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Abstract. Model Based Predictive Control (MPC) is an interesting approach due to
its ability to consider the constraints of the controlled system and easily adapt to the
future reference changes. In this paper, a novel robust MPC controller is presented,
which considers the effect of the Tool Center Point (TCP) estimation errors and the
model uncertainties of the mechanical structure. In order to show its effectiveness,
its application to the 5R parallel manipulator is detailed. Simulation validation is
provided to demonstrate that the proposed approach can exploit all the theoretical
capabilities of the mechatronic system.
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1 Introduction

Parallel robots [8], have recently drawn attention from both academy and industry
due to their performance when handling high-speed, high-precision or heavy load
handling tasks. This performance is derived from their parallel structure, composed
by multiple kinematic chains, or ”limbs”. However, its complexity presents some
drawbacks, such as a reduced workspace, presence of singularities or highly coupled
kinematics and dynamics.

In order to reduce the effect of these disadvantages, an optimized mechanical de-
sign, adequate actuator selection and proper control law that allows to exploit all the
capabilities of the mechatronic system is required. In the literature, many different
control approaches have been proposed, such as simple independent joint control
approaches based on PID [3, 9] , or more advanced, model based control laws such
as the Computed Torque Control (CTC) [11], adaptive control [5] or robust control
[7]. However, none of the aforementioned approaches considers the physical limi-
tations of the parallel robot (torques, workspace, speed) in the control law or adapts
in a predictive way to the programmed reference trajectory.
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Model Based Predictive Control (MPC) [4] groups a set of control strategies that
use the dynamic model of a process to predict its behaviour in a finite future time
window (the horizon). This way, its future error can be minimized by calculating a
proper control action. Moreover, this control action can be calculated considering
the physical constraints, which guarantees near optimal performance of the process
and its actuators. These features are very interesting in robot control, as the poten-
tial of the mechatronic system can be maximized, actuator limits considered and
workspace singularities avoided.

However, MPC controllers are usually complex and computationally intensive,
and most approaches are based on constant references in the prediction horizon
[10, 2]. In this paper, a novel, robust MPC for trajectory tracking (RMPC-T) is
presented, based on the one developed in [1]. This approach presents three main
features over the ones previously proposed: 1) it considers the physical constraints of
the parallel robot, 2) it is robust against model uncertainties, and 3) it allows tracking
of changing references, which enhances significatively the tracking capabilities of
parallel robots. In order to detail this approach, the rest of the paper is structured in
three sections. First, the robust MPC approach for tracking control law formulation
is detailed for a generic system. Then, the application to the 5R parallel robot is
detailed. Third, the effectiveness of the approach is demonstrated by simulation.
Finally, the most important ideas are summarized.

2 Robust MPC for Trajectory Tracking

The novel robust MPC for trajectory tracking (RMPC-T) presented in this section
is based on the one developed by Alvarado et al in [1]. However, while in the men-
tioned work constant trajectories are considered in the prediction horizon, in the
formulation presented in this paper, changing trajectories are considered, which are
more appropriate for parallel robots.

Next, the formulation of the MPC for a generic system is presented. For the sake
of simplicity, some definitions are not fully detailed in this section. The reader is
referred to [12] for more detail in the formulation and the concepts involved.

Consider the following uncertain system, defined in discrete time using state-
space formulation,

x(k+ 1) = Ax(k)+Bu(k)+w(k)
y(k+ 1) = Cx(k)+Du(k)

(1)

where x ∈ R
n represents the state, u ∈ Rm the control input and y ∈ Rp the system

output. w ∈ W are the external additive disturbances that model parameter uncer-
tainties and measurement errors. The system of Eq. (1) is considered to be time-
invariant and controllable.

All sets are considered bounded, so that a convex polytope can be defined for
each set to represent all points included within the bounds,

Z =
{

z =
[

xT uT
]T ∈R

n+m : Az z ≤ bz

}
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where Az and bz are used to define the bounds of the set in the h-representation of
a convex polytope.

The objective of the RMPC-T controller is, for each time step k, to stabilize the
system and steer the state x to a neighbourhood of a steady state xs associated to a
setpoint r, guaranteeing all the constraints even in presence of disturbances. For that
purpose, a three level control approach is defined: a local robust control to reduce the
effect of disturbances, a MPC controller which ensures feasibility with the system
constraints and a local tracking controller to ensure convergence to the desired state.

The local robust controller is designed to avoid the exponential growth of the
prediction error due to unknown w disturbances. Its goal is to ensure that the real
state x lies within a bounded hipertube arround the trajectory of the nominal state
x (without disturbances), which is characterized by a Robust Positively Invariant
(RPI) set [6] ΦK . Hence, the local control law

u(k+ j) = u(k+ j)+K (x(k+ j)− x(k+ j)) (2)

where the nominal system x, u, y is the ideal one and presents no disturbances. The
gain matrix K is defined so that the error caused by the disturbances w = x−x∈ ΦK

lies always in a bounded and fixed RPI set ΦK . So, a bounded trajectory tube is
generated for z that considers all possible uncertainties,

X = X �ΦK , U = U �KΦK , Z = Z � (ΦK ×KΦK) , z =
[

xT uT
]T ∈ Z

where � is the Pontryagin difference.
Using the local robust control law defined in Eq. (2), it is ensured that the tra-

jectory of the real state x lies within a bounded tube. This allows to consider the
nominal trajectory of the state x in the predictions of the MPC and the calculation
of a feasible nominal control action u∗ that satisfies the contraints. However, in order
to ensure convergence to the desired reference, the final predicted state of the MPC
must lie within a neighbourhood of the desired steady state. This neighbourhood is
defined as an Invariant Set for Tracking Ω a

t,K
and ensures that once reached this set

both the state and internal reference θθθ associated to the changing trajectory setpoint
r, evolve within the bounds of this set[1].

Based on the aforementioned sets and local controllers, the MPC control law is
calculated by solving the minimization problem V ∗

t ,

V ∗
t = min

u,x,θ
Vt

(
x(k),θθθ ;u,x,θ

)
s.t.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(k) ∈ x(k)⊕ (−ΦK)[
x(k+ j)T u(k+ j)T

]T ∈ Z[
xs(k+ j)T us(k+ j)T

]T
= Mθθθ θθθ[

x(k+ h)T θ (k+ h)T
]T ∈ Ω a

t,K

(3)

where h is the prediction horizon, i.e, the number of time steps into the future that
the controller uses to calculate the optimal control action sequence u∗(k), θθθ is the
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sequence associated to the changing trajectory setpoint r, Ω a
t,K

is the Invariant Set
for Tracking, ΦK is the robust positively invariant set and the cost function,

Vt
(
x(k),θθθ ;u,x,θ

)
=

h−1

∑
j=0

(x(k+ j)− xs(k+ j))T Q (x(k+ j)− xs(k+ j))

+
h−1

∑
j=0

(u(k+ j)−us(k+ j))T R (u(k+ j)−us(k+ j))

+(x(k+ h)− xs)
T P (x(k+ h)− xs)

+
h

∑
j=0

(
θ (k+ j)−θθθ (k+ j)

)T
T
(
θ (k+ j)−θθθ (k+ j)

)

where Q, R, T and P are ponderation matrices, whose tuning is discussed in [12].
Finally, the real one control action by means of the local tracking controller,

which considers the error generated by disturbances,

u∗(k) = u∗(k)+K (x(k)− x∗(k)) (4)

3 Application to the 5R Parallel Robot

The control law detailed in the previous section is defined for discrete, space state
time invariant systems, and requires the definition of bounds in order to be imple-
mented. In this section the procedure to implement the RMPC-T to parallel robots
is detailed by analyzing a study case based on the 5R parallel robot. However, it
should be noted that this procedure can be applied to any parallel robot.

The first requirement to be fulfilled is to linealize the dynamics of the 5R paral-
lel robot (Fig. 1), which can be calculated using the traditional formulation in the
task space τττ = Dq̈+H(q, q̇), where q =

[
x y

]T
are the Tool Center Point (TCP)

cartesian coordinates[13]. Table 1 summarizes the parameters selected for this study
case.

Fig. 1 5R Parallel Robot and nonlinear feedback linearization approach
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Table 1 5R parallel robot model parameters (IS units)

Parameter Real Value Identified Value (MPC Model)

a1
[−0.5 0

]T
(m)

[−0.4950 −0.005
]T

(m)

a2
[

0.5 0
]T

(m)
[

0.4950 −0.005
]T

(m)
L1 = L2 0.5 (m) 0.495 (m)
l1 = l2 1 (m) 0.995 (m)

mc 0.5 (kg) 0.6 (kg)
mL1 0.4239 (kg) 0.3239 (kg)
mL2 0.4239 (kg) 0.4239 (kg)

ml1 = ml2 0.8477 (kg) 0.7477 (kg)

IL1 = IL2 8.800 ·10−3 (kg m2) 8.800 ·10−3 (kg m2)

Il1 = Il2 7.070 ·10−2 (kg m2) 7.770 ·10−2 (kg m2)

Ic 8.3333 ·10−4 ( kg m2) 8.3333 ·10−4 ( kg m2)

For that purpose, the linearization by nonlinear feedback technique is used, so
that in the ideal case, if no model errors arise, the linearized system can be reduced
to a set of two decoupled double integrator systems (Fig. 1) u = q̈. Hence, the state
vector of the linealized system can be defined as x =

[
qT q̇T

]T
.

One of the main issues in parallel robotics is the difficulty measuring the real
TCP position and speed, which is usually estimated using the actuated joint data
and the use of the kinematic relations. In presence of uncertainties, this estimation
can present errors, so that the real state x and the estimated one x̂ diverge. In general,
it is possible to bound this error within the operational workspace of the robot, so
that the linearized dynamic model can be approximated to,

x̂(k+ 1) = Ax̂(k)+Bu(k)+w′(k)
x = x̂+ v

→ x(k+ 1) = Ax(k)+Bu(k)+w(k)
w(k) = w′(k)+ (I−A)v(k)

(5)

where v(k) = x− x̂ models estimation errors and w′(k) models errors due to the un-
certainties of the dynamic model and uncompensated dynamics of the robot. Hence,
if the real state x is considered for application of the MPC control law, w(k) group
the disturbances of both types.

If a sample time of Ts = 10ms is selected, the discretized dynamics of the set of
double integrator systems in the 5R parallel manipulator is,

A =

⎡
⎢⎢⎣

1 0 0.01 0
0 1 0 0.01
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

5 ·10−5 0
0 5 ·10−5

0.01 0
0 0.01

⎤
⎥⎥⎦

In order to implement the proposed MPC, all variables have to be bounded, and
the disturbances maximum and minimum values defined. For that purpose, first
the operational workspace of the 5R parallel robot will be defined arbitrarily in a
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Fig. 2 Validation trajectories, operational workspace and invariant sets

nonsingular region of its workspace associated to a fixed working and assembly
mode. This region will be defined by a set X . However, as the real state x cannot
be measured directly, the MPC will be implemented using the estimated one x̂. The
RMPC-T controller will ensure that the real state x will be always within the tube
of trajectories defined by the estimated one x̂ and the RPI ΦK ,

x̂ ∈ X̂ = X �ΦK ⇒ x̂′ ∈ X̂ (6)

where X is defined by a polytope defined in XY plane, Fig. 2a, and the maximum
linear speed of the TCP, which has been limited to ±3m/s.

The bounds of the estimation error v are calculated by discretizing the operational
workspace defined for X and measuring the speed and positioning errors for each
set. In order to bound the state disturbance w′, the performance of the ideal double
integrator system and the linealized dynamics of the 5R parallel robot considering
the parameters of Table 1 are considered. The resulting bounds are,

vx ∈ [−0.0014, 0.0016] (m)
vy ∈ [0.0025, 0.0091] (m)
vẋ ∈ [−0.0324, 0.0324] (m/s)
vẏ ∈ [−0.0425, 0.0425] (m/s)

wx ∈ [−5.4131 ·10−5, 2.645510−5
]

(m)
wy ∈ [−6.1584 ·10−5, 1.198110−4

]
(m)

wẋ ∈ [−0.01131, 0.0039132] (m/s)
wẏ ∈ [−0.0093394, 0.022516] (m/s)

(7)

Finally, the system input is bounded. For that purpose, the inverse dynamic model
is required u = D̂−1

(
τττ − Ĥ

)
, which relates the input of the linealized robot, u and

the torque exerted by the motors τττ . Being nonlinear and dependent on the state x, a
conservative approach is considered, in which the set of all possible admissible sets
for u are calculated considering all admissible states x ∈ X . Then, the intersection
of all sets is considered as the admissible set U .
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4 Simulation Results

The linealized dynamic model and the bounded sets defined previously have been
used to implement the RMPC-T. The prediction horizon has been set in h = 3 steps
and the ponderation gains and local robust controller gains have been tuned fol-
lowing the procedure detailed in [12]. The resulting invariant sets are defined in
Fig. 2b.

In order to demonstrate the effectiveness of the robust MPC for tracking ap-
proach, it has been compared with the robust MPC for tracking proposed in [1]
(RMPC) and the classical Computed Torque Control (CTC) approach. Both con-
trollers have been tuned to achieve maximum performance within the defined phys-
ical constraints. A senoidal trajectory in the XY plane and within the operational
workspace has been selected as reference (Fig. 2a).

TCP positioning errors and mean of the squared error (mse) performance in-
dexes are shown in Fig. 3. As it can be seen, the best performance is achieved by
the RMPC-T, reducing the tracking error in 47% in comparison with the RMPC and
30% with respect to the CTC. Hence, the proposed RMPC-T is able to adapt to the
future changing trajectory before changes actually occur, resulting in very low track-
ing error. The RMPC [1], however, considers a constant reference in its prediction
horizon, which penalizes its performance. Finally, the classical CTC is not able to
anticipate to future reference changes, and focuses in compensating the actual error,
which leads to larger trajectory tracking errors. Hence, the main advantage of the
proposed RMPC-T controller is demonstrated, which can be implemented to reduce
significatively the tracking error of parallel robots.

Fig. 3 Performance of Robust MPC, Robust MPC for traj. tracking and Computed Torque
Control approaches
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5 Conclusions

Control is a key issue in parallel robotics, as proper control approaches are required
in order to exploit the theoretical capabilities. In this work a novel Robust Model
Predictive Control approach for trajectory tracking (RMPC-T) has been presented,
and its application to a 5R parallel robot prototype detailed. Simulation results show
that this approach can provide enhanced tracking capabilities to parallel robots in
comparison with classical CTC or MPC approaches.
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