
Assertions, Hypotheses, Conjectures,
Expectations: Rough-Sets Semantics
and Proof Theory

Gianluigi Bellin

Abstract In this chapter bi-intuitionism is interpreted as an intensional logic which
is about the justification conditions of assertions and hypotheses, extending C. Dalla
Pozza and C. Garola’s pragmatic interpretation [18] of intuitionism, seen as a logic
of assertions according to a suggestion byM. Dummett. Revising our previous work
on this matter [5], we consider two additional illocutionary forces, (i) conjecturing,
seen as making the hypothesis that a proposition is epistemically necessary, and (ii)
expecting, regarded as asserting that a propostion is epistemically possible; we show
that a logic of expectations justifies the double negation law. We formalize our logic
in a calculus of sequents and study bimodal Kripke semantics of bi-intuitionism
based on translations in S4. We look at rough set semantics following P. Pagliani’s
analysis of “intrinsic co-Heyting boundaries” [40] (after Lawvere). A Natural De-
duction system for co-intuitionistic logic is given where proofs are represented as
upside downPrawitz trees.We give a computational interpretation of co-intuitionism,
based on T. Crolard’s notion of coroutine [16] as the programming construction cor-
responding to subtraction introduction. Our typed calculus of co-routines is dual to
the simply typed lambda calculus and shows features of concurrent and distributed
computations.

1 Introduction

This chapter aims at developing an intensional logic of the justification conditions
of some illocutionary acts, namely, asserting, making hypotheses, conjecturing and
expressing an epistemic expectation, where the intended interpretation of the logical
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connectives and of the forms of inference are those of intuitionistic logic1,2.Ourwork
belongs to the project of a Logic for Pragmatics, initiated by the philosopher Carlo
Dalla Pozza and by the physicist Claudio Garola [18] and later continued by Dalla
Pozza and Bellin [7] and others, in particular Bellin and Biasi [5]. Characteristic of
our approach with respect to similar ones, e.g., S. Artemov’s justification logic, is the
focus on illocutionary forces in the elementary expressions of our language, where
propositions in the classical sense are never presented without an illocutionary force
and thus an “illocutionary mood” (e.g., assertive or hypothetical) is inherited also
by composite expressions of the language. This fact is essential in our case study
here, bi-intuitionistic logic, where intuitionstic and its dual co-intuitionistic logic are
joined together. In natural language the acts of asserting, on one hand, and of making
hypotheses and expressing a doubt, on the other, may in some sense be regarded
as dual. Thus we have an interpretation of bi-intuitionism as an intensional logic of
assertions and of hypotheses, where the dual intuitionistic and co-intuitionistic parts
are “polarised” and kept separate. In this framework it is perfectly appropriate and
unproblematic that the law of non-contradiction and the disjunction property hold for
the assertive notions of intuitionistic negation, conjunction, and disjunction, while
the law of excluded middle and para-consistency hold for the hypothetical notions
of co-intuitionistic negation, conjunction, and disjunction.
In this chapter we revised and sharped the discussion of the logical properties of
assertions and conjectures in Bellin and Biasi [5], by distinguishing between conjec-
tures and hypotheses. In a nutshell, the justification of an assertion requires epistemic
necessity of the truth of the propositional content p, which is given, e.g., by a proof
of p; making a hypothesis is justified by the epistemic possibility of the truth of the
propositional content; similarly, expressing a doubt about a statement is justified by
the epistemic possibility that the statement may be unjustified. But for the justifica-
tion of a conjecture we need the possibility of the epistemic necessity of the truth
of its propositional content, not just epistemic possibility. Dually, we are led to the
distinction between assertions and epistemic expectations: for the justification of an
expectation, it suffices to have the necessity of epistemic possibility, which we regard

1 Wewish to thank Prof Andrew Pitts and Dr Valeria de Paiva for their comments on various aspects
of this research and Dr Piero Pagliani for his expert support in the Rough Sets semantics. We are
indebted with Prof Tristan Crolard for his intriguing work on bi-intuitionistic and classical logic
and with Dr Hugo Herbelin for suggestions about our calculus of coroutines for co-intuitionistic
logic. Thanks to Dr Carlo Dalla Pozza, Dr Kurt Ranalter, Dr Corrado Biasi, and Dr Graham White
for their cooperation in the “logic for pragmatics” enterprise. I am grateful to Prof Dag Prawitz, my
first marvellous supervisor in Stockholm 1978 and to Dr Luiz Carlos Pereira, a fellow student then
and a supportive colleague now.
2 Since April 2011 when significant revisions were made to this chapter, categorical models of
bi-intuitionism have been studied based on monoidal categories. In particular, if the term assign-
ment to a Gentzen system for co-intuitionistic logic is used in building a categorical model, then
disjunction is best given multiplicative rules rather than additive ones, as it is done in this chapter.
Further work on the mathematical structure and the philosophical interpretation of “polarized bi-
intuitionism” is inG. Bellin,M. Carrara, D. Chiffi, andA.Menti, A pragmatic dialogic interpretation
of bi-intuitionism, submitted to Logic and Logical Philosophy, 2013.
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as the assertion that in all situations it will be possible for the propositional content
to be true. It turns out that a logic of expectations satisfies the law of double negation,
a feature of classical logic.
There is a philosophical question about the nature of the epistemicmodal notions used
here. Every expression of our logic for pragmatics has an interpretation in classical
S4, the assertion �p and hypothesis Hp of a proposition p are interpreted as �p and
♦p, respectively; similarly, the conjectureCp and the expectationEpbecome♦�p and
�♦p. Thus we have an intensional counterpart of all modalities of S4; but we do not
regard such correspondence with classical S4 as a definition of the new “illocutionary
forces” of conjecture and expectation. Indeed,we intend the pragmatic interpretations
of intuitionistic and bi-intuitionistic logic as bona fide representations of such logics
from the viewpoint of an intuitionistic philosopher; moreover, we intend our “logic
for pragmatics” to be compatible with the rich proof-theory of intuitionistic logic,
including the Curry–Howard correspondence and categorical interpretations. Thus,
we are inclined to regard conjectures and expectations as examples of how a theory
of intuitionistic modalities can be developed starting from the illocutionary forces
of assertions and hypotheses as basic. However, this investigation is left for another
occasion.

1.1 Logic for Pragmatics: Dalla Pozza and Garola’s Approach

The aim of Dalla Pozza and Garola’s “logic for pragmatics” is to capture the logical
properties of what are called illocutionary acts—asserting, conjecturing, command-
ing, promising, and so on. Consider assertions. In their framework there is a logic
of propositions and a logic of assertions. Propositions can be either true or false, ac-
cording to classical semantics, assertions are acts that can be justified or unjustified,
felicitous or infelicitous. They propose a two-layer theory with a distinctive informal
interpretation, according to which propositions have truth conditions, i.e., a seman-
tics, whereas assertions have justification conditions, belonging to pragmatics. As a
consequence, we can form logical combinations of propositions, which are given a
classical semantics as usual, but we can also form logical combinations of assertions,
and interpret these combinations along the familiar lines of Heyting’s interpretation
of intuitionistic connectives. This is Dalla Pozza and Garola’s pragmatic interpreta-
tion of intuitionistic logic: if α denotes a proposition, the elementary expression �α
stands for an assertion and �α is justified just in case we have conclusive evidence
that α is true; in the case of a mathematical statement α, “conclusive evidence” is a
proof of α. Moreover, an assertive expression of conditional type A ⊃ B is justified
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by providing a method that transforms a justification of an assertive type A into a
justification of an assertive type B.3,4

It should be noticed that intuitionistic logic is represented inDalla Pozza andGarola’s
framework as a theory of pragmatic validity only if the justification of elementary
expressions � α does not depend on the logical structure of the radical expression
α as a classical proposition—e.g., we shall not allow α to be p ∨ ¬p. Thus in
every investigation of intuitionistic theories within the framework of Dalla Pozza
and Garola [18] it is assumed that elementary expressions have atomic radicals,
i.e., α = p. This convention is essential also for the present investigation of our
co-intuitionistic and bi-intuitionistic logic.
The novelty of Dalla Pozza and Garola’s work is that Heyting’s semantics is applied
to illocutionary types of acts, not to propositions; if the justification of an assertion
of atomic type � α is related to the semantics of the propositional content α, a
complex type has only a pragmatic justification value, not a semantic one. To recover
propositions and semantic values one considers semantic projections given by the
Gödel, McKinsey, Tarski and Kripke’s translation:

( �α)M = �α (A ⊃ B)M = �(AM → BM)

This modal formalism can be given the usual interpretation through an epistemic
view of Kripke S4 semantics. Thus in a Kripke model (W , R,�) for S4 every w ∈ W
is seen as a stage of human knowledge and the accessibility relation expresses ways
in which our knowledge may evolve; at each stage atomic propositions are locally
true or false according to �; reflexivity of R means that what we know must be true
also locally and transitivity of R expresses the fact that human knowledge cannot be
forgotten or falsified, and so on.5

3 We wish to thank Prof Andrew Pitts and Dr Valeria de Paiva for their advice on various aspects of
this research and Dr Piero Pagliani for his expert support in the Rough Sets semantics. We are much
indebted toTristanCrolard for his intriguingwork on bi-intuitionistic and classical logic and toHugo
Herbelin for important suggestions about the distributed calculus for co-intuitionistic logic. Thanks
to Carlo Dalla Pozza, Kurt Ranalter, Corrado Biasi, and Graham White for their cooperation in the
“logic for pragmatics” enterprise and thanks to Ugo Solitro for useful discussions. I am grateful to
Dag Prawitz, my first marvellous supervisor in Stockholm 1978 and to Luiz Carlos Pereira, a fellow
student and a supportive colleague.
4 Since April 2011 when revisions were made to this chapter, categorical models of bi-intuitionism
have been studied based on monoidal categories. In particular, if the term assignment to a Gentzen
system for co-intuitionistic logic is used in building a categorical model, then disjunction is best
given multiplicative rules rather than additive ones, as it is done in this chapter. For the conceptual
significance of such a choice, seeG. Bellin,M. Carrara, D. Chiffi andA.Menti. A pragmatic dialogic
interpretation of bi-intuitionism, submitted to Logic and Logical Philosophy, 2013.
5 The interpretation of intuitionistic logic as a logic of assertions appears already in Dummett’s
work. Martin-Löf regards his intuitionistic theory of types as expressing judgements about the truth
of propositions; in his system well-formed complex types are propositions and the terms inhabiting
them are witnesses of their truth, intuitionistically understood. This view is disputed byDalla Pozza:
for him only atomic types assert the truth of propositions, but complex types neither are propositions
nor assert propositions. To recover a proposition corresponding to the complex type
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The basic approach of Dalla Pozza and Garola seems to stand as a helpful conceptual
clarification, following Quine saying that a change of logic reflects a change of the
subject matter of the logic. The remarkable technical developments of the proof-
theory of classical logic in the last decades suggest the possibility of a pragmatic
interpretation of classical methods of inference; despite some hints in [5], Sect. 5,
and the result in Sect. 2.5, this remains an essentially unfinished business.

Justification and Felicity Conditions

Going back to the basic texts of modern pragmatics, such as Austin [2] and Levin-
son [31], every speech act has a propositional content, an illocutionary force (or
pragmatic mood) and perlocutionary effects. Now it seems that the felicity or
infelicity conditions of a speech act essentially depend on the actual circumstances
of its performance and on its intended or unintended perlocutionary effects. Thus a
formalization of the felicity or infelicity conditions of a statement would be based on
a formal theory of actions including a representation of the agent and the addressees
of a speech act and also its preconditions and postconditions (for a first formulation
of such a theory, see [60]).
On the contrary, the contributionof the illocutionary mood to the pragmatics of speech
acts can be characterized by abstracting away from the actual agents and addressees
and from their specific context, effects, and goals. Thus an impersonal illocutionary
operator of an intensional logic may suffice to express illocutionary force, if the
justification of the illocutionary mood of such type of acts makes reference to a
relatively stable and uniform context (e.g., scientific knowledge in a given time,
obligations within an established legal system, unambiguous linguistic acts within a
linguistic community, and so on).
In this framework, several works have explored the “logic for pragmatics” of oblig-
ations [19] and then the logic of assertions, obligations with causal reasoning [6, 7,
48, 49]. In general, the development of such logics requires an identification of the
appropriate modal operators or non-classical connectives used in the modal projec-
tion and their Kripke semantics; then one proceeds to a more abstract treatment of
the proof theory, as in Ranalter’s work.

(§) �α ⊃ ( �β ⊃�α)

we need a semantic projection, i.e., �(�α → �(�β → �α)); but justification of the assertion
type

(§§) � �(�α → �(�β → �α))

is a semantic argument for a sentence of classical S4 while (§) is justified by something like a
program λx.λy.x, where x : � α and y : � β are variable ranging over proofs of the truth of α and
of β.
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2 PART I. Conceptual Analysis: Assertions, Hypotheses,
and Conjectures

In extending Dalla Pozza and Garola’s framework to a logic of hypothetical and
conjectural moods, we encounter a variety of moods with different linguistic and
logical properties.6 It is familiar the distinction in Latin between three kinds of if
clauses, the first one using the indicative to express the condition as a matter of fact,
the second the present subjunctive to express possibility of the condition and, finally,
the third one using the past subjunctive for counterfactuals. Also consider the theory
of argumentation. Here six proof-standards have been identified from an analysis of
legal practice: no evidence, scintilla of evidence, preponderance of evidence, clear
and convincing evidence, beyond reasonable doubt, and dialectical validity, in a
linear order of strength [24].7

It is essential to remember that “legal reasoning is not primarily deductive, but rather
a modelling process of shaping an understanding of the facts, based on evidence, and
an interpretation of the legal sources, to construct a theory for some legal conclusion”
([12] cited in [24]). More precisely, in order to decide whether to accept or reject
each element of a given set of “claims,” one constructs a consistent “theory of the
generalizations of the domain and the facts of the particular case,” together with “a
proof justifying the decision of each issue, showing how the decision is supported
by the theory” [24].
Thus in Argumentation Theory one starts with an inconsistent knowledge base and
a set of claims and proceeds to build a consistent theory from them; later, when
deriving the claims from such a theory one uses (some fragment of) classical logic.
But in this stage it might be desirable to use a logic that retains essential pragmatic
information such as the standards of evidence of the premises, rather than classical
logic that omits it. Thus some refinement of our logic may have applications to Argu-
mentation Theory to establish a closer correspondence between “theory searching”
and deductive reasoning. Here we use the notion of “standards of proof” in an infor-
mal way and regard the possibility of developing a theory of positive evidence for
hypotheses in our framework as a suggestion for future work.

6 The conceptual development traced results from cooperation with other researchers, in particu-
lar with Corrado Biasi, whose doctoral dissertation at Queen Mary University of London is still
unfinished.
7 In the formal treatment of Carneades model of argumentation, proof-standards occur
in the definition of what it means for an argument with conclusion c from premises P
and exceptions E to be applicable in a Carneades argument evaluation structure S =
〈arguments, assumptions, weights, standard〉. The definition relies on a non-logical real-valued
function weights ranging over arguments. The notion of applicability is recursive, as it depends
on the notion of a proposition p being acceptable in an argument evaluation structure S. Here a
proposition p is acceptablewith a scintilla of evidence if there is at least one applicable argument for
p and p is acceptable as dialectically valid if there is an applicable argument for p and no applicable
argument against p. All other proof standards require comparing the weights of arguments for and
against p. See [13, 24].
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2.1 First Attempt: Assertive and Hypothetical Types

In Bellin and Biasi [5] we have given a logic of hypothetical types parallel to Dalla
Pozza and Garola’s logic of assertions. We start with elementary illocutionary acts
of hypothesis, denoted by Hα: here α is a proposition which is presented as possibly
true; such an act is justified if there are grounds for believing that α may be true in
some circumstances.Nextwe consider connectives building up complex hypothetical
types from elementary ones. For instance, through the connective of subtraction we
build the hypothetical expression possibly C but not D (written C � D); such an
expression is justified if it is justified to believe the truth of the hypothetical expression
C while also believing that the hypothesisD may never be true; the disjunctionC�D
of the hypothetical expressions C and D is also a hypothetical expression, and so on.
The modal projection of hypothetical expressions is also in classical S4:

(Hα)M = ♦α (C � D)M = ♦(CM ∧ ¬DM)

Namely, the modal translations of assertions AM and hypotheses CM are both inter-
preted in models (W , R,�) where R is transitive and reflexive. This choice is crucial
for the approach of [5]: other modal candidates are possible as discussed in [5] and
in more detail below.
In natural language, illocutionary acts of hypothesis may be embedded into a context
consisting of illocutionary act of assertion, for instance,

Arturo is the best pianist of his generation and will not refuse to play in this town, although
the audience may be slightly noisy;

an assertive conjunction of two assertions and a hypothetical statement; conversely,
assertions may be embedded in a hypothetical context:

We may not hear Arturo playing, because he has very high standards and if the audience is
slightly noisy then he may refuse to play.

containing a hypothetical implication with an assertive antecedent and hypothetical
consequent. Taking this idea seriously, one obtains a rather unmanageable family
of mixed connectives [5]; in this chapter we shall consider only the role of mixed
negations turning assertive expressions into hypothetical ones and conversely.

Three Methodological Principles

Our logical treatment of assertions and hypotheses is based on the notion of a duality
between these two illocutionary moods: informally it is a familiar idea, since a proof
of a propositionmaybeobtained as a refutation of the conjecture that its dual is true. In
a formal treatment, there aremany aspects to this duality, which are certainly satisfied
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by the modal translation in S4. In [5], Sect 1.1, three methodological principles are
stated for a logic expressing the duality between assertive and hypothetical types:

1. The grounds that justify asserting a proposition α certainly suffice also for
conjecturing it, whatever these grounds may be;

2. in any situation, the grounds that justify the assertion of α are also necessary and
sufficient to regard the conjecture that ¬α as unjustified;

3. the justification of non-elementary assertive or hypothetical types, built up from
elementary types using pragmatic connectives, depends on the justification of
the component types, possibly using intensional operations.

The third principle requires a sort of compositionality of justification: this is certainly
satisfied by the intended informal interpretation of the connectives.
As it stands, the second principle is inadequate. On one hand, it is indisputable that
the grounds allowing one to regard the assertion of α as justified must override any
ground in favor of the conjecture of ¬α; on the other hand, it is wrong and contrary
to common sense to say that if the conjecture of ¬α is unjustified then the assertion
of α is justified: the grounds we may have to dismiss the conjecture that ¬α may be
the case may not be strong enough to justify the assertion that α is true. There are at
least two issues here.
First, we must distinguish between the illocutionary force of a mere hypothesis and
that of a conjecture, a distinction we shall develop later in this chapter. Let us split
the second principle into two parts, replacing “hypothesis” for “conjecture”:

2.i If the assertion of α is justified, then the hypothesis that ¬α is true cannot be
justified.

2.ii If the hypothesis that¬α is true is unjustified, then the assertion ofα is justified.

Except for the case of counterfactuals, which are not our concern here, (2.i) is still
correct; as for (2.ii), it becomes plausible if we assume that a hypothesis H¬α may
be justified by a mere cognitive possibility of a situation, no matter how unlikely it
may be, in which¬α is true. The epistemic interpretation of the modal interpretation
in S4 validates this reading of (2.ii).
This raises a second issue: in our framework there is no theory of positive evidence;
nevertheless we must be able to distinguish illocutionary forces whose justification
depends on different strengths of evidence. Thus the logic of hypothetical reasoning
in [5] reduces to a refutation calculus; although pure refutation does correspond to
common-sense reasoning—indeed it seems to be very close to the medieval practice
of disputation [1]8—it may not suffice for applications, e.g., to a theory of laws and
to legal reasoning.
Finally, the first principle is true for any reading of Hα, e.g., as hypothesis or con-
jecture. Also it is true in argumentation theory: the assertion �α must be justified by

8 We are grateful to an anonymous referee to [5] for making the point clear and for indicating the
reference. The same referee, acknowledging that our “refutation calculus” is dual to intuitionistic
logic, questionedwhether a calculus based on a theory of positive evidence could be co-intuitionistic:
we come back to this issue below.

http://dx.doi.org/10.1007/978-94-007-7458-0_1
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“standards of proof” at least as strong as those justifying the hypothesis Hα. Notice
that this principle shows a basic asymmetry between assertions and hypotheses.

A Logic of Assertions and Hypotheses: The Language LAH

The core fragment of the logic of assertions and hypotheses in [5] is a propositional
language built from a countable set of atomic formulas p, p1, p2, . . . and symbols of
illocutionary force yielding elementary formulas �p (certainly p) and Hp (perhaps
p). It consists of two dual parts:

• an assertive part LA built from elementary assertions �p, a sentential constant for
validity (�), using assertive conjunction (∩) and assertive implication (⊃) and

• a hypothetical partLH built from elementary hypotheses Hp and a constant for ab-
surdity (�), using hypothetical disjunction (�), and hypothetical subtraction (�).

ThusLA andLH are negation-free fragments of the language of intuitionistic and co-
intuitionistic logic. Let abs be an absurd statement in LA and val is a valid statement
in LH . Then ∼ X =def X ⊃ abs expresses assertively the existence of a method to
turn a justification ofX into a justification of an absurdity. Similarly� Y =def val�Y
expresses the doubt that Y may be true, namely, the hypothesis that a valid statement
val may be compatible with the negation of Y . Thus we have four negations:

1. if X is an assertive expression, then ∼ X is the usual intuitionistic negation;
2. if Y is a hypothetical expression, � Y is co-intuitionistic supplement;
3. if X is a hypothetical, then the mixed expression X ⊃ abs is an assertive type;
4. if Y is assertive, then val � Y is a hypothetical type.9

Our logic is therefore bi-intuitionistic, in the sense that it has intuitionistic and
co-intuitionistic connectives, but it is polarized, as elementary formulas are either
intuitionistic ( �p) or co-intuitionistic (Hp), but not both, and connectives, with the
possble exception of negations, preserve the polarity. Thus we have the following
grammar of the language of polarized bi-intuitionistic logic for the pragmatics of
assertions and hypotheses LAH :

A, B := �p � A ⊃ B A ∩ B ∼ C
C, D := Hp � C � D C � D � A

9 As in [5], to these pragmatic negations one should add classical negation in the radical part ¬α;
but no logical property of the radical part can be used in the treatment of intuitionistic pragmatics.
To avoid confusions with the “polarized classical logic” in [5], Sect. 5, in the treatment of dualities
we shall assume that the atoms occurring in the radical part are either positive p+

i or negative p−
i ,

i.e., that there is an involution without fixed point on atoms exchanging p+
i and p−

i .
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2.2 Second Attempt: More General Modal Translations

In order to approximate alternative treatments of a logic of assertions, hypotheses
and conjectures, we consider more general modal translations in bimodal S4.

Translations in Bimodal S4

Definition 1 (i) Let p range over a denumerable set of propositional variables Var
= {p1, p1, . . .}. The bimodal language L�,� is defined by the following grammar.

α := p | ¬α | α ∧ α | α ∨ α | α → α | �α | � α

Define ♦α =df ¬�¬α and ♦ α =df ¬ � ¬α.
(ii) LetF = (W , R, S) be a multimodal frame, where W is a set, R and S are preorders
on W. Given a valuation function V : Var → ℘(W), the forcing relations are defined
as follows:

• w � �α iff ∀w′.wRw′ ⇒ w′ � α,
• w � � α iff ∀w′.wSw′ ⇒ w′ � α.

(iii) We say that a formula A in the language L�,� is valid in bimodal S4 if A is valid
in all bimodal frames F = (W , R, S) where R and S are preorders.

Lemma 1 Let F = (W , R, S) be a multimodal frame, where R and S are preorders.
(i) The following are valid in F

���α → �α and ���α →�α

(ii)(a) The following are equivalent:

1.a: S ⊆ R;
2.a: the following scheme is valid in F:

. (Ax.a) �α → � � �α;
3.a: the following rule is valid in F:

. (R.a)
♦ β ⇒♦ ¬�α

�α ⇒ �¬ ♦ β

(ii)(b) The following are equivalent

1.b: R ⊆ S;
2.b: the following scheme is valid in F:

. (Ax.b) � α →� � � α
3.b: the following rule is valid in F:

. (R.b)
�¬ ♦ β ⇒ �α

♦ ¬�α ⇒♦ β
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Proof of (ii)(a). (1.a ⇒ 2.a) is obvious. (2.a ⇒ 1.a): If S is not a subset of R, then
given wSv and not wRv define a model on F where w′ � p for all w′ such that wRw′
but v �� p; thus �p → � � �pis false at w. (2.a ⇒ 3.a): If ♦ β ⇒♦ ¬�α is valid in
F then so is �¬ ♦ ¬�α ⇒ �¬ ♦ β and the conclusion of (R.a) is valid because of
(Ax.a). From the conclusion of (R.a) the premise follows using part (i). (3.a ⇒ 2.a):
(Ax.a) is obtained by applying (R.a) downwards to ♦ ¬�α ⇒♦ ¬�α. The other
parts are similar.

2.3 Bimodal Interpretations of LAH

Definition 2 The interpretation ( )M of LAH into � is defined inductively thus:

(�)M =df ⊥ (�)M =df �
( �p)M =df �p (Hp)M =df ♦p

(A ⊃ B)M =df �(AM → BM ) (C � D)M =df ♦(CM ∧ ¬DM )

(A1 ∩ A2)
M =df AM

1 ∧ AM
2 (C1 � C2)

M =df CM
1 ∨ CM

2
(∼ C)M =df �¬CM (� A)M =df ♦¬AM

It is easy to prove that AM ⇐⇒ �AM and CM ⇐⇒ ♦ CM in the semantics of
(bimodal) S4.

(i) The propositional theory PBL (polarized bi-intuitionistic logic) is the set of all
formulas δ in the language LAH such that δM is valid in every preordered bimodal
frame (i.e, in any frame (W , R, S) where R and S are arbitrary preorders).

(ii) The propositional theory APBL (asymmetric polarized bi-intuitionistic logic) is
the set of all formulas δ in the languageLAH such that δM is valid in every preordered
bi-modal frame (W , R, S) where S ⊆ R.

(iii) The propositional theory AHL (bi-intuitionistic logic of assertions and hypothe-
ses) is the set of all formulas δ in the language LAH such that δM is valid in every
preordered bi-modal frame (W , R, S) where R = S. In other words, in the modal
translation let ♦ X =df ¬�¬X; then δ is in AHL if and only if δM is valid in S4.

Remark 1 (i) PBL is the most abstract theory of bi-intuitionistic logic where all
formulas are polarized as assertive or hypothetical. PBL is not a suitable candidate
for our logic of assertions and hypotheses, since the pair ( �p)M , (� �p)M is consistent
in bi-modal S4, contrary to the accepted principle (2.i). We will not speculate about
the possibility of interpreting � �p as a counterfactual.

(ii) On the contrary, the asymmetric logic APBL satisfies (2.i), but not (2.ii).10 Thus
APBL may be the right context for studying assertive and hypothetical reasoning

10 Condition S ⊆ R guarantees that if w � �p then w ��♦ ¬p. To see that w � �p is not a
valid consequence of w ��♦ ¬p, consider a model M = (W , R, S, �) with W = {w, w′}, R and
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where hypothetical statements have different degrees of positive evidence and thus
are not representable in a pure refutation calculus.

(iii) Finally, our canonical system is the bi-intuitionistic logic of assertions and
hypotheses AHL—poorly named intuitionistic logic for pragmatics ILP in [5]—
satisfying both conditions (2.i) and (2.ii). It is motivated by the epistemic interpre-
tation of (uni-modal) S4, where hypotheses are seen as mere epistemic possibilities
and assertions as epistemic necessities.

Dualities

Definition 3 Let ( )⊥ : Atoms → Atoms be an involution without fixed points on
the atomic formulas pi. Intuitively, we may think of p⊥

i as ¬pi, but intuitionistic
dualites are defined best without any reference to the classical part. We extend ( )⊥
to maps F : LA → LH and G : LH → LA letting

(a) F( �p) =Hp⊥ G(Hp) =�p⊥
(b) F(A ∩ B) = F(A) � F(B) G(C � D) = G(C) ∩ G(D)

(c) F(A ⊃ B) = F(B) � F(A) G(C � D) = G(D) ⊃ G(C)

Lemma 2 In AHL let F(A) =� A and G(C) =∼ C. Then

1. if we interpret (p⊥)M as ¬p, then the modal translations of conditions (a)–(c) are
valid equivalences in S4;

2. GF(A) ≡ A and FG(C) ≡ C;

3.
A ⇒ G(C)

C ⇒ F(A)
and

G(C) ⇒ A

F(A) ⇒ C

Proof. By definition of the modal translation we have

(1)(a): (��p)M = ♦¬�p ≡ ♦¬p = (Hp⊥)M

(∼Hp)M = �¬♦p ≡ �¬p = ( �p⊥)M

(1)(b):
(
� (A ∩ B)

)M = ♦¬(AM ∧ BM) ≡ (♦¬AM ) ∨ (♦¬BM ) = (
(� A) � (� B)

)M

(∼ (C � D)
)M = �¬(CM ∨ DM ) ≡ (�¬CM) ∧ (�¬DM ) = (

(∼ C) ∩ (∼ D)
)M

(1)(c):
(
� (A ⊃ B)

)M = ♦¬�(AM → BM ) ≡ ♦(♦¬BM ∧ ¬♦¬AM ) = (
(� B) � (� A)

)M

(∼ (C � D)
)M = �¬♦(CM ∧ ¬DM ) ≡ �(�¬DM → �¬CM ) = (

(∼ D) ⊃ (∼ C)
)M

(2): The conditions

S reflexive and transitive and such that wRw′ but not wSw′, and w � p but w′ � ¬p. Notice that
H¬p is not an expression of the language LAH , but the same remark applies to ( �p)M = �p and
(��p)M =♦ ¬�p.
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∼� A ≡ A and C ≡�∼ C (1)

follow from Lemma 1 .(i) and (ii). The conditions in (3) follow from rules (R.a) and
(R.b) in Lemma 1 .(ii).

Remark 2 (i) Lemma 2 fails for PBL and APBL.
(ii) As the only mixed formulas in LAH are negations, Lemma 2 gives us a (meta-
theoretic) “method for eliminating mixed formulas in AHL” modulo the atomic
involution ( )⊥, (interpreted in the modal translation as classical negation ¬p). e.g.,
the mixed expression A ∩ ∼ (Hp� Hq) is equivalent in the S4 semantics to the
purely assertive expression A ∩ ( �p⊥∩ �q⊥).

(iii) Sometimes we shall write A⊥ and C⊥ for F(A) and G(C), respectively.

Proposition 1 (restricted substitution) Let σ be a map

�pi �→ Ai Hpj �→ Cj

sending a vector ηa of assertive elementary formulas to a vector A of assertive
formulas and a vector ηh of hypothetical elementary formulas to a vector C of
hypothetical formulas. Then X(ηa, ηh) is a theorem of AHL [PBL, APBL] if and
only if X(σ(ηa),σ(ηh)) is a theorem of AHL [PBL, APBL].

On the other hand, the theories AHL, PBL and APBL are not closed under substitu-
tion of hypothetical formulas for assertive elementary formulas (and symmetrically).
An example is the following:

∼∼∼�p ⇒∼�p is valid, but ∼∼∼Hp ⇒∼Hp is not.
Indeed �♦�♦¬p ⇒ �♦¬p is valid, but �♦�¬p ⇒ �¬p is invalid in S4.

2.4 Sequent Calculi for PBL, APBL, AHL

The logics PBL, APBL, AHL can be formalized in G3-style sequent calculi [59],
where the rules ofWeakening and Contraction are implicit, as in [5]. One then proves
that the rules of Weakening and Contraction are admissible preserving the depth of
the derivation.

Definition 4 All the sequents S are of the form

� ; ε ⇒ ε′ ; ϒ (2)

where

• � is a sequence of assertive formulas A1, . . ., Am;
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• ϒ is a sequence of hypothetical formulas C1, . . ., Cn;
• ε is hypothetical and ε′ is assertive and exactly one of ε, ε′ occurs.

The bi-intuitionistic logic of assertions and conjectures AHL is formalized in the
sequent calculus given by the axioms and rules in the Table1.11 Let us call this
fragment standard AH-G3.

The polarized bi-intuitionistic logic PBL and the asymmetric polarized bi-intuitioni-
stic logic APBL are formalized by restricting the rules of canonical AH-G3 as
indicated below: the restrictions only modify the rules ⊃-right, ∼-right, � -left and
� -left. Let us call the resulting sequent calculi abstract PB-G3 and asymmetric
APB-G3, respectively.

To see why in the asymmetric APB-G3 and in the canonical AH-G3 systems the
formulas in � are allowed in the antecedent of the sequent-premise of �-left and of
�-left, notice that by the valid scheme (Ax.a) of Lemma 1 .(ii)(a)

A ⇒∼� A is valid in the semantics of APB and of AHL (3)

Thus the unrestricted rule�-left ofAP-G3 andAH-G3 becomes derivable in PB-G3
using cut with scheme (1) taken as axiom:

(1)
B ; ⇒ ∼� B

B ; ⇒ A ; ϒ�-R ; ⇒ A ; ϒ,� B�-L (¶); � A ⇒ ; ϒ,� B∼-L ∼� B ; � A ⇒ ; ϒ
cut

B ; � A ⇒ ; ϒ

Similarly, using the fact that

�∼ C ⇒ C is valid in the semantics of AHL (4)

we show that in AH-G3 ϒ is allowed in the succedent of the sequent premise of
⊃-right and of ∼-right.

Using the methods of [5] one may prove the following result:

Theorem 1 The sequent calculi PB-G3 [APB-G3, AH-G3] without the rules of cut
are sound and complete with respect to the interpretation of PBL [APBL, AHL,
respectively] in bimodal S4.

11 This calculus is essentially the system Intuitionistic Logic for Pragmatics ILP presented and
studied in [5], Sect. 3, restricted to the language LAH - namely a sequent calculus with axioms and
rules for assertive validity, implication and conjunction, hypothetical absurdity, subtraction and
disjunction and two mixed negations.
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Table 1 The sequent calculus AH-G3

IDENTITY RULES
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AH-G3:
�, A1 ; ⇒ A2 ; ϒ∗

⊃-R
� ; ⇒ A1 ⊃ A2 ; ϒ

�∗∗ ; C1 ⇒ ; C2, ϒ
�-L

� ; C1 � C2 ⇒ ; ϒ

� ; C ⇒ ; ϒ∗
∼-R

� ; ⇒ ∼ C ; ϒ

�∗∗ ; ⇒ A ; ϒ�-L
� ; � A ⇒ ; ϒ

ϒ∗ not allowed in PB-G3, APB-G3 �∗∗ not allowed in PB-G3

2.5 First Conclusions: Assertions and Conjectures

Although our approach to the logic for pragmatics does not provide a theory of
positive evidence, the epistemic readingof themodal interpretation inS4does suggest
a way to characterize different degrees of evidence, through the essential distinction
between hypotheses and conjectures. While “epistemic possibility,” namely the mere
knowledge of a situation inwhichα happens to be true, does provide enough evidence
to justify the hypothesis ofα, conjecturing the truth ofα requires knowing conditions
inwhichαwould be “epistemically necessary.”WewriteCα to express the conjecture
that α is true.

Moreover, consider circumstances in which it is unjustified to conjecture the truth of
α. This is certainly the case when no matter how our present knowledge evolves, it
always reaches a state in whichα fails to be true: wemay call this epistemic condition
safe expectation that ¬α eventually becomes true. We write Eα to express the safe
expectation of α.

Setting (Cα)M = ♦�α and (Eα)M = �♦α, we have a modal interpretation in S4
that fits nicely in the above informal interpretation. In Table2 we find the map of all
distinct modalities in S4; arrows indicate valid implications between non-equivalent
modalities.

Table 2 The modalities of S4
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Table3 presents all pragmatic expressions corresponding to modalities of S4 and the
valid implications between them.

We shall not develop a full theory of assertions, hypotheses, conjectures and expec-
tation with four corresponding types of pragmatic connectives. We are interested
in theories obtained by extending the polarized language LAH of assertions and
hypotheses with new elementary expressions Cp for conjectures and dually, expres-
sions Ep for expectations. Let us write LAHC [LAHCE] for the extension of LAH with
elementary expressions Cp for conjectures [and Ep for expectations].

Let AHCE be the set of all expressions in LAHCE that are valid in the S4 modal
translation.Weconjecture in order to axiomatizeAHCE in a cut-free sequent calculus
it suffices to extend AH-G3 with the following rules:

Duality Between Safe Expectations and Conjectures

Clearly the S4 translations of conjectures and of assertions are not dual from the
viewpoint of modal logic, but the modal translations of conjectures and safe expec-
tations certainly are; if in Definition 3 and in Lemma 2 we replace the illocution-
ary operators “C” (conjectures) and “E” (safe expectations) for the operators “H”
(hypotheses) and “ �” (assertions), respectively, then clearly the conditions of duality
are expressible through negations within a logic AHCEL of assertions, hypotheses,
conjectures and safe expectations. For instance, the base case becomes:

The Logic of Safe Expectations is Classical

Let LE be the language defined by the grammar

E, F := Ep | � | E ⊃ F | E ∩ F

and let bf EL be the set of all formulas δ in the language LE such that the modal
translation δM is valid in S4.

Table 3 Assertions, conjectures, expectations and hypotheses



210 G. Bellin

� ; ⇒ �p ; ϒC-R
� ; ⇒ ; Cp, ϒ

�, �p ; ⇒ ; ϒC-L
� ; Cp ⇒ ; ϒ

� ; ⇒ ; Hp, ϒE-R
� ; ⇒ Ep ; ϒ

� ; Hp ⇒ ; ϒE-L
�, Ep ; ⇒ ; ϒ

(a) setting F(Ep) = Cp⊥ and G(Cp) = Ep⊥
we have � Ep ≡ Cp⊥ and ∼ Cp ≡ Ep⊥
since ♦¬�♦p ≡ ♦�¬p and �¬♦�p ≡ �♦¬p.

Proposition 2 The theory EL (logic of safe expectations) is closed under the double
negation rule, i.e., ∼∼ E ⇒ E is a valid axiom of EL.

The proof shows by induction on the logical complexity that the double negation
rule for molecular formulas can be reduced to applications of the double negation
rule for elementary formulas (essentially, as in [46]). The base case is then given by
the following equivalence:

(∼∼ Ep)M = �♦�♦p ≡ �♦p = (Ep)M .

On the other hand, if we extend LE with intuitionistic disjunction (∪), then E∪ ∼ E
is not a theorem of the logic of safe expectations extended in this way. Indeed

(Ep∪ ∼ Ep)M = �♦p ∨ �♦�¬p

is not valid in S4.

Historical Note

InAppendix B of [46] Prawitz considers an extension of the language of intuitionistic
logic with an involutory negation ¬ and then extends intuitionistic natural deduction
NJ⊃∩ with rules ¬⊃-I, ¬⊃-E, ¬∩-I and ¬∩-E; these new rules are presented as
an axiomatization of Nelson’s logic of constructible falsity [38].12 Thomason [58]
provides aKripke semantics forNelson’s logic of constructible falsity, wherew � ¬p
if and only if w′ � ¬p for all w′ with wRw′; this implies that the evaluation function
must be partial.Miglioli et al. [37] introduce an operatorTwhich represents classical
truth within the context of Nelson’s logic of constructive negation: in particular we
have A is classically valid if and only if ∼∼ A is intuitionistically valid (by Gödel’s
translation) if and only if TA is valid in the constructive extended system. In [37]
a Kripke semantics for the constructive logic with T operator is presented, where
Thomason’s semantics is restricted to frames satisfying the additional condition that
from each world w a terminal world w′ is reached where all atoms and negations
of atoms are evaluated. Then the forcing conditions for Tp by Miglioli et al. are

12 The negation “¬” corresponds to the orthogonality ( )⊥, as in Remark 2.
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expressible as w � Tp if and only if w � �♦p and w � ¬Tp if and only if in all w′
withwRw′ wehave that p is either not evaluated or false inw′. Comparing the operator
T to our operator E of safe expectation, when applied to atomic formulas, we can
say that their properties are similar, but in the context of a polarized bi-intuitionistic
system they can be expressed in a simpler way. We cannot discuss the intriguing
work by Miglioli and his co-workers in more detail here; a recent discussion of their
approach is in Pagliani’s book [39].

3 PART II. Rough-Set Semantics

Proofs and Refutations

The idea that a characterization of constructive logic must include a definition not
only of what proofs of a formula A are but also of refutations of A goes back at least
to Nelson [38] and comes up in various contexts related to game semantics and in
particular the construction of Chu spaces. Thus we may say that a proof of A ⊃ B is
a method transforming a proof of A into a proof of B and that a refutation of A ⊃ B
is a pair consisting of a proof of A together with a refutation of B; in some contexts
instead of proofs and refutations we may speak of evidence for and against A. To
study bi-intuitionistic logic and its dualities one may say that a proof of C � D is
a pair consisting of a proof of C and of a refutation of D and that a refutation of
C � D is a method transforming a proof of C into a proof of D. But we will not
go very far if the spaces of proofs and of refutations of A coincide with the spaces
of refutations and of proofs of A⊥, respectively. This is certainly not the case if we
consider the semantics of assertions, hypotheses, and conjectures rather than that of
assertions and hypotheses, as discussed informally in Sect. 2.1. Moreover, it turns
out that Rough-Set semantics applied to our canonical polarized system AHCB does
provide new insight and also a bridge to geometric models [57].

3.1 Rough Sets

As pointed out in [5], any topological space provides a mathematical model of
bi-intuitionistic logic, thus also of our canonical system AHL, if we interpret the
assertive expressions by open sets and the hypothetical ones by closed sets. A more
interesting suggestion comes from the interpretation in terms of Rough Sets, fol-
lowing Piero Pagliani’s work (in particular, see [40, 41] and Lech Polkowski’s book
[45], Chap.12).

Definition 5 Given an indiscernibility space (U, E), where U is a finite set and
E ⊆ U × U an equivalence relation, identifying objects that may be indiscernible

http://dx.doi.org/10.1007/978-94-007-7548-0_12
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from some point of view, let AS(U) be the atomic Boolean algebras having the set of
equivalence classes U/E as atoms; then (U, AS(U)) is a topological space, called
the Approximation Space of (U, E), which induces an interior operator and a closure
operator I, C : ℘(U) → AS(U). If two subsets G′, G′′ ⊆ U have the same interior
and the same closure, then they are roughly equal, i.e., indistinguishable either by the
coarsest classification given by C, or by the finest classification I; thus each subset
G is a representative of a class of subsets identified by the pair (I(G), C(G)); only
a clopen G for which I(G) = C(G) is fully characterized in (U, E).

For our purpose it is more convenient the disjoint representation (I(G),−C(G))

using the complement of the closure of G, the set of object different from G even
for the coarser classification, instead of C(G). Thus we may regard the two clopen
sets (I(G) and −C(G)) as representing the space of proofs and of refutations of an
intuitionisitc formula.

Following Pagliani, we can define the following data and operations on pairs

1 1 = (U,∅), 0 = (∅, U);
2 (X+, X−) ∧ (Y+, Y−) = (X+ ∩ Y+, X− ∪ Y−) (conjunction);
3 (X+, X−) ∨ (Y+, Y−) = (X+ ∪ Y+, X− ∩ Y−) (disjunction);
4 (X+, X−) → (Y+, Y−) = (−X+ ∪ Y+, X+ ∩ Y−); (Nelson’s implication)
5 − (X+, X−) = (−X+, X+) (weak negation or supplement);
6 (X+, X−)⊥ = (X−, X+) (orthogonality);
7 (X+, X−) ⇒ (Y+, Y−) = ((−X+ ∪ Y+) ∩ (−Y− ∪ X−),−X− ∩ Y−) (Heyting’s implication);
8 − (X+, X−) = (X+, X−) ⇒ (∅, U) = (X−,−X−) (intuitionistic negation);
9 (X+, X−) � (Y+, Y−) = (X+ ∩ −Y+), (−X+ ∪ Y+) ∩ (−Y− ∪ X−) (co-intuitionistic

subtraction).

(see Pagliani [41], Polkowski [45], p. 363—with an equivalent definition of Heyting
implication).13

Of course one will not obtain a complete semantics for intuitionistic logic starting
from a finite base of clopen sets. Thus we need to look at general topological spaces.
Since the language of our logic of assertions, hypotheses, and conjectures AHCL is
polarized, in order to turn Pagliani’s operations into a topological model of AHCL

13 Notational decisions are nightmarish if we try to match the uses in the literature of Rough Sets,
in Rauszer’s bi-intuitionistic logic and our own.
In our polarized bi-intuitionistic logic [5] we used ∼ A for intuitionistic negation and � C for
co-intuitionistic supplement, leaving ¬α for classical negation, as required in Dalla Pozza and
Garola’s framework and following the meaning originally given to the symbol “¬” by Frege.
C.Rauszer uses − A for intuitionistic negation and − A for co-intuitionistic supplement; but in the
later literature on bi-intuitionistic logic ∼A is used for co-intuitionistic supplement.
In the literature on Rough Sets, weak-negation is sometimes written ¬C; intuitionistic negation is
written in various ways (Pagliani uses ÷A, in Polkowski’s book there is †A), while the symbol ∼ A
is used exactly in the sense of orthogonality A⊥.
However, it is unnecessary to make notations uniform across three areas, where similar connectives
have different meanings: e.g., in Rough Sets negations are defined in a more general algebraic
setting than Heyting algebras.
Hence it seems reasonable for us to retain the notation of [5] for our polarized logic, while using
“− ,” “ − ,” and “( )⊥” for intuitionistic negation, co-intuitionistic supplement and orthogonality in
Rough Sets.
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we need to make sure that the interpretation of an assertive expression is an open
set and a hypothetical expression is assigned a closed set; this is not always the case
for Pagliani’s operations, in particular implications and negations, which have to be
modified as follows.

Definition 6 Let (U, O) be a topological space, where O is the collection of open
sets on U, and I(X) and C(X) are the interior and the closure of X,14 respectively. We
write (A+

o , A−
c ) and (C+

c , C−
o ) for pairs of disjoint sets of the types (open, closed) and

(closed, open), respectively. We define the rough set interpretation ( )R of the language
of assertions, hypotheses, and conjectures LAC (in the disjoint representation) as
follows.

Fix an assignment R : ( � pi)
R = (Ai

+
o , Ai

−
c ) and (H pi)

R = (Ci
+
c , Ci

−
o ) to the

elementary expressions of LAH. Then

1 �R = (U,∅) and �M = (∅, U) (clopen, clopen);
2 (A ∩ B)R = (A+

o , A−
c ) ∧ (B+

o , B−
c ) = (A+

o ∩ B+
o , A−

c ∪ B−
c ) ;

3 (C � D)R = (C+
c , C−

o ) ∨ (D+
c , D−

O) = (C+
c ∪ D+

c , C−
o ∩ D−

o );
4 (A+

o , A−
c ) → (B+

o , B−
c ) = (I(−A+

o ∪ B+
o ), C(A+

o ∩ B−
c )

)
15;

5 (� C)R = −(C+
c , C−

o ) = (C(−C+
c ), I(C+

c )
)

and
. (� A)R = −(A+

o , A−
c ) = (−A+

o , A+
o );

6 (A+
o , A−

c )⊥ = (A−
c , A+

o ) and (C+
c , C−

o )⊥ = (C−
o , C+

c )16;

7 (A ⊃ B)R = (A+
o , A−

c ) ⇒ (B+
o , B−

c ) =
. = (I(−A+

o ∪ B+
o ) ∩ I(−B−

c ∪ A−
c ), C(−A−

c ∩ B−
c )

)
;

8 (∼ A)R = − (A+
o , A−

c ) = (I(A−
c ), C(−A−

c )
)

and
. (∼ C)R = − (C+

c , C−
o ) = (C−

o ,−C−
o );

9 (C � D)R = (C+
c , C−

o ) � (D+
c , D−

c ) =
. = (C(C+

c ∩ −D+
c ), I(−C+

c ∪ D−
c ) ∩ I(−D−

o ∪ C−
o )

)
.

Let LAHC a language of assertions, hypotheses, and conjectures built from a set of
propositional atoms p0, p1, . . . and let ( )⊥ be an involution without fixed points on
the atoms. A rough set interpretation M = (U, O, R) of the language LAHC (with
an involution ( )⊥ on the atoms) is a topological space (U, O) together with an
assignment R to the elementary expressions of disjoint pairs of the following forms:

( �p)R = (A+
o , A−

c );
(Hp)R = (C+

c , C−
o );

(Cpi)
R =

(C(X+), I(X−)
)
, where ( �pi)

R = (X+, X−).

14 The notation CX is overloaded, for the illocutionary operator of conjecture in the syntax of the
language of pragmatics and for the closure operator in a topological space. No confusion is possible,
given the difference in context.
15 There is no connective to represent Nelson’s implication as distinct from intuitionistic implication
in LAH .
16 There is no specific connective for orthogonality in LAH .
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Lemma 3 Let M = (U, O, R) be an interpretation of LAHC, with an involution
( )⊥ on the atoms. Then M is a model of AHCL if and only if the assignment R to
elementary expressions of LAHC satisfies the following duality conditions:

( �p⊥)R = (C−
o , C+

c ) = (C+
c , C−

o )⊥ where (Hp)R = (C+
c , C−

o )

(Hp⊥)R = (A−
c , A+

o ) = (A+
o , A−

c )⊥ where ( �p)R = (A+
o , A−

c )

and moreover for every (A+
o , A−

c ) and (C+
c , C−

o ) in R we have

A−
c = −A+

o and C−
o = −C+

c . (5)

Proof. Concerning conditions ∼� A ≡ A and �∼ C ≡ C of Lemma 2, notice that

− − (A+
o , A−

c ) = − (−A+
o , A+

o ) = (A+
o ,−A+

o ) = (A+
o , A−

c )

if and only if A−
c = −A+

o and similarly

−− (C+
c , C−

o ) = − (C−
o ,−C−

o ) = (−C−
o , C−

o ) = (C+
c , C−

o )

where the last equality holds if and only if C+
c = −C−

o . Moreover, the conditions

(b)−(c) in the definition of duality betweenLA andLH (Definition 3) are clearly sat-
isfied by the standard Rough Set definition. As for condition (a), given the involution
( )⊥ on the atoms, we have

(� �p)R = − (A+
o , A−

c ) = (−A+
o , A+

o ) = (A−
c , A+

o ) = (Hp⊥)R

where the third equality holds by condition (5) and the fourth by the condition of
duality in a model. Similarly,

(∼ Hp)R = − (C+
c , C−

o ) = (C−
o ,−C−

o ) = (C−
o , C+

c ) = ( �p⊥)R

as required.

Remark 3 In a model M = (U, O, R) for AHCL intuitionistic negation and Nel-
son’s negation coincide:

(A+
o , A−

c ) ⊃ (B+
o , B−

c ) = (I(−A+
o ∪ B+

o ) ∩ I(−B−
c ∪ A−

c ), C(−A−
c ∩ B−

c ))

= (I(A−
c ∪ B+

o ), C(A+
o ∩ B−

c ))

Thus to exploit Rough-Set semantics in full, we may want to consider notions of
duality where condition (5) does not hold.
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Fig. 1 “Kripke model”

3.2 Algebra of Regions

Amain reason of interest in bi-intuitionistic logic are its topos-theoretic models stud-
ied by Lawvere [32] Reyes and Zolfaghari [52], recently reconsidered by Stell and
Worboys [57] in their “algebra of regions.” It is clearly impossible here to compare
Reyes and Zolfaghari’s modal logic to our polarized bi-intuitionistic systems, but we
must say something about Stell and Worboys’ geometric examples.

The first one is Reyes and Zolfaghari’s motivating example [52]: it provides a model
of bi-intuitionistic logic based on the subgraphs of arbitrary undirected graphs. It
ought to be possible to define graphic models of AHL and PBL, but we shall not
attempt this here. On the other hand, “two stages sets” in the second example are just a
geometric representation of the basic notion of “rough equality”: in an approximation
space each subset G of the universe is identified only by the pair (I(G), C(G))—or
with (I(G),−C(G)) in the disjoint representation—where the interior and closure
operator result from two stages of process of classification.

Now it is evident that condition (5) on models of AHL restricts the interpretation to
setsG that are fully characterized in (U, E), i.e., such thatI(G) = C(G).We illustrate
more interesting semantics applications with an example. Consider the Kripkemodel
K for S4 obtained from the reflexive and transitive closure of the graph in Fig. 1.

Writing αK for the set of possible worlds satisfying α, we have ( � p)K = {w1},
(Cp)K = {w0, w1} and (Hp)K = {w0, w1, w3, w4, w5} = K \ {w2}. We are satis-
fied with the Rough Set interpretation of assertions in the disjoint representation
as ( � p)R = ({w1}, K \ {w1}): after all, the grounds for an assertion ought to be a
“stable” state of knowledge; by duality the representation of hypotheses as (Hp)R =
(K \ {w2}, {w2}) is appropriate. On the other hand, the state of knowledge justifying
conjectures is “unstable”; thus there seems to be a meaningful “two-stage set” rep-
resentation of conjectures of the form (Cp)R = ({w1}, K \ {w0, w1}), of type (open,
open). We notice that such an interpretation is possible for the logic AHCL of asser-
tions, conjectures, and hypotheses, as it does not interfere with the basic symmetry
between assertions and hypotheses. It remains an open problem whether these very
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Table 4 Natural Deduction NJ��

conjectural remarks can be developed into an interesting rough-set semantics of a
logic of assertions, hypotheses, conjectures, and expectations.

4 PART III. Proof Theory

We shall start with the definition of a sequent-style single-assumption multiple-
conclusions natural deduction system for the subtractive-disjunctive fragmentNJ��
of co-intuitionistic logic. We have sequents of the form

A � C1, . . . , Cm

where A indicates the only open assumption in a derivation with the multiset C1, . . .,
Cm of open conclusions. The rules of inference are in Table 4.

Definition 7 We say that C1, . . . , Cm is derivable from A if there is a natural deduc-
tion derivation of the sequent A � � where all formulas in the multiset � are among
C1, . . . , Cm.

Remark 4 (i) Looking at the deduction rules in Table4, notice that �-introductions,
�-eliminations and�-eliminations discharge the open assumption(s) of the sequent-
premise(s) to the right, but a �-elimination discharges also a multiset of open con-
clusions. As a consequence, �-eliminations are the only inferences that cannot be
permuted freely with other inferences. From another point of view, here we have a
limit to the “parallelization of the syntax,” a box in the sense of Girard. To remove
such a box, a device is needed to discharge open conclusions preserving as much
as possible the geometry of proofs. In this section we recover Prawitz trees as an
appropriate representation of proofs in NJ��.
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(ii) As in Prawitz’s natural deduction weakening is not explicitly represented in
proof-trees and contraction appears only in the discharging of conclusions in a �-E
inference.

Definition 8 (i) (active and passive formula-occurrences) In assumptions and in
rules of inference the indicated formula-occurrences in the succedent of a sequent are
active and all occurrences in the multisets �, �i, � are passive. Also the discharged
assumptions in a �-I, �-E and �-E are active, all other assumptions are passive. An
active formula in the sequent-conclusion of an inference is also called the conclusion
of the inference.

(ii) (segments) If ϒ occurs in the premise and in the conclusion of an inference then
an occurrence Di ∈ ϒ in the premise is the immediate ancestor of the occurrence Di

in the conclusion. Then as in Prawitz [46] we define a segment as a sequence D1,
. . ., Dm of occurrences of the same formula where D1 and Dm are active, and Di is
the immediate ancestor of Di+1, for i < m.

(iii) Thus we may speak of a segment as the conclusion or the premise of some
inference.

(iv) A maximal segment is the conclusion of an introduction rule which is premise
of an elimination. A derivation is normal if it does not have maximal segments.

4.1 Structure of Normal Proofs

The structure of normal deductions in co-intuitionistic logic NJ�,� mirrors that of
normal deductions in intuitionistic logic NJ⊃,∩.

Definition 9 (i) A Prawitz path in a normal deduction is a sequence C1, . . ., Ci, . . .,
Cn of segments such that

• C1 is an assumption, either open or discharged by a �-introduction;
• for j with 1 ≤ j < i, Cj = C � D is a premise of a �- or �-elimination and

Cj+1 = C is an assumption discharged by the inference;
• for j with i ≤ j < n, Cj is a premise of a �- or �-introduction with conclusion

Cj+1;
• Cn is a conclusion of the derivation, either open or discharged by a �-E.

(ii) The collection of all Prawitz paths in a derivation is a graph, called the tree of
Prawitz paths τ . If we collapse segments to their formulas, the resulting tree yields a
graphical representation of proofs which we shall call Prawitz tree for NJ��. Such
trees are similar to those in Prawitz-style Natural Deduction derivation for NJ⊃∩,
but in NJ�� the logical flow goes from the root to the leaves, rather than from the
leaves to the root as in NJ⊃∩.
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(iii) The definition of the depth of a path π in a tree τ is familiar: the depth of π
is 0 if its first formula C1 is open; the depth of π is n + 1 if C1 is discharged by a
�-introduction with conclusion in a path of depth n.

From this analysis we derive as usual the subformula property for normal deductions:

Proposition 3 Every formula occurring in a normal deduction of A � C1, . . . , Cm

is a subformula either of A or of Ci for some i.

Example We constuct a derivation d in NJ�� of

C � A � ((C � (B � D)) � A, ((B � A) � (D � A))2

It may be helpful to think of the dual derivation in NJ⊃∩ of

(A ⊃ B) ∩ (A ⊃ D), A ⊃ ((B ∩ D) ⊃ C) � A ⊃ C.

We write F for (B � A) � (D � A) and G for C � (B � D).

C � C B � D � B � D
�-I

C � C � (B � D), B � D B � B D � D �-E
C � C � (B � D), B, D A � A

�-I
C � G � A, A, B, D

C � A � C � A

.

.

. A � A
�-I

C � G � A, (A)2, B � A, D A � A
�-I

C � G � A, (A)3, B � A, D � A A � A �0-I
C � G � A, (A)3, (B � A) � (D � A), D � A �1-I

C � (A)3, G � A, (F)2
�-E

C � A � G � A, (F)2

In Fig. 2 we find the tree-structure of “Prawitz’ paths” of the derivation d.

4.2 Sequents with Tail Formula

A very perspicuous representation of derivations in co-intuitionistic logic is through
sequent calculus with tail formula q-LJ��, the exact dual of the well-known sequent
calculus with head formula t-LJ⊃∩.17 Here sequents have the form

17 The “q” in q-LJ�� stands for queue, tail, as the “t” in t-LJ⊃∩ stands for tête, head.
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Fig. 2 A Prawitz tree

E ⇒ ϒ ; C

with one formula in the antecedent, a multiset in the ordinary area, and at most
one formula in the linear area (stoup) of the succedent. The principal formulas of
the right-rules are in the stoup and left-rules require empty stoup in the sequent-
premies.18 The rules of q-LJ�� are given in Table5.
The following fact is the dual of a well-known correspondence between Natural
Deduction derivations in NJ⊃∩ and Sequent Calculus derivations in t-LJ⊃∩. For
sequent calculi with head formulas or tail formulas see, for instance, [20].

Proposition 4 There is a bijection between trees of Prawitz paths of normal deriva-
tions in NJ�� and cut-free derivations in q-LJ�� (modulo the order of structural
inferences).

Proof. Given a Prawitz tree τ , by induction on τ we construct a q-LJ�� derivation
with the property that the formula in the stoup (tail formula), if any, is the conclusion
of a path of depth 0 (main path) of τ . If τ begins with an elimination rule, the
result is immediate by the inductive hypothesis applied to the immediate subtree(s)
from the top, since we may assume that the corresponding cut-free derivations have
conclusions with empty stoup. If τ begins with an introduction rule, then there is
only one main path and we remove the last inference of it: if the conclusion was a
formula C � D, the inductive hypothesis yields two q-LJ�� derivations; in one the
endsequent must have C in the stoup, since C belongs to the main path; in the other

18 It ought to be clear that the use of focalization in the sequent calculus q-LJ�� and in the dual
t-LJ⊃∩ (see Table8, Appendix III), is unrelated to the use of the “stoup” in our sequent calculi
AH-G3, PB-G3, and APB-G3 for bi-intuitionistic logic, where it is used simply to highlight the
restrictions of intuitionistic systems.
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Table 5 The sequent calculus q-LJ��

the endsequent has D in the antecedent and we may assume that it has no formula
in the stoup, by applying dereliction if necessary. Therefore we may apply �-R to
obtain the desired derivation. The other cases are obvious.
The fact that two derivations d′ and d′′ corresponding to the same tree τ can only
differ for the order of structural inferences is due to the fact that in q-LJ�� logical
inferences cannot be permuted with each other. Indeed, the principal formulas of all
inferences occur either in the antecedent or in the stoup, and the rule of dereliction
is irreversible.

Example (cont.) The following sequent derivation dq corresponds to the natural
deduction derivation d:
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C ⇒; C

B ⇒; B

A ⇒; A
der

A ⇒ A ;
�-R

B ⇒ A ; B � A �0-R
B ⇒ A ; F

der
B ⇒ A, F ;

D ⇒; D

A ⇒; A
der

A ⇒ A ;
�-R

D ⇒ A ; D � A �1-R
D ⇒ A ; F

der
D ⇒ A, F ;

B � D ⇒ A, A, F, F ;
�-R

C ⇒ A, A, F, F ; C � (B � D)

A ⇒ ; A
der

A ⇒ A ;
C ⇒ A, A, A, F, F ; G � A

contr, der
C ⇒ A, F, G � A ;

�-L
C � A ⇒ F, G � A ;

5 PART IV.Term Assignment for Co-intuitionistic Logic

In a tantalising pair of papers [42, 44] Michel Parigot introduced Free Deduction, a
formalism consisting of elimination rules only, with the property that both Natural
Deduction and the Sequent Calculus could be represented in it simply by restricting
the order of deduction, e.g., by permutations of inferences. Free Deduction was
conceived to study the computational properties of classical logic, but it can be
adapted to intuitionistic and co-intuitionistic logic through the analog of Gentzen’s
restrictions on sequents.

For instance, although they do not appear in this form in [42], the rules for multi-
plicative implication and subtraction can be formulated as follows:

multiplicative implication
�, A → B � � �, A � B, (�¶) → elim left

�,� � �,�

� � �, A → B � � �, A �′, B � �′
→ elim right

�,�,�′ � �,�,�′

multiplicative subtraction
�, A � B � � � � �, A �′, B � �′

� elim left
�,�,�′ � �,�,�′

� � �, A � B (�¶), A � B, �
� elim right

�,� � �,�

The intuitionistic restriction (�¶), namely that � is empty, applies to the secondary
premise of the →-left elimination rule, and the dual restriction holds for �-right
elimination. The sequent calculus rules are obtained by killing the main premise
(i.e., keeping it only as an axiom). Here are the rules for subtraction:
Natural Deduction, on the other hand, is given by keeping all inputs on the left.
Namely: for left elimination rules, we kill the main premise; for right elimination
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subtraction rules, as in the sequent calculus
A � B � A � B � � �, A �′, B � �′

�-R
�,�′ � A � B, �,�′

A � B � A � B [�¶], A � �, B
�-L

A � B,� � �

rules, we kill the secondary premises which have only a left active formula. Thus no
premise is killed in subtraction elimination right.

subtraction rules, as in natural deduction
A � B � A � B � � A, � �′, B � �′

� intro
�,�′ � A � B, �′

� � A � B,� [�¶], A � B, �
� elim

�,� � �,�

Since Free Deduction yields amultiple conclusion natural deduction system in a very
straightforward way, one would expect that a term assignment to Free Deduction
might be distributed to all formula in the succedent of sequents. On the contrary in
1992Michel Parigot introduced the λ-μ calculus as “an algorithmic interpretation of
classical Natural Deduction,” which is based on a notion of “central control.” In the
last part of this chapter we propose a distributed term assignment to co-intuitionistic
logic.

5.1 Term Assignment to the Subtraction Rules in the λ-μ Calculus

Recently the proof theory of bi-intuitionistic (subtractive) logic has been studied by
Crolard [15, 16]: in [16] a Natural Deduction system is presented with a calculus
of coroutines as term assignment.19 Crolard works in the framework of Parigot’s
λμ-calculus: sequents may be written in the form20 � � t : A | �, with contexts � =
x1 : C1, . . . , xm : Cm and � = α1 : D1, . . . ,αn : Dn, where the xi are variables and
the αj are μ-variables. In addition to the rules of the simply typed lambda calculus,
there are naming rules

� � t : A | α : A,�

� � [α]t : ⊥ | α : A,�
[α] � � t : ⊥ | α : A,�

� � μα.t : A | �
μ

19 This part is joint work with Corrado Biasi and incorporates important contributions from his still
unfinished doctoral dissertation at Queen Mary, University of London.
20 Parigot and Crolard actually write sequents in the form t : � � �; A, where the term t is given
the type of the formula A in the stoup, if such a formula exists. If the stoup is empty, the notation
allows one to think of t as being assigned to the entire sequent or to a formula ⊥ implicitly present
in the stoup.
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It is well-known that the λμ-calculus provides a computational interpretation of
classical logic and a typing system for functional programs with continuations (see,
e.g., [17, 54]).

Crolard extends the λμ calculus with introduction and elimination rules for sub-
traction21:

� � t : A | �

� � make-coroutine(t,β) : A � B | β : B,�
� I

� � t : A � B | � �, x : A � u : B | �

� � resume t with x �→ u : C | �
� E

The reduction of a redex of the form resume(make-coroutine(t,β)) with x
�→ u : C yields μγ.[β]u[t/x], where the μ-variables are typed as β : B and γ : C.
Namely

� � t : A | �
�-I

� � make-coroutine(t,β) : A � B | β : B,� �, x : A � u : B | �
�-E

� � resume (make-coroutine(t,β))with x �→ u : C | β : B,�

reduces to
� � t : A | � �, x : A � u : B | �

substitution
� � u[t/x] : B | � [β]

� � [β]u[t/x] : ⊥ | β : B, γ : C,�′
μ

� � μγ.[β]u[t/x] : C | β : B,�′

Working with the full power of classical logic, if a constructive system of bi-
intuitionistic logic is required, then the implication right and subtraction left rules
must be restricted by considering relevant dependencies.22 Crolard is able to show
that the term assignment for such a restricted logic is a calculus of safe corou-
tines, namely terms in which no coroutine can access the local environment of an-
other coroutine.

21 In Crolard [16] the introduction rule corresponds to the more general form �-I given above,
and more general continuation contexts occur in place of β; the above formulation suffices for our
purpose here.
22 For instance, in the derivation of the right premise of a subtraction elimination (�E), there should
be no relevant dependency between the formula B and the assumptions in �, but only between B
and A.
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5.2 A Distributed Term Assignment for the Subtractive Fragment

When we consider a term assignment for the Natural Deduction system NJ�� of
dual intuitionistic logic only, we are led to askwhat Crolard’s calculus becomeswhen
separated from its λμ context. Indeed the naming rules of the λμ calculus allow us to
represent the action of an operating system jumping from one thread of computation
to another: when a name β for a coroutine has been created by make-coroutine,
it can be later accessed by the system and the coroutine executed.

On the contrary in our proposal different terms are simultaneously assigned to the
multiple conclusions of a sequent in a sequent-style Natural Deduction, (or in the
SequentCalculuswith tail formula). There is nomechanism to simulate the passage of
control from one “thread” to another. A process is stopped by the operator assigned to
subtraction elimination (called here postpone rather than Crolard’s resume) and
becomes active only in the normalization process. Thus in the presence of different
processes running in parallel, one wonders whether our system can still be regarded
as a calculus of coroutines: it is perhaps closer to an abstract representation of a
multiprocessing system.

Before giving formal definitions, let us survey the most distinctive features of our
calculus for the terms assignment to the subtractive fragment only. Most character-
istic is the treatment of variables: there is no operator for explicitly binding variables
or delimiting the scope of an implicitly binding operation. We may say that a compu-
tational context is characterized by exactly one free variable and that a free variable a
becomes bound when its computational context Sa is plunged into the computational
context Sb associated with another variable b. In this case, the variable a is replaced
everywhere by a(t) for some term t containing b; here the function a is vaguely
reminiscent of a Herbrand function. In the normalization process the term a(t) may
later be replaced by another term u throughout the new computational context; thus
we assume that a mechanism is in place for broadcasting substitutions throughout
an environment.

We have the following operators:

• the term mkc(t,y), which is assigned to the conclusion of a �-introduction,
connects two disjoint computational contexts, say, Sx and Sy. Every term in Sx

contains exactly one free variable x, and we assume that the term t represents a
thread starting from x.23 The computational context Sy contains the free variable
y and all threads starting from y. When the term mkc(t,y) is introduced, the
substitution y := y(t) must be performed throughout the environment Sy. Thus
the term mkc(t,y) represents a jump extending the thread t to all threads in
Sy{y := y(t)}; the substitution of y(t) for y throughout Sy has the effect that the
extended computational context contains only the free variable x. Here we retain

23 Here we use the term “thread” in the sense of Prawitz [46], p. 25; namely, a thread is a branch in
the proof-tree from the a leaf to the root. The equivalent notion here is that of a branch in Prawitz’
tree τ from the root to the leaf. No claim is made here about the computer science usage of the term
“thread.”
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Crolard’s name make-coroutine for historic reasons; a more precise but more
redundant description would be the following:

mkc(t,y) stands for extend thread t from y(t).

• The term postp(z �→ 	, t), which is assigned to the conclusion of a �-
elimination, takes a computational context Sz containing the only free variable
z, and plunges it into another context Sx where the only free variable is x; this is
done by selecting the list 	 of threads starting from z and the term t with free vari-
able x, replacing z with z(t) throughout Sz and freezing 	{z := z(t)} until through
normalization the term t is transformed to a term of the form extend thread.
A fuller description is therefore the following:

postp(z �→ 	, w) stands for postpone subthreads 	{z := z(w)} until w.

Let M be mkc(t,y) and let P(v) be postp(z �→ 	, v). Then

P(M) = postp(z �→ 	,mkc(t,y))

is a redex. The main idea of a reduction is to replace the jump from t to y(t) with
each one of the subthreads in 	. But such an operation has important side effects. A
redex P(M) occurs in a computational context Sx of the form

Sx : postp(z �→ 	,mkc(t,y)), κ, ζy, ξz

where ζy is a sequence of terms containing y(t), ξz a sequence of terms containing
z(mkc(t,y)) and κ a sequence containing neither y(t) nor z(mkc(t,y)). Thus the
side effects consist in the replacement of z(mkc(t,y)) with t in ξz and in each
subthread sk of 	; let 	′ = s′

1, . . . , s′
n be the resulting sequence. Finally, we replace

y(t) in ζy with each one of the subthreads s′
k , thus expanding the sequence ζy in a

sense to be made precise below. To indicate such a rewriting process we shall use
the notation

S ′ = Sx − P(M) {z := t} {y := 	{z := t}}

where z = z(mkc(t,y)) and y = y(t).
In an enterprise where notation is in danger of growing out of control, readability
is essential. The notations mkc(t,y) and postp(z �→ 	, w) are already effective
abbreviations, as from them we can recover the terms y(t) and z(w) present in the
context. Further simplification is given by Corrado Biasi’s elegant notations:

t → y for mkc(t,y) and t
z �→	�� for postp(z �→ 	, t).
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If we consider the typed version of the above rewriting we have the following reduc-
tion. Let us write24

Sx : � for π0 : • | κ : �

Sy : ϒ for π1 : • | ζ : ϒ

Sz : 
 for π2 : • | ξ : 

and also

Sx : �,Sy : ϒ,Sz : 
 for π0,π1,π2 : • | κ : �, ζ : ϒ, ξ : 
.
Next

let Sy : ϒ be Sy{y := y(t)} : ϒ ,
let Sz : 
 be Sz{z := z((mkc(t,y))} : 
.

Then we have:
x : E � Sx : �, t : C y : D � Sy : ϒ

�-I
x : E � Sx : �,Sy : ϒ, mkc(t,y) : C � D z : C � Sz : 
, 	 : D

�-E
x : E � postp(z �→ 	,mkc(t,y)) : •,Sx : �,Sy : ϒ,Sz : 


reduces to

x : E � Sx : �, t : C z : C � Sz : 
, 	 : D
subst

x : E � Sx : �,St : 
, 	{z := t} : D y : D � Sy : ϒ
subst

x : E � Sx : �,S	{z:=t} : ϒ,St : 


where St = Sz{z := t}, S	{z:=t} = Sy{y := 	{z := t}}

6 A Distributed Term Assignment for Co-intuitionistic Logic
NJ��

We present the grammar and the basic definitions of our distributed calculus for the
fragment of co-intuitionistic logic with subtraction and disjunction.

Definition 10 We are given a countable set of free variables (denoted by x, y, z . . .),
and a countable set of unary functions (denoted by x,y,z, . . .).

(i) Terms and lists of terms are defined by the following grammar:

t := x | x(t) | inl(t) | inr(t) | casel(t) | caser(t) | mkc(t,x)

	 := () | t · 	

(ii) Let t1, t2, . . . an enumeration in a given order of all the terms freely generated
by the above grammar starting with a special symbol ∗ and no variables (a selected
variable a would also do the job). Thus we have a fixed bijection ti �→ xi between
terms and free variables.

24 The expression • is not a formula, but a non-logical expression, which cannot be part of other
formulas; its meaning could be though of as an absurdity.
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(iii) Moreover, if t is a term and 	 is a list such that for each term u ∈ 	, y occurs in
u, then postp(y �→ 	{y := y(t)}, t) is a p-term.

We use the abbreviations (t → y) for mkc(t,y) and wz �→	�� for postp(z �→
	, w).

Thus a p-term cannot be a subterm of other terms. In the official definition above
lists appear only as arguments of postp,25 It is notationally convenient to extend
the above definition so that our operators apply to lists in addition to terms:

Definition 11 Let op( ) be one of x( ), inl( ), inr( ), casel( ), caser( ),
mkc(( ),x), postp(x �→ 	, ( )).
Then the term expansion op(	) is the list of terms defined inductively thus:

op(()) = () op (t · 	) = op (t) · op (	)

Remark 5 By term expansion, a term consisting of an operator applied to a list of
terms is turned into a list of terms; thus terms may always be transformed into an
expanded form where operators are applied only to terms, except for expressions 	

occurring in terms of the form postp(y �→ 	, u).

Definition 12 (i) The free variables FV(	) in a list of terms 	 are defined as follows:

FV(()) = ∅
FV(t · 	) = FV(t) ∪ FV(	)

FV(x) = {x}
FV(x(t) = FV(t)

FV(inl(t)) = FV(inr(t)) = FV(t)

FV(casel(t)) = FV(caser(t)) = FV(t)

FV(mkc (t,x) = FV(t)

FV(postp(x �→ 	, t) = FV(	) ∪ FV(t).

(ii) A computational context Sx is a set of terms and p-terms containing the free
variable x and no other free variable.

Definition 13 Substitution of a term t for a free variable x in a term u is defined as
follows:

25 In our definition we use lists of terms where multisets are intended. Amultiset can be represented
as a list 	 = (t1, . . . , tn) with the action of the group of permutations σ : n → n given by 	σ =
(tσ(1), . . . , tσ(n)).
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x{x := t} = t, y{x := t} = yifx �= y;
y(u){x := t} = y(u{x := t});

inl(r){x := t} = inl(r{x := t}), inr(r){x := t} = inr(r{x := t});
casel(r){x := t} = casel(r{x := t}), caser(r){x := t} = caser(r{x := t});

mkc(r,y){x := t} =mkc(r{x := t},y),

postp(y �→ (	), s){x := t} =postp(y �→ (	{x := t}), s{x := t}).

We define substitution of a list of terms 	 for a variable x in a list of terms κ:

(){x := 	} = () (t · κ){x := 	} = t{x := 	} · κ{x := 	}
t{x := ()} = () t{x := u · 	} = t{x := u} · t{x := 	}

If ζ is a vector of lists 	1, . . . , 	m, then ζ{x := 	} = 	1{x := 	}, . . . , 	m{x := 	}.
Definition 14 β-reduction of a redexRed in a computational context Sx is defined
as follows.
(i) If Red is a term u of the following form, then the reduction is local and consists
of the rewriting u �β u′ in Sx as follows:

casel (inl(t)) �β t; caser (inr(t)) �β t.

casel (inr(t)) �β (); caser (inl(t)) �β ();

(ii) If Red has the form (t → y)
z �→	�� , i.e., postp(z �→ 	,mkc(t,y)), then Sx

has the form
Sx = Red, κ, ζy, ξz

wherey(t) occurs in ζy andz((t → y)) occurs in ξz and neithery(t) norz((t → y))

occurs in κ. Writing y = y(t) and z = z((t → y)), a reduction of Red transforms
the computational context as follows:

Sx � κ, ζ{y := 	{z := t}}, ξ{z := t}.

Thus for ζ = u1, . . . , uk, for ξ = r1, . . . , rm and for 	 = s1, . . . , sn we have:

ξ{z := t} = r1{z := t}, . . . , rm{z := t};
ζ{y := 	{z := t}} = u1{y := s1{z := t}}, . . . , u1{y := sn{z := t}}, . . .

… uk{y := s1{z := t}}, . . . , uk{y := sn{z := t}};
= ζ{y := s1{z := t}}, . . . , ζ{y := sn{z := t}}.

Given the correspondence between Prawitz style Natural Deduction derivations in
NJ⊃∩ and sequent derivations in t-LJ⊃∩, and the dual correspondence between
Prawitz trees for co − NJ�� and sequent derivations in q-LJ��, we find it conve-
nient to define the term assignment directly to sequent calculus in q-LJ��, given in
Appendix III, Table7.
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Definition 15 (term assignment) The assignment of terms of the distributed cal-
culus to sequent calculus derivation in q-LJ�� is given in Appendix III, Table7. In
Table8 we give the familiar assignment of λ-terms to sequent calculus with head
formulas t-LJ⊃∩.

Remark on free variables and α conversion. Since in our calculus the binding
of a free variable x is expressed through its substitution with a term x(t), the so-
called “capture of free variables” takes a different form. Suppose a free variable y
has been replaced by y(t) in the construction of a term M = mkc(t,y) or P(t) =
postp(y, 	{y := y(t)}, t): all other occurrences of y in the previous context have
been replaced with y(t) in the current context, represented, say, by a vector 	, and
we may say that M or P(t) is a binder of y(t) in 	.

In the process of normalization such a “bound” term y(t)may be replaced by another
term u. It would be natural to think of such a replacement as a two-step process,
first recovering the free variable y and then applying a substitution {y := u} to the
current computational context. However, it may also happen that in the process of
normalization different occurrences of the term y(t) evolve to y(t′) and to y(t′′) so
that distinct variables y′ and y′′ are needed for distinct substitutions. For this reason
we have established a bijection between freely generated terms and free variables.

This may not solve all problems: indeed in the untyped formulation of our calculus
it might happen that the same free variable y has been replaced with y(t) in the
construction of two distinct terms of 	: our syntax may not have tools to disam-
biguate the “scope” of the bindings and some further restrictions may be needed
to block such pathologies. However, if the calculus is used for assigning term to
derivations in NJ��, then to avoid “capture of free variables” it is enough to set the
following condition.

Convention. We assume that

• Derivations have the pure parameter property, i.e., that in a derivation free vari-
ables assigned to distinct open assumptions are distinct;

Since to distinct free variables x, y there correspond distinct unary functionsx,y, then
it is clear that in the term assignment to derivations with the pure parameter property
the above indicated ambiguity cannot occur. Moreover, a derivation resulting by
normalization from a derivation with the pure parameter property can be transformed
again into a derivation with the pure parameter property. Indeed, the set of terms
assigned to a NJ�� derivation encode a tree-structure, and it is easy to see that if
different occurrences of the term y(t) evolve to y(t′) and to y(t′′) in a tree, then the
terms t′ and t′′ are distinct as they encode distinct threads. Thus once again applying
the bijection between terms and free variables can be used to produce a derivation
with the pure parameter property.

Example (i) Assigning terms to the derivation dq in Sect. 4.2we obtain the following
assignment to the endsequent:
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z : C � A ⇒ z
c �→(a′,a′′,a′′′)�� : • | (t′, t′′) : F, ((c(z) → e) → a′′′) : G � A

where we have

a′ = a1(casel(e(c(z)))), a′′ = a2(caser(e(c(z)))), a′′′ = a3((c(z) → e)) : A;
t′ = inl((casel(e(c(z))) → a1)), t′′ = inr((caser(e(c(z))) → a2)) : F,

F = (B � A) � (D � A), G = (C � (B � D)).

(ii) Applying cut-elimination to the derivation

a : A ⇒ ; a : A
a : A ⇒ : inl(a) : A � B

.

.

.

a′ : A ⇒ ; a′ : A
b : B ⇒ ; b : B c : C ⇒ c : C ;
b : B ⇒ c(b) : C ; (b → c) : B � C

e : A � B ⇒ casel(e) : A,c(caser(e)) : C, (caser(e) → c) : B � C ;
a : A ⇒ t1 : A, t2 : C, t3 : B � C ;

we obtain the following rewritings: t1 = casel(inl(a)) � a;

t2 = c(caser(inl(a))) � (), t3 = (caser(inl(a)) → c) � ()

and the term assignment

a : A ⇒ a : A, () : C, () : B � C ; .

6.1 Duality Between the Distributed Calculus and the Simply
Typed λ Calculus

Consider the term assignment in Appendix III, Tables 7 and 8. In this setting the
following facts are clear:

• given a sequent S in q-LJ��, there is a dual sequent S⊥ in h-LJ⊃∩, and con-
versely;

• given a derivation d of S in q-LJ��, there is a dual derivation d⊥ of S⊥ in
h-LJ⊃∩, and conversely.

Therefore any cut-elimination procedure in h-LJ⊃∩ induces a cut-elimination proce-
dure for q-LJ��; clearly the steps of such reduction procedure for q-LJ�� must be
seen as “macro” instructions for several steps of rewriting, which may nevertheless
be seen as a unit. Thus we have the following fact:
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Theorem 2 There is a correspondence between reduction sequences starting from
a derivation d of S in q-LJ�� and reduction sequences from a derivation d⊥ of S⊥,
and conversely.

In the present setting this result seems obvious and its proof straightforward. Going
through the details of the construction, as done in [8], does give an insight into the
structure of terminating computations in our distributed calculus. Assigning terms
to derivations in q-LJ�� as in in Appendix III, Table 7 makes the structure of the
calculus clearer and provides a bridge to the representation of computations in the
graphical notation of Prawitz trees as in Appendix II.

7 Conclusions

In this chapter we have given an account of research in the logic for pragmatics of
assertions and conjectures, following the paper Bellin and Biasi [5] and also of work
in the proof-theory of co-intuitionistic logic aiming at defining natural deduction
system and a distributed term-assignment for it.

A conceptual clarification of the distinction between hypotheses and conjectureswith
respect to their interpretation in epistemic S4, where hypotheses are justified bymere
epistemic possibility of the truth of their propositional content and conjectures require
possible necessity, has shown connections with other areas of logic and semantics.
On one hand, within our framework we can make distinctions which may be relevant
to work on standards of evidence in the theory of argumentation [13, 24]. On the
other hand, the semantics of rough sets and the notion of an approximation space
provide another semantics to a theory of assertions, hypotheses, conjectures, and
expectations, in addition to Kripke models through the translation in epistemic S4
and in bimodal S4, as in [5]. Rough sets point at promising connections with research
by Pagliani [40, 41].

Abstract relations between functional programming and concurrent programming
have been studied extensively, e.g., through translations of the λ calculus into
R. Milner’s π-calculus. Abstract forms of the continuation-passing style, e.g., as
in Thielecke’s work, have been typed in classical logic, suggesting an interpretation
of these relations as a logical duality between classical and intuitionistic logic. In
this way, the λμ calculus is naturally invoked here. In [8] and this chapter we pro-
pose the duality between intuitionistic and co-intuitionistic logic as the most basic
type theoretic setting for studying the relations between distributed and functional
programming calculi. Our calculus distributed displays exactly the programming
features that are required in order to implement such a logical duality. In this way
this chapter and other still unpublished work by Corrado Biasi give a type-theoretic
framework for studying the relations between safe and unsafe coroutines in the
sense of Crolard: typically, safe coroutines are those which can be represented as
constructs of a distributed calculus without making essential use of the λμ calculus
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and can be typed in co-intuitionistic logic. Thus the term assignment to proofs in
co-intuitionistic logic can be seen as a contribution to a challenging problem, namely
providing a logical foundation to distributed calculi by means of a typing system, in
the Curry-Howard approach. Clearly solving such a problem has a clear interest in
computer science, if only to ensure properties of such systems such as termination
and confluence.

All the paths followed in this research are open and point at possible directions of
work, as already suggested. Other projects could explore the proof-net representa-
tion of co-intuitionistic logic and the construction of a term model for co-Cartesian
Closed Categories. The proof theory of classical logic is the framework of Crolard’s
investigations [15, 16] and the concern of Bellin, Hyland, Robinson, and Urban
[9]: it is expected that eventually research in bi-intuitionistic logic may improve our
understanding of classical logic. But this is now a good point to take a rest.

Appendix I. Polarized Rauszer’s Logic

The main stream of bi-intuitionistic logic follows the tradition of Cecylia Rauszer,
who created the theory of bi-Heyting algebras [50, 51], and defined its Kripke se-
mantics, later studied with categorical methods by Lawvere [32], Makkai, Reyes
and Zolfaghari [33, 52]; more recently, proof theoretic treatments of subtractive or
bi-intuitionistic logic have been given by Rajeev Gore [25], Tristan Crolard [14, 15]
and others.

In Rauszer’s possible-world semantics the forcing conditions for implication refer to
up-sets of possible worlds with respect to the accessibility relation, while the forcing
conditions for subtraction refer to down-sets. Namely, (A ⊃ B)M = �(AM → BM)

is true in a world w if for all w′ such that wRw′ AM → BM is true in w′; on the other
hand, (C � D)M = ♦ (CM ∧¬DM) is true in a world w if for some w′ such that w′Rw
we have CM ∧ ¬DM is true in w′; in other words, modal translations are interpreted
in models M = (W , R, S,�) where R and S are pre-orders such that S = R−1. This
suggests a temporal dimension in the bi-modal translation: the forcing condition for
the operator � may be seen as referring to “future knowledge” and those for ♦ to
“past knowledge.”

We see at once that Rauzer’s bi-intuitionistic logic is as inadequate for a represen-
tation of assertions and hypotheses as PBL: letting �p = �p and H¬p =♦ ¬p, it is
consistent to assert p (with respect to “the future”) and also to conjecture ¬p (in the
past). Although the issue is beyond the range of the present chapter, it may be interest-
ing to catch a glimpse of what polarized Rauszer’s logic looks like in our framework.

Tense-Sensitive Polarization

Is there a pragmatic interpretation of dual intuitionistic logic which retains such a
temporal element and is thus closer to Rauszer’s tradition? The question does make
sense. Clearly, the justification conditions for assertions and conjectures concerning
the future and the past are different in several important ways: for instance, direct
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observations of some future events will be possible, but never of past events. Thus
it would be plausible to introduce tense-sensitive illocutionary operators, giving
assertive force to statements about the future ( �• α) and about the past ( •� α) and,
similarly, conjectural force to statements about the future (H•α) and about the past
( •Hα). Moreover, we would have strong negation about the future (∼• ) and about
the past ( •∼) and weak negation about the future (�•) and about the past (•�). More
generally, all pragmatic formulas would become tense-sensitive and could polarized
in four ways:

(A•) future − assertive, (•A) past − assertive,

(C•) future − hypothetical and (•C) past − hypothetical :
We define a language LPB

t according to the grammar in Table6.

This would lead to the development of a tense-sensitive polarized bi-intuitionistic
logic (PBLt). The “semantic reflection” of LPB

t is in temporal S4, where formulas
of L�,� are interpreted in bimodal frames F = (W , R, S) with R a preorder and
S = R−1.

The following fact is standard (see, e.g., Ryan and Shobbens [53]):

Proposition 5 Given a bimodal frame F , the following are equivalent:

1. S = R−1;
2. α → � ♦ α and ♦ �α → α are valid in every Kripke model over F;
3. the following rule is valid and semantically invertible in F

♦ α → β

α → �β

Therefore the following are equivalent:

1. the modal interpretation ( )M of the language LPB
t is in temporal S4;

2. for any formula δ• and •δ, the sequents δ• ⇒∼• •∼ δ• and •��• •δ ⇒ •δ are
valid axioms of PBLt.

We leave the task of finding a suitable formalization of PBLt as an open problem.

Appendix II. Example of Computation

In this section we consider an example of computation that is dual to a familiar
reduction sequence for Church’s numerals.

Table 6 Tense-sensitive polarized bi-intuitionistic language

A• := �• p | A• ⊃ B• | A• ∩ B• | ∼• X
C• := H•p | C•

� D• | C• � D• | �• X
• A := •�p | • A ⊃ • B | • A ∩ • B | •∼ X
• C := •� p | • C �

• D | • C � • D | •� X
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Two Times Zero

We consider the dual of a computation of the term representing 2 × 0 :

(λm.λn.λf .m(nf ))(λg.λx.g(gx))(λh.λz.z) : (A ⊃ A) ⊃ (A ⊃ A)

We follow a call by value strategy:

λf .(λg.λx.g(gx))((λh.λz.z)f ) � λf .(λg.λx.g(gx))(λz.z) (i)
� λf .λx.(λz.z)((λz′.z′)x))) (ii)
� λf .λx.((λz.z)x)) (iii)
� λf .λx.x (iv)

Labelled Prawitz’ Trees

As trees in Prawitz styleNatural DeductionNJ⊃ can be decoratedwithλ terms, sowe
can assign terms of our dual calculus to Prawitz trees of subformulas for co − NJ�

derivations. For convenience, we still draw trees with the root at the bottom, keeping
in mind that here derivations are built from bottom up. We shall use Biasi’s notation

(t → a) for mkc(t, a) and
e �→	 �� t for postp(e �→ 	, t).
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reduces to

and to
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Appendix III. Term Assignment to q-LJ��

Table 7 The sequent calculus q-LJ��



238 G. Bellin

Table 8 The sequent calculus t-LJ⊃∩
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