal of the Integrated Mathematics Wiki-book Project is to fos-
ter teachers’ professional development and growth. It is assumed that this kind of
teachers’ collaborative work has the potential to contribute to improving teachers’
understanding of mathematics and the curriculum, to acquaint teachers with the use
of a valuable technological tool and resource (Wiki) that allows easy collabora-
tive creation and editing of teaching materials, and to support the development of
a professional community whose members work collaboratively with colleagues on
authentic tasks of teaching.

The Technological Platform

To enable collaborative textbook editing and the production of a joint revised text-
book, we use, with some modifications, the MediaWiki platform and Wikibook tem-
plates for constructing the Integrated Mathematics Wiki-book website. The project
website serves as an online platform for collaborative work on a common database
(i.e., a textbook) and for discussions in a forum-like fashion.

Figure 1 shows part of the main page of a textbook on the Integrated Mathematics
Wiki-book website. (The text in this, as well as in all other figures, is a translation to
English of the original Hebrew text.) The main page includes standard MediaWiki
tabs (top of the page) that allow performing actions (e.g., editing and requesting
change notifications) or viewing pages related to a selected textbook unit (e.g., mod-
ifications made and discussions held). An abbreviated textbook table of contents is
displayed (on the right) to enable easy access to textbook units. Also included in the
main page of a textbook on the Integrated Mathematics Wiki-book website (as well
as in all other pages) are navigation shortcuts to frequently used pages and tools
(e.g., the latest modifications, technical support, and consultation with various pro-
fessionals) as well as a link to a free-hand drawing applet embedded in the website
(on the left).

To assist in the process of textbook editing, we added different kinds of buttons to
the standard Wikitext editing toolbar. Some of these buttons were added before the
project started, based on the project team’s anticipation; other buttons were added
as the editing work progressed, in response to participants’ requests. One kind of
added buttons is buttons that assist in general text editing. For example, a button
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Fig. 1 Part of the main page of a textbook on the Integrated Mathematics Wiki-book website

labeled important was added in response to participants’ requests to easily highlight
core parts of a textbook. However, unique challenges are associated with the task of
editing a mathematics textbook that are not encountered in most other uses of Wiki-
text. These challenges are rooted in the need to type mathematical text and the desire
to display mathematics problems in specific formats. Therefore, we added buttons
to the standard Wikitext editing toolbar that enable the insertion of frequently used
mathematical text templates and textbook problem templates. Figure 2 displays cus-
tomized added templates.

Quite a few buttons were added in order to improve communication among the
participants about proposed changes. This kind of buttons includes, for instance,
buttons labeled before and after to signal whether a suggested editing action is
based on anticipated or actual classroom teaching; buttons labeled like and seen
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Fig. 2 Customized templates
added to assist in the editing
of a mathematics textbook

were added to enable easy positive and neutral responses (respectively); and a smil-
ing face button was added to enable a softening of the “tone” of written messages.

Operating the Project

The Integrated Mathematics Wiki-book Project started in September 2010. At the
time of writing this paper it has successfully concluded two years of operation and
is embarking on the third year. Participation in this project consists of (1) on-going
distance work, and (2) monthly face-to-face whole-group full-day meetings. These
are elaborated on next.

The ongoing distance work includes textbook editing, reacting to other partic-
ipants’ suggestions, and discussions of mathematical and pedagogical issues. Fig-
ures 3–6 present various kinds of ongoing distance work. Figure 3 shows a Wiki-
textbook page in which one of the participating teachers added a task (task 6). The
new task asks students to work algebraically and to generalize their previous work
on task 5, which involves work on several numeric cases. The teacher explained her
suggestion to add a generalization task in the corresponding discussion page:

I added an additional task following question 5 because in question 5 the
students solve several examples regarding which of the figures has a larger
area. . . so I thought to add a generalization question, where the side of the
rectangle is x.

Figure 4 shows a teacher’s proposal to change the phrasing of tasks in the textbook.
In this example, a teacher added an organizational table (the second table in Fig. 4)
to an investigation task that involves pattern finding and problem solving related to
a series of “buildings” made from matches.

The reactions of other participating teachers to this suggested change in task
phrasing were expressed in the corresponding discussion page (see Fig. 5). As
shown, the suggestion to add an organizational table (by T1) received “like” re-
sponses from two other participants (T2 and T3).

The discussion page in Fig. 5 includes only “like” responses; i.e., concise teach-
ers’ responses that require only a small effort. To respond in this way, the teachers
needed only to click on a ready-made button. Figure 6 shows a discussion page of
a different nature. This discussion page includes a debate among five teachers (T1-
T5) regarding whether there was a need to change the structure of a certain unit in
the 7th grade textbook.
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Fig. 3 Edited Wiki-textbook page—adding tasks

The monthly face-to-face whole-group meetings consist of collaborative work
on advancing the textbook editing, discussions of mathematical and pedagogical
issues, and formulation of community working norms. These meetings are built on
the preceding teachers’ distance work of textbook editing, and they also serve as
departing points for subsequent distance work.

Participating teachers are provided with two kinds of support that accompany
both the distance work and the face-to-face meetings. One is technical support in
using the technological platform for textbook editing. The aim of this support is
to provide a smooth running work environment that enables teachers to perform
desired editing without having to deal with, or be constrained by, technological dif-
ficulties.
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Fig. 4 Edited Wiki-textbook page—change of task phrasing

The other kind of support is related to conceptual issues that emerge as part of the
editing work. To address that, participating teachers are offered the opportunity to
consult with various professionals throughout their ongoing distance work and the
monthly face-to-face meetings. The professionals made available for consultation
include authors of the textbooks, a research mathematician, and researchers in the
field of mathematics education. To enable easy access to these professionals, a va-
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Fig. 5 Discussion page: “Like” responses to a suggested change in task phrasing

Fig. 6 Discussion page: debating the structure of a certain textbook unit

riety of consultation channels are offered via the Integrated Mathematics Wiki-book
website, regular e-mail, Skype chats and calls, and face-to-face meetings.

Several changes occurred in the project between the first and the ensuing years of
operation. During the first year of operation (starting in September 2010), the project
team purposely avoided any intervention with, commenting on, or evaluation of the
teachers’ work, besides instructing the teachers on how to use the Integrated Math-
ematics Wiki-book website. The role of the project team during that year was to
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provide a smooth running work environment and to moderate, but not direct, the
monthly face-to-face meetings. Similarly, during this year, the consultants associ-
ated with the project were explicitly instructed not to initiate any intervention with,
comment on, or evaluate the teachers’ work. Instead, the consultants were directed
to respond only when explicitly approached by the teachers, and to address only
queries related to the following areas: reasons for specific choices made in the text-
book by the textbook authors, the mathematics in the curriculum, and research in
mathematics education. In particular, the consultants were instructed not to com-
ment on or evaluate particular teachers’ editing suggestions, even when requested
to do so by the teachers.

In the second year of the project the participating teachers (some newcomers
and some continuing participants) continued to receive an autonomous work envi-
ronment wherein they could freely edit the textbooks as they wished. However, the
work environment was slightly modified. For example, the opportunities to inter-
act with professionals that are not part of the teachers’ usual milieu were expanded.
Thus, a sizable part of the monthly face-to-face meetings during the second year was
devoted to semi-structured discussions with the textbook authors and with the math-
ematician. Also, the consultants associated with the project were allowed to freely
comment on the teachers’ editing suggestions and could freely address any query
raised by the teachers. Moreover, during the second year of the project the project
team initiated various activities that purposely addressed important issues related
to the teachers’ work, such as aspects of argumentation in mathematics classes. Fi-
nally, as the number of participating teachers grew considerably, some of the editing
work was conducted in small groups, according to different focus preferences. Each
small group had a group leader, who also participated in the planning of the project
activities together with the project team. A similar work environment is planned for
the third year of the project.

As can be seen, several characteristics of the work environment offered by the
Integrated Mathematics Wiki-book project are not usually part of teachers’ practice.
This includes, for example, designing a textbook for a broad student population
instead of focusing on the specific student population taught, generating a textbook
by making changes to a textbook designed by expert curriculum developers, and
consulting with professionals that are not part of the teachers’ usual milieu. The
next part of the chapter focuses on ways in which the first-year teachers participated
in the joint editing of a textbook that they were using in class, in this unique work
environment.

First-Year Teachers’ Ways of Participating in Textbook Editing

Most of the first-year teachers participated in the distance editing of the textbook
on a regular basis. Yet they varied regarding the extent and nature of their work
on the Integrated Mathematics Wiki-book website. Some used the website exten-
sively, making or suggesting changes, commenting on colleagues’ suggestions, or
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discussing mathematical or pedagogical issues. Others were less active in using
the website. All teachers, however, actively participated in the face-to-face monthly
meetings; some explained that they could express themselves better in these meet-
ings than on the website.

At the beginning of the year, teachers moved rather hastily from one unit to an-
other, not achieving closure on suggested changes, and leaving some issues raised
by other teachers unaddressed. Moreover, different teachers frequently worked on
different textbook units, which resulted in less collaborative editing. Therefore, af-
ter a few months, the project team included in each monthly face-to-face meeting a
session that focused on addressing changes suggested and issues that were raised in
previous distance work, in relation to only one or two textbook units.

Next, we present a preliminary study that focused on the ways in which teachers
participated in the joint editing of a textbook that they were using in class during
the first year of the project, stressing three characteristics that are not usually part
of teachers’ practice. Where appropriate, we added relevant information from the
second year of the project’s operation.

Methods

Participants in the first year of the project consisted of nine 7th grade teachers, all of
whom used the 7th grade Integrated Mathematics textbook (Bouhadana et al. 2009a,
2009b) in class. The teachers came from different parts of the country, from Jewish
and Arab sectors, and from orthodox religious and secular sectors. Their teaching
experience varied considerably, from 6 to 29 years. All of the participants held a first
degree either in mathematics or in a mathematics-related field, such as a B.Ed. with a
major in mathematics. Five held a masters’ degree, not necessarily in mathematics or
mathematics education. None of the participants had any prior experience in editing
texts using a wiki-based platform; however, most were familiar with Wikipedia as
a source of information. The teachers received grants as well as course credits that
would count towards a salary increase.

Data sources include the following: (1) the Integrated Mathematics Wiki-book
Project website, which contains the wiki-based textbook with all changes made,
their corresponding discussion pages, and online forum-like discussions, (2) video-
documentation and field-notes of the monthly whole-group meetings, (3) individual
semi-structured interviews with the teachers, at the end of that year, (4) individual
papers written by the teachers as a final assignment, and (5) a journal kept by the
second author in which he documented informal conversations with project partici-
pants, and added ideas and reflections.

Data analysis focused on the ways in which the teachers participated in the joint
editing of a textbook that they were using in class during the first year of the project.
The analysis focused on the following three aspects:

• Designing a textbook for a broad student population.
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• Preparing a textbook by making changes to a textbook designed by expert cur-
riculum developers.

• Consulting with professionals that are not part of the teachers’ usual milieu.

For each of the first two aspects, we scrutinized the following data sources: discus-
sion pages and online forum-like discussions on the Integrated Mathematics Wiki-
book Project website, field-notes of the monthly meetings, transcripts of the inter-
views, final papers, and the researcher’s journal. We searched for instances related
to each of the two aspects. We then examined and interpreted them. We took into
account how each instance is connected to others and how it is linked in the overall
activity of each relevant teacher and of the whole group of teachers.

For the third aspect, we identified and examined all recorded interactions with
a representative of the textbook authors, the research mathematician, and the re-
searcher in mathematics education. We then interpreted those interactions.

Designing a Textbook for a Broad Student Population

The task for the group of nine teachers was to produce, as a group product, one—and
only one—wiki-based revised textbook that would be suitable for a broad student
population, and not only for students in a particular teacher’s class. In general, the
first-year teachers embraced this approach and conceived their role as preparing
a textbook that would be suitable for any 7th grade class in the country. This is
illustrated by the following episode that took place during the third monthly face-
to-face meeting. The group of teachers discussed a particular change one of them
had suggested. Feeling that the modification suggested might not be appropriate for
a general student population, one teacher commented that the textbook they were
preparing should be appropriate for the whole population of 7th grade students in
the country. Her colleagues agreed with her.

T1: We are making a book that is not suitable for us individually.
T2: [puzzled] Why?
T1: But a book that should be appropriate for the whole country.
T2: Right.

To write a textbook that is suitable for a broad student population, the teachers of-
ten introduced, and insisted on adopting changes that emerged from their personal
teaching context. For example, one of the teachers that taught only lower-achieving
classes for several years continually stated that one of her goals was to make the
7th grade Integrated Mathematics textbook more suitable for the low-achieving stu-
dents in her classes. She consistently suggested modifications based on her teaching
experience in those classes. For example, explaining why she revised the table in a
textbook task that dealt with the number of marbles a child [Noi] had in a variety of
situations, the teacher wrote in the corresponding discussion page that this revision
helped students in her class who have difficulties. She also indicated that the change
she made would be appropriate for higher-achieving students as well, signaling that
she was aware that the textbook needed to be appropriate for other classes too:
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I changed Noi’s table, I recorded [in the table] the example exercise that
the students had to fill in. It was very helpful for students in my class who
have difficulties; by the way I think that one example wouldn’t harm strong
students as well.

Throughout the year this teacher suggested and initiated numerous changes with
the goal of making the textbook more suitable for low-achieving students. The ma-
jority of these suggestions were rejected by most other participants as not suitable
for the broader 7th grade student population. Eventually, to resolve the continual
tension that the group experienced when producing a generic textbook and dealing
with the requests of one teacher to introduce modifications that specifically attend
to the lower-achieving students, the group decided that there was a need for an addi-
tional version of the textbook, designed specifically for low-achieving students. The
teacher who was interested in this modification began to develop such a version by
herself. In the second year of the project she became a leader of a group of teachers
who collaborated on editing a version of the 8th grade Integrated Mathematics text-
book that was intended by the curriculum developers for classes of low-achieving
students. She will continue to lead a group of teachers similarly during the third year
of the project.

However, another case in which a teacher repeatedly initiated changes that suited
her unique teaching context ended up differently. This teacher, who had easy access
to a computer lab for her class, stated that her main objective was to find ways to
include in the textbook technology-based activities so that her students could use
computers as they learned mathematics. Her view, which she continually expressed
throughout the year, was that integrating computers into school mathematics is im-
portant for all students (i.e., not only for her students). This view was clearly ex-
pressed, for instance, in the paper she wrote as a final assignment:

Educators in this country and around the world agree that the mathematics
curriculum should address the needs of a modern society in the 21st century,
therefore, the right thing to do is to integrate computer technology into the
textbooks, technology that will challenge and lead students to better learning.
The Wikibook framework promotes the integration of interactive tools that
provide intriguing stimuli and provide a sense of control with the learning.

This teacher devoted a great deal of her time to work in this direction during the first
year of the project. She continued to do so during the second year as well, in addition
to serving as a leader of a small group of participating teachers. The authors of the
Integrated Mathematics Program liked the applets she developed, and decided to
display them on the Integrated Mathematics Project website, in her name, making
them available to all users of the Integrated Mathematics Program.

Unlike the case of attending to the needs of low-achieving students described
before, the suggestion to incorporate the use of technological tools into the textbook
was embraced by the other participants. They agreed with the teacher who initiated
the integration of advanced technological tools that this is important to all students.
Thus, they supported revisions in this direction even though the use of computers in
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mathematics lessons in Israel is sparse. For instance, in her final paper, one of the
other teachers wrote:

It is important to say that not in all schools from which the participants
come there is an adequate technological infrastructure for such work, and
therefore the integration of technology was irrelevant for them. . . My feel-
ing is that in this topic, the integration of technological tools into mathematics
teaching, there was a consensus about its importance.

Making Changes to a Textbook Designed by Experts

Most teachers actively participated in the joint editing of the textbook. Yet, making
changes to a textbook written by expert curriculum developers was a role that not
all teachers easily embraced. In the following illustrative excerpt, taken from an
interview with one of the participating teachers at the end of the year, the teacher
described how she felt at the beginning of the year. Responding to the interviewer’s
opening question: “Tell me how the project was for you, in general,” the teacher
replied:

T: It took some time to get going.
I: Okay, what does it mean?
T: It took some time to get going. Uh, I remember that the moment I intro-

duced the first change, I said: ‘What? Can I introduce changes? Can I here?’
It was not obvious to me. And, at least at the beginning, it took some time [to
realize] that you can make. . .

As the work progressed, the teachers generally seemed comfortable introducing
changes to the textbook. Nevertheless, a few episodes occurred later in the year,
indicating that teachers sometimes refrained from making changes because of their
respect for the decisions and choices of the textbook’s authors. For example, com-
menting on a debate among three teachers regarding several significant changes that
they had suggested in a specific textbook unit, another teacher wrote in the discus-
sion page:

In my opinion the changes are exaggerated here. I would like to emphasize
a sentence that was stated in the last meeting and that Shai didn’t like: There
are professional people who wrote the book with a broader and more secure
view. I do believe that change begins in the field but we need a solid basis.

A similar episode occurred during the third whole-group face-to-face meeting. One
of the teachers suggested to the group that a label be added to each “owl” icon, to
indicate whether it is important or not (“owl” icons were used in the original text-
book to signify lesson summaries, definitions, comments, and clarifications). An-
other teacher objected to labeling some “owls” as unimportant: “I think that if they
[the textbook authors] decided to include it in the owl then it is probably important.”
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Moreover, most teachers introduced changes directly in the textbook, inserting
new text, as well as changing or omitting existing text. Yet some teachers tended
to suggest changes as ideas, describing them in the discussion pages, or in online
forum-like discussions that accompanied the wiki-based textbook. In addition to
technical difficulties that were the main source for this behavior at the beginning,
sometimes, especially later in the year, this behavior was rooted in the participating
teachers’ perception of their role in producing the edited textbook. For example, one
teacher continually stated that she only suggests ideas for changing the textbook,
whereas it is the professional curriculum developers’ task to carry them out—if
they thought the ideas were good—and execute the actual editing of the book. For
instance, in her interview at the end of the year, this teacher said:

T: Even changes to the textbook. . . because, really, it’s, like, it is difficult
for me to make any changes. No, not technically.

I: Why?
T: I don’t know. Like, who am I, like, it is difficult for me, I don’t want,

like, to make changes. So I propose, and if it’s good then
I: Then what?
T: Then they will take this idea.
I: Who?
T: The team of curriculum developers. . .

Consulting with Professionals Not Part of the Teachers’ Usual
Milieu

The project offered the first-year teachers the possibility of consulting with three
professionals that are not part of the teachers’ usual milieu: a representative of the
textbook authors, a research mathematician, and a researcher in mathematics ed-
ucation. This consultation was restricted to queries related only to the following
areas: reasons for specific choices made in the textbook by the textbook authors, the
mathematics in the curriculum, and research in mathematics education. There were
about twenty explicit requests for consultation during the year, most of which were
directed to the representative of the textbook authors; none were directed to the
researcher in mathematics education. All but two of the requests for consultation
occurred during whole-group face-to-face meetings.

Most of the requests for consultation were directed to the representative of the
textbook authors, who played a double role, since she was also a full member of the
Integrated Mathematics Wiki-book Project team. Thus, she was present in all face-
to-face meetings. As intended, almost all the queries to her were related to reasons
for specific choices made in the textbook by the textbook authors. For example,
teachers asked her why the authors did not provide captions to the different kinds of
“owls”, whether all the drawings in the textbook are supposed to be precise, what
is the role of a specific part of a unit, why there is no definition of function in the
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textbook, etc. Rarely, teachers also sought approval for their suggested changes. The
most salient example was when one teacher, who suggested a complete change in
the national curriculum so that it would be based on a functional approach, presented
her suggestion in one of the whole-group meetings, and later repeatedly pressed for
the textbook writers’ opinion.

Seldom did the first-year teachers use the opportunity to consult with the math-
ematician who, unlike the representative of the textbook authors, was not part of
the ongoing work. The teachers met the mathematician only once, when he intro-
duced himself at a whole-group meeting, but he was available to answer questions
via email and video chat using Skype. The teachers approached the mathematician
three times, using the project team as mediators, mainly as a referee in cases when
they strongly disagreed with each other (not necessarily about mathematics per se).
For example, when the group of teachers could not reach a consensus regarding
which of two textbook problems was more difficult for students, or which definition
of the algebraic activity of substituting numerical values into expressions should be
included in the textbook, if at all.

Conclusion

In this chapter we used the Integrated Mathematics Wiki-book Project to exam-
ine how the traditional unidirectional relationships between curriculum develop-
ers and teachers can be expanded into a bidirectional relationship: also from the
teachers to the curriculum developers. The first year of the project provided an au-
tonomous intervention-free work environment for teachers to freely edit the text-
book as they wished, restricting—somewhat artificially—the scope of their inter-
actions with other professionals. Thus, the project team offered extensive technical
support but purposely avoided and even impeded any involvement with, comment-
ing on, or evaluation of the teachers’ work.

The initial examination of the ways in which the first-year teachers participated
in the joint editing of a textbook they were using in class focused on characteris-
tics that are not usually part of teachers’ practice. The findings revealed that most
teachers accepted the role of preparing a textbook that would be suitable for a broad
student population rather easily. To this end, the teachers often used the knowl-
edge that they had acquired from their own teaching experience as a springboard
for textbook modifications, but took into account a variety of teaching contexts as
well as different needs and preferences of various teachers, students, and the edu-
cational system at large (e.g., when considering the needs of both mainstream and
lower-achieving classes, and when deciding to integrate the use of computers into
the textbook).

Most teachers accepted their role in making changes to a textbook written by
expert curriculum developers rather well; yet, a few did not. At times, some teach-
ers refrained from making changes because of their respect for the expertise of the
textbook’s authors. Those teachers either protested against suggested changes that
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appeared to contradict the intention of the textbook’s authors’ (e.g., labeling some
“owls” as unimportant) or in general perceived their role as a suggestion maker for
changes in the textbook, but leaving the decision of whether and how to carry out
those changes to the experts.

The work environment provided to the first-year teachers purposely prevented
them from freely interacting with professionals that were not part of the teachers’
usual milieu. This kind of environment enables one to study changes that a group of
teachers suggest to make in a textbook they use in class, without being intimidated
by interventions and criticisms of people who might be perceived by the teachers as
authority figures. This is the focus of another study that we are currently conducting.
However, the work environment provided to the first-year teachers is rather artificial,
and perhaps is not as beneficial, when the second goal of the Integrated Mathemat-
ics Wiki-book Project, which is promoting teachers’ professional development, is
considered. Not only might improving teachers’ understanding of mathematics and
of the curriculum be less successful this way, but this kind of work environment
also prevents teachers from interacting with professionals who are not part of the
teachers’ usual milieu in more authentic ways. As described in this chapter, in the
second and third years of the project this deficiency is addressed by modifying the
teachers’ work environment. Yet the findings of this preliminary study suggest that
careful attention should be given in designing the work environment, so that it nour-
ishes teachers’ participation in the development of textbooks in ways that help them
feel qualified to face other professionals.

The Integrated Mathematics Wiki-book Project was founded on the premise that
teachers should become more genuine participants in the process of textbook devel-
opment. The unique design of the Integrated Mathematics Wiki-book Project sets
the stage for new and exciting ways for all teachers to actively participate in text-
book development, and for professional curriculum developers and policy makers
to learn about teachers’ needs, desires, and aspirations.

This project also provides a unique research setting for examining important is-
sues that presently are not well-understood or easily accessible to study. These in-
clude, for instance, teachers’ expectations and aspirations for desired textbooks, the
types of changes teachers think should be made in textbooks they use, and the con-
tribution of specific work environments to teachers’ joint editing of textbooks (affor-
dances and limitations). This chapter lays the groundwork for such future research
studies.
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Abstract The purpose of this study was to develop and test the viability of a con-
ceptual framework for analyzing mathematics instruction and mathematics teacher
development within the context of policies regarding district-wide adoption of cur-
riculum. The framework takes three dimensions of curriculum-based instruction into
account independently: use, congruence (the extent to which instruction aligns with
district and curricular guidelines), and quality (the extent to which instruction main-
tains the cognitive demand of appropriately challenging tasks, takes account of and
builds on student thinking, and situates intellectual authority in mathematical rea-
soning). Based on analyses of multiple observations of 36 teachers across two dis-
tricts, teachers were classified into one of four implementation profiles (flounderer,
mechanical, canonical, maverick) that were created by crossing the three dimen-
sions; in addition, their trajectory through those profiles was traced over a two-year
period. Results suggest teachers were more likely to use the district-adopted cur-
ricula as the source of their lessons than to align their practice with curricular and
district guidelines. Teachers’ demonstration of high-quality lessons was less fre-
quent. Differences across the two districts in the percentages of teachers falling into
each of the implementation profiles suggests that district actions may have shaped
teachers’ uptake of the curriculum. Finally, results suggest a more uneven pathway
toward high-quality instruction than had been initially conjectured.
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Over the past decade, district policies in the United States have become increasingly
focused on the improvement of instruction, especially in subjects that are regularly
tested under NCLB (Elmore and Burney 1999; Hightower et al. 2002; Hubbard et al.
2006; Supovitz 2006). In mathematics, curriculum1 has traditionally been viewed
as the key policy lever for improving instruction and learning on a large scale. Yet
curriculum alone has been shown to have limited influence on teachers’ instructional
practices (Ball and Cohen 1996; Coburn 2001; Fullan 1991; Fullan and Pomfret
1977; Wilson 1990). While it may be relatively easy to get curriculum materials
into the hands of large numbers of teachers, it can be difficult for district leaders to
ensure that teachers actually use the new materials and more difficult yet to ensure
that they use them in a manner that is congruent with the pedagogical2 features of
the curriculum (e.g., group work, manipulative use) and with district guidelines for
the sequencing and pacing of lessons/units.

To complicate matters further, even the use of curricula in a congruent manner
(as described above) still does not guarantee high-quality instruction, especially for
standards-based mathematics curricula that are comprised of cognitively challeng-
ing instructional tasks.3 Teachers can set up an instructional task exactly as speci-
fied in the curricular materials, yet fail to support students’ high-level thinking and
reasoning as they actually work on the task (Stein et al. 1996). This is significant
because it is not whether students are sitting in groups or using manipulatives or on
the right lesson on the right day that matters, rather it is what students are actually
thinking about that determines their opportunities to learn.

The purpose of this study was to develop and test the viability of a conceptual
framework for analyzing mathematics instruction and mathematics teacher develop-
ment within the context of local policies regarding district-wide curriculum adop-
tion and implementation. Our framework will take use, congruence and quality into
account independently as we develop teacher implementation profiles and conjec-
ture pathways of teacher development.

We view the study’s contribution as two-fold. First, we believe that our provision
of a new framework that takes use, congruence, and quality into account separately
represents an advance for the field of research on curriculum implementation and
that it can serve as a unifying framework for future studies of large-scale teacher
improvement within the context of district managed curricula. The study results
suggest that our framework is “up to the task” in that it was able to detect meaning-
ful variation among teachers—variation that appears to be related to the context of
the school or district in which they worked. Second, situating the study of teacher
development within district reform efforts provides an illustration of how combined

1In this manuscript, we use the term, “curriculum” to mean a textbook series.
2Non-US readers may prefer the term “didactical.” The features to which we refer are those that
relate to how to teach the mathematics content.
3Because the two curricula used in this study were standards-based and at least partially funded
by the National Science Foundation, the presumption (supported by some prior analyses [see Stein
and Kim 2009]) is that the tasks—as they appeared in the curriculum—were high-quality.
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attention to district policies and implementation can make progress on understand-
ing and supporting the improvement of teaching on a large scale.

Theoretical Framework

Most models of mathematics teacher development describe teacher learning without
reference to the materials with which they interact on a daily basis or the work envi-
ronment in which their learning occurs (Fennema and Nelson 1997). The contribu-
tion of our framework is that it examines teacher learning in a specific, well-defined
context: large-scale, district-mandated improvement efforts that rely heavily on the
adoption and implementation of standards-based curricula. These kinds of district-
wide improvement efforts have become increasingly prevalent over the past decade
in the United States with many large urban districts adopting and supporting one
carefully selected curriculum (Hightower et al. 2002; Supovitz 2006).

We propose that teacher learning occurs along one or more pathways or trajec-
tories that can be specified. Similar to current efforts to identify student learning
trajectories that one would expect to emerge within the context of well-conducted
programs of instruction (Clements and Sarama 2004), our long-term goal is to iden-
tify teacher learning trajectories that could be expected to emerge within the context
of well-conducted district improvement efforts.

District Improvement Initiatives as Context for Teacher Learning

Two key features of district improvement efforts that can impact how teacher learn-
ing unfolds are (a) the selected curriculum; and (b) the professional support pro-
vided to teachers and other professionals as they are learning to implement the new
curriculum.

Selected Curriculum

Past research suggests that standards-based mathematics curricula can offer both
challenges and supports for teacher learning (Davis and Krajcik 2005). They of-
fer challenges to teacher learning because they aim for more ambitious, cognitively
complex forms of student learning (i.e., conceptual understanding; the capacity to
think, reason, and problem solve) than teachers have traditionally been accustomed
to. Not only did teachers themselves likely not learn mathematics in this less tradi-
tional way, but many have also not learned to teach mathematics in ways that foster
students’ capacity to think, reason, and problem solve (Borko and Putnam 1995).

When designed well, standards-based curricula can offer support for teacher
learning (Davis and Krajcik 2005; Stein and Kim 2009). Instead of treating the
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teacher as an instrument for delivering the curriculum to students, some standards-
based curricula invest in the education of the teacher as a critical contributor to the
teaching and learning environment. Designers of these so-called educative curricula
believe that student learning cannot be entirely scripted in advance, but rather un-
folds in moment-to-moment, contingent interactions between teachers and students
during a lesson; interactions in which materials are a resource for, not the of de-
terminant of, learning. In this view of teaching and learning, the teacher must have
sufficient knowledge of the mathematical purpose and learning goals of the instruc-
tional tasks in the curriculum and insight into how students might respond to those
tasks. This kind of information thus becomes integrated into the curricular materials.
Despite the increasing popularity of the idea of educative curricula, recent research
suggests that standards-based curricula differ widely in the extent to which they are
educative for teachers (Stein and Kim 2009).

Professional Support

In addition to the curriculum materials that they select, districts also vary in the na-
ture and extent of professional support offered to teachers in the context of district-
wide curricular reform initiatives. Most districts now recognize that teachers need
more support than that offered by the typical publisher-provided one-day training
session. Common support structures include the provision of coaches (Duessen et al.
2007) and common planning periods for teachers on the same grade level. Because
of the system-wide nature of these initiatives, professional support is often arranged
at contiguous levels of the system. For example, the district mathematics leader-
ship team might provide some kind of ongoing support for principals, as well as
hold monthly meetings with coaches; the coaches, in turn, might meet weekly with
their building leadership team as well as hold weekly meetings with teachers. Some-
times district math leaders deliver professional development directly to teachers.4 It
should be noted that, although the above kinds of support structures can be found
across many districts, past research suggests that districts vary with respect to how
these support system are carried out, with some focusing more on operational fea-
tures such as how to use materials and pacing guidelines and others focusing more
on the big mathematical ideas and the underlying intent of the lessons (Stein and
Coburn 2008).

Framework for Analyzing Instruction and Teacher Development

Our conceptual framework for analyzing teaching and teacher learning within the
context of district-based improvement efforts is based on (a) the extent to which

4This is possible because, in the context of district-paced implementation, teachers on the same
grade level should be implementing the same lessons at roughly the same time, thereby allowing
the district to “preview” an upcoming unit to teachers across the district on the same date.
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teachers actually use the selected curriculum as the source of their lessons; (b) the
degree of congruence of teachers’ instruction to curricular and district guidelines;
and (c) the quality of teachers’ instruction (the extent to which it maintains the
cognitive demand of appropriately challenging tasks, takes account of and builds
on student thinking, and situates intellectual authority in mathematical reasoning).
Each of these is described below.

Use of Curriculum We conceptualize curriculum use as the extent to which the
teacher draws on the selected curriculum as the source of activities in her lessons. It
is important to note that this measure says nothing about how well the teachers use
the curriculum or even the extent to which they follow the curriculum’s and district’s
guidelines for how to run the lesson. Nevertheless, assessments of use are important
because curriculum use constitutes a necessary foundation for large-scale teacher
learning within a district-led improvement effort. If the curriculum materials remain
swathed in shrink wrap in the closet, teachers and students will not be able to avail
themselves of the activities and opportunities for learning contained in them. This
aspect of curriculum based reform is often assumed in studies of teacher change,
but experience suggests that it should not be taken for granted.

Congruence with Curricular and District Guidelines We conceptualize con-
gruence as the extent to which teachers’ instruction aligns with the pedagogical
features of the curriculum (e.g., group work, manipulative use) and with district
guidelines for the proper sequencing and pacing of lessons/units.5 Determining con-
gruence can be accomplished with reference to relatively superficial aspects of in-
struction, for example, items that might appear on a checklist that a principal uses to
evaluate teacher adherence to district mandates. Items that would be relevant for de-
termining congruence include features such as directions for how to set up a lesson
(including the manipulatives that will be needed), how to group students for various
parts of the lesson, and guidelines for pacing. Items not relevant for determining
congruence include an examination of the mathematical ideas at play in the lesson
or the extent to which students have the opportunity to learn those ideas.

Assessments of congruence are important because they signal a level of teacher
effort that goes beyond using the curriculum materials as a source of activities. Con-
gruent use implies that teachers are actually trying to follow the curriculum in a
manner that is aligned with the curriculum developers’ and the district’s expecta-
tions.

Instructional Quality Instructional quality is conceptualized in terms of the af-
fordances for student learning of important mathematical ideas that the instruction
provides. Although our criteria for instructional quality adhere to a particular ap-
proach to teaching and learning (variously referred to as standards-based, student-
centered, or inquiry based), they have not been designed to align specifically with

5Judgments about congruence are necessarily district and curriculum specific.
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any one particular curriculum. However, standards-based curricula, in general (in-
cluding the two curricula studied herein) are philosophically compatible with this
view of teaching and learning.

We’ve defined instructional quality in terms of three constructs: the maintenance
of high levels of cognitive demand, the level and kind of attention that the teacher
pays to student thinking, and the extent to which the intellectual authority in the
classroom is vested in mathematical reasoning (vs. the text or the teacher). Each of
these is described in more detail below.

1. Maintenance of high-level cognitive demand. Cognitive demand refers to the
level of thinking and reasoning that is required in order to successfully complete a
mathematical instructional task (Doyle 1983; Stein et al. 1996).6 High-level tasks
often consist of open-ended problems with limited guidance regarding how to solve
them, thus requiring students to engage in complex, non-routine thinking and rea-
soning such as making and testing conjectures, framing problems, representing re-
lationships and looking for patterns. High-level tasks can also be more constrained
by orienting students toward the use of general procedures or multiple representa-
tions to solve complex problems, but doing so in such a way that concepts, meaning
or understanding are illuminated. Low-level tasks focus students’ attention on algo-
rithms and routine procedures without attempts to foster conceptual understanding
or on memorizing basic facts or definitions.

The cognitive demands of tasks often change as they pass through different
phases (Stein et al. 1996). First, tasks exist in print on the pages of curricular ma-
terials. Next, as the teacher sets up the task in the classroom, she may (knowingly
or unwittingly) change the cognitive demand of the task (e.g., by inserting easier
numbers into the problem; by providing “hints” regarding what to look for). Finally,
the students (sometimes with the teacher’s help) go about actually working on or
enacting the task. It is not unusual for the cognitive demand of the tasks to change
at this final phase as well, usually as a result of the teacher “taking over” and doing
the thinking for the students instead of allowing them to struggle. Past research has
shown that students in classrooms in which teachers are able to maintain the high
level of cognitive demand of tasks that appear in standards-based materials perform
better on tests of higher level thinking and reasoning (Stein and Lane 1996). Thus,
we consider one hallmark of a high-quality lesson to be the teacher’s ability to main-
tain the high cognitive demand of instructional tasks.

2. The level and kind of attention that teachers paid to student thinking.7 Propo-
nents of standards-based instruction stress the importance of teachers paying close
attention to what students do and say as they work on problems so as to be able to
uncover and understand their mathematical thinking (e.g., Brendehur and Frykholm

6A mathematical task is defined as a classroom activity, the purpose of which is to focus stu-
dents’ attention on a particular mathematical idea. An activity is not classified as a new or different
task unless the underlying mathematical activity toward which the activity is oriented changes.
Standards-based lessons typically consist of one or two tasks.
7Judgments about teachers attending to student thinking and about intellectual authority were made
based on the entire lesson.
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2000; Hodge and Cobb 2003; Lampert 2001; Nelson 2001; Schoenfeld 1998; Shifter
2001). This is commonly done by circulating around the classroom while students
work (e.g., Boerst and Sleep 2007; Hodge and Cobb 2003; Lampert 2001). An im-
portant goal is to identify the mathematical learning potential of particular strate-
gies or representations used by the students, thereby honing in on which student
responses would be important to share with the class as a whole during the discus-
sion phase (Brendehur and Frykholm 2000; Lampert 2001; Stein et al. 2008). Thus,
we consider another feature of a high-quality lesson to be the extent to which the
teacher attends to and builds on student thinking.

3. Intellectual Authority. Proponents of standards-based instruction also endorse
the view of mathematics classrooms as places where students are ‘authorized’ to
solve mathematical problems for themselves, by employing mathematical reasoning
rather than relying on the teacher or text (Engle and Conant 2002; Hamm and Perry
2002; Lampert 1990; Scardamalia et al. 1994; Wertsch and Toma 1995). A learning
environment embodying the norm of accountability to the discipline regularly en-
courages students to ‘account’ for how their ideas make contact with those of other
mathematical authorities, both inside and outside the classroom (see also Cobb et al.
1997). Thus, our final feature of high-quality instruction is the extent to which the
teacher fosters students’ intellectual authority.

Combining Above Features The unique feature of our framework is that it com-
bines judgments about use, congruence and quality to arrive at a set of instructional
profiles. By crossing use and congruence with quality, we have identified the fol-
lowing “implementation profiles”:8

• Canonical Implementer: High quality, with high use and high congruence. This
teacher not only uses the district’s selected curriculum and aligns her instruction to
be congruent with curricular and district guidelines, but she also provides students
with high-quality opportunities to think, reason and problem solve.

• Maverick: High quality, with low use or low congruence. This teacher also
provides her students with high-quality opportunities to learn to think, reason and
problem solve; however, she does so without the curriculum. Either she does not use
the curriculum at all; or she uses it in a manner that is incongruent with curricular
and district guidelines.

• Mechanical Implementer: Low quality, with high use and high congruence.
This teacher does not provide high-quality opportunities for student learning but
she uses the curriculum in a manner that is congruent with curricular and district
guidelines.

8We have identified 4 profiles instead of 8 possible profiles because only 4 profiles were conceptu-
ally meaningful. Two profiles (either high or low quality crossed with low use and high congruence)
were unlikely because it is difficult to imagine a teacher implementing materials with pedagogi-
cal fidelity without actually using the materials. The other two profiles are actually represented in
the flounderer and maverick categories which stipulate that (along with either low [flounderer] or
high [maverick] quality) the teacher implements with low congruence and either high or low use.
Conceptually the dimension that carries the weight of both the flounder and maverick categories is
having low congruence with the pedagogical guidance of the curriculum and district.



358 M.K. Stein et al.

• Flounderer: Low quality, with low use or low congruence. This teacher is not
providing high-quality opportunities for student learning and is disregarding the cur-
riculum. Either she does not use the curriculum at all; or she uses it in a manner that
is incongruent with curricular and district guidelines.

As shown by the profiles, this framework separates instructional quality judg-
ments from “following the curriculum” judgments. As such, we are able to dif-
ferentiate teachers who follow the curriculum in a superficial manner (mechanical
implementers) from teachers who follow the curriculum with fidelity to the under-
lying intent of the curriculum (canonical implementers). In addition, we recognize
two different ways of exhibiting high-quality instruction: the canonical implementer
and a teacher who sets up and maintains the cognitive demand of appropriately chal-
lenging tasks, listens to and challenges student thinking, and encourages students to
take mathematical authority, but who does not follow (and may not use) the district-
supported curriculum (maverick). In this way, we allow for innovative, high-quality
teaching that is not bound to a particular curriculum. Finally, there are also different
ways of exhibiting poor-quality teaching: the mechanical implementer who is trying
to follow the curriculum, albeit in a superficial manner and the flounderer who is not
following (and perhaps not using) the district-supported curriculum but is also not
exhibiting high-quality instruction.

Within a well-conducted district-supported implementation, we would conjec-
ture the following pathway for teacher development. The teacher begins by using
curriculum materials in mechanical ways. That is, she diligently bases her lessons
on a set of well-designed curriculum materials and makes a good faith effort to fol-
low the curricular guidelines set forth by her district including what lessons to teach,
how quickly to go, what grouping formats to use and so forth. However, the teacher
has difficulty delivering on the deeper structure of the curriculum. Over time—if she
is well supported by educative materials and by her district—she begins to imple-
ment the curriculum in ways that conform to not just the surface features but also the
deeper cognitive features that influence how students think and reason (becoming a
canonical implementer). Finally, having “learned” a more cognitively challenging,
student-centered manner of teaching, she may depart from the standard curriculum
and become a maverick, meaning that her teaching is still high quality, but she no
longer uses the district-mandated curriculum or she stops adhering closely to the
operational guidelines of the curriculum and/or the district.

The purpose of this study was to develop and test the viability of this frame-
work for analyzing mathematics instruction and mathematics teacher development
within the context of local policies regarding district-wide curriculum adoption and
implementation. The following questions guided this study:

1. How do teachers participating in district-wide curricular-based initiatives vary
with respect to use of the mandated curriculum, congruence with curricular and
district guidelines regarding how to use the curriculum, and quality of instruc-
tion?

2. How do teachers participating in district-wide curricular-based initiatives vary
with respect to the framework’s four profiles?
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3. What within-teacher patterns, if any, emerge with respect to the four profiles as
teachers participate in the district-wide initiative over multiple years?

4. In what ways, if any, might the above identified patterns be related to the nature
of the curricular materials and/or the nature of the professional support provided
by the district?

Methods

Data Sources

Data for the present study come from a large NSF-supported multi-year study of the
initial years of district-wide implementation of Investigations and Everyday Math-
ematics in two urban districts. In Fall 2003, Greene School District9 mandated im-
plementation of Investigations, whereas Region-Z mandated implementation of Ev-
eryday Mathematics; both are standards-based elementary (grades K-5) curricula.
Six focal teachers in each of 4 case-study schools in each district were selected
for observation. Schools were selected to represent the range of schools in each
district with respect to teacher capacity and extent of teacher professional commu-
nities; teachers were selected to represent the range of talent and grade levels in the
building. For this study we used all the teachers for whom we had data for the 2004-
05 and 2005-06 school years, which includes19 Greene teachers and 17 Region-Z
teachers.

Most teachers were observed six times per year (for 3 consecutive lessons in
the fall and 3 consecutive lessons in the spring). All classroom observations were
conducted by trained observers who took detailed field-notes and then completed
pre-specified, qualitative write-ups upon leaving the classroom.10 The write ups in-
cluded a comprehensive lesson summary and answers to a set of questions about
cognitive demand, teachers’ attention to student thinking, and the location of intel-
lectual authority during the lesson. Answers were required to be backed up by one
or more examples from the lesson.

Each lesson was coded by one of a group of four trained Masters- or PhD-level
mathematics educators, all of whom were familiar with the first author’s prior re-
search on cognitive demand. The sources of data that informed the coding for each
lesson included the classroom write up, the artifacts from the lesson, and the tran-
script of the pre- and post-interview.11 In order to prevent coding “drift,” the coders

9Pseudonyms.
10The individuals who were selected to conduct the observations and create the write ups had
expertise in either mathematics education or a social science field that relied heavily on observation
(e.g., anthropology). They participated in a 2-day, in-person, group training at the start of the
project. This training involved watching videos of mathematics lessons and creating write ups that
were critiqued by project leaders and their peers. During the course of the project, the observers
were provided feedback on their write-ups and participated in at least one follow up group session.
11Because one pre- and one post-interview were conducted per set of 3 contiguous lessons, the
coded data based on those interviews is the same across all lessons in one set.
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met with the authors on a monthly basis to share codes for a randomly selected
lesson. These 1–2 hour meetings produced 10 “consensus coded” documents plus
refinements of the decision rules. In addition, another 9 % of the lessons were dou-
ble coded with an inter-rater reliability of 81 %, 67 %, and 75 % for use, congruence,
and quality respectively.12 For each double-coded lesson, differences were resolved
and a consensus code was entered.

In addition to teacher observations, we have copies of all the curricular materials
adopted by the two districts, transcripts of teacher pre- and post-lesson set inter-
views, observations of professional development at different levels of the system,
and transcripts of interviews with principals, mathematics coaches and district lead-
ers. We did not analyze these data sources firsthand, but instead drew on previous
project analyses that examined (a) the nature of demand and support in the cur-
riculum materials (Stein and Kim 2009; Stein and Kaufman 2010); the nature of
district-wide support (Stein and Coburn 2008; Coburn and Russell 2008); differ-
ences across schools (Sutherland et al. 2007); and the evolution of reform mandates
and supports over time (Kaufman and Stein 2010).

Procedures of Analysis

Our initial analysis focused on characterizing each of the 36 teachers according to
use, congruence, and quality across the three observed lessons that they delivered
in each of four semesters over the course of two years: Fall 2004, Spring 2005,
Fall 2005, and Spring 2006. Each lesson write-up was coded by a mathematics ed-
ucator according to use (on a scale of 0–4 according to the portion of the lesson
that used the curriculum as the source of activities in the lesson); congruence (an
aligned/non-aligned judgment based on the math educators’ assessment of the les-
son’s congruence with the curriculum’s and district’s guidelines [specifically con-
structed for each curriculum]); and quality (a score of 1 to 8 based on judgments of
the levels of cognitive demand at the set-up and enactment phases of the lesson cou-
pled with mathematics educators’ judgment of where intellectual authority resided
and the extent to which the lesson built on student thinking; this coding system
builds on earlier work and is explained in Stein and Kaufman 2010).

Next, the scores for each of the teacher’s three lessons were averaged across
the three observations to represent a season-year score on each dimension. Finally,
teachers’ practice was identified as high or low use, congruent or non-congruent
implementation, and high- or low-quality based on cut scores that were conceptu-
ally determined. Each of these analytic phases for use, congruence and quality is
described below.

12Inter-rater reliability was computed as the number of agreements divided by the total number of
possible agreements/disagreements.



Mathematics Teacher Development in the Context of District Managed Curriculum 361

Curriculum Use

Curriculum use was measured on the following scale:

0 = 0 % of the lesson drew on Investigations or Everyday Mathematics
1 = 1–25 % of the lesson drew on Investigation or Everyday Mathematics
2 = 26–75 % of the lesson drew on Investigations or Everyday Mathematics
3 = 76–99 % of the lesson drew on Investigations or Everyday Mathematics
4 = 100 % of the lesson drew on Investigations or Everyday Mathematics

High use was defined as a teacher with an average score of 3.0 or higher across
the three lessons she taught during each semester, meaning that over 75 % of the
time—on average—the teacher would have drawn on curricular materials for the
three lessons she taught. Thus, in addition to those teachers who used the selected
curriculum the entire time of all of their observed lessons, we also included teachers
who used Investigations or Everyday Mathematics as the source of their classroom
activities between 76 and 99 % of the time.13 Anyone who used Investigations or
Everyday Mathematics 75 % of the time or less, on average, was characterized as a
“low” user.

Congruence

We developed two separate checklists—one with indicators of congruent instruc-
tion and one with indicators of incongruent instruction—for each curriculum based
on an in-depth analysis of the curriculum and the district’s expectation of how that
curriculum should be implemented. For example, Everyday Mathematics relies on
a spiral structure where lessons that happen later in the sequence depend upon ma-
terial that was covered earlier. Because of this design, skipping particular lessons
would be considered to be incongruent; whether a teacher skipped a lesson in Ev-
eryday Mathematics is one of the Everyday Mathematics indicators for whether a
teacher is incongruent. In contrast, Investigations has a modular design. The curricu-
lum does not require that teachers use all units and there is flexibility in the order
that units are employed. Because of this different design, skipping a unit would
not be considered incongruent and is not part of the set of indicators determining
incongruence for Investigations.

After a coder completed the checklists for congruent and incongruent indicators,
that coder would determine the overall lesson to be “congruent” through a holistic

13This seemed reasonable because it is not unusual for teachers to do non-textbook activities for
a small portion of a class period. For example, they might review a skill such as “telling time”
because an early dismissal has been announced for the day. On the other hand—because Investiga-
tions and Everyday Mathematics are comprehensive curricula with daily lessons—a teacher who
failed to use them at all for one or more lessons (of the six observed lessons) would be considered
to be an inconsistent user.
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judgment of the lesson, using checkmark counts for congruence versus incongru-
ence as a source of evidence for making that holistic judgment, as well as taking
into account whether the teacher engaged in congruent instruction for the majority
of the lesson.

A congruent set of three lessons within a semester is defined as a set of lessons
where only one lesson out of three is incongruent. That is, the majority of the lessons
within a semester had to be congruent.

Quality

The quality score is comprised of three measures: maintenance of cognitive demand,
attention to student thinking, and intellectual authority. Our scale for maintenance of
cognitive demand is based upon (1) the extent to which the teacher maintained the
same cognitive demand for the primary instructional task from the materials phase
to the set up phase; and (2) the extent to which the teacher maintained the same
cognitive demand from the set up phase to the enactment phase. For each of these
two transitions, we allocated 1–4 points to each teacher’s lesson in the following
way:

• 1 point—The teacher maintained a low level of cognitive demand from one phase
to the next.

• 2 points—The teacher transformed a task from a high level of cognitive demand
to a low level of cognitive demand.

• 3 points—The teacher maintained a high level of cognitive demand between two
phases but transformed the task from one kind of high-level task into another
type.14 Although the teacher still maintained a high level of cognitive demand,
the nature of that cognitive demand essentially shifted in a way that was not con-
sistent with the intent of the instructional task. Thus, a teacher received fewer
points than if s/he had maintained the same type of high-level cognitive demand
from one phase to another.

• 4 points—The teacher maintained the same high level of cognitive demand from
one phase to another without transforming a task into another type of high-level
demand or to a lower level of cognitive demand.

Through this point system, the maintenance of cognitive demand score could be
from 2–8 points.

For scoring for attention to student thinking, teachers were assigned a score of 1
to 4 depending on the extent to which they uncovered student thinking and made it
available to other students in a way that would help the class’s learning as a whole.
The guidelines for score assignments were:

14Either from a “doing mathematics” task to a “procedures-with-connections” task or from a
“procedures-with-connections” task to a “doing mathematics” task (Stein et al. 1996).
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1 point—The teacher did no work to uncover student thinking.
2 points—The teacher did some work to uncover student thinking, including ask-
ing students to publicly share their work.
3 points—In addition to point 2, the teacher purposefully selected some students
to share their work.
4 points—In addition to points 2 and 3, the teacher connected or sequenced stu-
dents’ responses in a meaningful way.

Finally, for scoring mathematical authority, teachers were assigned a score of 1 to 3
depending on the extent to which students had such opportunities in the lesson. The
guidelines for score assignments were:

• 1 point—Judgments of correctness derived from teacher or text.
• 2 points—Judgments of correctness sometimes derived from teacher or text, but

also some appeals to mathematical reasoning.
• 3 points—Judgments of correctness derived from mathematical reasoning.

Teachers with high quality instruction are differentiated from teachers with low
quality instruction by establishing a “high quality” cut score for each of the three
constructs: maintenance of cognitive demand (CD), teachers’ work to uncover and
productively use student thinking (ST), and the extent to which intellectual author-
ity was vested in mathematical reasoning (IA). For CD, high quality was defined
as an average score of 7.0 for teachers’ lessons in one semester. For ST, high qual-
ity was defined as an average score of higher than 1.0 for all a teachers’ lessons
in a semester. For IA, we also set the cut score as higher than 1.0 for all a teach-
ers’ lessons in a semester. We set these cut scores based on our knowledge of each
construct and our own expectations regarding what constitutes a high-quality lesson
for that construct. Finally, we judged a teacher as having an overall high-quality set
of lessons across the year if s/he scored as “high quality” for CD and either ST or
IA. We did not require teachers to have a “high quality” score for both ST and IA
with the rationale that both constructs equally reflect high-quality instruction and
receiving a high score on one of the two constructs alongside a score above the cut
for cognitive demand would reflect ample opportunity for student learning.

Assigning Instructional Profiles

For each semester, teachers were classified as flounderers, mechanical imple-
menters, canonical implementers, or mavericks according to their use, congruence,
and quality ratings as described on pages 355–356.

Identifying Features of District Improvement Strategies

If patterns of cross-site differences and/or within-teacher development of instruc-
tional profiles over time were identified, we consulted findings associated with pre-
viously analyzed data to build conjectures regarding why the patterns emerged.
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Results

We present the results according to the research questions, beginning with an assess-
ment of the variation across teachers and sites in their levels of use, congruence and
quality. The fourth question (contextual features associated with observed patterns)
is addressed throughout the results section as patterns are identified.

Teachers’ use, congruence and quality

As shown in Table 1, there was variation across the three dimensions of use, congru-
ence and quality; quite noticeable variation between Region Z and Greene teachers;
and some variation over time. We discuss each of these in turn.

The data in Table 1 suggest that teachers were more likely to use their respective
curricula as the source of their classroom activities than to align their instructional
practice with curricular and district guidelines. Approximately 80 %–90 % of the
teachers used their curricula to a high degree (i.e., more than 75 % of the time)
whereas as few as 53 % of the teachers (and never more than 71 %) exhibited in-
structional practice that was judged to be highly congruent with curricular and dis-
trict guidelines. Each of these dimensions, however, exceeded teachers’ capacities
to demonstrate high-quality lessons. The percentage of teachers with high quality
lessons hovered around 25 %, much lower than the first two dimensions.

Perhaps more interesting are the differences between Region Z and Greene in
terms of use, congruence and quality. With respect to all three dimensions, Greene
teachers exhibited higher levels at all time points except one.15 The differences are
most marked with respect to quality and least marked with respect to use.

Variations over time are more difficult to detect. There do not appear to be strong
differences over time in Region Z, but Greene teachers exhibited fairly substantial
declines in congruence (from 95 % to 68 %) and in quality (from 53 % to 37 %)
between the Spring of 2005 and the Fall of 2005.

What does all of this suggest? Early in these two district-wide initiatives, it ap-
pears to have been easier to obtain relatively high levels of use—and to maintain
that high level of use over time—than to command greater teacher investments in
terms of congruence or quality. In both districts, messages from central office were
very clear: teachers were expected to use the new curriculum and principals would
be checking to make sure that they were. Thus, mandates appear to work in terms
of the lowest levels of compliance, that is, they drive teachers to take books out of
their shrink wrap, distribute them to students, and teach out of them. Just one step
beyond that, however, mandates are less effective. Many fewer teachers used the
materials according to even the most superficial guidelines for their use (i.e., the

15Fall 2005 where 82 % of Region Z teachers were high users and 79 % of Greene teachers were
high users.
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Table 1 Teachers’ Use, Congruence, and Quality

Fall 2004
(n = 35)

Spring 2005
(n = 35)

Fall 2005
(n = 36)

Spring 2006
(n = 36)

High Use 89 % 83 % 81 % 78 %

(use of mandated
curriculum more than
75 % of the time in each
lesson, on average)

(31/35) (29/35) 29/36 28/36

. . . Region Z 81 % 75 % 82 71

(13/16) (12/16) 14/17 12/17

. . . Greene 95 % 89 % 79 % 84 %

(18/19) (17/19) 15/19 16/19

High Congruence 71 % 66 % 53 % 58 %

(practices aligned with
features at least 2 out of
3 lessons/semester)

(25/35) (23/35) 19/36 21/36

. . . Region Z 44 % 31 % 35 % 41 %

(7/16) (5/16) 6/17 (7/17)

. . . Greene 95 % 95 % 68 % 74 %

(18/19) (18/19) (13/19) (14/19)

High Quality 29 % 29 % 22 % 28 %

(high quality on
cognitive demand and
either student thinking
or mathematical
authority)

(10/35) 10/35 8/36 10/36

. . . Region Z 6 % 0 % 6 % 6 %

(1/16) 0/16 1/17 1/17

. . . Greene 47 % 53 % 37 % 47 %

(9/19) 10/19 7/19 9/19

kinds of markers that principals would be looking for in their classrooms to indi-
cate that teachers are being faithful to the curriculum). Finally, quality was, by far,
the most difficult thing to achieve, suggesting that mandates alone cannot dictate
transformations of practice. Given that such transformations require teacher learn-
ing, additional investments in the professional development of teachers appears to
be required.

The differences across Region Z and Greene with respect to quality beg the ques-
tion of possible differences in how Region Z teachers versus Greene teachers were
supported. In earlier analyses of how these two districts created organizational en-
vironments to support their respective reforms (Stein and Coburn 2008), we found
that Greene was able to create significant opportunities for teacher learning that
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aligned with reform goals while efforts in Region Z coordinated teachers’ actions
but failed to spur meaningful opportunities for teacher learning. For example, while
coaches played a role in both districts’ reform efforts, the selection process used
in Greene yielded better coaches. Not surprisingly, the substance of what coaches
talked about with teachers and with principals was very different across the two
districts. In Greene, coaches’ interactions were more substantive and more focused
on mathematics teaching and learning; in Region Z interactions primarily focused
on how to manage the Everyday Mathematics materials, gathering manipulatives
and other tools for teachers, and providing general pointers regarding how to plan
for and teach a lesson with little or no discussion of mathematical content or stu-
dent thinking. Similarly interactions in teacher communities in Greene were more
likely to move beyond pacing and managing materials to also include more substan-
tive conversations about instructional strategies, student learning, and at times, the
mathematics itself. Also, the principals in Greene were more likely to receive train-
ing on the mathematics reform and to work closely with their mathematics coaches
in assessing and improving instruction in teachers’ classrooms. The principals in Re-
gion Z, on the other hand, either turned over the mathematics program completely
to their coaches or used their coaches for non-mathematics tasks.

Finally, it appears as though use alone does not buy district leaders much if their
ultimate goal is high-quality instruction. Despite use levels that were not much lower
than Greene’s, the vast majority of Region Z teachers’ instructional practices were
judged to be low quality. On the other hand, the data in Table 1 suggest that con-
gruence may play a more influential role in creating high-quality instruction if for
no other reason than substantially greater percentages of Greene teachers exhibit
congruent instruction and also exhibit high-quality instruction (although at lower
rates).

The decline that occur between the Spring of 2005 and the Fall of 2005 in Greene
co-occurred with a policy shift. Specifically, new state-level requirements for teach-
ers’ professional development hours related to English as a Second Language in-
struction necessitated a much larger emphasis on ESL professional development at
the district and school level in Greene, which led to many fewer opportunities for
teachers to engage in mathematics professional development (Kaufman and Stein
2010). In addition, a newly hired superintendent made it clear that teachers were
free to use whatever materials they wished to address learning goals and, especially,
ESL concerns. In other words, Investigations was no longer a mandated curriculum.
Interestingly, from the Spring of 2005 to the Fall of 2005 teachers showed less de-
cline in their use of the curriculum as the source of their daily activities (from 89 %
to 79 %) than they did in congruence which dropped quite precipitously (from 95 %
to 68 %). Perhaps this reflects the fact that teachers had been forced to relinquish
their old curriculum materials and thus had no other materials on hand. Quality de-
clined less, suggesting that teachers had developed some internal capacity to teach
mathematics at a high level without necessarily following a specific curriculum.
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Table 2 Teachers’ instructional profiles

Fall 2004
(n = 35)

Spring 2005
(n = 35)

Fall 2005
(n = 36)

Spring 2006
(n = 36)

Overall

Flounderer 29 % 34 % 42 % 39 %

10/35 12/35 15/36 14/36

. . . Region Z 56 % 69 % 65 % 59 % 62 %

9/16 11/16 11/17 10/17 41/66

. . . Greene 5 % 5 % 21 % 21 % 13 %

1/19 1/19 4/19 4/19 10/76

Mechanical 43 % 37 % 36 % 31 %

15/35 13/35 13/36 11/36

. . . Region Z 38 % 31 % 29 % 35 % 33 %

6/16 5/16 5/17 6/17 22/66

. . . Greene 47 % 42 % 42 % 26 % 39 %

9/19 8/19 8/19 5/19 30/76

Canonical 26 % 26 % 17 % 28 %

9/35 9/35 6/36 10/36

. . . Region Z 6 % 0 % 6 % 6 % 5 %

1/16 0/16 1/17 1/17 3/66

. . . Greene 42 % 47 % 26 % 47 % 41 %

8/19 9/19 5/19 9/19 31/76

Maverick 3 % 3 % 6 % 3 %

1/35 1/35 2/36 1/36

. . . Region Z 0 % 0 % 0 % 0 % 0 %

0/16 0/16 0/17 0/17 0/66

. . . Greene 5 % 5 % 11 % 5 % 7 %

1/19 1/19 2/19 1/19 5/76

Teacher Profiles

As shown in Table 2, teachers were unevenly distributed across the four profiles.
There are—once again—noticeable differences in Region Z teachers versus Greene
teachers; and there is some change over time. Each of these is discussed in turn.

Across all four time periods teachers were most likely to be classified as flounder-
ers or mechanical implementers. As noted earlier, these profiles reflect low-quality
implementations with the difference being that the mechanical implementers are us-
ing the curriculum as the source of activities for the majority of their lesson activities
and are attempting to follow curricular and district guidelines regarding how to use
the curriculum while the flounderers are not attempting to follow guidelines and, in
some cases, were making limited or no use of the materials. There were many fewer
canonical implementers, and fewer still, mavericks.
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Again, there were differences between the two districts, but also one important
similarity. Similar percentages of Greene and Region Z teachers were classified as
mechanical implementers (39 % and 33 % respectively). However, despite these
similarities, the balance of the teachers in Region Z tended to be flounderers while
the balance of the Greene teachers were canonical implementers. Thus, the overall
distribution of teachers in each of these profiles looks very different across the two
districts.

Over time, the largest change appears between the Spring 2005 and Fall 2005
time periods in Greene when the percentages of flounderers increased from 5 % to
21 % and the percentages of canonical implementers decreased from 47 % to 26 %.
There were no noticeable changes over time in the Region Z data.

What does all of this suggest? Across the early years of district-wide improve-
ment efforts, the two districts’ approaches to mandated, curriculum-based reform
appeared to have yielded a lot of flounderers and mechanical implementers, neither
of which, according to our definitions, was providing high quality opportunities for
student learning. As noted earlier, mandates alone do not appear to work in produc-
ing high-quality instruction.
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Table 3 Region Z within-teacher instructional profiles

Despite both districts having similar numbers of mechanical implementers, how-
ever, Greene appears to have been able to foster a non-trivial amount of canonical
implementation, meaning that teachers were using the district curriculum to create
worthwhile learning opportunities for students. Thus, it appears as though mandates
accompanied by support for teacher learning can yield positive outcomes related to
quality. Finally, as noted earlier, our proposed pathway of teacher learning suggests
that well-supported teachers develop from mechanical implementers to canonical
implementers. The data in Table 2 suggest that this might have happened in Greene,
but not in Region Z. We now turn to a within teacher analysis over time to examine
this claim.

Patterns Over Time

Because the patterns over time are so different in Region Z versus Greene we will
discuss the teachers in the two districts separately.

As shown in Table 3, across the two-year period, 10 Region Z teachers (59 %)
displayed a predominately flounderer profile, never growing out of that profile
for more than one time period. However, many teachers who stayed with the
curriculum over time—and even tried to follow their guidelines (the mechanical
implementers)—also never improved to a canonical profile. As shown in Table 3, a
group of three teachers toggled back and forth between the mechanical and floun-
derer patterns and two teachers by and large remained mechanical implementers
throughout the two-year period. Finally, in the “other” pattern, we find one teacher
who appeared to actually progress nicely from a mechanical to canonical imple-
menter and another teacher who is hard to classify.
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Table 4 Greene within-teacher instructional profiles

What do these patterns suggest? A closer look at the preponderance of flounder-
ers, who never improved (the first group), reveals that one school contributed 5 out
of the 10 teachers. Unlike the rest of our focal schools in Region Z, this particular
school was not “on board” with the mandated nature of the mathematics reform.
From the start, it was clear that the principal sanctioned a wide variety of materials
in addition to—or in place of—Everyday Mathematics, often claiming the rationale
that there were “rumors” that the district was going to switch to a different curricu-
lum (Sutherland et al. 2007). Moreover, the coach in this school took on a range of
duties beyond that of mathematics coach.

The only Region Z teacher who improved over time (NC), came from a school in
which there was some degree of conscientiousness about following the curriculum,
including the help of a coach who proclaimed to be a new convert to the Everyday
Mathematics curriculum. However, three of NC’s colleagues in the school (HQ, OG,
and UF) did not progress as she did, but rather remained trapped in a mechanical
profile (OG, UF) or a flounder/mechanical mix (HQ).

As shown in Table 4, the Greene teacher patterns (with the exception perhaps of
the final group) are very different than the Region Z teacher patterns. First, there are
7 teachers (37 %) who, for the most part, stay within the two high-quality profiles,
either canonicals or mavericks. Interestingly, these 7 teachers appeared to be “strong
out of the gate,” that is, they displayed a canonical profile at the first data collection
point (the reader is reminded however, that the first data collection point was the
beginning of the second year of the reform in both districts).

The second group of teachers displayed a mixture of canonical and mechanical
profiles. The first three teachers are especially interesting because they began with
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a mechanical implementation but ended as canonical implementers. The fact that
these same three teachers “slipped” into a flounderer or mechanical profile in the
Fall of 2005 is interesting because that is when the new superintendent lifted the
mandate to use the Investigations curriculum. Finally, the third group of Greene
teachers appear similar to the Region Z teachers in that (except for KN) they all
tried to use the curriculum at some point (there is a preponderance of mechanical
implementations), but were rarely able to break into a sustained canonical profile.

What can we make of the Greene patterns? First, the teachers who were predom-
inantly canonical or maverick were never flounderers (the first group). This sug-
gests that perhaps floundering should be a red flag to observers or evaluations. It is
sometimes argued that teachers should be permitted to go with their own decisions
regarding curriculum; this study suggests that this will not lead to high quality—
whether canonical or maverick.16

Closer examination of the first consistently good profile (the canonical/maverick
group), reveals that 4 out of the 7 teachers came from one school, a school that
had a principal who was a former mathematics coach and a consistent supporter of
the Investigations curriculum. Even when the district pulled back its support of the
reform, this school continued to support mathematics teachers with coaching and
professional development (Kaufman and Stein 2010).

An optimistic interpretation of the next group—the five teachers labeled as the
canonical/mechanical pattern—could be that they are “on the way” to sustained
canonical implementations. Four of these five teachers came from the same school.
The principal was an advocate of the reform and the Investigations curriculum dur-
ing the early years, but then embraced the freedom to supplement in year 3 when
the new superintendent lifted the mandate. Interestingly, at that point in time, four of
the teachers slipped into a lower-quality profile; the fact that all but one re-emerged
as a canonical implementer suggests that they perhaps had really learned from the
earlier years implementing the curriculum and were thus able to reconfigure their
practice at that higher level after “flirting” with the freedom from the mandate.

Finally, Greene was not immune from the flounderer/mechanical pattern that only
rarely develops beyond low-quality instruction. This group of teachers came from
all four of our schools, suggesting that no one school was immune from it as well.

Closer examination of the differences in the patterns across the two districts sug-
gests that, perhaps, one leg of our proposed pathway of teacher development—from
mechanical to canonical implementer—did indeed occur and it occurred more in
Greene than in Region Z. We have already discussed how these two districts orga-
nized very different opportunities for teacher learning associated with their respec-
tive reforms. We have not, however, examined the curricula that each district se-
lected to anchor their reform. As noted earlier, both were standards-based reforms.
Both provided access to high-level, cognitively demanding tasks. However, one (In-
vestigations) was found to have substantially more educative features than the other
(Stein and Kim 2009). The Investigations materials more often identified the big

16There were no flounderers that led to mavericks.
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mathematical idea at play in the lesson (and often provided a brief tutorial on it),
thereby allowing teachers to apprehend the purpose of the activities in which they
were about to engage their students. These materials also helped teachers to antic-
ipate how students might respond to the many open-ended activities, thus helping
them prepare ahead of time for how they might handle divergent and otherwise un-
expected student responses. Everyday Mathematics, on the other hand, tended to
have less open-ended tasks and to channel students and teachers toward a partic-
ular route through the problems. Teachers are provided with few in-depth details
regarding how students might be expected to respond to the problems.

In short, the two curricula can be viewed as taking different stances toward
teacher learning. Investigations does not script the teaching and learning that should
occur in the classroom believing that student learning is always an emergent phe-
nomenon, one that teachers must be attuned to through their attention to student
thinking. As such, it helps teachers to (a) develop a nuanced understanding of the
mathematical content to be learned; and (b) ways in which students might address
this content. By doing so, it is investing in the teacher as an important element in the
teaching and learning equation. Everyday Mathematics, on the other hand, appears
to place the bulk of the expected learning between the student and the materials,
with the teacher acting as a deliverer of those materials. Much less investment in the
teacher is provided. Thus, another contributing factor to the greater preponderance
of mechanical implementers developing into canonical implementers in Greene may
be that the curricular materials provided greater transparency about their intent and
potential student responses and, as such, helped teachers to move beyond a superfi-
cial, follow-the-directions style of implementation.

Conclusions

This work has implications for research on characterizing mathematics instruction
within the context of district improvement strategies that rely on curricula and for re-
search on teacher learning pathways. In addition, local policy makers could use find-
ings generated here to help inform their designs for large-scale, curriculum based
reforms.

Characterizing Instruction

The utilization of three dimensions (use, congruence, and quality) to characterize
instruction offers a multi-dimensional view of instructional practice within district-
wide, curriculum-based reform efforts. The fact that these three dimensions varied
independently from one another suggests that each is offering a unique contribu-
tion to characterizing the nature of instruction. Yet, most often, only congruence
or quality is measured. We believe that our framework represents an advance for
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the field of research on curriculum implementation and that it can serve as a uni-
fying framework for future studies of large-scale teacher improvement within the
context of district managed curricula. This includes our method of delineating four
profiles of instruction, which our results suggest are viable as well. These pro-
files (flounderer, mechanical, canonical and maverick) captured variation across the
teachers and appeared to be responsive to difference in contexts across the two dis-
tricts.

Characterizing Teacher Development

The findings do not suggest that we have identified a clear, uniform pathway for
teacher development within the context of district-wide, curriculum based reforms.
Instead of straightforward development from mechanical to canonical to maverick,
some of our data toggled back and forth between two or more different profiles. This
raises questions about the instructional profiles as reliable platforms on the road to
teacher improvement.

The results suggest a more uneven pathway toward high-quality instruction than
we had proposed. First, teachers who achieved a canonical implementation did not
always stay at that level of implementation. In most cases, they exhibited mechani-
cal (or even flounderer) profiles after they had achieved a canonical implementation.
We conjectured that these “declines” may sometimes have been related to changes in
district-level enforcement of the curricular mandate. Another potential contributor
could be the topic. Perhaps a mechanical profile was exhibited because the teacher
was on a challenging topic (for her) and therefore more comfortable with a procedu-
ral, follow-the-book style of implementation. Or perhaps the teacher changed grade
level and therefore did not have her earlier command of the conceptual field.

The results do, however, support our notion that teacher pathways are relevant
with respect to a particular context. Both districts were in the midst of large-scale,
curriculum-based reforms. However, past analyses suggested that the amount and
type of support each district provided for teacher learning varied significantly. The
present analysis suggests that, under a supportive context, more than half of the
teachers may be able to achieve canonical implementations; in a less-supportive
context, however, the vast majority of implementations will most probably consist
of a mixture of flounderers and mechanical implementations.

Finally, the fact that there were few mavericks suggests that a common concern
raised about district-based curricular reforms may not be warranted. Often, critics
complain that excellent teachers are muffled by heavy-handed, top-down district re-
forms that force them to use a particular curriculum. The low incidence of mavericks
in our data set (even after the mandate was lifted in Greene in the second year) sug-
gests that this worry may be unfounded. A much larger worry, on the other hand,
is the large number of flounderers and mechanical implementers that such reforms
may foster.
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Implications for Large-Scale District Reform

The findings reported herein suggest that expecting all teachers to implement
standards-based curricula places a huge responsibility on the district to—not only
monitor where teachers are on any given date—but also to support them as they try
out new and often unfamiliar materials. By positioning teacher development against
the backdrop of various ways in which teachers implement the district curriculum,
this study’s findings provide important foundational knowledge for the development
of efficient and effective large-scale teacher support systems in environments char-
acterized by district-wide managed curriculum.

Our findings suggest that district policies must go beyond mandates. Alone, man-
dates delivered only the lowest level of implementation: use. They were relatively
ineffective for assuring that teachers implement the curriculum in a way that is
aligned with the pedagogical guidelines in the curriculum and with district guide-
lines. They were not effective in delivering quality. The canonical implementers
were almost exclusively in Greene, the district with effective support systems ac-
companying their roll-out of the new curriculum.

Our study also suggests ways in which our framework might be useful to the de-
sign of district support systems. Knowing the profiles of teachers in one’s school or
district would be useful in planning professional development. Not only do teachers
with different profiles require different kinds of professional development (the mav-
erick could be challenged by innovative offerings outside the district while the floun-
derer needs basic support), but teachers can be paired with one another in ways that
take advantage of their differences. For example, a mechanical implementer could
learn from a canonical implementer, but leaders would not want to send a flounderer
into a maverick’s classroom because—although it would be high-quality—without
a curricular roadmap, it would be unclear to the flounderer how the teacher accom-
plishes what she does. Overall, considering various implementation profiles in the
context of district-wide, curriculum-based improvement efforts is a promising ap-
proach to both diagnosing teachers’ needs and identifying and using the strengths
already present in the district (the canonical implementers) to address those needs.
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Curriculum, Teachers and Teaching:
Experiences from Systemic and Local
Curriculum Change in England

Margaret Brown and Jeremy Hodgen

Abstract The seminal work of Michael Fullan and his University of Toronto col-
leagues (e.g. Fullan, Journal of Educational Change 1(1), 5–27, 2000, The New
Meaning of Educational Change, 2001; Leithwood et al., Large-Scale Reform: What
Works?, 1999) gave rise to a body of research looking into the reform of curriculum
and teaching methods, in particular trying to identify the ingredients for successful
reform. This chapter reflects on key features of reform in mathematics education by
examining the effectiveness of a major system-wide attempt to change curriculum
and teaching in English elementary schools, the National Numeracy Strategy. This
is then contrasted with a more local intervention, Primary CAME. Process and out-
comes in these different cases are considered, and some lessons suggested which
can be drawn from them. In particular the notions of superficial change and deep
change are used to analyse development in teachers’ behaviours and beliefs.

Keywords Curriculum · Deep change · Local reform · Systemic reform

Setting the Context

There had been occasional national and local guidance but no strict requirement
about curriculum or pedagogy in English primary schools since 1911. Govern-
ment ministers started to express concern about national standards of numeracy in
the mid-1970s, leading to agreement to recommendations concerning curriculum,
teaching methods and assessment in the government-sponsored Cockcroft Report
(DfES/WO 1982). A utilitarian curriculum was proposed, supported by more prac-
tical work and problem-solving, while students would also undertake mathematical
investigations and assume a more active role in classroom discussion. Both cur-
riculum and examinations at the end of compulsory schooling would become more
differentiated so as to better meet the needs of students with a wide range of mathe-
matical attainment, and would incorporate coursework to assess practical problem-
solving and investigational skills.
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The Report had substantial support among policymakers, teachers and education-
ists; through connected networks of influence, changes were implemented gradually,
consistently, and on the whole in a positive spirit, although clearly at secondary level
(age 11–16) the changes in national external assessment provided a strong incentive
to conform.

It could be said that the Cockcroft Report addressed the more significant problem
of designing a mathematics curriculum and assessment for mass education to age
16 and providing an updated definition of numeracy, rather than focusing narrowly
on raised standards.

But after the relatively relaxed days of post-Cockcroft reform in the early 1980s,
the repeatedly mediocre performances of England in international comparisons like
SIMS and TIMSS (Reynolds and Farrell 1996) triggered further, faster and more
prescriptive levels of government intervention, starting with a National Curriculum
in the late 1980s, then national tests at ages 7, 11, and 14 in the 1990s, to supple-
ment the long-standing external assessment at age 16. Results were then published
in school league tables at ages 11 and 16. Finally, when England’s international
performance still failed to rise, a new Government decided in the summer of 1997
to introduce a National Numeracy Strategy across all year-groups in all elementary
schools in 1999/2000 (Brown et al. 2000).

The next three sections will focus on research relating to the processes and out-
comes of the implementation of this major top-down national systemic initiative.
The following section of the chapter will contrast this implementation with the de-
velopment of a curriculum development project, Primary CAME (Cognitive Accel-
eration through Mathematics Education) through a local researcher-teacher partner-
ship, aimed at building connected mathematical thinking.

The National Numeracy Strategy 1999–2005: Outline

Together with the related National Literacy Strategy which took place a year earlier,
the National Numeracy Strategy in England was said by the Canadian team com-
missioned to evaluate the initiative to be “the most ambitious large-scale strategy
of reform witnessed since the 1960s” (Fullan 2000, p. 19). The implementation of
the strategy cost around the equivalent of $150m in the first year (1999/2000), with
a further $100m per year for the following 5 years, then finally declining to zero
within 10 years.

The objective of the reform was to raise standards of numeracy, in particular in
national and international tests. Thus the definition of numeracy used (DfEE 1998,
p. 11) was in terms of ‘proficiency’ with calculation and solution of word problems
rather than that used earlier in the Cockcroft Report which related to the ability to
apply mathematics in everyday life, further education and employment.

The Strategy was based on a National Numeracy Project funded by the previ-
ous government starting in 1996, which was still large-scale by most standards and
had focused on schools in 13 localities selected because of low results in national
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tests. This fore-runner Project was led by a well-regarded national figure, Anita
Straker, who had involved most of England’s elementary mathematics experts in as-
sisting with the detailed curriculum and recommended didactics (Brown et al. 2003).
Nevertheless all were aware that the development had to conform to some political
requirements, for example by focusing on calculation, being prescriptive about cur-
riculum and didactics, and involving a high proportion of whole class teaching.

The new Government was not prepared to await the full evaluation of the project
before going ahead and rolling it out nationally in the form of the National Nu-
meracy Strategy. However, reactions from teachers were positive, and so were early
indications of attainment gains. The materials developed and many of the personnel
appointed were carried over to the Strategy with minimal obstacles, thus enabling it
to be implemented quickly.

Key aspects of the reform were:

• an increased emphasis on number and on calculation, especially mental strate-
gies for calculation, including new methods of teaching number skills, a delayed
introduction of written methods, and an encouragement for pupils to select from
a repertoire of strategies;

• a three-part template for daily mathematics lessons, starting with 10–15 minutes
of whole class oral/mental arithmetic practice, then 25–35 minutes of direct in-
teractive teaching, first with the whole class and then with groups, and finally 10
minutes of plenary review;

• detailed planning using a centrally provided week-by-week framework of detailed
objectives, specified for each year group, which introduced many skills at an ear-
lier stage than previously.

The Strategy claimed to be evidence-based, but there was some question as to how
many aspects really were underpinned by research (Brown et al. 1998). There was
however much use of successful teaching models (e.g. the empty number line) al-
ready used by the Realistic Mathematics Education group based at the Freudenthal
Institute in Holland (Anghileri 2001). There were also similarities with some aspects
of the ‘reform mathematics’ movement in the United States, for example the em-
phasis on discussion and refining of children’s own strategies and a focus on mental
work rather than formal written algorithms. However calculator use was postponed
until the final years of elementary school.

Teachers were discouraged from using sets of textbooks and instead encouraged
to devise their own detailed lesson plans using the variety of sources they might
have access to, in particular, the extensive examples illustrating each of the large
number of lesson objectives which were provided in the teachers’ Framework docu-
ments (DfEE 1999). In fact the speed of the roll-out meant that it was impossible for
publishers to bring out new textbooks matching the Strategy planning templates in
time for the first year of implementation. Teachers therefore reported in the first year
that they spent many additional hours preparing these new lessons, and found it es-
pecially frustrating when some good quality supportive textbooks started to appear
in the following years.

The method of implementation was highly systematic and standardised, as it
probably needed to be in order to quickly reach more than 100,000 teachers in more
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than 17,000 schools. It involved a substantial national training programme based on
a “cascade” model of capacity-building. This was designed by the national director,
together with a group of regional directors, who each trained locally based newly ap-
pointed consultants using a standard training package. In turn the local consultants
delivered a 3-day training to groups of teachers, one from each school who had been
appointed as their school mathematics co-ordinator. Head teachers and school gov-
ernors (often a parent) attended for part of this time to ensure school managers were
properly briefed. Finally each mathematics co-ordinator collected her own package
to deliver 3 full days of training, spread over a year, in each school. Each of the
training boxes contained videos of several ‘exemplary’ lessons, PowerPoint slides
highlighting key features of the Strategy, including recommended methods of cal-
culation, and guidance booklets to demonstrate ‘best practice’.

In addition to the ‘cascade’ training, each local consultant was required to pro-
vide additional in-school coaching for teachers in a group of schools. This included
running 5-day courses to boost teachers’ subject knowledge. In the first year those
schools selected were perceived as needing support because of poor results in na-
tional tests at age 11, but over 3 years each school experienced this additional sup-
port, and the majority of elementary teachers experienced the 5-day courses.

There were considerable external incentives for schools to quickly and fully im-
plement the National Numeracy Strategy, since it took place within a tight school
accountability regime. Statutory testing was in place at ages 7 and 11; at 11 this took
the form of externally set and marked tests with results published as league tables
in the national press. There was also a strict national inspection regime in place run
by Ofsted (Office for Standards in Education). Schools could expect to be inspected
at least every three or four years, and even more frequently if they had below aver-
age test results. Inspectors observed classes to grade teaching; they had the right to
put schools in special measures which required them to improve rapidly or to close.
Thus although the National Numeracy Strategy (unlike the National Curriculum)
was technically non-statutory, not to implement it thoroughly would have been to
risk poor outcomes from inspection.

After the initial implementation, as discussed in more detail in the next sec-
tion, there were only small rises in national test results, so policymakers felt that a
stronger line needed to be taken over control of teaching quality. The central strategy
team (national and regional directors, supported by other consultants) were there-
fore asked to provide a complete year’s set of lesson plans available on the internet
to match the objectives specified, for all year groups from Grade 2 to Grade 5. The
lesson plans were full but not complete—but they mainly required teachers to sup-
ply only additional practice examples. There is no national data but pooled personal
experience suggests that local consultants strongly encouraged their use and there
was a very high take-up, even among schools which had recently invested in new
textbooks matched to the Strategy. Some attributed this to the mathematical insecu-
rity of, and fear of inspectors by, teachers—if the lesson observed followed closely
a recommended Strategy lesson then they could not be perceived as non-compliant.

Thus within a period of 20 years England had moved from a position where el-
ementary teachers were free to teach in mathematics whatever and however they
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wished, via gradually more prescriptive steps of a national curriculum, national
tests, accountability measures and a national strategy, to a position where almost
all teachers of a given grade were teaching exactly the same centrally designed les-
son on the same day throughout the country.

The National Numeracy Strategy: Effect on Attainment

Considerable claims have been made for the success of the reform in raising stan-
dards of attainment (e.g., Mourshed et al. 2010). Since the National Numeracy Strat-
egy was a reaction to poor results in international comparative surveys, the ultimate
evaluation was whether England’s rankings improved in TIMSS (Trends in Inter-
national Mathematics and Science Study) and PISA (Programme for International
Student Assessment).

At the elementary level, data is available only from TIMSS Grade 4 comparisons.
The results for England have risen gradually from 484 in 1995 to 531 in 2003 and
541 in 2007. England was 7th out of 36 countries in 2007 and was only outper-
formed by four Pacific rim countries, Russia and Kazakhstan (Sturman et al. 2008).
(In view of their bottom position out of 65 countries in PISA the Kazakhstan re-
sults are unlikely to be valid.) England had drawn ahead of Australia, New Zealand,
Canada and the Netherlands, all countries which previously outranked England.
This suggests a significant gain across the period of the Strategy, although the actual
gain is likely to be only about half as large as this because in 2003 and 2007 the tests
in England alone were sat 3 months later in the year.

There has also been a small rise in TIMSS at Grade 8; after remaining pretty
steady at around 498 between 1995 and 2003, the score increased significantly
to 513 in 2007. This was for the first TIMSS cohort which would have experi-
enced the National Strategy in elementary schools. England was now 7th out of
49 countries, and only significantly outperformed by five countries, Hungary and
four from the Pacific rim (Sturman et al. 2008). In contrast the 2006 and 2009
PISA (age 15) results are low compared with 2000, with England at 20th out
of 32 countries in 2009 against 8th out of these same 32 in 2000 (OECD 2001,
2010). This contrast in trends between TIMSS and PISA may make some sense
in that TIMSS assesses a more traditional curriculum which might be strength-
ened by a Strategy which favours number skills whereas PISA assesses mathe-
matical literacy, which was probably stronger under the post-Cockcroft curricu-
lum.

A further indication of the effect of the Strategy on attainment should be the
changes in the proportion of children reaching the ‘nationally expected’ level in na-
tional tests at age 11. Here there has been only a very slow gradual improvement
of on average 1 % per year, with 69 % of children achieving the level in 1999 and
76 % in 2006. Remarkably similar trajectories were obtained for Science and En-
glish results. It was interesting that Science gains during this period (9 %) were very
slightly larger than the Mathematics gain (7 %), since although there were National
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Strategies for Numeracy and Literacy, there was no such scheme for Science. This
suggests that the gains were more closely related to teachers’ growing expertise in
test preparation pressured by league tables and inspections than to the effects of the
Strategy.

It was fortuitous that a large-scale 5-year (1997–2002) research programme on
elementary mathematics, the Leverhulme Numeracy Research Programme (LNRP),
coincided with the introduction of the National Numeracy Strategy. The LNRP re-
search involved a longitudinal survey tracking children’s progression in numeracy
based on a nationally representative sample of 40 schools, 10 each from four diverse
local authorities (education districts). Additional research foci included a detailed
qualitative longitudinal study of children’s experiences in mathematics classrooms,
an investigation of school leadership in mathematics and numeracy and a study of
the effects of the Numeracy Strategy training on teachers. There were two cohorts of
children involved, one moving from Kindergarten to Grade 3 and one from Grade 3
to Grade 6. This meant that we had complete Grade 3 (aged 8–9 years) data from 35
out of the 40 schools both in 1997, two years before the start of the Numeracy Strat-
egy, and in 2002, two years after its introduction. The tests used were of the type of
numeracy which featured strongly in the Strategy, and the items had been fully tri-
alled in earlier research projects also based at King’s College London (Brown et al.
2008).

This comparison of Grade 3 (aged 8–9) children’s attainment before and after
the introduction of the reform shows that the Numeracy Strategy produced an ef-
fect size of 0.18 (Brown et al. 2003; see also Tymms 2004). This was consistent
whether the gain was measured at the beginning or the end of the school year.
Whilst this effect size is relatively modest (and is somewhat smaller than the in-
creases in national test performance over the same period), it is comparable to effect
sizes achieved in similar educational systems (e.g., the recent rise in German perfor-
mance in PISA mathematics). An idea of what this effect size means in practice is
that the difference is the equivalent of about 2.5 months’ learning. Alternatively, it
meant that just over one in three schools had a lower mean score after the introduc-
tion of the Strategy than before, while the remaining two in three had higher mean
scores.

Beneath this overall effect, there were differential effects across the attainment
range (performance amongst the lowest attaining group of children fell) and in dif-
ferent part of mathematics (attainment on multiplication items did not rise, while
number line and addition/subtraction items did). Analysis of the performance of
a subset of the children at the end of Grade 6 (their first year in lower secondary
school) found that their attainment on the elementary numeracy test was below that
at the end of Grade 5, suggesting that the overall gain in attainment was not sus-
tained.

These outcomes suggest that even a carefully developed, well trialled and sys-
tematically implemented curriculum change, costing in total around $1billion, may
have a relatively small effect on children’s attainment.
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The National Numeracy Strategy: Effect on Teachers and
Teaching

The official evaluation of the implementation of both the National Numeracy and
the National Literacy Strategies was commissioned from the Ontario Institute for
Studies in Education (Earl et al. 2003), and there were also reports based on school
inspectors’ observations (Ofsted 2002). These demonstrated that the implementa-
tion processes had been very thorough and successful in reaching all teachers as
well as in giving coherent and consistent messages. The recommendations were
being put into practice faithfully by teachers, in relation to the content of the cur-
riculum, the lesson planning and adoption of centrally provided learning objectives,
the specific mathematical didactics (e.g. use of the empty number line for addition
and subtraction), and the generic pedagogy (the format of each lesson).

The Leverhulme Numeracy Research Project (LNRP) also had a large database
of teacher interviews and observed lessons from before and after the Strategy imple-
mentation. Particular attention was paid to the Grade 3 lessons, which were taught
in the same 35 schools (but rarely by the same teachers) during 1997/8 and 2001/2.
These included about 75 lessons, one from each Grade 3 class, in each of the two
years.

In particular the LNRP research was in line with the OISE and Ofsted reports
in concluding that the more superficial aspects of the reform were implemented
conscientiously by almost all teachers and schools (Millett et al. 2004a). Lessons
became objective-driven, and lesson structures, pedagogy, didactics, and curriculum
were modified in compliance with the guidance provided.

However teachers’ lack of understanding of the mathematics and unwillingness
to make independent professional judgements acted as barriers to deeper levels of
change. Teachers felt they must stick closely to the objectives and lesson structure
since they had been assured that these were research-based and would produce good
outcomes, even when they felt that pupils could have benefited from greater flexi-
bility. They rarely felt they had the knowledge or confidence to challenge or adapt
the lessons. For example, teachers sometimes expressed a desire to spend longer on
a topic or idea until the whole class had consolidated their knowledge, or to omit
the plenary session to allow pupils longer to work individually. As intended by the
Strategy, the process of teaching seemed to have acquired priority over the process
of learning.

We observed some levelling down as well as levelling up of quality in the process
of pursuit of compliance. Thus the examples of really inspiring and engaging lessons
we had sometimes observed in 1997/8 were no longer there in 2001/2. On the other
hand, the fact that teachers were now focusing on prescribed objectives probably
explained why by 2001/2 there were far fewer lessons where children’s confusion
about mathematics seemed to be a consequence of a teacher’s lack of clarity over
what they were trying to achieve.

However, almost all teachers expressed great enthusiasm for the changes. They
felt that both they and the children had a better grasp of the mathematics with the
new ways of teaching number and number operations. They were convinced that
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pupils’ achievement was significantly greater than before the Strategy was intro-
duced, in spite of our results which showed that in over a third of schools the results
were lower than previously, and in very few schools were they significantly higher.
They appreciated the focus on asking children to explain how they tackled problems,
although in lesson observations teachers often found it hard to build on children’s
responses. Instead, keen to achieve the lesson objective, teachers would often simply
then show children how they were expected to solve the problem.

Millett et al. (2004b) note:

In our opinion, the major impact of the Strategy so far on the teaching of mathematics
has been in changing the attitude towards mathematics on the part of teachers, and with
that the motivation for changing practice . . . improvements in the quality of mathematical
interactions in the classroom are extremely limited. (p. 204)

These observations seem to explain some of the results on attainment reported in
the previous section. For example, the drop in attainment of the lowest attaining
children seemed to follow from teachers’ reluctance to diverge from whole class
teaching on prescribed objectives or to spend longer on a topic than decreed. The
fact that there were greater changes in some areas of numeracy than others reflected
changes in emphasis and didactics. For instance, more focus on the number line
brought significant rises in number line items, whereas some word problem items
fell in facility as problem-solving was no longer emphasised. There was not any-
thing like as great an effect size as was anticipated by the politicians because there
was not really a change in the quality of classroom interactions between teachers
and children.

Primary CAME (Cognitive Acceleration through Mathematics
Education): 1997/2001

A significant barrier to the success of interventions at scale is that many of the rec-
ommendations made by the mathematics education research community are difficult
to communicate to teachers at a distance. For example, systemic interventions face
considerable challenges when attempting to encourage teaching that emphasises for-
mative assessment.

We now shift our attention to a curriculum change project, Cognitive Acceler-
ation through Mathematics Education (CAME), which attempted to address this
issue (Shayer and Adhami 2007). Specifically, CAME sought to effect “bottom-up”
change by working initially at a local level with small groups of teachers, then en-
couraging their continued involvement through a national support network of teach-
ers.

CAME was one element of a wider programme of research in Cognitive Accel-
eration that began in Science Education (Adey and Shayer 2002). Central to the
CAME approach were lesson outlines in which children were encouraged to grap-
ple with cognitively challenging ideas. Drawing on neo-Piagetian, Vygotskian and
other related research into children’s conceptual development (Adhami et al. 1995;



Curriculum, Teachers and Teaching 385

Biggs and Collis 1982), the lessons attempted to match the reasoning levels inherent
in mathematical tasks with what children might reasonably be expected to achieve,
relating this in particular to potential misconceptions and children’s naïve under-
standings of key mathematical ideas (Hart et al. 1981).

Hence, CAME lessons were designed to provide all students in a typical class
with opportunities to engage mathematics just beyond their current level. In doing
so, the lessons included explicit attention to the key constructs of concrete prepara-
tion, construction, cognitive conflict, metacognition and bridging. These ideas were
drawn from the mathematics education literature and are described in some detail
elsewhere (Shayer and Adhami 2007).

For the purposes of this chapter, however, we emphasise two key design features
of the intervention with teachers. The first important feature relates to conceptual
teaching. CAME lessons were introduced to teachers as “Thinking Maths” lessons
to supplement (and not replace) regular mathematics teaching and to be taught ev-
ery two or three weeks. This reduced the conflict that teachers often feel in novel
approaches between curriculum coverage and covering an issue thoroughly. Thus,
it offered teachers the opportunity to explore and think in depth about the CAME
approach, while mostly maintaining their previous practice.

The second feature relates to collaboration. Teachers’ professional development
was built around the teachers doing the CAME mathematical activities themselves,
then planning, team-teaching and reflecting on the relevant lesson, before teaching
the lesson to their own classes. Hence, collaboration was designed into the pro-
fessional development specifically around teachers’ central professional interest—
teaching the lessons. Teachers are often extolled to collaborate, but they need both
an opportunity and a reason to collaborate.

CAME has been developed for lower elementary, upper elementary and lower
secondary education. The upper elementary work, of Primary CAME was part of
the Leverhulme Numeracy Research Programme (LNRP) and hence, although this
was not intended, went on alongside the National Numeracy Strategy. This made
it difficult to analyse the results, especially while using national test results where
some schools focused more than others in coaching their pupils for tests.

The work started with 2 teachers in each of two schools, working as teacher
researchers with a local primary mathematics advisor and a group of four university
researchers. The aim was to design, trial and refine Grade 4 lessons as explained
above. In the second year, the teacher researchers inducted teachers in seven main
study schools from the same local district, who trialled the lessons while the research
group developed and trialled Grade 5 lessons, which were then introduced to the
additional seven schools in the third year.

Hodgen and Johnson (2004) have described the significant changes in beliefs that
occurred in some, but not all, of the teacher researchers involved.

Evaluation results for CAME in different phases all showed positive effects. In
lower secondary (equivalent to Grades 6 and 7, ages 11–13), gains on an immedi-
ate post-test show an effect size of 0.34 on a test of conceptual understanding. In
addition and significantly, public examination results at age 16 indicate a “far ef-
fect size” of 0.44, three years after the intervention took place (Shayer and Adhami
2007).
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In lower elementary (equivalent to Kindergarten and Grade 1, ages 5–7), a group
of teachers from 8 schools participated in professional development led by the re-
searchers themselves, whilst a further group of 10 schools participated in profes-
sional development led by others (Shayer and Adhami 2010). On an immediate
post-test, the group taught by the researchers showed gains equivalent to an effect
size of 0.71 with gains for the additional group of 10 schools at 0.60 using a test of
conceptual understanding. On a national test conducted five years later, both groups
showed gains in comparison to the national sample equivalent to effect sizes of 0.24
and 0.22.

Finally, CAME in upper elementary that is described here was evaluated along-
side the introduction of the National Numeracy Strategy (Adhami 2002). These indi-
cate an effect size gain of 0.26 of the intervention classes over the control. Although
this is a more modest gain than in lower elementary or upper secondary, we note that
this gain was in addition to the effect of the introduction of the National Numeracy
Strategy.

Thus there is reasonably good evidence for the efficacy of the CAME interven-
tion both in elementary and in secondary education. Of particular note are the “far”
effects indicated by the lower elementary and the secondary evaluations, showing
that the effects of the interventions appear to be sustained. However, scaling up and
sustaining the approach remains a challenge, an issue that we return to in our con-
cluding discussion.

It is worth noting that in a recent report on good practice in elementary mathe-
matics teaching by the inspectorate, based on observations in many schools (Ofsted
2011), a Primary CAME lesson taught by a teacher who had not been part of the
original research was featured as an example of an outstanding lesson, and indeed
the chief inspector for mathematics explained that it was the best lesson she had ever
observed.

Conclusions

The local project, Primary CAME, had significantly larger effect sizes than the sys-
temic reform. However this may only reflect the smaller scale of these projects,
bringing about a greater personal commitment and a potential Hawthorne effect of-
ten associated with early adopters. As in the case of other CAME projects it was
also clear that not all teachers bought into the system (non-implementation was not
a realistic option for the National Strategy).

Nevertheless, Primary CAME is part of a wider and mature cognitive acceleration
programme that has shown effects can be sustained (Shayer and Adhami 2010).
In contrast to the deep change in teachers’ beliefs that can result from these local
projects where teachers develop positive relationships with the project leaders and
with other teachers involved, commit to the project and play an active role in the
development, and often therefore experience a sense of shared ownership of the
work, the National Numeracy Strategy produced rather superficial changes, but on a



Curriculum, Teachers and Teaching 387

far wider scale. It seems likely that the marginal costs per teacher might be similar,
but further work is needed on comparing the relative costs of local and systemic
reform (Brown 2010).

We argue that two key deficiencies of systemic development are that it fails to en-
courage the development of authentic teacher professional networks (which Spillane
1999, argues is key to successful professional change), and it tends to discourage
teacher exploration and experimentation (thus discouraging change, Cuban 1993).
We are now seeing the lack of long term effect in that since the removal of the Na-
tional Strategy infrastructure, many of the curricular and didactic features (such as
methods of teaching calculation) seem to be fragmenting, leaving a lack of coher-
ence in approach, both between and within schools. Only the more simplistic peda-
gogic features which probably have a lesser effect on outcomes (like the ‘three-part
lesson’) seem to have survived as part of the nationally agreed definition of ‘good
practice’. In contrast there are certainly still networks of Primary CAME teachers
sustained by a small number of enthusiasts, but it is unclear how long these will
survive.

These two case studies suggest that there is no clear winner between local and
systemic innovation in mathematics curriculum; they have different development
paths and effects. It may be that a system should alternate; for example, after a pe-
riod of closely prescribed systemic change like the National Numeracy Strategy in
England, a “let a thousand flowers bloom” approach of encouraging a wider num-
ber of small scale local projects would achieve gains equivalent to that achieved
by systemic reforms initiative at a roughly similar cost, but would have the advan-
tage of encouraging a revival of teacher creativity and producing a wider variety
of approaches to the teaching of mathematics. The most promising might then be
carefully evaluated and considered for wider, maybe even systemic, implementation
in the next phase.
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Abstract This chapter discusses approaches to teaching algebraic concepts like
variables that are embedded in a Standards-based mathematics curriculum (CMP)
and in a traditional mathematics curriculum (Glencoe Mathematics). Neither the
CMP curriculum nor Glencoe Mathematics clearly distinguishes among the vari-
ous uses of variables. Overall, the CMP curriculum uses a functional approach to
teach equation solving, while Glencoe Mathematics uses a structural approach to
teach equation solving. The functional approach emphasizes the important ideas of
change and variation in situations and contexts. The structural approach, on the other
hand, avoids contextual problems in order to concentrate on developing the abilities
to generalize, work abstractly with symbols, and follow procedures in a system-
atic way. This chapter reports part of the findings from the larger LieCal research
project. The LieCal Project is designed to investigate longitudinally the impact of a
Standards-based curriculum like CMP on teachers’ classroom instruction and stu-
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Purpose

The purpose of this paper is to compare the approaches to algebra that are embedded
in two types of middle school curricula used in the United States: “Standards-based”
and “traditional,” with a focus on variable ideas. The Standards-based curriculum
that we analyze in this paper is the Connected Mathematics Program (CMP). It was
developed with the support of the National Science Foundation and designed to align
with the reform-oriented principles recommended in the NCTM Standards (NCTM
1989). The “traditional” curriculum that we analyze is Glencoe Mathematics. The
National Science Foundation did not fund the development of Glencoe Mathemat-
ics. Although it professes to be Standards-based, Glencoe Mathematics is generally
considered to be traditional in its approach, rather than reform-oriented. Our goal is
not to evaluate these curricula. Instead, our intent is to acquaint the reader with the
details of two distinct approaches to the teaching of algebra, as well as the mathe-
matical conceptions that underlie them.

In the past two decades, researchers have begun to explore new conceptions of
school algebra (Kieran et al. 1996; Nemirovsky 1996). Curriculum designers often
disagree about the organizing themes that should be used to give coherence to al-
gebra across the curriculum. Two ways to conceptually organize curricula written
for school algebra are via functions and via structures (Algebra Working Group to
NCTM 1997). These two conceptions of school algebra are the basis for two popu-
lar approaches to the teaching of school algebra. The central mathematical concept
of relation underlies the functional approach, which has been advocated by many
mathematics educators (Bednarz et al. 1996). Under the functional approach, the
important ideas of change and variation that can be seen in various situations and
contexts are used to organize algebraic concepts across the curriculum. The struc-
tural approach, in contrast, looks beyond the potentially confounding aspects of
real-world contexts. It focuses, instead, on procedures and on underlying structures
and patterns. That is, the structural approach requires students to move away from
contextual problems and develop the ability to generalize, work abstractly with sym-
bols, and follow procedures in a systematic way.

In this chapter, our analysis shows how these two approaches are implemented in
Standards-based and traditional mathematics curricula, respectively, with a focus on
variable ideas. This chapter has five sections. We first provide background informa-
tion about the recent curriculum reform in the United States and the LieCal Project
on which this chapter is based. Second, we present our detailed analysis of variable
ideas in the CMP (Standards-based) and non-CMP curricula. The following related
questions guided our analysis of the two types of curricula: (1) What are the learn-
ing goals for the concept of variable in the two curricula? (2) How is the concept
of variable defined and introduced in the two types of curricula? and (3) How is the
concept developed across the middle grades in both types of curricula?

Building on the second section, the third section examines how the variable ideas
in CMP and non-CMP curricula influence the definition and introduction of other
important algebraic ideas, such as equation, equation solving, and function. The
fourth section highlights teachers’ use of the two types of curricula in classrooms
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and the ensuing student achievement growth across the three middle school years.
Our goal in the fourth section is to show the impact of curriculum on teachers’
teaching and student learning.

In the fifth section, the chapter concludes with an in-depth discussion of the
complex interplay among three levels of curriculum (intended, implemented, and
attained), as well as methodological issues of curriculum studies (Cai 2010). The
intended curriculum refers to the formally written documents that set system-level
expectations for learning mathematics. The intended curriculum usually includes
goals and expectations set by the educational system along with textbooks, official
syllabi or curriculum standards, and course objectives. The implemented curriculum
refers to school and classroom processes for teaching and learning of mathemat-
ics as interpreted and implemented by the teachers, according to their experience
and beliefs for particular classes. The attained curriculum refers to what is learned
by students and is manifested in their achievements and attitudes. In addition, this
chapter provides some insights into the substance of the current reform effort in the
United States, which has received widespread attention over the past decade.

Background

Advocates of mathematics education reform often attempt to change classroom
practice, and hence students’ learning, by means of changes in curricula (Ball and
Cohen 1996). This is not a new development since, historically, curricula have been
used to convey what students should learn as well as to improve instruction. There-
fore, an analysis of curricula can provide insights not only into different philoso-
phies regarding mathematics learning, but also into different approaches to the
teaching of mathematics (Cai et al. 2002, 2010; Nie et al. 2009).

In the late 1980s and early 1990s, the National Council of Teachers of Mathe-
matics (NCTM) published its first round of Standards documents (e.g. NCTM 1989,
1991, 1995), which provided recommendations for reforming and improving K-12
school mathematics. These Standards documents not only specified new goals for
school mathematics, but also specified major shifts in teaching mathematics, includ-
ing movement toward:

• classrooms as mathematical communities—away from classrooms as simply col-
lections of individuals;

• logic and mathematical evidence as verification—away from the teacher as the
sole authority for right answers;

• mathematical reasoning—away from merely memorizing procedures;
• conjecturing, inventing, and problem solving—away from an emphasis on mech-

anistic answer-finding;
• connecting mathematics, its ideas, and its applications—away from treating math

as a body of isolated concepts and procedures.

With extensive support from the National Science Foundation (NSF), a number
of school mathematics curricula were developed and implemented to align with the
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recommendations of the Standards. The Connected Mathematics Program (CMP)
is one of the Standards-based middle school curricula developed with funding from
NSF. The CMP curriculum was designed to build students’ understanding of impor-
tant mathematics through explorations of real-world situations and problems. It is
a complete middle-school mathematics program. Students using the CMP curricu-
lum are led to investigate important mathematical ideas and develop robust ways
of thinking as they try to make sense of and resolve problems based on real-world
situations.

In this chapter, we compare the approaches to variable ideas in the CMP cur-
riculum to those in the more traditionally-based Glencoe Mathematics: Concepts
and Applications curriculum (Bailey et al. 2006a, 2006b, 2006c). The Glencoe cur-
riculum is also a complete middle-school mathematics program. Students using the
Glencoe curriculum are taught important mathematical skills and concepts princi-
pally by studying completely worked out examples with clear explanations that are
paralleled by guided practice. As we have stated, mathematics educators consider
the Glencoe curriculum to be traditional, rather than Standards-based. There is one
book for each grade level in Glencoe Mathematics. Unlike Glencoe Mathematics,
the CMP curriculum consists of a number of unit booklets for each grade level.

LieCal Project

The research reported here was part of a large research project designed to longitu-
dinally compare the effects of a Standards-based curriculum (CMP) to the effects
of more traditional middle school curricula on students’ learning of algebra. In the
large project, Longitudinal Investigation of the Effect of Curriculum on Algebra
Learning (LieCal),1 we investigated not only the ways and circumstances under
which CMP and other middle school curricula like Glencoe Mathematics did or did
not enhance student learning in algebra, but also the characteristics of the curricula
that led to student achievement gains (Cai et al. 2011a, 2011b). The LieCal project
was conducted in 14 middle schools of an urban school district serving a diverse stu-
dent population in the United States. Approximately 85 % of the participants were
minority students: 64 % African American, 16 % Hispanic, 4 % Asian, and 1 %
Native American. Male and female students were about evenly distributed. (See Cai
et al. 2011a, 2011b and Moyer et al. 2011 for details about the LieCal Project.)

In particular, the LieCal Project was designed to provide: (a) a profile of the in-
tended treatment of algebra in the CMP curriculum with a contrasting profile of
the intended treatment of algebra in non-CMP curricula; (b) a profile of classroom
experiences that CMP students and teachers had, with a contrasting profile of expe-
riences in non-CMP classrooms; and (c) a profile of student performance resulting

1In 2006 and 2009, the CMP authors published revised editions of the CMP curriculum under the
name CMP2. CMP3 was published in 2013. This article is based on the original CMP curriculum
because the students in the LieCal project used CMP, not CMP2 or CMP3.



Teaching Mathematics Using Standards-Based and Traditional Curricula 395

from the use of the CMP curriculum, with a contrasting profile of student perfor-
mance resulting from the use of non-CMP curricula. Accordingly, the project was
designed to answer three research questions:

1. What are the similarities and differences between the intended treatment of alge-
bra in the CMP curriculum and in the non-CMP curricula?

2. What are key features of the CMP and non-CMP experiences for students and
teachers, and how might these features explain performance differences between
CMP and non-CMP students?

3. What are the similarities and differences in performance between CMP students
and a comparable group of non-CMP students on tasks measuring a broad spec-
trum of mathematical thinking and reasoning skills, with a focus on algebra?

While the focus of this chapter is on research question 1, we will also provide some
evidence addressing research questions 2 and 3.

Variable Ideas in CMP and Non-CMP Curricula

Importance of Variable Ideas in Algebra

The concept of Variable is one of the most important algebraic ideas (NCTM 2000;
Schoenfeld and Arcavi 1988). A major difference between arithmetic and algebra
is the involvement of variables in algebra. In algebra, the concept of variable can
be understood in different ways. For example, variables can be introduced in a cur-
riculum as quantities whose values may change or vary according to circumstances.
From this perspective variables can represent many numbers simultaneously; they
have no place value, and they can be selected arbitrarily. In the mathematics educa-
tion community, we have not had consistent conceptions for the following pairs of
concepts: letters and variables, unknowns and variables, place-holders and variables
(Janvier 1996). Some educators and curriculum developers believe that both words
in each of the pairs mean the same thing, but others believe they represent different
concepts. For example, Wheeler (1996) thinks the letter “x” can stand for an as-yet-
unknown number, a general number, or a variable. From Wheeler’s point of view, a
letter and a variable are not the same thing, and a variable is different from an un-
known and from a general number. As part of a larger study, when Schoenfeld and
Arcavi (1988) asked a diverse group of people (mathematicians, mathematics edu-
cators, computer scientists, linguists, logicians, and so forth) to describe the concept
of variable in one word, and they produced the following list: symbol, placeholder,
pronoun, parameter, argument, pointer, name, identifier, empty space, void, refer-
ence, and instance. Interestingly, none of the subjects used the word unknown to
describe the concept of a variable. Schoenfeld and Arcavi (1988) explained that the
omission occurred because the word unknown, which connotes something that has
a fixed value that one does not yet know, did not match the subjects’ conception of
variable as something that varies or has multiple values. Schoenfeld and Arcavi also
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listed ten different meanings of variable from a variety of sources, making the point
that mathematicians use the term variable differently in different contexts, and that
this practice makes it difficult for mathematics educators to define the word variable,
and even more difficult for students to learn the concept.

Indeed, there is no consensus in the mathematics education community on a sin-
gle definition of variable that should be used in algebra textbooks. One reason for
this is that there is no consensus on the role that the study of algebra should play in
precollege mathematics. Different conceptions of algebra are better served by some
interpretations of variable than others (Usiskin 1988). For example, one conception
of algebra favored by many educators is that algebra is generalized arithmetic. For
this conception, the interpretation of a variable as a pattern generalizer is preferable
to other interpretations. Another conception of algebra is that it is the study of pro-
cedures for solving certain kinds of problems. In this case, the most useful meaning
of variable is that of an unknown or constant. The concept of algebra as the study
of relationships among quantities, on the other hand, is best served by emphasizing
the use of variables as arguments or parameters. Finally, the conception of algebra
as strictly the study of structures is best served if variables act as arbitrary symbols,
or marks on a paper.

Since there is no agreement among mathematics educators regarding the defini-
tion of the term variable, it is important to determine which, if any, of the commonly
used interpretations of a variable align with the goals of the two curricula being ana-
lyzed. Variables have been used in middle school mathematics curriculum materials
in each of the following three ways (Usiskin 1988):

(1) Variables viewed as pattern generalizers (e.g., in generalizing 3 + 5 = 5 + 3 to
the pattern a+b = b+a) or as representatives of ranges of values (e.g., in using
3t + 6 to represent the possible values that can result when 6 is added to 3 times
a quantity);

(2) Variables viewed as placeholders or unknowns in naked equations (e.g., as in
x + 6 = 21), or in equations translated from a word problem (e.g., “In how
many years will your 6-year-old sister be 21?”).

(3) Variables used to represent relationships, such as in the use of y = 9x − 43 to
represent an equation of the line with slope 9 that goes through the point (5, 2),
or as in the use of C = 15N to represent the relation between the number of $15
tickets (N) and their total cost (C).

In our analysis, we examine which of these meanings of variable align with the
goals and approaches of the portions of the CMP and Glencoe Mathematics cur-
ricula that introduce the concept of variable, and that develop concepts related to
algebraic equations and linear functions.

Learning Goals for the Concept of Variable

CMP learning goals can be found in the implementation guide (Lappan et al. 2002c),
in the lesson planner (Lappan et al. 2002d), in the Teacher’s Guide to each unit, and
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Table 1 Focus of the learning goals related to the concept of variable in the CMP and Glencoe
mathematics curricula

Conceptions of Variables CMP Glencoe

The learning goals characterize variables as pattern generalizers or
as being used to represent ranges of values

� �

The learning goals characterize variables as placeholders or
unknowns

�

The learning goals characterize variables as being used to represent
relationships

�

in the student texts themselves. The learning goals for the Glencoe Mathematics
curriculum are given in the teacher’s wraparound edition of each course. Table 1
shows the focus of the learning goals related to the concept of variable in the CMP
and Glencoe Curricula.

The learning goals related to the acquisition and use of the concept of variable
in the CMP curriculum focus on the use of variables to represent relationships. The
following learning goals are representative of those related to the concept of variable
in CMP: “[to] search for patterns of change that show relationships among the
variables,” (Lappan et al. 2002d, p. 71), “[t]o understand that variable is a quantity
that changes and to recognize the variables in the real world,” (Lappan et al. 2002d,
p. 73), and “[t]o identify variables and determine an appropriate range of values for
independent and dependent variables,” (Lappan et al. 2002d, p. 103). These learning
goals are very explicit in their expectation that students understand that variables are
used to represent relationships. We could not find any goal statements in CMP that
suggest that variables should be viewed as placeholders or unknowns.

In contrast, almost all the learning goals about the concept of variable in Glencoe
Mathematics describe a variable as a placeholder or an unknown. For example, the
Mathematical Content and Teaching Strategies section of the teacher’s wraparound
edition says the following about Lesson 1-6 of Course 1: “. . . students first explore
the use of models to stand for unknown quantities. They then transfer this concrete
sense to an understanding of the function of variables in algebraic expressions,”
(Bailey et al. 2006a, p. 4D). Furthermore, the Glencoe learning goals that involve
the concept of variable are typically written in an equation-solving context. For ex-
ample, the following statement refers to Lesson 1-7 of Course 1: “In earlier grades,
students were exposed to the concept of missing parts of equations as represented
by boxes and circles. They learn how variables serve the same function in an alge-
braic equation,” (Bailey et al. 2006a, p. 4D). Here is a second example, taken from
the grade 8 teacher wraparound edition: “A problem like ( ) + 6 = 8 that they might
have included in an earlier course is now written with a variable as x + 6 = 8,”
(Bailey et al. 2006c, p. 4C). It is apparent from these examples that an important
learning goal in Glencoe Mathematics is for students to understand that variables
are placeholders or unknowns.

To complement CMP’s emphasis on the use of variables to represent relation-
ships, CMP encourages students to view variables as pattern generalizers or rep-
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resentatives of ranges of values. This is done by requiring students to “. . . search
for patterns of change that show relationships among the variables,” (Lappan et al.
2002d, p. 71).

Glencoe Mathematics does not have specific learning goals suggesting that vari-
ables should be viewed as pattern generalizers or representatives of ranges of values.
However, we can find instances in the Glencoe Mathematics curriculum where vari-
ables are used as pattern generalizers. For example, in sixth grade a proportion is
defined as “. . . an equation stating that two ratios are equivalent,” and it is accom-
panied by the following use of variables as pattern generalizers: “a/b = c/d , b 	= 0,
d 	= 0,” (Bailey et al. 2006a, p. 386).

Defining and Introducing Variable Ideas

Variable in CMP CMP formally introduces the concept of variable in grade 7,
while Glencoe Mathematics introduces the concept of variable in grade 6. Although
both curricula formally define the term variable, the definitions provided by CMP
and Glencoe Mathematics are very different. CMP defines the term variable in con-
junction with its connection to coordinate graphs: “A variable is a quantity that
changes or varies. . . . A coordinate graph is a way to show the relationship be-
tween two variables,” (Lappan et al. 2002a, p. 7). Glencoe Mathematics defines a
variable as “. . . a symbol, usually a letter, used to represent a number,” (Bailey et al.
2006a, p. 28). From these definitions, it is clear that CMP uses variables to represent
relationships, while variables are viewed as placeholders or unknowns in Glencoe
Mathematics.

The CMP curriculum’s definition of variable as a quantity rather than a symbol
makes it convenient to use variables informally in relationships long before it intro-
duces the concept of variable formally in 7th grade. In Investigation 4 (“Coordinate
Graphs”) of the 6th grade unit Data About Us (Lappan et al. 2002e), students ana-
lyze data by constructing coordinate graphs to explore relationships among quanti-
ties listed in tables (e.g., distance and time from school, height and foot length). This
is done by labeling the horizontal and vertical axes with the names of the quantities,
plotting data points, and observing that there is a relationship between the quan-
tities. Sometimes the relationship is qualitative (“Students who live further away
from school generally spend more time getting to school” (p. 45)); sometimes the
relationship is quantitative (“Height is generally about 6 to 6-1/2 times foot length”
(p. 44)).

A year later, when CMP formally introduces the concept of variable in the 7th

grade unit Variables and Patterns (Lappan et al. 2002a), only the word variable
is new. This is because the formal use of variables in the first three investigations
of the 7th grade unit (“Variables and Coordinate Graphs,” “Graphing Change,” and
“Analyzing Graphs and Tables”) is the same as the informal use of quantities in
6th grade. That is, students use quantity names (now called “word names for the
variables”) as before, to describe relationships in words and to label columns of
data tables and axes of coordinate graphs.
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Fig. 1 Sample problems to introduce the concept of variable in CMP and Glencoe Mathematics
curricula (Lappan et al. 2002a, p. 11; Bailey et al. 2006a, p. 29)

It is not until Investigation 4 (“Patterns and Rules”) of Moving Straight Ahead
that the students are finally introduced to the use of symbols for variables (Lappan
et al. 2002b). Investigation 4 provides the following rationale for using symbols:
“A shorter way to write rules using variables is to replace the word names for the
variables with single letters,” (p. 50). One of the application problems at the end of
the investigation that introduces the concept of variable is shown in Fig. 1. Question
a in the CMP part of Fig. 1 illustrates the curriculum’s emphasis on understanding
the concept of variable through real-world situations. Question b illustrates how
CMP uses scatterplots based on real-world contexts to develop students’ informal
understanding of variability and the interrelationship of variables.

In CMP, the development of the concept of variable underscores the changing or
varying nature of variables, and it emphasizes that expressing relationships between
variables is at the heart of algebra. Rather than developing the concept of variable
by introducing algebraic equations immediately, CMP introduces the terms inde-
pendent variable and dependent variable. Then relationships between independent



400 J. Cai et al.

and dependent variables are emphasized by way of graphs and tables of real world
quantities.

Variable in Glencoe Mathematics Glencoe Mathematics defines a variable as a
symbol (or letter) used to represent a number, and the examples that illustrate the
definition show students how to evaluate algebraic expressions for given values of
the variables. These examples give the impression that variables and numbers can
be interchanged. This is because every variable (letter) is assigned only one number.
Letters used this way in equations are often called unknowns, and are not universally
considered to be variables because they are thought of by many as having fixed
values that we do not yet know (Usiskin 1988; Schoenfeld and Arcavi 1988).

Based on an analysis of the problems used in the introduction of variable in their
curricular materials, it is probable that the initial conceptualizations of variable for
CMP students and Glencoe Mathematics students will be different. CMP provides
an opportunity for students to understand variables using a functional approach by
analyzing the relationships between them. However, Glencoe Mathematics imparts
a structural perspective to the concept of variable by giving the impression that every
variable is a letter that has a fixed value.

Introduction of Equations, Equation Solving, and Functions

In this section, we show how the CMP and Glencoe Mathematics curricula incor-
porate functional and structural approaches, respectively, into their introduction of
the concepts of equation, equation solving, and function. We refer to the previous
section’s analysis of how these two curricula define and introduce variable ideas to
help us understand the approaches to teaching equation solving in CMP and Glencoe
Mathematics.

Defining Equations

In the previous section we showed that CMP, with its emphasis on relationships,
clearly takes a functional approach to the concept of variable. In contrast, Glencoe
Mathematics’ focus on variable as a symbol points toward its structural approach.
It is not surprising, therefore, that the concept of equation is defined functionally in
CMP, but structurally in Glencoe Mathematics.

Functional Approach in the CMP Curriculum In CMP, the concept of equation
is functionally based. This approach is a natural extension of CMP’s development
of the concept of variable described above and is based on the guiding principle that
expressing relationships between variables is at the heart of algebra. Representa-
tions that express these relationships are introduced incrementally. At the beginning
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of 6th grade, relationships between quantities are expressed using graphs and ta-
bles rather than via algebraic equations. CMP does not even introduce algebraic
equations when it formally defines the term variable in the 7th grade unit Variables
and Patterns (Lappan et al. 2002a). Instead, CMP simply prepares for the eventual
introduction of equations as descriptors of relationships by introducing the terms
independent variable and dependent variable, which are vital in the language of
equations and functions.

Equations themselves are introduced later through contextual examples that give
rise to formulas or rules that model a given real life context. An instance of this can
be found on page 49 of Variables and Patterns:

circumference = π × diameter

which is later referred to as an example of an equation or a formula. The emphasis
in CMP is on using equations to describe real-world situations. Rather than seeing
equations simply as objects to manipulate, students are shown that equations often
describe relationships between varying quantities that arise from meaningful, con-
textualized situations. Clearly, this view of equation fits within the framework of a
functional approach (Bednarz et al. 1996).

The functional approach to introducing the concept of equation is also apparent
in CMP’s emphasis on multiple ways of representing equations. In the unit Variables
and Patterns, students study the graphs of various equations using a graphing cal-
culator. In addition, students study tables corresponding to various equations. The
intention is to help students to understand relationships among the symbolic, graph-
ical, and tabular representations of equations. It is instructive to note that in CMP,
students’ initial exposure to equations does not involve solving equations.

Structural Approach in the Glencoe Mathematics Curriculum As the devel-
opment of equations in CMP arises naturally from its characterization of variables,
Glencoe Mathematics similarly follows a natural path from its definition of variable
as a symbol to the use of decontextualized equations and emphasis on procedures
for solving equations. These are hallmarks of a structural focus.

Lesson 1-7, entitled “Algebra: Solving Equations,” of the Glencoe Mathematics
6th grade textbook (Bailey et al. 2006a), introduces equations shortly before defin-
ing them. The lesson begins with a Hands-On Mini-Lab in which students represent
single-variable equations on a balance scale. On the scale, a paper cup represents
the variable (placeholder), and groups of centimeter cubes represent numerical con-
stants. Students are told that when the amounts on each side of the scale are equal,
the scale is balanced. The students place 3 cubes and a cup on one side of the scale
and 8 cubes on the other. Then they are instructed to replace the paper cup with
centimeter cubes until the scale balances. By way of practice, the students use the
scale to model four other equations and find the number of centimeter cubes needed
to balance the scale for each. Neither the word equation nor the word solve is used
in the Mini-Lab.
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After the Mini-Lab, in Lesson 1-7 itself, Glencoe defines an equation as
“. . . a sentence that contains an equals sign” (p. 34). By way of illustration, the
book then provides examples of number sentences (p. 34):

2 + 7 = 9 10 − 6 = 4 4 = 5 − 1

However, the text does not explicitly relate these examples to the Mini Lab. There-
fore, it is conceivable that these examples actually reinforce erroneous interpreta-
tions of the equals sign as a symbol that signifies the result of a computation (e.g.,
when 2 is added to 7, the result is 9) (Kieran 1981). As a consequence, some students
may continue to mistakenly believe that an equals sign means “Write the answer or
result of the indicated computation.”

Immediately following these arithmetic-based examples of equations, the text
illustrates equations that contain variables:

2 + x = 9 4 = k − 6 5 − m = 4

Students are told that the way to solve an equation is to replace the variable with a
value that results in a true statement. It is worth noting that, at this point in the lesson,
the text does not refer to the hands-on Mini-Lab, nor does it make any explicit
reference to how the notion of balance relates to equations or equation solving.

An important equation-solving technique in Glencoe Mathematics is to use men-
tal math, e.g. “THINK 12 equals 5 plus what number?” (p. 35). After solving an
equation mentally, students are asked to graph the solution on a number line. Al-
most all of the equations in Chaps. 1–8 of the 6th grade text can be solved using
mental addition or subtraction. Equation solutions that require multiplication or di-
vision are introduced in Lesson 9-4, Solving Multiplication Equations. Also, the
Addition Property of Equality and the Subtraction Property of Equality are formally
stated and used in Chap. 9. The Multiplication and Division Properties of Equality
are used in this chapter, but not formally stated.

In Grade 7, as in grade 6, the concept of an equation is also introduced using
number sentences as examples. However, the number sentences used are quite dif-
ferent from what they were in Grade 6. In the Grade 7 examples, it is more evident
that the equals sign does not signify the result of a computation, instead it represents
equality or equivalence, e.g. “4 + 3 = 8 − 1”, “3(4) = 24/2” and “17 = 13 + 2 + 2”
(Bailey et al. 2006b, p. 24).

In order to make the transition from writing algebraic expressions to writing
equations, Glencoe Mathematics tells students that “When you write a verbal sen-
tence as an equation, you can use the equals sign (=) for the words equals or is”
(Bailey et al. 2006b, p. 151). After showing how to write a phrase as an expres-
sion, Glencoe Mathematics provides examples showing how to write sentences as
equations, as shown in Fig. 2.

In addition, the reverse situation is described: “write a verbal sentence that trans-
lates into the equation n + 5 = 8” (Bailey et al. 2006b, p. 151). Students must think
critically to come up with a real life scenario that matches the equation given. This
is intended to help them see the value of using algebraic equations.
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Fig. 2 Sample examples of translating written sentences into equations in Glencoe Mathematics
(Bailey et al. 2006b, pp. 150–151)

Introduction to Equation Solving

CMP and Glencoe Mathematics use functional and structural approaches, respec-
tively, to introduce equation solving, consistent with the approaches they used to
define equations.

Introduction to Equation Solving in the CMP Curriculum In the CMP curricu-
lum, equations are introduced as descriptors of relationships between variables. In
Investigation 1 of Moving Straight Ahead (the second algebra unit in 7th grade, Lap-
pan et al. 2002b), the topic of linear equations and functions is formally introduced
as “linear relationships.” This way of introducing linear equations and functions is
aligned with CMP’s conception of algebra as the study of relationships. In this first
investigation, students do not solve or analyze equations that are provided to them.
Rather, they are asked to perform an experiment in which they collect data relating
the height of release of a rubber ball to the height of its bounce. Students graph
the data on a coordinate graph and look for a relationship between the quantities.
This investigation sets the tone for the rest of the unit, in which students use graphs,
tables, and equations to analyze the relationships between pairs of contextualized
variables and compare the representations with one another.

The initial treatment of equation solving does not involve symbolic manipulation,
as found in most traditional curricula. Instead, CMP attempts to introduce students
to linear equation solving by making visual sense of what it means to find a solu-
tion. Its premise is that a linear equation in one variable is a specific instance of
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Table 2 An example of equation solving in the CMP Unit Moving Straight Ahead (p. 55)

Thinking Manipulating the symbols

“I want to buy a CD-ROM drive that costs $195. To pay for the
drive on the installment plan, I must pay $30 down and $15 a
month.”

195 = 30 + 15N

“After I pay the $30 down payment, I can subtract this from the
cost. To keep the sides of the equation equal, I must subtract 30
from both sides.”

195 − 30 = 30 − 30 + 15N

“I now owe $165 which I will pay in monthly installments of
$15.”

165 = 15N

“I need to separate $165 into payments of $15. This means I
need to divide it by 15. To keep the sides of the equation equal, I
must divide both sides by 15.”

165/15 = 15N/15

“There are 11 groups of $15 in $165, so it will take 11 months.” 11 = N

a corresponding linear relationship (or equation in two variables). It relies heavily
on the context in which the equation itself is situated, and on the use of a graphing
calculator.

Students are first given various equations in two variables, each modeling a real-
world context (e.g., A = 5 + 0.5d , where A represents dollars owed and d repre-
sents number of miles walked). Then various questions are asked in which either
a value for A or d is given (e.g., $17 is owed, or someone walked 28 miles), and
subsequently, the other value must be found. Initially, students solve these types of
problem by graphing the original equation in two variables on a graphing calcula-
tor, then finding the value of either the given dependent or the given independent
variable on the graph, and finally reading off the other value as the solution. This
graphical approach is intended to help students understand the meaning of a solution
to a linear equation and the process of solving an equation in one variable.

After equation solving is introduced graphically, the symbolic method of solving
linear equations is finally broached (p. 55). It is introduced within a single contex-
tualized example, where each of the steps in the equation solving process is accom-
panied by a narrative that demonstrates the connection between the procedure and
the real-life situation (see Table 2). In this way, CMP justifies the equation-solving
manipulations through contextual sense-making of the symbolic method. That is,
CMP uses real-life contexts to help students understand the meaning of each step of
the symbolic method, including why inverse operations are used.

Introduction to Equation Solving in Glencoe Mathematics In the Glen-
coe Mathematics curriculum, contextual sense-making is not used to justify the
equation-solving steps, as it is in the CMP curriculum. Rather, Glencoe Mathemat-
ics first introduces equation solving as finding a number to make an equation a true
statement. In fact, solving an equation is described as replacing a variable with a
value (called the solution) that makes the sentence true (see Fig. 3).

In 6th grade, Glencoe formally introduces equation solving with inverse opera-
tions by way of an activity that uses a cup to stand for an unknown (see Fig. 4).
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Fig. 3 Meaning of solving an equation in Glencoe Mathematics (Bailey et al. 2006a, p. 34)

Fig. 4 Introduction of equation solving with inverse operations in Glencoe Mathematics (Bailey
et al. 2006a, p. 337)

Fig. 5 Symbolic
representation of solving an
equation in Glencoe
Mathematics

The cups and counters used as manipulatives in the activity are direct representa-
tions of the symbols. That is, the manipulatives illustrate each step of the symbolic
manipulations.
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In basketball, each shot made from outside the 3-point line scores 3 points. The expression 3x

represents the total number of points scores where x is the number of 3-point shots made. . . . List
the ordered pairs (3-point shots made, total number of points) for 0, 1, 2, and 3 shots made . . . .
Make a table, Graph the ordered pairs. . . then describe the graph.

Fig. 6 Connecting a table, formula, and graph in Glencoe Mathematics (Bailey et al. 2006a,
p. 322)

Solving the equation using manipulatives, as shown above, is referred to as
“Method 1.” An illustration of the method is typically placed adjacent to an exam-
ple showing a corresponding solution that uses “Method 2,” the symbolic method.
In this way, Glencoe Mathematics illustrates how each manipulative step is com-
parable to a symbolic step in a solution based on algebraic properties of equality,
which is shown vertically. Figure 5 shows an example of how to use Method 2 to
solve a one-step equation.

Effort has been made in Glencoe Mathematics to connect tables, formulas, and
graphs. For example, the 6th grade curriculum shows the table of values correspond-
ing to an expression as well as the corresponding ordered pairs (see Fig. 6). Then
the ordered pairs are graphed, and the graph is described.

Defining and Introducing Function

Consistent with their approaches to variables and equations, CMP and Glencoe
Mathematics use functional and structural approaches, respectively, to introduce the
concept of function. Their respective approaches can be seen quite clearly in the
differences between their stated learning goals for the concept of function. CMP’s
learning goals for students are (1) that they be able to understand and predict pat-
terns of change in variables, and (2) that they be able to represent relationships
between real-world quantities using word descriptions, tables, graphs, and equa-
tions. In contrast, Glencoe Mathematics’ stated learning goals are (1) that students
explore the use of algebraic equations to represent functions, and (2) that they be
able to identify and graph functions, calculate slope, and distinguish linear from
nonlinear functions.

Connected Mathematics We have already described how CMP informally intro-
duces the concept of variable (identified as a real-world quantity) in 6th grade at
the same time that it informally introduces the concept of function (identified as
a relationship between real-world quantities). Recall that this is done by requiring



Teaching Mathematics Using Standards-Based and Traditional Curricula 407

students to construct coordinate graphs to explore relationships between real-world
quantities listed in tables.

At the beginning of 7th grade, when the concept of variable is formally intro-
duced in the Variables and Patterns unit, coordinate graphs are used as a way to
“tell a story” of how changes in one variable are related to changes in the other. In
an introductory investigation, students graph how many jumping jacks they can do
in successive 10-second intervals for two minutes. Then they analyze the graph to
determine whether a relationship exists between time and the number of jumping
jacks. At the same time, students are exposed to the concepts of “independent vari-
able” and “dependent variable.” This is well before the concept of function is for-
mally introduced during the second half of 7th grade in the Moving Straight Ahead
unit. Although the concept of function is introduced in this unit, the term “rela-
tionship” is almost always used instead of the word “function.” Furthermore, in the
teacher’s guide, the term “function” is explicitly identified as “nonessential.” In fact,
the term “function” is not given any importance in the CMP curriculum until the in-
troduction of quadratic functions in the 8th grade unit Frogs, Fleas, and Painted
Cubes.

CMP’s strategy to solidify the concept of function by exploring relationships
between real-world quantities appears to be done explicitly to help students reach
a deeper understanding of both variables and functions. This approach to the de-
velopment of the concept of function in CMP reflects a central algebraic learning
principle in the CMP curriculum: “As you study how variables are related, you are
learning algebra.”

Glencoe Mathematics Glencoe Mathematics informally introduces the concept
of function in the preview to lesson 9-6 of 6th grade by having students make a
function machine out of paper. The function machine has three key elements: input,
output, and operation. The operation, or rule, lies at the core of the function ma-
chine, while input and output are external to it. Immediately after the introduction
of the function machine, Glencoe Mathematics formally introduces the concepts of
function, function table, and function rule in Lesson 9-6. This formal introduction
begins with the following situation: “A brown bat can eat 600 mosquitoes an hour.”
The student is then asked to write expressions to represent the number of mosquitoes
a brown bat can eat in 2 hours, 5 hours, and t hours. Finally, the terms function and
function table are illustrated, and the term function rule is defined (see Fig. 7). The
function rule is characterized as a rule giving the operation(s) that will transform
input into output.

Glencoe Mathematics defines function as a relationship where one thing depends
on another. However, it treats a function as a process of starting with an input num-
ber, performing one or more operations on it, and getting an output number. The
main purpose of the function machine and the function table seems to be for stu-
dents to experience the process of computing the output values from given input
values and vice versa. That is, the development of the concept of function in Glen-
coe Mathematics emphasizes operations on variables rather than the relationship
between variables.
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Fig. 7 Formal introduction of functions in Glencoe Mathematics (Bailey et al. 2006a, p. 362)

Types of Problems Involving Linear Equations

The mathematical problems included in a curriculum can reveal not only the in-
structional goals and principles that the authors espouse, but also the learning op-
portunities they provide for students. Problems serve to direct students’ attention
to particular aspects of content, as well as their ways of processing information
(NCTM 2000).

In both the CMP and Glencoe Mathematics curricula, the vast majority of equa-
tion problems involve linear equations. To obtain a more detailed picture of the
situation, we further classified problems involving linear equations in the CMP and
Glencoe curricula into three categories:

(1) One equation with one variable—e.g., 2x + 3 = 5;
(2) One equation with two variables—e.g., y = 6x + 7;
(3) Two equations with two variables—e.g., the system of equations y = 2x + 1

and y = 8x + 9.

Figure 8 shows the percentage distribution of these categories of problems in-
volving linear equations in each curriculum. The two distributions are significantly
different (χ2(2) = 1262.0, p < 0.0001). The CMP curriculum includes a signifi-
cantly greater percentage of “one equation with two variables” problems than the
Glencoe curriculum (z = 35.49, p < 0.0001). On the other hand, the Glencoe cur-
riculum includes a significantly greater percentage of “one equation with one vari-
able” problems than the CMP curriculum (z = 34.145, p < 0.0001). These results
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Fig. 8 Percentage
distribution of problems
involving linear equations in
CMP and Glencoe curricula

resonate with our finding that the CMP curriculum emphasizes an understanding
of the relationships between the variables of equations rather than an acquisition of
the skills needed to solve equations. In fact, of the 402 equation-related problems
in the CMP curriculum, only 33 of them (about 8 % of the linear equation-solving
problems) involve decontexualized symbolic manipulations of equations. However,
Glencoe Mathematics includes 1,550 problems involving decontexualized symbolic
manipulations of equations (nearly 70 % of the linear equation solving problems in
Glencoe Mathematics).

Glencoe Mathematics not only incorporates many more linear equation-solving
problems into the curriculum, but it also carefully sequences them based on the
number of steps required to solve them. Of 2,339 problems involving linear equa-
tions, 1,218 of them (over 50 %) are one-step problems like x + b = c, ax = c.
Nearly 700 of them (or about 30 %) are two-step problems, like ax + b = c. Nearly
20 % of the linear equations involve three steps or more, like ax + bx + c = d

or ax + b = cx + d . Each grade of Glencoe Mathematics includes one-step, two-
step, and three-plus-step problems involving linear equations. As the grade level
increases, however, the Glencoe Curriculum provides increasingly more compre-
hensive procedures, suitable for solving all forms of linear equations. For the CMP
curriculum, the most common linear equation-solving problem type is one equation
with two variables. Over 50 % of these are in y = ax + b form (a 	= 0, a 	= 1 and
b 	= 0). Over 30 % of them are in y = x + b form (b 	= 0). The rest of the problems
are either in y = c form or y = ax form (a 	= 0).

Highlights of the Impact of Curriculum on Teaching and
Learning

In this chapter, although the focus of our discussion has been on the intended treat-
ment of functions, variable ideas, and equation solving in the CMP and Glencoe
Mathematics curricula, it is also important to highlight the impact of their differ-
ent approaches on teaching and learning. Elsewhere, we have reported that different
profiles of classroom instruction and student learning occur when using CMP and
non-CMP curricula like Glencoe Mathematics (Cai et al. 2011a, 2011b; Moyer et al.
2011).
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Table 3 Ratings for conceptual and procedural emphases in the classroom

6th Grade 7th Grade 8th Grade Overall

Conceptual Emphasis

CMP 14.51 12.52 13.27 13.41

Non-CMP 9.44 10.11 10.61 10.41

Procedural Emphasis

CMP 11.67 11.70 11.48 11.61

Non-CMP 13.77 14.24 15.41 14.49

The highest possible rating is 20

Effect on Classroom Instruction and Student Learning

Generally speaking, we found that the type of curriculum that teachers use has a sig-
nificant effect on the teaching that they do. Based on our analysis of the curricula, we
have argued that the CMP curriculum may be regarded as a curriculum with a ped-
agogy that predominantly emphasizes the conceptual aspects of algebra, whereas
Glencoe Mathematics may be regarded as a curriculum with a pedagogy that pre-
dominantly emphasizes the procedural aspects of algebra. In line with this result,
our LieCal investigation of classroom instruction found that CMP teachers empha-
sized the conceptual aspects of learning significantly more often than the non-CMP
teachers. Non-CMP teachers correspondingly emphasized the procedural aspects of
learning significantly more often than the CMP teachers (Moyer et al. 2011). Ta-
ble 3 shows the mean scores of the conceptual and procedural emphases in CMP
and non-CMP classrooms.

There was a significant difference across grade levels between CMP and non-
CMP instruction in conceptual emphasis (F(3,575) = 53.43, p < 0.001). The over-
all (grades 6–8) mean of the summated ratings on the conceptual emphasis factor
for CMP lessons was 13.41, while the overall mean of the summated ratings on
conceptual emphasis for non-CMP lessons was 10.06. There was also a significant
difference across grade levels between CMP and non-CMP instruction related to
procedural emphasis. The procedural emphasis ratings across grade levels for the
non-CMP lessons were significantly higher than the procedural emphasis ratings
across grade levels for the CMP lessons (F(3,575) = 37.77, p < 0.001).

We also found that on open-ended tasks assessing conceptual understanding and
problem solving, the growth rate for CMP students over the three years (grades 6–8)
was significantly greater than that for non-CMP students (Cai et al. 2011a, 2011b).
In fact, our analysis using Growth Curve Modeling showed that over the three mid-
dle school years, the CMP students’ scores on the open-ended tasks increased signif-
icantly more than the non-CMP students’ scores (t = 2.79, p < 0.01). At the same
time, CMP and non-CMP students showed similar growth over the three middle
school years on multiple-choice tasks assessing computation and equation solving
skills. In the 2008–2009 academic year, the LieCal middle school students entered
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high school as 9th graders. We followed about 1,000 of these students who were en-
rolled in 10 high schools in the same urban school district. In these high schools, the
former CMP and non-CMP students were mixed together in the same mathematics
classrooms and all used the same curriculum. Although we are still in the process of
analyzing data from these high school students, preliminary results appear to sup-
port the hypothesis that the CMP students continue to benefit from their conceptual
and problem-solving advantages from middle school (Cai et al. in press).

Conclusion

Two Approaches to Teaching Algebra

How can we effectively teach algebra? In this chapter, we discussed approaches to
teaching algebraic concepts such as variables, equations, and functions that are em-
bedded in a Standards-based mathematics curriculum (CMP) and in a traditional
mathematics curriculum (Glencoe Mathematics). Variable is a very complex con-
cept because it involves different conceptions and meanings, and because it is in-
extricably tied to the concept of function. Neither CMP nor Glencoe Mathematics
clearly distinguishes among the various uses of variables. It might be helpful if cur-
ricula distinguished letters, unknowns, and symbols from variables that truly change
by clearly pointing out the differences among them. When students begin to learn
about linear functions like 3x + 2 = y, if they only hold the idea that x is an un-
known as in the equation 3x + 2 = 5, how can they understand that the values of x

and y can change and then further explore the pattern of the change? Alternately, if
students think that variables always vary, how can they reconcile this with the use
of variables to solve single-variable equations?

“An understanding of the meanings and uses of variables develops gradually as
students create and use symbolic expressions and relate them to verbal, tabular, and
graphical representations,” (NCTM 2000, p. 225). In line with this view, it is our
opinion that, over time, it is desirable for a mathematics curriculum to clearly point
out the different ways of using the word variable in order to avoid misunderstand-
ing. We recommend that curricula should differentiate truly varying variables from
letters, unknowns, and symbols, and we suggest that every algebra curriculum high-
light the interpretation that a variable represents a quantity that changes or varies.
Therefore, it might not be wise to have a single definition of the term variable. It
may be more advantageous to point out to students that the term variable has many
different uses, and therefore has many different definitions, each depending on the
purpose for which it is used.

We also found that overall, the CMP curriculum uses a functional approach to
teach equation solving, while Glencoe Mathematics uses a structural approach to
teach equation solving. The functional approach emphasizes the important ideas of
change and variation in situations and contexts. It also emphasizes the representa-
tion of relationships between variables, which many mathematics educators feel is
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at the heart of school algebra. The structural approach, on the other hand, avoids
contextual problems in order to concentrate on developing the abilities to general-
ize, work abstractly with symbols, and follow procedures in a systematic way. These
abilities are considered by other mathematics educators to be at the heart of school
algebra.

The CMP curriculum includes very few equation-solving problems that require
the use of conventional symbolic manipulations. Using a functional approach, the
CMP curriculum defines variables as quantities that change or vary and that are used
to represent relationships. As a natural extension, the CMP curriculum introduces
equations as a way of studying relationships. The intent of the CMP curriculum is
that students learn to view equations as instruments to describe real-world situations,
rather than simply as objects to manipulate. Correspondingly, equation solving is
introduced within the discussion on linear relationships. Thus, the vast majority of
the linear equations in CMP involve two variables. A two-variable graph is used to
introduce students to the meaning of a solution to a linear equation in one variable
as well as to the process of solving an equation in one variable. CMP uses real-
life contexts to help students understand the meaning of each step of the symbolic
method of equation solving.

Glencoe Mathematics, in contrast, formally defines a variable as a symbol (or let-
ter) used to represent a number. It treats variables predominantly as placeholders by
using them to represent unknowns in expressions and equations. Maintaining their
structural approach, Glencoe Mathematics defines an equation as a statement that
contains an equals sign. In the Glencoe Mathematics curriculum, contextual sense
making is not used to justify the equation-solving steps. Rather, Glencoe Mathe-
matics introduces equation solving as a process to find a number that makes the
statement true.

Equation solving is highly conceptual and highly procedural in nature. It is highly
conceptual since it involves an understanding of mathematical relationships. It is
highly procedural since it involves performing a series of steps to find solutions
to equations. The primary focus of the functional approach in the CMP curricu-
lum is related to conceptual understanding, and the primary focus of the structural
approach in Glencoe Mathematics is related to procedural understanding. In this
sense, the CMP curriculum may be regarded as a curriculum with a pedagogy that
emphasizes predominantly the conceptual aspects of equation solving, while Glen-
coe Mathematics may be regarded as a curriculum with a pedagogy that emphasizes
predominantly the procedural aspects of equation solving. The results reported in
this paper not only show the unique features of the CMP and the Glencoe Mathe-
matics curricula, but also present the CMP and the Glencoe Mathematics curricula
as concrete examples of functional and structural approaches, respectively, to the
teaching of equation solving.

We have characterized the approach to the concepts of variable and equation that
CMP uses as functional. The reason we call the CMP approach functional is that
the concept of function (i.e., how variables are related) is a central and unifying
theme throughout the algebra strand of the CMP curriculum. As such, the CMP
view of function colors and/or determines its approach to all the topics in the alge-
bra curriculum. By way of contrast, we have characterized the Glencoe Mathematics
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approach to the concepts of variable and equation as structural. The structural ap-
proach places high priority on the ability to work abstractly with symbols, and to
follow procedures in a systematic way. This priority on abstract symbols (variables)
and procedures (e.g., equation solving) colors and/or determines its approach to all
the topics in the algebra curriculum. In particular, Glencoe’s approach to variables
and equations determines its approach to the concept of function, rather than the
other way around, as it does in the CMP curriculum.

Curriculum as a Pedagogical Event and Teaching as a Curriculum
Process

Historically in the field of curriculum studies, decisions about what to include in
the mathematics school curriculum evolved at the institutional level, and decisions
about how to structure the curriculum evolved at the level of curriculum engineer-
ing. Details regarding potential dichotomies between the intended versus the imple-
mented and attained curriculum at the classroom level were often neglected because
of the illusion that curriculum could directly and fully regulate teaching. In this
chapter, our focus is clearly on the intended curriculum. However, our research does
not purposely neglect the implemented and attained curricula. As we indicated be-
fore, this chapter reports part of the findings from the larger LieCal research project.
The LieCal Project is designed to describe longitudinally the impact of a Standards-
based curriculum like CMP on teachers’ classroom instruction and student learning.
This chapter tells part of the story by showing the value of a detailed curriculum
analysis in characterizing curriculum as a pedagogical event (Doyle 1992).

Most importantly, our research shows the complex interplay of the three levels
of curriculum (Cai et al. 2011a, 2011b). First of all, the ultimate goal of educational
reform generally and of curriculum reform specifically is to improve students’ learn-
ing. Put another way, students’ learning of important mathematics should be an im-
portant source of information when conducting curriculum research. The findings
from the LieCal Project do show that Standards-based curricula like CMP have a
positive impact on students’ learning (Cai et al. 2011a, 2011b). However, the cur-
riculum itself may not have a direct impact on students’ learning; it is more likely
mediated by instruction. In fact, there is growing consensus that studies of cur-
riculum or of instruction cannot be conducted in isolation. The significance of the
integration of curriculum with instruction needs to be considered when attempting
to account for curricular effects, since “curriculum [is] a pedagogical event” and
“teaching [is] a curriculum process” (Doyle 1992).

Pedagogical features of reform classrooms, such as the use of more conceptual-
oriented instruction and the use of more learning tasks of higher cognitive demand,
which we documented in the LieCal project, reflect the power of reform curricula to
effect pedagogical changes (Moyer et al. 2011). Curriculum and instruction jointly
affect the nature and level of student learning. Our research suggests that changes in
the nature and quality of classroom instruction are consistently made in response to
the innovative features of Standards-based curricula like CMP.
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Supporting the Effective Implementation
of a New Mathematics Curriculum:
A Case Study of School-Based Lesson Study
at a Japanese Public Elementary School

Akihiko Takahashi

Abstract The Japanese national standards, known as the Course of Study (COS), is
revised about every 10 years. After a revised COS is released, Japanese elementary
schools usually use lesson study with the entire faculty to seek an effective imple-
mentation of the new COS. This chapter, based on a case study, documents how
Japanese teachers and administrators in a public school work collaboratively to im-
plement the new curriculum through lesson study, and identifies elements that seem
important for connecting the curriculum, teachers, and teaching. The results of the
study suggest that Japanese educators’ use of school-based lesson study is an effec-
tive way to implement a new curriculum. Unlike many lesson study projects outside
Japan, which are often conducted by a few volunteers within a school and supported
externally, school-based lesson study in Japan is a highly structured, collaborative
effort of school administrators, teacher leaders, and all the teachers at the school,
with additional support from the local district.

Keywords Lesson study · In-service · School-based · Role of administrators ·
Course of study · Japan · Professional development · Research lesson · Research
steering committee

Introduction

Implementing a new curriculum is always a challenge. Mathematics education re-
searchers and educators have been interested in learning from other countries to see
how the intended curriculum and implemented curriculum impact student achieve-
ment since the First International Mathematics Study (FIMS) was conducted by
the International Association for the Evaluation of Educational Achievement (IEA)
in 1964. Recent movements toward establishing nationwide common standards in
mathematics in the United States have left mathematics educators with the question
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of how to implement the curriculum in every school so that every student is pro-
vided an equal opportunity to learn mathematics. This requires a lot of effort, not
only to develop good curriculum materials, but also to provide effective professional
development programs for the teachers to gain the knowledge necessary for teach-
ing the new curriculum, as well as the expertise necessary to support their students
in learning mathematics (Common Core State Standards Initiative 2010; National
Mathematics Advisory Panel 2008; Stigler and Hiebert 1999, 2009).

Faced with the challenge of bringing a new curriculum into every classroom,
Japanese educators use the lesson study process as a vehicle for professional devel-
opment and for establishing shared knowledge (Takahashi 2011). Various forms of
lesson study exist, including district- and national-level lesson study (Murata and
Takahashi 2002; Takahashi 2006). This chapter reports on a case of school-based
lesson study at a public elementary school in Tokyo to examine how revisions of
the national curriculum, known as the Course of Study (COS), get implemented
nation-wide.

About the Study

The study was conducted (1) to document how teachers and administrators in a
Japanese public school work collaboratively to seek an effective implementation
of the new curriculum through lesson study, and (2) to identify possible elements
that seem important to seamlessly connect the curriculum, the teachers, and instruc-
tion.

During the 2011–2012 school year, from April 2011 to December 2011, the
author visited the school more than ten times to observe and document lesson
study activities. These activities included six research lessons and post-lesson dis-
cussions, lesson planning sessions during summer break, and the school’s public
open house at the end of the second year of the school research. Also, the au-
thor conducted interviews with the school’s principal and assistant principal, the
chair of the school research steering committee, and the invited “knowledgeable
others” who provided feedback and final comments during the post-lesson discus-
sions. All these sessions and interviews were documented using an audio recorder
and field notes. All data from communications and interviews with the subjects
were collected and analyzed in Japanese and the results were translated into En-
glish by the author. In addition, all lesson plans and internal documents that were
directly related to the school-based lesson study project were gathered and analyzed
in Japanese.
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Background

COS Revision Process and Its Implementation

The Japanese COS has been revised approximately every 10 years since 1951. The
latest Japanese elementary school COS was announced in March of 2008.1 In June
of the same year, an elaboration of the COS for elementary schools, Teaching Guide
for the Japanese Course of Study: Mathematics, was released by the Japanese Min-
istry of Education, Culture, and Sports. Immediately after its release, school districts
provided workshops, attended by representatives of the schools, discussing the ma-
jor changes in the revision. The districts also assigned selected schools to focus
their school-based lesson study on the effective implementation of the new COS.
This process occurred while the textbook companies were developing new materi-
als based on the new curriculum. The new COS went fully into effect among all the
Japanese public elementary schools in April of 2011 (the beginning of the school
year). Thus it took three years for the textbook publishers and schools to fully im-
plement the COS.

During this preparation period, even before revised curriculum materials were
available, many schools began to seek effective implementation of the new COS.
Schools often conduct school-based research, using lesson study, with the entire
faculty. The school districts often provide financial support to the schools and en-
courage them to host a lesson study open house as the culmination of their school-
based research to disseminate their findings to other schools in the district. As a
result, some schools in the district have open houses before the full implementation
of the COS. These lesson study open houses may include several different subject
areas and focus on different changes in the COS.

Role of Lesson Study in Implementing the COS

To support teachers in improving their own teaching and learning, the Japanese
school system has a systematic professional development approach called lesson
study. It is the most common form of professional development in Japan (Lewis
2000; Lewis and Tsuchida 1998; Murata and Takahashi 2002; Takahashi 2000;
Takahashi and Yoshida 2004; Yoshida 1999a). In lesson study, a team of teachers
studies the COS, reads research articles, examines available curricula and other ma-
terials, and designs a lesson. One teacher from the team instructs the lesson publicly,
and the team conducts a post-lesson discussion focusing on how students responded
to the lesson, in order to gain insights into how students learn and to find ways to
improve teaching.

1An unofficial English translation of the mathematics curricula in the Japanese Course of Study,
including objectives and content for grades 1–9, is available at http://www.seiservices.com/
APEC/APEC_KB/KBDisplay.aspx?lngPkID=1567.

http://www.seiservices.com/APEC/APEC_KB/KBDisplay.aspx?lngPkID=1567
http://www.seiservices.com/APEC/APEC_KB/KBDisplay.aspx?lngPkID=1567


420 A. Takahashi

During lesson study, teachers have the opportunity to look closely at teaching
practices and judge, based on student learning, whether the lesson properly supports
the students in learning mathematics. Researchers credit Japanese lesson study with
enabling the implementation of new approaches to teaching mathematics (Lewis
2002; Lewis and Tsuchida 1998; Stigler and Hiebert 1999; Yoshida 1999b).

Although lesson study is commonly used as a medium of professional develop-
ment that focuses on teachers and schools improving their teaching and learning,
lesson study is also used to seek practical ideas for effective implementation of cur-
ricula (Murata and Takahashi 2002).

During the transition period from one COS to a new COS, the Japanese school
system provides a variety of supports for schools and teachers, which include a
document that elaborates on the focus and the contents of the COS (the Teaching
Guide mentioned above), and workshops for administrators, district coordinators,
and teacher leaders, which provide further information and examples of the contents
of the COS. Commercial publishers, including textbook publishers, release teacher
resources, curriculum materials, and sample curriculum maps for teachers. These
publishers often work closely with teacher leaders to develop materials before the
full implementation of the COS.

Among all of the supports that teachers receive during the transition to the new
COS, this study focuses on school-based lesson study, which is one of the major pro-
fessional development components during this important period. The author started
documenting one school’s lesson study cycles at the beginning of the second year
of the school’s lesson study-based research project. The author also closely fol-
lowed the school administrators to investigate how they worked with members of
the school steering committee and chairperson to be sure that the school-based re-
search was conducted properly and effectively.

Major Points of Revision of the 2008 COS

The Ministry of Education released the 2008 COS in response to concerns about
declining mathematics achievement due to a severe reduction in content and number
of class periods in the 1998 revision. As a result, the 2008 Course of Study returned
almost completely to the content and the number of class periods of the 1989 COS.
Table 1 shows how the standard numbers of class periods required for mathematics
by the law has changed. For teachers who previously taught according to the 1989
COS, this change presented little challenge. On the other hand, younger teachers
saw this revision as an overwhelming increase to their workload, and it included
some mathematics that they may have never taught before.

Another major change of the 2008 COS was to increase the emphasis on math-
ematical processes such as thinking mathematically and expressing thoughts using
mathematical representations such as diagrams and equations. In order to address
this, all classroom teachers are expected to regularly provide each student with op-
portunities to think mathematically and to express their own thoughts.
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Table 1 How the standard numbers of class periods required for mathematics by the law has
changed over time

Grade Age Standard number of class periods per year for mathematics

1951 1958 1968 1977 1989 1998 2011

Elementary

1 6 77 102 102 136 136 114 136 (4 per week)

2 7 123 140 140 175 175 155 175 (5 per week)

3 8 138 175 175 175 175 150 175 (5 per week)

4 9 160 210 210 175 175 150 175 (5 per week)

5 10 160 210 210 175 175 150 175 (5 per week)

6 11 160 210 210 175 175 150 175 (5 per week)

Lower secondary

1 12 140 140 140 105 105 105 140 (4 per week)

2 13 140 140 140 140 140 105 105 (3 per week)

3 14 140 105-175 140 140 140 105 140 (4 per week)

Table 2 Number of the students by the grades and the class

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Special needs

Class 1 36 37 40 31 31 37 13

Class 2 36 36 40 31 30 37 12

Class 3 35 36 40 32 31 37

Class 4 37 32 31

To prepare for these radical changes, the Ministry set a two-year preparation
period for schools, teachers, and textbook publishers. All public elementary schools
in Japan in the spring of 2008 created a professional development plan to prepare
for the full implementation of the new COS in the 2010–2011 school year.

The Case

About the School

A public elementary school in Tokyo was chosen for the case study because it is a
typical neighborhood school with a diverse student population. As of May 1, 2011
there were 758 students, 397 male and 361 female, from grades 1 to 6. Table 2 shows
the number of classes in each grade and the number of students in each class.

Led by the principal and the assistant principal, 64 teachers and staff worked col-
laboratively to carry out the school’s mission. Among these, there were 35 full-time
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Table 3 Distribution of the
teaching experience among
the full time teachers at the
school (2012–2013 school
year)

Teaching Experience Number of the full-time teachers

1 year–less than 5 years 7 (20 %)

5 years–less than 10 years 16 (45 %)

10 years–less than 15 years 2 (6 %)

15 years–less than 20 years 3 (9 %)

More than 20 years 7 (20 %)

Total 35

teachers, which included 22 classrooms teachers, 6 teachers for students with spe-
cial needs, 4 additional teachers who teach special subjects, 2 school nurses, and 1
dietitian who is responsible for the school lunch menu. There were also several part-
time teachers working at the school. Table 3 shows the years of teaching experience
among the full-time teachers.

Process of School-Based Lesson Study and Its Supporting
Structure at the School

Year 1: April, 2010–March, 2011

After the COS revision was announced in March of 2008, the teachers of the school
decided to study the major changes in the COS revision and its effective implemen-
tation. Of the various subjects, the teachers decided to focus on mathematics. One
motivation for this decision was the requirement that students learn an additional
20 % of mathematics content in grades 1–6. The teachers at the school felt that this
content increase would mostly impact the teachers with less than 10 years of teach-
ing experience. Since about 65 % of the full-time teachers had less than 10 years of
teaching experience, collaboration among novice and senior teachers would be key
for the successful implementation of the revised COS. Another challenge in mathe-
matics was the new emphasis on promoting mathematical thinking and exposition.
Teachers would need to consider not only how the amount of content changed but
also how to design lessons that would push all students to think mathematically and
to communicate with each other in such a way as to learn other ways of thinking
mathematically.

After deciding to focus on the effective implementation of the mathematics cur-
riculum, the school submitted a request to the local school district board to support
this study. The local school district responded by making a small grant to support a
public open house at the end of the study to disseminate the results of the school’s
work.

The school organized a research steering committee (RSC), which consisted of
representatives of each grade level and the math teacher who was in charge of sup-
porting other teachers in regards to teaching mathematics. The chair of the com-
mittee worked closely with the administrators to arrange logistics for conducting
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the school-based lesson study. In order for the faculty at the school to be prepared
to begin the school-based lesson study, the RSC began drafting a proposal of the
study during the end of the 2009–2010 school year. At the first faculty meeting of
the 2010–2011 school year, April 2, 2010, they proposed the following theme and
focus:

Research theme: The development of individual thinking and the expres-
sion of these thoughts
Focus of study: Seeking effective ways to support students’ individual
problem solving skills and the ideal facilitation of whole-class discussion
in teaching through problem solving

The school research theme was intended to address one of the emphases of the
revised COS. The RSC decided to focus on improving the quality of lessons based
on problem solving, such lessons having been emphasized in Japanese mathemat-
ics education for several decades as a way to foster student mathematical thinking
(Takahashi 2008, 2011).

The teachers at the meeting concluded that the proposed theme and focus of the
school research would be a good starting point, but would be revisited after several
research lessons and post-lesson discussions.

Under this tentative theme and focus of study, the full time faculty members were
divided into 8 teams: one for each of grades 1 through 6 plus 2 teams consisting of
teachers of students with special needs. During year 1, each team developed a lesson
plan for a research lesson and conducted the research lesson and its post lesson
discussion to address the theme. All full-time teachers and the school nurse and
school dietitian observed the lessons and participated in the post-lesson discussions,
so each full-time teacher had the opportunity to be a part of 8 research lessons
during the school year. In addition to the 8 research lessons, the school invited two
distinguished mathematics educators to give lectures, one in the first month of the
school year (April) and another during the summer break, about the issues and trends
in mathematics education and ideas for implementation of the new COS.

Based on the approved plan and the schedule drafted by the RSC, each team
was asked to decide when the team wanted to have their research lesson. Each team
examined the curriculum and the schedule of possible dates, and chose a couple of
possible topics that they wanted to study in order to address the theme and focus of
the school research. Based on each team’s preference, the RSC proposed a schedule
that was discussed, revised, and approved by the teachers at the faculty meeting on
April 7, 2010. Accordingly, the following events occurred during that first school
year:

• Friday, April 9. Demonstration lesson by an invited teacher to raise issues related
to the theme and school research focus

• Wednesday, April 21. Faculty meeting to discuss and approve the theme of the
school-based lesson study

• Wednesday, May 19. Lecture by a leading math educator on the school research
theme
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• Wednesday, June 16. Research lesson and post-lesson discussion: “various
lengths” for a class of special needs students

• Wednesday, June 23. Research lesson and post lesson discussion: “subtrac-
tion (1)” by the grade 1 team

• Friday, August 27 (During summer break). A lecture by a leading math educator
on the school research theme

• Wednesday, September 22. Research lesson and post-lesson discussion: “area” by
the grade 4 team

• Wednesday, October 27. Research lesson and post-lesson discussion: mathemat-
ics for students with special needs by the special needs team

• Tuesday, November 24. Research lesson and post-lesson discussion: “multiples
and factors” by the grade 5 team

• Wednesday, November 30. Research lesson and post lesson discussion: “enlarged
and reduced drawings” by the grade 6 team

• Wednesday, January 26. Research lesson and post-lesson discussion: “addition
and subtraction (2)” by the grade 2 team

• Wednesday, February 16. A research lesson and post-lesson discussion: “math
sentences using �” by the grade 3 team.

The teachers at the school shared many responsibilities to make the research
lessons and discussions go smoothly. For example, for the research lesson held in
June, the grade 1 team developed a lesson plan and taught the lesson based on this
plan. During the post-lesson discussion, the grade 4 team facilitated the discussion
and the team of teachers of special needs students took notes of the post-lesson
discussion for the school’s official record.

One notable activity that launched the two-year research project was the demon-
stration lesson by an invited practitioner. With more than 30 years of teaching ex-
perience, that person is known as a master teacher. The RSC assigned to their col-
leagues the following four points of focus for their observations during the lesson:

(1) Ways to organize board writing
(2) Effective key questions
(3) Effective ways to develop ideas based on students’ reactions
(4) Ways to support students in developing the ability to explain their ideas and

approaches

In selecting these four focus points, the RSC drew upon articles and resources
from journals and reference books of mathematics education. According to the
chairperson, the RSC hypothesized that having these four focus points would help
the faculty develop a shared view about the way in which they might address the
school research theme and develop students’ ability to come up with their own think-
ing and to express their thoughts.

From the shared observations and discussions, the school developed a draft con-
cept map of the research theme and focus. The RSC used this draft as a foundation
for two years and finalized a concept map as a result of their research. The concept
map was included in the research report as the Structure of the Overall Research and
was distributed to other schools in the district (see Appendix).
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Year 2: April, 2011–March, 2012

The second year of the research program was mostly similar to the first. One major
difference between year 1 and year 2, however, was that the schedule in year 2 had
a public open house scheduled near the end of the school year, December 1. Having
a public open house to disseminate the results of the school’s research project is
common practice among Japanese public schools. In order to have this event, the
school had to complete all research lessons by the middle of the fall and compile
their findings as much as possible a few months before the open house. This made
the school schedule rather inflexible.

At the first faculty meeting of the 2011–2012 school year, on April 6, 2011,
the RSC proposed a change in the research theme based on their reflections on the
first year’s activities. The first year’s theme had emphasized the development of
individual students’ ability to think and express their thoughts. Now the teachers
felt that students were not appreciating the benefits of collaboration—learning from
others’ ideas and developing better ideas by exchanging and combining ideas. This
led to the following new research theme:

Research theme: Mathematics teaching that helps students explain their
ideas to each other and learn from each other—learning through problem
solving

At the same meeting, the faculty also approved the following schedule of activi-
ties for year 2, which the author participated in and documented using field notes:

• Wednesday, April 6. Faculty meeting to discuss and approve the modified theme
of the school-based lesson study and set the schedule of research activities

• Friday, April 8. Workshop by a leading math educator about effective lesson ob-
servation

• Wednesday, April 20. Research lesson and post-lesson discussion: “symmetry”
by the grade 6 team

• Wednesday, April 27. Lecture by a leading math educator
• Wednesday, May 11. Research lesson and post-lesson discussion: “angles” by the

grade 4 team
• Wednesday, May 18. Research lesson and post-lesson discussion: “multiplication

of decimal numbers” by the grade 5 team
• Wednesday, June 13. Research lesson and post-lesson discussion: “division” by

the grade 3 team
• Wednesday, June 21. Research lesson and post-lesson discussion: “subtraction”

by the grade 1 team
• Friday, Aug 26. Grade band meetings for developing lesson plans for the public

research lessons at the public open house.
• Wednesday, Sep 14. Research lesson and post-lesson discussion: “addition and

subtraction” by the grade 2 team
• Thursday, Dec 1. Public open house.
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In addition to the these events, the RSC met several times between the research
lessons to summarize the ideas that had been proposed by each lesson planning team
and addressed during the post-lesson discussion. This was done to make sure that
individual learning was consolidated and shared among all teachers at the school.
The summary of the RSC’s effort was published as a school research newsletter
each month. Besides documenting the process of this long-term collaborative effort,
these newsletters allowed the teachers to share what was discussed and helped the
later teams build off the results of the previous research lessons.

The Structure of the School Research Organization and the Role of the
School’s Research Steering Committee (RSC)

During the two years of the school research program, all full-time teachers at the
school worked within a structure based on existing grade-level groups. Grade-level
groups typically exist in Japanese elementary schools to facilitate the sharing of
responsibilities for running school events and for academic activities. These respon-
sibilities include preparing curriculum materials for the teachers in the grade to use,
preparing school events such as the sports festival and open houses, and planning
and conducting events organized by each grade such as field trips and teacher-parent
conferences. Most public schools have scheduled time for grade meetings in their
weekly schedule, typically about one hour, and have desks in a common work area
so that the teachers who teach the same grade level can easily collaborate on a reg-
ular basis. It was natural to build off this existing collaborative structure for the
school-based lesson study work, and so each grade level group was made respon-
sible for designing a lesson plan for a research lesson, preparing the research and
the post-lesson discussion, and supporting the other teams’ research lessons. The
overall structure of the school research organization is shown in Fig. 1.

Although each grade team developed its own lesson plan, each lesson plan was
expected to address the school research theme and to help develop shared ap-
proaches to effectively implementing the new curriculum. The RSC had the impor-
tant responsibility of maintaining cohesiveness of ideas in the lesson plans across
the grades.

The RSC comprised a teacher from each grade group, nominated by that group,
and a chairperson appointed by the school administrators. According to the prin-
cipal, the chair was chosen based on his leadership ability and his knowledge of
mathematics teaching and learning. The RSC chair was one of the full time special
subject teachers at the school, normally in charge of supporting upper grade class-
room teachers in teaching mathematics and preparing curriculum materials for the
school. As chair, his primary role was to lead the school research in order to maxi-
mize teacher collaboration to accomplish the research goals. The chair led the RSC
to complete the following tasks:

• Communicate regularly with the principal and the assistant principal to develop
a master plan for the school research that included the effective use of resources
including time and budget
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Fig. 1 Structure of the school research organization

• Schedule and lead the monthly RSC meetings to find strategies to address the
theme of the research based on the ideas of the teachers

• Lead the preparations and oversee each school research activity such as research
lessons and lectures

• Publish a monthly internal newsletter to update the findings of each research les-
son and to share important ideas and information for carrying out research activ-
ities

• Plan, edit, and publish the school research reports, including the publications for
the open house

• Communicate with knowledgeable others for the effective use of their expertise.

As Fig. 1 shows, the school also had the grade-band teams, which consisted of
all the teachers from adjacent grades, such as grade 1 and grade 2. The major role
of these teams was to discuss and implement strategies proposed by the RSC in
each research lesson. Although the responsibility for lesson planning belonged to
each grade group, most of the lesson planning was done in grade band meetings,
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since the teachers felt that the grade level groups, comprising only 3 or 4 teach-
ers, were too small on their own to generate enough variety of ideas to lead to
good research lessons. Also, the grade band meetings helped the teachers develop
a shared view not only of their students but also of the scope and sequence of the
curriculum in adjacent grades, which is important since Japanese elementary school
teachers typically teach the same students two consecutive years. Finally, the grade
band meetings also provided additional opportunities to participate in research les-
son planning, a valuable experience especially for novice teachers not only to learn
how to design lessons but also to deepen their understanding of the topics they teach
though kyozaikenkyu (Takahashi et al. 2005; Takahashi and Yoshida 2004; Watan-
abe et al. 2008). In these ways, the grade-band teams were a crucial piece of the
overall structure supporting the school’s lesson study research.

Lesson Plans and Their Development

Based on the faculty’s reflections from the year 1 research activities, the RSC pro-
vided guidelines for preparing research lessons and lesson plans. Their objective
was to aid two new teachers who had joined the school in year 2 and who had little
experience with systematic school-based research. The guidelines were as follows:

An example of preparing a research lesson

(1) Decide on the topic of the research lesson and who will teach the lesson. De-
velop a rough idea of a lesson plan and conduct kyozaikenkyu related to the
topic.

(2) Three weeks before the research lesson: The first lesson-planning meeting is
held to discuss the rough draft to check for consistency with other grade groups’
approaches.

(3) Develop the first draft of the lesson plan based on the discussion at the first
meeting.

(4) Two weeks before the research lesson: The second lesson-planning meeting is
held to discuss the lesson plan and the team’s focus strategies.

(5) Update the draft lesson plan and the focus strategies.
(6) One week before the research lesson: Finalize the lesson plan and send it to

the invited final commentator of the research lesson (the knowledgeable other)
via express mail, including a handwritten letter by the teacher who will teach
the lesson.

(7) Print the lesson plan. Share the tasks needed to prepare for the research les-
son, including the preparation of materials such as manipulatives, posters, and
worksheets.

(8) On the day of the research lesson: Conduct the research lesson and the post-
lesson discussion. Support the teacher who teaches the research lesson.

Note: Although each grade group is mainly responsible for the preparation and ex-
ecution of its lesson, the above preparations should be done through the grade band
team’s collaboration.
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Based on these guidelines, each grade group planned a research lesson once dur-
ing the year. So each teacher was responsible for writing one lesson plan as a mem-
ber of a grade group and also had the opportunity, as a part of a grade-band team, to
be a part of the lesson planning discussion of another grade.

In each stage of lesson plan development, the chair and members of the RSC re-
viewed the lesson plan and provided feedback to the team. Through this process, the
RSC tried to ensure that the lesson plans were of sufficient quality to merit discus-
sion by the entire faculty and contributed to the school’s effective implementation
of the COS. But, according to the school principal, the quality of the research lesson
plans in year 1 was not satisfactory. Based on the principal’s suggestion, the RSC
developed the following list of criteria for lesson plans and distributed it to each
teacher at the beginning of the year 2:

• Does the lesson plan provide sufficient information for the reader to understand
the task and the flow of the lesson?

• Does the lesson plan provide sufficient information about how the planning team
decided to teach the lesson as described by the plan?

• Do the objectives of the lesson plan clearly address the COS?
• Are the tasks appropriate for the students given the date of the lesson?
• Are the key questions clear? Will they push students to think mathematically and

help them complete the task independently?
• Does the lesson plan include reasonable anticipated student responses and indi-

cate how the teachers will help students overcome any misunderstandings?
• Does the lesson plan include a plan for formative assessment and a plan to ac-

commodate individual student differences during the lesson?

These criteria were used not only by the RSC in reviewing the draft lesson plans
but also by the teachers themselves during the planning meetings. According to
the principal, the lesson plans that were developed for research lessons in year 2
reflected much deeper thought compared to the plans developed in year 1.

One of the unique features of this school’s research lesson plans was the inclusion
of a two-page summary. Typical research lesson plans are several pages in length—
they sometimes run more than ten pages. Faced with such a lengthy plan, teachers
with less lesson study experience sometimes have difficulty comprehending the im-
portant points of the lesson and preparing to observe it effectively. Also, the final
version of a lesson plan was usually distributed to the faculty a day prior to or in the
morning of the research lesson, which meant that teachers did not necessarily have
a lot of time to read it carefully. So the school decided to include a short summary to
help teachers with less experience and teachers cramped for time easily understand
what he or she should be looking for while observing the research lesson.

Organization of the Research Lesson and Post-Lesson Discussion

Although each teacher had only one chance each year to develop a lesson plan for
a research lesson, he or she had eight opportunities each year to observe a research
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Table 4 Schedule for a
research lesson and
post-lesson discussion

1:30–2:15 Research Lesson

2:20–2:40 Small Group Discussion (Grade Band Teams)

2:40–3:45 Post-Lesson Discussion (Entire Faculty)

3:45–4:30 Final Comments by a Knowledgeable Other

4:30–4:45 Summary and Next Steps

lesson and discuss the effectiveness of the implementation of the COS. This is a
major advantage for teachers of school-based lesson study.

In order for all faculty members at the school to observe these research lessons,
the school scheduled most research lessons on Wednesdays. Similar to most public
schools in the area, the school scheduled special events every Wednesday afternoon
so that students can be dismissed early if necessary. The school used Wednesday
afternoons once a month for the research lessons. On the day of the research lessons,
all of the classes were dismissed immediately after lunch except the class with which
the research lesson would be conducted. In this way, the school freed teachers to
observe the research lesson. Table 4 shows the schedule followed by the school on
those Wednesday afternoons.

Typically, a post-lesson discussion with the entire faculty is held immediately
after the research lesson. The school decided, however, to first hold small-group
discussions in grade band teams as a way to provide more opportunities for each
teacher, especially for the novice teachers, to share their ideas. In the past, some
teachers at the school seemed reluctant to share their honest opinions at the post-
lesson discussion because it was formal and in front of the entire faculty. The small-
group discussions usually lasted about 20 minutes and were led by the RSC mem-
bers. The discussions were summarized on small posters and were shared at the
beginning of the full faculty discussion.

The full faculty discussion usually began with the principal introducing the final
commentator, or knowledgeable other. Then the moderator, a member of a different
grade-level team, would invite each grade band to share the issues they identified
during the small group discussions. The discussion then focused on how the lesson
plan could be improved. In the first year and the beginning of the second year,
the discussions were not so active, and only the members of the RSC contributed
observations and thoughts about how the lesson plan could be improved. But by the
fourth research lesson in June 2011 the dynamic was changing and more teachers,
including new teachers, began to contribute to the discussion.

At the end of the discussion, a knowledgeable other, invited from outside the
school, would provide a summary of the discussion and offer suggestions not only
for improving the particular research lesson from that day but also for carrying out
the school research. The school made use of several knowledgeable others over the
two-year period, inviting them based on their schedule and the topic of the research
lesson, with a few of them giving comments several times. The knowledgeable oth-
ers were instructional leaders from the area with more than 30 years of teaching
experience.
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After the final comments by the knowledgeable other, the assistant principal at
the school usually offered a summary of the research lesson and its post-lesson dis-
cussion by highlighting the issues that were discussed and the major points that all
the faculty members should keep in mind in designing future lessons. The assistant
principal then formally concluded the discussion by thanking the knowledgeable
other, the team who developed the research lesson, and the teacher who taught the
research lesson.

Although the post-lesson discussion was at that point formally closed, and the
knowledgeable other and administrators left the meeting room, the entire faculty
remained to summarize their learning and to discuss next steps. This discussion,
usually led by the chairperson of the RSC, helped ensure that each research les-
son was not an isolated event, and helped maintain the cohesiveness of the school
research. The RSC representative from the group responsible for the next research
lesson was specifically charged with making sure that the next lesson would address
issues from the discussion.

Disseminating the Results of the School Research

The school used two conduits to disseminate the results of its research: a public
open house that offered live research lessons, and a research report published at the
end of the two-year project.

Public Open House

The school hosted a half-day public open house on the afternoon of December 1,
2011. All of the district content specialists and principals of other area schools were
invited to the open house, and many other schools sent their teachers to the open
house. In all, a total of 612 participants, including teachers, administrators, educa-
tors, and parents attended. Among these participants, about 60 % of the participants
were teachers, administrators, and educators, 35 % from the district and 24 % from
outside of the district. Clearly, this school-based research project attracted many ed-
ucators. According to the participants, one of the major reasons for them to come to
the open house was to see the implementation of the revised COS in action. Since all
grades from grade 1 to 6 held research lessons on the day, participants could choose
which research lesson or lessons they wanted to see from a wide variety of topics
and grades. Also notable is that 160 parents came to the open house, about 20 %
of the number of students at the school. Parents came to see what the teachers at
the school do to improve their teaching. According to the principal, involving par-
ents in the open house builds strong support from the parents even though the open
house is designed for professional educators and teachers. Other participants of the
open house included people from the local neighborhood, textbook publishers, and
retired teachers of the school. Table 5 shows the breakdown of participants.
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Table 5 Participants at the public open house on Dec. 1, 2011

Type of participants Number (%)

Invited guests 23 (4 %)

Administrators from the schools in the district 38 (6 %)

Teachers from the schools in the district 180 (29 %)

Teachers and educators from outside of the district 146 (24 %)

Parents of the school 160 (26 %)

Others 65 (11 %)

Total 611 (100%)

The public open house consisted of three major parts: public research lessons,
research presentations by the school’s RSC, and a panel discussion by experts in the
field of mathematics education who had been involved with the school’s research
project. The schedule of the open house was as follows:

1:10–1:40 Registration
1:40–2:25 Research lessons in 25 mathematics classrooms, including four mathe-

matics classes for the students with special needs
2:25–2:40 Break
2:40–3:15 Research presentation in the gymnasium
2:15–4:25 Panel discussion by the knowledgeable others
4:25–4:30 Closing remarks by the principal

There were 28 mathematics lessons based on 25 different lesson plans available
for the participants to observe at the beginning of the open house. All 25 lesson plans
were distributed as a booklet to each participant at registration. The participants
were thus able to witness strategies for the effective implementation of the COS in
live lessons and were able bring these ideas back to their school as a set of lesson
plans.

The presentation given by the members of the RSC informed participants about
the philosophy and the rationale behind the strategies for implementing the new
COS at the school. The presentation also provided educators from other schools an
opportunity to learn how the school conducted its research using lesson study and
what the faculty at the school learned.

The panel discussion provided a broad view of the issues and trends in imple-
menting the COS at schools in the area. Because the panelists had served as knowl-
edgeable others for other schools, they were able to highlight unique features of the
strategies that this school had come up with through their two-year collaborative
efforts and how other schools might adopt these ideas and strategies.

Research Reports

Two sets of research reports were made available for teachers and administrators
of other schools as summaries of the school research effort of year 1, 2010–2011,
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and of year 2, 2011–2012. Since the school used a district grant to produce them,
all the research reports were available free. For the summary of year 1, the school
compiled one booklet of 102 pages, which included:

(a) the rationale behind the school’s choice of research theme;
(b) a concept map of the research theme and focus;
(c) a report on each research lesson, which included the unit plan, lesson plan, and

summary of the post-lesson discussion; and
(d) a summary of an assessment of student attitudes and achievement.

In the second year, the school compiled a report covering the entire two-year
study. The report was produced as four booklets: three of them were distributed at
the public open house and the last was sent to all the schools in the district at the
end of the 2011–2012 school year:

Distributed at the public open house:

1. The school research report2 (20 pages)
2. Lesson plans for the research lessons at the open house lessons (16 lesson plans,

38 pages)
3. Two-page shortened versions of lesson plans of all the research lessons from the

two years of the school’s research (20 lesson plans, 46 pages)

Distributed at the end of the school year 2011–2012:

4. Report of the public open house comprising reports of each lesson at the open
house (28 lesson reports, 57 pages).

According to the principal, these reports, with their large number of lesson plans for
all the elementary grades, are not meant to be a collection of best practice. They are
expected to be a resource for teachers in the district to draw from as they engage in
their own study about effectively implementing the COS. Thus these reports include
not only lesson plans but also reflections of the teachers, sharing what they learned
from the research lessons. The reports make it clear that the teachers at the school
used lesson study as a way to examine their knowledge, ideas, and practice for
teaching mathematics—not as a way to come up with perfect lessons.

Findings

In addition to his observations during the second year of the program, the author
conducted interviews that provided insights into the thinking of the school admin-
istrators and how the project impacted teachers. Based these interviews and on his
own observations and those of the persons interviewed, several factors stand out as

2An English translation of this report is available for download at http://www.impuls-tgu.org/
resource/readings/page-26.html.

http://www.impuls-tgu.org/resource/readings/page-26.html
http://www.impuls-tgu.org/resource/readings/page-26.html
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important to the effectiveness of this project for preparing the teachers to implement
the new Course of Study. They are: leadership by the administration and Research
Steering Committee; the deliberate importation of new knowledge and ideas from
outside; structures to support collaborative learning; and the lesson study process
itself.

Shared Leadership

Lesson study has been described as “teacher-led professional development.” In this
school-based LS project, teachers led the way by developing research lessons in
which they proposed and tested strategies for solving common problems. Teachers
also took turns handling the logistics of their colleagues’ research lessons by facil-
itating the discussion or taking notes. But important leadership also came from the
administration and from the RSC, sometimes “behind the scenes” and sometimes
overtly.

Administration

As is common practice, the school made use of the existing grade-level teams as the
primary organizational structure for its lesson-study work. When they were making
grade-level assignments of teachers, the administrators carefully distributed experi-
ence and expertise among the grade-level teams.3 This meant that each grade band
had the teacher leadership needed to conduct thorough kyozaikenkyu when develop-
ing its research lesson plan.

Even with this distributed knowledge and expertise, the administrators still felt
it was important to attend some of the lesson planning meetings as an instructional
leader. According to the assistant principal, they attended the lesson planning meet-
ings in order to gauge the teachers’ understanding of the content that they planned
to teach. He believes that the quality of the lesson plan hinges on the level of under-
standing of the content and the curriculum. If a team was struggling to understand
what the major point is and why students need to learn it, he offered some sugges-
tions. But, to preserve the teachers’ sense of ownership, he tried not to provide sug-
gestions too often. The assistant principal said, “We need to carefully monitor what
teachers are thinking in order to provide sufficient support. We do not want to give
too many suggestions to the teachers. This is just like teaching students mathemat-
ics.” The assistant principal carefully reviewed all lesson plans line by line before
they were finalized.

3Japanese teachers usually teach a different grade in each year. Classroom teachers often teach the
same students multiple years, typically two years. They may request their preferred grades, but the
principal makes the final decision.
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Another important role for the administrators is to bring knowledgeable others
with strong teaching backgrounds who can best help the school address their re-
search theme. Among various experienced educators, such as university professors,
leading practitioners, and retired principals, the administrators chose people whom
they had seen fill the knowledgeable other role well and who also fit the school’s
particular needs. As a result, some knowledgeable others were invited several times
and some were invited just once during the two years.

Finally, the administrators exercised their leadership through their own partici-
pation in the research lessons. The author has never seen any research lessons at the
school conducted without the presence of the administrators. Either the principal or
the assistant principal—and usually both—observed each research lesson from be-
ginning to end and contributed comments during the post-lesson discussion. Then
the principal joined with the planning team, the chair of the RSC, and the knowl-
edgeable other in an in-depth meeting to consolidate the important insights or ideas
to carry forward from the research lesson.

Many teachers at the school agreed that hard working teacher leaders and ad-
ministrators were the key to the success of the school research. According to the
principal, school-based lesson study never succeeds if the school administrators are
not part of lesson observation and discussion. But for them to make positive con-
tributions, the administrators and teacher leaders should be experts in teaching and
learning of the subject matter, or at least be keen about improving teaching and
learning for the students at the school, and genuinely interested in studying the stu-
dents’ learning process.

Research Steering Committee (RSC)

Perhaps ironic, one of the most important leadership actions by the administration
was to devolve leadership to the teachers by creating a Research Steering Com-
mittee. Led by the chairperson, the RSC played an important role in leading the
school research project and supporting each team’s lesson study effort. Although
the chairperson was appointed by the administrators, the committee consisted of
representatives of each grade band. The RSC functioned as the hub of interaction
among teachers and the driver of the school-based lesson study project. According
to the principal, establishing a research steering committee is typical practice among
schools in Japan.

The major role of the RSC was to solicit ideas from teachers and make sure that
what was learned through the two-year project was shared across the school. That
shared knowledge included a deeper understanding of the mathematics that they
teach based on the COS, pedagogical ideas for addressing their students’ needs, and
ideas for improving teaching and learning in general.

The RSC assumed the following responsibilities during the two-year research
project:

• Created a draft research proposal with theme and research focus;
• Created a draft calendar of events;
• Created a guideline for the lesson planning process;
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• Created criteria for lesson plans as a way to improve their quality;
• Synthesized important points from each post-lesson discussion, published them in

a newsletter, and explicitly directed later planning teams to address them, helping
to keep the school research program coherent and moving forward;

• Produced the reports at the end of the first and second years.

In addition to these responsibilities, the chair and members of the RSC put a
great deal of effort towards facilitating the transfer of ideas and strategies from one
research lesson to later research lessons. By its nature, the process of lesson study—
planning lessons together and observing the results with their own students—helps
create shared knowledge. But the principal argues that the benefits of lesson study
can dissipate without regular efforts to summarize teachers’ learning. Even though
planning teams worked toward a shared objective, if each lesson were built from
scratch using the team’s unique ideas and strategies, there was significant risk of
ending up with an incoherent set of ideas and strategies for implementing the new
COS. To keep the work coherent and progressing forward, the school administrators
and the chair of the RSC had regular meetings between the research lessons to dis-
cuss what knowledge should be shared and what actions might be needed next. The
chair of the RSC distributed a monthly internal newsletter based on these meetings
to all teachers summarizing what they learned from each research lesson and post-
lesson discussion. The RSC also reminded each planning team to address issues
from previous lessons.

So administrators and teachers, through the RSC, each played their part in guid-
ing the lesson study project. According to the principal, it is crucial for successful
school-based lesson study to plan for this kind of shared responsibility.

Pathways of New Knowledge and Ideas

Even if teachers work hard to seek ways to effectively implement the COS, it is
not always realistic to expect them to come up with good strategies without having
deep subject matter knowledge or without a broad awareness of issues in improving
teaching and learning. According to the assistant principal, the successful imple-
mentation of the COS hinges on each teacher’s understanding of the contents that
they teach, so that they can teach mathematics using textbooks rather than teaching
the textbooks (Takahashi 2011). To do this, each teacher must understand what the
key elements are in each lesson and why students need to understand them.

The main way teachers develop their understanding of the content they teach is
through kyozaikenkyu, the careful study of materials for teaching. But some teachers
are not accustomed to practicing careful kyozaikenkyu. From the administrators’
perspective, an important long-term outcome of the school research project would
be that teachers would conduct rich kyozaikenkyu when preparing their everyday
lessons. Thus the planning of the research lessons, the teaching of the lessons, and
the post-lesson discussions were not just about the issues explicitly addressed in
those lessons, but were also about providing teachers with experiences that would
improve their everyday kyozaikenkyu and lead to better teaching overall.
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The plan created by the RSC was designed to provide teachers with those experi-
ences, and administrators and the RSC monitored the various research activities and
provided additional support when necessary. The administrators also took additional
actions to enrich the experiences teachers had from the project.

Requesting Support from the District When they make grants to support school-
based lesson study, local school districts routinely provide awarded schools priori-
tized access to a district curriculum coordinator, and funds for extra resources. The
funds can be used not only to purchase books and journals but also to invite outside
experts to the research lessons and workshops. Schools also receive additional sup-
port from the district to conduct one or more public open houses and to publish the
results of their study, to be distributed to all the schools in the district.

Using the district support, the RSC at this school collect resources that were
related to the theme of the school research. The district funds also made it possible
to have knowledgeable others come more frequently than normal; the administrators
worked with the RSC to find appropriate knowledgeable others to serve as lecturers
or final commentators for the research lessons.

Hiring Teachers with Experience Between year 1 and year 2 of the school based
research project, the school hired some new teachers with strong subject knowledge,
including knowledge of the new COS, and with leadership experience. The addition
of these teachers gave other teachers more access to high quality lesson study ex-
perience and, according to the principal, raised the level of discussion during lesson
planning meetings.

Collaborative Structure to Support Teacher Learning and Growth

As is often done, this school used their existing grade-level groups for research les-
son development and as the core of the research project. In addition, the school
added the grade-band teams and the RSC as additional structures for better commu-
nication throughout the school. The grade-band teams leveraged the limited number
of experienced teachers at the school, providing all teachers access to the knowl-
edge of those experienced teachers when designing lesson plans. According to the
assistant principal, the idea was to ensure that all teachers, novice and experienced
teachers alike, would have multiple paths of access to the knowledge held within
the school. For example if a teacher had a question regarding everyday classroom
instruction, he/she could ask it during a grade level meeting. If the question were re-
lated to specific subject matter, he/she could ask a member of the grade band team.
If the question were related to a broader issue of teaching mathematics, the RSC
could help direct it to the most knowledgeable teacher at the school or to outside ex-
perts. According to the principal, administrators often use a school research project
as an opportunity to establish a collaborative structure if the school does not already
have one.

The collaborative structures seemed to have the desired effects. Several novice
teachers at the school reported that planning a research lesson with their colleagues
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using the guidelines that the RSC provided helped them learn how to conduct ky-
ozaikenkyu in their everyday planning. Also, working with experienced teachers
when planning the lesson for their grade-level group research lesson greatly helped
them to learn about the different kinds of resources that were available at the school
and how to use them when planning the lesson. As a result they gradually developed
a habit of thinking about the objective of the lesson in relation to the COS and how
to support students in accomplishing the objective.

From those comments, it can be concluded that using existing grade-level groups
as a foundation is an effective ways to reinforce a collaborative environment among
teachers at the school. Because the teachers could discuss not only the research
lessons they planned together but also, with the same group members, issues in
everyday teaching, the knowledge and ideas that arose out of the school research
project carried over into their conversation of everyday teaching. One classroom
teacher reported that the nature of conversation at the regular grade level meetings
shifted to focus more on what the differences of expectations were between the
previous COS and the new COS. When discussing topics new to the COS, teach-
ers worked together to study resources such as the official teaching guide of COS
(Ministry of Education 2008), teacher journals, and lesson plans published by com-
mercial publishers.

The Value of Lesson Study

The research lessons, the core activity of lesson study, are a particularly visible fea-
ture of school-based lesson study, but other features are important for supporting
steady progress toward implementing the COS. The school has to have a long-term,
well-planned timetable for the school research, a structure to support teacher collab-
oration, and pathways to bring updated knowledge of the curriculum and key ideas
for its implementation.

The school used lesson study as the fundamental process for addressing the chal-
lenges of implementing the new COS. It is worth considering what can be learned
about lesson study itself from this project.

Each teacher was deeply involved in planning only one research lesson per year.
This may not seem like enough to support the changes needed for implementing
the new COS, but the lesson study process afforded other opportunities to learn.
Teachers observed each other’s lessons and discussed the issues. Each teacher at
the school also had at least two opportunities to critique lesson plans from another
team during the planning process through the grade-band meetings. Finally, teachers
observed and discussed the lessons of all the other grades at the school. These addi-
tional opportunities may have contributed at least as much to the teachers’ learning
as did their work on their own research lesson.

Lesson study outside of Japan may often focus too much on the teacher who
teaches the research lesson and on the team that plans the lesson. Lesson study can
be powerful even for teachers who just observe the research lesson and participate
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in the post-lesson discussion. Thus it may be equally important to think about how
to maximize the learning opportunity for the research lesson participants.

Successful school-based lesson study requires leadership for creating a long-term
plan connected to a broader perspective of improving mathematics teaching and
learning, and for supporting teachers’ efforts strategically. Although the adminis-
tration plays an important leadership role, one of the most important tasks of the
administration is to cultivate leadership among the teachers, such as by creating
a research steering committee and by deliberately distributing more experienced
teachers across the grade levels. The administrators and teacher leaders also need to
think about how to create long-term pathways for bringing in new ideas and knowl-
edge, such as by creating a norm of conducting thorough kyozaikenkyu. Finally, it is
important to think about how the lesson study activities can benefit teachers beyond
those on an individual planning team.

Summary

The new COS presented two significant challenges in mathematics for schools
throughout Japan: an increased amount of content and a new emphasis on promoting
mathematical thinking and exposition. At the same time, many schools had a signif-
icant number of teachers retiring and being replaced by novice teachers year after
year. At the school examined in this chapter, the faculty and leaders made a deci-
sion to address these challenges together through a rigorous, 2-year school research
project based on lesson study.

Outside Japan, lesson study has been introduced as teacher-led professional de-
velopment. In the U.S. and perhaps elsewhere, many lesson study projects have been
conducted by a few volunteers within a school with support from outside the school.
In contrast, this case study shows that school-based lesson study in Japan is a highly
structured, collaborative effort of school administrators, teacher leaders, and all the
teachers at the school, with additional support from the local district.

School-based lesson study involves a significant amount of interaction and col-
laboration among the teachers at the school. There are several levels of meetings
included in the school schedule for school-wide study and to prepare for each pub-
lic research lesson. In addition, many informal voluntary meetings occur. The school
administrators also have frequent meetings with teacher leaders to share ideas and
concerns in order to make sure all the teachers are progressing toward their com-
mon goal. The school administrators and the RSC members of the school frequently
communicated with outside experts not only when conducting research lessons, but
also when the teachers were preparing lesson plans for their research lessons.

Although this is a single case from one Japanese public elementary school, it
illustrates how the staff of a school can work together toward an effective imple-
mentation of new standards.
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Appendix: Concept Map of the Research Theme and Focus
(English translation by the Project IMPULS at
http://www.impuls-tgu.org)

http://www.impuls-tgu.org
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Does Classroom Instruction Stick to Textbooks?
A Case Study of Fraction Division

Rongjin Huang, Z. Ebrar Yetkiner Ozel, Yeping Li, and Rebecca V. Osborne

Abstract In this chapter, we examined the consistency between textbook and its
implementation in classrooms. By investigating how two selected Chinese teachers
taught fraction division over four consecutive lessons, and making use of an existing
study on the treatments of the same content unit in textbooks, it was found that the
sample teachers essentially adopted their textbooks. The teachers put great effort
into developing students’ understanding of the meaning of fraction division and jus-
tifying why the algorithm of fraction division works by employing a problem-based
approach and using multiple representations. They followed the textbooks regarding
the conceptualization of concepts and algorithms, the topic coverage, the sequence
of content presentation, the approach to developing the concepts and algorithms, and
the selection of problems and exercises. Meanwhile, the teachers also demonstrated
certain flexibility in constructing their own problems for introducing new knowl-
edge and consolidating the learned knowledge. Finally, the authors argued that the
Chinese strategies of adopting textbooks might be attributed to their teaching culture
and professional development practice.

Keywords Fraction division · Mathematics curriculum · Mathematics teaching ·
Mathematical tasks and representations · Curriculum implementation fidelity ·
Chinese mathematics teaching and learning

Background

Textbooks are seen as an important factor impacting what teachers do and, there-
fore, what students learn (Tarr et al. 2008). However, most teachers do not teach all
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topics in their textbooks. They may use the same textbooks but teach vastly different
lessons; or, even when similar lessons are taught, assignments from the textbooks
may be quite different (Huntley and Chval 2010; Kilpatrick 2003; Tarr et al. 2006;
Thompson and Senk 2010). Variation in the implementation of a textbook is often
cited as a factor that is likely to contribute to mediation of textbooks’ impact on
student learning (e.g., Remillard 2005). The differences in the implementation of
textbooks are linked to various factors, such as state assessment pressures (Hunt-
ley and Chval 2010), lack of clarity in textbooks’ intents, teachers’ beliefs, teach-
ers’ prior experiences as students or as pre-service teachers, teachers’ knowledge or
understanding of the textbook’s content and/or the pedagogy called for in the text-
books, the environment in which teachers work, and students’ prior knowledge (e.g.,
Remillard 2005). It is this complexity that calls for studies on “coherence between
the textbook and implemented curriculum; that is, consistency between curriculum
and instruction is needed in order to actualize student learning in mathematics” (Tarr
et al. 2008, p. 275). A written curriculum cannot fully provide guidance for teaching
(e.g., Ball and Cohen 1996), and the same textbook could be implemented unevenly
within and across schools (e.g., Kilpatrick 2003). Thus, implementation fidelity, the
extent to which there is a match between the written curriculum and teachers’ prac-
tices in the classroom, has become an important issue (National Research Council
2004). A few studies on coherence between reform-oriented or traditional textbooks
and their implementation (Tarr et al. 2006; Thompson and Senk 2010) have ques-
tioned the appropriateness of textbook adaptation.

Because Chinese students have repeatedly outperformed their Western counter-
parts in school mathematics in various international comparative assessments (e.g.,
Mullis et al. 2008; OECD 2009), an examination of the implementation of Chinese
textbooks may provide insight into the discussion on implementation fidelity. There
are several studies on Chinese mathematics curricula and textbooks (e.g., Li et al.
2009a, 2009b; Liu and Li 2010) and some research on mathematics classroom in-
struction in China (Huang and Leung 2004; Leung 2005; Li and Huang 2012). Yet,
little attention has been devoted to examining the features of textbook implementa-
tion. In general, as argued by Park and Leung (2006), “in many East Asian countries,
teachers and students regard the textbook as a ‘Bible’ which contains all the essen-
tial knowledge” (p. 230) due to the centralized curriculum and assessment systems
(e.g., Leung and Li 2010; Usiskin and Willmore 2008). However, little empirical
research has approved or disapproved this statement. The current study is designed
to investigate the learning opportunities provided by a sample of teachers and their
relationship with the textbooks used. In order to sharpen the research focus, a com-
mon topic of fraction division was selected. In particular, this study is sought to
address the following research questions:

(1) How is the content of fraction division presented in the selected Chinese class-
rooms?

(2) How is the content of fraction division enacted in the selected Chinese class-
rooms?

(3) How are the content focus and organization in the classrooms related to the
textbooks?
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Research Background

Textbook Use as Following or Subverting

As suggested by Remillard (2005), there are three different ways of examining cur-
riculum use: use as following or subverting, use as interpretation, and use as partic-
ipation. The stance of textbook use as following or subverting reviews “the written
curriculum as embodying discernible and complete images of practice and examine
the degree to which teachers follow these guidelines with fidelity” (Stein et al. 2007,
p. 343). The view of curriculum use as interpretation holds that teachers bring their
own beliefs and experiences to create their own meanings of textbooks, and they
implement textbooks based on their interpretation of the authors’ intentions. Thus,
this notion assumes that it is impossible to examine the fidelity between written
teaching materials and classroom action. The third view of curriculum use as partic-
ipation suggests that use of curriculum materials is a kind of collaboration with the
materials. Central to this perspective is the assumption that teachers and curriculum
materials are engaged in a dynamic interrelationship.

Given the nature of our research questions, the stance of textbook use as follow-
ing or subverting was more suitable. The question that now arises is “how far may
teachers go in their adaptations without destroying the spirit and meaning of the cur-
riculum they implement in their class?” (Ben-Peretz 1990, p. 31). Tarr et al. (2006)
found that their sample of teachers taught 60 to 70 % of the textbooks. Teachers
often supplement the textbook, omit problems or sections, and change the order of
the lesson presented in textbooks based on different considerations (Huntley and
Chval 2010; Tarr et al. 2006). Thus, the key goal is supporting teachers in making
well-informed, purposeful decisions that benefit students’ learning of mathematics
(Huntley and Chval 2010). An examination of the implementation of textbooks in
China, where there is a high-achieving education system, may provide some sug-
gestions.

In a previous study, Li et al. (2009a, 2009b) examined the textbook treatments of
fraction division in China, Japan, and the US. Building on their findings, this study
will focus on an examination of fraction division teaching and observe the extent to
which the characteristics of fraction division teaching in classrooms are in line with
the treatments of fraction division in textbooks.

Teaching and Learning of Fraction Division

Learning of Fraction Division Developing a conceptual understanding of the al-
gorithm of fraction division is a difficult task for both students and teachers (e.g.,
Carpenter et al. 1989; Li and Kulm 2008). Even though teachers can perform com-
putations of fraction division, it is difficult for them, at least in the United States,
to explain the computation of fraction division conceptually and with appropriate
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representations or connections to their mathematical knowledge (Ma 1999). Re-
searchers have suggested different approaches to help students learn how to divide
fractions, including (1) providing mathematical justifications for the fraction divi-
sion algorithm and (2) using concrete or visual demonstrations to explain how frac-
tion division can be computed through extending the whole-number division to frac-
tion division with the measurement interpretation and the partitive interpretation (Li
2008).

Treatments of Fraction Division in Textbooks In their study, Li et al. (2009a,
2009b) examined the ways of dealing with fraction division in Chinese, Japanese,
and US textbooks. The researchers examined three Chinese, three Japanese, and four
US textbooks in great detail using a two-level framework. At the macro level, they
identified how content topics were placed and organized. At the micro level, they
examined how fraction division was conceptualized, which focused on the content
topic introduction and potential use of representations and/or examples. In addition,
the learning progression—the coverage and sequence of topics presented—was also
examined.

Li et al. (2009a, 2009b) found that their sample of Chinese and Japanese text-
books developed fraction division as an inverse operation of fraction multiplication
and prominently used examples to illustrate the relationship between the two oper-
ations using the “one problem, multiple solutions” approach. In contrast, the focus
of US textbooks was on the computational process of fraction division by extend-
ing previous understandings of division involving whole numbers. In the US, the
concept of division of fractions was either explained directly or through the use of
pictorial representations. Thus, the Chinese approach emphasized the mathemati-
cal structures of and the relationship between fraction division and multiplication,
whereas the US approaches emphasized the computation procedures.

Although both Chinese and US textbooks emphasized multiple representations,
the US textbooks generally used pictorial representations to demonstrate the compu-
tation process of fraction division while the Chinese textbooks primarily used pic-
torial representations to develop the concept of fraction division and to explain why
the algorithm works. In addition, the Chinese textbooks emphasized the problem-
solving approach in the presentation of fraction division content and tended to in-
clude larger number and more difficult problems than the US textbooks.

A Framework for Examining Classroom Instruction

A variety of theories and approaches could be used to examine classroom instruc-
tion (Richardson 2001). Some studies have focused on investigating the nature of
mathematics classroom (Clarke et al. 2006; Cobb and Bauersfeld 1995; Hiebert
et al. 2003), while others were aimed at characterizing pedagogical contracts (e.g.,
Boaler 1998). Due to the purposes of the current study (i.e., examining the nature
and characteristics of fraction division teaching and their connections to textbooks
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used), by reference to the framework used by Li et al. (2009a, 2009b), we will focus
our literature review on (1) learning progression of fraction division, (2) mathemat-
ics tasks (examples and exercises), and (3) representations.

Learning Trajectory Building on the social constructivist theory, Simon and his
collaborators (Simon 1995; Simon and Tzur 2004; Simon et al. 2004) have devel-
oped a theory on designing and implementing lessons based on the notion of Learn-
ing Trajectory (LT) (Simon and Tzur 2004; Simon et al. 2004). The LT has three
components: “the learning goal that defines the direction, the learning activities, and
the hypothetical learning process—a prediction of how the students’ understanding
will evolve in the context of the learning activities” (Simon 1995, p. 136). In the
context of fraction division, different conceptualization approaches project different
learning trajectories. In the current study, the instructional objectives stated in lesson
plans and learning progressions uncovered in the videotaped lessons were examined
to depict learning trajectories constructed in classrooms.

Mathematical Tasks and Student Learning The role mathematical tasks play
in engaging students in mathematical thinking and reasoning about substantial con-
cepts and ideas has been realized and investigated for a long time (Doyle 1983,
1988; Hiebert and Wearne 1993; Stein and Lane 1996). Mathematical tasks are fun-
damental to learning because “tasks convey messages about what mathematics is
and what doing mathematics entails” (National Council of Teachers of Mathemat-
ics [NCTM] 1991, p. 24). Mathematical tasks can provide a learning environment
in which students engage in and develop mathematical concepts and mathematical
thinking. Mathematical tasks have potential influences on students’ thinking and can
broaden, or restrict, their ideas and perspectives on subject matters (Henningsen and
Stein 1997). A theory of mathematics teaching, called teaching with variation, has
been in place for several decades in China (Gu et al. 2004). This theory emphasizes
developing knowledge and building essential connections among relevant concepts
through working with systematic and interconnected problems that focus on critical
features of the objects of learning. Although mathematical tasks generally include
projects, questions, constructions, applications, and student exercises, in this study
tasks are used to refer to problems (including examples) and exercises. We examined
the features of classroom instruction through investigating how teachers developed
new knowledge through launching and implementing mathematical tasks.

Pedagogical Representations and Student Learning In addition to use of math-
ematics tasks, pedagogical representation is a widely used aspect for exploring
classroom instruction. When we speak of pedagogical representations, we mean rep-
resentations used by teachers and students in the classroom. Pedagogical represen-
tations are helpful in explaining or illustrating concepts, connections, relationships,
or problem solving processes (Cuoco and Curcio 2001). Some representations may
be more powerful than others for teaching particular concepts (Leinhardt 2001).
Thus, what representations to use and how to use them are important decisions a
teacher makes when selecting instructional strategies for a mathematics classroom.
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Recently, an attempt to examine how Chinese and US teachers conceptualized and
constructed pedagogical representations for mathematics instruction (Cai 2005; Cai
and Wang 2006; Huang and Cai 2011) shed insight into understanding of mathe-
matics instruction. Accordingly, in this study we investigated how teachers taught
fraction division through examining how they constructed and used representations
in the classroom.

The Current Study

In the current study, we examined how selected Chinese teachers taught fraction
division regarding: (1) the structure of fraction division in classroom teaching,
namely, instructional objectives and the sequence of content knowledge presenta-
tion (answering research question #1); (2) the development of the content by exam-
ining mathematics tasks and pedagogical representations (answering research ques-
tion #2). In addition, we examined the connections between the characteristics of
fraction division teaching in Chinese classrooms (findings derived from the current
data analysis) and the treatment of division of fractions in Chinese textbooks (find-
ings by Li et al. 2009a, 2009b) (answering research question #3).

Method

Data Sources

The data consisted of eight videotaped lessons taught by two Chinese teachers and
their corresponding lesson plans, selected from a larger project investigating cross-
cultural (Chinese and US teachers’) lesson planning and classroom instruction. A
total of seven elementary schools from two Chinese provinces participated in the
larger research project (Li et al. 2009a, 2009b). With the guidance of Chinese math-
ematics education experts, the sample schools were selected so that they represented
a large range of school qualities based on their reputations. Each selected school re-
ceived an invitation to the project and an explanation of the objectives, procedures,
and instruments used for data collection. For the current study, we selected two
teachers based on the reputation of their schools and their teaching experiences so
that they represented an average level of teaching.

Each of the two teachers selected for this study taught four consecutive lessons
that were videotaped by one of the researchers. These two teachers were from ele-
mentary schools located in two different provinces. The first elementary school was
located in a suburban area of a medium-sized city; however, the school was in the
process of transformation. The school used to serve a student population mainly
from the rural areas adjacent to the city, but it has now started to serve some of
the urban areas as well. In terms of the school’s location, the community it served,
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students’ test scores, and perceived teachers’ quality, the school had an average
standing in that province. The teacher from the first school (Teacher A) had 8 years
of teaching experience. The second school was located in a rural area in another
province; its quality was judged as below average for that province. Teacher B, who
was from the second school, was a promising teacher with 19 years of teaching
experience. There were roughly 45 students in each class.

Data Analysis

We used the videotaped lessons and transcripts as our data sources. One researcher
watched the videos and read corresponding transcripts to get an understanding of
the Chinese lessons. Then, the researcher identified the main contents of all of the
lessons and developed a concept map of teaching division of fractions. We made a
detailed examination of all four consecutive lessons from each Chinese teacher with
extra attention paid to the content connection and variation across lessons. We ex-
amined the use of mathematics tasks for introducing, developing, and consolidating
fraction division. Meanwhile, we also examined how teachers constructed pedagog-
ical representations when solving problems. The types of representations included
in the lessons were algebraic/symbolic, numeric/tabular, graphic, and verbal/literal
(Cuoco and Curcio 2001).

Results

The results are presented in three sections. In the first section, we report the develop-
ment of a learning trajectory for division of fractions. The second section concerns
common features of fraction division teaching in the sample Chinese classrooms.
The third section reports an analysis of the relationship between how division of
fractions is taught in classrooms and how it is treated in textbooks.

Learning Trajectory Constructed in the Classrooms

Content Coverage and Instructional Objectives The two Chinese teachers,
Teacher A and Teacher B, spent four lessons teaching fraction division in a simi-
lar manner. The content arrangement and relevant instructional objectives based on
lesson plans are displayed in Table 1.

Table 1 shows that Chinese teachers covered essentially the same content and in-
structional objectives: understanding the meaning of fraction division and the rela-
tionship between multiplication and division; understanding and mastering the com-
putational rules for dividing a fraction by a whole number (F/WN); understanding
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Table 1 The content arrangement and instructional objectives in the Chinese lessons

Teacher Lesson 1 Lesson 2 Lesson 3 Lesson 4

A Understanding the
meaning of fraction
division and the
relationship between
multiplication and
division;
Understanding and
mastering the
computational rules
for dividing fractions
by whole numbers
(F/WN)

Understanding and
mastering the
computational rules
for dividing whole
numbers by
fractions (WN/F)

Understanding and
mastering the
computational rules
for dividing
fractions by
fractions (F/F)

Mastering the
methods of solving
word problems using
fraction division;
Understanding
comparison of
fractions

B The meaning of
fraction division;
The relationship
between
multiplication and
division;
The algorithm of
F/WN and its
justification

Understanding the
meaning and
algorithm of WN/F

Synthesizing the
algorithm of F/F;
Problem posing and
problem solving;
Solving word
problems

Dividing mixed
numbers by mixed
numbers;
Understanding of
comparison of
fractions.

and mastering the computational rules for dividing a whole number by a fraction
(WN/F); understanding and mastering the computational rules for dividing a frac-
tion by a fraction (F/F); and mastering word problem solving and comparison of
fractions before and after division by a fraction. Their developments of these con-
tents were also quite similar, except for the minor differences in emphasis.

Learning Progression for Fraction Division

Both lesson plans and videotaped lessons revealed that the teachers followed a pat-
tern (see Fig. 1) explicitly. The two Chinese teachers made efforts to develop frac-
tion division: (1) developing the concept of fraction division based on students’
prior knowledge (meaning of whole number division and the relationship between
multiplication and division) (Lesson 1); (2) developing the algorithms coherently
and systematically from F/WN (Lesson 1), WN/F (Lesson 2), to F/F (Lesson 3),
and (3) applying the algorithms to different contexts such as word problems and
comparison of fractions (Lessons 3 and 4). The key of learning fraction division
was to understand that the meanings of fraction division and whole number division
were the same, and that division is the inverse operation of multiplication. Then,
ways of learning about the whole number division were analogized and adapted to
fraction division. Second, by effectively using the pictorial representation (segment
diagram), the meaning of a fraction and the meaning of division were explicated to
help students understand WN/F (lesson 1), WN/F (lesson 2), and F/F (lesson 3). In



Does Classroom Instruction Stick to Textbooks? A Case Study of Fraction Division 451

Fig. 1 The concept map of DoF development

this way, the fraction division concept and algorithm were built on and developed
from the basic concept of whole number division, the meaning of a fraction, and the
relationship between division and multiplication. So, different kinds of knowledge
were interconnected. And finally, the new knowledge was linked to problem solv-
ing and comparison of fractions. Thus, students’ knowledge of fraction division was
strengthened and re-structured. This relationship is displayed in Fig. 1.

Characteristics of Fraction Division Teaching

The Lesson Structure

By and large, the two teachers shared a similar teaching pattern, which included
(1) reviewing previous lesson’s content or relevant knowledge for learning the new
topic, (2) introducing the new topic through solving mathematical problems related
to everyday life, (3) practicing new knowledge with a variety of interconnected
problems and summarizing relevant key points or contents in the lesson, and (4) as-
signing homework. In the sections that follow, we describe the main procedures of
the four consecutive lessons of Teacher A.

Lesson 1 After starting with a review of the meaning of whole number division
and doing some relevant mental computations, the teacher posted two word prob-
lems with pictorial representations: (1) If each of five people eats half a cake, how
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Fig. 2 The segment diagram
representing (4/5) ÷ 2 =
(4 ÷ 2)/5

much do they eat in total? (2) Can you pose two division problems based on the
above information? Students produced three numerical expressions (5 × 1

2 = 5
2 ;

5
2 ÷ 5 = 1

2 ; 5
2 ÷ 1

2 = 5) as they solved the problems. Students were then led to
discover the meaning of fraction division and were subsequently asked to read this
statement from the textbook in chorus.

The class moved on to explore the algorithm of dividing a fraction by a whole
number as they worked on word problems in groups. Four different solutions to the
same problem were discussed: (a) 4

5 ÷ 2 = 4
5 ÷ 2

1 = 4÷2
5 = 2

5 ; (b) using a segment
diagram to demonstrate the meaning of 4

5 and to divide it into two parts (of size 2
5 )

(see Fig. 2); (c) using the equivalence, that is “Dividing 4
5 by 2 is equal to 1

2 of 4
5 ”

(i.e., 4
5 ÷ 2 = 4

5 × 1
2 ); and (d) transformation of the equivalence into a decimal op-

eration (i.e., 0.8 ÷ 2 = 0.4). This discussion led to the formulation of two common
strategies: (1) If the numerator of the fraction is a multiplier of a whole-number divi-
sor, then the quotient equals a fraction with a numerator that is dividing the original
numerator by the divisor while the denominator remains the same; and (2) Dividing
a fraction by a whole number is equal to the fraction times the reciprocal of the
whole number.

Students followed with a variation of the previous word problem so that they le-
gitimized that the second strategy was more convenient and applicable. Moreover,
the teacher asked students to read this computational rule in chorus (it was empha-
sized that the divisor cannot be equal to zero). After that, students worked on several
exercises from the textbook and some extra problems as they competed in groups or
as individual seat-work followed by sharing their work in class. Finally, the teacher
summarized the key points of the lesson.

Lesson 2 After reviewing the meaning of fraction division and computational
rules for dividing fractions by whole numbers, two word problems from the text-
book were discussed. The purpose of the first problem was to review whole number
division using the quantitative relationship among velocity (V ), time (T ), and dis-
tance (S) (i.e., S = V T ). The second problem was designed to explore the new
topic, which was dividing whole numbers by fractions (v = s/t = 12 ÷ 1

5 ). Stu-
dents presented three different ways of computing 12 ÷ 1

5 : (a) 12 ÷ 0.2 = 60;
(b) 12 ÷ 1

5 = 12 × 5 = 60; and (c) using a segment diagram including five equal
parts, each of them presenting the distance in 1/5 hours (similar to Fig. 2).

Students were also asked to explain different numerical expressions of dividing
whole numbers by fractions (e.g., 7 ÷ 1

4 = 28; 24 ÷ 3
4 ) using a segment diagram.

Based on previous discussions, the computational rule of fraction division was sum-
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Fig. 3 Diagram representing
the relationship between time
and distance

marized. Then, the class worked on several exercises on dividing a whole number
by a fraction.

Lesson 3 After a review of the previously learned computational rules of fraction
division (i.e., 4

5 ÷ 3 = 4
5 × 1

3 ; 4 ÷ 1
3 = 4 × 3), students identified the commonality

among these rules: changing division into multiplication and changing the divisor
into its reciprocal. Then, the teacher asked students to read out a word problem
from their textbook (i.e., Xiaoming walks 14/15 km in 3/10 hours, how far does he
walk in one hour?), and students were asked to express the relation using fraction
division (e.g., 14

15 ÷ 3
10 ). Students were encouraged to make conjectures on how to

perform the fraction operation and to justify their conjectures. By using a segment
diagram (the teacher drew on the board, see Fig. 3), students were asked to explain
the following procedure:

14

15
÷ 3

10
= 14

15
÷ 3 × 10 = 14

15
× 1

3
× 10 = 14

15
× 10

3

The teacher assigned several exercises from the textbook (such as, 2
7 ÷ 5

6 ;
1
12 ÷ 4

15 ); several students were invited to write their solutions on the board, and
then students’ solutions were discussed in the class.

After completing exercises, students were encouraged to summarize the compu-
tational rule of fraction division using different representations: Dividing a number
by a fraction is equal to the number multiplied by the reciprocal of the divisor (in
word); A ÷ B(B 	= 0) = A × 1

B
(in symbol). In particular, students noted the divi-

sor could not be zero. Then, students were asked to read the computational rule in
chorus from their textbook.

Subsequently, the students were asked to do more exercises from the textbook,
and some students were invited to write their solutions on the board (the teacher
explicitly emphasized that it was necessary to increase their computational speed
when mastering computational procedures). Finally, the solutions were discussed,
and the teacher summarized some key points.

Lesson 4 Starting with a review of the fraction division rule, students were then
asked to change four fraction division problems into multiplication problems orally.
Subsequently, the teacher presented the topic for the current lesson: word problems.
The teacher presented a problem (If 3/8 of a given number is 1/4, what is the given
number?) that required students to use two methods (i.e., 3

8x = 1
4 ; or 1

4 ÷ 3
8 ) in the
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solution. The teacher summarized that there were two methods to solve problems
such as “Given a proportion of a number, find out the number.”

The teacher then presented four word problems to be solved using equations.
Students wrote their solutions on the board, and the teacher commented on the so-
lutions. The teacher then presented four fill in the blank problems for students to
solve (e.g., 1/3 is 5/6 of ( )?). Students were asked to compare the fraction division
expression with the original dividend (e.g., 6

7 with 6
7 ÷3; 9 with 9÷ 3

4 ; 1
2 with 1

2 ÷ 2
3 ;

14
15 with 14

15 ÷ 7
30 ). With this exercise, it was intended to lead students to realize that

dividing by a fraction less than 1 would result in the quotient’s increase and divid-
ing by a fraction larger than 1 would result in the quotient’s decrease. After that, the
teacher assigned similar exercises from the textbook.

The Common Features of Fraction Division Teaching in China

A detailed description of the four lessons by Teacher B can be found in Appendix.
After comparing the lessons by the two teachers, we found that there were more
commonalities than differences. The common features included: developing stu-
dents’ understanding of the algorithm through solving word problems, consolidat-
ing the algorithm through systematic and varying exercises, and deepening students’
understanding of the algorithm through purposefully selected representations.

Developing the Algorithm As indicated in the concept map of fraction division
(Fig. 1), problem solving is an often-used strategy for introducing, developing, and
consolidating knowledge. These two teachers consistently introduced and developed
knowledge (concepts and algorithms) by exploring word problems. For example, in
lesson 1, in order to explore the meaning of fraction division, both Teacher A and
Teacher B used word problems. Both teachers (in lesson 3 by teacher A while in
lesson 4 by teacher B) presented word problems that required equations in their
solutions, such as “3 times a number is 2

5 . Find the number.”
In order to explore the algorithm of F/WN, Teacher A used two word problems:

(1) Divide a rope of 4
5 meter into two equal parts. How long is each part? and (2) Di-

vide a rope of 4
5 meter into three equal parts. How long is each part?

Again, in lessons 2 and 3, both teachers used word problems to introduce the
algorithm of WN/F and F/F. For example, Teacher A used the problem “A pigeon
flies 1.2 km in 1/5 hours. What is the velocity of the pigeon?” (v = s/t = 1.2 ÷ 1

5 )
to introduce WN/F, and another word problem, “A butterfly flies 13/14 km in 3/10
hours. How far can it fly per hour? ” to explore F/F. Similarly, Teacher B used the
word problems “If a train travels 60 kilometers per hour, then how far does it travel
in 3/4 hour?” and “If a train travels 45 km in 3/4 hours, how far does it travel per
hour?” to introduce WN/F, and another word problem, “One red silk belt measures
9
10 m. If 3

10 m red silk belt is needed to make a Chinese tie, how many ties can be
made from this belt?” to introduce F/F.

In both teachers’ lessons, there was a common effort to encourage students to
find multiple solutions to the same problem. Through comparing different solu-
tions, the most reasonable solution was emphasized (usually it was related to an
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appropriate computational rule). For example, in lesson 1, both teachers explored
the computational rule of F/WN through solving word problems. Although students
found two strategies, the second strategy (i.e., the rule for F/WN: the fraction times
the reciprocal of the whole number) was more convenient and applicable. Thus, the
introduction of the rule for F/WN was justified. In lessons 2 and 3, both teachers en-
couraged students to find different methods to solve the same problem. As a result,
new computational rules were discovered, and different concepts and knowledge
were applied to develop a deeper understanding. For example, in Teacher B’s sec-
ond lesson, three solutions to the problem “If a train travels 45 km in 3/4 hours,
how far does it travel per hour?” were explored:

45 ÷ 3 × 4 = 45 × 1

3
× 4 = 60 (km); 45 ÷ 3 + 45 = 60 (km)

45 ÷ 3

4
= 45 × 4

3
= 60 (km); x × 3

4
= 45 (km).

Thus, 45 ÷ 3
4 = 45 × 4

3 (i.e., the rule of WN/F) was discovered and justified.
Also, the relationship between the parts and the whole unit was demonstrated by a
segment diagram (similar to Fig. 2).

Consolidating the Algorithm In each lesson, there were many classroom exer-
cises for enhancing and applying learned knowledge. The following features were
found in common: (1) practice problems were mainly selected from the textbook,
though some of them were created by teachers; (2) classroom exercises were con-
ducted in various forms, such as individual work, group work, or competition. Usu-
ally, the answers were presented on the board and discussed in class; and (3) types
of problems varied, with a focus on the learned content. For example, in lesson 3 of
Teacher B, classroom exercises included (1) basic exercises (e.g., 2

7 ÷ ( ) = 2
7 × 1

7 );
(2) computation and reasoning (judging if an equation or inequality is tenable: for
example, 1

2 ÷ 3
5 = 1

2 ÷ 5
3 , 2

5 × 1
5 < 2

5 ÷ 1
5 ); (3) word problems that required solving

equations (e.g., 1
3x = 4

9 , 5x = 4
9 ), and (4) an open-ended problem. The following

open-ended problem was presented as group-work:

If the area of the shaded part in the diagram on the right is 28
square meters, what questions can you pose? How can you
solve them?

Students, working in groups of four, raised the following questions and solutions:

(1) The area of each shaded block? (28 ÷ 7 =?)
(2) The area of the large rectangle? (28 ÷ 7

9 =?)
(3) What is the area of the blank part of the large rectangle? (2 × (28 ÷ 7) =? or

28 ÷ 7
9 − 28 =? or (28 ÷ 7

9 ) × 2
9 =?)

When arranging and solving problems, we observed characteristics that were
common to both teachers. They developed new problems based on a prototype of
problems and encouraged students to search for multiple solutions to problems.
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Developing the Algorithms through Purposeful Use of Representations The
two teachers purposefully used different representations to develop the algorithm
of fraction division. In lesson 1, both teachers basically used verbal and numerical
representations to review the meaning of whole number division and to develop
the meaning of fraction division. The teachers also used pictorial representations
and/or a physical model (for example, Teacher A used a half circle representing half
a cake, a segment diagram representing the partitioning of ropes, and a physical
rope to demonstrate the partitioning of a rope). In lesson 2, both teachers paid great
attention to using segment diagrams to develop the algorithm for WN/F. In lesson 3,
the teachers used either a segment diagram (Teacher A) or a pictorial representation
(Teacher B) to develop the algorithm and solve problems. In lesson 4, symbolic
and verbal representations were extensively used to solve equations and to compare
fraction values.

It seems that these two teachers used representations selectively and hierarchi-
cally: from physical representations to pictorial representations to symbolic and
verbal representations. The pictorial and physical representations were only used
to develop the algorithm of fraction division. After the algorithm was discovered
and justified, they used symbolic/numerical representations for application.

The Relationship Between Textbooks and Classroom Teaching

We presented the relations between textbooks used and classroom teaching from
three aspects: (1) the ways of conceptualizing fraction division; (2) the ways of
selecting and using mathematical tasks (examples and exercises); and (3) the ways
of using representations.

Teacher A used one of the three textbooks examined by Li et al. (2009a, 2009b),
and Teacher B used another of the three textbooks. These teachers not only did di-
rectly choose workout examples and class exercises from their textbooks but also
asked students to read aloud the computation rules stated in the textbooks. Particu-
larly, Teacher B explicitly required students to read the textbook before class. As a
result, there was a strong consistency between the textbooks and classroom instruc-
tion. Considering findings of Li et al. (2009a, 2009b) and findings of the current
study, we identified the following consistencies.

First, over four lessons both teachers put great efforts to progressively de-
velop students’ understanding of the meaning of fraction division, the relationship
between division and multiplication, and why the algorithm of fraction division
worked. This is fairly consistent with the intention of Chinese textbooks (Li et al.
2009a, 2009b).

Second, the Chinese teachers organized word problem solving activities to guide
students to discover and justify the algorithm for division of fractions from sim-
ple (F/WN) to complex situations (F/F) using different approaches. They both en-
couraged students to find multiple solutions to the same problem and to recognize
the invariant pattern (i.e., computation rule) through comparing different solutions.
This feature reflects Chinese textbooks’ design that develop division of fractions
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as an inverse operation of fraction multiplication through solving problems using
multiple methods, namely the “one problem, multiple solutions” approach (Li et
al. 2009a, p. 824). Meanwhile, these teachers either had students complete some of
the textbook exercises in class and/or assigned them as homework. However, teach-
ers paid close attention to some problems in textbooks. For example, both teachers
treated “identifying the relationship between quotient and dividend when the divi-
sor increases or decreases” (Li et al. 2009a, p. 823) as an opportunity to develop
students’ ability to observe and discover. Moreover, they also deliberately designed
some problems based on other published teaching materials or their own lesson
plans. The open-ended problem posing and solving given by Teacher B (lesson 3)
was one example.

Third, the use of different representations (e.g., psychical, pictorial, numerical)
in these lessons was intended to help students understand the process of problem
solving and why the algorithm worked, which was in line with the intention of the
textbooks (Li et al. 2009a, 2009b).

In summary, textbooks had important influences on Chinese teachers’ classroom
teaching in terms of content coverage, teaching objectives, principles of develop-
ing content/learning trajectories, and teaching strategies. Overall, classroom teach-
ing essentially stuck to the textbooks. However, there were some variations and
flexibilities in terms of emphasis on certain content points, selection of problems,
and assignment of homework. In particular, the teachers adopted some challenging
mathematics problems from other resources or adjusted some classroom exercises
to meet students’ needs. This situation is coined as a Chinese saying, “Teaching
should be derived from textbooks, but exceed textbooks.”

Conclusion and Discussion

Based on the analysis of selected Chinese teachers’ teaching of fraction division,
we came to the following conclusions. The Chinese teachers (1) put great effort into
developing students’ understanding of the meaning of fraction division and their
justification of why the algorithm of fraction division works (as inverse operation of
fraction multiplication); (2) adopted a problem-based approach to develop the mean-
ing of fraction division, to justify the algorithm, and then to apply the algorithm; and
(3) used multiple representations strategically (i.e., visual representations to scaffold
the development of algorithms and symbolic representations for extensive applica-
tions of algorithms).

A consistency between textbooks and their implementation in classrooms was
found regarding the coverage of contents, content development, and selection and
use of problems and exercises. The Chinese teachers followed the fundamental prin-
ciples of their textbooks, such as conceptualizing fraction division as the inverse
operation of fraction multiplication and developing the meanings and algorithms of
fraction division through word problems. In addition, pictorial representations were
used to show why the algorithm of fraction division worked, which also mirrored



458 R. Huang et al.

the textbook treatment. However, the teachers demonstrated flexibility in selecting
and constructing examples and exercises.

Given the fact that textbooks in China are official and mandated (Liu and Li
2010), it is not surprising that the sample teachers taught classes by following their
textbook seriously. Interestingly, teachers not only followed the sequence of content
presentation in the textbook smoothly but also implemented the fundamental prin-
ciples presented in textbooks essentially. For example, the teachers conceptualized
division of fractions as an inverse operation of fraction multiplication as it was pre-
sented in textbooks (Li et al. 2009a, 2009b). The teachers adopted problem-based
approach to develop the concept and algorithm of fraction division consistently. Sur-
prisingly, the Chinese teachers put much emphasis on the conceptual understanding
of such a procedure-oriented content over four lessons. The practice may imply that
the Chinese teachers pay great attention to developing students’ conceptual under-
standing and procedural fluency simultaneously.

Use of the Problem-Based Approach Consistently

Emphasis on solving problems and altering problems to promote multiple perspec-
tives are traditional features of Chinese mathematics classrooms (Cai and Nie 2007;
Huang et al. 2006), and these approaches were also valued in textbooks (Li et al.
2009a, 2009b; Sun 2011). The core of teaching with variation, a widely adopted
teaching method in China, is to vary problems systematically and strategically to
promote students’ learning (Gu et al. 2004). The problem-based approach is well-
recognized as a mathematics learning and teaching method around the world (e.g.,
Baroody and Dowker 2003; Shimizu 2009); it may make a difference in creating
opportunities for students to learn if this approach is valued in both textbooks and
classroom instruction intentionally.

Using Representations Flexibly

This study may provide an explanation to why Chinese students prefer using sym-
bolic representation when solving problems (Cai 2005) because Chinese teachers
treat concrete representation as scaffolding for developing algorithms, and then they
will use symbolic/abstract representations for application of knowledge. Huang and
Cai (2011) found that the Chinese teacher in their study tended to use representa-
tions selectively based on the nature of problems, while the U.S. teacher in the study
tended to use multiple representations simultaneously. Developing students’ ability
using multiple representations has been called for decades for the development of
mathematics knowledge and problem solving (Cuoco and Curcio 2001; Lesh et al.
1987). The use of representations in Chinese textbooks and classrooms suggest that
it is crucial to adopt representations purposefully and flexibly, rather than the multi-
plicity of representations.
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Adaptation of Textbooks Strategically

Let us consider “how far may teachers go in their adaptations without destroying the
spirit and meaning of the curriculum they implement in their classes?” (Ben-Peretz
1990, p. 31). Although it is difficult, if not impossible, to answer this question pre-
cisely, the Chinese practice may shed light on addressing this issue. Firstly, it is cru-
cial to follow the fundamental principles presented in textbooks, such as conceptu-
alizing fraction division as an inverse operation of fraction multiplication, adopting
the word problem-based approach, and using pictorial representations to develop
the algorithm. Second, introductory problems, examples, and exercises should be
used carefully with attention to their purpose and roles and considering students’
knowledge readiness and ability. Third, teachers should be encouraged to construct
their own examples and exercise problems based on their knowledge of students
and pedagogy to individualize their teaching (such as by decreasing or increasing
cognitive demands of problems). Considering these factors may help teachers in
adapting textbooks in their classes appropriately without destroying the intents of
textbooks.

Developing Knowledge and Capacity in Adapting Textbooks

Responding to the call to support teachers in making “well-informed, purposeful
decisions (that is, acceptable adaptation) to benefit students’ learning of mathemat-
ics ” (Huntley and Chval 2010, p. 301), it is necessary to realize the importance
of studying teaching materials (Ma 1999). In Ma’s seminal work, she attributed
Chinese elementary teachers’ profound understanding of fundamental mathemat-
ics to four main factors, including: studying teaching materials intensively, learn-
ing mathematics from colleagues, learning mathematics from students, and learn-
ing mathematics by doing it. In China, it is fundamentally important to exten-
sively study teaching materials (including textbooks, teaching and learning frame-
works, and teachers’ manuals) (Ma 1999). Ding et al. (2012) further found that
Chinese teachers’ knowledge and understanding of mathematics instructional con-
tent is mainly attained through intensive studies of textbooks under a support-
ing professional development system. The sample teachers in their study viewed
the “study of textbooks” as an exploration of knowledge beyond textual informa-
tion, which included (1) identifying the important and difficult points of teaching
a lesson, (2) studying the purposes of each worked example and practice prob-
lem, (3) exploring the reasons behind certain textbook information, and (4) ex-
ploring the best approaches, from the perspectives of students, to present exam-
ples. Such a profound understanding of textbooks may help teachers to make ap-
propriate and effective decisions in adapting textbooks to prompt students’ learn-
ing.
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Methodology of Studying Implementation Fidelity

Previous studies mainly conducted surveys, interviews, and classroom observations
(Huntley and Chval 2010; Tarr et al. 2006) as their methodologies to study text-
book implementation but paid less attention to the teaching of specific contents. In
contrast, this study extends efforts to examine implementation fidelity through in-
vestigating what really happens in the classroom. Focusing on a specific topic over
consecutive lessons may provide an additional way of researching implementation
of textbooks.

In conclusion, the sample teachers essentially adapted their textbooks. They fol-
lowed the textbooks regarding the conceptualization of concepts and algorithms,
the topic coverage, the sequence of content presentation, the approach to devel-
oping the concepts and algorithms, and the selection of problems and exercises.
The teachers also demonstrated certain flexibility in constructing their own prob-
lems for introducing and consolidating new knowledge. The strategies of adapting
textbooks may be related to their teaching culture and professional development
practice. Extensively studying teaching materials may be an effective way to de-
velop teachers’ knowledge of and capability in adapting textbooks in their class-
rooms.

Appendix: Brief Description of Teacher B’s Lessons

Lesson 1 Two methods of fraction division were discussed via a word problem.
The teacher asked students to state the meaning of fraction division and the relation-
ship between multiplication and division. After explicitly expressing that the mean-
ing of fraction division was the same as the meaning of whole number division, and
fraction division was the inverse operation of fraction multiplication, the teacher led
the class to discuss the algorithm of dividing a fraction by a whole number.

Then, the teacher asked students to express the algorithm for dividing a fraction
by a whole number. To practice this algorithm, students posed several problems re-
lated to dividing a fraction by a whole number (e.g., 2

7 ÷ 3, 4
9 ÷ 2) and discussed

their solutions and justification in terms of two classifications (i.e., when the numer-
ator is divisible by the divisor and when it is not). For example, students explained
why the following procedure worked: 4

9 ÷2 = 4÷2
9 = 2

9 . Students explained the pro-
cedure according to the meaning of fraction and whole number division. In order to
help students understand why dividing a fraction by a whole number is equal to the
fraction times the reciprocal of the whole number, the teacher organized a hands-
on demonstration activity: one student was asked to classify 12 magnetic pads into
3 equal groups, and another student was asked to take away one third of the 12
magnetic pads.

Through comparing the two methods of arranging magnetic blocks, students re-
alized that dividing a fraction by a whole number was equal to the fraction times
the reciprocal of the whole number. Then, three types of exercise problems were
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organized: questions for oral answers, word application problems, and competition
problems.

Lesson 2 Beginning with a word problem, the class explored the meaning and
algorithm of dividing a fraction by a fraction. The problem was used to recall the
method of using a diagram to represent the quantitative relationship between a stan-
dard (unit) quantity, partial rate, and partial quantity (similar to Fig. 3). The teacher
presented another word problem as follows: If a train runs 45 km in 3/4 hours, how
far does it run per hour? By using a similar diagram, students found three solutions
to the problem and justified 45 ÷ 3

4 = 45 × 4
3 .

Based on this discussion, students discovered the algorithm of dividing a whole
number by a fraction. Immediately, the teacher assigned a similar word problem for
students to solve, and students presented their three solutions on a small board.

Lesson 3 The lesson began with a review of dividing fractions by whole numbers
and dividing whole numbers by fractions. The teacher presented one word problem
(i.e., There is a red silk strip measuring 9 over 10 meter in length. If making one
Chinese tie requires 3 over 10 of a red silk strip, how many Chinese ties can be
made using the strip? How can this problem be expressed numerically? The answer
to the question resulted in the following numerical expression: 9

10 ÷ 3
10 = 9

10 ×
10
3 = 3. Then, the teacher asked students to generalize this rule by providing another

concrete example. Finally, the rule of fraction division was synthesized in general:

Dividing a number A by a number B is equal to the number A times the
reciprocal of the number B (B 	= 0).

After that, students worked on several different types of exercises: basic exer-
cises, comparing sizes of two expressions (e.g., 1

2 ÷ 3
5 = 1

2 ÷ 5
3 , 2

5 × 1
5 < 2

5 ÷ 1
5 ),

open-ended problems, and word problem solutions (e.g., 1
3x = 4

9 , 5x = 4
9 ).

Lesson 4 After reviewing the rules of fraction division, the teacher presented sev-
eral fraction division expressions that included at least one mixed number (e.g.,
7
8 ÷ 1 5

6 ; 4 2
7 ÷ 1 11

14 ). Students worked on these problems individually and shared
their solutions (some corrections were made). Then, the rule for division of mixed
numbers was summarized: first transforming the mixed number to an improper frac-
tion, then using the rule of fraction division.

Then, some exercises from the textbook were assigned to four student groups
to be solved, and the results were checked in class. After that, the class discussed
two sets of computation problems to make the following observations: (1) When
dividing by a fraction less than 1, the quotients will increase, and when dividing by
a fraction larger than 1, the quotients will decrease; (2) When the denominators are
the same, the larger the numerator is, the larger the fraction is. On the other hand,
when the numerators are the same, the larger the denominator is, the smaller the
fraction is.



462 R. Huang et al.

References

Ball, D. L., & Cohen, D. K. (1996). Reform by the book: what is—or might be—the role of cur-
riculum materials in teacher learning and instruction reform? Educational Researchers, 25(9),
6–8, 14.

Baroody, A. J., & Dowker, A. (Eds.) (2003). The development of arithmetic concepts and skills:
constructing adaptive expertise. Mahwah: Lawrence Erlbaum.

Ben-Peretz, M. (1990). The teacher-curriculum encounter: freeing teachers from the tyranny of
texts. Albany: State University of New York Press.

Boaler, J. (1998). Open and closed mathematics: student experiences and understandings. Journal
for Research in Mathematics Education, 29(1), 41–62.

Cai, J. (2005). U.S. and Chinese teachers’ constructing, knowing, and representations to teach
mathematics. Mathematical Thinking and Learning, 7, 135–169.

Cai, J., & Nie, B. (2007). Problem solving in Chinese mathematics education: research and prac-
tice. ZDM—The International Journal on Mathematics Education, 39, 459–473.

Cai, J., & Wang, T. (2006). U.S. and Chinese teachers’ conceptions and constructions of repre-
sentations: a case of teaching ratio concept. International Journal of Mathematics and Science
Education, 4, 145–186.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using knowledge
of children’s mathematics thinking in classroom teaching: an experimental study. American
Educational Research Journal, 26, 499–531.

Clarke, D. J., Keitel, C., & Shimizu, Y. (Eds.) (2006). Mathematics classrooms in twelve countries:
the insider’s perspective. Rotterdam: Sense.

Cobb, P., & Bauersfeld, H. (1995). Emergence of mathematical meaning: interaction in classroom
cultures. Hillsdale: Erlbaum.

Cuoco, A. A., & Curcio, F. R. (2001). The roles of representation in school mathematics: 2001
yearbook. Reston: National Council of Teachers of Mathematics.

Ding, M., Li, Y., Li, X., & Gu, J. (2012). Knowing and understanding instructional mathematics
content through intensive studies of textbooks. In Y. Li & R. Huang (Eds.), How Chinese teach
mathematics and improve teaching. New York: Routledge.

Doyle, W. (1983). Academic work. Review of Educational Research, 53, 159–199.
Doyle, W. (1988). Work in mathematical classes: the context of students’ thinking during instruc-

tion. Educational Psychologist, 23, 167–180.
Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: an effective way of mathematics

teaching in China. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn mathemat-
ics: perspectives from insiders (pp. 309–348). Singapore: World Scientific.

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: classroom-
based factors that support and inhibit high level mathematical thinking and reasoning. Journal
for Research in Mathematics Education, 8, 524–549.

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., & Stigler,
J. (2003). Teaching mathematics in seven countries: results from the TIMSS 1999 video study.
Washington: National Center for Education Statistics.

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ learning
in second-grade arithmetic. American Educational Research Journal, 30, 393–425.

Huang, R., & Cai, J. (2011). Pedagogical representations to teach linear relations in Chinese and
U. S. classrooms: parallel or hierarchical. The Journal of Mathematical Behavior, 30, 149–165.

Huang, R., & Leung, F. K. S. (2004). Cracking the paradox of the Chinese learners: looking into
the mathematics classrooms in Hong Kong and Shanghai. In L. Fan, N. Y. Wong, J. Cai, & S. Li
(Eds.), How Chinese learn mathematics: perspectives from insiders (pp. 348–381). Singapore:
World Scientific.

Huang, R., Mok, I., & Leung, F. K. S. (2006). Repetition or variation: “Practice” in the mathematics
classrooms in China. In D. J. Clarke, C. Keitel, & Y. Shimizu (Eds.), Mathematics classrooms
in twelve countries: the insider’s perspective (pp. 263–274). Rotterdam: Sense.



Does Classroom Instruction Stick to Textbooks? A Case Study of Fraction Division 463

Huntley, M. A., & Chval, K. (2010). Teachers’ perspectives on fidelity of implementation to text-
books. In B. J. Reys, R. E. Reys, & R. Rubenstein (Eds.), Mathematics curriculum: issues,
trends, and future directions (pp. 289–304). Reston: National Council of Teachers of Mathe-
matics.

Kilpatrick, J. (2003). What works. In S. L. Senk & D. R. Thompson (Eds.), Standards-based school
mathematics curricula: what are they? What do students learn (pp. 57–88). Mahwah: Lawrence
Erlbaum.

Leinhardt, G. (2001). Instructional explanations: a commonplace for teaching and location for
contrast. In V. Richardson (Ed.), Handbook for research on teaching (4th ed., pp. 333–357).
Washington: American Educational Research Association.

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in
mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in
the teaching and learning of mathematics (pp. 33–40). Hillsdale: Erlbaum.

Leung, F. K. S. (2005). Some characteristics of East Asian mathematics classrooms based on data
from the TIMSS 1999 video study. Educational Studies in Mathematics, 60, 199–215.

Leung, F. K. S., & Li, Y. (Eds.) (2010). Reforms and issues in school mathematics in East Asia.
Rotterdam: Sense.

Li, Y. (2008). What do students need to learn about division of fractions? Mathematics Teaching
in the Middle School, 13, 546–552.

Li, Y., & Huang, R. (Eds.) (2012). How Chinese teach mathematics and improve teaching. New
York: Routledge.

Li, Y., & Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teacher: the case
of fraction division. ZDM—The International Journal on Mathematics Education, 40, 833–843.

Li, Y., Chen, X., & An, S. (2009a). Conceptualizing and organizing content for teaching and learn-
ing in selected Chinese, Japanese and U.S. mathematics textbooks: the case of fraction division.
ZDM—The International Journal on Mathematics Education, 41, 809–826.

Li, Y., Zhang, J., & Ma, T. (2009b). Approaches and practices in developing school mathematics
textbooks in China. ZDM—The International Journal on Mathematics Education, 41, 733–748.

Liu, J., & Li, Y. (2010). Mathematics curriculum reform in the Chinese mainland: changes and
challenges. In F. K. S. Leung & Y. Li (Eds.), Reforms and issues in school mathematics in East
Asia (pp. 9–32). Rotterdam: Sense.

Ma, L. (1999). Knowing and teaching elementary mathematics: teachers’ understanding of funda-
mental mathematics in China and the United States. Mahwah: Lawrence Erlbaum.

Mullis, I. V. S., Martin, M. O., & Foy, P. (with Olson, J.F., Preuschoff, C., Erberber, E., Arora, A.,
& Galia, J.) (2008). TIMSS 2007 international mathematics report: findings from IEA’s trends
in international mathematics and science study at the fourth and eighth grades. Chestnut Hill:
TIMSS & PIRLS International Study Center, Boston College.

National Council of Teachers of Mathematics [NCTM] (1991). Professional standards for teaching
mathematics. Reston: Author.

National Research Council (2004). On curricular the K-12 evaluating effectiveness: judging qual-
ity of K-12 mathematics evaluations. Washington: The National Academies Press.

Organization of Economic Cooperation Development [OECD] (2009). Learning mathematics for
life: a perspective from PISA. Paris: Organization of Economic Cooperation Development.

Park, K., & Leung, F. K. S. (2006). A comparative study of the mathematics textbooks of China,
England, Japan, Korea, and the United States. In F. K. S. Leung, K. D. Graf, & F. J. Lopez-Real
(Eds.), Mathematics education in different cultural traditions—a comparative study of East Asia
and the West: the 13th ICMI study. New York: Springer.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics cur-
riculum. Review of Educational Research, 75(2), 211–246.

Richardson, V. (Ed.) (2001). Handbook of research on teaching (4th ed.). Washington: American
Educational Research Association.

Shimizu, Y. (2009). Japanese approach to teaching mathematics via problem solving. In B. Kaur,
Y. B. Har, & M. Kapur (Eds.), Mathematical problem solving: yearbook 2009, Association of
Mathematics Educators (pp. 89–101). Singapore: World Scientific.



464 R. Huang et al.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective.
Journal for Research in Mathematics Education, 26, 114–145.

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning:
an elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6,
91–104.

Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual
learning: elaborating the construct of reflective abstraction. Journal for Research in Mathemat-
ics Education, 35, 305–329.

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to
think and reason: an analysis of the relationship between teaching and learning in a reform
mathematics project. Educational Research and Evaluation, 2, 50–80.

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influence student learning.
In F. Lester (Ed.), Second handbook research on mathematics of teaching and learning (pp.
319–370). Charlotte: Information Age.

Sun, X. (2011). “Variation problems” and their roles in the topic of fraction division in Chinese
mathematics textbook examples. Educational Studies in Mathematics, 76, 65–85.

Tarr, J. E., Chavez, O., Reys, R. E., & Reys, R. J. (2006). From the written to the enacted curricula:
the intermediary role of middle school mathematics teacher in shaping student’s opportunity to
learn. School Science and Mathematics, 106, 191–201.

Tarr, J. E., Reys, R. E., Reys, B. J., Chavez, O., Shih, J., & Osterlind, S. J. (2008). The impact
of middle-grades mathematics curricula and the classroom learning environment of student
achievement. Journal for Research in Mathematics Education, 39, 247–280.

Thompson, D. R., & Senk, S. L. (2010). Myths about curriculum implementation. In B. J. Reys,
R. E. Reys, & R. Rubenstein (Eds.), Mathematics curriculum: issues, trends, and future direc-
tions (pp. 249–264). Reston: National Council of Teachers of Mathematics.

Usiskin, Z., & Willmore, E. (2008). Mathematics curriculum in Pacific Rim countries—China,
Japan, Korea, and Singapore. New York: Information Age.



Part V
Curriculum and Student Learning



Preface

What Mathematics Do Children Learn at School?

The question sounds straightforward, but as the chapters in this section show, there
are no easy answers. Part of the complexity lies in the fact that when we ask “What
mathematics do children learn?” it is not clear whether we asking about the educa-
tional experiences that children receive while at school, or about the outcomes of
those experiences.

The educational experiences that are planned for learners are generally collec-
tively described as the curriculum. The term appears to have been first used in Scot-
tish universities in the early seventeenth century as a description of the collection of
courses followed by students. In his widely read Principles of curriculum and in-

struction (still in print more than six decades after its first publication), Ralph Tyler
proposed that the curriculum should be seen as a means to an end, rather than an
end in itself. He identified “four fundamental questions which must be answered in
developing any curriculum and plan of instruction” (Tyler 1949, p. 1):

1. What educational purposes should the school seek to attain?
2. What educational experiences can be provided that are likely to attain these pur-

poses?
3. How can these educational experiences be effectively organized?
4. How can we determine whether these purposes are being attained?

One of Tyler’s colleagues, Hilda Taba, elaborated on Tyler’s model, and in Curricu-

lum development: Theory and practice (Taba 1962) proposed a seven step model
for curriculum development. Two features of Taba’s model are especially impor-
tant. The first is that she was clear that the curriculum was much more than a list
of what was to be taught. She regarded “content” as more than knowledge, and in
particular, many important outcomes depended on how things were taught—in other
words, that curriculum entailed pedagogy:
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the selection and organization of content implements only one of the four areas of
objectives—that of knowledge. The selection of content does not develop the techniques and
skills for thinking, change patterns of attitudes and feelings, or produce academic and social
skills. These objectives only can be achieved by the way in which the learning experiences
are planned and conducted in the classroom. [. . . ] Achievement of three of the four categories
of objectives depends on the nature of learning experiences rather than on the content (Taba
1967, p. 11)

The second important feature of Taba’s model is that, because it entailed consider-
ations of pedagogy, she rejected the idea that curriculum could be developed “top-
down.” For Taba, all seven stages of the curriculum development model had to be
conducted with the involvement of the teachers who would be teaching it.

While the model proposed by Tyler, and to a lesser extent, that of Taba, have
been extremely influential, they have also been criticized for being too linear. For
example, Kerr (1968) suggested that curriculum was based on four elements: ob-
jectives, evaluation, knowledge, and school learning experiences, with the explicit
expectation that the elements interact with each other, so that a change in one leads
to changes in the others. Kerr also broadened the idea of a curriculum. In much
early usage, “the curriculum” referred exclusively to the formally timetabled educa-
tional activities in the school—as is clear from the designation of certain activities
as “extra-curricular.” Kerr proposed that the term curriculum should denote “All the
learning which is planned or guided by the school, whether it is carried on in groups
or individually inside or outside the school.” (p. 16)

Towards the end of the 1960s, there was a vigorous debate in the Anglophone
educational research community about whether curriculum should be subordinate to
educational aims and objectives or not (above/Equal to?). At the annual meeting of
the American Educational Research Association held in Chicago in February 1968,
a symposium specifically addressed this issue, and to a large extent, it seems that, to
paraphrase Stevens (1946, p. 677), participants left through the door by which they
had entered.

One of the most vocal critics of the objectives approach was Lawrence Sten-
house. Drawing on the work of R.S. Peters (1966), Stenhouse suggested that the
very idea of basing curriculum on objectives was misguided (Stenhouse 1970). He
pointed out that there were aspects of human experience that might be included be-
cause of their inherent value rather than because they were instrumental in achieving
specified objectives. Moreover, he argued that objectives based instruction becomes
simplistic and self-fulfilling, that it works against the exploration of new ideas, and
undermines the creativity of students and teachers, not in the least because objec-
tives based approaches place little importance on the desirability of teacher profes-
sional development (Stenhouse 1985, pp. 80–81). Within such a model, Stenhouse
argued, the teacher is treated as a kind of “intellectual navvy, working on a site plan
simplified so that people know exactly where to dig their trenches without knowing
why” (Woods 1996, p. 24).

In contrast, Stenhouse suggested that any definition of curriculum should reflect
its essentially dynamic nature: “A curriculum is an attempt to communicate the es-
sential principles and features of an educational proposal in such a form that it is
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open to critical scrutiny and capable of effective translation into practice.” (Sten-
house 1975, p. 4). In other words, a curriculum is a proposal for action that not
necessarily right, but is reasonable (Toulmin 2001).

Stenhouse proposed that such proposals should consist of three parts: planning,
empirical study, and justification, each of which should specify a number of princi-
ples and guidance. Stenhouse explicitly rejected the idea that a curriculum could be
developed independently of considerations of how it was to be implemented—for
Stenhouse, the involvement of teachers was essential. It is also important to note
this was not done out of any misguided notion of professional respect, but due to
the limitations of the communication process. Because each classroom is different,
it is simply not possible to specify a way in which the same proposal could be im-
plemented the exact same way in different classrooms.

An important, and often neglected, feature of Stenhouse’s position is that the
traditional subject disciplines were essential to effective education. Because of his
emphasis on the involvement of teachers, it is sometimes presumed that Stenhouse
assumed an “anything goes” approach to teaching but that would allow teachers to
impose their values on their students.

One of the main functional advantages of the disciplines of knowledge and of the arts is to
allow us to specify content, rather than objectives, in curriculum, the content being so struc-
tured and infused with criteria that, given good teaching, student learnings can be treated as
outcomes, rather than made the subject of pre-specifications. Disciplines allow us to specify
input rather than output in the educational process. This is fairer to the needs of individual
students because, relative to objectives, disciplined content is liberating to the individual.
(Stenhouse 1970, p. 77)

Lawton (1975) adopted a slightly different approach to the definition of curriculum.
He suggested that:

the school curriculum (in the wider sense) is essentially a selection from the culture of a
society. Certain aspects of our way of life, certain kinds of knowledge, certain attitudes and
values are regarded as so important that their transmission to the next generation is not left to
chance in our society but is entrusted to specially-trained professionals (teachers) in elaborate
and expensive institutions (schools). (p. 7)

The idea that curriculum is a selection from culture is at once both obvious and
profound, drawing attention to the fact that what is in the curriculum is the result
of choices that have been made during the curriculum development process. Some-
times these choices are explicit, and at other times they are implicit. Sometimes,
what is left out speaks as loudly as what is included—what Elliot Eisner calls the
“null curriculum:”

the options students are not afforded, the perspectives they may never know about, much less
be able to use, the concepts and skills that are not part of their intellectual repertoire (Eisner
1985, p. 107).

The various aspects of curriculum discussed above can be seen interacting in the
chapters of this section. In the chapter by Geiger, Goos, and Dole, we see how the
discipline of mathematics—in this case focusing on numeracy—can anchor cross-
curricular work so that teachers are able to create student activities that are rigorous
as well as being realistic—too often, attempts to incorporate cross-curricular work



470

involve a “dumbing down” of disciplinary work so that it is trivial and undemanding.
The idea that students should be able to apply their mathematics outside their math-
ematics classroom draws attention to the “null curriculum” of many schools, where
students learn to think of mathematics as self-contained, and lacking any connection
to the “real world” (Boaler 1997). In this chapter, too, we see teachers developing
curriculum in the sense envisaged by Stenhouse, and also a respect for the voice of
learners as key stakeholders in the process.

Mary Shafer’s chapter on the impact of Mathematics in Context reminds us that
ultimately, what really matters are the outcomes for students. Very few people would
suggest that our standardized measures of student achievement in mathematics are
the only important outcomes of learning. After all, given the unpredictability of the
world in which those currently in school will live their lives, being able to learn will
be at least as important (Papert 1998) as. . . . However, ultimately, all education is
about change. If education does not change learners, then it is by definition inef-
fective, and increases in standardized measures of achievement, though imperfect,
are indices of improved outcomes for students. The Mathematics in Context ma-
terials were designed to be used in a particular way, and when they were used as
intended, perhaps not surprisingly, they worked more effectively. This echoes the
point made by Stenhouse about treating teachers like “intellectual navvies.” Just
telling the navvies where to dig does not equip them with the skills they need to
make smart decisions about what to do when the specified location is unsuitable,
for example because of the presence of underground cables. In the same way, even
if they are not involved in the creation of the materials, teachers need to understand
the rationale behind the materials in order to make adjustments in their use in the
messy, real world of classrooms.

The chapter by Senk, Thompson and Wernet reminds us of the basic distinction
made by Bauersfeld (1979) between the matter “meant,” the matter “taught,” and the
matter “learned” (p. 204) and shows the considerable variation in intended, enacted
and achieved curricula even though all the curricula, nominally at least, had the
same aim—an understanding of the term “function.” To those who espouse the “top-
down” model of curriculum development, such variation is likely to be interpreted as
lack of fidelity in implementation—an inconsistency to be eliminated through more
effective training. To others, the variation of implementation is just an inevitable
outcome of the nature of curriculum innovation. Curriculum entails pedagogy.

In the chapter by Fuson and Li, we see how different cultures (in this case those
of the United States and China) faced with the same realm of mathematics, have
made slightly different selections from that culture in determining what mathemat-
ics students should learn, and how they should do so. Some of these selections may
be arbitrary, but others may be related to differences in the way in which aspects
of culture, such as language, may provide greater affordances for learning (e.g., the
idea that some strategies, such as the “make-a-ten” method are more difficult in En-
glish because of the structure of number names). The careful analysis presented here
shows that some approaches to teaching early number work are likely to be supe-
rior to others in common use, which suggests that children’s early number learning
might be improved by their adoption.
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Finally, the chapter by Sinclair and de Freitas points out that the “matter meant”
is continually evolving. For many years, it was believed that mathematics was es-
sentially tautological, if not in fact simply a subset of logic (Zermelo 1908). We
now know that many aspects of mathematics (e.g., the properties of certain kinds
of transfinite cardinals) that are widely accepted as part of mathematics cannot be
derived from logical axioms. The addition of two palpably non-logical axioms (the
axiom of regularity and the axiom of choice) did generate a viable “creation myth”
for mathematics, but even this “repair” to the foundations of mathematics was to be
short lived.

In 1900, at the International Congress of Mathematicians in Paris, David Hilbert
pronounced that “In mathematics, there is no ignoramibus [things we shall not
know]”—in other words, that it was possible to prove the truth or falsity of any
mathematical statement. Forty years later Kurt Gödel showed that in any mathe-
matical system that was sufficiently complicated to include arithmetic, there were
undecidable propositions—in other words, there were mathematical statements that
could be made within the system whose truth or falsity could not be determined
within the system (Gödel 1940). While some have debated what Hilbert would have
made of this, it seems likely that Hilbert would have accepted that he was wrong—
there are things that we shall not know in mathematics.

The idea that mathematics is simply additive—that new knowledge simply adds
on to what we already know—is therefore inadequate. Our understanding of what
mathematics is changes over time, and this seems especially important as digital
technology allows us to think about mathematics in new ways. More importantly,
our understanding of the nature of mathematical objects will change, and as a con-
sequence, so will the way we teach. Sinclair and de Freitas suggest that it may be
appropriate to design a curriculum in which multiplication precedes addition. This
may seem bizarre, or just plain wrong. After all, everyone “knows” that we should
teach addition before multiplication, but there are plenty of examples of “logical”
curriculum sequences that turn out to be no more than historical baggage. In most
countries, multiplication is taught before division, because computational skill at
the former is a pre-requisite for computational skill at the latter. However, there is
now considerable evidence that conceptually, division is easier to understand than
multiplication (Hart 1981, p. 35). Similarly, in calculus, differentiation is taught
before integration, presumably because computational skill at the former is a pre-
requisite for computational skill at the latter. However, it seems that conceptually,
the order should be reversed; the idea of the area under a curve seems much easier
to understand than the gradient of a curve at a point (it is certainly the case that
in the history of mathematics, the development of integration preceded that of dif-
ferentiation). The question for propositions such as “should multiplication precede
addition” is therefore not “Are they correct?” Such questions are in effect so vague
as to be untestable (what Wolfgang Pauli criticized as “Not even wrong”). The ques-
tion is rather, “Is it generative?” Does it lead to new, more effective kinds of actions
in classrooms by teachers and students? This is the powerful question being posed
by Sinclair and de Freitas.

None of the chapters have found any definitive answers to the question of “what
mathematics do children learn at school?” To those who seek to discover “what
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works?” in education, this will be seen as a disappointment, or even failure. But to
those who see the purpose of educational research to be moving teachers to more
effective action—see, for example, Wiliam and Lester (2008)—then this diversity is
a source of further theory building and learning. In the spirit of Lawrence Stenhouse,
we have five clear “attempts to communicate the essential principles and features of
educational proposal in such a form that it is open to critical scrutiny and capable of
effective translation into practice.”

Institute of Education, University of London Dylan Wiliam
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Curriculum Intent, Teacher Professional
Development and Student Learning
in Numeracy

Vince Geiger, Merrilyn Goos, and Shelley Dole

Abstract Numeracy, or mathematical literacy as it is also known, is a major edu-
cational goal internationally, and as such, is addressed in the curriculum documents
of educational jurisdictions and in national and international testing regimes. This
chapter reports on an aspect of a research study which investigated the interrela-
tionship between curriculum intent, teacher professional learning and action, and
students’ perspectives on their own learning in a 12 month long research and devel-
opment project. Specifically, this chapter examines the impact upon student learning
as a teacher attempted to implement the numeracy requirements of a state based cur-
riculum in an educational jurisdiction within Australia. These attempts were struc-
tured through a rich model of numeracy and supported through regular interaction
with the project researchers in a collaborative partnership aimed at improving stu-
dent learning outcomes in alignment with state curriculum objectives. An emergent
aspect of the project is the importance of a clear model of numeracy, which outlines
essential elements, to changes in a teacher’s numeracy practice. These changes in
practice led to positive student views on their mathematics learning and to greater
connectedness of this learning within and outside of mathematics itself.

Keywords Numeracy across the curriculum · Mathematical literacy · Applications
of mathematics · Teacher professional development · Student perceptions of
numeracy

Introduction

Numeracy, or mathematical literacy as it is also known, is a major educational goal
internationally, and as such, is addressed in the curriculum documents of educational
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jurisdictions and in national and international testing regimes. Numeracy is increas-
ingly seen as fundamental to developing students’ capacities to use mathematics to
function as informed and reflective citizens, to contribute to society through paid
work, and in other aspects of community life (Steen 2001). This aspect of mathe-
matics education has been recognised internationally through the OECD’s Program
for International Student Assessment (PISA). According to PISA’s definition math-
ematical literacy is:

an individual’s capacity to identify and understand the role mathematics plays in the world,
to make well-founded judgments, and to use and engage with mathematics in ways that
meet the needs of that individual’s life as a constructive, concerned and reflective citizen.
(OECD 2004, p. 15)

This chapter reports on an aspect of a research study which investigated the interre-
lationship between curriculum intent, teacher professional learning and action, and
student learning, in a 12 month long research and development project. A focus
of this project was on enabling the numeracy dimensions of school subjects across
the curriculum. The purpose of this chapter is to examine the impact upon student
learning of a teacher’s attempts to implement the numeracy requirements of a state
based curriculum in an educational jurisdiction within Australia. These attempts
were structured through a rich model of numeracy and supported through regular
interaction with the project researchers in a collaborative partnership aimed at im-
proving student learning outcomes in alignment with state curriculum objectives.

The chapter is structured in five sections. First, the curriculum context in which
the study was situated is described. Second, the theoretical framework which guided
our approach to supporting teachers in the development of rich numeracy focused
learning experiences is outlined. Third, we summarise the methodological approach
we employed when working with students and teachers. Fourth, we present vi-
gnettes based on observations of teacher designed classroom activities as well as
students’ views of their own numeracy development in order to illustrate the nature
of students’ experiences of numeracy learning. Finally, we discuss the challenges
of moving from the intended learning objectives of a curriculum document to the
enactment of these objectives in teaching and learning practice.

Curriculum Context

In Australia, numeracy is an educational priority, with the national numeracy strat-
egy being part of government policy since 1997. The launch of the national numer-
acy strategy was encapsulated in the following statement:

. . .that every child leaving primary school should be numerate, and be able to read, write
and spell at an appropriate level. (MCEETYA 1997, p. ix)

This statement resulted in vigorous debate in relation to defining numeracy. After
continual discussion, consideration and revision of proposed definitions, educators
and policy makers in Australia have embraced a broad interpretation of numeracy
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similar to the OECD definition of mathematical literacy: “To be numerate is to use
mathematics effectively to meet the general demands of life at home, in paid work,
and for participation in community and civic life.” (AAMT 1997, p. 15). A further
outcome of the discussion around a succinct definition that captured the essence
of numeracy, and particularly a definition that was broader than facility with basic
number and calculation skills, was agreement that mathematics is necessary but not
sufficient for numeracy, and that all teachers are teachers of numeracy.

The cross-curriculum and contextual notion of numeracy as an Australian edu-
cational goal has further been validated and reiterated by a review of numeracy ed-
ucation undertaken by the Australian government (Human Capital Working Group,
Council of Australian Governments 2008), recommending:

That all systems and schools recognise that, while mathematics can be taught in the con-
text of mathematics lessons, the development of numeracy requires experience in the use of
mathematics beyond the mathematics classroom, and hence requires an across the curricu-
lum commitment. (p. 7)

Australia is now moving to implementation of a new national curriculum, and nu-
meracy continues to be a government educational priority. Within the national cur-
riculum numeracy has been included as a General Capability in all subjects. In the
case of the Mathematics curriculum documents (Version 3.0), numeracy, in all sub-
jects, is described in the following way.

Students become numerate as they develop the knowledge and skills to use mathematics
confidently across all learning areas at school and in their lives more broadly. Numeracy
involves students in recognising and understanding the role of mathematics in the world
and having the dispositions and capacities to use mathematical knowledge and skills pur-
posefully.

(Australian Curriculum, Assessment and Reporting Authority 2012a, p. 11)

There is also a specific numeracy statement within each subject. For example, in the
Australian National Curriculum: History, it is stated that:

Students develop numeracy capability as they learn to organise and interpret historical
events and developments. Students learn to analyse numerical data to make meaning of
the past, for example to understand cause and effect, and continuity and change. Students
learn to use scaled timelines, including those involving negative and positive numbers, as
well as calendars and dates to recall information on topics of historical significance and to
illustrate the passing of time.

(Australian Curriculum, Assessment and Reporting Authority 2012b, p. 10)

Hence, numeracy, from the perspective of the national government, is considered to
be a vital element in all students’ education across all subjects within schools.

In Australia, however, the responsibility for curriculum development and imple-
mentation lies within the individual states of the federation. This means that states
have the authority to implement curriculum with a flexibility that allows them to
cater for the circumstances of schools and students within their jurisdictions. None-
the-less, numeracy remains a priority for all Australian states and territories. In the
specific case of the educational jurisdiction that forms the background for the re-
search study reported here, numeracy was viewed as a critical element within all
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school subjects. Curriculum documents in this state, known as the Curriculum Stan-
dards and Accountability Framework, include a specific statement on numeracy in
relation to each subject. For example, within the Society and Environment subject
area numeracy is described through the following statement.

Learners develop and use operational skills in numeracy to understand, analyse, critically
respond to and use mathematics in different contexts. These understandings relate to mea-
surement, spatial sense, patterns and algebra and data and number. This learning is evident
in society and environment when, for example, students use and understand the concept of
time, when they use spatial patterns, locations and pathways in the form of maps, and they
gather and analyse data for social decision-making.

(Department of Education and Children’s Services 2005, p. 294)

Numeracy is also seen as an important goal for students in Mathematics.

Learners develop and use operational skills in numeracy to understand, analyse, critically
respond to and use mathematics in different contexts. Students’ learning in mathematics
enables students to explore the relationships between different mathematical ideas and apply
mathematical understandings to their learning in all curriculum areas.

(Department of Education and Children’s Services 2005, p. 219)

Even with the support of educational policy makers and curriculum authorities, it
has proven difficult to implement effective numeracy practice in Australian schools.
Attempts to introduce numeracy practices into schools have sometimes been char-
acterized by a utilitarian approaches that have emphasized basic skills over the ca-
pacity to engage higher order thinking. This is in contrast to the growing complex-
ity of the mathematical demand of work in many industries (Hoyles et al. 2002;
Straesser 2007). Further, numeracy has often been interpreted as being almost ex-
clusively associated with number, excluding other areas of mathematics, such as
geometry and algebra, which can also contribute to an individual’s capability to use
mathematics to solve problems in contexts outside of mathematics itself. Until re-
cently, few proponents of numeracy practice have acknowledge the important role
physical, representational and digital tools play in using mathematics in the outside
of school world despite the importance of these tools in working with mathemat-
ical ideas and concepts in industry and in life away from the workplace (e.g., see
Zevenbergen 2004). Thus, while the view of numeracy as a capability every student
should possess is endorsed by educational policy makers and curriculum authorities
the implementation of approaches to teaching and learning that foster the numeracy
development of students has been problematic. The challenge, therefore, is to find
ways to enact the intent of numeracy statements and objectives within curriculum
documents into mainstream classroom teaching and learning practice.

Theoretical Framework

While previous definitions capture the broad thrust of the concept of numeracy, they
lack the detail necessary for teachers to implement numeracy based approaches in
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Fig. 1 A model for
numeracy in the 21st century
(Goos 2007)

practice. In short, current definitions of numeracy do not appear to convey what is
needed to transform what is intended within curriculum documents into what is en-
acted in school classrooms. More recently, however, Goos (2007) has proposed a
model of numeracy (Fig. 1) which encompasses four essential elements: attention
to real-life contexts, the deployment of mathematical knowledge, the use of physi-
cal and digital tools, and consideration of students’ dispositions towards the use of
mathematics. These elements are embedded in a critical orientation to the use of
mathematical skills and concepts that emphasises, for example, the capacity to eval-
uate quantitative, spatial or probabilistic information used to support claims made in
the media or other contexts. While the model was intended to be readily accessible
to teachers as an instrument for planning and reflection, its development was also
informed by relevant research, as outlined below.

At the centre of the concept of numeracy is the key dimension of context. Accord-
ing to Steen (2001), numeracy is about the use of mathematics to act in and on the
world. Typically, when mathematics is used in a context it is applied in a way differ-
ent from how it is traditionally taught in school (Noss et al. 2000; Straesser 2007)
and so to learn to be numerate individuals must be exposed to using mathematics in
a range of contexts (Steen 2001).

Appropriate mathematical knowledge is required to act on problems within a
given context. In a numeracy context, mathematical knowledge includes not only
concepts and skills, but also higher order thinking—such as problem solving strate-
gies and the ability to make sensible estimations (Zevenbergen 2004). How to inter-
pret a problem outside of mathematics in a mathematical way, and then how to
choose which mathematical knowledge needs to be selected to engage with the
mathematised problems is a challenge that lies at the intersection of contexts and
mathematical knowledge.

The desire and confidence to apply mathematics in real world contexts is related
to the disposition of an individual in relation the use of mathematics. The importance
of developing positive attitudes towards mathematics is emphasised in national and
international curriculum documents (e.g., Australian Curriculum, Assessment and
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Reporting Authority 2012a; OECD 2004). Further, Gresalfi and Cobb (2006) argue
that it is not sufficient to focus on the mathematical skills and capacities we want
students to learn alone, but that teaching must take place with students’ dispositions
in mind if students are to develop an affinity with a discipline. This affinity is vital
for students to be disposed to making use of mathematics in their current lived in
worlds and in their future lives (Boaler and Greeno 2000). These dispositions in-
clude not just confidence with mathematics but a willingness to think flexibly, to
show initiative, and to take risks.

An increasing number of studies identify tools as mediators of meaning making,
reasoning and action in relation to mathematical learning (e.g., Pea 2004; Verillon
and Rabardel 1995). In school and workplace contexts, tools may be representa-
tional (symbol systems, graphs, maps, diagrams, drawings, tables, ready reckon-
ers) and physical (models, measuring instruments), but increasingly tools are digital
(e.g., Artigue 2002; Goos et al. 2003).

The elements of the Goos (2007) model are embedded in a critical orientation
of the use of mathematical skills and concepts which emphasises the evaluative and
judgemental aspects of numeracy practice. We view this critical orientation as a vital
capacity for informed and participatory citizenship and for exercising effective and
socially conscious decision making in an individual’s personal life. Ernest (2002)
views social empowerment as an important reason for teaching mathematics. This
social empowerment can range from the purely utilitarian skills associated with the
mathematics that is needed to function, in the simplest sense, in work and society
through to the critical skills that enable individuals to: make decisions and judge-
ments; add support to arguments; or challenge an argument or position. This position
is also consistent with that of Frankenstein (2001) and Jablonka (2003) who argue
for the need to recognise how mathematical information and practices can be used
to persuade, manipulate, disadvantage or shape opinions about social or political
issues.

The elements of the model and the critical orientation within which these ele-
ments interact are summarised in Table 1.

Table 1 Descriptions of the elements and critical orientation of the numeracy model

Mathematical
knowledge

Mathematical concepts and skills; problem solving strategies;
estimation capacities.

Contexts Capacity to use mathematical knowledge in a range of contexts,
both within schools and beyond school settings

Dispositions Confidence and willingness to use mathematical approaches to
engage with life-related tasks; preparedness to make flexible and
adaptive use of mathematical knowledge.

Tools Use of material (models, measuring instruments), representational
(symbol systems, graphs, maps, diagrams, drawings, tables, ready
reckoners) and digital (computers, software, calculators, internet)
tools to mediate and shape thinking

Critical orientation Use of mathematical information to: make decisions and
judgements; add support to arguments; challenge an argument or
position.
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This model has been used as a framework to audit school curricula (Goos et al.
2010) and for analysis of teachers’ attempts to design for the teaching of numeracy
across the curriculum (Goos et al. 2011). The numeracy model was also used to
promote teacher professional learning and, in particular, to assist teachers to reflect
upon their own practice. In this chapter the numeracy model will be used to evaluate
one teacher’s attempts to enhance her numeracy teaching practice by developing
richer classroom learning experiences and to analyse her students’ perceptions of
their own numeracy learning as a result of their teacher’s attempts to change her
practice.

Research Design

Twenty teachers were recruited from ten demographically diverse schools on the
basis of their interest in cross-curricular numeracy education. They came from four
primary schools (Kindergarten-Grade 7), one secondary school (Grades 8–12), four
smaller schools in rural areas (Grades 1–12), and one school that combined middle
and secondary grades (Grades 6–12). The focus on teaching numeracy across the
curriculum meant that it was important to include teachers with varying subject area
specialisations. Thus, participants included generalist primary school teachers as
well as secondary teachers qualified to teach particular subject areas (mathematics,
English, science, social education, health and physical education).

The research design was consistent with an action research model with the
Loucks-Horsley et al. (2003) framework for professional development underpin-
ning the development aspect of the project. Consistent with this framework, project
meetings were followed up with school visits, enabling the research team to provide
on-going support to teachers in their efforts to change their numeracy practices,
whilst simultaneously providing the means to gather data on the process. Two full
action-research cycles were implemented, providing teachers with the opportunity
to set new goals and re-plan after the first cycle.

At the first project meeting, teachers came together with researchers and Depart-
ment personnel to explore the ideas embedded in the numeracy model, to discuss
the potential to teach numeracy within the constraints and affordances of the state-
wide curriculum framework, and to work through investigations that allowed for the
elaboration and clarification of the ideas embedded in the model. In order to stimu-
late discussion about numeracy demands that existed within the curriculum, teach-
ers were also presented with a numeracy audit of the curriculum framework. The
audit was completed by examining the relevant Curriculum Scope and Standards
statements within the Curriculum Standards and Accountability Framework. Nu-
meracy demands of each subject were evaluated by reference to the elements of the
numeracy model in Fig. 1: mathematical knowledge, contexts, dispositions, tools,
and critical orientation. The results of the audit indicated that numeracy demands
existed within each subject area in alignment with the dimensions of the Goos nu-
meracy model (further detail can be found in Goos et al. 2010). After discussing the
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demands and opportunities provided by the curriculum framework within the whole
group, teachers worked in small groups to adapt presented tasks or to develop new
activities they might trial in their own classrooms.

After this initial meeting, teachers were asked to introduce the activities they had
begun to develop at the first meeting and/or other activities into their own classroom.
After a number of months, teachers were brought together again for a second whole
project meeting to present examples of activities they had trialled and to engage in
further curriculum planning while being supported by teachers from other schools.
During this meeting, the researchers provided input on the way elements of the
numeracy model were evident in each of the activities presented. The researchers
also provided additional input on the role of critical orientation within the numeracy
model as this was an area that was noticeably underdeveloped during the first round
of school visits and an aspect that teachers had asked for further advice in particular.

The project concluded with another cycle of trialling activities, visits from the
research team and a final presentation to the entire project group.

Between each of the whole project meetings, the researchers visited schools to
provide further input and support, and to collect data for the purpose of evaluating
the success of the trialled activities from the perspective of students and their teach-
ers. Across the project data were collected via field notes of classroom observations,
records of semi-structured interviews with teachers and students, and artefacts such
as student work samples and computer files. The data used in this chapter are drawn
from one teacher and her class of Grade 8 students (12–13 years of age), which
represents a case study from within the larger project. The teacher was selected be-
cause her progress through the course of the project revealed a developing capacity
to interpret the numeracy demands and opportunities of the Curriculum Standards
and Accountability Framework in a way that allowed her to create tasks of increas-
ing richness for her students. Her case was also chosen for this chapter because her
field of expertise lay outside of mathematics teaching, that is, health and physical
education, which demonstrates the across the curriculum possibilities that exist for
numeracy learning and teaching practice. The student participants who were inter-
viewed as part of the data collection process where nominated by their teacher as
individuals she perceived to have the capacity to articulate their thoughts on class-
room activities the teacher had designed for their numeracy learning in a clear, open
and honest fashion. As a group, these students’ history of mathematic achievement
was varied. Interviews lasted approximately 30 minutes and were conducted away
from the classroom without the presence of the teacher.

The Development of a Student Oriented Numeracy Practice

In this section one teacher’s attempt to design student learning experiences that sat-
isfied the requirements of the Curriculum Standards and Accountability Framework
within the subject area, Health and Physical Education (HPE), while also meeting
the numeracy demands of this framework, is outlined and illustrated. This teacher,
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Clare, had volunteered for the project for two reasons. Firstly, she was initially
trained as a Health and Physical Education teacher but over time had found she
preferred to work with students in the middle school (Grades 6 to 9) where she
was required to teach across the curriculum. As a result, she found herself teach-
ing in a subject where she had received no pre-service training and in which she
felt less confident. Her engagement with the project was, in part, an attempt to
improve her content and pedagogical knowledge in an area she perceived to be a
weakness—mathematics teaching. Secondly, she had begun to believe that her ap-
proach to teaching, in general, was too direct, and she saw the project as a way of
engaging with more inquiry based approaches to teaching and learning.

First School Visit

Clare had worked hard to improve her classroom numeracy practice from the on-
set of the project but had been disappointed with her initial efforts with a Grade 8
class (12–13 years of age). In the first lesson we observed, Clare attempted to de-
velop students’ understanding of the addition and subtraction of directed numbers.
She demonstrated the method via a number line drawn on the blackboard, which
was also illustrated on a handout distributed to students. Students were to stand on
the first number listed and face in the positive direction if the operation was to be
addition or the negative direction if the operation was to be subtraction. They were
then to walk the number of steps indicated by the second number, walking forward
if this number was positive and backwards if it was negative. The number at which
they arrived via this process was the answer to the problem. The handout provided a
systematically developed list of problems involving adding and subtracting positive
and negative numbers, including a “long walk” with seven operations in succession.
Two questions then required students to describe any patterns they observed in their
walks and to explain some of the rules they discovered while adding and subtracting.

After an initial ten minutes of teacher instruction, students moved outside to com-
plete the activity. One drew a chalked number line and gave instructions to another
as this student “walked” a couple of problems. After 30 minutes of outdoor activity
the class moved inside and Clare asked students what they had been thinking and
feeling during the activity. How did they know if they were on the right track? Stu-
dents seemed willing to say they were confused; others simply said that the activity
was fun. Clare explained to them that they had been using a model that would help
them understand the thinking they would be doing in the next few lessons on adding
and subtracting directed numbers. She drew their attention to the questions about
patterns and rules, and asked them to try a list of additional exercises for homework.
She then modelled the number line representations of:

−3 + +2 = −1

−3 + −2 = −5

−3 − +2 = −5

−3 − −2 = −1
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and asked if anyone could describe something about what they saw, reiterating that
this was to be done for homework.

Reflecting on this lesson through the lens of the numeracy model, mathematical
knowledge had a clear focus in the addition and subtraction of directed numbers. At
the start of the lesson Clare elicited some of the real life contexts in which directed
numbers appeared, however, the context she used to demonstrate these operations,
the chalk number line outside the of classroom, could not be considered to be re-
lated to a real-life use of directed numbers. A representational tool, the number lines
drawn on the blackboard and on the ground, was used to help students discover pat-
terns and explain rules concerning these operations on directed numbers, although
Clare did not elicit and evaluate students’ ideas during the lesson. Clare attempted
to ascertain students’ dispositions towards mathematics and the learning activity by
asking them how they felt about the lesson but students’ responses were varied from
finding the lesson fun to experiencing confusion in relation to what they were meant
to learn. Despite Clare’s efforts to design an engaging and thought provoking lesson
for her students, there was no opportunity to develop a critical orientation to this
subject matter.

Clare was disappointed with the lesson and admitted she was struggling, in par-
ticular, with critical orientation. She felt there was no scope in the lesson for devel-
oping a critical orientation to the subject matter.

After some reflection, Clare decided the only way to improve her practice was to
take a very different approach from how she had taught in the past.

After much reflection I decided to do some things differently. . . One of the goals I set
myself was to take a more exploratory and investigative approach, particularly in dealing
with teaching aspects of numeracy across all learning areas.

(Peters et al. 2012, p. 24)

Between School Visits

Clare’s first step on the new pathway she had set herself took place between the
school visits by the project researchers. In this activity, students in HPE were to
investigate media coverage of sports. Clare implemented this activity in preparation
for a report at the second teachers’ meeting. Her students collected sports reports
from a local newspaper each day for a week and then measured and calculated the
area of the space devoted to both female and male sports. Clare reported that stu-
dents found that equal representation was not given to female and male sports in
the media and that an interesting discussion had followed. Clare was much happier
with the outcome of this lesson as she felt she had begun to address numeracy in
HPE and that it seemed to create a deeper student understanding of the concepts
and processes covered.
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Second School Visit

During our second visit to the school, near the end of the project, Clare had prepared
an activity within Health and Physical Education where students investigated the
level of their physical activity through the use of a pedometer that they wore during
the day for one week. Students entered the number of paces they had walked or run
every day into a shared Excel spreadsheet. They were then asked to analyse their
own data using Excel and to compare their results with those of other students (see
Fig. 2).

Students also had to convert their total daily and total weekly paces into kilo-
metres to gain a sense of how far they typically walked in a day or a week. The
task was also designed to help students realize that the distance they walked was not
determined by the number of paces alone, as an individual’s pace length was also
a factor. In order to bring about this conversion, students were required to design a
process for determining the length of their own pace. This involved marking out a
distance of 100 metres and counting the number of paces they each took to walk this
distance. After demonstrating the procedure for obtaining the length of her pace and
then converting paces in a day to kilometres from her own personal data, the teacher
asked students to complete conversions of their own pace totals to kilometres. She
also suggested that students compare their kilometric distances with each other and
discuss why they were different.

Clare finished the lesson by indicating the next session would include an investi-
gation of the number of paces Usain Bolt takes during a 100 metre sprint.

This activity provided Clare with the opportunity to promote the elements of nu-
meracy described in the Curriculum Standards and Accountability Framework and

Fig. 2 A comparison of male’s and female’s weekly total steps
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made explicit in the numeracy model employed to guide her practice. In this activ-
ity, the elements of numeracy were situated in an authentic context (their level of
physical activity) in which students were challenged to use a range of mathemat-
ical knowledge (measurement, conversion of units, representation of data) and to
make use of physical (measuring tapes, trundle wheels), digital (pedometers, spread-
sheets), and representational tools (graphical representations). She encouraged the
development of positive dispositions in students towards the use of mathematics
by designing a task students were personally interested in (their own activity lev-
els). This lesson also incorporated aspects of a critical orientation as students made
judgments about the reasonableness of results and posed their own questions about
meaning that lay within the collected data. Clare indicated that making the desired
changes to her practice necessitated a change in teaching practice towards a less
directive and more inquiry-oriented approach, a “letting go” process that she found
difficult but more effective for enriching students’ mathematical knowledge and pro-
moting a critical orientation to evaluating information and answers.

It can be seen though this sequence of events that Clare had attempted to enact
the numeracy aspect of the Curriculum Standards and Accountability Framework in
a rich and engaging way for students. From Clare’s perspective, she had been suc-
cessful in her aim to improve students’ dispositions towards mathematics learning
that in turn resulted in positive outcomes for her students in all aspects of numer-
acy. She believed these improvements were due to the changes she had made to her
teaching practice. But teachers’ perspectives on the benefits to student learning as a
result of changes in teaching practice are only one part of the story of realising the
intent of a curriculum in practice. In the next section, students’ perspectives on the
changes they experienced though the year, as part of the project, are presented.

Students’ Perspectives on Their Learning Experiences

Students were interviewed in small groups of five during each of the school visits.
They were asked to reflect upon the numeracy lessons they had recently experienced
and to express their feelings about mathematics or using mathematics in various
activities.

First School Visit

During the first visit to the school, we interviewed four students immediately after
Clare’s lesson on directed numbers. Attitudes towards mathematics varied in this
group with some saying it was at the “top” of their favourite subjects and others
saying it was at the “bottom”.

When asked about the lesson they had just experienced on directed numbers,
students were able to explain they were learning how to add and subtract positive
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and negative numbers. They thought the activity was helpful because it was “step
by step” and they could “do it”, by which they meant engage with the ideas and
concepts through a physical activity. Students’ responses varied in relation to what
they had learnt from the lesson. One student could not recall if her group came up
with any rules about the addition or subtraction of directed numbers based on the
activity. Another student, however, recounted that he had worked out that you go “up
the number line” if adding positive numbers or subtracting negative numbers and
“down the number line” if adding negative numbers or subtracting positive numbers.
It would appear that their learning in relation to mathematical knowledge ranged
from improved understanding and confidence to that of only limited observations
on the key features of the lesson.

Students were also asked about the nature of the activity, not just its content, and
how they felt about learning mathematics. Students indicated that they had occasion-
ally gone outside for mathematics lessons, for example, to find shapes nominated by
the teacher (rectangles or triangles), or to measure the perimeter of the basketball
court. They offered the opinion that these “outside” activities helped them under-
stand mathematics better than when they worked on mathematics in their exercise
books while sitting at a desk in the classroom. This was because they felt they “re-
ally didn’t pay attention to what they were doing” when working in this fashion.
While the students were positive about their teacher, they did not express any ex-
citement about their mathematics learning nor indicate that mathematics was being
connected to contexts that were interesting to them or relevant to their current or fu-
ture lives, other than through occasional “outside” activities. It would appear from
these comments that the students believed the use of contexts was advantageous to
their learning but that this approach had been infrequently adopted by their teacher.
Further, students’ positive attitudes to learning mathematics in ways that varied from
traditional classroom bound approaches and their lack of enthusiasm for mathemat-
ics taught in this way implies that their dispositions towards mathematics and to
learning mathematics is influenced by the context in which it is presented. During
this interview, students made no mention of the use of tools, either representational
or digital, when learning mathematics.

Second School Visit

During the second school visit we observed a HPE lesson in which students were
analysing the data they had collected using pedometers by the use of Excel spread-
sheets. Four students were interviewed as a group directly after the lesson. During
this discussion students were clear about how they were meant to conduct the activ-
ity, what they were meant to investigate, and what they found.

Researcher 1: We saw you earlier today—and you were wearing pedometers! What
was going on there? What was that all about?

Student 1: We were measuring how many steps we took over a period of one
week. From, in effect, Saturday to Friday—measuring how many
steps we took.
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Researcher 2: So, did you have to wear the pedometers the whole time?
Student 1: Yeah, pretty much.
Student 2: And we were told that when we measured our steps it had to be at

around the same time everyday. So that you’ve got an even amount
of steps every week day.

Researcher 2: So weren’t wearing it all day then?
Student 2: Yeah you wore it most of the day.
Student 1: Whenever we walked.
Researcher 2: So you didn’t have to wear it while sitting on the couch then?
Students: Laugh.

As part of the discussion, students indicated they were enthusiastic about the oppor-
tunity to use digital tools. They made use of an Excel spreadsheet to graph different
representations of the data and then used these graphs (representational tools) to
draw conclusions about their own and other class members’ level of physical activ-
ity (critical orientation).

Researcher 1: So, it was interesting seeing that table (referring to the Excel spread-
sheet) and one thing that stood out for me was first, if you look at the
totals, there are differences between all of you. But did you notice
when you were looking at that on different days of the week each of
you were walking different numbers of steps?

Student 2: Yeah, Sunday was smallest.
Researcher 1: I noticed!
Student 2: I was going to say that Thursday and Saturday probably would have

been the biggest too, ‘cause that’s when we play sport.
Student 3: We did some graphs on the computer too showing two days and I

did Saturday and Sunday on a line graph . . .and there was a major
difference! Saturday was like this (gesturing to show a large number
of steps) and Sunday was like this (gesturing to show a small number
of steps).

Researcher 1: OK. So when you did this on the computers, you used Excel did you?
Students: Yeah (together).
Researcher 1: Had you ever used Excel before?
Student 1: Yes—last year we learnt the basics of it.
Student 2: Except this is the new version and not many of us knew how to use it

except for me.
Student 1: I think we are getting the hang of it. There haven’t been too many

complaining about how hard it is, but it is very complicated.
Researcher 1: So some of you already knew how to use it and others of you didn’t—

so how did that work in the classroom when some people knew what
to do and others didn’t?

Student 1: Well some of us are a bit better with it—like we understand it a lot
quicker, so just got help from them.

Interestingly, and even surprisingly, students were comfortable with having a higher
skill level in relation to this type of technology than their teacher and their peers, and
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were happy to accept the responsibility of providing assistance, where necessary, to
their teacher and other class members. This is an indication of both the confidence
students had developed with respect to the use of digital tools and their willingness
to take the lead in assisting all members of the class, their teacher included, in mov-
ing forward with their mathematics learning (dispositions). It also demonstrates the
teachers’ new preparedness to take risks by including skill elements in an activity
she herself was yet to master and to give over some degree of control to the stu-
dents in order that they had opportunity to feel responsible for their own and others’
learning (dispositions).

Student 2: And I was trying to help Mrs Clarke as well, so then she knew how
to use it to help others.

Researcher 1: That is an interesting thing. Most people think that teachers know all
of this stuff and they are meant to help students.

Student 2: Well, she admitted she didn’t know how to use it.
Researcher 1: Is that OK, for a teacher to be learning stuff?
Student 2: Yeah (all students).

Students were conscious of the potential for the use of digital tools in other subject
areas and in different real-life contexts. They were also aware that their teacher
was deliberately attempting to provide greater focus on mathematical ideas, skills,
and processes, in other school subjects (contexts). To illustrate this awareness they
recalled a number of instances where mathematics was particularly relevant to their
learning in other subject areas.

Researcher 3: So do you think it is a program you could use in other subject areas?
Student 1: Definitely!
Researcher 3: Like what?
Student 1: Like we had to do in Science recently, a prac, and it required

amounts, graphs and percentages. I haven’t done it yet but I’m going
to get the percentages and use them on Excel and make a graph out
of it.

Researcher 3: And that will be OK with your teacher?
Student 1: Yeah. The idea is to create a graph and on the computer is fine. And

it is easier than trying to draw up one.
Researcher 1: So that subject we saw today was PE?
Students: HPE! (together).
Student 1: But with a bit of maths integrated.
Researcher 1: Yeah.

The students were very aware of the teacher’s purpose in relation to the “mathemat-
ics” in other subject areas (contexts).

Student 1: That’s what out teacher, Mrs Clarke, is trying to do. Trying to get
more maths stuff in other subjects.

Researcher 1: Do you think that it is working? Can you see how maths is being
integrated into other subjects?

Students: Yeah (together).
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Student 2: And I think HPE is the best lesson to do it in as well because all of
your sports and stuff, you use numbers for your scores. And if you
can learn it in different areas as well it helps.

Researcher 1: What about other subject areas. Can you tell us about some examples
where Ms C has put more maths there.

Student 1: In Science earlier this year, we done [sic] a test to see how much one
plain peanut – how much exercise you have to do to work off that
much.

Student 2: It was a cashew!
Student 1: Yes a cashew. And we set fire to it. And then I got it with mathematics

to calculate how much. And we came up with seven to eleven minutes
of handwriting to work off one plain unsalted cashew!

With prompting, students realised there was mathematics in English.

Student 3: Yeah, remember we were going to do that thing about how many pence
in a dollar. Remember reading the Red Dog book?

Student 1: Yeah. When we listened to the recordings of a Fortunate Life (a novel),
it was talking about the old currencies and we were going to do some
maths on the amounts of pence and pounds.

Student 3: But we ran out of time!

The students also identified many opportunities to use measurement in their Home
Economics class where they were making boxer shorts (mathematical knowledge,
tools, context).

Researcher 3: What are you doing in Home Ec (Home Economics) at the moment?
Student 2: We’re doing a bit of sewing. Tomorrow we’re making boxer shorts.
Student 1: Yeah . . .lots and lots of measuring.

A number of students also demonstrated that they were able to use mathematics in
a critical sense to form judgements within subjects outside of mathematics (critical
orientation). In Studies of Society and Environment, they described their learning
about koala habitats. In this exchange they revealed that they had developed an
understanding of the relationship between koalas and specific types of eucalyptus
leaves on which they feed.

Student 1: And we recently did a section on Koalas and the different types of
trees they eat. And we did a percentage table of the different types of
trees eaten by a Koala. And we did a pie graph for that.

Researcher 1: Did that lead you to draw some conclusions or report a finding?
Student 4: Koalas are fussy!
Student 1: I’m not sure we found what leaf they eat the most.
Student 4: It was the Madegal! In South Australia at least. . .and New South

Wales.
Researcher 1: So if you say they are fussy, it means they only eat certain types of

leaves from certain types of trees. So that makes me think about if we
ever get to a situation where there is not enough of those trees—if we
cut them down.
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Student 4: Yeah, that’s what it was basically about. You know it’s alright if we
cut them down and you try and regrow them for Koalas but if we put
them in the wrong spot and they stave because they don’t like the
trees.

Towards the end of the interview, students were asked what they thought of
their teacher being involved in the project. Students were enthusiastic about their
teacher’s involvement as they viewed it as a way she was attempting to upgrade her
skills in order to help her students’ learning.

Researcher 2: So what do you think of your teacher being involved in a project like
this. Do you think this is a good thing for teachers?

Students: Yeah (together).
Student 2: I think it is because sometimes they don’t know what we’re gonna do

during a lesson and in this program they get a chance to know how
kids like to learn and whether they learn more out of doing things,
showing or doing it themselves.

In general, students said they enjoyed the numeracy learning experiences, for a va-
riety of reasons: they were allowed to work in groups; they participated in extended
investigations; they used technology such as the Internet and Excel spreadsheets and
graphs. Many commented that they were learning mathematics without realising it.

Students’ comments revealed that they believed Clare’s new approach to teaching
numeracy provided them with opportunities to engage with mathematical knowl-
edge within contexts that emerged in other subject areas as well as in mathematics
classes. These contexts were ones students could identify as related to their current
or future lives. They were also aware of the important role physical, representa-
tional, and digital tools played in developing their understanding of and capacity
to use mathematics. Their preparedness to use mathematics to solve problems in
context and to take risks when applying mathematics to new situations stood in con-
trast to what students reported during the interview after the first school visit and
indicates a healthy disposition towards using mathematics. Students also displayed
a capacity to take a critical orientation to the use of mathematics within subjects
outside of mathematics.

Discussion and Conclusion

The challenges of moving from the intended learning outcomes framed by formal
curriculum documents to the enacted practices of teaching and learning, in a way
that is faithful to the spirit of the original curriculum design, are well known. This
chapter outlines an approach where teachers were supported in implementing an in-
tended cross-curricular practice—numeracy—in a way that provided for rich learn-
ing opportunities for students. This approach was mediated by the use of a model
that made more explicit the essential elements of numeracy and was supported by
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social practices in the form of discussions with the project researchers during school
visits and interactions with other teachers during whole project meetings.

With a clearer sense of what was intended by numeracy statements within rele-
vant curriculum documents and the support offered by the project researchers, Clare
developed adeptness at designing learning experiences that her students found rel-
evant and engaging. This was a gradual process in which Clare found she needed
to take the risk of moving away from teacher centred approaches, with which she
felt confident, towards approaches where students were challenged to take intellec-
tual risks by engaging with open-ended activities and to look for opportunities to
use mathematical knowledge and modes of reasoning in a variety of within school
and outside of school contexts. Clare’s focus on improving students’ numeracy out-
comes, the permission to explore numeracy rich topics relevant to students’ interests
expressed through the numeracy audit, and the personal support offered through the
project, encouraged her to move from teacher centred, topic focused modes of teach-
ing practice to a more student focused and inquiry based approach to teaching and
learning. This new approach was context rich and aimed at improving students’ dis-
positions towards doing and using mathematics. Clare was now conscious of the
need to incorporate the use of digital tools in her teaching practice and to provide
opportunity for students to exercise judgements, form opinions, and make decisions
based on mathematical evidence.

Students responded to this new approach in ways that demonstrated that they
were interested in learning mathematics, provided learning activities were challeng-
ing and offered a genuine opportunity to be engaged in their own learning. Students
could see their teacher was attempting to create activities where learning was rele-
vant to students’ current or future interests and that had a genuine purpose. Clare’s
approach meant that students learnt about mathematics in classroom contexts that
were not specific to mathematics, that is, for example, in Health and Physical Edu-
cation. In the case of the activity where students investigated their levels of physical
activity, students demonstrated that they had acquired new mathematical knowledge,
made use of digital tools, and demonstrated positive dispositions to the use of math-
ematics in inquiring into an issue embedded within a context relevant to students’
current interest and well being. The data gathered, as a consequence of this activity,
provided students with the opportunity to critically review their personal levels of
activity through comparison with those of other members of the class.

This chapter was concerned with how the intent of the numeracy aspect of a
curriculum document was enacted in one school classroom through the support of
a research and development project. The outcomes reported here appear to be a
consequence of the clarity offered by the model employed in the project in relation
to the essential elements of numeracy and of the approach to teacher professional
learning adopted by the project. These influences have led to positive student views
on their mathematics learning and to greater connectedness of this learning within
and outside of mathematics itself. Further research is needed, however, in order
to demonstrate the effectiveness of this approach on a scale greater than a small
group of teachers working within a limited number of project supported schools.
In attempting to implement approaches of greater scale, for example, whole school,
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school cluster, regional or system wide, the issue of leadership must necessarily
be addressed. This implies work must also be done on developing a theory of and
vision for numeracy leadership as part of the implementation of curriculum within
schools.
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The Impact of a Standards-Based Mathematics
Curriculum on Classroom Instruction
and Student Performance:
The Case of Mathematics in Context

Mary C. Shafer

Abstract As standards-based mathematics curricula were introduced in the 1990s,
various stakeholders expressed concern about whether these curricula would result
in improved student performance. The summative evaluation of one of the middle-
school curricula, Mathematics in Context, directly addressed this concern using
quantitative and qualitative methodologies in both cross-sectional and longitudinal
analyses. Beyond the importance of prior achievement, the results show that the
ways in which instructional units were taught and the opportunities that students
were given to learn from the units influence student achievement. The findings sug-
gest that when implemented well, student achievement does improve in significant
ways as a consequence of studying Mathematics in Context over two or three aca-
demic years.

Keywords Mathematics instruction · Standards-based curriculum · Mathematics
curriculum · Middle school · Summative evaluation
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student performance in mathematics. Information collected during pilot- and field-
testing of the curricula was rarely gathered in ways that would support the kind
of responses stakeholders requested, as it was frequently used to improve instruc-
tional units and teacher guides. Summative evaluations of each new curriculum were
needed. Clements (2007) maintained that such evaluations should include various
research contexts and data collections through a diverse set of research instruments
in order to assess the effect of the implementation of the curriculum on students,
their teachers and parents, and programs, and to assess fidelity of implementation in
the use of the curriculum. Furthermore, qualitative methodologies should be used in
addition to quantitative methods.

In 1996, NSF funded the longitudinal/cross-sectional study of one of the
standards-based curricula, Mathematics in Context (MiC; National Center for Re-
search in Mathematical Sciences Education & Freudenthal Institute 1997–1998),
which was developed at the National Center for Research in Mathematics Educa-
tion at the University of Wisconsin-Madison in collaboration with the Freudenthal
Institute at the University of Utrecht in The Netherlands. Published by Encyclopae-
dia Britannica, the first edition of MiC materials consisted of 10 instructional units
and accompanying teacher guides at each grade level (grades 5–8), assessment ma-
terials, and two sets of supplementary materials.

MiC was different from conventional textbooks prevalent in middle schools at
that time. In MiC, students are encouraged to deepen their understanding of signif-
icant mathematics in algebra, geometry, and probability and statistics in addition to
number, while emphasizing connections among mathematical ideas. The principles
of Realistic Mathematics Education (RME; Freudenthal 1983) from the Freudenthal
Institute in The Netherlands were used in the development of MiC. In RME, math-
ematics is viewed as a dynamic set of interrelated ideas best learned by applying
concepts and procedures in problem contexts and situations that make sense to stu-
dents. Students are given the opportunity to reinvent significant mathematics under
the guidance of their teachers, through interaction with their peers, and through the
use of mathematical models introduced and developed during instruction. Initially,
students develop a model of a situation in which they use problem contexts and in-
formal reasoning strategies. Such models act as bridges between concrete real-life
problems and abstract formal mathematics. Through lessons that allow students to
solve problems using a variety of strategies, teachers encourage students to discuss
interpretations of problem situations, express their thinking, and react to different
levels and qualities of solution strategies shared in the group. Through instruction
and discussion, more elaborate models and strategies are introduced. Students solve
problems at different levels of abstraction, falling back to more concrete, less ab-
stract strategies whenever they feel the need. As a result of exploration, reflection,
and generalization, students theoretically progress from context-specific situations
to more abstract mathematical reasoning. This process is called progressive formal-
ization. This type of interaction is far different from that generated by two-page
lessons with the worked examples, emphasis on memorization, and independent,
quiet seatwork often seen in traditional classrooms.

The goal of the summative evaluation of MiC was to examine the ways in
which teachers changed their instructional practices when they implemented MiC,
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and the effects these changes had on students’ achievement in mathematics. The
longitudinal/cross-sectional study investigated the relationship between classroom
achievement for groups of the students with respect to other variables such as prior
achievement, instruction, opportunity to learn with understanding, and the capacity
of schools to support and sustain high academic standards for mathematics teach-
ing and learning. In this chapter, selected results of this summative evaluation are
described.

Methodology

Researching instructional contexts and fidelity of curricular use is complex and in-
volves multifaceted processes. A structural model was used as the foundation of data
collection and research analyses. The model included 14 variables in five categories:
prior variables (teacher background and experience, student background, and school
cultures); independent variables (teacher knowledge, teacher professional responsi-
bility, curricular content and materials, and the support environment for teachers and
students); intervening variables (classroom events, teachers’ pedagogical decisions,
and student pursuits); and outcome and consequent variables (student knowledge
and understanding, application of mathematics, attitudes, and future pursuits). To
use the model for analysis of mathematics instruction and fidelity of implementa-
tion brought about by using MiC in the schools, an index or scale was created and
validated for each variable in order to assess variation across research districts and
classrooms. Analysis of the variables involved both quantitative and qualitative ap-
proaches to explicate differences in student performance in different groups over
time. In this chapter, answers to one of the three research questions are discussed:
What is the impact of the MiC instructional approach on student performance? To
answer this question, grade-level-by-year studies, cross-sectional comparisons, and
longitudinal studies were completed. Select results of these studies are described in
this chapter.

The Sample

The longitudinal/cross-sectional study began when MiC was first available in its
commercial form. Beginning in the 1997–1998 school year, data were gathered
over a three-year period on three cohorts of students in four school districts (one
cohort beginning the study in fifth grade, one beginning in sixth grade, and one be-
ginning in seventh grade). School districts were selected on the basis of initiatives
for reforming mathematics curriculum and instruction; consideration of district size,
location, and demographics; amount of experience teachers had with MiC; and will-
ingness of districts to participate in a study of this nature. District administrators and
on-site coordinators were asked to select schools that were representative of the dis-
trict population, rather than selecting schools with extremely low- or high-achieving
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groups. Principals of the selected schools chose the study teachers. Teachers, in turn,
selected classes of students with average mathematical abilities rather than classes
of low ability or classes in honors programs. Middle school teachers selected two
classes of students.

In Districts 1 and 2, a comparative study was conducted; students studied either
MiC or conventional curricula already available in their schools. Lessons were ob-
served, and teachers completed teaching logs, journal entries, interviews, and ques-
tionnaires. District 1 was located in an urban region in the eastern part of the United
States. Three elementary schools and four middle schools participated in the study.
Six fifth-grade study classes were in self-contained elementary classrooms. The re-
maining fifth-grade study classes, also in elementary schools, and all middle-school
study classes had several subject-matter teachers. The district had a 45 % minor-
ity student population with 30 % African American students and 12 % Hispanic
students. Approximately 30–40 % of the students in the district were eligible for
government-funded lunch programs. District 2 was located in a large urban area
in southeastern United States. Three elementary and four middle schools partici-
pated in the study. Two of the nine fifth-grade study classes were in self-contained
settings in elementary schools. The remaining fifth-grade study classes, also in el-
ementary schools, and all middle-school study classes had several subject-matter
teachers. The district student population was predominantly minority, with 33 %
African American students and 52 % Hispanic students. Over 50 % of the students
in the district were eligible for government-funded lunch programs.

In Districts 3 and 4, teachers in these districts only used MiC. Lessons were not
observed, and teachers completed only interviews and questionnaires. District 3 was
located in a suburban area of a large western state and was composed of four schools,
each specializing in three or four grade levels. Study participants included all fifth-
through seventh-grade and most eighth-grade mathematics classes in the district.
The six self-contained fifth-grade study classes were in a school for Grades 3–5;
Grades 6–8 were in a middle school. One sixth-grade class was self-contained. All
other middle-school classes had several subject-matter teachers. The district student
population was predominately White. District 4 is one of many districts located in
a large urban area in the eastern part of the country. Grades 6–8 were in middle
schools in which students had several subject-matter teachers. Study participants
were from one middle school in this district. The district student population was
predominantly minority with 50 % African American and 37 % Hispanic students.
Over 50 % of the students are eligible for government-funded lunch programs.

Research Design

The longitudinal/cross-sectional study used a nonequivalent control-group, quasi-
experimental design: The assignment of subjects to the groups was nonrandom, and
pretests and posttests were administered to both treatment and control groups. This
design allowed the research team to distinguish whether observed group differences
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on posttests were correlated to a particular curriculum rather than by preexisting
group differences on some of the variables in the research model.

When examining data from the first year of the study, colinearity across the vari-
ables was found. Because of the inherent interpretation problem, a simplified re-
search model was developed in 1998–1999 at the Center for Advanced Study in the
Behavioral Sciences at Stanford University. The statistical working group suggested
that composite variables, created from the original 14 variables, could serve as in-
dicators. The simplified model then attributed variation in classroom achievement
to variations in preceding achievement, methods of instruction, opportunity to learn
with understanding, and the capacity of schools to support high academic standards
for mathematics teaching and learning. (For a discussion of the impact of school
capacity, see Romberg and Shafer 2008.)

Classroom Achievement

MiC was designed to deepen student understanding of comprehensive mathematics
content while emphasizing connections among mathematical ideas. In order to as-
sess the impact of MiC, two assessment systems were developed. The External As-
sessment System (Romberg and Webb 1997–1998) was designed to measure student
performance on multiple-choice and open response tasks that were used by national
and international samples of middle-school students. The items were selected from
publicly-released items from National Assessment of Educational Progress (NAEP;
National Center for Education Statistics 1990, 1992) and the Third International
Mathematics and Science Study (TIMSS; International Association for the Evalua-
tion of Educational Achievement 1996). Assessment items addressed four content
strands: number, algebra, geometry and measurement, and probability and statistics.
In order to analyze growth in mathematical skills over time, a core of the same items
was included on each grade-specific assessment. The Problem Solving Assessment
System (Dekker et al. 1997–1998) was developed by mathematics educators at the
Freudenthal Institute. Assessment items (all open-response) addressed the same four
content strands as the External Assessment System. The set of grade-level-specific
assessments was designed to align with mathematics content in both MiC and con-
ventional curricula (e.g., more number-related items on the fifth-grade assessment,
more algebra items on the eighth-grade assessment). The items were also designed
to address three levels of reasoning: conceptual and procedural knowledge; making
connections, finding patterns and relationships; and mathematical modeling, anal-
ysis and generalization. This balanced approach to assessment in mathematics is
used in the Program for International Student Assessment (PISA; Organisation for
Economic Co-Operation and Development 1999). Two methods were used to ensure
fairness for students who studied MiC and students who studied conventional curric-
ula. First, the external evaluator of the project reviewed all items in both assessment
systems with respect to content, reasoning, and impartiality. Second, both assess-
ments were pilot-tested in grade-specific classrooms in which MiC or conventional
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curricula were used. Analyses suggested that assessment items were appropriate for
both groups.

Student responses on all assessment items were used by researchers at the Aus-
tralian Council for Educational Research to calibrate a single proficiency scale used
for the composite index classroom achievement (Turner and O’Connor 2005). The
scale and accompanying progress maps were consistent with both the PISA defini-
tion of mathematization and with Romberg’s (2001) view of mathematical literacy.
The proficiency scale for classroom achievement provided a frame of reference for
monitoring growth in student performance over one year or multiple years and a
way to compare the performances of groups of students.

Prior Achievement

Because random assignment of students or classes of students to treatments was
impractical, national percentile rankings of standardized test scores as measures of
prior achievement were used in the first study year, with the understanding that
the percentile scores came from different tests and different yet presumed similar,
norm-populations. In the second and third years, classroom achievement from the
previous year was used as a measure of preceding achievement.

Instruction

Data used in characterizing instruction were collected through classroom observa-
tion reports, teacher logs, journal entries, interviews, and questionnaires (Shafer
2004, 2005). Although teachers in all four research sites completed interviews, in
Districts 1 and 2 classroom observations were conducted, and teachers completed
teaching logs and journal entries.

The composite variable Instruction was based on three complementary perspec-
tives for examining instruction in the context of reform: the NCTM Standards
documents (1989, 1991, 1995); the principles of Realistic Mathematics Education
(Gravemeijer 1994); and research on teaching and learning mathematics for under-
standing (Carpenter and Lehrer 1999; Cohen et al. 1993; Fennema and Romberg
1999; Hiebert et al. 1997). The instruction composite variable included five major
categories—unit planning, lesson planning, mathematical interaction during instruc-
tion, classroom assessment practice, and student pursuits during instruction—which
involved 19 aspects of instruction. For each of the 19 aspects of instruction, three
to six levels were outlined through discussion among the research staff. The levels
were further described through a review of literature specific to each aspect. Begin-
ning with data from fifth-grade study teachers, the levels were further refined. This
process was based on Strauss’ (1987) system of open, axial, and selective coding,
a process which involved repeated coding of data for interpretive codes. The levels
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were subsequently refined through coding data from all other teachers. When a code
was added, the entire set of data was reread to see whether the new codes were more
appropriate for the data. The development of levels, along with examples of each
level, is explained in Shafer (2005).

The instruction composite variable was created only for teachers in Districts 1
and 2 for whom there was a complete set of ratings on all 19 aspects of instruction.
Thirty-four teachers were included in the analysis for the first year of data collection,
32 teachers in the second year, and 17 teachers in the third year. Some teachers
were in the study multiple years. Six levels of Instruction were identified to capture
the variation among teachers in different grade levels and treatments. A summary
of these levels is shown in Table 1. A full description of the levels, along with
examples, is provided in Shafer (2005).

Opportunity to Learn with Understanding

Data used in characterizing the composite variable instruction were collected
through classroom observation reports, teacher logs and journal entries, and inter-
views. The same number of teachers was included in the analysis for the composite
variable Opportunity to Learn with Understanding (OTLu) as in Instruction. OTLu

is described through curricular content, modification of curricular materials, and
classroom events.

Curricular content and modification of curricular materials represents the
teacher’s decisions in defining the actual curriculum—the topics and instructional
units or chapters covered, the supplementary materials used during instruction, and
modifications of the intended curriculum. Classroom events represent the inter-
actions among teacher and students that promote learning mathematics with un-
derstanding: development of conceptual understanding; student conjectures about
mathematical ideas; connections within mathematics; and connections between
mathematics and students’ daily lives. Attempts to capture student understanding
of mathematics content rarely occur in measures of OTL. However, in the Third In-
ternational Mathematics and Science Study (TIMSS), both content and instruction
were considered (Stigler and Hiebert 1999). Hiebert (1999) noted that instruction for
U. S. students predominately emphasized computational procedures, and conceptual
understanding was given little attention. Furthermore, the results suggested that stu-
dents learned what they had the opportunity to learn—simple calculation, terms,
and definitions—rather than solving non-routine problems and using mathematical
processes such as reasoning about complex problems and developing mathemat-
ics arguments. In MiC, understanding mathematics receives substantial emphasis.
Therefore, in the MiC longitudinal/cross-sectional study, OTL was interpreted more
broadly than as a mere gauge of content coverage and was viewed as a student’s
opportunity to learn mathematics with understanding (OTLu). The development of
levels for curricular content and modifications of curricular materials followed the
same process as for the levels of the composite variable Instruction, and the levels
for teaching for understanding were the ones derived for Instruction.
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Table 1 Summary of the composite variable instruction
Level 6: Most Reflective of Teaching for
Understanding

Mathematical Interaction
Inquiry and lesson presentation
• Emphasis on conceptual understanding
• Active participation by students with teacher
support

• Discussion of solutions, generalizations,
connections

Interactive decisions
• Predominantly aligned with understanding
• Frequent questions on articulation of thinking,
understanding mathematics, or reasonable
solutions

Classroom Assessment Practice
• Attention to mathematical processes
• Ongoing, purposeful feedback from teacher,
students

• Feedback: making sense of mathematics,
solutions

• Student assessment of own work and others’
work

Student Pursuits
• Occasional substantive conversation
• Student-student conversation about procedures

Lesson Planning
• Student discussion, problem solving, reflection
planned

Level 3. Limited Attention to Conceptual
Understanding

Mathematical Interaction
Inquiry and lesson presentation
• Students use invented or demonstrated
strategies

• Student explanations focused on procedures
Interactive decisions
• More reflective of good standard pedagogy
• Some attention to articulation of thinking,
reasonable solutions

• Occasional addition of different context or
review

Classroom Assessment Practice
• Evidence from homework, classwork,
occasionally student explanations

• Teacher feedback: concepts, contexts, or

procedures, answer format
• Student-student feedback: answers

Student Pursuits
• Student-student conversation limited, answers
shared

Lesson Planning
• Discussion of vocabulary, steps in procedures
planned, not elaboration of thinking

Level 5: Reflective of Teaching Mathematics for
Understanding

Mathematical Interaction
Inquiry and lesson presentation
• Emphasis on conceptual understanding
• Active participation by students and teacher
• Discussion of solutions
Interactive decisions
• Attentive to teaching for understanding
• Teacher explanations promote connections

Classroom Assessment Practice
• Student explanations as evidence of
mathematical processes or procedural
understanding

• Feedback consistent with Level 6
Student Pursuits

• Student-student conversation limited, answers
shared

Lesson Planning
• Student discussion, problem solving, reflection
planned

Level 2: Focus on Procedures
Mathematical Interaction

Inquiry and lesson presentation
• Predominantly lower order thinking
• Students expected to use demonstrated
procedures

Interactive decisions
• Predominantly least aligned with
understanding

• Limited changes in response to student
difficulties, misunderstanding

Classroom Assessment Practice
• Evidence from homework, classwork
• Emphasis on procedures, format of answers
• Teacher feedback indirectly responsive to
students, inattentive to student misconceptions

• Student-student feedback: minimal
Student Pursuits

• Student-student conversation limited, answers
shared

Lesson Planning
• Discussion anticipated but not planned

Four levels of OTLu were identified to capture the variation among teachers in
different grade levels and treatments. A summary of these levels is shown in Table 2.
A full description of the levels, along with examples, is provided in Shafer (2005).

The Impact of MiC

In this section of the chapter, select results for the following research question
are described: What is the impact of the MiC instructional approach on stu-
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Table 1 (Continued)
Level 4: Attempt to Teach Mathematics for
Understanding

Mathematical Interaction
Inquiry and lesson presentation
• Attempt for conceptual understanding, but
focus on procedural understanding

• General acceptance of teacher’s procedures
Interactive decisions
• More attentive to good standard pedagogy
• Additional exercises, mini-lessons, contexts,
review

Classroom Assessment Practice
• Evidence from student explanations
• Focus on procedural understanding
• Teacher feedback related to concepts, contexts
• Student-student feedback: answers, procedures

Student Pursuits
• Engagement mildly enthusiastic, teacher
encouraged

Lesson Planning
• Student discussion, problem solving, planned

Level 1: Underdeveloped Lessons
Mathematical Interaction

Inquiry and lesson presentation
• No formal lesson presentation
• Procedures demonstrated to individual
students

• Student dependence on teacher for
mathematical work

• Frequent confusion or misunderstanding
Interactive decisions
• Least likely to support teaching for
understanding

• Teacher explanations preferred, no changes to
address student needs

Classroom Assessment Practice
• Teacher feedback inattentive to student
misconceptions, misleading, lacked
mathematical substance

• Student-student feedback: nonexistent
Student Pursuits:

• Conversation not encouraged
Lesson Planning

• Student discussion, problem solving not
considered

Table 2 Summary of the composite variable opportunity to learn with understanding

Level 4: High Level of Opportunity to Learn with
Understanding

• Curriculum with attention to all content areas
• Few modifications to curricular materials
• Portions of lessons focused on conceptual

understanding
• Student conjectures related to validity of

particular statements
• Connections among mathematical ideas clearly

explained by the teacher
• Connections between mathematics and students’

life experiences apparent

Level 3: Moderate Level of Opportunity to Learn
with Understanding

• Content taught in depth, but limited to one or two
content areas

• Supplementary activities occasionally used
• Limited development of conceptual

understanding
• Student conjectures related to making

connections between anew problem and
problems previously seen

• Connections among mathematical ideas briefly
mentioned

• Connections between mathematics and students’
life experiences reasonably clear if explained
by the teacher

Level 2: Limited Opportunity to Learn with
Understanding

• For teachers using MiC: Few content areas taught
due to slow pacing

• For teachers using conventional curricula: Vast
content as disparate pieces of knowledge, laden
with prescribed algorithms

• For teachers using MiC: Supplementary
materials subsumed the curriculum

• For teachers using conventional curricula: Few
modifications to curricular materials;
supplementary activities occasionally used

• Limited development of conceptual
understanding

• Student conjectures related to making
connections between a new problem and
problems previously seen

• Connections among mathematical ideas briefly
mentioned

• Experiences reasonably clear if explained by the
teacher

Level 1: Low Level of Opportunity to Learn with
Understanding

• Vast content as disparate pieces of knowledge,
laden with prescribed algorithms

• For teachers using MiC: Supplementary
materials subsumed the curriculum

• For teachers using conventional curricula:
Haphazard presentation of content; no
adherence to textbook as guideline

• Conceptual understanding not promoted
• Student conjectures not observed; connections

not encouraged
• Connections among mathematical ideas not

discussed
• Connections between mathematics and students’

life experiences not evident
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dent performance? This question was explored through grade-level-by-year-studies,
cross-sectional comparisons, and longitudinal studies (Romberg and Shafer 2008;
Romberg et al. 2005).

Grade-Level-by-Year Studies

Grade-level-by-year studies were extensive investigations of student performance
organized by teacher/student groups (students in one elementary class or two
middle-school classes taught by the same teacher during a particular school year).
Eight studies were conducted: fifth, sixth, and seventh grades in 1997–1998; sixth,
seventh, and eighth grades in 1998–1999; and seventh and eighth grades in 1999–
2000. In all eight studies, much variation in the Classroom Achievement variable
(CA) was evident among the 92 teacher/student groups who used MiC across the
four school districts.

Other analyses revealed that District 3 teacher/student groups had higher CA
results and District 4 groups often had lower CA results than other districts. Anal-
yses in each district showed that CA scores were not as varied in over half of the
teacher/student groups at the same grade level in the same year. In most cases this
was also evident in CA scores for the separate content strands (number, algebra,
geometry and measurement, probability and statistics). These findings suggested
homogeneous grouping (tracking), which was verified in principal and teacher in-
terviews, along with other sources of variation. For example, in District 2 in 1998–
1999 Ms. Keeton1 and Ms. Teague taught MiC in eighth-grade in the same school.
In Ms. Keeton’s group, 21 students completed study assessments in both spring
1998 and spring 1999. They had an overall mean prior achievement (PA) on the
CA proficiency scale of 253.6 and mean CA at the end of the year was 270.6, an
increase of 16.4. In Ms. Teague’s group, 17 students completed both study assess-
ments each spring. They had PA of 230.2 and mean CA at the end of the year was
244.0, an increase of 13.8. While the increases in mean CA scores were similar be-
tween the groups, it is clear that PA was higher in Ms. Keeton’s group. In addition,
Ms. Keeton’s group experienced a higher quality of instruction and a higher level
of opportunity to learn with understanding (OTLu) than Ms. Teague’s group. Along
with differences in PA, the instruction and OTLu these students experienced likely
affected their performance.

Percentile scores from the standardized test scores provided by the districts were
used to check for consistency with the patterns evident from using the CA index.
Because the CA index was developed from student responses to all assessments
designed for this study, checking for consistency was important in order to know
whether the results of the CA index were idiosyncratic. The pattern of percentile
scores generally reflected the patterns of variation in the CA scores in the grade-
level-by-year studies. Other analyses suggested a strong correlation between PA
and CA.

1Names of teachers and schools are pseudonyms.
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Based on the grade-level-by-year studies, the MiC instructional approach as prac-
ticed in the 92 teacher/student groups produced much variation in CA performance.
The results showed that some students were able to translate a contextualized or
non-contextualized, generally non-routine problem into mathematical terms by ap-
plying a formula or relationship or specific mathematical knowledge. Most students
primarily solved contextualized problems in which they used simple calculations
or they applied routine procedures to standard or familiar contextualized problems.
Some students were in the lowest area of the proficiency scale.

Cross-Sectional Studies

Two types of cross-sectional studies were completed: cross-grade comparisons and
cross-year comparisons.

Cross-Grade Comparisons In cross-grade comparisons, the performances of stu-
dents in different grade levels in the same district were studied for one year with the
goal of generating insight into longitudinal performance for a group of the same
students over time. The assumptions of cross-grade comparisons are that achieve-
ment likely increases over time and students in consecutive grade levels are com-
parable in the school cultures and instructional practices they experienced. How-
ever, these assumptions were problematic in this research, as less variance in some
teacher/student groups was attributable to homogeneous grouping and differences
in the instruction and OTLu. Other conditions, such as transition of fifth-grade stu-
dents to middle schools and initiatives for some eighth-grade students to take algebra
classes, changed the composition of students from one grade level to the next.

An example of the cross-grade comparisons is from 1998–1999. Performance
on the CA index was compared for students in all four districts in sixth, seventh,
and eighth grades (see Table 3). The overall scores for the three grades were similar.
However, patterns by district were evident. In District 1, a nearly significant decrease
in CA means from sixth grade to seventh grade and a significant decrease in mean
scores from seventh grade to eighth grade was found. New students were added
to the study in the second year to increase sample size, but not in the third year.
The quality of instruction and OTLu students experienced were higher in seventh
grade than eighth grade, and this likely influenced student performance. In District
2, there was a nearly significant increase in mean scores from sixth grade to seventh
grade and a significant increase in mean scores from seventh grade to eighth grade.
The quality of instruction and OTLu students experienced were likely factors in the
increase in mean scores as teachers “looped” with their students from one grade
level to the next. In District 3, the mean CA scores from sixth grade to seventh
grade were about the same, but there was a significant increase in performance from
seventh grade to eighth grade. In District 4, there was a significant increase in mean
CA scores from sixth to seventh grade, but a significant decrease in mean scores
from seventh to eighth grade. Initiatives for students to take formal algebra classes
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Table 3 Classroom achievement for MiC students, grades 6, 7, and 8 in 1998–1999, overall and
by district

(N) Mean SD 95 % Confidence
Interval

Lower Upper

Overall

Grade 6 550 249.4 56.4 244.7 254.1

Grade 7 636 248.8 44.9 245.3 252.3

Grade 8 319 249.0 45.9 244.0 254.0

District 1

Grade 6 162 269.7 57.8 260.8 278.6

Grade 7 121 254.2 44.6 246.3 262.1

Grade 8 86 237.1 41.0 228.4 245.8

District 2

Grade 6 171 222.1 52.7 214.2 230.0

Grade 7 210 234.2 39.3 228.8 239.5

Grade 8 92 253.8 31.0 247.5 260.1

District 3

Grade 6 115 281.1 42.3 273.3 288.8

Grade 7 123 280.6 48.4 272.0 289.1

Grade 8 63 300.5 32.7 292.4 308.6

District 4

Grade 6 102 227.1 41.5 219.1 235.2

Grade 7 182 240.7 37.0 235.3 246.0

Grade 8 78 214.9 36.1 206.9 222.9

in eighth grade may have resulted in quite different samples for the two years. In
District 3, all teachers taught six to seven units, at times teaching portions of MiC
units from a previous grade level to support student learning of units specific to
their grade levels. In District 3, the instructional context was more aligned with
the assumption for cross-grade studies that students had comparable educational
experiences. Therefore, the changes in District 3 may provide insight into the impact
of MiC on students’ performance as they study the curriculum from sixth through
eighth grades. By content strand, similar patterns were apparent in Districts 1, 2,
and 3. In District 4, the lower eighth-grade CA mean scores were due to the lower
mean scores in the algebra and geometry strands.

In summary, in cross-grade comparisons the performances of students in dif-
ferent grade levels in the same district were studied for one year with the goal of
generating insight into longitudinal performance for a group of the same students
over time. The assumption is that students in consecutive grade levels are compara-
ble in the school cultures and instructional practices they experienced. In the MiC
comparisons, the comparability of the groups was problematic, and increased per-
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formance across grades was sometimes lacking. However, even when accounting
for these situations, there were many instances that performance did increase over
the grade levels when students studied MiC.

Cross-Year Comparisons The cross-year comparisons yielded information about
the performance for groups of students in the same district at the same grade level
who were exposed to the curriculum over time. For example, at the end of the first
year, seventh-grade students had studied MiC one year; at the end of the second
year, seventh-grade students had studied MiC for two years; and at the end of the
third year, seventh-grade students had studied MiC for three years. The assumption
was, with comparable students and instructional practices in each district, the results
might generate some insight in the performance of the same group of students as
they experience MiC over a period of years.

To illustrate these comparisons, results are shown for all three study years for
students in seventh grade in all four districts (see Table 4). Overall scores for all stu-
dents were not significant when the first and second years were compared, but they
increased significantly from the second year to the third year. This was also found for
the scores in Districts 1, 2, and 3. In District 4, although the mean scores increased
each year, the increases were not significant. Results from the cross-grade studies
provide some insight here. In District 1, the means for Year 3 and for the content
strands showed similar performance of the group of students in the cross-grade stud-
ies. Similarly, results from the grade-level-by-year studies inform the cross-grade
studies. In District 2, the results of the cross-year studies were compromised by the
different samples each year. In Year 1, students were from Guggenheim and Hirsch
Middle Schools, in Year 2, from Guggenheim and Weir Middle Schools, and in
Year 3 only from Guggenheim Middle School. Therefore, the increase in scores for
Year 3 in District 2 was likely attributable to increases in all content areas, particu-
larly number and probability and statistics.

In summary, cross-year comparisons provided information about the perfor-
mance for groups of students in the same district at the same grade level who studied
the curriculum over time. The assumption was that students and instructional expe-
riences were comparable, but that was not the case particularly in District 2. The
goal was to provide insight into the performance of the same group of students as
they experienced the MiC instructional approach over a period of years, and be-
cause both teachers and students would be more familiar with MiC units and the
instructional approach, student performance would increase. The cross-year studies
did provide evidence of this, particularly in seventh grade in the third year.

Longitudinal Studies

Longitudinal studies examined changes in performance of cohorts of individual stu-
dents for two or three consecutive years. The assumption of longitudinal studies
is that tracking the growth for individual students is possible. Data were only from
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Table 4 Classroom achievement for MiC students, grade 7 in 1997–1998 (year 1), 1998–1999
(year 2), 1999–2000 (year 3), overall and by district

(N) Mean SD 95 % Confidence
Interval

Lower Upper

Overall

Year 1 507 252.8 49.2 248.5 257.1

Year 2 636 248.8 44.9 245.3 252.3

Year 3 267 282.2 52.2 276.0 288.5

District 1

Year 1 88 247.2 43.9 238.1 256.4

Year 2 121 254.2 44.6 246.3 262.1

Year 3 79 286.8 56.8 274.2 299.3

District 2

Year 1 184 240.3 39.8 234.5 246.0

Year 2 210 234.2 39.3 228.8 239.5

Year 3 61 259.7 42.6 249.1 270.4

District 3

Year 1 127 293.4 40.5 286.4 300.5

Year 2 123 280.6 48.4 272.0 289.1

Year 3 94 305.6 42.5 297.0 314.2

District 4

Year 1 108 230.8 50.0 221.3 240.2

Year 2 182 240.7 27.0 235.3 246.0

Year 3 33 246.1 46.4 230.3 262.0

students who completed both the Problem Solving Assessment and the External As-
sessment System during each year of participation in the study. Assessment scores
were not imputed statistically because the results of these assessments were used in
the development of the CA proficiency scale. Longitudinal cohorts were planned for
three cohorts of students, one beginning in fifth, sixth, and seventh grade during the
first study year. These were Cohorts A, B, and C, respectively. However, the number
of students in each cohort was small due to factors that included fifth-grade students
were dispersed into many classes as they moved to middle school; some students
did not complete both study assessments in a given year; four teachers in District 2
withdrew from the study in the first year; movement of middle school students out
of a study school or into classes of non-study teachers; and initiatives for students to
take a formal algebra course in eighth grade. Therefore, other cohorts of individual
students were created to examine the performance of the same students over time
and to use in comparison to the initially planned cohorts.
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Cohorts A, F, and H MiC was developed for fifth through eighth grades, in re-
sponse to the recommendation for the middle grades beginning in fifth grade in the
NCTM Curriculum and Evaluation Standards for School Mathematics (1989). Co-
horts A, F, and H began the study in 1997–1998. Cohort A was in the study for three
years, Cohort F was in the study only in fifth and sixth grades, and Cohort H was
only in the study in fifth grade (see Table 5). The performance of Cohort A was sta-
tistically significant from year to year. At the end of the third year, half the students
were able to translate a contextualized or non-contextualized, generally non-routine
problem into mathematical terms by applying a formula or relationship or specific
mathematical knowledge. Nearly half primarily solved contextualized problems in
which they used simple calculations. The performance of Cohort F was lower than
Cohort A in the same grade levels. More than half of the students solved contex-
tualized problems in which they used simple calculations. More students applied
routine procedures to familiar kinds of problems than Cohort A. In comparison, the
performance of Cohort H minimally increased in performance over the school year
and was significantly lower than Cohorts A and F.

By district, Cohort A was mostly composed of students from District 3. In that
district, student enrollment was the most stable across all three years. The increase
in performance of Cohort A in this district was significant from year to year. In
District 1, the performance of Cohort A was consistent with the performance in
the cross-grade studies. Generally, the quality of instruction was higher at Grade 5
than at Grades 6 and 7 in District 1. Fifth-grade teachers tended to teach for under-
standing, and students participated more fully in lessons. Also, fifth-grade teachers
taught at least six units that included content in all four strands, and they rarely
supplemented MiC units with other resources. In contrast, lessons for two of the
three sixth-grade teachers were characterized as underdeveloped or focused on pro-
cedures. Sixth-grade teachers also taught fewer MiC units than fifth-grade teachers
(one to two units each in number, algebra, and geometry). In seventh-grade, one
teacher taught six units including all content strands in ways that promoted concep-
tual understanding, whereas the other teacher taught three units that were heavily
supplemented with traditional drill-and-practice exercises on computational proce-
dures. In District 1, the dip in performance in Grade 6 rebounded in Grade 7, but
still did not recover to the level of performance in Grade 5. The use of MiC units,
the quality of instruction, and opportunity to learn with understanding were very
different for students in Grades 5, 6, and 7 in this district.

Results of other analyses provided additional insight into the performance of Co-
hort A. In Cohort A, both girls and boys showed gains in CA over the three years,
and gains were also apparent by content strands. On the standardized tests admin-
istered in each district, Cohort A showed a gain from fifth to sixth grade, but a loss
from sixth to seventh grade. These results contrast with the gain year to year in
CA. Gains from year to year were also evident in performance on nearly all of the
common items on the External Assessment System designed for the study. The per-
formance of Cohort A on 80 % of the common items was comparable to or greater
than the original eighth-grade samples on national and international assessments.
The performance of Cohort F was generally lower on all measures than Cohort A.
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Table 5 Classroom achievement for MiC cohorts A, F, and H, overall and by district

(N) Mean SD 95 % Confidence
Interval

Lower Upper

Overall

Cohort A Grade 5 89 271.6 37.4 263.9 279.4

Grade 6 89 282.5 43.0 273.6 291.5

Grade 7 89 304.1 45.2 294.7 313.4

Cohort F Grade 5 55 265.7 42.4 254.5 276.9

Grade 6 55 268.1 56.2 253.3 283.0

Cohort H Grade 5 293 247.4 44.3 242.3 252.5

District 1

Cohort A Grade 5 15 290.9 30.4 275.5 306.3

Grade 6 15 277.1 55.9 248.8 305.4

Grade 7 15 295.4 54.7 267.7 323.1

Cohort F Grade 5 28 268.1 43.1 252.1 284.1

Grade 6 28 257.4 63.1 234.1 280.8

Cohort H Grade 5 106 247.4 44.3 239.0 255.8

District 2

Cohort A Grade 5 6a 248.7 33.9 221.6 275.9

Grade 6 6 239.5 25.0 219.5 259.5

Grade 7 6 259.9 23.9 240.8 279.0

Cohort F Grade 5 3 249.2 25.7 220.1 278.2

Grade 6 3 285.0 48.8 229.8 340.1

Cohort H Grade 5 159 234.3 37.5 228.4 240.1

District 3

Cohort A Grade 5 68 269.4 37.8 260.4 278.4

Grade 6 68 287.5 39.2 278.2 296.8

Grade 7 68 309.9 42.2 299.8 319.9

Cohort F Grade 5 24 265.0 43.9 247.4 282.6

Grade 6 24 278.5 47.3 259.6 297.5

Cohort H Grade 5 28 267.7 50.4 249.0 286.3

aMany study students were lost due to transition from elementary to middle schools and teacher
withdrawal from participation in Year 1

Cohort F gained in performance on standardized tests. However, gains in perfor-
mance on the common items of the External Assessment System were evident in
number, and performance on the rest of the items was lower than Cohort A.

Cohorts B, G, and I In recognition that MiC might be used only in middle
schools, Cohorts B, G, and I began the study in sixth grade. Beginning in 1997–
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1998, Cohort B was in the study for three years, Cohort G was in the study only in
sixth and seventh grades, and Cohort I was only in the study in sixth grade. The per-
formance of Cohort B was statistically significant from the first year to the second
year, but only showed a small increase in the third year (see Table 6). In contrast,
the performance of Cohort G was statistically greater than Cohort B in both years.
Cohort I performed significantly higher and nearly significantly higher than grades
6 and 8 in Cohort B, respectively, at the end of the first year. At the end of the
third year, half the students in Cohort B solved contextualized problems in which
they used simple calculations, while the other half applied routine procedures to
familiar kinds of problems. The performance of Cohort G was higher than Cohort
B in the same grade levels. At the end of two years, nearly half of the students
solved contextualized problems in which they used simple calculations, and more
students were able to translate a contextualized or non-contextualized, generally
non-routine problem into mathematical terms by applying a formula or relationship
or specific mathematical knowledge than Cohort B. In comparison, fewer students
in Cohort H were able to translate a contextualized or non-contextualized, generally
non-routine problem into mathematical terms by applying a formula or relationship
than Cohort B and fewer students completed assessment items at the lowest level
than Cohort B at the end of the first year. No data was available for District 3 due to
a misunderstanding by eighth-grade teachers in Year 3. In the other districts, growth
in CA was found for Cohorts B and G, although a greater increase was evident in
District 1. This is an important finding because these students did not study the MiC
fifth-grade instructional units.

Results of other analyses provided additional insight into the performance of
Cohort B. In Cohort B, both girls and boys showed gains in CA over the three
years, with boys scoring a little higher than girls. Gains were also apparent in CA
by content strands, with the exception of a slight decrease in geometry in the third
year. On the standardized tests administered in each district, Cohort B showed a loss
from sixth to seventh grade, but a gain from seventh to eighth grade. This contrasts
with substantial gain in CA from Year 1 to Year 2 and slight gain in CA from Year
2 to Year 3. Gains from year to year were also evident in performance on over
half of the common items on the External Assessment System across the grade
levels. The performance of Cohort B on 35 % of the common items was comparable
to or greater than the original eighth-grade samples on national and international
assessments, especially in the number and statistics content strands. In Cohort G
girls and boys showed gains in CA over the two years, and growth was evident in
all four content strands. On the common items on the External Assessment System,
Cohort G showed large gains in performance on nearly all items. The performance
of Cohort G on 55 % of the common items was comparable to or greater than the
original eighth-grade samples on national and international assessments, especially
in number, geometry, and statistics. CA performance for Cohort I was higher in sixth
grade than Cohort B, but lower than Cohort G.

Cohorts C and J In recognition that MiC might be used in seventh and eighth
grades without implementation in sixth grade, Cohorts C and J started the study in
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Table 6 Classroom achievement for MiC cohorts B, G, and I, overall and by district

(N) Mean SD 95 % Confidence
Interval

Lower Upper

Overall

Cohort B Grade 6 50 215.1 44.8 202.7 227.5

Grade 7 50 247.8 41.8 236.2 259.4

Grade 8 50 252.4 39.2 241.5 263.3

Cohort G Grade 6 111 259.5 50.7 250.1 268.9

Grade 7 111 273.4 53.1 263.5 283.3

Cohort I Grade 6 246 236.1 46.2 230.3 241.9

District 1

Cohort B Grade 6 23 203.2 45.5 184.7 221.8

Grade 7 23 257.5 38.1 242.0 273.1

Grade 8 23 263.1 39.2 247.3 279.3

Cohort G Grade 6 13 210.5 42.6 187.3 233.6

Grade 7 13 244.7 53.3 215.7 273.6

Cohort I Grade 6 51 216.1 46.1 203.4 228.7

District 2

Cohort B Grade 6 13 232.6 52.9 203.8 261.3

Grade 7 13 238.6 57.8 207.2 270.0

Grade 8 13 239.7 38.5 218.8 260.6

Cohort G Grade 6 11 207.6 43.4 182.0 233.3

Grade 7 11 216.8 31.8 198.0 235.6

Cohort I Grade 6 130 236.3 40.8 229.3 243.3

District 3

Cohort B Grade 6 0a

Grade 7 0

Grade 8 0

Cohort G Grade 6 64 290.6 33.2 282.5 298.8

Grade 7 64 299.5 43.2 288.9 310.1

Cohort I Grade 6 32 286.1 34.6 274.2 298.1

District 4

Cohort B Grade 6 14 218.5 30.1 202.7 234.3

Grade 7 14 240.4 27.0 226.3 254.5

Grade 8 14 246.3 37.6 226.6 265.9

Cohort G Grade 6 23 225.3 32.2 212.1 238.5

Grade 7 23 244.2 42.2 227.0 261.5

Cohort I Grade 6 33 217.6 40.5 203.7 231.4

aIn District 3, CA could not be calculated over three years because both assessments were not
completed in Year 3
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Table 7 Classroom achievement for MiC cohorts C and J, overall and by district

(N) Mean SD 95 % Confidence
Interval

Lower Upper

Overall

Cohort C Grade 7 148 251.3 41.1 244.6 257.9

Grade 8 148 263.8 44.6 256.6 271.0

Cohort J Grade 7 320 255.0 51.6 249.4 260.7

District 1

Cohort C Grade 7 29 247.3 36.8 233.9 260.7

Grade 8 29 244.4 41.4 229.3 259.5

District 2

Cohort C Grade 7 38 243.1 32.7 232.7 253.5

Grade 8 38 258.4 26.4 250.0 266.8

District 3

Cohort C Grade 7 50 276.2 31.7 267.4 285.0

Grade 8 50 302.2 30.6 293.7 310.7

District 4

Cohort C Grade 7 31 224.8 47.0 208.2 241.3

Grade 8 31 226.6 38.6 213.0 240.2

seventh grade. Beginning in 1997–1998, Cohort C was in the study for two years,
and Cohort J was in the study for one year. The performance of Cohort C was nearly
statistically significant from one year to another (see Table 7). The performance of
District 3 was significantly higher than the other districts, and the performance of
District 4 was lower that other districts. The performance of Cohort J was similar to
the first year CA performance of Cohort C. At the end of eighth grade, more students
in Cohort C solved contextualized problems in which they used simple calculations,
and more students were able to translate a contextualized or non-contextualized,
generally non-routine problem into mathematical terms by applying a formula or
relationship or specific mathematical knowledge. Both girls and boys showed gains
in CA over the two years, with girls scoring a little higher than boys. Gains were also
apparent in CA by content strands, particularly in number and statistics. On the stan-
dardized tests administered in each district, Cohort C’s increase in performance was
consistent with gains in CA. On the External Assessment System common items,
Cohort C showed increases in performance on nearly all items. The performance of
Cohort C on 60 % of the common items was comparable to or greater than the orig-
inal eighth-grade samples on national and international assessments, especially in
number and geometry. The finding in the number strand is interesting because there
are only a few MiC instructional units devoted to number in seventh and eighth
grades.
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In summary, the longitudinal studies examined implementation of MiC in three
situations: from fifth grade in elementary schools through sixth and seventh grades
in middle schools; from sixth through eighth grade; and from seventh grade to eighth
grade. Even though the number of students in the cohorts was small due to factors
noted above, there were various examples of increased performance for students
who studied MiC. Increases in CA were statistically significant for students who
studied MiC over three years beginning with the fifth-grade instructional units, and
many of these students solved problems that involved translation of a contextualized
or non-contextualized, generally non-routine problem into mathematical terms by
applying a formula or relationship or specific mathematical knowledge. Increases in
CA were also noted for students who began their study of MiC in Grade 6. However,
the statistically significant gain in performance was achieved at the end of the second
year, with a modest increase in the third year. Increases in CA were also evident for
students who studied MiC over two years beginning in Grade 7. These results are
interesting in that students did not have the benefit of studying fifth- and sixth-grade
MiC units.

Answer to the Research Question

The results of these analyses suggest that the MiC instructional approach did have
a positive impact on students’ mathematical achievement. The grade-level-by-year
studies pointed out differences among teacher/student groups, varying from homo-
geneous grouping to differences in instructional practices and opportunity to learn
with understanding. The cross-sectional comparisons suggested that student perfor-
mance increases over grade levels, and, as teachers and students became more famil-
iar with the MiC units and instructional approach, student performance increased. In
longitudinal comparisons, even though the samples were small, the performance of
cohorts of individual students showed that MiC had a substantial impact on student
performance over two or three years.

Conclusion

Conducting research in schools is complex. Variation in the ways the curriculum
is implemented is expected, especially when a new and different standards-based
curriculum is implemented. Attempts to capture patterns in instructional practices
in the daily interactions mathematics classrooms are not easy, and the importance of
teachers completing requested data collection and students completing assessments
with intellectual curiosity is difficult to communicate. However, in this summative
evaluation of Mathematics in Context, rich observation data were collected, inter-
actions that occurred in study classrooms were documented in multiple ways, and
students were followed longitudinally.
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In this research, students’ prior achievement had an important impact on class-
room achievement. However, the ways in which curricular materials were imple-
mented also influenced differences in student achievement over time. Some MiC
teachers implemented the curriculum well, with instructional practices aligned with
teaching mathematics for understanding and teaching multiple instructional units
in various content strands with few supplementary conventional materials. Other
teachers either taught MiC with conventional pedagogy or heavily supplemented
MiC with conventional materials. This variation in implementation led to differ-
ences in student achievement. Regardless of other differences in the teacher/student
groups or student cohorts, when MiC was implemented well, students’ perfor-
mance increased. Students expanded their knowledge of mathematics, reasoned
about mathematical ideas at deeper levels, and applied mathematical skills in num-
ber and other content strands.
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Curriculum and Achievement in Algebra 2:
Influences of Textbooks and Teachers
on Students’ Learning about Functions

Sharon L. Senk, Denisse R. Thompson, and Jamie L.W. Wernet

Abstract Textbooks are a major factor in creating opportunities for learning in high
school mathematics. However, teachers sometimes skip or modify lessons in the
textbook. Thus, the enacted curriculum can be quite different from the intended
curriculum of the textbook. This chapter describes a study of the intended, enacted,
and attained curriculum conducted in ten matched pairs of Algebra 2 classes in
five high schools in the United States. In particular, because functions are a major
content strand of high school mathematics across the world, we discuss relationships
between students’ achievement on items testing their knowledge of functions and
the opportunities to learn provided by their textbooks and teachers.

Keywords Achieved curriculum · Algebra 2 · Enacted curriculum · Intended
curriculum · High school · Functions · Textbook influence

For almost four decades, curriculum materials have been seen as a major factor in
creating opportunities for learning in high school mathematics. Begle (1973) found
that the content of the textbook “seems, at present to be the only variable that on
the one hand we can manipulate and on the other hand does affect student learn-
ing” (p. 209). Recent research confirms a strong positive relationship between sec-
ondary students’ achievement and the opportunities provided by the textbook cur-
riculum (Harwell et al. 2009; Romberg and Shafer 2008; Schoen et al. 2010; Senk
and Thompson 2003; Schmidt et al. 2001; Tarr et al. 2008a, 2008b; Valverde et al.
2002).

Recent studies have also documented that teachers use textbooks in many ways
(Remillard 2005; Remillard et al. 2009). In secondary schools, mathematics teachers
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often skip lessons or entire chapters in textbooks (Thompson and Senk 2010). They
also modify the cognitive demand of tasks in a textbook (Henningsen and Stein
1997; Tarr et al. 2008a, 2008b). Even if the classroom teaching is consistent with
the intent of a textbook, the teacher may assign problems for students to complete
at home that are not consistent with the authors’ intent (Thompson and Senk 2010).
Thus, the enacted curriculum can be quite different from the intended curriculum
in textbooks; and the actual achieved curriculum may be different than either the
intended or enacted curriculum (Valverde et al. 2002).

Achievement in school subjects has also been found to be positively associated
with students’ opportunity to learn [OTL] (Floden 2002; Törnroos 2005). OTL re-
search has been prominent in international comparison studies under the assumption
that opportunities students had to learn the content being assessed must be taken into
consideration to interpret achievement results in cross-national comparisons. How-
ever, OTL has also been used in domestic studies focusing on the intended curricu-
lum, the enacted curriculum, or both (Floden 2002), using teacher logs, teacher sur-
veys, and classroom observations. Specific information collected about OTL ranges
from the number of instructional hours in a year, to how much of the textbook is
covered, to how much time is spent in class on relevant tasks.

In this chapter, we report results from a secondary analysis of data about the
intended, enacted, and achieved curriculum in 20 Algebra 2 classes in the United
States.1 Data come from the evaluation study of a textbook developed by the Uni-
versity of Chicago School Mathematics Project [UCSMP] (Thompson and Senk, in
preparation).2 Specifically, we report on students’ opportunities to learn about func-
tions, and how their knowledge of functions is related to the opportunities to learn
provided by their textbooks and teachers.

Literature Review

The Role of Functions in School Mathematics

Ever since the National Committee on Mathematical Requirements (1923) proposed
that

the function concept should serve as a unifying element running through the instruction in
the mathematics of the secondary school (in Bidwell and Clason 1970, p. 389),

1In about 90 % of U.S. high schools, the mainstream curriculum consists of a sequence of three full-
year courses, Algebra 1-Geometry-Algebra 2 or Algebra 1-Algebra 2-Geometry, which students
begin in either Grade 8, 9, or 10 (Dossey et al. 2008). Other high schools use some version of
integrated curricula combining topics from algebra, geometry, and other mathematical subjects.
2The UCSMP is a curriculum research and development project for Grades K-12 that was estab-
lished in the United States in 1983. With funding from both private and public foundations, it is
one of the longest lasting curriculum projects in the history of the United States (Usiskin 2003).
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functional thinking—that is, thinking in terms of and about relationships between
variable quantities—has been proposed for the school mathematics curriculum in
the United States. However, as pointed out by Buck (1970) and Kilpatrick and Izsák
(2008), it was not until the 1960s that functions began to appear regularly in the
school mathematics curriculum. Presently, functions are considered “crucial for stu-
dents to learn but challenging for teachers to teach” (Cooney et al. 2010, p. 7). Al-
though some U.S. curricula introduce aspects of functional thinking in the upper
elementary or middle grades, a formal study of functions generally begins after stu-
dents have acquired some skill in operating with expressions.

In recent decades, competing views on the role of functions in the school alge-
bra curriculum have emerged (Kieran 2007). In the United States, traditional alge-
bra curricula typically have a strong symbolic orientation, focusing on simplifying
expressions, factoring polynomials, and solving equations or inequalities. In such
curricula, functions are a topic, but they are not central; rather, recognizing math-
ematical forms is a central goal. In contrast, contemporary nontraditional “reform”
algebra curricula take a functional perspective (Kieran, p. 709) in which functions
form the basis for teaching algebra. This perspective can be traced to the 1980s
when some educators suggested that graphical and symbolic features of comput-
ing technology could have substantial effects on the mathematics curriculum (Fey
1984; Heid 1988). Courses taught from a functional perspective typically emphasize
multiple representations, real-world problems, and modeling.

For example, Chazan (2008) notes that the equation 3x + 2 = 7 traditionally
has been conceptualized as a question about numbers and solution sets. That is, the
solution to the equation is the number that can be substituted for x to get a true
sentence, and the solution set is {5/3}. However, in another curriculum, 3x + 2 =
7 might be thought of as asking a question about a function, that is, “For what
input(s) will the function f (x) = 3x + 2 produce an output of 7?” Alternately, a
curriculum might teach students to think of 3x+2 = 7 as derived from a comparison
of two functions of one variable where the function determined by f (x) = 3x + 2
is compared to the constant function g(x) = 7, with the intent of finding the value
of x where the two functions have the same value.

Two recent documents have focused on the importance of functions in contem-
porary school mathematics. The Common Core State Standards for Mathematics
[CCSSM] were developed from a desire to achieve a “more focused and coher-
ent” mathematics curriculum (Common Core State Standards Initiative 2010, p. 3).3

These standards are intended to highlight the mathematics that all students at a grade
level should study during the school year. The standards for high school specify the
mathematics that “all students should study in order to be college or career ready;”
they are grouped into six conceptual categories, including separate sets of standards
for algebra and functions (p. 57). For each of these two conceptual categories, four
domains of standards are identified, as shown in Table 1.

Within each domain, clusters of standards provide details and examples of the
mathematics intended to be studied. There is also a brief description of the link be-

3As of March 2012, 45 of the 50 states and several U.S. territories had adopted these standards.
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Table 1 Domains of standards for algebra and functions in the Common Core State Standards for
Mathematics

Algebra Functions

• Seeing structure in expressions • Interpreting functions

• Arithmetic with polynomials and rational
expressions

• Building functions

• Creating equations • Linear, quadratic, and exponential models

• Reasoning with equations and inequalities • Trigonometric functions

tween algebra and functions; for example, determining an output value of a function
involves evaluating an expression, and solutions to an equation can be visualized by
determining when two functions have the same output (CCSSM 2010, pp. 63–71).

In Essential Understandings of Functions: Grades 9–12, Cooney et al. (2010)
describe five big ideas about “overarching concepts that are central to [functions]
and link numerous smaller mathematical ideas into coherent wholes” (p. viii):

• The function concept, including the classical definition of function and the idea
that domain and range of a function do not have to be sets of numbers;

• Co-variation and rate of change, including how one variable changes with re-
spect to another and how rates of change determine what kind of real world phe-
nomenon a function can model;

• Families of functions, specifically highlighting linear, exponential, quadratic, and
trigonometric functions;

• Combining and transforming functions through composition, finding inverses,
and arithmetic operations; and

• Multiple representations of functions, including equations, graphs, tables, and
verbal descriptions. (pp. 8–11)

The function topics recommended by the CCSSM and Cooney and his colleagues
are consistent with recommendations in other mathematics education literature. For
instance, one habit of mind explicated by Driscoll (1999) was building rules to rep-
resent functions. He specifically posited that moving between multiple represen-
tations of functions leads to a more integrated understanding of functions. Also,
Leinhardt et al. (1990) conceptualized function tasks as requiring two key actions—
interpretation and construction. These are not mutually exclusive and center around
what a student is doing with representations of functions. Again, this conceptualiza-
tion aligns with the recent core recommendations.

Learning and Teaching of Functions

Cooney et al. (2010) report that students often gain only a narrow view of func-
tions limited to equations and rules rather than a complex understanding allowing
for flexible thinking about quantitative relations. In addition, students often acquire
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misconceptions about functions. Misconceptions tend to fall into three broad cat-
egories: desire for regularity (e.g., students do not consider irregular graphs such
as piecewise graphs to be functions); a point-wise focus (e.g., difficulty translating
from graphs to equations, difficulty with the slope concept); and difficulty with ab-
stractions of the graphical world (e.g., thinking of the graph as a picture) (Leinhardt
et al. 1990, pp. 44–45).

Large-scale assessments also provide information about students’ performance
on function tasks. The National Assessment of Educational Progress [NAEP], for
example, assesses samples of students in the United States at grades 4, 8, and 12
(ages 9, 13, and 17, respectively). The 12th grade tests explicitly address linear,
exponential, power, quadratic, and trigonometric functions as well as algebraic rep-
resentations, including written descriptions, equations, and graphs. According to
results on individual NAEP tasks, functions are a difficult topic for 12th-grade stu-
dents. From the 17 function tasks used since 1990,4 only two questions were rated
easy, meaning more than 60 % of students nationwide solved them correctly. Both
questions were multiple-choice items on interpreting and connecting representa-
tions. Two of the tasks were rated medium (40–60 % of students answered cor-
rectly) and 13 were rated hard (less that 40 % answered correctly), including the
five function questions on the most recent exam in 2009.

The Trends in International Mathematics and Science Study (TIMSS) Advanced
assessment was administered in 1995 and 2008 to students in their final year of
secondary school to compare knowledge of advanced mathematics and physics in
participating countries. The U.S. participated in 1995, but not in 2008. The mathe-
matics content includes algebra, calculus, and geometry; functions comprise a part
of the algebra domain and are identified to be “an important unifying idea in math-
ematics” (Garden et al. 2006, p. 13). Specifically, assessment items require students
to generate and interpret multiple representations of functions, identify key charac-
teristics of functions, and compose functions. As reported by Mullis et al. (2009),
average scores on the algebra portion of the exam varied from a low of 24 % in
the Philippines to a high of 62 % in the Russian Federation (p. 83). Great variation
was also evident in student performance on specific tasks. For example, on a task
requiring students to generate a quadratic function given the x- and y-intercepts,
the percent of students who answered correctly ranged from 8 % (Sweden) to 64 %
(Lebanon). These results suggest differences in curricular emphases on algebra and
functions among countries.

Teaching students about functions demands strong knowledge of graphing and
functions as well as knowledge about how students think about functions (Kieran
2007; Leinhardt et al. 1990). Some authors have offered suggestions for how to ad-
dress misconceptions and provide entry into the function concept. Leinhardt et al.
(1990) suggested focusing on the following points in order to address common stu-
dent misconceptions: functions establish relationships between changing quantities,

4The items are available through the NAEP Questions Tool v4.0, downloaded from http://nces.ed.
gov/nationsreportcard/itmrlsx/search.aspx?subject=mathematics on February 17, 2012.

http://nces.ed.gov/nationsreportcard/itmrlsx/search.aspx?subject=mathematics
http://nces.ed.gov/nationsreportcard/itmrlsx/search.aspx?subject=mathematics


520 S.L. Senk et al.

slope and the link between algebraic and graphical representations, and directional-
ity in the Cartesian system. They also emphasized drawing on students’ intuitions
of functions as an entry point into teaching functions. Specific recommended en-
try points include investigating and generalizing patterns, qualitatively interpreting
graphs, and using graphs as the basis for topics such as function transformations
(Driscoll 1999; Kieran 2007; Leinhardt et al. 1990).

Many scholars report links between the use of graphing calculators or other re-
lated technologies and students’ achievement. Calculators afford students oppor-
tunities to “experiment with properties of. . . functions and their graphs and build
computational models of functions” (CCSSM 2010, p. 67), transform functions and
analyze the effects of changing parameters when learning about the characteristics
of families of functions (NCTM 2000), and work with multiple representations—
particularly symbolic and graphical representations—in a manageable way (Kieran
2007; Leinhardt et al. 1990). Kieran (2007) cited several studies showing that using
graphing calculators leads to increased student understanding of functions, particu-
larly modeling, interpreting, translating, and working with multiple representations
of functions. Zbiek and Heid (2008) give examples that show how graphing calcu-
lators and Computer Algebra Systems “can help students understand that functions
are not merely symbolic rules; thinking about functions requires acknowledging in-
put variables and domains” (p. 258).

Research Questions

As noted earlier, this chapter addresses questions about relations between the in-
tended, enacted, and attained curriculum related to functions. In this chapter we
report on a secondary analysis of data from a UCSMP evaluation study of the dif-
ferences in teachers’ enactment and students’ achievement in Algebra 2, in order to
address the following questions.5

1. What opportunities to learn functions are provided by teachers using the Third
Edition, Field-Trial Version of UCSMP Advanced Algebra (Flanders et al. 2006)
and comparison Algebra 2 textbooks?

2. At the end of the school year, how does the knowledge of functions of students in
classes using UCSMP Advanced Algebra (Flanders et al. 2006) compare to that
of students using the comparison curriculum?

3. At the end of the school year, how is students’ knowledge of functions related
to the curriculum materials (textbooks) used, and opportunities their teachers
provide for learning from their textbooks?

5In addition to the five schools described in this chapter, five additional schools that either did not
have comparison classes or had comparisons between the second and third editions of UCSMP
Advanced Algebra were involved in the evaluation study. In this chapter, we include only those
schools in which comparison classes used a non-UCSMP textbook.
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Methods

Design

Schools for the evaluation study were recruited by posting a Call for Study Schools
on the UCSMP website, in UCSMP publications, and through mathematics educa-
tion list serves. Researchers requested schools with at least four classes of Algebra
2 students with students identified neither as gifted nor having special needs. From
the schools that applied, participating schools were selected to provide as much di-
versity as possible in the sample; the five schools whose data are included in this
paper are from four different states. In each school, two or three classes taught by
one teacher were assigned the UCSMP Advanced Algebra textbook (Flanders et al.
2006); two other classes taught by a different teacher were assigned the textbook
regularly used in that school. Four of the textbooks used in the comparison classes
were typical of Algebra 2 books in use across the U.S. at the time the study was
conducted (Dossey et al. 2008). The Intermediate Algebra (Lial and Hornsby 2000)
was designed for use in college mathematics courses, but is sometimes used in high
schools. (See Appendix for the list of textbooks used by comparison classes.)

A pretest-posttest matched pair design was used. To ensure comparability of pre-
requisite knowledge among students using different curricula, classes within each
school were matched on the basis of two pretests administered at the beginning of
the school year. The two best-matched pairs were selected for the final sample. (For
further details about pretest scores and matching procedures, see Thompson and
Senk in preparation.) Throughout the year, both UCSMP and comparison teachers
provided information about the lessons taught, questions assigned, and other com-
ments about each chapter they used. Near the end of the school year mathematics
achievement was measured by three posttests.

Samples

Schools and Teachers All five schools are publicly funded with enrollments rang-
ing from 675 to 4200 students. The two smallest schools are in rural areas, one in the
South, one in the Northern Midwest. Two schools are located in suburbs of a large
city in the Midwest and one is on the urban fringe of a city in the East. Four schools
have Grades 9–12, but one (School 25) enrolls only students in Grades 10–12. Four
of the schools enrolled more than 90 % white students, but School 37 had more than
one-third minority students.

All teachers were certified in their states to teach secondary school mathematics.
The UCSMP teachers had on average 8.8 years teaching experience before entering
this study, and the comparison teachers had 9.2. Eight of the ten teachers had taught
Algebra 2 before, but no teacher had ever taught from the first or second editions of
the UCSMP Advanced Algebra textbook (Flanders et al. 2006).
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Table 2 Grade and gender of students in final sample

Grade UCSMP Advanced Algebra Non-UCSMP Comparison

10 11 12 na Total 10 11 12 na Total

M 28 49 12 3 92 36 52 10 1 99

F 28 53 2 2 85 30 71 7 1 109

na 1 1 2 1 3 1 5

Total 56 103 14 6 179 67 126 17 3 213

Note: na indicates either gender or grade was not available

Students Only students who took both pretests, all three posttests, and did not
change teachers or class sections are included in the final sample for this study.
Overall, data were collected from 392 students in 20 classes taught by 10 teachers.
In each of the UCSMP and comparison groups, almost 60 % of the students were in
Grade 11, with the next largest group in Grade 10. Table 2 describes the distribution
of students by grade and gender.

Instruments

The regular classroom teacher administered all pretests and posttests during normal
class periods. Although students were told to try their best, their scores did not
influence their final grade in the course.

Pretest 1 was the TerraNova Algebra I (McGraw Hill 2005), a 32 item standard-
ized test focused on knowledge of first-year algebra (Cronbach alpha = 0.621).6

Students had 40 minutes to answer the items.
Pretest 2 consists of 25 multiple-choice items and 3 constructed response items.

Many of the items on this pretest and on the posttest described below had been
used on previous UCSMP studies or were released items from NAEP or TIMSS.
(Cronbach alpha for the multiple choice items = 0.564.)

Advanced Algebra Posttest 1 is a 35 item multiple-choice posttest that assesses
mathematics important to a second year of algebra, regardless of curriculum used;
topics tested include operating with real numbers and matrices, solving linear and
non-linear equations and inequalities, and developing, graphing, and analyzing
functions. Students were given 40 minutes to complete the test. Calculators were
not permitted. The test has a Cronbach alpha of 0.70.

Advanced Algebra Posttest 2 is a 20 item multiple-choice posttest designed to
assess content of algebra and functions on which technology might be helpful. Stu-
dents were given 30 minutes to complete the test and were permitted to use calcula-

6The Cronbach alpha measures reported here were obtained using test results only from the stu-
dents in this sample.
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tors, including graphing calculators with or without computer algebra systems. The
Cronbach alpha for this test is 0.55.

Advanced Algebra Problem Solving and Understanding (PSU) Test is a 12-item
constructed response test about algebra and functions, with students expected to
show their work or explain their thinking for each item. Students were given 40 min-
utes to complete the test and were permitted to use calculators, including those with
computer algebra systems. Items were scored using rubrics and procedures devel-
oped in previous UCSMP studies (Thompson and Senk 1993, 1998). The Cronbach
alpha for this test is 0.70.

In this chapter, we report performance on subtests of each posttest consisting
of only those items that address function concepts. All three authors worked in-
dependently to identify posttest items classified as addressing functions using the
descriptors in the CCSSM. All discrepancies were resolved by consensus. These
procedures generated three subtests on functions: 17 of the 35 items on Posttest 1
(α = 0.46), 11 of the 20 items on Posttest 2 (α = 0.38); and 9 of the 12 items on the
PSU Test (α = 0.64).7 Thus, the three function subtests contain a total of 55 % (37
of the 67 items) of the items on the original posttests.

Table 3 shows how the items on the three function subtests map to the function
clusters in the CCSSM. Notice that, although the data for this study were collected
a few years before the release of the CCSSM, the items used to assess knowledge
of functions are well distributed across the clusters of the Common Core. Sample
items from the function subtests are shown in Table 4.

Chapter Coverage Forms were completed by each teacher for every chapter of
his or her textbook. The teacher indicated whether or not each lesson was taught,
how many days were spent on the lesson, and which questions from the lesson
were assigned. These forms provide a glimpse into the extent to which each teacher
enacted the mathematics in the textbook. Data derived from analyzing the Chapter
Coverage Forms are used as one measure of opportunity to learn about functions.

Opportunity-to-Learn Mathematics on Posttests Forms were completed by each
teacher for all three posttests using questions similar to those on international com-
parative tests (Schmidt et al. 1992). For each posttest item, teachers responded to
the following question:

During this school year, did you teach or review the mathematics needed
for your students to answer this item correctly?

a. Yes, it is part of the text I used.
b. Yes, although it is not part of the text I used.
c. No, because it is not part of the text I used.
d. No, although it is part of the text I used.

Teachers’ responses to this question provide a glimpse into the connection between
the enacted and assessed curriculum and provide a second measure of opportunity
to learn about functions.

7Cronbach alpha reliability measures were run again for only those items comprising each subtest.
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Table 3 Correspondence between functions in the Common Core State Standards and posttest
items

CCSSM Function Clusters Posttest 1
Items

Posttest 2
Items

PSU Test
Items

Interpreting functions

Understand the concept of a function and use function
notation

1, 13, 19,
21, 31

43, 47 5, 7

Interpret functions that arise in terms of the context 53

Analyze functions using different representations 3, 14, 16,
20, 28,
29

49 4, 9, 10

Building functions

Build a function that models a relationship between two
quantities

10 40, 46

Build new functions from existing functions 26, 34 37, 44 6

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential
models and solve problems

15, 25 52, 54 2, 12

Interpret expressions for functions in terms of the situation
they model

8

Trigonometric Functions

Extend the domain of trigonometric functions using the
unit circle

39

Model periodic phenomena with trigonometric functions 32

Prove and apply trigonometric identities

Functions in the Intended Curriculum

All textbooks used in the study treat linear, quadratic, exponential, logarithmic,
polynomial, and rational functions, although the treatment and emphasis vary across
topics. All textbooks except the one by Lial and Hornsby, which was designed for a
college course, address all the CCSSM clusters of standards for functions identified
in Table 3. The book by Lial and Hornsby addresses everything but the standards
related to trigonometry. However, the placement of the introduction to the functions
section varies, as does the extent to which the word function is used in titles of
lessons. The UCSMP Advanced Algebra (Flanders et al. 2006) introduces functions
the earliest (Lesson 1-2); the book by Lial and Hornsby (2000) introduces functions
the latest (Lesson 3-5). The percent of lessons with the word function in the title
ranges from 9 % ([UCSMP] Flanders et al. 2006; Lial and Hornsby 2000) to 19 %
(Larson et al. 2001).

However, even when a lesson does not have the word function in the title, the
concept of function may play a central role. In theory, after the concept of function
is defined and function notation is introduced, authors are free to use these con-
cepts whenever appropriate. For instance, none of the nine lessons in Chap. 2 of
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Table 4 Sample function items from each posttest

Instrument Item No. Item Stem

Posttest 1 1 If f (x) = x3, find f (−4).

Posttest 1 3 Which parabola is the graph of the set of all points satisfying
y = x2 − 1? (options are graphs).

Posttest 1 16 (Graphs of the lines
←→
AC and

←→
BC are shown on a grid.) An equation for←→

AC is y = 1
3 x + 4. An equation for

←→
BC is y = −5x + 18. What is the

solution to the system y = 1
3 x + 4 and y = −5x + 18? (Options are

coordinates of specific points identified on the grid.)

Posttest 2 40 A rectangular piece of metal 17 cm by
28 cm is to be made into a box by cutting
squares x cm by x cm from the corners
and folding up the edges. Which of the
following is a formula for the volume of
this box?

Posttest 2 43 In 43 and 44, refer to the graphs of
functions f and g at right. What is the
value of g(1)?

Posttest 2 44 What is the value of f (g(1))? (Using the above diagram.)

Posttest 2 53 What is the y-intercept of the equation for the line through the point
(−4,5) with slope 6?

PSU 2
x y

−4 −10

−2 −4

0 2

2 8

4 14

Consider the values in the table
at the right. Find an equation that relates x and y.

PSU 5a What is meant in mathematics by the word function?

PSU 5b Give a real life example to illustrate your definition above.

Questions 43 and 44 are released items from NAEP

the UCSMP Advanced Algebra (Flanders et al. 2006) has functions in the title. The
chapter does, however, introduce direct and inverse variation—important concepts
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Table 5 Number and percent of textbook lessons potentially related to functions

Textbook School(s) using
the textbook

Total number of
textbook lessons

Lessons potentially related
to functions

Number % of total no.
of lessons

Bellman et al. (2004) 25 98 53 54

Flanders et al. (2006) all 116 78 67

Larson et al. (2001) 37 97 56 58

Lial and Hornsby (2000) 38 64 49 77

Schultz et al. (2001) 28, 36 93 42 45

related to co-variation and rate of change that are part of the Essential Understand-
ings (Cooney et al. 2010) and CCSSM (2010). Furthermore, in that chapter students
investigate graphs, tables, and equations of linear and quadratic functions and con-
nections between the representations.

Thus, for our final count of a textbook’s lessons which potentially provide op-
portunities to learn about functions, we first counted the number of lessons between
the first lesson in each textbook that introduced functions and the last lesson of the
book. Second, we excluded lessons about trigonometry, combinatorics, probability,
statistics, and matrices (because these topics were not covered in all textbooks) and
did not count lessons on conic sections (because circles, ellipses, hyperbolas, and
some parabolas are not functions). The result was the number of lessons potentially
related to functions.8 Table 5 compares the number of lessons that potentially relate
to functions to the total number of lessons in each book.

Because the UCSMP Advanced Algebra (Flanders et al. 2006) introduces func-
tions earlier than the other books, it has more lessons potentially related to functions
than the others. In contrast, the Lial and Hornsby textbook has the greatest percent
of lessons devoted to this topic.

UCSMP classes were provided graphing calculators with computer algebra sys-
tems on loan for use throughout the year in sufficient quantities to assign to students
for use in school and at home. Most comparison classes had some access to graph-
ing calculators, but usually without computer algebra systems. On the PSU Test,
students reported access to technology for the test. About 97 % of students overall
had calculator access, with 87 % of UCSMP and 74 % of comparison students hav-
ing a calculator that could graph functions; 89 % of UCSMP and 8 % of comparison
students had calculators that could simplify algebraic expressions.

8We acknowledge that this method potentially overcounts the number of lessons related to func-
tions in some textbooks. However, a detailed look at every lesson in each textbook to determine
whether function concepts were explicitly addressed was beyond the scope of this secondary anal-
ysis.
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Table 6 Function Lesson
Coverage by school and
teacher

School UCSMP Teacher
Coverage ( %)

Comparison Teacher
Coverage ( %)

25 80 68

28 72 31

36 73 69

37 80 86

38 76 84

Results

Opportunity to Learn

Two measures of Opportunity to Learn are reported here: Function Lesson Coverage
and Posttest Opportunity to Learn Functions.

Function Lesson Coverage Overall, UCSMP teachers taught from 58 % (Schools
28 and 37) to 63 % (School 25) of the lessons in their textbook. In contrast, compar-
ison teachers taught from 29 % (School 28) to 86 % (School 38) of their textbook
lessons. Function Lesson Coverage is defined to be the percent of the number of
lessons potentially related to functions (see Table 5) that were taught by the teacher.
Table 6 reports the Function Lesson Coverage for each school and teacher.

The range of Function Lesson Coverage was greater among comparison teach-
ers than among UCSMP teachers. Chi-squared tests of differences indicate that the
UCSMP and comparison teachers taught approximately equal percentages of the
lessons related to functions in four schools; but in School 28, the percent of lesson
coverage was significantly different at the 0.05 level. Throughout the year the com-
parison teacher in School 28 taught many lessons using materials she had created in
lieu of working with the textbook assigned by the school.9

Posttest Opportunity to Learn Functions Figure 1 gives three displays illustrat-
ing teachers’ responses to the question about whether or not they taught the mathe-
matics necessary to solve the items on the three function subtests.

Figure 1 suggests that students had differing opportunities to learn about func-
tions in these 20 classes. For Posttest 1, the teachers covered only two items in
common: item 1 on evaluating a function; and item 16 on the relation between the
solution to a system of linear equations and the coordinates of points on a graph.
On Posttest 2, the teachers again indicated that they had all taught the mathematics

9During the year the comparison teacher in School 28 taught linear relations and functions, linear
systems including linear programming, polynomials including quadratics and factoring, arithmetic
and geometric sequences and series. The teacher did not teach exponential, logarithmic, rational or
radical functions.
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for only two of the items: item 43 about evaluating a function from a graph; and
item 53 about finding the y-intercept of a line with a given slope passing through
a particular point. On the PSU test, there was only one item for which all teachers
reported teaching the necessary mathematics: item 5 asking students to tell what is
meant by the word function in mathematics, and to give a real life example of a
function. Overall, there were only 5 of the 37 functions items (13.5 %) across these
three tests that were common opportunities for all students. These items were all in
the CCSSM Interpreting Functions cluster.

Data from UCSMP teachers show that 19 of the 37 items (51 %) were taught
by 4 of the 5 teachers, with 12 in the cluster on Interpreting Functions, 3 in Build-
ing Functions, and 4 in Linear, Quadratic, and Exponential Functions. Data from
comparison teachers show that 15 of the 37 items (40 %) were taught by 4 of the 5
teachers, with 11 items in the cluster on Interpreting Functions, 1 in Building Func-
tions, and 3 in Linear, Quadratic, and Exponential Functions. The major focus was
on the basic aspects of Interpreting Functions for both groups.

Achievement on the Functions Subtests

Tables 7, 8, and 9 report the achievement results on the three function subtests, and
the Posttest Opportunity to Learn Functions. As noted in Table 7, in four of the ten
matched pairs, the UCSMP students outperformed the comparison students, and in
the other six pairs, there was no significant difference in mean performance. Overall,
using a dependent measures t-test, the UCSMP classes outperformed the compari-
son classes by about 6 % on the functions items on Posttest 1, a difference that is
statistically significant. (See footnote b to Table 7.)10 This difference corresponds
to an effect size greater than one, indicating that the mean score on this posttest of
a typical UCSMP class is more than one standard deviation greater than the mean
score of a typical comparison class.11

As noted in Table 8, on the function items from Posttest 2, UCSMP students
outperformed comparison students in four of the ten matched pairs and comparison
students outperformed UCSMP students in one pair. Overall, although the mean of
the difference between scores of UCSMP and comparison classes was about 5 %,
this difference was not statistically significant. The achievement difference corre-
sponds to an effect size of slightly more than half a standard deviation favoring the
UCSMP classes.

As the results in Table 9 indicate, on the constructed-response items on the Prob-
lem Solving and Understanding Test, UCSMP students outperformed comparison

10A dependent measures t -test on the mean of the differences of the class means provides a method
to test the overall effect of the two curricula (Gravetter and Wallnau 1985, p. 373).
11Effect size was determined using measures appropriate for matched groups. The effect size is

d = tc ·
√

2(1−r)
n

, where d = effect size, tc is based on the difference of the pair means, r is the
correlation between the pair means, and n is the number of matched pairs (Dunlap et al. 1996).
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Fig. 1 Items on functions subtests for which content was reported as taught by UCSMP and com-
parison teachers, indicated as U and C, respectively (A gray box indicates that the teacher reported
teaching the mathematics needed to answer the item)

students in six of the ten matched pairs of classes; in five of the six cases, the UC-
SMP class mean was more than 10 % greater than the comparison mean. Overall,
the mean of the differences between scores of UCSMP and comparison classes was
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about 8 %, a difference that is statistically significant, with an effect size of over one
standard deviation.

To provide insight into performance on specific items, Table 10 reports the over-
all percent correct for UCSMP and comparison students for the items shown in
Table 4. Items about functions were of varying difficulty for this sample, even when
all teachers report teaching the content necessary for an item. For example, defining
a function (PSU 5a) was more difficult for both UCSMP and comparison students
than giving an example of a function (PSU 5b), and giving an example was much
more difficult than using function notation (item 1). On items 3 (identifying a graph
of a parabola) and 40 (a symbolic representation for volume of a box), the UCSMP
students performed considerably better than their comparison peers.

Functions Achievement Related to Opportunity to Learn

Research indicates that one of the strongest predictors of future performance is prior
achievement (Begle 1973; Bloom 1976) and that opportunities to learn are also re-
lated to students’ performance. So, we used multiple regression to test if curriculum
and our two OTL measures would predict function achievement when prerequisite
knowledge, as measured by the pretests, was controlled. Assumptions of normality
of function achievement were tested, with skewness and kurtosis within acceptable
ranges.

Recall that the three function subtests were administered under different con-
ditions (e.g., calculator/no calculator, multiple-choice/constructed-response), so we
did not believe it appropriate to combine the results into a single function measure.
Rather, we ran three separate regressions using SPSS 20. For each functions subtest,
we examined five predictor variables: Pretest 1, the Terra Nova Algebra Test; Pretest
2, a UCSMP designed test; Function Lesson Coverage (see Table 6); Posttest OTL
for that subtest (see Fig. 1 and Tables 7–9); and curriculum (UCSMP or compari-
son). The independent variable, achievement on a functions subtest, and the first four
predictor variables are each reported as a percent; curriculum is a dummy variable
with the UCSMP curriculum coded as 1 and the comparison curriculum coded as 0.
Table 11 reports the coefficients of the predictor variables and their significance for
all three regressions; the Variance Independence Factor for each regression indicates
low multi-collinearity.

For Posttest 1, all five predictor variables are significant, and together they ac-
count for slightly more than a quarter of the variance. Four of the variables correlate
positively with achievement, but Function Lesson Coverage was negatively corre-
lated, suggesting that the greater the percent of lessons that were taught about func-
tions, the lower the achievement. Curriculum is the strongest predictor of achieve-
ment on the functions subtest of Posttest 1, with students studying from the UCSMP
Advanced Algebra textbook having about a 5 % advantage over the students study-
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Table 10 Percent correct on function items shown in Table 4 and percent of teachers who reported
having provided posttest opportunity to learn for that item

Item number CCSSM
Function Cluster

UCSMP Non-UCSMP

% correcta % of teachers % correctb % of teachers

1 Interpreting 83 100 77 100

3 Interpreting 65 80 46 80

16 Interpreting 46 100 42 100

40 Building 53 100 32 40

43 Interpreting 68 100 60 100

44 Building 30 60 25 60

53 Interpreting 39 100 27 100

PSU 2 Linear Models 24 80 12 100

PSU5a Interpreting 5 100 2 100

PSU 5b Interpreting 49 100 36 100

Note: On the PSU items, the percent correct is based on the percent of students who received a
rubric score that was considered successful, i.e., a score of 3 or 4 (out of 4) on PSU 2, and a score
of 2 (out of 2) on each of PSU 5a and 5b
an = 179 for UCSMP
bn = 213 for comparison

ing from a comparison textbook when their pretest scores and the OTL provided by
their teachers are the same.

For Posttest 2, although both pretests and the Posttest OTL were significant, nei-
ther curriculum nor Function Lesson Coverage was significant. The three signifi-
cant predictors account for about 20 % of the variance on the functions subtest of
Posttest 2.

For the functions subtest of the PSU test, all five variables were significant pre-
dictors, with Function Lesson Coverage having a small negative effect, and curricu-
lum having the largest positive effect. Overall, the five predictors determined more
than a third of the variance on the PSU subtest. Students studying from the UCSMP
Advanced Algebra textbook had about a 6 % advantage over the students studying
from a comparison textbook on the PSU, when their pretest scores and the OTL
provided by their teachers are controlled.

Discussion

Generally, the results of this study support claims that teachers enact the curricu-
lum in different ways. The teachers covered varying numbers of functions lessons
and reported providing different opportunities for students to learn functions, which
influenced student achievement.
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Table 11 Unstandardized regression coefficients and significance for models predicting posttest
achievement from pretest knowledge, posttest opportunity to learn functions, and function lesson
coveragea

Predictor
Variable

Posttest 1b Posttest 2c PSU Testd

β t p β t p β t p

Constant 14.057 3.664 <0.001∗ 0.600 0.135 0.893 −13.740 −3.878 <0.001∗

Pretest 1 0.293 4.943 <0.001∗ 0.207 2.925 0.004∗ 0.272 5.099 <0.001∗

Pretest 2 0.267 4.595 <0.001∗ 0.187 2.695 0.007∗ 0.308 5.768 <0.000∗

Posttest OTL
Functions

0.118 2.639 0.009∗ 0.344 6.529 <0.001∗ 0.207 5.311 <0.000∗

Function
Lesson
Coverage

−0.160 −3.742 <0.001∗ −0.045 −0.903 0.367 −0.098 −2.344 0.020∗

Curriculum 5.000 3.573 <0.001∗ −0.566 −0.325 0.746 5.841 4.691 <0.001∗

Note: For curriculum, UCSMP was coded 1 and non-UCSMP was coded 0
aCollinearity was tested for the predictor variables and was not an issue
bF(5,386) = 28.515, p < 0.001, R2 = 27.0 %
cF(5,386) = 21.634, p < 0.001, R2 = 21.9 %
dF(5,386) = 39.890, p < 0.001, R2 = 34.1 %

Opportunity to Learn Functions—The Intended and Enacted
Curriculum

Teachers using both the UCSMP and comparison curricula reported considerable
variation in the percent of textbook lessons taught and in the percent of items on the
posttests for which they reported teaching the needed mathematics. Thus, it is clear
that students in the 20 classrooms studied received widely different opportunities to
learn functions both within and across schools.

These differences are not particularly surprising to people familiar with educa-
tion in the United States. The U.S. Constitution gives the right to regulate education
to individual states; in many states this right is then granted to local education agen-
cies. So, looking across schools we often see great variation in topics covered in
comparable courses. The results presented here indicate this is true for Algebra 2,
and for function topics in particular. These differences are noteworthy for several
reasons.

First, many Algebra 2 students continue into a pre-calculus course where the cur-
riculum builds on the work with functions begun in Algebra 2; so, opportunities to
learn functions in Algebra 2 are important for students’ future success. The differ-
ences in OTL in this study suggest students are entering pre-calculus courses with
significantly different prior experiences.

Second, functions are included in the CCSSM (2010) as topics that all students
should learn to be ready for college and future careers. Hence, the lack of common
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focus related to functions within and across schools is particularly problematic. It
remains to be seen whether adoption of CCSSM will lead to more uniformity of
content covered in Algebra 2 courses. Large-scale assessments based on the CCSSM
are being developed in the U.S. to measure college and career readiness; without
greater consistency in the enacted curriculum, some students will have significant
advantage over others.

Curriculum developers should consider how functions are presented in Algebra
2 textbooks. Our analysis of the Posttest OTL related to functions suggests that the
functions topics emphasized by teachers, particularly among comparison classes, fo-
cus mainly on interpreting functions, which includes basic information about func-
tions as well as using multiple representations. Teachers generally paid less attention
to building functions. On the one hand, this supports the claim that students have
only a narrow perspective on functions, including facts and rules (Cooney et al.
2010). On the other hand, the emphasis on multiple representations is promising,
as that is required for a holistic understanding of functional relationships (Cooney
et al. 2010; Driscoll 1999; Leinhardt et al. 1990).

Knowledge of Functions—The Achieved Curriculum

Without accounting for differences in OTL, the students in classes using the UCSMP
curriculum performed significantly better than comparison students on Posttest 1
and the PSU, with differences in mean scores greater than one standard deviation
on both. This implies that the curriculum matters for those posttests. Though UC-
SMP students also outperformed comparison students by an average of about 5 %
on Posttest 2, the difference was not statistically significant. The somewhat low re-
liability of the subtest (Cronbach’s α = 0.38) may contribute to this result. Another
possible explanation is that the calculator leveled the playing field on this multi-
ple choice test. This result supports the idea that calculator use enhances students’
understanding of functions (Kieran 2007; NCTM 2000; Zbiek and Heid 2008), but
also suggests that this support is limited to situations where the calculator is actually
used on assessments.

Because UCSMP personnel developed the posttests, some may question their
fairness. Recall, however, that only posttest items that could be mapped directly to
the CCSSM functions standards were included in this secondary analysis so that the
adoption of CCSSM standards will mean that all students should learn the concepts
covered by items such as these. Furthermore, UCSMP students still outperformed
comparison students on the items for which all teachers reported covering the ma-
terial required.

The students in classes using the UCSMP textbook performed better than the
comparison students on a range of function topics, but the widest gaps were mainly
on interpreting functions questions. Most of these questions involved interpreting or
connecting multiple representations. This may reflect the emphasis that the UCSMP
curriculum places on analyzing functions using multiple representations throughout
the text.
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Overall, student performance on many functions items was fairly low across cur-
ricula. Again, this reflects previous findings that students struggle with function
concepts, especially when it comes to flexible thinking about covariation (Cooney
et al. 2010; Leinhardt et al. 1990). The difficulty students have with functions on
large scale assessments such as NAEP and TIMSS Advanced also suggests that this
is not just a local concern.

Curriculum and OTL Measures as Related to Achievement—The
Intended, Enacted, and Achieved Curriculum

When prior achievement (measured by two pretest scores), two OTL measures
(Function Lesson OTL and Posttest OTL Functions), and the curriculum type are
used to predict end-of-course achievement on the functions subtests, all five vari-
ables are significant on the subtests of Posttest 1 and the Problem Solving and Un-
derstanding Test. In both cases, curriculum type favors the UCSMP curriculum.
Students studying from the UCSMP textbook scored between 5 % and 6 % higher
than those using the comparison textbooks, even when the other predictors are con-
trolled.

Although Function Lesson Coverage has a significant effect on achievement on
these two functions subtests, the magnitude of the effect is negative. That is, the
greater percent of lessons taught, the lower the achievement of the students in either
curriculum. It is not clear what explains this apparent anomaly. It could be that
teachers in the study felt pressure from either the researchers or from their school
district to cover certain topics; that is, they sacrificed quality of teaching for quantity
of lessons taught. Or it could be, as noted earlier, that this measure overestimates
the attention given to functions in the textbook lessons counted, and hence is not a
valid measure of emphasis on functions.

In contrast, the regression analysis using the same five predictor variables for the
functions subtest of Posttest 2 found that only the two pretests and Posttest Oppor-
tunity to Learn Functions were significant. Neither Function Lesson Coverage nor
curriculum was significant. As mentioned earlier, having access to a graphing cal-
culator on a multiple-choice test may negate the curricular effect noted on the other
two functions tests. However, it is important to note that graphing calculators were
also permitted on the PSU, and on the functions subtest of the PSU, curriculum is
significant. The differential effect of calculators on the two subtests may be due to
differences in item format. The UCSMP curriculum provides numerous opportuni-
ties for students to write about mathematics, and perhaps this experience provided
students with sufficient background to do better on free response items on which
they needed to explain their thinking.
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Summary

We observed considerable variation in the intended, enacted, and achieved curricu-
lum of Algebra 2 related to functions. The textbook used by UCSMP students was
a significant predictor of their end of course achievement, whether or not prior
achievement and OTL measures were taken into account. Performance on function-
related items was consistent with similar national assessments such as NAEP.

These findings have implications for textbook development, classroom instruc-
tion, and large-scale assessments. The results also suggest that much more research
is needed to understand the connections among intended, enacted, and assessed cur-
ricula, particularly as the nation moves towards more testing with high stakes for
both students and teachers. The measures used here to understand opportunity to
learn at the classroom level potentially provide a means to study these connections
at scale.

References

Begle, E. G. (1973). Lessons learned from SMSG. Mathematics Teacher, 66, 207–214.
Bidwell, J. K., & Clason, R. G. (1970). Readings in the history of mathematics education. Wash-

ington: National Council of Teachers of Mathematics.
Bloom, B. (1976). Human characteristics and school learning. New York: McGraw-Hill.
Buck, R. C. (1970). Functions. In E. G. Begle & H. G. Richey (Eds.), Mathematics education,

sixty-ninth yearbook of the national society for the study of education, part I (pp. 236–259).
Chicago: University of Chicago Press.

Chazan, D. (2008). The shifting landscape of school algebra in the United States. In C. E. Greenes
& R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 19–23).
Reston: National Council of Teachers of Mathematics.

Common Core State Standards for Mathematics (2010). Retrieved November 10, 2010 from
http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf.

Cooney, T. J., Beckmann, S., Lloyd, G. M., Wilson, P. S., & Zbiek, R. M. (2010). Developing
essential understanding of functions for teaching mathematics in grades 9-12. Reston: National
Council of Teachers of Mathematics.

Dossey, J., Halvorsen, K., & McCrone, S. (2008). Mathematics education in the United States
2008: a capsule summary fact book. Reston: National Council of Teachers of Mathematics.

Driscoll, M. (1999). Fostering algebraic thinking. Portsmouth: Heinemann.
Dunlap, W. P., Cortina, J. M., Vaslow, J. B., & Burke, M. J. (1996). Meta-analysis of experiments

with matched groups or repeated measures designs. Psychological Methods, 1(2), 170–177.
Fey, J. T. (1984). Computing and mathematics: the impact on secondary school curricula. Reston:

National Council of Teachers of Mathematics.
Floden, R. E. (2002). The measurement of opportunity to learn. In A. C. Porter & A. Gamoran

(Eds.), Methodological advances in cross-national achievement (pp. 231–266). Washington:
National Academies Press.

Garden, R. A., Lie, S., Robitaille, D. R., Angell, C., Martin, M. O., Mullis, I. V. S., Foy, P., &
Arora, A. (2006). TIMSS advanced 2008 assessment frameworks. Boston: TIMSS & PIRLS
International Study Center, Boston College.

Gravetter, F. J., & Wallnau, L. B. (1985). Statistics for the behavioral sciences. St. Paul: West
Publishing Company.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf


Curriculum and Achievement in Algebra 2: Influences of Textbooks 539

Harwell, M., Post, T., Cutler, A., Maeda, Y., Anderson, E., Norman, K., & Medhamie, A. (2009).
The preparation of students from national science foundation–funded and commercially devel-
oped high school mathematics curricula for their first university mathematics course. American
Educational Research Journal, 46, 203–231.

Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a
tool. Journal for Research in Mathematics Education, 19, 3–25.

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: classroom-
based factors that support and inhibit high-level mathematical thinking and reasoning. Journal
for Research in Mathematics Education, 28(5), 524–549.

Kieran, C. (2007). Learning and teaching of algebra at the middle school through college levels:
building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second handbook
of research on mathematics teaching and learning (pp. 707–762). Charlotte: Information Age
Publishing.

Kilpatrick, J., & Izsák, A. (2008). A history of algebra in the school curriculum. In C. E. Greenes &
R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 1–18). Reston:
National Council of Teachers of Mathematics.

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: tasks, learn-
ing, and teaching. Review of Educational Research, 60(1), 1–64.

McGraw-Hill (2005). TerraNova algebra I. Monterrey: Author.
Mullis, I. V. S., Martin, M. O., Robitaille, D. F., & Foy, P. (2009). TIMSS advanced 2008 interna-

tional report: findings from IEA’s study of achievement in advanced mathematics and physics in
the final year of secondary school. Chestnut Hill: TIMSS & PIRLS International Study Center,
Boston College.

National Committee on Mathematical Requirements (1923). The reorganization of mathematics in
secondary education. Washington: Mathematical Association of America.

National Council of Teachers of Mathematics (2000). Principles and standards for school mathe-
matics. Reston: Author.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of curricula. Review
of Educational Research, 75(2), 211–246.

Remillard, J., Herbal-Eisenmann, B., & Lloyd, G. (Eds.) (2009). Mathematics teachers at work:
connecting curriculum materials and classroom instruction. New York: Routledge.

Romberg, T. A., & Shafer, M. C. (2008). The impact of reform instruction on student mathematics
achievement: an example of a summative evaluation of a standards based curriculum. New
York: Routledge.

Schoen, H. L., Ziebarth, S. W., Hirsch, C. R., & BrckaLorenz, A. (2010). A five-year study of the
first edition of the core-plus mathematics curriculum. Charlotte: Information Age.

Schmidt, W. H., McKnight, C., Houang, R. T., Wang, H. C., Wiley, D. E., Cogan, L. S., & Wolfe,
R. G. (2001). Why schools matter: a cross-national comparison of curriculum and learning.
San Francisco: Jossey-Bass.

Schmidt, W. H., Wolfe, R. G., & Kifer, E. (1992). The identification and description of student
growth in mathematics achievement. In L. Burstein (Ed.), The IEA study of mathematics III:
student growth and classroom processes (pp. 59–99). Oxford: Pergamon.

Senk, S. L., & Thompson, D. R. (Eds.) (2003). Standards-based school mathematics curricula:
what are they? What do students learn? Mahwah: Erlbaum.

Tarr, J. E., Chávez, Ó., Reys, R. E., & Reys, B. J. (2008a). From the written to the enacted curricula:
the intermediary role of middle school mathematics teachers in shaping students’ opportunity
to learn. School Science and Mathematics, 106(4), 191–201.

Tarr, J. E., Reys, R. E., Reys, B. J., Chávez, Ó., Shih, J., & Osterlind, S. J. (2008b). The impact
of middle-grades mathematics curricula and the classroom learning environment on student
achievement. Journal for Research in Mathematics Education, 39(3), 247–280.

Thompson, D. R., & Senk, S. L. (1993). Assessing reasoning and proof in high school. In N. Webb
& A. Coxford (Eds.), Assessment in the mathematics classroom (pp. 167–176). Reston: National
Council of Teachers of Mathematics.



540 S.L. Senk et al.

Thompson, D. R., & Senk, S. L. (1998). Using rubrics in high school mathematics courses. The
Mathematics Teacher, 91, 786–793.

Thompson, D. R., & Senk, S. L. (2010). Myths about curriculum implementation. In B. Reys, R.
Reys, & R. Rubenstein (Eds.), Mathematics curriculum: issues, trends, and future directions
(pp. 249–263). Reston: National Council of Teachers of Mathematics.

Thompson, D. R., & Senk, S. L. (in preparation). An evaluation of the third edition of UCSMP
advanced algebra. Chicago: University of Chicago School Mathematics Project.

Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies
in Educational Evaluation, 31, 315–327.

Usiskin, Z. (2003). A personal history of the UCSMP secondary school curriculum, 1960-1999. In
G. M. A. Stanic & J. Kilpatrick (Eds.), A history of school mathematics (pp. 673–736). Reston:
National Council of Teachers of Mathematics.

Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According
to the book: using TIMSS to investigate the translation of policy into practice through the world
of textbooks. Dordrecht: Kluwer Academic Publisher.

Zbiek, R. M., & Heid, M. K. (2008). Digging deeply into intermediate algebra: using symbols to
reason and technology to connect symbols and graphs. In C. E. Greenes & R. Rubenstein (Eds.),
Algebra and algebraic thinking in school mathematics (pp. 247–259). Reston: National Council
of Teachers of Mathematics.

Appendix: Textbooks Used in the Study

Bellman, A. E., Bragg, S. C., Charles, R. I., Handlin, W. G. Sr., & Kennedy, D. (2004). Algebra 2.
Needham: Prentice Hall.

Flanders, J., Karafiol, P. J., Lassak, M., McMullin, L., Sech, J. B., Weisman, N., & Usiskin,
Z. (2006). Advanced algebra (Third edition, field trial version). Chicago: The University of
Chicago School Mathematics Project.

Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. (2001). Algebra 2. Evanston: McDougal Littell.
Lial, M. L., & Hornsby, J. (2000). Intermediate algebra (8th ed.). Reading: Addison Wesley Long-

man.
Schultz, J. E., Ellis, W. Jr., Hollowell, K., & Kennedy, P. A. (2001). Algebra 2. Austin: Holt,

Rinehart and Winston.



Learning Paths and Learning Supports
for Conceptual Addition and Subtraction
in the US Common Core State Standards
and in the Chinese Standards

Karen C. Fuson and Yeping Li

Abstract The results of the Fuson and Li (ZDM Math. Educ. 41:793–808, 2009)
analysis of the major early numerical aspects and learning supports for single-digit
and multi-digit adding and subtracting in a representative Chinese textbook series
and a US textbook series (Math Expressions) are related to the Chinese standards
and to the US Common Core State Standards for these topics. Similar learning paths
and visual-quantitative supports for mathematical thinking were identified in the
textbooks from both countries, the US standards, and the experimental Chinese stan-
dards (2001). The new Chinese standards (2011) were less specific about learning
paths and supports, though these appeared in examples. Criteria for judging the best
variations of the multi-digit adding and subtracting variations were proposed and
used. This analysis identified the best variations as the “New Groups Below” for
adding and the “Ungroup First” for subtracting. The somewhat different levels in
the adding and subtracting learning paths for East Asia and the US are summarized.

Keywords Addition · Subtraction · Language effects · Learning supports ·
Cross-cultural textbook analysis · Standards

Introduction

Several studies document ways in which East Asian mathematics textbooks support
conceptual understanding by students (Cai 2008; Li 2007, 2008; Li et al. 2009a,b,c;
Murata 2004, 2008; Murata and Fuson 2006; Watanabe 2006). Some of these studies
also describe ways in which mathematics textbooks from the US fail to support
conceptual understanding in these ways. One exception (Fuson and Li 2009) is the
support for single-digit and multi-digit addition and subtraction in the most-used
Chinese text and in a US second-generation NSF math textbook Math Expressions
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(Fuson 2006/2009). In that study, Fuson and Li reported extensive linguistic, visual-
quantitative, and written-numeric supports for mathematical thinking in the Chinese
textbooks and for the US textbook for the grades analyzed (Grades 1, 2, and 3 in both
countries and Kindergarten for Math Expressions).

The diverse results from textbook analyses across countries suggest the need to
examine and understand possible influences from curriculum standards that help
guide the development of textbooks and possible learning paths embedded in text-
books. In many countries textbooks are a commonly used teaching resource that
embodies the mandated curriculum. Therefore, it is also important to analyze the
curriculum documents themselves as they are the primary source on which teachers
and textbook writers draw in creating learning resources and planning learning ex-
periences. Thus a major objective of this chapter is to analyze the extent to which
curriculum standards in China and the US provide a coherent learning path that
supports conceptual understanding of addition and subtraction.

China has a centralized education system, where curriculum standards are devel-
oped and used to provide overall guidelines for school education across the nation
(Liu and Li 2010). While textbooks are developed as aligned with the curriculum
standards, instructional activities and planning also follow information provided and
highlighted in the curriculum standards including curricular goals, content, and their
specifications at different grade levels. Before 2001, mathematics curriculum stan-
dards were called national mathematics teaching syllabus. The current version of the
Chinese Mathematics Curriculum Standards (CMCS, Ministry of Education 2011)
was revised from an experimental version that was published in 2001 (Ministry of
Education 2001).

The United States has an education system with goals set by each of the 50
states, and districts within each state may also set goals. In the past, this has led
to standards that vary extremely across states, resulting in a “mile wide and inch
deep” curriculum (Schmidt et al. 1997). In the last decade, however, governors of
many states organized a process to produce a set of standards that would be the
same across all states that chose to participate. Standards were written by an ap-
pointed committee with advisors. The standards were then revised to accommodate
the many comments elicited from across the nation. The final standards are now
called the Common Core State Standards (CCSS) for the United States (National
Governors Association Center for Best Practices, Council of Chief State School Of-
ficers 2010). Almost all states agreed to use these standards; states that did not agree
have standards that are similar to the CCSS.

If our analysis indicates that the new US CCSS standards require conceptual sup-
ports, then all mathematics books in the United States will need to include such sup-
ports, as the US textbook Math Expressions did in the Fuson and Li analysis (2009).
This would be a significant step forward given that other analyses have not found
such supports in many US textbooks. For China, the related question is whether the
conceptual supports in textbooks exist because they are mandated in the mathemat-
ics curriculum standards or for other reasons. If they are not mandated, it seems that
there is widespread cultural agreement that such supports facilitate learning and thus
there is no need to mandate these in the mathematics standards.
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In the following sections, the major results of the Fuson and Li (2009) analysis
will first be summarized. Then features of the CCSS and Mathematics Curriculum
Standards for China for the target mathematics domains will be presented and com-
pared to the analysis of the textbooks. Then criteria for mathematically-desirable
and accessible multi-digit methods that support conceptual learning and fluency
will be summarized and applied to the variations of methods found in Fuson and
Li (2009). Finally, the somewhat different learning paths for multi-digit adding and
subtracting in the US and East Asia will be summarized.

A Coherent Learning Path of Meaning-Making Supports
in Textbooks

An important framework for the Fuson and Li (2009) analysis was the Fuson and
Murata (2007) Class Learning Path Model that integrated teaching principles from
two US National Research Council reports (Donovan and Bransford 2005; Fuson
et al. 2005; Kilpatrick et al. 2001), the NCTM process standards (National Council
of Teachers of Mathematics 2000), and from teaching in Japanese classrooms. This
model discusses the importance of a coherent learning path that supports student
movement from primitive to more advanced methods that are mathematically de-
sirable. Mathematically-desirable methods show important mathematical features,
generalize across numbers and situations, and are efficient in computation. Fuson
and Murata also discuss how it is possible to teach mathematically-desirable meth-
ods so that students can understand them. These accessible but mathematically-
desirable methods have the numerals organized and written to support place value.
These methods also do not have misleading written-numeric features that interfere
with understanding or stimulate errors.

Consistent with the previous study (Fuson and Li 2009), written-numeric sup-
ports in this paper refer to the extent to which the written numerical method is pre-
sented with notated intermediate steps that make the written method more accessible
to students and easier to carry out. Visual-quantitative supports refer to those clarify-
ing text illustrations to show visually important quantitative aspects of the concepts
involved. Linguistic supports mean how clearly a language expresses mathemati-
cal ideas. For example, Chinese language often expresses ideas more clearly than
English, especially in the initial learning of numerical concepts.

Single-Digit Adding and Subtracting

For single-digit adding and subtracting, Fuson and Li (2009) found that both the
East Asian and US textbooks took a coherent learning path consisting of methods
that moved through the three levels identified in extensive international research
(e.g., see research in Fuson 1992):



544 K.C. Fuson and Y. Li

• Level 1: Count all and take-away
• Level 2: Count on keeping track of the second addend
• Level 3: Recompose the addends to make a new problem.

The mathematically-desirable recomposing method is make-a-ten, because it can be
used for all single-digit sums over ten. For example, one can recompose the 6 in 8+
6 to become 10 + 4 : 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14. In both textbooks, children’s
methods are elicited and discussed, and then support is provided to move through
the entire learning path to an accessible and mathematically-desirable method.

There are three conceptual prerequisites for the make-a-ten methods (see also
Murata 2004, and Murata and Fuson 2006, for a discussion of how these are taught
in a Japanese classroom). The prerequisites are easier to discuss if we introduce
terminology used in the US Math Expressions program. Two addends that compose
a number are called partners (e.g., in the make-a-ten method above for 8 + 6, 8 and
2 are partners of 10, and 2 and 4 are partners of 6). To carry out the addition or
subtraction make-a-ten methods, children must

(a) know the partners to ten for the numbers 9, 8, 7, and 6 to do the first step,
(b) know all of the partners of a given number to find the second step, and
(c) know the total 10 + n composed to be written as 1n (or know that 1n decom-

poses to be 10 + n).

Step (c) is the step that is very easy if you say the written teen number using ten
as in many East Asian languages (e.g., 12 is said as ten two). This step is more
difficult in English where there are no verbal cues that 12 is equal to ten plus two.
Both textbooks helped children learn the prerequisites for the make-a-ten method.
The extensive work involved in finding two partners of a number for prerequisites
(a) and (b) also supports children during the embedded addend thinking required
for Level 2 of “counting on to add or to subtract” (e.g., 14 − 8 is thought of as
8 + ? = 14).

Details of how the Chinese books provide a coherent sequence of visual-
quantitative supports (illustrations and drawings in the book) are given in Fuson and
Li (2009) including seeing numbers 6 to 10 as 5-groups, which facilitates adding
and subtracting and the make-a-ten method. Various linguistic supports in the math
words in Chinese are then summarized including the easier teen numbers with the
ten said explicitly and the more meaningful words for the parts of an addition and of
a subtraction equation. Written-numeric supports that show the make-a-ten method
are also displayed beginning with break-apart addend (partner) drawings (an upside
down V with the total at the top and addends at each leg).

Details of how the Math Expressions books provide a coherent sequence of
visual-quantity supports (illustrations and drawings in the book) are also given in
Fuson and Li (2009). Because the Level 3 make-a-ten method is more difficult in
English than in Chinese, mastery of Level 2 counting on methods was facilitated
and emphasized early in Grade 1. These counting on methods are the accessible and
mathematically-desirable methods for adding and subtracting that can become very
fluent and then merge for many children into the make-a-ten methods or directly into
known sums. Emphasizing subtracting as finding an unknown addend and counting
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on to find an unknown addend eliminated the many common errors made by US
children counting down to subtract. The visual-quantitative supports for moving to
these Level 2 methods and for the prerequisites for the Level 3 methods were de-
scribed, e.g., 5-group patterns as in East Asia shown on a Number Parade and on
student pages and penny strips showing ten pennies on one side and a dime on the
back used to make teen numbers with an obvious group of ten. Written-numeric
supports such as the addend drawings (developed independently and called Math
Mountains) were also described. Various linguistic and visual-quantitative supports
needed to compensate for various difficulties in English were also described, e.g.,
using tens-in-teens words as well as English words: one ten four ones for 14; secret-
code cards in which a unit card, for example a 4, is placed on top of the 0 in the 10
card to make 14 so children could imagine the 0 hiding under the 4 and be supported
to think of 14 as ten and 4 (10 and 4) even though their word for fourteen obfuscates
this composition from a ten and 4 ones.

Multi-digit Adding and Subtracting

For multi-digit adding and subtracting, Fuson and Li (2009) found in both text-
books a coherent learning path of methods that moved rapidly to accessible and
mathematically-desirable methods. Again, students’ methods are initially elicited
and discussed, but then support was provided to learn one or more accessible and
mathematically-desirable methods. The irregularities in the English words for 11
through 99 required special learning supports relating drawings of tens and ones
(later: hundreds, tens, and ones and larger quantities) to secret-code cards that
showed the numbers in expanded notation with all zeroes but could be layered to
show just the place value numbers (e.g., 379). Students used English number words
and place-value number words to describe all of the quantities three hundreds seven
tens nine ones.

East Asian books showed the meanings of multi-digit adding and subtracting
with pictures of quantities such as bundled sticks or base-ten blocks. The feature
that differs from many US texts that show similar pictures is that each step is shown
so that students can relate what happens with the quantities to what happens in the
written numeric method. In Math Expressions math drawings that showed hundreds,
tens, and ones were built up and used so that students could make math drawings
that would relate to their written numeric method as they explained and related steps
in the drawing and the written method.

For multi-digit adding, all methods found in both textbooks, and in the Japanese
and Korean books examined, used the same core approaches based on place-value:
Two multi-digit numbers were added by adding like multi-units (numbers in like
places) and making new larger unit(s) as needed (grouping/carrying). There were
variations in the written-numeric supports for this core approach (i.e., how much
a method showed the place value meanings) and in the order in which steps were
carried out (e.g., adding hundreds or ones first). Numbers for the steps were written
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in different places and in different ways. Different variations existed in the books
for the same country. These variations also varied in how clear and easy the method
was to carry out.

For multi-digit subtracting, all methods used the same core approaches: Like
multi-units were subtracted and ten more next-smaller units were made from one
larger multi-unit as needed (ungrouping/borrowing) in order to do these subtrac-
tions. There were variations in the written methods including methods that showed
only part of the step of getting ten next-smaller units when needed. Most methods
involved alternating between the two aspects of the core approach (ungrouping then
subtracting one place), but one method did all of the ungrouping first and then all of
the subtracting.

Are There Coherent Learning Paths and Meaning-Making
Supports in the US CCSS and Mathematics Curriculum
Standards for China?

Core attributes of the US Common Core State Standards (CCSS) for single-digit and
multi-digit adding and subtracting are given in Table 1. Table 1 indicates that most
of the central aspects of the examined textbooks are specified in the CCSS. Coherent
learning paths that begin with understanding and move to fluency are identified for
single-digit and multi-digit addition and subtraction. These learning paths initially
use visual-quantitative supports and then move to fluency without such supports.
The answer for Chinese Mathematics Curriculum Standards (CMCS) standards is
more complex and is given separately below for single-digit and multi-digit numbers
where the contents of the US standards are also discussed in more detail.

Single-Digit Adding and Subtracting in Curriculum Standards

US The three levels of the CCSS single-digit learning path begins in Kindergarten
with Level 1 and moves to Levels 2 and 3 in Grade 1 (see Table 1). Students con-
tinue with these levels in Grade 2. Students are to use visual-quantitative supports
such as objects or drawings for this learning path. Fluency is specified for partic-
ular numbers at each grade level. Inclusion of these levels of student thinking is
an important step forward because Fuson and Li (2009) explained that the learning
path in many US textbooks at the time of the development of the Math Expressions
program was to move from Level 1 directly to recall of memorized facts. In the
US, there was, and still is, the idea that these “facts” can and should be learned as
separate rote bits of information rather than as a set of interrelated triads that have
many relationships accessible to reasoning and that go through the well-established
research-based learning path of three levels.

The CCSS Operations and Algebraic Thinking (OA) Progression (The Common
Core Writing Team 2011a) that explicates the OA standards makes it clear that math
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Table 1 Core attributes of the US common core standards for single-digit and multi-digit addition
and subtraction

Overall attributes

1. Research-based learning paths and the use of learning supports are specified.
2. Understanding and fluency are both crucial foci and mentioned specifically, and the standards

are focused and coherent across grades so there is time to focus on understanding and on fluency.

Single-digit addition and subtraction

The standards specify a learning path of three levels of single-digit addition/subtraction strategies
from Kindergarten through grade 2: (1) direct model counting all, (2) count on, (3) make a ten and
other methods that recompose the addends.

Kindergarten children add and subtract within 10 using Level 1 methods (K.OA.1, 2), and they
learn prerequisites for Level 2 and Level 3 methods (K.OA.3, 4; NBT.1). Children use visual-
quantitative supports such as objects or drawings.
Grade 1 children add and subtract within 20 using Level 2 and 3 strategies (1.OA.6). Visual-
quantitative supports are not mentioned explicitly, but are implicit because they are described in
the OA Progression (2011a) and are used in the many studies about these strategies.
Grade 2 children fluently add and subtract within 20 using Level 2 and 3 strategies (2.OA.2) as
outlined in 1.OA.6.

The standards specify fluency for adding and subtracting to specific totals by grade level: K.OA.5:
totals ≤5; 1.OA.6: totals ≤10; 2.OA.2: totals ≤20 including by end of Grade 2, know from
memory all sums of two one-digit numbers.

Multi-digit addition and subtraction

For multi-digit computation, the standards specify a learning path in which students first develop,
discuss, and use concrete models or drawings and strategies based on place value and properties
of operations, and they relate the strategy to a written method and explain the reasoning used
(explanations may be supported by drawings or objects). They use the visual-quantitative supports
for adding within 100 in Grade 1 (1.NBT.4) and for adding and subtracting within 1,000 in
Grade 2 (2.NBT.7, 9). Grade 1 specifies “understand that in adding two-digit numbers, one adds
tens and tens, ones and ones; and sometimes it is necessary to compose a ten.”
Students then move to fluency to specific totals by grade level:

In Grade 2 they fluently add and subtract within 100 using strategies based on place value, prop-
erties of operations, and/or the relationship between addition and subtraction (2.NBT.5).
In Grade 3 they fluently add and subtract within 1000 using strategies and algorithms based on
place value, properties of operations, and/or the relationship between addition and subtraction
(3.NBT.2).
In Grade 4 they fluently add and subtract using the standard algorithm for totals through 1,000,000
(4.NBT.4).

Note: There are place value standards that support these computation standards

textbooks and teachers are to support this learning path of student reasoning and use
of strategies and not just move immediately to fact fluency: “The word fluent is
used in the Standards to mean “fast and accurate.” Fluency in each grade involves a
mixture of just knowing some answers, knowing some answers from patterns (e.g.,
“adding 0 yields the same number”), and knowing some answers from the use of
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strategies. It is important to push sensitively and encouragingly toward fluency of
the designated numbers at each grade level, recognizing that fluency will be a mix-
ture of these kinds of thinking that may differ among students. The extensive work
relating addition and subtraction means that subtraction can frequently be solved
by thinking of the related addition, especially for smaller numbers. It is also im-
portant that these patterns, strategies and decompositions still be available in Grade
3 for use in multiplying and dividing and in distinguishing adding and subtracting
from multiplying and dividing. So the important press toward fluency should also
allow students to fall back on earlier strategies when needed. By the end of the K-
2 grade span, students have sufficient experience with addition and subtraction to
know single-digit sums from memory (2.OA.2). As should be clear from the fore-
going this is not a matter of instilling facts divorced from their meanings, but rather
as an outcome of a multi-year process that heavily involves the interplay of practice
and reasoning (pp. 18–19).”

The extended East Asian experience in supporting students through this mean-
ingful learning path suggests a further clarification of what “known from memory”
means. Murata (2004) reported that many Japanese students interviewed about their
use of the make-a-ten method did not clearly distinguish between using the strategy
and “just knowing” the total. These seemed to merge into such a rapid use of the
strategy that it was not externally, and even sometimes internally, distinguishable
from “just knowing.” Therefore, “known from memory” might be a strategy that is
done so quickly that others cannot tell whether the answer is obtained by just know-
ing or by rapid use of a strategy. These “known from memory” sums for the US
CCSS can be seen as the culmination of a three-year process in which patterns (e.g.,
for adding 0 or adding 1), strategies, and remembered results merge to become sums
“known from memory” but in ways that might differ across students. What fluency
actually entails may differ between East Asian and at least some US students be-
cause the general make-a-ten method is more difficult in English, and thus fewer
students use this Level 3 method.

No specific linguistic supports are described in the US CCSS, but the need for
additional supports for the irregular English number words from 11 to 99 is identi-
fied and discussed in the Numbers Base Ten (NBT) Progression (2011b). In addition
to these English-Chinese number word differences, Fuson and Li (2009) found that
Chinese words for the parts of addition and subtraction equations were more mean-
ingful than those in English. The auditory confusion between sum and some led to
the use in Math Expressions of total instead of sum in the early grades. The difficult
words for subtraction (subtrahend, minuend) led to the use of addend in subtraction
as well as addition, providing the further benefit of relating addition and subtraction
in the context of equation forms. Further analyses of other linguistic differences re-
ported in Fuson and Li (2009) for these or other topics might be helpful (see also
Song and Ginsburg 1987).

China An examination of the Chinese Mathematics Curriculum Standards
(CMCS, Ministry of Education 2011) indicates that these standards emphasize
the development of students’ understanding of numerical concepts (up to 10,000
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from grades 1–3) and computations (adding/subtracting of two-digit and three-digit
numbers, and multiplying 1-digit times 3-digit and 2-digit times 2-digit numbers,
dividing two-digit or three-digit numbers by a 1-digit number). In classroom in-
struction, CMCS requires teachers to use real world contexts to develop students’
number concepts through observations, hands-on work, and problem solving. It
emphasizes oral computations, estimations, and students’ sharing of different com-
putation methods. Further suggestions are also provided for teaching, assessment,
and textbook development. For instance, CMCS in its experimental version (Min-
istry of Education 2001) included six general suggestions for textbook develop-
ment, including (1) selecting and using problems and tasks that are engaging and
closely related to students’ daily lives; (2) providing students with opportunities
for active thinking, collaborations, and discussions; (3) using multiple forms and
representations to present materials; (4) introducing important mathematics con-
cepts and ideas step by step; (5) leaving some flexibilities in content design; and
(6) introducing related background information of selected mathematics concepts.
These suggestions provide general guidelines for textbook writers to develop and
include written-numeric, visual-quantitative, and linguistic supports in textbooks.
Its current version (Ministry of Education 2011) still contains six general sugges-
tions for textbook development, with similar but more comprehensive intentions.
These suggestions include (1) textbook writing should emphasize scientific quality,
(2) textbook writing should emphasize coherence and structure, (3) textbook con-
tent should show its development process, (4) textbook content should connect with
students’ reality, (5) textbook content design should leave some flexibilities, and
(6) textbook should be readable and user friendly. In contrast to the US CCSS, the
Chinese CMCS do not provide many specifics except some examples. Fluency is
not specified for particular grade levels. The Chinese CMCS uses sample problems
and solutions to illustrate its general suggestions rather than the detailed descrip-
tions in the US CCSS. And the CMCS does not specify the single-digit learning
progression from Levels 1–3 in Kindergarten to Grade 1 even though Fuson and
Li (2009) found these levels in the textbook. However, this learning progression
has been used for many years in China, so perhaps it is less necessary that it be
specified.

Multi-digit Adding and Subtracting in Curriculum Standards

US The CCSS coherent learning path that begins with understanding and moves
to fluency for multi-digit addition and subtraction starts with methods that use
place value and properties of operations. These methods are initially grounded in
visual-quantitative supports (concrete models or drawings) and related to a writ-
ten method and explained (see Table 1). This is the approach reported by Fuson
and Li (2009) for the Chinese (and other East Asian) and Math Expressions text-
books. In the US CCSS, fluency without the use of visual-quantitative supports
is at Grade 2 within 100 and at Grade 3 within 1000. In the US CCSS and in
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Math Expressions students generalize the standard algorithm through 1,000,000 in
Grade 4.

China An examination of the Chinese Mathematics Curriculum Standards
(CMCS) and textbooks indicates that sharing and discussing different ways of do-
ing multi-digit computations is part of the approach. Computations with numbers
larger than three digits are not emphasized in Grades 1–3, but estimation may in-
volve simple 4-digit numbers. Numbering in Chinese uses different names for larger

numbers through the first 5 places that students need to learn by Grade 3 (i.e., —

ones, —tens, —hundreds, —thousands, —ten thousands). The use of
distinct names with the meaning of different place values likely helps students to
extend their computation skills to larger numbers when needed.

Many Methods or One in Curriculum Standards?

Fuson and Li (2009) reported variation in how multi-digit adding and subtracting
methods were written even within the same country. The standards of both coun-
tries explicitly or implicitly allow different methods to be used. But the US CCSS
calls the early methods that are used with drawings strategies, the later methods al-
gorithms, and specifies that students are eventually to use the standard algorithm.
The differences in these terms are discussed in Fuson and Beckmann (2012). These
terms are not differentiated or even used in China, so the differences are not im-
portant for this paper. We will call all of these methods. But it is important for this
paper to convey that “the standard algorithm” does not mean one single algorithm,
but rather a collection of variations of written methods that use the same mathe-
matical approach. The term “standard algorithm” is not defined in the CCSS, but
in the NBT progression (The Common Core Writing Team 2011b) and in Fuson
and Beckmann (2012), standard algorithms implement and are characterized by this
mathematical approach:

• they decompose numbers into base-ten units and then carry out single-digit com-
putations with those units using the place values to direct the place value of the
resulting number; and

• they clearly use the one-to-ten uniformity of the base ten structure as they gener-
alize to large whole numbers and to decimals.

All of the methods identified in Fuson and Li (2009) use this mathematical ap-
proach. This approach was classified by Fuson et al. (1997) as decompose-tens-
and-ones methods rather than as begin-with-one-number methods that add or count
on from one addend. Fuson and Beckmann analyze both of these kinds of meth-
ods and conclude that only the decompose-tens-and-ones methods (more generally,
decompose-place-values methods) qualify as a standard algorithm.
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Criteria for Mathematically-Desirable and Accessible
Algorithms for Multi-digit Adding and Subtracting

Given the variation between methods reported in Fuson and Li (2009) and supported
in the standards for both countries explicitly or implicitly, an important educational
question is: Are there variations that are more supportive of understanding and ex-
plaining and also easier to carry out than other variations? To address this ques-
tion, we first identify aspects of multi-digit adding and subtracting in Table 2 that
vary in how methods are written. These issues arise from mathematical aspects of
multi-digit adding/subtracting or from the research literature about typical errors or
preferences of children.

In Table 3 we show the major methods from Fuson and Li (2009) and then an-
swer the questions from Table 2 to identify which methods clarified more conceptual
issues or were easier to carry out. Because, as discussed above, all of the methods
used in Fuson and Li (2009) benefited from visual-quantitative supports, these sup-
ports are shown in Table 3. The Secret-Code Cards show the 0 in the tens numbers
hiding under the ones, and thus enable students to move from the first Expanded

Table 2 Conceptual issues for multi-digit adding and subtracting

Adding

(a) Add like quantities
Is adding like quantities made easier by using vertical form and aligning like places (units)?

(b) Group (carry) 10 units to make 1 new next-larger unit (ten, hundred, etc.) if needed

(B1) Is it easy to see the total that includes the new grouped unit (e.g., 14 ones or 14 tens)?
(B2) Do you write that teen total in the usual order (1 ten then the ones)?
(B3) Is it easy to see where to write the new unit?
(B4) Is it easy to add units that include that new unit?

(c) MDN + MDN = MDN
Are the two addends and the total kept separate? If not, the problem is changed.

(d) Can you go from left to right?
Many English-speaking students prefer to do math in the same direction as they read. So this
preference would vary by language.

Answers of yes in Table 3 mean that the written method addresses that conceptual issue.

Subtracting

Issues a (Subtracting like quantities), c, and d are the same as those described above for Adding.

(b) Ungroup (borrow) 1 to make 10 new next-smaller units if needed

(B1) Is it easy to see the total that includes 10 of the new ungrouped unit (e.g., 14 ones or 14
tens)?

(B2) Do you write that teen total in the usual order (1 ten then the ones)?
(B3) Is it easy to see and/or to see where to write the new ungrouped unit?
(B4) Is it easy to subtract from the units that include that new ungrouped unit?

(e) Does the method avoid the common subtracting error of subtracting top from bottom?
(f) Does the method do all of one kind of step first and then all of the other kind of step?
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Table 3 The support of multidigital addition methods for the conceptual issues in Table 2

Notation Method (A1) to the two forms that do not write out the expanded forms for
the addends but do for the sums (A2 and A3). The quantity drawings that show tens
and ones help students see how to align the numbers vertically (especially for cases
where the number of digits differs such as 8 and 65) and why one adds the numbers
in like places (because they are like quantities tens and ten or ones and ones that
can be readily distinguished in the math drawings). Each of these visual-quantity
supports is helpful because they address different conceptual issues. The drawings
for tens and ones in the Chinese books serve the same functions as the drawings in
Table 3. The quantity drawings can support any method.

One of the Expanded Notation methods (the right to left A3 method) and the
New Groups Below method (method B) address all of the mathematical issues a, b,
and c from Table 2. The first and second Expanded Notation methods read from left
to right (and are yes for d), so they are easier for some students. The New Groups
Above method C does not support any conceptual issues except that it aligns like
places (a). The problems with this method are:

• b1: The total is separated in space so that it is difficult to see as a total 14.
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• b2: Usually students are to write down the 4 and carry/group the 1, so they must
write 14 opposite to their usual order of writing 1 then 4.

• b3: Writing the new 1 ten above the left-most place instead of the next-left place
is a well-documented error; it arises more with problems of 3-digits or more.

• b4: To add the column with the new unit above, students must add the 1 to one
of the numbers in that place, remember that number and ignore the number they
just used, and add the mental number to the other number they see. Or they add
the two numbers there originally but then often forget to add the 1 on the top.

The Expanded Notation methods are useful for initial understanding, and the sec-
ond and third such methods (A2 and A3) easily generalize to 3 or even 4 places. But
these methods get complex for numbers as large as 1,000,000, so they cannot be con-
sidered totally general methods. Therefore, two approaches seem sensible. In the
initial Chinese Mathematics Curriculum Standards (Ministry of Education 2001),
the sharing of different computation methods is specifically emphasized, including
the Expanded Notation method, for example, 58 + 36 = (50 + 30) + (8 + 6) =
80 + 14 = 94. Methods adding on from the first number were also described (e.g.,
58 + 36 = 58 + 30 + 6 = 88 + 6 = 94; 58 + 36 = 58 + 2 + 34 = 60 + 34 = 94) as
was the method of New Groups Below. However, in the current new version of the
Chinese Mathematics Curriculum Standards (Ministry of Education 2011) these ex-
amples do not appear, implying that students are to generate different methods but
that teachers do not necessarily teach all different methods. In Math Expressions
the Expanded Notation methods are used through Grade 3 because some English-
speaking children benefit from working with the expanded forms for a longer time
because of the irregular decade words in English. However, New Groups Below is
introduced in Grade 1 and continued in all subsequent grades because of its concep-
tual advantages and because it generalizes. New Groups Above is introduced by the
teacher in Math Expressions as a method used by some people if a student does not
bring it into the class because it is considered by some people to be “the standard
algorithm.” All methods in Table 3 can be related to each other.

Results of the related analysis of Table 2 issues for the multi-digit subtracting
methods reported in Fuson and Li (2009) are shown in Table 4. Conceptual issues
a, b, c, and d for subtraction were similar to those for addition. Two new issues
arise for subtracting. The use of the vertical form for adding like places suggests
an extremely common subtraction error: Subtract the top from bottom number in-
stead of ungrouping to get more (e.g., for 94–36, get 62). This error is increased in
the US partly by the common practice of introducing problems with no ungrouping
(e.g., 78–43) in Grade 1 and only moving to ungrouping problems a year later in
Grade 2. The US CCSS will hopefully prevent this common textbook practice be-
cause no general 2-digit subtractions are in the US Grade 1 standards. In the East
Asian textbooks examined, problems with no ungrouping are introduced first but the
textbooks move immediately to problems requiring ungrouping, so Chinese students
do not experience this difficulty.

Visual-quantitative supports of models or drawings that show hundreds, tens, and
ones were used in all textbooks in the Fuson and Li (2009) analysis for subtracting.
These might not have been needed so much for knowing issue (a) subtracting like
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Table 4 The support of multidigital substraction methods for the conceptual issues in Table 2

quantities because of the previous work on multi-digit adding. These models illus-
trate directly the ungrouping (borrowing) needed to get more units in a top num-
ber in order to be able to subtract from it. Math Expressions also used a special
visual-quantitative support—the magnifying glass (see Table 4)—to interfere with
the common subtracting error and to help with conceptual issue c: seeing the three
multi-digit numbers involved in the subtracting rather than only seeing the vertical
frame for (a) subtracting like quantities. Students draw a magnifying glass (an el-
lipse) around the top number that is big enough to hold all of the ungrouping, with
a little stick at the top right for the handle. The magnifying glass is introduced as
something that reminds us to look inside the top number to check in each column to
see if there is enough to subtract. This support serves to inhibit the subtract-smaller-
from-larger number error that is often made before students even think about un-
grouping. The magnifying glass also makes a visual grouping that emphasizes the
top multi-digit number as a whole and thus facilitates a discussion about whether
the value of the top number is changed when it is ungrouped. Because many US
students view multi-digit subtraction as successive vertical operations on columns
of single digits, many think that ungrouping does change the value of the top num-
ber (e.g., see literature reviewed in Fuson 1990). Students enjoy the metaphor of the
looking glass, but they drop this step when they no longer need it.

Table 4 shows the two major subtracting methods Fuson and Li (2009) found
in the textbooks. These methods are the same for 2-digit numbers but differ for
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numbers of 3 or more digits. The common top from bottom error is shown at the
right of the second row. In the third row is an alternating method of subtracting
in which a student can ungroup to make more ones if needed and then subtracts the
ones, ungroups to make more tens if needed and then subtracts tens, etc. This method
increases the common error even for students who know they should ungroup. For
example, in the second step students see a 3 on the top and a 5 below and they
have just subtracted the ones, so they are in subtracting mode. Two pops into their
mind as the difference of 3 and 5, and they write 2 in the tens column instead of
ungrouping to get more tens on the top. In the bottom row are variations of this
method found in East Asian books. In Method F the ungrouped 10 of the new unit
may be written above that place to make it easier to subtract by using make-a-ten. In
the first method G only the new, reduced, larger unit resulting from the ungrouping
is written. This method was also invented in Math Expressions classes by Grade 4
students who said they did not need to write the 1 for the tens because they knew it
was there. The second method G is an even more abbreviated ungrouping recording:
Neither the reduced larger unit or the increased smaller unit is shown; a dot shows a
column that has been decreased by 1 to ungroup.

The top two rows show the Math Expressions Do All Ungrouping First
method (D). Doing all ungrouping first eliminates top from bottom errors. Answers
to the conceptual issues for subtraction in Table 3 show that this Do All Ungrouping
First method (D) is the most conceptually supportive. It has the further advantage
that either major step (ungrouping or subtracting) can be done left-to-right, which
many students like. Both major steps can also be done right-to-left, for students who
prefer this. Deep mathematical discussions ensue when students explain why they
can go in either direction and why they get the same answer both ways. Any of the
East Asian methods shown in Table 4 could be done as a non-alternating method by
doing all ungrouping first.

Somewhat Different Learning Paths in China and the US

Ma (1999) identified three steps in multi-digit adding and subtracting that Fuson
and Li (2009) verified in other East Asian books. Ma called these levels, but we
use the term “steps” to differentiate these from the three levels used in single-digit
adding/subtracting. In Ma’s Step 1, the make-a-ten methods for teen addition and
subtraction were developed, each in a separate unit. In Step 2, multiple methods
were given for 2-digit problems. In Step 3 for problems with 3-digit and larger
numbers, the books focused on one generalizable mathematically-desirable method,
with the variations as discussed above.

Our analysis of the US CCSS indicates a related but somewhat different sequence
for students in the United States, partly because of the limitations of English number
words that cause difficulty with the make-a-ten methods for children speaking En-
glish (or other European languages with irregular tens). The East Asian Steps 1 and
2 become mixed in the US. Make-a-ten methods can be introduced and discussed
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in Grades 1 and 2. But because these methods are more difficult in English than in
Chinese, many students stick to Level 2 counting on methods. The Level 3 make-
a-ten methods may begin to be used by more students when they are grouping and
ungrouping in multi-digit adding and subtracting because the group of ten is salient
and important then. Limited use of the make-a-ten methods is also due to limited
teaching of the make-a-ten methods and their prerequisites in the US. Multi-digit ex-
panded notation methods as well as the New Groups Below method are conceptually
important to introduce early on. Students may invent other methods especially for
totals within 100. The US Step 1 is formed by this mixture of single-digit and multi-
digit methods and occurs in Grades 1 and 2. Step 2 occurs with numbers greater
than 100 but less than 1000, where it is important for more children to move to New
Groups Below although some may continue to use Expanded Notation methods or
adding on methods especially in Grade 2. The Do All Ungrouping First method is
now important for subtraction involving 3 digits (this method D and the alternating
variation E are not distinguishable for 2-digit subtraction). In Step 3 all students fo-
cus as in East Asia on a generalizable mathematically-desirable method in Grade 3
within 1000 and go on in Grade 4 to larger problems within 1,000,000.

Conclusions

The analysis of the US and Chinese standards indicated differences between these
countries’ standards. The US CCSS have explicit learning paths and supports as can
be seen in Chinese and the US Math Expressions textbooks in Fuson and Li (2009).
Therefore, all US programs in the future should have such supports as mandated
in the standards even though such supports have not appeared consistently before.
This is an important step forward for students and teachers in the US. The Chinese
standards were less explicit about learning paths and supports, but the presence of
these learning paths and supports in textbooks suggest that there is cultural knowl-
edge that may make it less necessary to be explicit in the standards. Hopefully this
cultural knowledge will be sufficient to maintain such learning paths and supports
in future textbooks.

Our analysis identified methods that show variations of written steps that can
support conceptual issues in multi-digit adding and subtracting, reduce errors, and
make steps easier to carry out. These New Groups Below and Do All Ungrouping
First methods are as efficient and succinct as related variations that are viewed by
some in the US as the standard algorithm (New Groups Above C and the Alternating
Subtraction Method E), and these superior methods do not have the disadvantages
of these inferior variations. Thus, the best variations are the New Groups Below
method (B) for addition and the Do All Ungrouping First method (D) for subtrac-
tion. Hopefully the use of these superior variations will become widespread in both
the US and China.

Finally, we summarized the somewhat different organization of steps in Ma’s
learning path for China and the US. These differences were primarily the results of
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linguistic limitations of English teen (11 to 19) words compared to Chinese words,
but they also are due to limited teaching of the make-a-ten methods and their pre-
requisites in the US. The final Step 3 in Ma’s book (1999) is similar in China and
the US and could become even more similar if both countries moved to using the
multi-digit variations we identified as superior.
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The Virtual Curriculum: New Ontologies
for a Mobile Mathematics

Nathalie Sinclair and Elizabeth de Freitas

Abstract This chapter draws on new ideas in the philosophy of mathematics to ex-
plore alternative ways of designing curriculum. Our main aim is to trouble common
assumptions about the nature of mathematics that controls the scope and sequence
of the mathematics curriculum in the US. We argue that mathematical concepts are
characteristically virtual rather than ideal abstractions, and we show how this new
approach to concepts could form the basis for a very different curricular unfold-
ing. We then argue that certain digital technologies can play an important role in
promoting mathematics learners’ encounters with the virtual.

Keywords Virtual · Concept · Mobility · Digital technology · Dynamic geometry

Introduction

One of the underlying tenets of the mathematics curriculum is the gradual move-
ment of mathematical ideas from the concrete to the progressively more abstract.
Pedagogical theories vary widely, of course, in terms of how these mathematical
ideas should be taught. And these theories rely, in turn, on a range of philosophical
assumptions about the nature of knowledge as well as the nature of mathematics
itself. For example, the curriculum one endorses if one assumes that mathematical
objects are the result of historically and socially-situated human construction will
differ from the curriculum that assumes mathematical objects are Platonic ideals
that exist independent of human activity. In the former, there might be more empha-
sis on various ways of interpreting mathematical objects and the relations between
them, while in the latter the emphasis will be on achieving the correct understanding
of the object. Despite the enormous changes over the past few decades regarding the
nature of knowledge (and of learning) as well as the nature of mathematics (and its
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continued development), and the ensuing shifts in the priority of curriculum-style
documents, we see a prevailing inertness regarding the overall scope and sequence
of the mathematics curriculum.

In this chapter, we propose to draw on some new ideas in the philosophy of math-
ematics to explore their possible ramifications on the design of curriculum. Our main
contention will be that the ‘natural’ and long taken-for-granted assumption about the
abstract nature of mathematics—and the trajectory toward it by which the concrete
is left behind—can and should be questioned. We believe that the concrete-abstract
binary imposes a straightjacket on mathematics and misrepresents the actual activity
of doing mathematics. By conceptualizing mathematics as being characteristically
virtual, that is, as bridging the concrete and the abstract, we will show that it is
possible to rethink basic assumptions about the way mathematical ideas should be
sequenced in a curriculum and about the framing of the curriculum in terms of top-
ics.

We begin by providing a brief overview of some main conceptualizations of cur-
riculum in mathematics education research—we will use these to illustrate the scope
of our own argument. We then outline a mathematical philosophy of the virtual,
which we contrast to current prevalent philosophical positions, drawing principally
on the work of Gilles Châtelet. We then investigate how the notion of the virtual
could change our understanding of mathematical concepts, which often become the
topics through which the curricular path or trajectory is defined. We offer a richer,
double-functioning notion of concept and show how it could form the basis of a very
different curricular unfolding. We then focus in on particular concepts of the cur-
riculum and explore how Châtelet’s idea of virtuality might offer alternatives both
in terms of the order in which concepts are usually taught, and in terms of the under-
lying goals behind the teaching of these concepts. Finally, while Châtelet’s use of
the construct virtual is not tied to digital technologies, we will argue that such tech-
nologies can play an important role in promoting mathematics learners’ encounters
with the virtual.

Conceptualizations of the Mathematics Curriculum

The notion of scope and sequence pervades discussions about mathematics curricu-
lum. Scope and sequence involve an ordered list of topics, often containing little
attention to the ways certain units relate to others or to the temporal dimension
of curriculum construction (Ball and Cohen 1996). This can make it hard to inquire
into whether and how sequencing might change and what affect such a change might
have on scope. As a structure for curriculum, it suggests that there is a natural or-
der of concepts that must be followed (and “acquired”) before moving on. Beyond
the basic scope and sequence construct, Dietiker (2012) writes that the mathematics
education literature offers three additional conceptualizations of curriculum: cur-
riculum map, learning trajectory and story. The former was used by Dewey (1902)
to distinguish between the “logical” organization of content as opposed to the every-
day “psychological” experiences of the learner. This conceptualization encompasses
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more than scope and sequence in the sense that it invites reflection on the way in
which the parts of the terrain relate to each other.

A related conceptualization of curriculum is that of the learning trajectory (Brey-
fogle et al. 2010), which focuses on the path taken by the intended curriculum,
and the critical moments along that path that mark progress toward a future goal.
From this, a related student-oriented construct of hypothetical learning trajectory
(Clements and Sarama 2004; Confrey et al. 2009) emerged, which describes the
increasing levels of sophistication students demonstrate as they learn a concept dur-
ing clinical interviews and teaching experiments. Such an approach focuses on the
developmental progression of children. While Confrey et al. (2009) acknowledge
that there is not only one trajectory through the “conceptual corridor,” the metaphor
of trajectory itself evokes imagery of a single, vectored direction. A powerful al-
ternative approach to the role of concepts in mathematical activity is found in the
fallibilism articulated by Imre Lakatos in the 1960s. According to Lakatos, mathe-
matical activity is primarily concerned with concept formation and deformation. We
are always working with ill-defined or ambiguous concepts, and as we try to prove
things about them, we stretch them in new directions. Ernest (1991, 1998) has sug-
gested that fallibilist philosophies might be useful in rethinking school mathematics,
since fallibilism honors the creative or inventive nature of mathematics without pre-
scribing an overly confining trajectory.

The mathematician Paul Lockhart (2008) uses the metaphor of story to help ex-
plain the importance of context and motivation in relation to any given “content”:

Mathematical structures, useful or not, are invented and developed within a problem con-
text, and derive their meaning from that context. Sometimes we want one plus one to equal
zero (as in so-called ‘mod 2’ arithmetic) and on the surface of a sphere the angles of a tri-
angle add up to more than 180 degrees. There are no “facts” per se; everything is relative
and relational. It is the story that matters, not just the ending. (p. 17)

As Dietiker (2012) argues, the metaphor of story attends much more to the ongoing
temporal unfolding of mathematical development rather than the culminating math-
ematical goals, facts or content. Further, the conceptualization of story suggests that
there would be a different story if the sequence were changed, and that changing
one part of the story would have an effect on the rest. Not only are there different
paths from A to B (as with hypothetical learning trajectories), but there are ways of
getting to B that do not begin at A and, as such, it becomes even more important
to focus on the problems that gave rise to A in the first place and the reciprocal
relations between A and B. In line with this approach, the mathematical problem
or question focuses less on which path to take to move through a given sequence
of predetermined concepts, and more on which stories are worth telling regarding
mathematical events and characters.

In the next section, we develop the notion of virtuality, which will lead to a re-
thinking of the mathematical concept. We will use this to argue that certain stories
are in fact more significant than others and that some of these stories may upset the
assumed sequence or trajectory of school mathematics.
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Mathematics and Virtuality

Châtelet’s (1993/2000) interest in the virtual originates in his dissatisfaction with
Aristotle’s solution to the paradox that emerges when the mathematical and the
physical are considered ontologically distinct. In other words, the paradox concerns
the impossibility of a causal relationship between the mathematical (as that which
pertains to eternal truths) and the physical (as that which pertains to the contingent
and the real). Aristotle’s solution was to infer the existence of some superior being
that can ensure cohesion between the two natures.1 Châtelet proposes an alterna-
tive solution, claiming that the virtual—a state of being that is both physical and
mathematical—is the necessary link between the two realms; in so doing, he will
challenge the Aristotelian embargo against motion in mathematics. In other words,
he will reconceive mathematical entities as being material objects on and with which
mathematicians perform thought experiments. These thought experiments are not
the disembodied mental ruminations with which we typically associate mathemat-
ical thinking but, rather, gestural choreographies and exploratory diagramming. As
Châtelet (2000) suggests, “One could even say that the radical thought experiment
is an experiment where Nature and the Understanding switch places” (p. 12). One
consequence of this new ontology of mathematics is the ensuing challenge to the
dominant epistemology in which the mathematical is ‘abstract’ and the physical
‘concrete.’

Châtelet credits Leibniz with properly recognizing the dynamics of virtuality.
Leibniz was critical of the Cartesians of his time for whom geometry involved ab-
stract things like points and curves fixed in a rigid grid-like space. Bertrand Russell
(1903) nicely evokes this Cartesianism in his assertion that “a point of space is a
position, and can no more change its position than a leopard can change its spots.
The motion of a point of space is a phantom directly contrary to the law of iden-
tity [. . .]” (p. 405).) For Leibniz, space is much more flexible, positioning is rela-
tive, and points have weight; points are creators of new things (like circles, lines,
intersections)—they are “explosive forces.” Instead of seeing points as things to be
designated—since, according to Châtelet, “designation assassinates the virtual”—
Leibniz sees points as forces of motion. Working with points as forces of motion
enables a kind of “experimental provocation” (p. 15) that, according to Châtelet,
leads to encounters with the virtual. When points are seen as mobile material en-
tities, the mathematician can direct them to new places; instead of requiring that
they obey the physical laws of position in a two-dimensional plane, these points can
move along curves, for example, and encounter other curves that do not intersect
in the Cartesian plane. For Châtelet, such mobile, material thought experiments en-
tailed new discoveries in the history of mathematics, such as the complex plane in
which two non-intersecting curves can in fact meet. The space in which these non-
intersecting curves meet is a virtual space that was carved out by mathematicians

1As Châtelet writes, Aristotle later sketched out another solution to the problem, which Leibniz
studied and eventually developed along the lines described in this chapter.
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such as Abel. This virtual space is not abstract, claims Châtelet, because it retains
the mobility and temporal quality that was forged by the mathematician.

Châtelet’s approach to mathematics is distinguished from both Platonic and Aris-
totelian traditions because of how he leverages the two couplets: the virtual/actual
and the possible/real. Mathematical activity, according to Châtelet, involves both
actualizing the virtual and realizing the possible. Both realization and actualization
bring forth something new into the situation (the possible and the virtual), but re-
alization plays by the rules of logic while actualization involves a different kind
of determination, one that generates something ontologically new (like the meeting
place of two non-intersecting curves). The virtual marks that which is latent in an en-
tity; but it is not the Platonic ideal of the entity for the crucial reason that Châtelet’s
virtuality is arrived at through mobile inventiveness. This is what makes the virtual
more concrete. On the other hand, the possible is that which structures and limits
the appearance of the entity according to current rules of inference and perceptual
habits. The virtual (or potential) pertains to the indeterminacy at the source of all
actions, whereas the possible pertains to the compliance of our actions with logical
constraints. Thus novelty, genesis and creativity (rather than conditions of possi-
bility) are fundamental concepts in a theory of actualization. Actualizing the virtual
involves “an intrinsic genesis, not an extrinsic conditioning” (Deleuze 1994, p. 154).

It’s essential that we resist the tendency to imagine the virtual as the form that
is somehow buried in matter and waiting to be conjured or evoked. If the virtual
is simply the articulating or actualizing of an a priori invisible form, then we are
heading back to Platonism and the premise that ideal mathematical entities find
their inaccurate and fuzzy realizations in the real world. The virtual is not a realm
of forms to be mirrored in the physical world. The virtual does not resemble the
actual. This lack of resemblance is crucial in appreciating the power of the virtual to
disrupt common Platonist epistemologies about mathematics.2 Moreover, since the
virtual partakes of the physical, the paradox of causality that confounded Plato and
Aristotle is circumvented. The virtual in sensible matter becomes intelligible, not by
a reductionist abstraction or a “subtraction of determinations” (Aristotle’s approach
to abstraction), but by the actions (diagrams and gestures) that awaken the virtual or
potential multiplicities that are implicit in any surface. Indeed, Châtelet’s study of
creative moments in the history of mathematics shows exactly how, in each case, the
virtual is evoked, often through diagramming experiments whose sources Châtelet
can trace to mobile gestural acts.

In this chapter, we are probing the possibility of privileging virtual encounters in
the curriculum. Naturally, we do not expect learners to create mathematical spaces
that are new to the discipline. But we can investigate whether they can create math-
ematical spaces that are new to them. Our line of questioning requires that we first
re-examine familiar mathematical ideas in terms of their latent virtualities. Is the

2It is for this reason that Châtelet eschews the use of the word ‘representation’ to talk about the mo-
bile, temporal inscriptions (gestures and diagrams) that actualize the virtual. Speaking in terms of
representation implies that the inscriptions are meant to resemble—rather than be—a mathematical
entity.
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virtual evoked only rarely, in major turning points of the discipline? Or is the vir-
tual woven through the fabric of mathematics? In the latter case, how might we
recover the virtuality of ideas that have slowly become inert? Consider the trian-
gle. In an advanced geometry course, we are taught to think of the triangle as an
abstract geometric shape determined by its definition. Much earlier on in the cur-
riculum, however, we are told to think of it as a concrete shape, perhaps in the form
of a plastic tile or a pencil drawing. In between these extremes, we might see the
emergence of other triangles of varying ontology, each partaking of the physical
to some degree, each carrying with it some trace of the virtual motion by which it
emerged. How would the curriculum change if we rethink the triangles generated
through transformations, stretched into differing shapes and sizes, in terms of this
virtual mobility?

Thinking in terms of mobility is instrumental in recovering the virtual. Instead
of seeing the triangle as a rigid figure or as a sign perched in space, what happens
if we think of it as a mobility? A triangle exists in motion, depleting itself into the
infinitely small or exploding into linearity or bending along non-planar surfaces. It
is not in the realm of the possible to have an infinitely small or uni-dimensional tri-
angle. But with a sweep of the hand (perhaps one dragging the vertex of a dynamic
triangle), the triangle can collapse, disappear, burst and morph. The virtual triangle
is the one that is always moving, defined more by behavior—especially behavior
at extremes—than by propositional sentences about static entities. The gestural or-
chestration or use of an “allusive device” is always an act of movement whereby
the virtual is actualized. It is important to keep in mind that the virtual somehow
retains the trace of this movement rather than abandoning the gesture that brought
it into being. Aristotelian abstraction, on the other hand, is contemptuous of the
hand and the movement by which the possible was determined. Abstraction strips
mathematical entities of their physical emergence and pretends that they have no
experiential history. Although many scholars assume that it is this act of stripping
that makes mathematics so effective in science, Châtelet’s entire historical project is
to contest this assumption and show how inventions in mathematics prove effective
precisely because they retained a trace of the gestures that brought them forth. More
often than not it is in the diagrams created by the mathematicians where we see
these gestures continue. Mathematics must be made to quiver “with the virtualities
that inhabit it” and students invited to “reactivate a productivity” that congeals and
stiffens too quickly after its articulation (Châtelet 2000, p. 103).

What consequences might our attempt to excavate the virtuality of mathematical
ideas have on the shape of the mathematics curriculum? Might we simply be encour-
aged to rethink pedagogical choices (the tools and tasks that are used) or might there
also be changes in terms of curricular choices, that is, choices about whether, when
and why learners are asked to work with it? In the next section, we focus on the
way in which an idea like the triangle comes to be framed as a curricular entity—an
element in the sequence—and investigate how the notion of virtuality might disturb
the current topic-driven curriculum.
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Mobilizing Mathematics Concepts

Debates about mathematics curriculum often pivot around the distinction between
procedural and conceptual knowledge. Educators and researchers use this distinc-
tion in order to argue for a particular focus in the curriculum, advocating for the
importance of mathematical concepts such as function, prime number, infinitesimal,
etc. Despite this ongoing attention to conceptual knowledge, there is little discus-
sion about what actually constitutes a concept more generally, and how a concept
might be different from a topic. What is a mathematical concept? Concepts are of-
ten considered abstract universals detached from the particularities of their concrete
instances. They are typically treated as immaterial logical constraints on a given sit-
uation (Tall 2011). Our aim is to question this approach to concepts. What might it
mean for a concept to be deeply material and operate on an ontological level? How
does a mathematical concept remain vibrant and creative, without being reduced to
a topic with a set of prescriptive procedures that relate to it? Might it be the case
that our weak formulation of concepts is exactly what leads to an over-emphasis on
procedural skill in mathematics classrooms?

If we compare our curriculum to the way that the Russian mathematical circles
are designed, we can see radically different approaches to what constitutes a con-
cept. Rather than focusing on a topic like multiplication or triangles, Russian math-
ematical circles are organized around multi-purpose devices that help one map the
structure of mathematical relationships and invent new mathematical objects. The
idea of a sequence of concepts is thus downplayed in favor of a collection of actions,
thus coming closer to curriculum as story in the sense that the focus is on what can
be done rather than what is. In part, this is due to the fact that the curriculum is based
on rich problem solving, but we focus here on the fact that this approach seems to
use the notion of a concept as a device, one that works both logically and ontolog-
ically. We use the term ontological to refer to the ways in which mathematics is a
creative and material activity that literally invents new kinds of entities, as outlined
in the section above. For both novices and experts, mathematics involves both real-
izing the possible (logical) and actualizing the virtual (ontological). For a concept to
function in both these ways, it must sustain a certain vibrancy and vitality. In other
words, a concept of this kind must be a multi-purpose device that resists reification
while carving out new mathematical entities. Châtelet (2000) refers to these as “al-
lusive devices” that give rise to thought experiments “that penetrate closer to the
heart of relation and operativitivity” by being deliberately productive of ambiguity
(p. 12). The concept is worked as though it were a kind of material media (clay, oil,
ink) that lends itself to particular kinds of activity and rendering.

For instance, even/odd parity is a concept that helps render the structural rela-
tionship between numbers and helps the student map the terrain in which numbers
live, but also functions importantly as a concept that engenders new kinds of mathe-
matical objects. Parity is precisely the kind of concept that simultaneously works on
both the logical level and the ontological level.3 Parity marshals logical constraints

3The simultaneous functioning we are describing here might evoke for readers a comparison with
the process/content distinction made in the NCTM Standards. An important difference, however,
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and mathematical entities. For instance, the Ancient Greek proof of the irrationality
of radical 2 relies extensively on even/odd parity. Parity is exploited in this famous
proof to unleash and make actual the virtual (the irrational number) while operating
according to the laws of legitimate inference. Parity is a working concept; that is, a
concept that quite literally performs a sculpting or creative activity that brings the
new number into being. And yet simultaneously parity operates as a logical instru-
ment by which the possible is realized. The sculpting tool of parity works both the
realm of the possible and the realm of the virtual.

Other concepts that are used in Russian circles (Fomin et al. 1996) are divisi-
bility, invariants, the pigeon-hole principle, the triangle inequality and graphs (net-
works). The dilemma, as always, is that any list of concepts can be denigrated to a
set of topics once they are taken up in practice. How does one resist that and honor
the concept as creative force? How do we ensure that the concept is put to work
in engendering new mathematical entities? How do we invite students to grasp the
mobility and potentiality of the concept? Perhaps the way to ensure that the concept
remains operative and mobile and creative rather than staid, is to focus on whether
the work itself is creative, that is to say, work that continues to be committed to
bringing the new into being (a process of becoming). In other words, work that
unleashes the virtual. When the concept is used only as a logical tool, while the
ontological aspect (actualizing the virtual) is abandoned, the activity reduces to ad-
hering to logical constraints. In such cases, the ossified concept doesn’t sustain the
mobility from which it came forth.

One can easily see concepts in our current curriculum that have been emptied of
their mobility and power, but might be resuscitated. For instance, the Pythagorean
Theorem is often treated as no more than a tool for calculating lengths in tri-
angles, rather than an assemblage of concepts and an inventive medium through
which something new might emerge. In re-conceptualized the concepts at work in
a Pythagorean relation, we could recast the derivation of the theorem as an activity
that literally brought forth the squares on the sides of the triangle. These squares are
actualized, not only out of logical necessity or inductive reasoning, but out of some
material potential linked to the triangle. In honoring the ontological aspect we be-
gin to think about the squares as invented objects. The aspect of necessity attached
to the logical is then opened up with the aspect of contingency attached to the act
of creation. We might then see how the squares might have been something else,
like semicircles or trapezoids, materialized on the sides of the triangle. According
to this approach, the Pythagorean theorem becomes an assemblage of concepts that
actualizes various kinds of virtual shapes on the plane. And if we use it in 3-space, it
becomes a concept for conjuring lines and other multi-dimensional objects. In this
way, we can think of it as a concept that does more than measure, and more than
adhere to the rules of logic—it actualizes virtual entities.

is that the same concept (parity, in this case) partakes of both the content and the process. More-
over, when functioning on the ontological level, parity has much greater precision and power than
process strands such as representation, communication and visualization.
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Can we rethink the curriculum and re-invest our concepts with ontological
power? Can we recast our concepts in terms of the way they both realize the pos-
sible and actualize the virtual? And to what extent will this involve a shift from an
emphasis on logical necessity towards an opening for contingency? In reflecting on
these questions, we come to appreciate the way in which attention to ontological
power can help loosen the grip of logical necessity that so strongly structures our
current curricula. We are not denying the role of logical necessity in mathematics,
but we believe that the relationship between the logical and the ontological needs to
be re-examined, and that exciting new directions in mathematics curriculum might
ensue if we questioned the ways (and the whys) in which the ontological is banished.

Since Piaget, the mathematics curriculum has been heavily influenced by what
Lundin (2011) calls a “developmental ideology,” namely, a rationale based on the-
ories about the order and age at which children (can/should) develop knowledge of
mathematical concepts. This ideology assumes that learning is a problem of con-
struction, with its ensuing metaphor of starting from the ground up and making
sure the foundations are solid. Within the ideology of development, the discipline
stays fixed and immobile while the child moves slowly up, forming concepts along
the way. Current theories of learning, inspired by a Vygotskian attention to socio-
cultural factors and, in particular, the mediating effects of language, also often sub-
scribe to the development ideology. For example, the learning trajectory approach
acknowledges the role played by tasks, tools and the teacher in children’s math-
ematical learning, but there’s still a sense in which the child is seen as scaling the
edifice, acquiring knowledge of concepts along the way. The learning trajectory the-
orists allow for the possibility that there are multiple ways in which a learner might
develop these prescribed concepts and that any description of the learning process
must account for the broad environment in which the learning takes place, but the
concepts themselves remain fixed.

We are interested in questioning this hidden assumption about concepts within
the ideology of development. Châtelet’s insistence on the fraudulence of the con-
crete/abstract dichotomy invites the possibility of moving very differently in and
around the edifice of mathematics. In fact the edifice image reveals itself to be a
poor metaphor for a mathematics that is about virtuality and mobility, unless we
are prepared to adorn with suitable devices that permit alternative modes of access
and movement. If we look closely at learning trajectories, they fail to take seriously
the way in which the learner and the mathematics change as they engage in math-
ematical activity. Furthermore, while contemporary versions of the developmental
ideology acknowledge the importance of tools in learning, these tools are often co-
erced into playing certain roles (along a hoped-for trajectory?) and then eventually
discarded.

We contend that the developmental ideology draws on a particular philosophy
of mathematics, one that acknowledges to some degree the contingent and social-
cultural nature of knowledge, as well as the embodied nature of mathematical un-
derstanding, but continues to invest in an image of mathematics that denies the ma-
teriality of its concepts. This image of mathematics remains wedded to the logical—
albeit broadened to embrace both the deductive and the inductive—but refuses the
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ontological aspect. Concepts are abstracted away from the physical situation, and
the learner is granted only enough embodiment to perform that abstraction. Thus
the ideology of development simply sustains Aristotle’s philosophical paradox be-
cause it remains committed to an abstract/concrete binary which ultimately aban-
dons mathematics to a realm of the inert and disembodied. Brian Rotman (2008)
proposes a very different approach to the philosophy of mathematics that resonates
strongly with Châtelet’s technologies-driven historical studies (technologies of ges-
tures and diagrams). Rather than focusing on the typical issue of how technology
will change the role of logical necessity in mathematics, Rotman provocatively
claims that the advent of digital technologies will lead to new kinds of gestural and
diagrammatic inventions. He anticipates the slow disappearance of the alphabet—
that sequential, disembodied and static mode of inscription that has dominated the
western intellectual landscape- by other kinds of sensory modalities enabled by dig-
ital interfaces. For the mathematician, this would entail moving away from a world
dominated by symbolic formal language (also sequential, disembodied and static)
and toward one experienced “as much through touch as vision, through tactile, ges-
tural, and haptic means” (Rotman, p. 8, citing de Kerckhove 2006, p. 8). Central
to Rotman’s argument is his assertion that mathematics has been, and will con-
tinue to be, involved in a two-way co-evolutionary relationship with machines. If
in the past, mathematicians were able to deny any machinic agency through their
discourse of detemporalisation, decontextualisation and depersonalisation, the in-
creasing presence and power of current digital technologies will assert itself. In this
sense, mathematical activity will be seen more clearly as something that co-involves
the discipline, the seeing/touching/hearing/smelling mathematician and the material
world. From Rotman, we thus find a materialist post-human philosophy of mathe-
matics that invites us to look for curricular possibilities that are less driven by de-
velopmental assumptions. This frees us to pursue a curriculum of encounters with
the virtual.

Making Mathematics Quiver

In the section Conceptualizations of the Mathematics Curriculum, we showed how
mobility could virtualize the triangle, and in section Mathematics and Virtuality
we showed how we might rekindle the ontological aspects of mathematical con-
cepts like parity, and reconceive them as sculpting devices that bring forth the
new. In this section, we elaborate on a more central set of concepts associated
with the primary school mathematics curriculum related to number sense. Our goal
will be to show how mobilizing these concepts can lead to important changes in
terms of the sequencing of the curriculum. We begin with the topic of multiplica-
tion, which Châtelet discusses in his historical study of mathematical inventiveness.
Châtelet cites a provocative statement by the early 19th century philosopher Franz
von Baader: “It is a mistake of our mathematical manuals to begin with addition
and subtraction, which are dead and devoid of concept, and not with living opera-
tions” (cited in Châtelet 2000, p. 123). Baader was critiquing those who thought of
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the world mechanically, in terms of the sum of its parts, suggesting instead that a
much more dynamic and organic approach was needed: Baader saw multiplication
as a “living operation” in the sense that it could penetrate and explore as do natural
forces.

Why (and how) should multiplication precede addition? Châtelet argues that the
notion of addition involves the banal idea of the juxtaposition of parts, and he chas-
tises mathematicians who wrongly think of multiplication as repeated addition. In-
stead, he promotes Baader’s sense of multiplication as a “reciprocal penetration of
factors; it produces an interiorization, and intensification.” According to Châtelet,
it is precisely this device of “genuine multiplication, an operation productive of
plurality” that the geometer Hermann Grassmann used in his theory of extensions (a
foundational text in linear algebra, developing, in particular, the idea of linear space,
linear independence, span and dimension). Indeed, while addition is “derived from
the decomposition of an already established unit,” Châtelet shows that Grassmann’s
notion of multiplication creates an entirely new space.

One of Grassmann’s guiding motivations was to move beyond the arithmetical
notion of multiplication, which distinguishes the multiplicand and the multiplier—
always privileging one over the other (two jumps of three or three jumps of three?),
despite its commutativity. Grassmann begins with an entirely different notion of
multiplication, inspired by his father. In the following, we see that this notion isn’t
simply the geometric conception with which we are familiar through the so-called
area model:

The rectangle itself is the true geometrical product [. . .]. If the concept of multiplication
is taken in its purest and mot general sense, then one comes to view a construction as
something constructed from elements already constructed [. . .]. In geometry, the point is
the original “producing” elements; from it through construction the line emerges [. . .]. Just
as the line came from the point, so the rectangle comes from the line. (cited in Crowe 1985,
p. 59)

In this view of multiplication, we have more than the static rectangle: we start with
the point as the first unit, and by making it travel in a direction we obtain a line
segment; then, we make that segment play the same role as the original point and
move it in another direction; a surface is now produced. The rectangle, in this case,
is not simply the thing that supports intuition, as we see in many textbooks—it’s
a mobile unit. Moreover, the rectangle treats base and height on the same footing,
with each being able to act on the other. For Châtelet, it’s the gestures that give
rise to this new idea of multiplication, and it’s the virtuality at the source of the
concept that gives rise to the gestures. Move your index finger up a certain extent
until you’ve produced a line segment, then push that segment over a certain extent
to obtain your rectangle. These gestures permit the construction of the figure and in
this way it’s not the geometric diagram of the rectangle itself that matters, but its
underlying mobility.

According to Châtelet, it is this conceptualisation of multiplication that enables
Grassmann to develop the notion of the product of vectors and their orientation. But
for our present purposes, the mobile production of the rectangle suffices. It provides
an example of a way of thinking about multiplication that engages the virtual. In-
stead of being an extension of addition (a way of thinking that eventually breaks
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down when working with rational numbers), whose main focus is numerical, the
dynamic arithmetic of Grassmann’s multiplication produces a new space not prede-
termined through logical possibility but actualized through ontological potentiality.
From our perspective, not only does this notion of multiplication necessarily in-
volve the new, it does so in a way that is entirely accessible to the young learner,
even the one who hasn’t mastered addition. In other words, it dismantles the hier-
archy of operations that pervades the school mathematics curriculum. Interestingly,
based on McCrink and Spelke’s (2010) findings that young children (before they
enter primary school) have a sense of multiplication as scaling that precedes any
use of repeated addition, one wonders just how “natural” the existing order is.

Confrey et al. (2009) have also questioned the usual order of operations in cur-
riculum (addition, subtraction, multiplication and division) and argued that division
should precede multiplication. Their arguments are based on the conceptualization
of division as fair sharing, and draw on the fact that children have extensive expe-
rience with this process in their everyday lives, thus making it more accessible to
them in the classroom. Our virtual curriculum approach has a different motivation in
that it seeks to exploit the virtuality of mathematical ideas, catalyzing their mobility
and indeterminacy and granting students a different kind of accessibility, one that
has more to do with the virtuality of the concept itself and less to do with making its
abstract content more concrete. Repeated addition is accessible, but it privileges the
logical over the ontological. Similarly, we might ask: does division as fair sharing
mobilize the virtuality at the source of the division/multiplication device?

The use of digital technologies can support encounters with the virtual in several
key ways, the most important of them being that of mobility. As can be seen in a va-
riety of dynamic mathematics software environments, mathematical entities are fre-
quently put in motion and dynamic transformation. In fact, Grassmann’s description
of the multiplication rectangle may seem quite natural to modern ears familiar with
dynamic geometry environments (DGEs). A given point can drag out a line segment
and that line segment can drag out a rectangular area. Not only can this rectangle be
produced in full mobility, but so can many others, quickly and precisely so that the
imagery evoked by Grassmann can become a physico-mathematical experiment for
learners.

Another feature of digital technologies that enables encounters with the virtual
relates to what we call their numerical nonchalance. The computer doesn’t care
what kind of number the learner wants to use: whole numbers are interchangeable
with irrational ones; they can dissolve into the background while material config-
urations take centre stage. Again using the example of a DGE, any length of line
segment can be used (up to a certain level of precision), not just nice, neat whole
numbers. Moreover, the value assigned to the area of the rectangle is foregrounded
by the shape and size of that rectangle, which learners can slide, stack or rotate. We
will return to this numerical nonchalance shortly, but here we want to focus on the
way it shifts the meaning of multiplication for the learner from a result to be com-
puted with certain values in a certain way, to a transformation of two numbers into
a new entity that grows and shrinks in accordance with the changing value of the
given numbers.
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The numerical nonchalance of digital technologies also invites a re-thinking of
the whole number obsession of the primary school curriculum. Many curricula re-
quire a progression of whole number learning, starting with 1–10, then 11–20,
then extending to 100 and perhaps even 1000. This upward extension reveals the
inductively-generated possibility of numbers. There are no new mathematical ideas
involved in learning about, say, 30 or 642. But these small whole numbers are con-
venient because they can be used to introduce addition, which is also a staple of
primary school curriculum and which also—as argued above—offers little in terms
of virtual encounters.

The history of mathematics points to several encounters with the virtual that the
small set of counting numbers could entail: the concept of zero and its bringing
into existence of nothing; the flight into integers; the excavation into rational num-
bers. A curriculum that was less concerned with operations and more with creativity
might delay the upward extension of the counting numbers and the early practicing
of addition-as-grouping in favour of providing opportunities for children to engage
with the new virtual spaces created by the concepts mentioned above. But Châtelet’s
notion of the virtual would promote this engagement by refusing to domesticate
these concepts into the possible or the real. This is a key pedagogical issue in the
sense that when we introduce learners to new ideas, our attraction to so-called real
world connections or metaphors can betray that part of the real that is virtual.

We argue that mathematics is shot through with the virtual, a phrase that res-
onates with Gattegno’s mantra that mathematics is shot through with infinity. (For
Gattegno, finding the infinite in a concept or relation was equivalent to finding its
deeper animating idea.) So, taking a concept like 0, for example, we can ask: what’s
the underlying virtuality? How does it get deadened? In some textbooks, 0 is intro-
duced by recursive subtracting of 1 or by counting down. So students are invited to
imagine 5 objects, then 4, then 3, then 2, then 1, then. . . In this stepwise descent, 0
is squarely placed in the real terrain of taking away the last remaining object, and
we can hear the teacher saying “it’s like eating the last cookie or using the last tis-
sue.” Since humans were presumably engaged in such activities before the number
0 was invented, we should suspect that these activities weren’t enough to warrant
the creation of a new construct, which must strike many children as suspect.

Instead of being the nothing that is arrived at after subtraction, it can be the
fundamental starting point out of which motion arises. This carving out of the start-
ing point with mobile aspirations casts 0 in a very different light, one that invites
the placing of the index finger or the pencil tip on the paper: ‘here is zero.’ The
point doesn’t merely represent zero, it is the starting point out of which motion will
produce magnitude and eventually roll over the counting numbers. But more, as
Châtelet argues, the 0 thus conceptualized marks out not just one path, but a sym-
metry of choices toward the positive or negative magnitudes. In this sense, zero is
“produced by a thought experiment, by a compensation devise capable of enveloping
a Two with minimal means” (p. 82, emphasis in original). More, it can be “under-
stood as a ‘middle,’ as the product of the neutralization of +A by −A, which also
makes it possible to open zero out into two branches, and it is just this allusion to
opening that permits the conquest of the clichés associated with iteration” (p. 82).
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Fig. 1 The numberline

Fig. 2 Accentuating the role
of 0

(In referring to “iteration,” Châtelet means the kind of mechanical repeated juxtapo-
sition of numbers that characterizes addition and subtraction (and some conceptions
of multiplication).) This 0 is the crotch of two fingers, the fulcrum of the teeter-
totter. It is not the clichéd taking away of the last cookie because it requires the
carving out of a new space that, once created, generates new mathematical objects
(negative cookies!).

The concept of 0 that we are proposing to offer to your learners here resonates to
a certain extent with the numberline model that many mathematics educators have
been advocating (see Saxe et al. 2007), which actualizes the arithmetic-is-motion-
along-a-path metaphor identified by Lakoff and Núñez (2000). We see the number-
line as a powerful diagram for evoking the concept of zero we have been discussing,
especially when used in its potential form (not as the marked segment from 1 to 10
that can be found on the desks and the walls of many primary school classrooms, but
as the one that evokes the infinite direction and density of the mathematical number
line).

One runs the risk of taming the mobility of zero by failing to acknowledge its
generative power, which isn’t just in the middle, as in the number-line (Fig. 1), but
is also in the singular fulcrum that originates motion as in the diagram below (Fig. 2,
taken from Châtelet 2000, p. 83, based on Argand’s work). What is intriguing about
Argand’s diagram is the way that zero evokes new and as yet unscripted directions,
new branches of mobility that might invent alternative symmetries of choice.

In a computer-based environment, the virtuality can be further promoted without
having to proceed through the usual development of number sense from natural to
whole to rational numbers and then integers. The mobility and numerical noncha-
lance of a DGE, for example, enables the learner to move in any direction (positive
or negative)—and usually that learner loves going as far as possible into those exu-
berating, large numbers. Addition can be done on the numberline without worrying
about sticking faithfully to discrete positions along the line. What matters in addi-
tion is less the value obtained but the invariances that erupt: when one addend is
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at 0, the other addend moves along with the sum; as one addend moves, the other
follows the sum on a rigid leash, no matter what the values of the numbers involved.
Mobility and numerical nonchalance invite the learner to move into the virtual space
of the negative numbers as well as virtual space of the reals.

Virtuality can be thought of as a kind of intensity or potential energy that is em-
bedded in that which is actualized in physical extension. The number line offers a
wonderful example to explore this idea of the virtual, because the line exemplifies
the very idea of extension. According to Descartes, extension is the one defining
quality of matter to which all other qualities, including motion, are derivative. Dis-
rupting this Cartesian image of matter involves rethinking extension as somehow
made muscular through the mobility of the virtual. Châtelet contrasts the lateral
stretch of extension with the cutting and folding of new virtual dimensions through
“intension”.4 The virtual is a kind of intensity that operates through intension. The
virtual invites in(ter)vention because it is precisely what makes extension plastic and
elastic through its intensity. The virtual is the “indeterminate dimension” in matter
and quite literally destabilizes the rigidity of extension (p. 20). He describes these
elastic folds in terms of transversal and vertical impulses that push through the ap-
parent rigidity of extension. In rethinking curriculum, we might want to recast the
number line as an elastic, so that students can carve out the virtual real numbers em-
bedded between whole numbers by grabbing and dragging the digital number line
so that it stretches and brings forth an infinitude of numbers that were impercepti-
ble a moment earlier. New numbers will be displayed that have never been seen by
the learner before. Students can then explore the density of the number line through
this interaction, an interaction made all the more embodied when we imagine our
gestures as creative acts cutting up matter in new ways. The number line is the
quintessential form of extension, and thus it is crucial to see how this example helps
us rethink extension (and the related concept of dimension) as a quivering space of
potential rather than an interval contained between two fixed points. Through the
eruptions of the virtual, the concept of extension is “charged with tensions and re-
veals itself as the positive condition for the birth of structure” (p. 105). We can see
in this example the power of digital dynamic diagrams in affording the students this
kind of opportunity.

Related Ideas about the Virtual

Shaffer and Kaput (1999) use the word ‘virtual’ to describe the computer-based
culture we now inhabit. The distinctive feature of this culture is the externalisa-
tion of symbolic processing. Drawing on Merlin Donald’s evolutionary perspective,

4In this he follows the scholastic tradition of contrasting extension—that being the interval actually
travelled and its duration in time—with intension—that being its quickness, slowness or “lateness”
(Châtelet 2000, p. 38). As odd as this distinction might seem to modern readers, it is used by
Châtelet to disrupt the privileging of position over motion, and to try and imagine motion as the
ontogenetic force by which position (or extension) comes into being.
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Shaffer & Kaput show how the forms of representation now available have enabled
human cognition to move beyond the theoretic culture previously inhabited, one
in which involved the creation of external symbolic systems. They then argue that
“mathematics education in a virtual culture should strive to give students genera-
tive fluency to learn varieties of representational systems, provide opportunities to
create and modify representational forms, develop skill in making and exploring
virtual environments, and emphasize mathematics as a fundamental way of making
sense of the world, reserving most exact computation and formal proof for those
who will need those specialized skills” (p. 97). We find this argument compelling,
especially in terms of its focus on the possibilities learners should have to create and
modify mathematical forms. Our approach differs in situating the changes—and the
new opportunities—more squarely within new mathematical ontology, one in which
mobility and materiality help identify where these opportunities might be and how
they might affect the sequence and shape of the curriculum.

The concept of the virtual has also been taken up in media studies. Burbules’
(2006), for instance, describes the virtual as that which creates the “feeling of im-
mersion” that we have all experienced, in some context or another. For Burbules,
this feeling involves an extension or elaboration of what is present in experience.
There is a sense that the virtual pertains to what is potentially present, but isn’t ac-
tually present: “Actively going beyond the given is part of what engages us deeply
in it” (Burbules 2006, p. 41). While such experiences can be had in many contexts,
Burbules argues that digital technologies have particular characteristics that make
them uniquely capable of engendering them. He identifies five such features: mobil-
ity, inhabitance, action at a distance, haptic sensitivity, and performative identities.

All of these features point to the potential/virtual in terms of transformations to
space and time: mobility is about being able to really move things (lines, points,
ourselves) in new spaces (not the ones that necessarily satisfy our normal physical
laws); inhabitation is about the extension or transformation of space and time (time
travel or instant motion, exact replication of previous experiences); action at a dis-
tance is about our ability to transform the temporal dimension of our participation;
haptic sensitivity is about the way in which our bodies are firmly implicated in the
virtual spaces we explore—enabling a rapprochement of body and machine—and
how sight, touch and feel create “as if” experiences; and, finally, performative iden-
tities is about the extension and transformation of our identities in cyberspaces.

As we have argued already, mobility takes on a particularly poignant role in math-
ematics, in part because of the ongoing program of detemporalisation that is formal
mathematics and in part because of the status of mathematical objects as being more
or less inaccessible to actually being moved. While mobility emerges as the central
feature in our Châtelet-inspired take on the virtual, we note in passing that the fea-
tures of inhabitation and action at a distance, are already readily available in a variety
of digital technologies for mathematics education. While some of these features may
seem familiar and even banal (one could fast-forward and replay old tape recorders,
after all, as well as control them at a distance), the relevance to mathematics should
not be overlooked for the simple reason that they contribute to the experience of
mobility. As Sinclair and Jackiw (2011) write, digital “technologies newly permit
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the literal reinscription, reproduction, and transformation of time-based phenomena.
They are thus literally, as well as metaphorically, dynamic.”

While digital technologies have first and foremost enabled human interaction
with mathematics through sight, the haptic sensitivity that Burbules identifies relates
to all the human senses. Again, mobility comes into play most centrally. Papert
recognized this in his attention to the body syntonicity that the Turtle Geometry
microworld enabled. By controlling and watching the turtle move on the screen, the
child became the turtle, turning right or moving forward along with it. The motion of
the turtle invited the body into the machine. Similarly, we have noticed the frequency
with which learners dragging objects on the screen become those objects and use
first person narratives to describe how they are moving, where they are going, and
what they hope to find there. With the recent advent of touch-base technologies, this
haptic sensitivity will become even more intense. Instead of being once-removed
from the point you are dragging on the screen, you can now literally touch that
point directly, as you would touch any other concrete object. The material presence
is unavoidable.

Burbules’ notion of performative identities, which emerges from his considera-
tion of technologies such as social networks and virtual realities, seems at first much
less relevant in our examples. However, we follow Rotman (2008) in asserting the
way in which mathematical activity co-involves the discipline, the person and the
material world—and that this co-involvement means that mathematical activity does
not just produce more mathematics (or more learning), but also produces a new per-
son in a new material world. Although we don’t have space here to explore this, we
are fascinated by the question of how curriculum might foster occasions for learners
to perform new identities as they move in new ways in the classroom.

We have used Burbules’ five features as a way to point to the role digital tech-
nologies might play in occasioning virtual encounters, in the sense of Châtelet. As
mentioned above, Châtelet’s (2000) “allusive devices” can be thought of as tech-
niques or technologies of excavation and invention by which the new comes into
being. Continuing his historical study of mathematics and applying it to contempo-
rary contexts would mean looking at the role of digital technologies in mathematics.
Although some of the work in media and technology studies uses the term virtual to
designate the not real, we note that Burbules aims to avoid that association and in-
stead study the virtual in terms of spatio-temporal experiences. Although this has the
advantage of embedding the virtual in the real, we underline the fact that Burbules’
construct of the virtual might lend itself to merely a psychological theory about indi-
vidual experiences and thereby lose sight of the complex ontology involved in such
experiences.

Conclusion

In this chapter, we have used Châtelet’s idea of virtuality to re-think questions and
assumptions about the school mathematics curriculum. We first examined the very
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idea of a mathematical concept, and the way in which concepts are turned into a
sequence of topics in the course of curriculum-making. Following the ontological
shift of Châtelet’s materialist perspective, and inspired by the Russian mathemat-
ics circles, we proposed arranging curricula in a more story-like structure, in terms
of concepts that have both logical and ontological import. Such concepts would
refuse to be subverted, supplanted and replaced by intermediary symbols, acting as
“signposts to the next world, placed in this one” (Pimm 2006, p. 181, citing Graham-
Dixon 1996). In such a curriculum, there would be an intrinsic flexibility (no need to
always have parity, for example—one could easily substitute something like sym-
metry) since far fewer assumptions about either sequentiality or concrete/abstract
would be required.

While this first finding pertains to the curriculum as a whole, our second focuses
more specifically on local curricular concerns. By imitating Châtelet’s refusal to fall
into the concrete versus abstract distinction, we showed how the ideas of multiplica-
tion and of zero could be encountered by learners in all their virtuality, as opposed
to mere logical derivatives of addition. We also argued that multiplication could
even be encountered before addition in a curriculum sequence. Within the context
of our first finding, multiplication might be enveloped by devices such as dilation or
dimension.

Finally, we argued that virtual encounters could be occasioned through the use of
digital technologies, based on the two characteristic features of mobility and numeri-
cal nonchalance. Mobility relates directly to Châtelet’s notion of the virtual. Numer-
ical nonchalance works in part to free the mathematics teacher and curriculum from
the shackles of the numerical operations. However, it also plays into Rotman’s call
for haptic, machinic mathematical activity, which escapes the dominant symbolic
approach privileging the written calculation. Burbules’ work on the virtual provided
stimulus to consider the use of digital technologies in the context of promoting vir-
tual encounters. In addition to his compatibility with Châtelet on the centrality of
mobility, Burbules also provokes us to consider the crucial role of identity or perfor-
mative identity in our thinking about curriculum. Such aperformative identity—be
it the learner-with-dynamic-numberline or some other assemblage—demands a cur-
riculum responsive to her human and machinic capacity for and desiring of the
virtual.
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Forty-Eight Years of International Comparisons
in Mathematics Education from a United States
Perspective: What Have We Learned?

Zalman Usiskin

Abstract In 1963-64, the International Evaluation Association undertook the first
international study of school mathematics performance. The mean score of United
States students at grades 8 and 12 was at or near the bottom of all participating
nations. On the second and third international studies undertaken in the 1980s and
1990s, U.S. students seem to have fared relatively better than before, a trend that
seems to have continued into the TIMSS and PISA assessments over the past decade.
Nevertheless, with few exceptions, at each announcement of results it is typical to
point out how poorly U.S. students fare. In all these eras, results have been used
by some to encourage reform in mathematics classrooms and by others to push
back reform. This chapter displays and examines summary results from the IEA,
TIMSS, and PISA studies to glean conclusions about performance of students in the
United States over time and about the operation and interpretation of international
comparisons in mathematics education in general.

Keywords IEA · PISA · TIMSS · International assessment · Comparative
mathematics education

Studies of the relative standing of the performance of United States students com-
pared to students in other nations are among the few research studies in mathematics
education that receive press coverage and that are also known in the general edu-
cation community. There is ample reason for this beyond the attractiveness of the
question; these studies are large and tend to be done using the latest research tech-
niques. However, results in the press tend to be oversimplified, and these oversimpli-
fications are often accepted by policy makers without questioning them and without
considering all of the information that has been gathered by researchers and other
observers that might explain the results. It is also rare that one finds any placement
of results in a historical context or even a present-day social context.

From a policy perspective, this lack of context is perilous, because the Common
Core Standards for school mathematics in grades K-12, which almost every state in

Z. Usiskin (B)
The University of Chicago, Chicago, USA
e-mail: z-usiskin@uchicago.edu

Y. Li, G. Lappan (eds.), Mathematics Curriculum in School Education,
Advances in Mathematics Education, DOI 10.1007/978-94-007-7560-2_27,
© Springer Science+Business Media Dordrecht 2014

581

mailto:z-usiskin@uchicago.edu
http://dx.doi.org/10.1007/978-94-007-7560-2_27


582 Z. Usiskin

the United States has adopted, and on which students will be tested beginning in the
school year 2014-15, are very much based on conclusions from these studies.

Nagy (1996) has detailed the following difficulties that occur when interpreting
results of international comparisons:

difficulties in test construction and design
difficulties with (overall) test content
difficulties in measuring opportunity to learn
difficulties in the choice of (item) content for international tests
difficulties caused by different social conditions in participating countries
difficulties in the language of test items
difficulties in school enrolment patterns
difficulties caused by sampling and participation rates
difficulties in test and score accuracy.

Each of the studies discussed in this paper has been reported in volumes that demon-
strate its complexity. Thus this paper also oversimplifies the results and does not
discuss all of the difficulties in mounting these studies and cautions to bear in mind.

Two of the difficulties identified by Nagy concern curriculum, the choice of over-
all test content and the choice of item content. Consider the following scenario. Sup-
pose 75 % of country A’s content in a given year is taught in country B, and 80 %
of country B’s content in a given year is taught in country A. From this information
it can be calculated that, if a test is given evenly covering all the content in either
country, then 40 % of the test will consist of items unfamiliar to one of the two coun-
tries.1 If the test is over the common curriculum, then the test will cover only 60 %
of the topics taught in one or the other of the countries. In international comparisons
there are not two countries, but ten or twenty. It is easy see that a test that is fair
to one country could easily be quite unfair to another. We find that situation even
when we are comparing performance between two different textbooks in the U.S.,
or between an honors class and a regular class using the same textbook in the same
school. Consequently, it is essentially impossible to compare two different curricula
using the same test, and any test that is over only common elements to the curricula
will, by that very property, not include those things that are new, or that might make
one of the curricula better than anything else in the world. By their very nature, fair
comparison tests are conservative.2

With international tests, there is a little less conservatism because countries will
opt out if they think the test does not cover their curriculum. Still, there has never
been an international test that allows the latest in technology. For instance, in 2007,
calculators were allowed on only 1 of the 14 booklets of TIMMS tests administered
at the 8th grade level.

1Let x be the amount of content in country A. Then .75x is taught in country B and .80(.75)x, or
.60x is taught in both countries A and B.
2When the Department of Education under President George W. Bush initiated the What Works
Clearinghouse that required a particular kind of comparison study of any curriculum in order to
certify that it was promising, nothing unique to a new curriculum could be tested and be fair to
both groups, so essentially nothing new could be tested.
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Table 1 IEA Study of
Mathematics (First
International Mathematics
Study). Mean scores of the
grade most containing
13-year-oldsa

aSample-selection data is not
generally available. It is likely
that samples in a number of
countries would not meet
today’s National Center for
Education Statistics
guidelines for
non-participation and
exclusion

Source: Husen (1967), II,
p. 23

Country n Mean score
(70 items)

Israel 3,232 32.3

Japan 2,050 31.2

Belgium 2,645 30.4

Finland 841 26.4

West Germany 4,475 25.4

England 3,089 23.8

Scotland 5,718 22.3

Netherlands 1,443 21.4

France 3,449 21.0

Australia 3,078 18.9

U.S. 6,544 17.8

Sweden 2,828 15.3

IEA Study of Mathematics (FIMS)

The first international comparison test was conducted during the 1963-64 school
year. In virtually all the countries in which this study was conducted, this was the
first time for their overall student performance to be compared with student perfor-
mance in other countries. It is now called FIMS, but at that time it was the IEA
study. It was state-of-the-art for its time.

Testing was done with four populations: 13-year-olds, students in the grade most
containing 13-year-olds, students in the last year of high school who were in non-
technical tracks, and students in the last year of high school who were in technical
tracks. Results of the study were published in two volumes (Husen 1967).

A summary of the data from the 13-year-olds (Table 1) reflects that the mean
U.S. score was significantly lower than 9 of the other 11 countries and higher only
than one, Sweden. One reason for these low means may have been that the selection
of the samples was not uniform in the countries. The U.S. and Sweden seem to
have used randomized samples whereas the sample in some countries is known to
have been selected from the best students, as in the case of Israel, and may have not
adequately sampled from poorer students, as in the case of some of the European
countries. Nevertheless, FIMS was the best comparison available at the time.

At the level of the last year of high school, the situation is more complicated.
Some advanced students take mathematics while others don’t, and countries differ
in the typical ages of students in that year. So the FIMS study designers tested two
non-intersecting samples of students. Table 2 shows the results for students who
were not enrolled in advanced mathematics courses.

The difference in ages makes it difficult to compare performance in the various
countries. For instance, German and Swedish students were 2 years older than U.S.
students, on average. Still, the results show U.S. students extraordinarily behind all
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Table 2 IEA Study of
Mathematics (First
International Mathematics
Study).a Mean scores of
non-mathematics students in
their last year of secondary
school
aSample-selection data is not
generally available. It is likely
that samples in a number of
countries would not meet
today’s National Center for
Education Statistics
guidelines for
non-participation and
exclusion

Source: Husen (1967), II,
p. 25

Country n Mean age Mean score
(58 items)

West Germany 643 19 y 9 27.7

Japan 4,372 17 y 8 25.3

Belgium 1,004 18 y 0 24.2

Finland 399 19 y 2 22.5

England 1,782 17 y 11 21.4

Scotland 2,123 17 y 1 20.7

Sweden 222 19 y 7 12.6

U.S. 2,042 17 y 10 8.3

Not enough data to compare means

France 192 18 y 9 26.2

Netherlands 50 18 y 7 24.7

their international counterparts except Sweden, even being behind countries where
students were about the same age.

When mean scores are so different, one has to wonder not just whether the sam-
ples were comparable, or the ages comparable, or whether the test was a fair test
for both groups. Here the mean scores are so different because of the structure of
schooling in the various countries. In some countries, by this time, mathematics and
other students who will have technical majors have been separated out from other
students. In the U.S. this separation had not yet occurred. Thus the U.S. sample of
non-mathematics students excluded all of those students who were taking precalcu-
lus or calculus courses and by so doing the sample excluded virtually all of the best
students regardless of their major interest. On the other hand, the non-mathematics
sample from other countries included fine students who were not majoring in math-
ematics because they were already involved in concentrations that did not include
mathematics.

Table 3 shows mean scores of those students who were taking mathematics in the
last year of high school. Again the U.S. mean score was lower by a good amount
that any other country. At this time, about 18 % of U.S. students took precalcu-
lus or calculus as seniors in high school. In other countries, as we have noted, the
population was more select because 45 years ago, by the age of 15 or 16, their stu-
dents were already specializing and taking a great deal more mathematics than just
a single course.

Because of the non-equability of the samples, particularly at the 12th grade, it
is impossible to know how the U.S. would have fared with some matched sample.
This did not keep the press from making conclusions. Two reports of the study
(Hutchinger 1967a, 1967b) appeared in the New York Times, 5 days apart. The
first report, “U.S. Ranked Low in Math Teaching” (Hutchinger 1967a), was on the
front page. Its subtitle is “Japan does the best job in subject”. The second report
(Hutchinger 1967b), “The U.S. Gets Low Marks in Math”, is far back in the news-
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Table 3 IEA Study of
Mathematics (First
International Mathematics
Study).a Mean scores of
mathematics students in their
last year of secondary school

aSample-selection data is not
generally available. It is likely
that samples in a number of
countries would not meet
today’s National Center for
Education Statistics
guidelines for
non-participation and
exclusion

Source: Husen (1967), II,
p. 24

Country n Mean age Mean score
(69 items)

Israel 146 18 y 2 36.4

England 967 17 y 11 35.2

Belgium 519 18 y 1 34.6

France 222 18 y 7 33.4

Netherlands 462 18 y 2 31.9

Japan 818 17 y 8 31.4

West Germany 649 19 y 10 28.8

Sweden 776 19 y 7 27.3

Scotland 1,422 17 y 6 25.5

Finland 369 19 y 1 25.3

Australia 1,089 17 y 2 21.6

U.S. 1,660 17 y 9 13.8

paper. There is a response from the U.S. Department of Education pointing out that
U.S. students scored lower at the 12th grade because the U.S. keeps more students
in school. The newspaper reporter is skeptical about that explanation.

Data were collected about the students, about their schools, and about the cur-
riculum. Both New York Times articles point out that students who studied from the
new math, which was then at about its peak usage in high schools, scored higher
than other students perhaps because of the conceptual nature of the new math.

The FIMS researchers explained some of the differences by coining a new
phrase: “opportunity to learn” (OTL). OTL was felt to explain many of the differ-
ences among countries. It was clear that any future study would need to take OTL
into account.

Second International Mathematics Study (SIMS)

Eighteen years later, in 1981-82, the second international mathematics study (SIMS)
took place. The U.S. national report was under the direction of Ken Travers of the
University of Illinois. The first results came out in 1983 but the main report for
the U.S., “The Underachieving Curriculum”, did not appear until four years later
(McKnight et al. 1987). This report summarized the results and also showed anal-
yses to debunk some of the simple explanations often given for differences in the
performances of nations, such as time in school classrooms, class size, or amount of
teacher preparation.

Again 13-year-olds were studied but, as a result of the importance of content and
OTL, no single mean score was provided for a country. Instead, five subscores on
what have become rather standard areas of mathematical content in the elementary
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Table 4 Second International Mathematics Study. Mean percent of core items correct, 13-year-
olds

Country Arithmetic Algebra Geometry Measurement Statistics

Japan 60.3 60.3 57.6 68.6 70.9

Netherlands 59.3 51.3 52.0 61.9 65.9

Hungary 56.8 50.4 53.4 62.1 60.4

Belgium (Flem.) 58.0 52.9 42.5 58.2 58.2

France 57.7 55.0 38.0 59.5 57.4

Canada (B.C.) 58.0 47.9 42.3 51.9 61.3

Belgium (Fr.) 57.0 49.1 42.8 56.8 52.0

Hong Kong 55.1 43.2 42.5 52.6 55.9

Canada (Ont.) 54.5 42.0 43.2 50.8 57.0

Scotland 50.2 42.9 45.5 48.4 59.3

England & Wales 48.2 40.1 44.8 48.6 60.2

Finland 45.5 43.6 43.2 51.3 57.6

New Zealand 45.6 39.4 44.8 45.1 57.3

U.S. 51.4 42.1 37.8 40.8 57.7

Israel 49.9 44.0 35.9 46.4 51.9

Sweden 40.6 32.3 39.4 48.7 56.3

Thailand 43.1 37.7 39.3 48.3 45.3

Luxembourg 45.4 31.2 25.3 50.1 37.3

Nigeria 40.8 32.4 26.2 30.7 37.0

Swaziland 32.3 25.1 31.1 35.2 36.0

Source: Medrich and Griffith (1992), pp. 70–74

school were used (Table 4). The 20 countries are ordered by the mean of the subscore
means for the five areas.

As a whole, the U.S. did somewhat better on SIMS than in FIMS, but still ranked
below many countries.3

It is instructive to look at the subscores. In Arithmetic and Algebra, the U.S. mean
was at about the middle of all countries. In Geometry, it was significantly below 9
countries and significantly above only 3 countries. The situation was even worse
with measurement, where the U.S. mean was significantly below all but 2 countries,
both African developing nations. I believe that U.S. students were at a disadvantage
because all measurements in this international study were in metric, which led to
poorer performance on measurement items and resulted in U.S. students having less
time for items in other areas. This reflected not just a lack of OTL in school, but a

3In Canada, the curriculum of Ontario was considered so different from the curriculum of British
Columbia, and other provinces did not participate, so it was decided that it would be better to
analyze the two provinces as if they were separate countries.
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Table 5 Second International Mathematics Study. Mean percent of core items correct, 17-year-
olds “who are still engaged in the serious study of mathematics”

Country Number Algebra Geometry Functions/Calculus Yield

Hong Kong 78 78 65 71 N.A.

Japan 68 78 60 66 12

England & Wales 59 66 51 58 6

Finland 57 69 48 55 15

Sweden 62 61 49 51 12

New Zealand 51 57 43 48 11

Canada (Ont.) 47 57 42 46 10

Belgium (Flem.) 48 55 42 46 10

Israel 46 60 35 45 6

Belgium (Fr.) 44 55 38 43 N.A.

Scotland 39 48 42 32 18

U.S. 40 43 31 29 13

Canada (B.C.) 43 47 30 21 30

Hungary 28 45 30 26 50

Thailand 33 38 28 26 N.A.

Source: Medrich and Griffith, pp. 75–78

lack of opportunity to see the mathematics outside of school. It seemed that when
U.S. students had the opportunity to learn, the students did rather well. For instance,
in the statistics strand U.S. students were outscored in only two countries. This may
be explained by the fact that U.S. students saw statistics not only in mathematics
but also in social studies and, if they were interested in sports or politics, by read-
ing newspapers. This result strongly suggests that OTL outside of school may be a
significant variable in mathematics performance.

Learning from the first international study, SIMS did not look at students in their
last year of secondary school because of the age differences. Instead, it looked at
17-year-olds from 15 countries. Table 5 shows mean scores on four mathematics
areas for these countries. Again, learning from the first study, SIMS took note of
the percent of the age group in the population, calling it yield. The U.S. yield of
13 % at this time means that, of 17-year-olds in the United States, about 13 % were
taking precalculus or higher mathematics courses. In contrast, in Ontario 19 %, and
in British Columbia 30 % were taking courses at this level, and in England and
Wales and Israel only 6 % of students.

U.S. 17-year-olds were significantly outscored in all four areas of mathematics
by a majority of the countries in every area. The only countries that fared worse on
average were British Columbia and Hungary, each of which with a far larger portion
of their student bodies still engaged in mathematics, and Thailand, a developing
country.
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Ten years after SIMS, researchers from the National Center for Education Statis-
tics analyzed both FIMS and SIMS and in mathematics and science and came up
with seven systematic patterns (Medrich and Griffith 1992, pp. 30–35).

1. Opportunity to learn is a significant variable in performance internationally.
2. The amount of tracking is not a significant variable in performance. Although

tracking in the U.S. was felt to hamper performance, tracking in some countries
helps performance.

3. Schooling affects learning more in some subjects than others. In particular, it
affects learning more in those subjects that are not encountered outside of school.

4. Family background is a significant variable in performance.
5. Except for Japan, the more students that are retained in the study of a subject, the

poorer the performance. That is, yield is negatively related to performance.
6. Generally, the “best students” in the United States do less well on the interna-

tional achievement surveys when compared with the “best students” from other
countries.

7. Students from less developed countries do less well on tests of achievement than
students from more developed countries.

The Situation in the U.S.: 1963-64 to 1981-82

Because the FIMS and SIMS tests were not matched, to help understand U.S. per-
formance on external comparisons between the 1960s and the 1980s, it is useful to
examine performance of U.S. students on internal comparisons. NAEP (the National
Assessment of Educational Progress) did not start collecting data on mathematics
until 1973, so there are no randomly-selected samples dating back all the way to
1963-64. The best data come from the College Board SAT tests administered by the
Educational Testing Service (ETS).

Figure 1 shows 58 years of mean scores of students on the SAT-Math and SAT-
Verbal, from 1952 to 2009, scaled to represent the original SAT scores. The highest
mean score was in 1963, in the new math era. Later scores in the 1960s went down
from that peak, but in 1977 a blue-ribbon commission of ETS determined that the
reason for the decline was the increase in numbers of students taking the test (Wirtz
et al. 1977). In the 1970s, however, the decline in performance is real as percents of
students taking the SAT remained reasonably constant. The 1970s was very much a
back-to-basics era, in which individual paper-and-pencil skills were identified and
emphasized as the goals of school mathematics and resulted in the lowest scores
ever just at the time that SIMS was undertaken.

It seems that problem-solving movement of the 1980s, a reaction to back-to-
basics, started a significant increase in SAT math scores that continued through the
Standards movement of the 1990s, resulting in an unprecedented increase in SAT
scores that has begun to lapse in recent years perhaps because in 2006 the SAT
added a third test for students to take. The mean scores on the Verbal test, renamed
Critical Reasoning in 2006, have shown a far worse long-term trend.
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Fig. 1 Mean scores of high school seniors on the SAT-Mathematics and SAT-Verbal Tests,
1952–2010.
SAT scores were recalibrated in 1996. These scores have been adjusted to place them on the origi-
nal scale. The decade identifiers “new math”, “back-to-basics”, are additions by this author. Source:
For 1952–1975, Wirtz et al., p. 6; for 1975 on, College Board (2012), p. iii

Table 6 Percentage of public and private high school graduates taking selected mathematics
courses in high school, selected years, 1982–2009

Course 1982 1990 2000 2009

Any mathematics (≥1 yr) 98.5 99.9 99.8 100.0

Algebra I (≥1 yr) 55.2 63.7 61.7 68.5

Geometry (≥1 yr) 47.1 63.2 78.3 88.3

Algebra II (≥0.5 yr) 39.9 52.9 67.8 75.5

Trigonometry (≥0.5 yr) 8.1 9.6 7.5 6.1

Analysis/precalculus (≥0.5 yr) 6.2 13.3 26.7 35.3

Statistics/probability (≥0.5 yr) 1.0 1.0 5.7 10.8

Calculus (all) (≥1 yr) 5.0 6.5 11.6 15.9

Calculus (Advanced Placement) 1.6 4.1 7.9 11.0

Source: National Center for Education Statistics (2012), p. 232

Overall, it can be argued that today’s large population of college-intending stu-
dents knows as much mathematics as yesteryear’s much more select population, and
the reason for this is probably that they have taken as much mathematics as that ear-
lier select population did. Supporting that notion are data from the National Center
for Education Statistics (Table 6), obtained from a random sample of high school
transcripts.
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Fig. 2 Trend in NAEP mathematics average scores for 9-, 13-, and 17-year-old students

In 1982, over 55 % of high school students graduated with no more than algebra
or geometry on their transcripts, but by 2009, that percent was less than 12 %. In the
same time period, the percent of high school graduates with a second year of algebra
or more increased from 40 % to 75 %, and calculus enrolments tripled. We can
impute that the kinds of students who used to finish their high school mathematics
with algebra or geometry are now all taking a second year of algebra and many of
them even more mathematics. These data explain why high school teachers who
have been teaching for many years often state that their students today are not the
same as they were ten or twenty years ago. This is true: half or more of the students
are not from the same population.

NAEP

The first National Assessment of Educational Progress (NAEP) study of mathemat-
ics was administered in 1973, responding to a call for reliable national data about
performance in many subjects and more specifically to questions about the effec-
tiveness of the new math curricula. Data from unreleased items were used to initiate
what is now known as the long-term longitudinal study of NAEP. The items used for
the long-term study have not changed since 1978; for the most part, they test basic
skills.

Mean scores for students in this study from 1973 through 2008 are shown in
Fig. 2. Scores from 1973 to 1982 mirror the SAT in that the mean scores of 17-
year-olds decline. In this period, the mean scores of 13-year-olds climbed a little
and the scores of 9-year-olds were stagnant. But, as the graph shows, during the
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1980s, there was a great increase in the mean scores of 9-year-olds on NAEP and
there were smaller increases among 13-year-olds and 17-year-olds. These increases
continued through the 1990s and 2000s for the latter populations while the mean
score of 17-year-olds has remained stagnant.

TIMSS

In 1994-95, the first administration of the Third International Mathematics and Sci-
ence Study (TIMSS) was conducted. Because of the striking differences in countries
in SIMS at the 8th grade level, it was decided to test also at the 4th grade level. Per-
haps the existence of tests at the 4th grade in NAEP in the U.S. had something to do
with this; certainly it told nations that testing at this age was possible. Surprisingly,
there is no mention of SIMS or of FIMS in the U.S. national report of TIMSS. And
so we lost a major opportunity for research to build on itself and for longitudinal data
back to 1981-82, years which on national measures were a low point for the U.S.
This was such a blatant weakness that a few years later TIMSS changed what the
acronym represents to “The International Mathematics and Science Study”. Later,
the acronym TIMSS was changed again to stand for “Trends in International Math-
ematics and Science Study”, but the trends begin only in the 1990s and not in the
1960s.

Testing in the first round of TIMSS took place at 4th, 8th, and 12th grade. The
first results to be published were from the 8th grade (Table 7). The United States
scored at 500, significantly below the international average of 513 and the average of
527 for all countries that met the sampling specifications. Singapore was highest at
643, with Korea and Japan also scoring above 600. No country of the G8 economic
front that met the sampling criteria scored lower than the U.S.4

TIMSS allowed samples that were not taken from the population of all students in
a country. In particular, smaller groups within the U.S. were allowed to participate
as countries. One of these groups consisted of the public schools in three town-
ships (Glenbrook, New Trier, and Niles) in the north suburbs of Chicago. These
suburbs range from middle class to affluent and are not unlike similar affluent sub-
urbs around virtually every large city in the U.S. These school districts wanted to be
tested against the best in the world, and so they called themselves the “First In the
World” Consortium. The consortium’s 8th graders scored at 587, even with Hong
Kong and not statistically significantly different from Korea and Japan. Only Sin-
gapore’s mean was significantly higher. The implication was that students in more
affluent suburbs of the U.S. were getting an education second-to-none—well, sec-
ond only to Singapore.

TIMSS also analyzed results of the 8th grade test by strands, though not identical
to those in SIMS (Table 8). The U.S. score is statistically equal to the international
mean in all strands except for geometry and measurement. U.S. students performed

4England and Germany did not meet sampling criteria.
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Table 7 Mean scores of 8th grade students on TIMSS 1994-95 from all countries that met sam-
pling specifications

Country Mean score Country Mean score

Singapore 643 Ireland 527

Korea 607 Canada 527

Japan 605 Sweden 519

Hong Kong 588 New Zealand 508

Consortium 587 Norway 503

Belgium-Flemish 565 United States 500

Czech Republic 564 Spain 487

Slovak Republic 547 Iceland 487

Switzerland 545 Lithuania 477

France 538 Cyprus 474

Hungary 537 Portugal 454

Russian Federation 535 Iran 428

Source: Beaton et al. (1996), p. 22

above the international average in data and probability, below average in proportion-
ality, and statistically equal to the international average in algebra, in fractions and
in number sense. These data are certainly not what one would expect from efforts
in recent years at the national level that have been motivated by the scores on inter-
national assessments, e.g., the charge to the 2008 National Mathematics Advisory
Panel to look at algebra and the view represented in the Common Core State Stan-
dards that fractions and algebra are where the most increased attention is needed.
It might have been more reasonable to conclude that the best way for the U.S. to
improve its performance on international tests is to go metric, spend more time on
geometry, and teach proportionality while doing so.

In 1998, the 4th grade TIMSS results were released. For the first time in these in-
ternational comparisons, U.S. students scored above an international average. Only
Singapore, Korea, Japan, Hong Kong, the Netherlands, the Czech Republic, and
Austria scored higher. Canada, Hungary, Australia, Ireland, Slovenia, and Israel
scored statistically equal, and Norway, England, Scotland, and many other coun-
tries scored lower. U.S. 4th-graders did even better in science than in mathematics.

For once, positive news received strong play. Newspapers and even President
Clinton were elated (Bennet 1997). The results were announced in a White House
ceremony. Clinton called the results “a road map to higher performance”, and urged
states to embrace his voluntary testing against national standards in reading for 4th
graders and in math for 8th graders. He also remarked, “This report proves that
we don’t have to settle for second-class expectations or second-class goals.” But,
remembering the 8th grade results, he said we are doing a very good job in the early
grades but have got a lot more work to do in the later grades.
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Table 8 Average percent correct by 8th graders by mathematics content area on TIMSS 1994-95
from all countries that met sampling specifications

Country Fractions &
Number
Sense

Geometry Algebra Data Repre-
sentation,
Analysis &
Probability

Measurement Proportionality

Singapore 84 76 76 79 77 75

Japan 75 80 72 78 67 61

Korea 74 75 69 78 66 62

Hong Kong 72 73 70 72 65 62

Belgium (Fl)a 71 64 63 73 60 53

Czech Rep. 69 66 65 68 62 52

Slovak Rep. 66 63 62 62 60 49

Switzerland 67 60 53 72 61 52

Hungary 65 60 63 66 56 47

France 64 66 54 71 57 49

Russian Fed. 62 63 63 60 56 48

Canada 64 58 54 69 51 48

Ireland 65 51 53 69 53 51

Sweden 62 48 44 70 56 44

New Zealand 57 54 49 66 48 42

Norway 58 51 45 66 51 40

Englanda 54 54 49 66 50 41

U.S.a 59 48 51 65 40 42

Latviaa 53 57 51 56 47 39

Spain 52 49 54 60 44 40

Iceland 54 51 40 63 45 38

Lithuaniaa 51 53 47 52 43 35

Cyprus 50 47 48 53 44 40

Portugal 44 44 40 54 39 32

Iran 39 43 37 41 29 36

Intl. Average 58 56 52 62 51 45

aThe national desired population did not cover all of the international desired population

Source: Beaton et al. (1996), p. 41

When the 12th grade results came out a few months later, it seemed that we had
a lot more work to do in the high school as well. Three different tests were given to
three different samples. In the mathematics test given to all students, U.S. students
were statistically even with the international average but below all others in that
category, and only Cyprus and South Africa scored lower. In the advanced math-
ematics test, given to precalculus and calculus students (mirroring the situation in
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Table 9 Distribution of
advanced mathematics items
by content category, TIMSS
1995

aThere were a total of 65
items

Source: TIMSS (undated),
p. vi

Category Percent of itemsa Number of points

Numbers & Equations 26 22

Calculus 23 19

Geometry 35 29

Probability & Statistics 11 8

Validation & Structure 5 4

Totals 100 82

FIMS), U.S. students scored significantly lower than the international average. The
only ray of hope was that Advanced Placement calculus students scored slightly
higher than the international average of advanced mathematics students. Now Pres-
ident Clinton remarked, “There is something wrong with the system and it is our
generation’s responsibility to fix it.” (quoted in Bronner 1998)

An article in The New York Times (Bronner 1998) notes that 23 countries par-
ticipated but only 16 countries participated in the Advanced Mathematics category.
Furthermore, only six countries (France, Switzerland, Greece, Sweden, Canada, and
the Czech Republic) met the sampling guidelines; the U.S. did not. All but the Czech
Republic still had mean scores significantly above the U.S. The Russian Federation,
which had the second highest mean score among all the countries, only tested 3 %
of its students. So, just as in FIMS 30 years before, results were reported by the
media with little regard for the sample.5

Another aspect of all these studies that was almost completely ignored is the
substance of the test. What was being tested? It was assumed by the media and
virtually all who commented on these tests that the items reflected what the country
wants students to know. Yet Table 9 shows the distribution of items on the 12th grade
TIMSS advanced mathematics test and shows that the distribution of items does not
reflect the time devoted to various topics in the U.S. curriculum. Well over half of
the precalculus curriculum in the U.S. is devoted to algebra and functions, but only
26 % of items were in that category. In the U.S., from algebra through calculus one
of five years is spent on geometry, about 20 % of the time, but on the test 35 % of
the items covered geometry.6 For U.S. precalculus students to take a test in which
23 % of the items were on calculus doomed them to poor performance. In all, 58 %

5From the countries that met the sampling guidelines, the mean scores were: France (557), Switzer-
land (533), Greece (513), Sweden (512), Canada (509), and Czech Republic (469). For the coun-
tries that did not meat the guidelines, the mean scores were: Russian Federation (542), Australia
(525), Denmark (522), Cyprus (518), Lithuania (516), Slovenia (475), Italy (474), Germany (465),
United States (442), and Austria (436).
6A reviewer of this paper pointed out that some of the released TIMSS items classified as geometry
and calculus would normally be taught in algebra or precalculus courses in the U.S., so that the
match between topic and course is not as strong as I have indicated. Since not all items were
released and we do not know the performance of students on them, the public cannot further test
the claim that the distribution of items does not reflect the U.S. curriculum.
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of the items on the advanced mathematics portion of TIMSS were on geometry or
calculus, and only 26 % were on arithmetic or algebra.

Rather than looking at the possible mismatch between the curriculum and the
test, the U.S. curriculum was called “a mile wide and an inch deep” (Schmidt et al.
1996, p. 34) and much of the blame for the poor performance was placed on text-
books. Repeating this theme, the National Mathematics Advisory Panel of 2008
exhorted publishers to produce shorter and more focused textbooks, and it is one of
the reasons many people want common standards for the nation.

The “mile wide, inch deep” characterization does not fit well the U.S. high school
curriculum. At the high school level, the U.S. curriculum is most often focused into
algebra one year, geometry the next, algebra and functions the next, and functions
the 4th year. This curriculum is often criticized because geometry is taught in a
single year and algebra in two separate years rather than spreading them out over all
years.

Indeed, the view of TIMSS researchers and others that the U.S. relative standing
internationally has anything to do with the length or focus of U.S. textbooks has
not been backed up by any research. One could just as easily argue that the high
performance of U.S. students at 4th grade or the high performance in places like the
schools in the First in the World Consortium was due to the very same textbooks.

TIMSS-R

In 1999, TIMSS was repeated and 13 of the 50 U.S. states participated as countries.
These states did not include those that have traditionally had the highest or lowest
performing students but the state results still showed wide variance, from quite a bit
above international means to quite a bit below. This verified what previous studies
had shown, that U.S. national mean scores mask performance that ranges from top-
of-the-world in various parts of the country to the equal of third-world countries in
other parts.

This was the picture as the U.S. entered the 21st century. With the exception of
the 4th grade scores in the 1990s, the picture painted by U.S. scores in an inter-
national context was bleak. U.S. 8th graders rarely scored above the international
mean and, except for the best students, on most tests 12th graders were uniformly
poor. However, I have offered reasons why the picture may not be as bad as it was
portrayed either by researchers or by the media.

This picture is quite different from a quote that began the National Mathematics
Advisory Panel (2008) and is also in its summary. “During most of the 20th century,
the United States possessed peerless mathematical prowess—not just as measured
by the depth and number of the mathematical specialists who practiced here but also
by the scale and quality of its engineering, science, and financial leadership, and
even by the extent of mathematical education in its broad population.” (Summary
p. xi; Report, p. 1, emphasis mine)

That panel would have us believe that mathematics in schools was in good health
through most of the 20th century, but that during the last part of the century, things
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Fig. 3 Trends in 4th grade and 8th grade NAEP mathematics average scores 1990–2009.
Source: National Center for Education Statistics (2009), pp. 8, 23

went sour. The unwritten implication here is that things were fine until the NCTM
Standards (1989), but the Standards were a failure. Now, due to that failure, dramatic
action was needed. This was the main belief that led to the panel and later led to the
Common Core Standards.

Not only is this belief not supported by data, but the data suggest that quite the
opposite was true. Figure 2 showed that on the NAEP long-term longitudinal study,
for both 9-year-olds and 13-year-olds, there were small improvements during the
1990s. Figures 3a and 3b show means on the standard NAEP assessment at 4th and
8th grade, for which a short-term longitudinal study was started in 1990. There was
a steady and significant improvement on NAEP during the 1990s that has extended
to the most recent NAEP tests.

TIMSS 2003 and 2007

TIMSS was given in 2003 and 2007 at the 4th and 8th grades. In 2003, at 4th grade,
the U.S. now performed worse than it had relative to other countries in 1994-95
(Table 10a). Though the mean score in the U.S. had increased from 1994-95, the
means of other countries increased more. At 8th grade, the U.S. mean was in the top
half of all countries for the first time (Table 10b), but that result is deceptive, since
many developing nations with low scores participated.

In 2007, over 40 countries participated at each grade level. Tables 11a and 11b
show the means of all participating countries. The U.S. mean was more towards
the top at each grade level than in early administrations of TIMSS. Furthermore,
three of the countries with higher means at grade 4 did not test a representative
sample, so their mean scores are not trustworthy. In short, the U.S. mean was higher
internationally in 2007 than ever before.
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Table 10a Average mathematics scale scores of 4th-grade students by country, TIMSS, 2003

Country Average score Country Average score

International Average 495 Cyprus 510

Singapore 594 Moldova 504

Hong Kong SAR 575 Italy 503

Japan 565 Australia 499

Chinese Taipei 564 New Zealand 493

Belgium (Fl) 551 Scotland 490

Netherlands 540 Slovenia 479

Latvia 536 Armenia 456

Lithuania 534 Norway 451

Russian Federation 532 Iran 389

England 531 Philippines 356

Hungary 529 Morocco 347

United States 518 Tunisia 339

Source: Mullis et al. (2004), pp. 34–5

In the light of these national and international data, it is difficult to defend the
view that U.S. students performed well before the NCTM Standards but their per-
formance declined after that. Indeed, the truth is just the opposite. U.S. students
languished until the problem-solving era of the 1980s and, on every measure of per-
formance, both nationally and internationally, scores of U.S. students significantly
improved after the NCTM Standards appeared in 1989.

PISA 2003, 2006, 2009

PISA, the Program for International Student Assessment, created under the auspices
of the Organization for Economic and Cultural Development (OECD), is now the
comparative international study involving the largest number of countries. Because
PISA tests the ability of 15-year-old students to apply school knowledge to tasks
one might see outside of school, it is quite different from TIMSS, which is far more
dedicated to school mathematics. PISA is given to 15-year-olds because that is an
age at which virtually all young people in almost all countries are in school. PISA
occurs each 3 years, with testing in a given year focused on reading, mathematics, or
science. 2003 was a mathematics year for PISA, 2006 was a science year, and 2009
was a math year, so there are more data for math from 2003 than from 2006 or 2009.

There are two parts to the PISA mathematics assessment: mathematics literacy
and problem-solving. In 2003, Mathematical Literacy was defined as “an individ-
ual’s capacity to identify and understand the role that mathematics plays in the
world, to make well-founded judgments and to use and engage with mathematics in
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Table 10b Average mathematics scale scores of 8th-grade students by country, TIMSS, 2003

Country Average score Country Average score

International Average 467 Armenia 478

Singapore 605 Serbiab 477

Republic of Korea 589 Bulgaria 476

Hong Kong SAR 586 Romania 475

Chinese Taipei 585 Norway 461

Japan 570 Moldova 460

Belgium (Fl) 537 Cyprus 459

Netherlands 536 Macedoniaa 435

Estonia 531 Lebanon 433

Hungary 529 Jordan 424

Malaysia 508 Iran 411

Latvia 508 Indonesiab 411

Russian Federation 508 Tunisia 410

Slovak Republic 508 Egypt 406

Australia 505 Bahrain 401

United Statesa 504 Palestinian Authority 390

Lithuaniab 502 Chile 387

Sweden 499 Moroccoa 387

Scotland 498 Philippines 378

Israela 496 Botswana 366

New Zealand 494 Saudi Arabia 332

Slovenia 493 Ghana 276

Italy 484 South Africa 264

aThe country did not meet international sampling or other guidelines
bThe national desired population did not cover all of the international desired population

Source: Mullis et al. (2004), pp. 34–5

ways that meet the needs of that individual’s life as a constructive, concerned and re-
flective citizen.” (OECD 2003, p. 15).7 Problem solving in PISA is interdisciplinary,
defined as “an individual’s capacity to use cognitive processes to confront and re-
solve real, cross-disciplinary situations where the solution path is not immediately

7For the 2012 administration of PISA, the definition of mathematical literacy was modified to “an
individual’s capacity to formulate, employ, and interpret mathematics in a variety of contexts. It
includes reasoning mathematically and using mathematical concepts, procedures, facts, and tools
to describe, explain, and predict phenomena. It assists individuals to recognise the role that math-
ematics plays in the world and to make the well-founded judgments and decisions needed by
constructive, engaged and reflective citizens.” (OECD 2010a, p. 4).
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Table 11a Average mathematics scale scores of 4th-grade students by country, TIMSS, 2007

Country Average score Country Average score

International Average 500 Slovenia 502

Hong Kong SAR 607 Armenia 500

Singapore 599 Slovak Republic 496

Chinese Taipei 576 Scotland 494

Japan 568 New Zealand 492

Kazakhstanb 549 Czech Republic 486

Russian Federation 544 Norway 473

England 541 Ukraine 469

Latvia 537 Georgiab 438

Netherlandsa 535 Iran 402

Lithuaniab 530 Algeria 378

United Statesb 529 Columbia 355

Germany 525 Morocco 341

Denmark 523 El Salvador 330

Australia 516 Tunisia 327

Hungary 510 Kuwait 316

Italy 507 Qatar 296

Austria 505 Yemen 224

Sweden 503

aThe country came close but did not meet international sampling or other guidelines
bThe national target population did not cover all of the international target population

Source: Gonzales et al. (2008), p. 7

obvious and where the literacy domains or curricular areas that might be applicable
are not within a single domain of mathematics, science or reading.” (Ibid., p. 15)

On mathematical literacy in 2003, the mean score of students in most OECD
countries was well above the U.S. mean and only a few Mediterranean countries and
Mexico were below, as seen in Table 12. The results on problem solving mirrored
those for mathematical literacy.

When student performance in each country was adjusted for the GDP of the
country per capita, the U.S. adjusted mean was the second lowest of all OECD
countries, higher only than Mexico. Finland and the Czech Republic were highest
(OECD 2004, p. 358). This extraordinarily poor performance is reminiscent of U.S.
performance on FIMS.

In PISA 2006 only mathematical literacy was tested. The results in 2006 mirrored
those for 2003. The surprise to many people was that in both 2003 and 2006 Finland
scored highest of OECD countries, only a little under Hong Kong in 2003, and
Finland maintained the highest OECD score in 2006, just a little under Taiwan.
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Table 11b Average mathematics scale scores of 8th-grade students by country, TIMSS, 2007

Country Average score Country Average score

International Average 500 Ukraine 462

Chinese Taipei 598 Romania 461

Korea 597 Bosnia and Herzegovina 456

Singapore 593 Lebanon 449

Hong Kong 572 Thailand 441

Japan 570 Turkey 432

Hungary 517 Jordan 427

England 513 Tunisia 420

Russia 512 Georgiab 410

United States 508 Iran 403

Lithuaniab 506 Bahrain 398

Czech Republic 504 Indonesia 397

Slovenia 501 Syria 395

Armenia 499 Egypt 391

Australia 496 Algeria 387

Sweden 491 Colombia 380

Malta 488 Oman 372

Scotland 487 Palestinian Authority 367

Serbiab 486 Botswana 364

Italy 480 Kuwait 354

Malaysia 474 El Salvador 340

Norway 469 Saudi Arabia 329

Cyprus 465 Ghana 309

Bulgaria 464 Qatar 307

Israela 463

aThe country came close but did not meet international sampling or other guidelines
bThe national target population did not cover all of the international target population

Source: Gonzales et al. (2008), p. 7

In 2009 again only mathematical literacy was tested. The results for the U.S.
were consistent with 2003 and 2006 in that the U.S. mean of 487 was significantly
below the OECD mean of 496 (Table 13). The U.S. had gained somewhat over time,
having been 17 points below the OECD mean in 2003 and just 9 points below the
mean in 2009. But U.S. students still scored poorly compared to students in most
other countries.

A not atypical media response was that of Ada Kasparian.

The disparaging news coverage on the public school system in United States is more justi-
fied than ever, especially after a new study by the Program for International Student Assess-



Forty-Eight Years of International Comparisons in Mathematics Education 601

Table 12 Mean student score in mathematical literacy, PISA, 2003, by country

Country Average
score

Country Average
score

Country Average
score

OECD Average 500 Austria 506 Non-OECD Countries

Finland 544 Germany 503 Hong Kong 550

Korea 542 Ireland 503 Liechtenstein 536

Netherlands 538 Slovak Republic 498 Macao-China 527

Japan 534 Norway 495 Latvia 483

Canada 532 Luxembourg 493 Russia 468

Belgium 529 Poland 490 Serbia and Montenegro 437

Switzerland 527 Hungary 490 Uruguay 422

Australia 524 Spain 485 Thailand 417

New Zealand 523 United States 483 Indonesia 360

Czech Republic 516 Portugal 466 Tunisia 359

Iceland 515 Italy 466

Denmark 514 Greece 445

France 511 Turkey 423

Sweden 509 Mexico 385

Source: OECD (2004), p. 356

ment (PISA) indicated that students in the U.S. lagged far behind the Chinese in academic
performance. In fact, 15-year-old Chinese students in Shanghai out-performed all students
internationally in all three categories, including math, science, and reading. According to
Time Magazine, this is the first time China participated in a PISA study, and the results are
stunning because researchers did not expect the country to do as well as it did (Kasparian
2010).

This reaction ignores the fact that Shanghai is not representative of China. Histor-
ically, it was the most western-oriented of all of China and in a most affluent part
of the country. For this reason, from even before the current economic growth of
China, it has had its own curriculum different from the rest of the country. Second,
because the area is known to have top schools, if a child from another province is a
very good student, his or her parents may send that child to Shanghai to afford the
best chance of attending the best universities in the country. This practice is quite
similar to that of parents in the U.S. who move to high-performing suburbs or send
their children to private schools in order to increase their chances of getting into an
elite college. People would never consider the highest-performing suburban schools
and private schools as a barometer of how the entire U.S. performs, but some media
were quick to do just that in the case of Shanghai.

However, the misreading of Shanghai as all of China still does not explain why
Japan, Singapore, Hong Kong, and Korea consistently score among the highest of all
countries. It is natural to ask what these countries (and also Shanghai!) are doing and
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Table 13 Mean student score in mathematical literacy, PISA, 2009, by country

Country Average
score

Country Average
score

Country Average
score

OECD Average 496 Hungary 490 Croatia 460

Korea 546 Luxembourg 489 Dubai 453

Finland 541 United States 487 Serbia 442

Switzerland 534 Ireland 487 Azerbaijan 431

Japan 529 Portugal 487 Bulgaria 428

Canada 527 Spain 483 Romania 427

Netherlands 526 Italy 483 Uruguay 427

New Zealand 519 Greece 466 Thailand 419

Belgium 515 Israel 447 Trinidad & Tobago 414

Australia 514 Turkey 445 Kazakhstan 405

Germany 513 Chile 421 Montenegro 403

Estonia 512 Mexico 419 Argentina 388

Iceland 507 Non-OECD Countries Jordan 387

Denmark 503 Shanghai-China 600 Brazil 386

Slovenia 501 Singapore 562 Colombia 381

Norway 498 Hong Kong 555 Albania 377

France 497 Chinese Taipei 543 Tunisia 371

Slovak Republic 497 Liechtenstein 536 Indonesia 371

Austria 496 Macao-China 525 Qatar 368

Poland 495 Latvia 482 Peru 365

Sweden 494 Lithuania 477 Panama 360

Czech Republic 493 Russia 468 Kyrgystan 331

United Kingdom 492

Source: OECD (2010b), p. 134

emulate them. And, if curriculum is the key variable, why not take their curricula?
However, it is as just important to remember the cautions of Nagy.

Nagy’s difficulties that apply to Japan, Korea, and Finland deal with opportunity
to learn, different social conditions in the countries, and different school enrolment
patterns. In Japan and Korea, a huge amount of instruction in mathematics takes
place outside of school. In Korea, more money is spent on education by parents
than is spent on education by the government. It is reported that half of all Japanese
children attend academic jukus. The education ministries in both Korea and Japan
have been embarrassed by this lack of faith in what students learn in school and
has tried to do something about it by downplaying the exams that are critical in
determining what secondary schools and what colleges a person can attend, but the
juku schools are so ingrained in the culture that the government’s actions have had
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no effect. It is not atypical for a student to go to school during the day and then every
day to juku until well into the night (Watanabe 2007).

It is more difficult to identify why students in Finland score so highly on PISA.
My understanding is that Finnish researchers have not been able to identify any
school variable or curricular reasons for their students’ performance. Some feel that
it is the competence of, respect for, and independence given to teachers in Finland.
One Finnish mathematics educator presented me with a different theory more related
to mathematics. Finland has one of the highest levels of home computer usage per
capita in the world. Children are using information technology all of the time, and
in that usage they are developing problem-solving skills, organizational skills, and
literacy that goes well beyond what is taught in school.8 Their experiences outside
of school are unable to be measured accurately or are even ignored by researchers
whose expertise is with in-school variables, but he feels they account for the differ-
ence. These same explanations of high performance apply to the First In the World
consortium mentioned above and can explain many of the differences in perfor-
mance of various groups within the U.S. This suggests that s student performance
could be improved by policies that encourage high-performing students to go into
teaching and that give attention to what children do outside of school.

An additional social situation is at work in Singapore and Hong Kong. Singapore,
with a population of about 4.5 million, is not comparable to the U.S. nor perhaps
to any other country except when Hong Kong is considered as a country. Singa-
pore sits next to Malaysia and Hong Kong to mainland China in the same way that
U.S. affluent suburbs are not far from inner cities. In 2000, 28 % of the labor force
in Singapore consisted of foreign workers and large numbers of workers in both
places come from outside that territory9 (Yeoh and Lin 2012). The vast majority
are in jobs that Singaporeans consider too low-level. Many workers in Singapore
commute from Malaysia across the bridge each morning and go back each evening,
so their children do not go to school in Singapore. In Singapore in 2005, 18 % of
the population were nonresidents who either were not allowed to have their children
with them or whose children were not tested. It is as if U.S. students in affluent
suburbs were tested but not students in the cities. The same is true to a lesser degree
in Hong Kong with workers from the mainland of China. In 2000, 217,000 of the
territory’s 3,200,000 workers were domestics who come in from the mainland.

The view of these international tests is not the same in many other countries as
it is in the U.S. They have always had national curricula, so do not attribute re-
cent performance to that—in fact, many countries with national curricula score well
below the U.S. These countries generally ascribe their standing to a carefully de-
signed curriculum that is taken in a high-pressure society in which students need to
work hard to succeed, and so spend a great deal of time on schoolwork outside of

8For an independent supporting argument, see Keith Devlin, Mathematics Education for a New
Era: Video Games as a Medium for Learning (A.K. Peters/CRC Press, 2011).
9In 2010, over a third of the labor force in Singapore was foreign (Yeoh and Lin 2012).
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school.10 They look to other countries for guidance on future directions in curricu-
lum, including the U.S., knowing that more curriculum research is done here than
anywhere else in the world and that some of the best curriculum materials in the
world are created in North America! This is particularly true when it comes to the
use of technology, which is increasing in all of these countries. For instance, since
2007 about half of the grade 6 national test in Singapore allows calculators.

Summary

In sum, what have we learned?

1. Comparing mathematics performance among countries is very difficult. Tests
cannot be fair to countries in which curricula differ.

2. Many results of international comparisons are reported without enough regard
for the differences in sample selection or content tested. Giving the mean as des-
ignating the performance of all students in the United States masks the enormous
differences in public schools in different locations.

3. Opportunity-to-learn, not only in school but also out of school, is probably the
most significant determiner of mathematics performance.

4. Of all age groups, U.S. 12th-graders have performed worst internationally com-
pared to students in other countries, but some of the differences are due to the
fact that a majority of the highest-performing 12th-graders in mathematics in
the U.S. do not specialize in mathematics but are simultaneously still studying a
broad curriculum.

5. On internal assessments at all grade levels, U.S. students in recent years have
substantially higher scores than their peers of a generation ago.

6. The scores of students in the U.S. are related to socio-economics of their indi-
vidual families, but the economic well-being of the U.S. has not been related to
its mean performance on international assessments, for mean scores of U.S. have
never been near the top compared to other countries on international assessments.
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(Mathematics) Curriculum, Teaching
and Learning

Ngai-Ying Wong, Qiaoping Zhang, and Xiaoqing Li

Abstract As mathematics curricula around the world have undergone significant
reform in recent years, it is time to re-think the role of the curriculum for mathe-
matics learning and teaching. What shape would such a curriculum have (the final
product) if it does undergo this kind of reform? Who are the ‘end-users’ of the cur-
riculum and what are the inter-relationships among the curriculum, the teachers,
and the students? This chapter attempts to summarize and comment on the various
chapters in this book and to initiate further reflection and discussion on these issues.

Keywords Mathematics curriculum · Mathematics teaching · Mathematics
curriculum reform

Prologue

Mathematics curricula around the world have been undergoing reform for more than
a decade, so it is now time to re-think the role of the curriculum in the learning and
teaching of mathematics. The chapters in this book contribute to our understanding
of the role and purpose of a mathematics curriculum, as well as of mathematics
teaching and learning in the context of reform in the various educational regions.1

Rather than setting out a firm position on various issues, the authors have chosen
to raise a number of questions on various related aspects, in the hope that these
questions would act as fuel to drive further reflection and professional discourse.

1The term ‘region’ is used throughout this chapter for consistency. Some regions (e.g., Japan) are
countries, while others (e.g., Hong Kong) are not.

The word ‘mathematics’ is in parentheses since we believe that many of the issues in this chapter
are not confined to mathematics.
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Standardization in the Current Reform of the Mathematics
Curriculum

In the West, prior to the modern mathematics movement of the 1960s, there had
been virtually no change in the mathematics curriculum and textbooks for a very
long time. There was little difference between the pre-second-world-war and post-
second-world-war traditional textbooks because both were based on what has since
been called the pre-1800 model (Cooper 1985). Following the modern mathematics
movement, there were widespread reforms of the mathematics curriculum around
the world at the turn of the millennium (Wong et al. 2004). Among other factors,
these changes were triggered by several large-scale international comparisons, such
as the Second IEA Mathematics Study (SIMS), the 1992 International Assessment
of Education Progress (IAEP) mathematics study, and the Third International Math-
ematics and Science Study (TIMSS).2 Though Hirabayashi did state that “having a
high achievement in international mathematics studies is not the only criterion” for a
good curriculum (as quoted in Curriculum and Textbook Workgroup 2002, p. 6; see
also Wong et al. 2004), it appears that improving the position of one’s country/region
in the ‘international league table’ is still a major goal in the current trend towards
mathematics curriculum reform (Anderson 2014; Pang 2014; Stephens 2014).

To avoid falling behind, and to maintain standards, the first thing to do is to es-
tablish what the standards are (Reys 2014). Thus, the idea of standardization quietly
crept into the mathematics curriculum and teaching. Besides the need to keep up the
standard, there is an interest in standardizing (unifying) the mathematics curriculum
across the regions and having it benchmarked against the ones used in other coun-
tries or regions. Setting up a national curriculum became a trend in Australia, Brazil,
Israel, Japan, Korea, Singapore, the UK, the USA (though the US mathematics stan-
dard was prepared by a non-governmental body, the National Council of Teachers
of Mathematics), and the Chinese regions (Anderson 2014; Even and Olsher 2014;
Garnica 2014; Pang 2014; Reys 2014; Stephens 2014; Tam et al. 2014; Wong et al.
2014). All of these cases involved conformation to a single curriculum standard.
The first matter to consider is whether such a move is desirable and viable.

It is interesting to note that, although educational autonomy and decentralization
were always stressed in the West (van Zanten and van den Heuvel-Panhuizen 2014),
there is a long history of a centralized curriculum in the East. Inevitably, if there is
too much emphasis on curricular autonomy, there is a possibility that the resulting
curriculum will be too laissez-faire. However, too much centralized control has its
drawbacks as well. This is particularly an issue in educational regions in the East
where there is already a long tradition of a centralized curriculum. The question is
whether pushing for strict standardization would further tighten the existing cen-
tralized control, which would run counter to the call for school-based curriculum
development (Wong and Tang 2012).

There are two more issues to be considered. Firstly, as the notion of the ‘curricu-
lum’ has expanded to encompass a large number of components, such as attainment

2This was later renamed ‘Trends in International Mathematics and Science Study.’
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targets, teaching approaches, and learning activities, would it still be possible for the
central curriculum designers to really know what is happening in each district, each
school, and each classroom (even with each student), in order to be able to design
an ideal curriculum? Secondly, the above issue will become even more salient when
processing abilities, including the so-called generic skills or higher-order thinking
skills (e.g., problem solving, creativity and communication), are given greater em-
phasis in the current reform of the mathematics curriculum. This is particularly true
if an attempt is made to use attainment indicators as inputs into the standard mathe-
matics curriculum. How can the mastery of these generic skills be turned into mea-
surable outcomes? In practice, can these generic skills be acquired step by step in
line with the progress towards the attainment standards? Or can they only be nur-
tured holistically? All of these questions deserve reflection on the part of those who
care about the mathematics curriculum (Wong et al. 2004).

Curriculum, Textbook and Instruction

After the curriculum is reformed, it needs to be implemented. The model of ‘in-
tended, implemented, and attained curricula’ has been used since SIMS to analyze
the mathematics curriculum (Travers and Westbury 1989). Similar frameworks were
also proposed by scholars such as Goodlad (1979) and Marsh and Willis (2007).
This type of framework for curriculum analysis is also used in various chapters in
this book (for example Reys 2014; Senk et al. 2014). However, the ‘intended, imple-
mented, and attained curricula’ model might give the impression that action would
be taken only in that order. Indeed, it is often emphasized that the word curriculum
originates in the Latin currere, which means ‘to race.’ In simplistic terms, curricu-
lum designers would set the course (racecourse) for students to follow, leading them
to their destination. The first step in this process is to design an intended curriculum.
The next step is to guide teachers on how to implement the curriculum. This involves
providing them with a set of well-designed curriculum documents, textbooks, and
other ‘accessories,’ as well as a good methodology for instruction. The final step
is to cross-check whether the expected curriculum targets have been achieved (e.g.,
Anderson 2002; Martone and Sireci 2009).

At the present time, the concept of the curriculum can be very broad (see fur-
ther discussion in later sections). School documents, newspaper articles, committee
reports, and many academic textbooks refer to any or all of the subjects offered or
prescribed as ‘the curriculum of the school’ (Marsh 2004, p. 3). Nevertheless, the
textbook is still the means most frequently used to actualize the curriculum. In this
book, a series of chapters focus on the textbook (Even and Olsher 2014; Li et al.
2014; Senk et al. 2014). Thus textbooks can be seen as a further manifestation of
the intended curriculum. Undoubtedly, the design of both the curriculum and the
related documents is crucial for effective teaching, especially for novice teachers,
giving them confidence that if they follow the curriculum design, they will achieve
the desired learning outcomes.
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Along with the above line of thought, after the curriculum is designed, the next
step could be to design the instruction components, which is the focus of a number
of chapters in this book (Huang et al. 2014; Reys 2014; Shafer 2014; Wong et al.
2014). With a carefully designed curriculum and the relevant curriculum documents
at hand to guide the teachers on effective instructional methods, it is very likely that
the curriculum goals would be achieved, unless there is ‘infidelity’ in the process,
that is, the curriculum is not being implemented strictly in line with its original de-
sign (Achinstein and Ogawa 2006; Fullan 2007; Kimpston 1985; O’Donnell 2008;
Synder et al. 1992; see also van Zanten and van den Heuvel-Panhuizen 2014).

Once the curriculum standard is laid down, the next step is to design the curricu-
lum material (textbooks included), and then to equip the teachers with the various
skills needed to implement the instructional design. If this process is respected, the
teachers would then deliver their teaching as prescribed, and arrive at the expected
students’ learning outcomes. This logic will be considered again towards the end of
this chapter. In the following section, one factor—the teacher—that might affect the
implementation of the curriculum is examined.

The Curriculum and the Teacher

After the curriculum is finalized, it is the teacher who has to deliver it. So one source
of curriculum infidelity is the teacher. Teachers should be professional enough to
implement the curriculum as designed, and benefit from the assistance of the un-
derlying instructional design of the curriculum documents. Both the beliefs and
knowledge of the teachers (of all kinds, including subject knowledge, pedagogi-
cal content knowledge, curriculum knowledge, and knowledge about the students:
Bromme 1994; Shulman 1987; Sullivan and Wood 2008) are seen to be of the ut-
most importance in guaranteeing that the intended curriculum is successfully imple-
mented, and thus yields the expected attainments. However, such an approach still
reflects the linear mentality (Fig. 1).

The advocate of a ‘teacher-proof curriculum’ (Apple 1993; Priestley 2002), at
the peak of behaviorism, further reinforces this line of thought. The curriculum (to-
gether with the textbooks) is a ‘script’ for the teachers to play their parts (Wong
2009). Yet in recent years, teacher ownership (of the curriculum), teacher autonomy,
and the community of learning (Cochran-Smith and Lytle 1999; Kirk and MacDon-
ald 2001) among the teachers have been emphasized, which opens up another option
for the role of the curriculum (Even and Olsher 2014). Stein et al. (2014) point out
that we could guarantee a high-quality instruction even though we use the curricular
in a congruent manner. Indeed, in reality, a teacher cannot and should not be only a
faithful executor of the intended curriculum (including the textbooks). The roles and
inter-relationships among the curriculum, the textbook, and the teacher (not to men-
tion the students, who will be discussed later in this chapter) need to be re-thought
(Cohen et al. 2003; Li 2011; McCaffrey et al. 2001).
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Fig. 1 The curriculum,
teacher, and teaching

A number of chapters in this book touch upon the inter-relationships among the
curriculum, the teachers, and the teaching process. Some of them focus on the con-
nectedness among the three, while others focus on how curriculum change can facil-
itate teacher professionalism (Brown and Hodgen 2014; Cai et al. 2014; Takahashi
2014). The notion of teacher ownership of the curriculum is not new, while the con-
cept of the teacher as a reflective practitioner was discussed previously in the 1980s
(Schön 1983). From this perspective, the teacher should own the curriculum, and
evolve to become an educational researcher, an assessment expert (assessment not
just of but for learning) and a curriculum designer (Clandinin and Connelly 1992).
The teaching of each lesson would involve an element of curriculum design and not
just the blind respect of a pre-designed instructional practice.

There is yet another aspect of teacher ownership, namely, involving teachers in
the curriculum development process. Even and Olsher (2014) describe how teach-
ers became more genuine participants in the process of textbook development,
which made them more active participants in curriculum development. Their needs,
wishes, and aspirations were also fed back to the professional curriculum developers
and the policy makers. Wong et al. (2014) contains an extensive discussion of this
idea. Superficial ‘town hall’ consultations may alienate the teachers and adversely
affect the way that they view the curriculum. That chapter then considers the need
for curriculum reformers to carefully listen to and to synthesize the views of the
various stakeholders holistically (see also Lam et al. in press).
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Curriculum, Teaching and Learning

Most, if not all, curriculum design is done out of goodwill and in the hope that it
will help students to learn more effectively. In other words, the purpose of all of
these efforts is not just to promote teaching but also to facilitate learning. In that
sense, the student is the end-user for the curriculum, yet the student voice is often
under-represented in curriculum design (Geiger et al. 2014). Most curriculum design
is based on a ‘hypothetical learning trajectory’ (Fuson and Li 2014; Simon 1995),
which is essentially an adult perspective (and in particular that of the curriculum
designers) rather than a delineation of actual student learning. Furthermore, such a
‘hypothetical learning trajectory’ often describes the ‘shortest learning path.’ How-
ever, in reality, it is quite natural for students to loop in their learning process. There
is a need for students to ‘hatch’ as they loop around too. Therefore, it seems that the
students’ opinions, such as their appraisal and/or diagnosis of their learning process,
should play a role in curriculum design (Geiger et al. 2014). In the holistic review of
the mathematics curriculum in Hong Kong, the opinions of the various stakeholders,
including university professors, employers, parents, and students, were solicited. In
particular, a questionnaire survey was conducted among 10,000 students (as well as
60 interviews) (Tam et al. 2014). The conclusion was that the student should have a
role in the whole curriculum design process.

It should also be noted that there is a subtle difference between teaching and
learning in curriculum design. In the specific context of mathematics, the mathemat-
ics curriculum should help students develop their understandings of mathematical
concepts, in order to solve mathematics problems, but the words in bold deserve
deeper reflection. There is a vast number of meanings of both ‘learning’ and ‘hav-
ing learned.’ Should we allow/encourage students to develop their own concepts
(as advocated by constructivism)? Should we impart to them a set of mathematical
concepts? Or should we take both of these aspects into account in the design and
implementation of a curriculum? Aside from ‘ethical’ considerations, is it really
possible to stop students from conceptualizing their own mathematical experience?
In addition, do we have a set of prescribed concepts (conceptual frameworks) for
each particular mathematical object? Take division as an example. Is it the inverse
of multiplication, the solution to ‘bx = a,’ sharing, grouping, dividing a pizza pic-
torially, or dividing a rectangle pictorially? Can we say that division is any of the
above, or that all of them together comprise the notion of division? Is the above list
exhaustive, and can these representations help students understand division and
solve problems? What are the grounds for not accepting that students have their
own (internal) representations and self-invented problem-solving strategies? And
if we value the ability of students to ‘re-invent’ mathematics (Freudenthal 1991;
van den Heuvel-Panhuizen 2001), how can we make that re-invention happen, rather
than let students just imitate the standard problem-solving strategies (even though
these standard strategies are often the ‘best and most efficient’ ones). All of these
questions deserve deeper investigation when we seek to develop a curriculum that
enhances student learning (Carpenter et al. 1998; Clarke 1997; Fuson et al. 1997;
Huang et al. 2014; Threlfall 2000; Tsang 2005).
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Attained Curriculum: Student Performance and Problem
Solving

Once the curriculum is designed and implemented, it is of undoubted interest to ex-
amine whether the desired learning outcomes are attained (Shafer 2014). But first
it has to be established what criteria of student performance could be used for this.
As mentioned above, there are different facets of ‘having learned.’ Could these be
finding the correct answer, mastering the ‘right’ procedure to solve problems, stat-
ing the definition, drawing a few standard pictorial representations, or all of these?
Should attention also be paid to ‘deep procedural knowledge,’ which is character-
ized by connectedness and a flexible use of procedures (Star and Rittle-Johnson
2008)? Howe (2014) describes the three pillars of mathematics, namely, conceptual
understanding, computational skills, and coordination (which might be closely re-
lated to connectedness as mentioned above). This listing suggests that there may be
a variety of expected learning outcomes (the attained curriculum), which are at the
same time the curriculum objectives. It can also be asked whether or not students’
non-cognitive achievements are significant, such as their interest in learning, their
self-efficacy, and other affective factors and beliefs. These notions are all empha-
sized in the current curriculum reform, yet care has to be taken that they do not
become parts of the formal, high-stake assessments process (Wong et al. 2004). All
of these points provide food for reflection after reading the various chapters in this
book.

When considering learning outcomes in mathematics, inevitably, problem solv-
ing emerges as a central issue. However, what is the relationship between a generic
ability for problem solving and a problem-solving ability in mathematics? This issue
is not new and was raised at the beginning of the famous report by Cockcroft:

It is often suggested that mathematics should be studied in order to develop powers of
logical thinking, accuracy and spatial awareness. The study of mathematics can certainly
contribute to these ends, but the extent to which it does so depends on the way in which
mathematics is taught. Nor is its contribution unique; many other activities and the study of
a number of other subjects can develop these powers as well. We therefore believe that the
need to develop these powers does not in itself constitute a sufficient reason for studying
mathematics rather than other things. (Cockcroft 1982, p. 1)

As students go on to different walks of life after they finish school, and do not
restrict themselves to the fields of mathematics or science, it is essential for them
to nurture their general (and not mathematics-specific) problem-solving abilities.
However, in the context of mathematics learning, this nurturing is done through
tackling mathematics problems. How to bridge the gap between these two forms of
problem solving, the mathematical and the generic, becomes a task for everyone. It
is not confined to learning objectives but also extends to how learning outcomes are
assessed.
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What Is the Curriculum, in Real Terms?

From the above discussions, it is apparent that the term ‘curriculum,’ mathemat-
ics curriculum included, could have very different meanings in different regions.
This point should be borne in mind when reading the chapters in this book (and
other related articles). In some regions (e.g., China and the UK), the curriculum is
mandatory and by law has to be followed. In other countries (e.g., the USA), its use
is only recommended. In still other places (e.g., Hong Kong), it is used as a ‘trade
off’ to justify a government subsidy, because a school has to conform to the official
curriculum if it wants to obtain government funding.

How detailed the curriculum is depends on the level of curriculum control. In
some countries, the curriculum document is just a (loose) framework within which
different authorities develop their own curriculum. In other countries, where the
three (or four) column approach has become popular, not only are the learning tar-
gets and contents laid down, but the teaching activities and assessment methods are
also suggested (Wong et al. 2004). Thus curriculum documents play different roles
and take different forms in different countries and regions.

There are also differences in the end-users of the curriculum. Theoretically, the
main audience is the teachers. However, in many cases, when the textbooks are
closely aligned to the curriculum, the teachers do not necessarily refer to the cur-
riculum since they believe it is enough to follow the textbooks. In such cases, when
drafting a curriculum document, should the textbook developers also be a major tar-
get audience? The students are another end-user group. If the students have chosen
to study independently (whether they are home-school students, foreign students,
or adult students), should the curriculum document also cater to their needs? For
instance, could the curriculum be so detailed that it could be followed fully even
without a teacher? This question is even more salient for textbooks. Should text-
books be written with the teachers in mind, to guide them in their teaching; or for
the students, making it possible to study fully by following them?

Returning to the previous discussion on the ‘intended—implemented—attained’
linear mentality of the curriculum, the curriculum documents are often taken as
a starting point for the engineering of a prospective educational reform. In other
words, a curriculum document is released to initiate the process of changing the
curriculum in subsequent years. However, there are other possibilities too, including
the suggestions by Tam et al. (2014). These authors reviewed the historical develop-
ment of the Hong Kong primary mathematics curriculum in the period 1960–1980.
They showed that the curriculum (document) can be seen as a summary and consol-
idation of a long-term experiment in teaching. It is an ‘end’-product of curriculum
reform rather than a starting point. Genuine curriculum reform often originates in
day-to-day classroom teaching (Fullan 1999; Stigler and Hiebert 1999). Such teach-
ing experiments could include providing students with more learning opportunities
(Anderson 2014) rather than adding specific contents. Again, Geiger et al. (2014)
show that offering challenging learning activities and genuine opportunities to stu-
dents helped them to develop a positive view of mathematics learning and see the
connectedness of their learning both within and outside mathematics.
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What Mathematics Are We Looking at?

Some of the issues discussed above are general rather than mathematical. When it
is boiled down to mathematics, naturally, the aim is for the students to learn some
mathematics by following the mathematics curriculum. However, mathematics may
be ‘just’ one means of nurturing a responsible citizen and an ‘educated person.’
For some time, the school mathematics curriculum has been criticized as being ‘de-
mathematized’ (Zhang 2005). Can this criticism be answered by putting more math-
ematics back into the school curriculum, or would it be better to explore the path of
mathematization (Freudenthal 1991; NCTM 1989)?

To this end, students need to be helped to undergo an ontological shift (Chi 1992)
from the concrete to the abstract, from the particular to the general, from their own
real-life experience to entities in the mathematical world, and from realistic to eso-
teric mathematics (Cooper and Dunne 1998). For instance, Sinclair and de Freitas
(2014) suggest that conceptualizing mathematics as being characteristically virtual
can bridge the space between the concrete and the abstract. Huang et al. (2014)
point out that this shift can occur at several points. The shift occurring at several
points is echoed by previous discussions on the design of the bianshi curriculum
(Wong et al. 2009, 2012a, 2012b). An additional issue is whether or not the ultimate
goal of the mathematization process is to achieve a unified, universal form of math-
ematics. A great deal of discussion has taken place on the subtle differences that
might exist between formal/symbolic mathematics, hands-on mathematics, real-life
mathematics, mathematics in the ICT environment, etc. (Artigue 2001; Lopez-Real
and Leung 2006). When we say that our mathematics curriculum builds a path of
mathematization for the students, we need to understand what type of mathematics
that path leads to.

Concluding Remarks

As was said at the beginning of this introduction, it is time to re-think the math-
ematics curriculum, and the learning and teaching of mathematics, as well as to
re-think the textbooks, teachers, and students. A number of questions arise from
the above discussion. Could and should the curriculum encompass all the aspects
of teaching and learning? Should the curriculum be a guideline for teaching or a
means to enhance the professionalism of teachers? What is the primary concern or
goal of curriculum reform, for example a means to improve the position in the ‘in-
ternational league table,’ or a contribution to the whole-person development? Some
of these questions have already been raised in articles such as Wong et al. (2004)
(though it was published a decade ago), but the authors hope that these questions
can continue to provide food for further reflections and investigation as the chapters
of this book are read.

As Albert Einstein (1879–1955) said, “Education is that which remains, if one
has forgotten everything he learned in school” (Einstein 1950, p. 36). A well-
designed curriculum, together with effective delivery, is a necessity and lays the
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foundation for the emergence of wisdom. However, this may be just the first half of
the ‘story’ (Wong et al. 2012a, 2012b). One has to ‘transcend’3 the way after ‘enter-
ing,’ and going along with the way (Wong 2006). As a conclusion, two little Chan
stories can illustrate this point:

There was a group of learned monks visiting Master Big Pearl (a great
Chan master in the Tang dynasty). One of them asked, “Can Master take a
question?” Master replied, “Just like a big pond reflecting the moon, feel free
to search on it (implying that one can only touch the shadow rather than the
moon!).” A monk asked, “Who is the Buddha?” Master answered, “Sitting
on the other side of the pond (i.e. Master Big Pearl himself), other than the
Buddha, who can it be?” Everyone was stunned. After a while, another monk
asked, “What teaching method do you use to enlighten the others?” Master
said, “I did not use any method.” The monk murmured, “This is the style of
Chan masters.” Master asked back, “Then, what method do you use?” The
monk replied, “I teach the Diamond sutra.” Master asked, “How many times
have you taught?” The monk replied, “More than 20.” Master asked, “Who
spoke the sutra?” The monk responded in a loud voice, “Are you kidding, isn’t
it spoken by the Buddha?” Master said, “[But isn’t it precisely said in the sutra
that], if someone said the Buddha has anything to teach, it is a blasphemy, and
that person doesn’t understand the meaning. But if someone said the sutra is
not spoken by the Buddha, it is blasphemy against the sutra itself. What do
you think then?” . . . The monk said, “I am getting confused here.” Master
said, “You never had understood, so how can you say you get confused . . .

You taught the sutra over 20 times, but you have not yet attained Buddhahood
(the essence of the teaching).”

One day a company of several monks came to visit Zhauzhou (778–897)
(another great Chan master in the Tang Dynasty). The first one asked, “I am
just a beginner, Master, please reveal to me the teaching.” Zhauzhou asked,
“Have you taken breakfast today?” The monk responded “Yes sir.” Master
spoke with a loud voice, “Why then are you stand idling there, go now and
wash the bowl!” The monk attained realization upon hearing this. The second
monk asked, “I am also a novice, could Master please teach me?” Zhauzhou
asked, “When did you arrive?” Reply, “Just today.” Question, “Have you
drunk the tea?” Reply, “Yes sir.” Master then said, “You should then report
to the reception immediately!” Again, this monk attained realization. At this
moment, a third monk who had been studying in the monastery for a long
time said, “Sir, I have been here for more than 10 years and never heard your
teachings. I wish to take leave from here and learn from others.” Zhauzhou
was very angry upon hearing this, “Young man, why have you wrongly ac-
cused me? Starting from the first day you arrived, whenever you presented me
with tea, I drank for you! You presented me with rice, I ate for you. When you

3In Wong (2006), originally the word ‘exiting’ was used, but ‘transcending’ is a more appropriate
term.
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bowed, I lowered my eyebrows, and when you prostrated yourself, I nodded
my head. I have been teaching you in each of these instances!”
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Improving the Alignment Between Values,
Principles and Classroom Realities

Malcolm Swan

Abstract The curricular reforms described in this book are wide-ranging and are
driven by many external factors and value systems. They usually begin with a vision
of ‘how things should be’, but as we have seen, their implementation is often a trav-
esty of their aims. In this chapter I begin with a synthesis of the values exhibited in
curricula across the world, then go on to analyse the kinds of classroom activity that
are implied when these are taken seriously. This process will be illustrated through a
specific case—a national consultation in England that attempted to elicit, prioritise
and exemplify apparently competing values held by mathematics educators. I argue
that the misalignment of the intended and enacted curriculum is at least partly due to
the almost universal lack of vivid exemplification in curriculum specifications and
consequent reductive interpretations of them by their users. An argument is thus
made for a serious systematic design-research effort into the production of beauti-
ful examples that illustrate and effectively communicate our core values to the key
educational stakeholders.

Keywords Alignment · Classroom reality · Curriculum reform · Principle · Value

Introduction

Across the world politicians are demanding that more citizens should study mathe-
matics to a higher level than ever before. The reforms described in this book appear
primarily to arise from a desire for change in:

• Economic competitiveness. Most nations view the quality of mathematics educa-
tion in schools as an indicator of their economic prospects in the 21st century.
International comparisons of standards are rife, and the uses and abuses made of
TIMSS and PISA studies in arguing for reform are reported in many chapters.

• Student participation and dispositions towards mathematics. There is a great con-
cern in many countries that students cease to study mathematics at the earliest
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possible opportunity and that even those who are most successful have such neg-
ative dispositions towards the subject that they avoid scientific careers. The neg-
ative correlation between attitude and performance in TIMSS is striking. This
is attributed in many cases to the way the subject is taught and is evidenced by
attempts to reduce the amount of content (such as in the 2011 changes in Ko-
rea) and increase the emphasis on inquiry-based learning, such as those currently
being promoted across the EU (Rocard 2007).

• Control and coherence. In countries with a history of state autonomy, such as the
USA and Australia, new curricula have been introduced in an attempt to centralise
and regain control of the curriculum. This is usually seen as a necessary precursor
to further major reform (e.g. Reys, Anderson, this volume).

For these reasons, curriculum documents are created to specify those aspects of
Mathematics that are to be valued and taught. There are, almost universally, ma-
jor mismatches between the intended curriculum described in policy documents,
the tested curriculum embodied in examinations, and the implemented curriculum
taught in most classrooms. Burkhardt (this volume) notes the main causes: “un-
derestimating the challenge; misalignment and mixed messages; unrealistic pace of
change; pressure with inadequate support; inadequate evaluation in depth; and in-
adequate design and ‘engineering’ ”. A recent statement by a Dutch politician on
the release of a new curriculum specification illustrates the problem rather vividly:
“The hard work has been done now all you have to do is implement it” (van den
Akker 2012). Other authors in this volume describe how centralised, ‘top down’ re-
forms have mostly resulted in only superficial implementations (Brown, Cavanah),
whereas the more successful cases have been mostly local, and underpinned with
sustained professional development and aligned assessment and curriculum materi-
als (e.g. Hoe, Brown, Ma).

In this chapter, I focus on the challenges that influencing and implementing pol-
icy reform offers to curriculum and assessment designers. I look again at the val-
ues that are commonly emphasised in policy documents and consider the impli-
cations that these pose for the design of classroom activities. For me, the greatest
research needs lay at the interface of policy and implementation, in particular the al-
most universal lack of quality exemplification in policy documents. Such documents
begin by conveying ‘worthy values’, with which most agree, including processes
(or ‘practices’) that students should learn to perform, and the hierarchical content
domain that students should ‘master’ (‘scope and sequence’). Unfortunately, it is
usually only the latter that is assessed in most high stakes examinations and lit-
tle attention is paid to the design challenges of drawing connections between val-
ues, principles, practices and content in curriculum implementation. In addition,
for reforms to have impact, there should be some succinct attempt to articulate the
research-based principles that underlie effective teaching of the various curriculum
elements.
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The Nature of Values

Values may be characterized as those preferences, principles, and convictions that
act to guide our actions and the standards by which we judge particular actions to
be desirable. (Halstead and Taylor 2000, p. 2). They are what we consider ‘ought
to be the case’, and as such have an almost moral dimension. They may be held to
different degrees, from simple preferences, reflecting tastes or sentiments, to more
complex organised states of commitment and prioritization (Atweh 2008; Krath-
wohl et al. 1964). Attitudes become values as they are thoughtfully chosen, prized,
cherished, affirmed and acted on repeatedly (Raths et al. 1987, p. 199). This is not
a straightforward process, particularly when values conflict. A teacher may simul-
taneously value opportunities to develop a deep understanding of mathematics, to
broaden students’ awareness of its applications, of its cultural and historical evo-
lution, of the need to cover content and to develop the fluency and speed needed
for examination success. Prioritizing these, particularly in a results-oriented culture
can lead to painful and difficult decisions and inconsistencies between values and
actions (Bishop et al. 2003).

Values may be both individually and culturally based. Education systems are
often determined by tacit cultural values that cannot be ignored when, for exam-
ple, making international comparisons. In a recent review of mathematics teaching
in higher attaining countries, it was argued that high attainment was more closely
linked to cultural values than to specific mathematics teaching practices (Askew
et al. 2010).

While the pedagogical practices clearly vary considerably between nations
(Schoenfeld, this volume), the aspirations exhibited in Mathematics curricula re-
form documents are often strikingly similar (Askew et al. 2010; Stigler et al. 1999;
Stigler and Hiebert 1999). They typically emphasise the societal, personal and in-
trinsic value of studying mathematics.

In the current English national curriculum: Mathematics is deemed essential for
‘national prosperity’, ‘public decision-making’ and ‘participation in the knowledge
economy’; It equips pupils with ‘uniquely powerful ways to describe, analyse and
change the world’ and can ‘stimulate moments of pleasure and wonder’; and it pro-
vides an ‘international language’ that transcends cultural boundaries and is there-
fore worth studying ‘as a means for solving problems’ and ‘for its own sake’ (QCA
2007). Mathematics is even seen to offer opportunities for spiritual, moral, social,
and cultural development (DfEE/QCA 1999). The current national documents then
go on to describe the importance of developing key ‘concepts’ (competence, cre-
ativity, applications and implications, critical understanding) and ‘processes’ (rep-
resenting, analyzing, interpreting and evaluating, communicating and reflecting),
before listing the content to be covered. This list is extensive and, currently, the
only one taken seriously in assessment. As I write this, however, the national cur-
riculum is being rewritten under political direction that it is to be focused on only
‘core knowledge’, with a stronger emphasis on ‘fluency in arithmetic’ (DfE 2013).
‘Key concepts’ and ‘key processes’ are being replaced with more general statements
requiring reasoning and problem solving.



624 M. Swan

In the US, The NCTM Standards have aspirations similar to the current English
national curriculum. It emphasises that mathematics is important for ‘one’s personal
life,’ as part of our ‘cultural heritage’, for ‘the workplace’, and for ‘the scientific
and technical community’ and then details the processes of problem solving, com-
municating, reasoning, making connections, concepts, procedures and dispositions
(NCTM 1989, 2000). The recent Common Core State Standards for Mathematics
(NGA and CCSSO 2010) emphasises the importance of both technical procedures
and understanding, along with the development of eight ‘mathematical practices’
that include making sense, reasoning, constructing arguments, modelling, choos-
ing and using appropriate tools, attending to precision, making use of structure and
regularity in repeated reasoning.

The high performing countries along the Pacific Rim have values that resonate
with these. In Singapore, for example, the current curriculum has mathematical
problem solving at its heart, and is summarized by the five inter-related compo-
nents of concepts, skills, processes, attitudes, and metacognition (Soh 2008). The
concepts and skills aspects are subdivided into mathematical content areas (e.g.
numerical, algebraic); the processes into reasoning, communication, connections,
applications, modelling; meta-cognition into monitoring of one’s own thinking and
self-regulation; and attitudes into beliefs, interest, appreciation, confidence and per-
severance. In reaction to the transmission styles of the past, the Chinese national
curriculum reform stresses the importance of students becoming active and creative
students. “‘Exploration’, ‘co-operation’, ‘interaction’, and ‘participation’ are central
leitmotifs of its theory of student learning (Halpin 2010, p. 259). Citing the general
secretary (2004), Guan and Meng (2007, p. 595) state that:

The form of instructions should no longer follow the “teacher-talk, student-listen” model,
rather, there should be dynamic interactivity, an engaged cooperation between teachers and
students. Instructions should focus on a student’s comprehensive development instead of
exam-oriented education.

Lew (2008) summarises the ‘ultimate goal’ of the Korean curriculum as to cultivate
students with creative and autonomous minds by achieving three aims: (i) to un-
derstand basic mathematical concepts and principles through concrete and everyday
experiences; (ii) to foster mathematical modelling abilities through the solving of
various problems posed with and without mathematics, and (iii) to keep a positive
attitude about mathematics and mathematics learning by emphasizing a connection
between mathematics and the real world.

A Synthesis of Values

From these and other documents, it is possible to synthesise five distinct aspects of
learning mathematics: (i) developing fluency when recalling facts and performing
skills; (ii) interpreting concepts and representations; (iii) developing strategies for
investigation and problem solving; (iv) awareness of the nature and values of the
educational system and (v) an appreciation of the power of mathematics in society.



Improving the Alignment Between Values, Principles and Classroom Realities 625

The table below (Swan 2006; Swan and Lacey 2008b) expands and develops these
categories in order to explore appropriate types of classroom activity that might
result. Mathematics teaching will look very different depending on the relative value
that is ascribed to these purposes.

The rows in this table resonate with complementary theories/metaphors of learn-
ing. The first row is the focus of ‘behaviourists’, who emphasise the value of termi-
nology and fluency in the performance of ‘skills’. This trend is evident in learning
activities that break ‘mathematics’ up into ‘subskills’ and ‘key facts’ that are taught
until fluency is attained. Complex skills are then built by learning sequences of sub-
skills. The process of learning is generally conducted by clear exposition, followed
by consolidation and practice. The second and third rows reflect the focus of ‘con-
structivists’ who recognise the value of encouraging students to construct concepts
and strategies through exploration or creativity and discussion. Also reflected is the
emphasis on metacognitive aspects in monitoring decisions in the course of problem
solving. The fourth and final rows reflect the current focus of ‘social constructivists’
who emphasise that students should appreciate the way mathematics has evolved
historically, how it is used by the world, and how they may use their mathematics
to gain power over their own environment. This also includes students reflecting on
their own role as a student in an educational environment and combines elements
of metacognition, in which a student develops an awareness of effective personal
strategies for learning, with an awareness of the social values and discourses of
education. The intention is also that students become aware of the nature of the
assessment system and how they may portray their own abilities to their best advan-
tage when presenting themselves to the world. On the right of Table 1, I have begun
to list a few of the activities implied by these outcomes. It is immediately clear that
most textbooks (at least in England) do not embody the full range of activity types.

The inclusion of learning objectives is usually non contentious in general curricu-
lum descriptions. We want students to be able to perform in all of these aspects. As
they become elaborated and incorporated into implemented curricula, however, the
time and emphasis each is given becomes an issue. There are also potential tensions
and incompatibilities in the teaching methods that need to be employed.

What Types of Classroom Activity Are Implied by These Values?

Teaching methods for developing factual knowledge and procedural fluency and for
developing conceptual understanding are quite different.1 By facts we mean items
of information that are unconnected or arbitrary, including notational conventions
(Cockcroft 1982). By fluency we mean the ability to carry out a mathematical pro-
cedure quickly and efficiently without effortful thought. In both cases, individual

1In England, the current draft national curriculum states that ‘varied and frequent’ practice for
fluency will lead to improved conceptual understanding. This paragraph explains why this may not
be the case.
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Table 1 Values in learning mathematics and implications for classroom activities

Outcomes Examples of types of mathematical learning activity implied

Fluency in recalling facts and
performing skills

Memorising names and notations

Practising algorithms and procedures for fluency and
‘mastery’

Conceptual understanding and
interpretations for
representations

Discriminating between examples and non-examples of
concepts

Generating representations of concepts

Constructing networks of relationships between concepts

Interpreting and translating between representations of
concepts

Strategies for investigation,
problem solving and modelling

Formulating situations and problems for investigation

Constructing, sharing, refining, and comparing strategies for
exploration and solution

Monitoring one’s own progress during problem solving and
investigation

Interpreting, evaluating solutions and communicating results

Awareness of the nature and
values of the educational system

Recognising different purposes of learning mathematics

Developing appropriate strategies for learning/reviewing
mathematics

Appreciating aspects of performance valued by the
examination system

Appreciation of the power of
mathematics in society

Appreciating mathematics as human creativity (+ historical
aspects)

Creating and critiquing ‘mathematical models’ of situations

Appreciating uses/abuses of mathematics in social contexts

Using mathematics to gain power over problems in one’s own
life

work on exercises in which the facts and procedures are used repeatedly with im-
mediate feedback are undoubtedly helpful, though one might argue that all such
practice should be set within the context of meaningful, substantial problems. The
development of conceptual structures, (which of course should underpin procedural
knowledge) requires the careful negotiation of meaning in which objects are com-
pared and classified, definitions are built, and representations are created, shared, in-
terpreted and compared. These are essentially social, collaborative activities. There
is considerable research evidence to show, for example, the superiority of conflict
discussion over guided discovery methods for concept development. (Bell 1993;
Swan 2006). The creation of a network of connections between concepts requires
non-linear exploratory work—difficult to design and embody in hierarchical curric-
ula specifications.

The fundamental differences between teaching for concept development and for
problem solving strategies are less well understood. In a current project for which
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we are developing formative assessment lessons to support the Common Core State
Standards in the US, we are discriminating carefully between these two types of
lessons (Swan et al. 2012). A concept-focused lesson concerns interpreting and rep-
resenting a predetermined ‘big idea’, such as place value or proportion. Where ap-
plications or ‘word problems’ are used in such a lesson, they are purely illustrative.
In a problem-solving lesson, however, students are offered a substantial problem
to tackle for which no solution method is obviously apparent. The purpose of the
lesson is for students to develop the ability to select, apply and compare appropri-
ate mathematical methods. In a true problem-solving lesson the teacher therefore
cannot predict which methods the students will choose. We do know, however, that
students are unlikely to choose methods that they have only just acquired. There
is often a several year gap between being introduced to a method and being able
to select and use it autonomously. We also know that students usually prefer more
‘tangible’ numerical or graphical approaches to algebraic ones. This presents the
teacher with a dilemma—how does one reveal the power of an algebraic approach
without ‘forcing’ students to use it, in which case the lesson is no longer a true
problem-solving lesson, but a mere exercise in algebra? One possible solution is to
follow up students’ own attempts to solve a problem with a critiquing activity. We
offer students a range of pre-prepared alternative attempts at solving the problem, all
of which are imperfect, and invite students to try and improve and complete these.
As different approaches are then contrasted and compared in whole class discus-
sions (akin to the Japanese practice of ‘neriage’), ideas are combined and refined
into collaborative solutions.

Currently, we are also elaborating a limited number of different task genres that
seem essential for concept development. All involve collaborative work in which
students create a shared product, for example, posters describing their ideas. Re-
search is needed to elicit the design principles for their effective construction. Ex-
amples are:

• Classifying and defining. Students are presented with a collection of mathemati-
cal objects (numbers, expressions, graphs etc), and are asked to create /or apply
classifications devised by others. They discriminate, recognise properties and de-
velop mathematical language and definitions.

• Interpreting and translating between multiple representations. Students are
given a collection of cards that show different representations of mathematical
objects—words, diagrams, algebraic symbols, tables, graphs. They share inter-
pretations, compare and group the cards in ways that made connections between
underlying concepts. They show how one may be transformed into another by
linking cards. The discussion of common ’misconceptions’ is encouraged by the
inclusion of distracters.

• Creating and solving variants of mathematical problems. Students devise new
problems or variants of existing problems, prepare solutions then challenge other
students to solve them. They offer support when the solver becomes stuck. This
promotes awareness of the structures underlying problems, and focuses attention
on the doing and undoing processes in mathematics.
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• Analyzing and challenging generalizations. Students are given statements or as-
sertions that typically embody general principles or common ‘misconceptions’.
(Such as “The shape with the greater area has a greater perimeter”, “the more
digits in the number the greater is its value”). Their task is to challenge these and
define domains for their validity.

Teaching for ‘awareness’ is a further distinctive curriculum goal. This includes cul-
tivating students’ awareness of how mathematics fits together as a discipline, how
best students may learn something new and how they may best communicate their
ideas to others, for example in a high stakes examination. It also includes those
‘metacognitive aspects of learning, such as ‘monitoring one’s own thinking’ while
solving a problem (as referred to in, for example, the Singaporean National Curricu-
lum). It is widely recognised that when students remain unaware of the purpose of
an activity, they often pay undue attention to unimportant or superficial aspects of
it. They may, for example, focus more on the appearance of their work or the cov-
erage of material rather than the quality and depth of reasoning employed. Twenty
years ago, we conducted a curriculum research project to develop a range of reflec-
tive experiences in real classroom settings through which students might acquire
such awareness (Bell et al. 1993). These usually required students to change their
classroom roles, from consumers of learning to task designers, assessors, textbook
authors, and so on. Examples of effective curriculum activities included:

• Preparing summary materials from which other, younger, students could learn.
• Conducting student-student interviews on what has been learned.
• Construct tests of other students’ understanding (and mark schemes).
• Planning and teaching a topic to students from another class.
• Planning an outline for a new textbook; deciding which concepts are important

and describing how these link together.
• Observing other students working and decide how their problem solving ap-

proaches might be improved.
• Conducting ‘mini debates’ on general learning issues such as: “Do we learn more

from working on a few hard problems or from working on many short exercises?”
• Assessing their own progress against given criteria.

Finally, few would dispute that developing an appreciation of the evolution, impor-
tance and power of mathematics in society is a laudable goal for the mathematics
curriculum. Across the world, however, this only occupies a small part of a teacher’s
normal agenda. In Science teaching in the UK, there has been a lively debate about
the relative emphases that should be on students appreciating the significance and
impact of scientific ideas (such as pollution and climate change) and students doing
their own science. A similar debate has not been evident in Mathematics. Notably,
there is almost no teaching of the cultural history of Mathematics in English schools.
Over the years, however, there have been a number of projects across the world to
introduce real world modelling and simulation into the curriculum. Recently, for
example, we designed a lesson sequence in which students are invited to role play a
town planning situation in which their task is to spend a given budget on reducing
the number of road accidents in the town (Swan and Pead 2008). They are supplied
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with a computer database showing the locations and police records of the accidents
and their task is to present a convincing case to the town council by analysing these.
The activity, which is designed to take about 5 hours, models how planners have
actually used mathematics to reduce road accidents by 25 % in one English city. It
is interesting to note that this particular activity is now being taken up and used in
Japan to plug a perceived gap in the curriculum.

The Perceived Mismatch Between Ideal and Implemented Values
in England

In England, there is a clear mismatch between the values and principles held by
the educational community and those implemented in classrooms. A few years ago,
I chaired a national consultation, commissioned by the National Centre for Excel-
lence in Teaching Mathematics (NCETM), to review and describe the values and
practices considered to be most important and effective by the community (Swan
and Lacey 2008a).2 This consultation involved 150 mathematics educators, with
representation drawn mostly from secondary teachers, adult education teachers and
teacher educators. An initial conference was held to stimulate debate by: (i) iden-
tifying, confirming and agreeing values and principles that underpin the effective
teaching and learning of mathematics; (ii) illustrating, through examples, how prac-
tice may reflect and interpret these values and principles, and (iii) exploring the
factors that inhibit or modify their implementation. This was followed by a series of
six one-day regional colloquia that were designed to test levels of agreement with
the values and principles articulated at the initial conference, and to amend and re-
fine them as appropriate, as well as to begin to build a collection of lesson accounts
that illustrate what the values and principles may look like in practice. These days
began with the participants writing descriptions of the most inspirational mathemat-
ics lesson they had ever experienced. Later these were discussed in relation to the
values they revealed.

In both the initial conference and subsequent colloquia, there was broad agree-
ment as to the type of learning outcomes valued and the different types of classroom
activity that these outcomes might imply, as summarized in Table 1 above. Partic-
ipants were asked to compare their “vision for an ideal mathematics curriculum”
with the values that are implied by the “curriculum that is currently implemented
in most schools and other settings”. In Table 2, I have separated out the teachers’
responses from those obtained from university educators and other participants. The
results show a remarkable consistency: both sets of participants consider that fluency
in recalling facts and performing skills currently dominates the curriculum while in
fact it should be the least valued of the five outcomes. Both sets of participants also
agree that conceptual understanding and strategies for investigation and problem
solving should take up the most curriculum time.

2Although the report of the project was 2008, the analysis presented here is new and previously
unpublished.



630 M. Swan

Table 2 The values of teachers compared with the values of university and other educators. Mean
ratings showing how frequently mathematics respondents felt that lessons should ideally include
each learning outcome and also how frequently mathematics lessons, actually do reflect each learn-
ing outcome (1 = hardly ever, 4 = almost every lesson). Standard deviations are in brackets. The
final column shows the proportion of lesson accounts that participants allocated to each category

Purposes Mean ratings (S.D.)
Teachers in schools
and colleges (n = 45)

Mean ratings (S.D.)
University and other
educators (n = 89)

% of lesson
descriptions in
each category

Ideal Actual Ideal Actual

A. Fluency in recalling facts
and performing skills

2.58 3.61 2.60 3.81 33 %

(0.75) (0.54) (0.78) (0.5)

B. Conceptual understanding
and interpretations for
representations

3.56 2.29 3.49 1.99 60 %

(0.59) (0.59) (0.55) (0.66)

C. Strategies for
investigation and problem
solving

3.69 2.18 3.71 2.00 61 %

(0.63) (0.76) (0.48) (0.70)

D. Awareness of the nature
and values of the educational
system

3.13 1.70 3.02 1.59 11 %

(0.76) (0.85) (0.71) (0.86)

E. Appreciation of the power
of mathematics in society

3.13 1.34 3.05 1.28 23 %

(0.79) (0.68) (0.71) (0.57)

Each colloquium day started with an invitation to each participant to write an ac-
count of a memorable, inspirational mathematics lesson, either taught or observed.
Over seventy rich lesson descriptions emerged. These offer an alternative perspec-
tive on participants’ values. As may be seen from the final column in Table 2, most
of the lessons were related to conceptual understanding and strategies for investi-
gation and problem solving. Each lesson description was coded and analyzed. In
almost all of the lessons reported, students were clearly actively engaged in con-
structing their own mathematical meanings and methods using the types of activ-
ities reported earlier. Below I briefly describe the categories and offer one or two
examples of each. (Numbers in brackets refer to the number of examples of each
type generated).

• Students creating definitions (5). E.g. Students were asked to bring a selection of
reading books to school and they then discussed different ways of defining and
measuring ‘readability’.

• Students comparing representations and solution methods (15). E.g. Students
sorted cards that contained different representations such as travel graphs and
written descriptions of journeys.

• Students generating their own examples and problems (10). E.g. Students devis-
ing their own financial problems, equations, probability tasks, geometry questions
and ‘magic tricks’. Other students then had to try to solve or explain these. When
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solvers became stuck or were unable to understand the problems, they asked the
originators for help or clarification.

• Students justifying and proving conjectures (15). E.g. Students set out to find the
number of factors of n! (factorial n). After an initial conjecture that the answer
was 2n − 1 (this works when n = 1,2,3,4,5), students found that this failed for
n = 6. This was resolved in discussion by relating the number of factors to the
prime factorization.

• Students tackling ill-defined problems (2). E.g. Students were given incomplete
problems and were asked what additional information they needed to know. They
estimated the missing data and then attempted to solve them.

• Students learning through practical work (23). Examples included the use of
measuring and weighing devices to check estimations; plastic strips to explore
properties of triangles; plastic cubes for constructing geometric solids; paper fold-
ing for exploring properties of polygons; and even a ‘washing line’ to help order
statements written on cards. Five participants also emphasised the use of students’
own bodies to represent mathematical objects and/or as sources for data. One ex-
ample involved students standing outside on a grid to represent data points on
a graph. Students positioned themselves according to their shoe sizes and hand
spans. The resulting human scatterplot was filmed from above and played back
afterwards for analysis.

• Students working with electronic resources (12). E.g. Students began by imag-
ining and mentally manipulating sets of parallel lines, and then subsequently
constructed their own geometric computer animations. This was linked to the
Hungarian mathematician, Bolyai’s excitement at his discovery of hyperbolic ge-
ometry.

In reporting this brief summary of the lesson descriptions, I hope to have captured
some of the richness and excitement that was conveyed by participants. Through-
out, the overriding theme that emerged was one of students’ active involvement
and enthusiasm in constructing their own mathematics. What seemed to be missing
from the lessons reported by participants, yet was clearly valued, was the power of
mathematics in society. Perhaps, as noted earlier, this was simply due to the fact
that this aspect is almost entirely missing from mathematics classrooms in Eng-
land.

It should also be noted that the disconnection between the values endorsed by
participants through these lesson accounts and the reality in most classrooms was
universally recognised. Participants identified four related obstacles to change: the
narrow set of values implied by the nature and content of national tests and ex-
aminations; the poor quality of textbooks and other resources (many produced by
examiners that work for awarding bodies); the social acceptance that it is ‘OK’ to be
mathematically incompetent; and teachers’ own lack of confidence in their subject
knowledge and fear of stepping ‘out of line’ with local interpretations of national
inspection criteria.
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Principles for Teaching and Learning

Unlike the values listed above, where arguments over relative worth are subjective,
principles for learning have been established on the basis of more solid research.
These are not normally included in curriculum documents as it is declared that
the specified curriculum should only specify what is taught, not how it should be
taught. This argument, however, dodges our responsibility to help teachers apply
the wisdom of research to daily practice. Without such principles, we find external
pressures (such as those from senior managers in schools) compel teachers to aim
for short term, superficial goals, such as ‘curriculum coverage’ rather than deeper
learning.

In the national consultation, participants were also asked to develop a set of
research-based generic principles that they believed would improve the quality of
lessons in mathematics. In preparation for this, the list of principles in Table 3,
drawn from our previous research (Swan 2006), were offered as a starting point.
Participants were asked to critique this list and add their own modifications. 64 %
(46/72) of participants totally agreed with the initial version of the principles pre-
sented, 32 % mainly agreed, expressing reservations whilst 4 % expressed particular
concerns. Of those who expressed concern, 35 % (9/26) related to the use of technol-
ogy and 23 % cited concerns about the confusion that may be caused when exposing
and discussing common misconceptions. The principles were subsequently revised,
based on suggestions from participants. These revisions are also shown in the table.

Space does not permit me to describe the many research foundations for this list
here, but they are considerable (for example Askew 2001). The choices of principles,
however, were made deliberately in order to challenge common practices that under-
mine effective practices. For example the final statement is an attempt to counteract
the common request from senior school managers for teachers to list the objectives
on the board in front of the class at the start of each lesson. As such it is a political
tool to assist teachers in counteracting such pressures. In a mischievous mood, we
asked participants to list the most unhelpful principles that they have heard artic-
ulated. These usually contain just enough validity to undermine our best efforts to
reform school practices. Here is their list (without comment):

• Learn how to do it first—understanding can always come later.
• Practice makes perfect, mnemonics and short cuts are helpful.
• Reinforcement/consolidation tasks improve understanding.
• There is a correct way to teach, an optimal sequence to learn.
• Learning must be preceded by instruction.
• Share lesson objectives with students beforehand. Lessons should be in 3-parts.
• Cover the syllabus (at all costs).
• Presentation and neatness are very important.
• There is a right way to solve problems.
• Knowing the answer is important.
• Keep learners busy. Learners go off-task if they talk.
• Don’t confuse learners by showing them incorrect methods.
• Use technology wherever possible.
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Table 3 Principles for the effective teaching of mathematics. Final changes or additions made
after consultation with participants are shown in italics

Teaching is more effective when it. . .

builds on the knowledge
learners already have

This means developing formative assessment techniques and
adapting our teaching to accommodate individual learning needs.

exposes and discusses
common misconceptions and
other surprising phenomena

Learning activities should expose current thinking, create
‘tensions’ by confronting learners with inconsistencies and
surprises, and allow opportunities for resolution through
discussion.

uses higher-order questions Questioning is more effective when it promotes explanation,
application and synthesis rather than mere recall.

makes appropriate use of
whole class interactive
teaching, individual work
and cooperative small group
work

Collaborative group work is more effective after learners have
been given an opportunity for individual reflection.

Activities are more effective when they encourage critical,
constructive discussion, rather than argumentation or uncritical
acceptance. Shared goals and group accountability are important.

creates connections between
topics both within and
beyond mathematics and
with the real world

Learners often find it difficult to generalise and transfer their
learning to other topics and contexts. Related concepts (such as
division, fraction and ratio) remain unconnected. Effective
teachers build bridges between ideas.

encourages reasoning rather
than ‘answer getting’

Often, learners are more concerned with what they have ‘done’
than with what they have learned. It is better to aim for depth
than for superficial ‘coverage’.

uses rich, collaborative tasks The tasks we use should be accessible, extendable, encourage
decision-making, promote discussion, encourage creativity,
encourage ‘what if’ and ‘what if not?’ questions.

uses resources, including
technology, in creative and
appropriate ways

ICT offers new ways to engage with mathematics. At its best it is
dynamic and visual: relationships become more tangible. ICT can
provide feedback on actions and enhance interactivity and
learner autonomy. Through its connectivity, ICT offers the means
to access and share resources and—even more powerfully—the
means by which learners can share their ideas within and across
classrooms.

confronts difficulties rather
than seeks to avoid or
pre-empt them

Effective teaching challenges learners and has high expectations
of them. It does not seek to ’smooth the path’ but creates realistic
obstacles to be overcome. Confidence, persistence and learning
are not attained through repeating successes, but by struggling
with difficulties.

develops mathematical
language through
communicative activities

Mathematics is a language that enables us to describe and model
situations, think logically, frame and sustain arguments and
communicate ideas with precision. Learners do not know
mathematics until they can ‘speak’ it. Effective teaching therefore
focuses on the communicative aspects of mathematics by
developing oral and written mathematical language.

recognises both what has
been learned and also how it
has been learned

What is to be learned cannot always be stated prior to the
learning experience. After a learning event, however, it is
important to reflect on the learning that has taken place, making
this as explicit and memorable as possible. Effective teachers will
also reflect on the ways in which learning has taken place, so that
learners develop their own capacity to learn.
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Implications for Research

The values, principles and sample lesson activities articulated within the consul-
tation seem to go to the heart of what it means to be mathematical. Most curric-
ula specifications are sterile artefacts that, whatever the aspirations of the ‘worthy
words’ in their introductions, continue to be interpreted by politicians, assessors and
teachers in conservative, reductive ways. The descriptive language we use changes,
but the reality in classrooms does not.

We need to develop a clearer vision of how the values, principles and content
relate and the direct implications this has for the tasks we offer to students. De-
tailed exemplification is essential and this must be designed in a careful, systematic,
research-based way. Here is not the place here to review research methodologies,
but it seems clear to me that more serious effort needs to be devoted to Design Re-
search approaches to curriculum development. Design research seeks the transfor-
mation of educational practices in typical classrooms, reducing the credibility gap
between educational research and classroom practice through interventionist, iter-
ative, theory-driven studies of designs in action (Burkhardt and Schoenfeld 2003;
Kelly 2003; van den Akker et al. 2006). The main research question (in education)
is ‘How is this design (curriculum specification) interpreted and enacted by its in-
tended audience (typical teachers and students), and how can it be redesigned and
supported in ways that more fully realise our values?’ Currently we are undertaking
such an exercise in order to support the implementation of the Common Core State
Standards in the US by the careful design of exemplary lessons (Swan et al. 2012).
This is a slow process requiring much more time and funding than educational pub-
lishers are usually willing to provide. In engaging in this process, however, we are
slowly developing and sharing a professional vision (Schoenfeld 2009) for design-
ing learning experiences (not just ‘tasks’) that are not only engaging, but also take
account of the teachers’ role in facilitating learning.

In this chapter I have attempted to illustrate the importance of explicitly recon-
ciling our theories, values, principles and curricular aspirations with the design of
lessons for real children, and the importance of exemplification. We need exemplary
design, not only for teachers and classrooms, but also to communicate our core val-
ues to politicians, examination bodies and other key educational stakeholders.

Although I cannot pretend to have done justice to the wonderful range of con-
tributions that others have made within this book, I hope to have drawn out some
common themes and provided a provocation for future research.
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