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Dag Prawitz

Abstract Thirty years ago I formulated a conjecture about a kind of completeness
of intuitionistic logic. The framework in which the conjecture was formulated had
the form of a semantic approach to a general proof theory (presented at the 4thWorld
Congress of Logic, Methodology and Philosophy of Science at Bucharest 1971 [6]).
In the present chapter, I shall reconsider this 30-year old conjecture, which still
remains unsettled, but which I continue to think of as a plausible and important
supposition. Reconsidering the conjecture, I shall also reconsider and revise the
semantic approach in which the conjecture was formulated.

1 Main Ideas Behind the Conjecture

The question that the conjecture was intended to answer is roughly whether the
elimination rules of Gentzen’s system of natural deduction for intuitionistic logic
are the strongest possible ones. This question already arises against the background
of Gentzen’s own understanding of his intuitionistic system of natural deduction, in
particular the significance of his classification of the inference rules into introduction
and elimination rules. Gentzen’s idea was that the introduction rule for a logical
constant gives the meaning of the constant while the corresponding elimination rule
becomes justified by this very meaning. The rules for conjunction constitute a simple
illustration of this idea:

A B

A&B
&I

A&B

A
&E

A&B

B
&E

D. Prawitz (B)

Stockholm, Sweden
e-mail: dag.prawitz@philosophy.su.se

L. C. Pereira et al. (eds.), Advances in Natural Deduction, 269
Trends in Logic 39, DOI: 10.1007/978-94-007-7548-0_12,
© Springer Science+Business Media Dordrecht 2014



270 D. Prawitz

Understanding the introduction rule for conjunction (&I ) as giving the meaning
of conjunction by telling how a conjunction is proved, we see that the elimination rule
(&E) in its two forms becomes justified: according to the meaning of conjunction,
a proof of the premiss of an application of the rule &E already contains a proof of
the conclusion.

It seems obvious that there can be no stronger elimination rule for conjunction
that can be justified in this way in terms of the introduction rule. A similar remark can
be made concerning all the other logical constants of predicate logic. To illustrate
the idea with a slightly more complicated example, consider the introduction and
elimination rules for disjunction:

A

A ∨ B
∨ I

B

A ∨ B
∨ I

[A] [B]
...

...

A ∨ B C C

C
∨ E

The elimination rule for disjunction (∨E) is justified by the meaning given to
disjunction by the introduction rule (∨I ) in view of the following consideration.
According to the meaning of disjunction, a proof of the major premiss A ∨ B of an
application of ∨E must contain either a proof of A or of B. In the first case we may
substitute this proof of A for the hypothesis A in the proof of the first occurrence of
the minor premiss C , and in the second case we may instead substitute the proof of
B for the hypothesis B in the proof of the second occurrence of the minor premiss
C . The result is in either case a proof of C that does not depend on the hypotheses
discharged by the application of ∨E , without making use of this instance of ∨E . In
other words, the proofs of the premisses of an inference by ∨E are seen to contain
already elements that combined appropriately yield a proof of the conclusion of the
inference.

Can we imagine a stronger elimination rule for disjunction that is possible to
justify in terms of the introduction rule in this way? Martin-Löf’s type theory for
intuitionistic logic does contain such a stronger rule, but its formulation requires the
richer language of type theory. The question should therefore be put a little more
carefully: Is there an elimination rule for disjunction that can be formulated in the
language of predicate logic and is stronger than ∨E but can nevertheless be justified
in terms of ∨I? My conjecture is that the answer is no and that the corresponding
thing holds for all the other logical constants in the language of predicate logic.

It seems obvious that the elimination rules of Gentzen’s system are the elimination
rules that correspond to his introduction rules. Or, again to put it more carefully:
although there are of course weaker elimination rules and even elimination rules that
are deductively equivalent with the ones formulated byGentzen, there are no stronger
rules that can be formulated in the language of predicate logic and are justifiable in
terms of the introduction rules. The problem is to formulate this obvious idea more
precisely in the form of a conjecture and then to prove it.
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2 The Notion of Validity

The ideas sketched above that are in need of a more precise formulation are in
particular the two ideas that an introduction rule gives the meaning of the logical
constant in question and that this meaning justifies the corresponding elimination
rule. As for the second idea concerning the justification of elimination rules, anyone
familiar with the reduction steps in the normalization of natural deductions sees
immediately that they are themain elements in these justifications.When I introduced
the normalization procedure for natural deductions, I saw it as something that brought
out Gentzen’s idea concerning how introduction and elimination rules are related to
each other.1 But, admittedly, it does not bring out his idea that the introduction
rules are meaning constitutive and that the meanings that they assign to the logical
constants justify the elimination rules. To bring out these ideas explicitly requires
a semantics in which one can speak about the validity of inferences. Analogously
to how meaning is explained in classical semantics by reference to truth conditions,
we should now explain the meaning of a sentence by telling what is required of a
valid proof of the sentence. The notion of convertibility introduced by [11] for terms
and adapted to natural deductions under the name of computability by [3] seemed to
me to offer a suitable means for such a semantics. Modifying Martin-Löf’s notion,
I used it to prove strong normalization for various systems of natural deductions.
Furthermore, I argued in an appendix to the chapter “Ideas and results in proof
theory” [6] that when slightly modified in another direction, the notion could be used
to give a semantic explication of the justification of inference rules. Because of this
use, I called it validity.

I shall now give a condensed account of that notion. To do so it is convenient to
introduce a few other notions. I shall say that an inference such as→-introduction or
∨-elimination, by which occurrences of a hypothesis become discharged, binds the
occurrences in question and that an inference such as∀-introduction or ∃-elimination,
which puts restriction on a variable (so-called ‘Eigenvariabel’) and which would
lose its correctness if the variable were replaced by a constant, binds the variable
in question. An occurrence of a hypothesis in a deduction D or of a variable in a
formula in D is said to be free in D if it is not bound, and a deduction that contains
free hypotheses or free variables is said to be open. A deduction that is not open is
closed. A deduction D is said to reduce to the deduction D∗, when D∗ is obtained
from D by successively replacing subdeductions by their reductions (as defined in
the context of normalizations).

A triple consisting of set T of closed individual terms, a set R of relational
symbols, and a set P of profs of atomic sentences built up from R and T (thus not
containing any proof of the constant for falsehood,⊥) will be called a base. We shall
be concerned with formulas in a first-order language determined by such a base; the
set T is supposed to fix the range of the individual variables (and hence the domain of
the quantifiers), and the set P the meanings of the atomic sentences. A deduction D

1 Prawitz [4]. The elimination rules are there said to be the inverse of the corresponding introduction
rules.
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of a sentence A is said to be in canonical form relative to such a baseB = (T ,R,P),
if D is closed and either A is an atomic sentence and D is in P or A is compound
and the last inference of D is an introduction.

Wecannow formulate twoprinciples of validity (relative to a baseB = (T ,R,P))
for closed and open deductions respectively:

(I) A closed deduction D of a sentence A is valid (relative to a base B) if and only
if either (a) D is in canonical form (relative to B) and, in case A is compound,
the immediate subdeductions of D are valid (relative to B), or (b) D is not in
canonical form but reduces to a deduction that is valid according to clause (a).

(II) An open deduction D is valid (relative to a base B) if and only if each closed
instance D′ of D is valid (relative toB) when D′ is obtained by first replacing all
free individual variables in D by individual terms (in T ) and then replacing all
free occurrences of each hypothesis in D by a valid closed deduction (relative
to B) of that hypothesis.

Principle (I) can be seen as a condensed semantic expression of Gentzen’s two
basic ideas concerning introduction and elimination rules. His first idea, that an
introduction rule for a logical constant gives the meaning of the constant, is here
understood as implying that the rule is self-justifying in the sense that inferences
conforming to the rule are valid simply in virtue of what the constant in question
means. This is expressed in (Ia) by saying that applications of introduction rules
preserve the validity of a deduction. However, this states only a sufficient condition
for validity, half of the meaning of the logical constant so to say: a deduction is
valid, if its ends with an introduction and its immediate subdeductions are valid. To
take this to be also a necessary condition would result in an obviously too restrictive
notion of validity. But we could demand that a deduction is valid only if it can be
reduced to a deduction that ends with an introduction. This requirement is stated in
(Ib), which also expresses Gentzen’s second idea about justifications of elimination
inferences: inferring a conclusion A by such an inference yields a valid deduction if
and only if it reduces to a deduction of A that does not use the inference in question.

Principle (II) in turn is an expression of the simple idea that an open deduction
is to be seen as a schema in which free individual variables are blanks for (closed)
individual terms and free hypotheses A are blanks for closed proofs of A. It is hence
valid if and only if all results of appropriately filling in the blanks are valid.

Because of the fact that the premisses of an introduction and the hypotheses that
it binds are of lower complexity than that of the conclusion, principles (I) and (II)
can be seen as a recursive definition (over the complexity of the end formulas) of the
notion of validity of natural deductions.

An inference rule R can now be defined as valid when it preserves validity relative
to an arbitrary base B, that is, when a deduction that ends with an application of R is
always valid relative to B given that its immediate subdeductions are valid relative
to B. To prove the validity of the inference rules of Gentzen’s system of natural
deduction for intuitionistic logic is now an easy exercise.
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3 Generalizing the Notion of Validity

A limitation of the notion of validity as described above is that it is defined only for
deductions in a given formal system. In contrast, a notion like truth is defined for
sentences in general but singles out a subset of them. Similarly, onewould like to have
a notion of validity defined for a broader range of reasoning, singling out a subdomain
of correct reasoning that could properly be called proofs. Such a generalization is
especially important in the context of the conjecture discussed here, since in that
context we want to consider not only inference rules in a given system but other
possible elimination rules that no one has proposed so far.

The goal of the chapter in which the conjecture was formulated was precisely to
extend the notion of validity to a broader class of reasoning, what I called arguments.
The simple idea is to consider not only deductions that proceed by applications of a
given set of rules of inferences but trees of formulas built up of arbitrary inferences.
As in a natural deduction, the top-formulas of such a tree are to represent axioms
or hypotheses, and the inferences are allowed to bind hypotheses and variables. It
is supposed to be determined for each inference which occurrences of hypotheses
and variables become bound by the inference. Such an arbitrary tree of formulas (in
the language of first-order logic) with indications of how variables and hypotheses
are bound was called an argument skeleton. The notion of being an open or closed
deduction can thus be carried over to argument skeletons.

Of course, most argument skeletons do not represent valid forms of reasoning.
But some of them do and can be justified by procedures similar to the ones used when
justifying the elimination rules in Gentzen’s system. To generalize the idea of such
justifying procedures, I define a justification of an inference rule R different from
the introduction rules to be an operation that is defined on some argument skeletons
whose last inference is an application of R and that yields as value, when applied to an
argument skeleton S, another argument skeleton with the same end formula and with
no more free hypotheses or variables than S. I consider sets J of such justifications
of inference rules. They are assumed to be consistent in the sense that they are not to
contain two operations j and j ′ defined on the same skeleton and yielding different
values. An argument skeleton S is said to reduce to another argument skeleton S∗
relative to such a set J of justifications, if there is a sequence S1, S2, . . . , Sn (n > 0)
where S1 = S, Sn = S∗, and, for each i (i = 1, 2, . . . , n − 1), there is a j in J such
that Si+1 is obtained form Si by replacing some subskeleton S′ of Si by j (S′).

An argument skeleton together with a set of justifications is called an argument.
It is still the case that most arguments do not represent valid forms of reasoning.
What is called justifications above are in fact only alleged justifications. It is the
notion of validity generalized to arguments that is now to lay down the conditions
that the alleged justifications have to satisfy in order to be real justifications. This
generalization of validity is easily obtained by simply carrying over the two principles
of validity from deductions to arguments. The notion of a base B = (T ,R,P) and
the notion of a canonical form is to be kept as before. Principle (I) now becomes
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(I’) A closed argument (S, J ) for a sentence A is valid relative to a base B if and
only if either (a) S is in canonical form relative toB and, in case A is compound,
for each immediate subskeleton S′ of S it holds that (S′, J ) is valid relative to
B, or (b) S reduces relative to J to a skeleton S∗ in canonical form such that
(S∗, J ) is valid relative to B according to clause (a).

To generalize principle (II) we need to speak about consistent extensions of a set
of justifications, where again we require that there is no conflicting overlap between
the different justifying operations. Principle (II) now becomes

(II’) An open argument (S, J ) is valid relative to a base B = (T ,R,P) if and only
if for each consistent extension J ′ of J and for each instance S∗ of S it holds
that (S∗, J ′) is valid relative toB, when S∗ is obtained from S by first replacing
all free occurrences of individual variables by terms in T and then replacing
all free occurrences of each hypothesis A in S by closed skeletons S′ ending
with A such that (S′, J ′) is valid relative to B.

An argument that is valid in the sense defined may proceed by quite different
inferences than those obtained by applying the inference rules of Gentzen’s system,
but itmay claim to represent a proofwith the same right as the deductions inGentzen’s
system.

That an inference rule is valid is to mean as before that it preserves validity, now
validity of an argument, relative to an arbitrary base. In case R is an inference rule
different from the introduction rules, this is to mean that there is a justification j
of R such that for all bases B and for all consistent extension J of { j}, if S is an
argument skeleton whose last inference is an application of R and is such that for
each immediate subskeleton S′ of S, (S′, J ) is valid relative toB, then (S, J ) is valid,
too, relative to B.

Having arrived at this notion of valid inference rule, the conjecture that there
are no stronger justifiable elimination rules within first-order logic than the ones
formulated by Gentzen can now naturally be formulated as follows:

Every valid inference rule that can be formulated within first-order languages
holds as a derivable inference rule within the system of natural deduction for intu-
itionistic logic.

Is this notion of validity rightly explicating a constructive reading of the logical
constants? Besides my own discussions of this question in several papers dealing
with constructive approaches to the notion of logical consequence (for a relatively
recent paper, see [8]), there is a particularly comprehensive presentation and discus-
sion of essentially my notion of validity in Michael Dummett’s book The Logical
Basis of Metaphysics [1] (for a comparison of my and Dummett’s notions of validity,
see [9]). (Added in proof: After this paper was composed, Peter Schroeder-Heister
has presented in [10] a very detailed and thoughtful study of the notion of validity,
proposing among other things some changes in my notions of justification and valid-
ity. If I had written my paper today, I would have adopted some of them, and would
have written a different paper also in many other respects.) In the rest of this paper,
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I shall take up some doubts that one may have about the notion of validity presented
here, and shall consider a quite radical revision of the notion.

4 A Modified Approach

A shortcoming of the notion of argument as described above is that the justifications
are operations defined on argument skeletons rather than on arguments, i.e. skeletons
togetherwith justifications, and furthermore that the value of the justifying operations
consist of just argument skeletons instead of skeletons with justifications. It is the
skeletons with justifications that represent arguments, valid or invalid ones, andwhen
an argument step is to be justified it is conceivable that one wants the justification
to depend on the entire arguments for the premisses and not only on their skeletons.
As for the value of a justifying operation, it is a shortcoming that it consists of just
a skeleton if one wants it to contain new inferences that were not present in the
skeleton to which the operation is applied.2 This last limitation may be taken care
of without changing the framework very much. However, in order to achieve that
the justifications operate not just on argument skeletons, but, as it were, on skeletons
with justifications, we must make a more radical change in the approach. We need
then to conceive of the valid arguments, i.e. proofs, as built up of operations defined
on proofs and yielding proofs as values.

To outline an approach of that kind, let us as before start with a base B, now
determined by a set T of closed individual terms, a setR of relational symbols, and
a set C of constants standing for proofs of atomic formulas with relational symbols
inR and terms in T . Each constant in C is to be typed by the atomic formula A that
it is a proof of; we may write such a constant cA. The base determines as before a
first-order languageLB, whose formulas are built up as usual with the symbols given
byR and T , individual variables, and the logical constants ⊥, &, ∨, →, ∀, and ∃.

For each formula A in the languageLB , we introduce (proof) variables of type A,
written αA. The variables of type A are thought of as ranging over proofs of A. From
the constants in C and the proof variables, we build up what I shall call proof terms,
using operators that are to be thought of as standing for operations on proofs that
yield proofs as vales. The proof terms are to be typed by the formulas of LB; a proof
form of type A is to be thought of as standing for a proof of A. Constants cA in C and
variables αA are thus proof terms of type A. For all the logical constants except ⊥,
we introduce primitive operators, which we may call &I ,∨I1,∨I2,→ I , ∀I , and ∃I
(for disjunction there are thus two operators ∨I1 and ∨I2), naming them in the same
way as the introduction rules. Some of the operators are variable binding, and the
variables that they bind are as usual listed after an occurrence of the operator. The
rules for forming proof terms with the help of the primitive operators are as follows:

2 One may argue that to allow the value to contain new inferences is too liberal, since the justifying
operation then produces an argument that goes beyond what was present in the arguments for the
premisses. However, this is an angle that is not taken up here.
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(1) &I (P1, P2; A1, A2/A1&A2) is a proof term of type A1&A2, if Pi is a proof
form of type Ai (i = 1, 2)—the formulas written after the semi-colon and before
the slash indicate the types of the terms on which the operator is applied, and
the one written after the slash indicates the type of the resulting term,

(2) ∨Ii (P; Ai/A1 ∨ A2) is a proof term of type A1 ∨ A2, if P is a proof term of
type Ai (i = 1, 2),

(3) →IαA(P; B/A → B) is a proof term of type A → B and binds free occur-
rences of αA in P , if P is a proof term of type B,

(4) ∀I x(P; A(x)/∀x A(x)) is a proof term of type ∀x A(x), if P is a proof term
of type A(x)—it binds free occurrences of the variable x that occur (in type
indices) in P , and there is the restriction that x is not to occur free in the indices
of free variables αA in P ,

(5) ∃I (P, t; A(t)/∃x A(x)) is a proof term of type ∃x A(x), if P is a proof term of
type A(t) (obtained from A(x) in ∃x A(x) by replacing free occurrences of x by
the individual term t).

In addition to these primitive operators, we introduce operational parameters for
all possible elimination rules. For instance, corresponding to a rule of the form

A1 A2 . . . An

B
C, x

that binds occurrences of the hypothesisC and the individual variable x , we introduce
a parameter � with the formation rule:

�αC x(P1, P2, . . . , Pn; A1, A2, . . . , An/B) is a proof term of type B, if Pi is a proof term of
type Ai (i = 1, 2, . . . , n)—it binds free occurrences of αC and of x in Pi with the restriction
that x is not to occur free in type indices of free variables αC ′

in Pi except when C ′ is C .

Particular such operation parameters are those that correspond to the usual elimi-
nation rules, which we may write &E1, &E2, ∨E , → E , ∀E , and ∃E . For instance,

(1) &Ei (P; A1 & A2/Ai ) is a proof term of type Ai , if P is a proof term of type
A1&A2(i = 1, 2);

(2) ∨EαAβB(P, Q, R; A ∨ B, C, C/C) is a proof term of type C , if P , Q, and R
are proof terms of type A ∨ B, C , and C , respectively—it binds free occurrences
of the variables αA and βB in Q and R; and

(3) ∃EαA(x)x(P, Q; ∃x A(x), B/B) is a proof term of type B, if P is a proof term
of type ∃x A(x) and Q is a proof term of type B—it binds free occurrences of
the variables αA(x) and x in Q with the usual variable restrictions.

To the operation parameters we assign definitions that tell how the parameters
are to be interpreted as standing for operations on proofs that yield proofs as values.
Examples of such definitions are:
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&E2(&I (p1, p2; A1, A2/A1&A2); A1&A2/A2) = p2

∨EαAβB(∨I1(P; A/A ∨ B), Q(αA), R(βB); A ∨ B, C, C/C) = Q(P)

→E(→IαA(P(αA); B/A → B), Q; A → B, A/B) = P(Q)

∃EαA(x)x(∃I (P, t; A(t)/∃x A(x)), Q(αA(x), x); ∃x A(x), B/B) = Q(P, t)

A proof term P (of type A) together with a set � of definitions of this kind, I
shall call an interpreted proof term (of type A). A proof term P is said to reduce to
another proof term P∗ relative to a set of definitions �, if P∗ is obtained from P by
successively replacing subterms of P that appear as definienda of definitions in �

by their definientia.
We may now define a notion of validity for interpreted proof terms in essentially

the same way as for arguments. We have thus the two principles:

(I”) A closed interpreted proof term (P,�) of type A is valid relative to a base
B = (T ,R, C) if and only if either (a) A is atomic and P is a constant cA in C ,
or A is compound with χ as its principal constant and P is a proof term with
the primitive operation χ I as its outer operator such that for each immediate
subterm Q of P it holds that (Q,�) is valid, or (b) P reduces to a proof term
P∗ relative to � such that (P∗,�) is valid according to (a).

(II”) An open proof term (P,�) is valid relative to a baseB = (T ,R,P) if and only
if each (P∗,�∗) is valid relative to B when �∗ is an extension of � and P∗ is
obtained from P by first replacing all occurrences of free individual variables
by terms in T and then in the result got after this substitution replacing all free
occurrences of each variable αA by closed proof terms Q of type A such that
(Q,�∗) is valid relative to B.

Valid closed interpreted proof terms accord well with proofs as usually described
in intuitionism. If (P,�) is such an interpreted proof term, then either P has intro-
ductory form, i.e. its outer operation is one of the five primitive operators, or is
definitionally equal to such a proof term, i.e. reduces effectively to such a term by
replacing a definienda in a definition in � by its definientia. For instance, if P is of
type A → B, then P has the form →IαA(P(αA); B/A → B) or reduces relative
to � to such a form. Furthermore, the validity of (→IαA(P(αA); B/A → B),�)

implies that (P(αA),�) is valid,which according to principle (II”)means that for any
closed proof term Q of type A such that (Q,�′) is valid, it holds that (P(Q),�∪�′)
is valid. Valid closed interpreted proof terms may thus be thought of as representing
intuitionistic proofs.

Comparing an interpreted proof term (P,�)with arguments as defined earlier, we
find that one obtains what was called an argument skeleton when one attends to just
the types in the subterms P and that the operators occurring in P when interpreted by
the definitions in� can be seen as names of operations that appear as justifications of
the inference steps in the argument skeleton. The difference between arguments and
interpreted proof terms is the one discussed at the beginning of this section, namely
that the justifying operations in an argument are applied to argument skeletons while
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the operations in an interpreted proof term are defined for objects built up from this
very kind of operations.

The system of interpreted proof terms may be seen as an extension of a typed
lambda calculus or a fragment of Martin-Löf’s intuitionistic type theory. Of course,
→ I corresponds toλ-abstraction, and→E , when defined as above, to application of
a lambda term, while the definition of →E corresponds to the rule of β-conversion.
Also, ∀I is a kind of λ-abstraction, while &I corresponds to pairing. To this kind
of well-known operations, ∨I and ∨E add other specific operations. Haskell Curry
seems to have been the first to note the relevance of lambda calculus to the semantic
interpretation of a fragment of intuitionistic sentential logic. Extensions of Curry’s
observation to deal with full intuitionistic predicate logic occur in [2] (and [5] - what
is there called construction term corresponds to what is now called proof term).

In the approach outlined above, we may now define the validity of an inference
rule in essentially the same way as before. For instance, if R is an inference rule

A1 A2

B
C, x

that binds a hypothesis C and an individual variable x , we say that R is valid if there
is a definition d of the operational parameter �αC x(π1,π2; A1, A2/B) such that for
any base B, if (P,�) and (Q,�) are two interpreted proof terms valid relative to B
where P and Q are of type A1 and A2 respectively, then applying � to P and Q we
get a proof term �αC x(P, Q; A1, A2/B) such that (�αC x(P, Q; A1, A2/B),�)

is valid relative to B.
All the elimination rules ofGentzen’s systemof natural deduction for intuitionistic

logic are easily seen to be valid in the sense now defined. The conjecture is that
conversely all inference rules that are valid in this sense hold as derived rules in
Gentzen’s system of natural deduction for intuitionistic logic.
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