
Chapter 14

Stochastic Approach for Enzyme Reaction

in Nano Size via Different Algorithms

Farid Taherkhani and Shahram Ranjbar

Abstract Stochastic simulations have been done for enzyme kinetics reaction with

Michaelis-Menten mechanism in low population number. Gillespie and Poisson

algorithms have been used for investigation of population number and fluctuation

population around their mean values as a function of time. Our result shows that

equilibrium time for population dynamics via Poisson algorithm is smaller than

Gillespie algorithm. Variations of average population number versus time for all

species have the following order: deterministic approach (mean fields) > Gillespie

> Poisson. There is asymptotic limit for fluctuation population as a function of time

via Poisson algorithm but there is not such trend for fluctuation population via

Gillespie algorithm. There is a maximum for fluctuation population for all species

for kinetics reaction with Michaelis-Menten mechanism as a function of time via

Gillespie algorithm. The stochastic approach has also been used for horse liver

alcohol dehydrogenase which catalyses the NADþ (nicotinamide heterocyclic ring)

oxidation of ethanol to acetaldehyde and three kinds of third order reactions.

Probability distribution function and fluctuation population for reactants are calcu-

lated as a function of time. Increasing a variety of species for third order reactions

leads to decrease of coefficient variation.

14.1 Introduction

Within its host cell, a complex coupling of transcription, translation, genome

replication, assembly, and virus release processes determines the growth rate of a

virus. Mathematical models that account for these processes can provide insights

into the understanding as to how the overall growth cycle depends on its constituent
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reactions [1]. A virus infection may be initiated by a single virus particle that

delivers its genome, a single molecule of DNA or RNA, to its host cell [2]. Under

such conditions, the inherently stochastic nature of the ensuing processes may give

rise to dynamics that differ significantly from those predicted by deterministic

models. At the molecular level, random fluctuations are inevitable, with their effect

being most significant when molecules are at low numbers in the biochemical

system. This typically occurs in the regulation of gene expression where transcrip-

tion factors interact with DNA binding sites in the gene’s regulatory sequences.

These intrinsic fluctuations have recently been measured using fluorescent probes

[3, 4]. Deterministic approach for studying the kinetics of small systems is not

appropriate [5]. To investigate the chemical kinetics, the stochastic approach is

more consistent than deterministic approach for small systems [6–9]. Deterministic

approach does not give any information regarding the fluctuation of concentration

as a function of time [10–12]. McQuarrie et al. [10, 11] worked on the irreversible

first and second order elementary reactions and compared the average concentration

obtained from the master equation (ME) with that of the deterministic approach.

In addition, Rose and Zheng [12] solved numerically the cubic Schlogl model with

a single steady state. Erdi and Toth [13] also considered simple enzyme kinetics,

ligand migration kinetics and membrane noise, to compare the stochastic results

with those of deterministic. Stochastic simulations of homogeneous chemically

reacting systems have been done by Fabio and Stefano [14] for Lotka–Volterra

mechanism. Kramers theory of the rates of chemical reaction was reviewed by

Gomes [15]. Many studies have been done on enzyme kinetics reaction with

Michaelis-Menten mechanism [16–18].

The stochastic version of the enzyme kinetics predicts that catastrophic

bottlenecks in the system are more likely than one would expect from deterministic

theory for Michaelis-Menten mechanism [17]. Many biochemical reactions occur-

ring in human are catalyzed by enzymes. On the other hand all biological reactions

occur in low population number. Stochastic simulation yields a correct average

population number for all reactants species as a function of time. There is no

information regarding fluctuation via deterministic approach. In present work

development of stochastic simulation for enzyme kinetics has been done via two

different algorithms namely Gillespie and Poisson.

Eþ S
k2

�! �
k1

ES��!k3 Eþ P (14.1)

Rate constants for k1, k2 and k3 are 10 (molecule�1.s�1), 0.1 (s�1) and 0.14

(s�1) respectively. The mentioned rate constants can be applied for Chymotrypsin

enzyme [19]. Fluctuation populations for all species in enzyme reaction have been

calculated via the two mentioned algorithms. Many biological reactions contain

some elementary reactions, therefore we investigate probability distribution,

coefficient variation, average number of particles, and discrepancy for the number

of particles with regard to the stochastic and deterministic approaches as a
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function of time for reversible second order and three kinds of third order reaction

namely:

Aþ B
k2

�! �
k1

Cþ D (14.2)

3A!P (14.3)

2Aþ B!P (14.4)

Aþ Bþ C!P (14.5)

It is worthwhile to notice that McQuarrie et al. [10, 11] did mention that the

master Eq. 14.2 can be solved exactly by using the method of separation of

variables and the ordinary differential equation. However the evaluation of Fourier

type coefficients is very difficult and it seems unlikely that numerical results could

be easily found for the coefficients [20]. It is noteworthy that the master equation

was exactly solved only at the equilibrium state by Darvey et al. [21].

14.2 Methodology

14.2.1 Master Equation for General Chemical Reaction

AMarkov process, which satisfies the Markov property, is defined by the following

relation:

Pðyn; tn yn�1j ; tn�1; . . . y1; t1Þ ¼ Pðyn; tn yn�1j ; tn�1Þ (14.6)

where

t1 < t2 < . . . < tn (14.7)

The Markov property merely expresses that, for a Markov process, the probabil-

ity of a transition at time tn�1 from a yn�1 value to a yn value at time tn (Eq. 14.6)
depends only on the value of yn�1 at time tn�1 and not to the previous history of the
system [22]. For a discrete set of states, the ME may be given as [23]:

dPnðtÞ
dt
¼

X
j

Wj;nPjðtÞ �Wn;jPnðtÞ (14.8)

Wn;j is the conditional probability that n reactant molecules exist in the system at

time tþ Δt, assuming that j reactant molecules existed at time t [23].
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14.2.2 Stochastic Algorithm and Simulation

Another way to investigate the kinetics of a small system is stochastic algorithm.

Up to now several authors have applied the stochastic algorithms [24–29]. In recent

years, stochastic modeling has emerged as a physically more realistic alternative for

modeling of the vivo reactions [2]. Let consider X as the time of the event. By a

constant hazard we mean that:

PðX 2 ðt; tþ dt� X > tÞ ¼ αdtj (14.9)

where α > 0 is a constant whose value may be calculated as, α ¼PM
i¼1

Wj;n ¼
PM
i¼1

αi,

where αi ¼ Wj;n ¼ ki
j!

n! j�nð Þ! , k is a rate constant and it can be obtained via density

functional approach [30, 31]. For a small δt we will have:

PðX 2 ðt; tþ dt� X > tÞ ¼ αδtj (14.10)

Considering a time t > 0, and a large integer N, dividing the interval ð0; t� into N
subintervals of the form ðði� 1Þδt; iδt�, i ¼ 1, 2, . . ., N where δt ¼ t

N , then we have:

PðX > tÞ ¼ P½ðX =2 ð0; t�Þ� ¼ PðfðX=2ð0; δt�Þg \ fX=2ðδt; 2δt�g \ . . .

fX=2ðN � 1Þδt; t�gÞ (14.11)

Hence

PðX > tÞ ¼ PðX=2ð0; δt�ÞPðX=2ðδt; 2δt� X > δtÞj
. . .PðX=2ððN � 1Þδt; t� X > ðN � 1ÞδtÞj

� ð1� αδtÞ � ð1� αδtÞ � . . . ð1� αδtÞ
¼ ð1� αδtÞN

¼
�
1� αt

N

�N

(14.12)

IfN !1 and δt! 0, therefore Eq. 14.12 will convert to expð�αtÞ then PðX � tÞ
¼ ð1� expð�αtÞÞ. Consequently, whenever we consider a time dependent event with

constant hazard α , in Gillespie algorithm [24–27], we can conclude that the time

distribution is an exponential function. By choosing two uniform random numbers and

within the interval ½0; 1� and by definition of two following expressions, we may write:

τ ¼ 1

α
ln

�
1

r1

�
(14.13)
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Xμ�1
i¼1 αi < r2α �

Xμ

i¼1 αi (14.14)

There are three loops for algorithm as follows:

1. Calculating αi ¼ ki
j!

n! j�nð Þ! , whereas k is a rate constant (1 � μ � M).

2. Generating two uniform random numbers r1 and r2 and calculating τ and μ
according to Eqs. 14.13 and 14.14.

3. Increasing t by τ and adjusting population of reactants for reaction μ.

In Poisson algorithm, simulation time which is needed for the phenomenon to

take place is [26, 31]:

PrðPðλt ¼ nÞÞ ¼ e�λtðλtÞn
n!

(14.15)

and

λt ¼
X
i

ki
j!

n! j� nð Þ! (14.16)

where ki, j, and n are rate constants, initial population, number of particles which are

created or destroyed on the basis of stoichiometry coefficient of reaction i and λ ¼ α.

14.3 Results and Discussion

14.3.1 Stochastic Simulation for Average Number
of Particles via Gillespie Algorithm for Michaelis-
Menten Reaction

It is possible to study enzymatic reactions at the level of a single molecule via

fluorescence correlation spectroscopy [32]. At low population of reactant, the usual

description of such reactions via rate equations breaks down, so more appropriate

stochastic models of single-molecule Michaelis-Menten kinetics have been devel-

oped recently [16, 32]. Stochastic simulations have been done for Eq. 14.1 for

enzyme (E), substrate (S), intermediate (ES) and product (P) species. Stochastic

simulation result has been shown for substrate via Gillespie algorithm in Fig. 14.1.

Initial populations for substrate, enzyme, intermediate and product species are

100, 10, 0, and 0 respectively. It is worthwhile to notice that rate constant k1, k2
and k3 of 10 (molecule�1.s�1), 0.1 (s�1), 0.14 (s�1) can explain a real dynamics of

Chymotrypsin enzyme. On the basis of Fig. 14.1, substrate population decreases as

a function of time and finally it approaches zero.

14 Stochastic Approach for Enzyme Reaction in Nano Size via Different Algorithms 193



Figure 14.1 shows the average of 1,000 stochastic simulations via Gillespie

algorithm for substrate species as a function of time.

Figure 14.1 indicates that fluctuation of substrate population is not small. On the

basis of Eq. 14.1, 1,000 stochastic simulations have been done for product species

(P). The result of stochastic simulation is shown in Fig. 14.2. On the basis of

Fig. 14.2, product population increases as a function of time. It is important to

notice that there is a fluctuation around mean population number of product species.

The obtained simulation result is consistent with that observed in the literature [33].

Fig. 14.1 1,000 stochastic

simulations for population

number of product

(P) species and its average

as a function of time via

Gillespie algorithm

Fig. 14.2 Gillespie

algorithm for 1,000

stochastic simulations of

substrate population

number and its average

as a function of time
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14.3.2 Poisson Algorithm for Stochastic Simulation

Stochastic simulations have been done for substrate species via Poisson algorithm.

Similar to Gillespie algorithm, 1,000 stochastic simulations have been done for

average population number of substrate species via Poisson algorithm. Result of

Poisson algorithm for substrate species is shown in Fig. 14.3. Figure 14.3 indicates

that substrate population approaches the equilibrium as a function of time quickly.

Stationary population for substrate species via Poisson algorithm is 85 particles

which is greater than zero particle for substrate species from Gillespie algorithm.

Stochastic simulation is investigated for population number of product species as

a function of time. The result of simulation for product species is shown in

Fig. 14.4. Average population number of product species from stochastic simula-

tion via Poisson algorithm shows that stationary population for product species is

5 particles. On the basis of Fig. 14.4, average population number for product species

is very much smaller than average population number of product from Gillespie

algorithm. If 100 particles as an initial population for substrate are considered, the

population of substrate species is predicted to be 100 particles in stationary state.

As a result, Poisson algorithm does not predict the correct population number for

stationary state of Michaelis-Menten kinetics. It is worthwhile to notice that

equilibrium time for substrate and product species via Poisson algorithm is less

than Gillespie algorithm. Variation of population for substrate and product as a

function of time via Poisson algorithm is smaller than Gillespie algorithm (see

Figs. 14.1, 14.2, 14.3, and 14.4).

Fig. 14.3 1,000 stochastic

simulations via Poisson

algorithm for substrate

population as a function

of time
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14.3.3 Comparison of Gillespie and Poisson
Algorithm with Mean Field Approach

Comparison of Gillespie and Poisson algorithms with mean field approach (deter-

ministic differential equation) has been done for substrate population as a function

of time. 1,000 stochastic simulations have been done to obtain average number of

substrate. Initial population for substrate, enzyme, intermediate, and product of

10, 1, 0, 0 is taken respectively.

On the basis of Fig. 14.5, substrate population from mean field approach,

stochastic simulations via Gillespie and Poisson algorithms are shown as a function

Fig. 14.4 1,000 stochastic

simulations for population

number and its average as a

function of time for product

species via Poisson

algorithm

Fig. 14.5 Average

population number for

substrate species as a

function of time via

Gillespie, Poisson

algorithms and mean field

approach
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of time. Population variation of substrate species via mean field approach is greater

than Poisson and Gillespie algorithm. On the other hand, substrate population

approaches equilibrium in lower time via mean field approach. There is a little

variation for substrate population as a function of time via Poisson and Gillespie

algorithms. As a result, equilibrium time for substrate population via Poisson and

Gillespie is greater than mean field approach.

14.3.4 Fluctuation of Population for Substrate, Enzyme,
Intermediate, Product Species as a Function of Time

Mean field approach does not represent fluctuation population CVðtÞ

CVðtÞ ¼< N2ðtÞ > � < NðtÞ>2 (14.17)

during the dynamics, where N(t) is number of particles. It is worthwhile to note that

there is a significant fluctuation for the number of particles in low population level.

Stochastic simulations have been done for investigation of fluctuation of population

for all species in Michaelis-Menten reaction as a function of time via Poisson and

Gillespie algorithms. Average result of 1,000 stochastic simulations for fluctuation

population of enzyme (CVEn) and substrate (CVS) versus time have been shown in

Figs. 14.6 and 14.7 via Gillespie algorithm respectively. Initial population for

substrate, enzyme, intermediate, product of 100, 10, 0, 0 is considered respectively.

On the basis of Fig. 14.6, fluctuation population for enzyme species is zero

initially and it increases after elapsing time, then it approaches zero finally. Result

of stochastic simulation for fluctuation population number for intermediate

(CVES), product (CVP) species are shown versus time in Figs. 14.8 and 14.9

respectively.

Fig. 14.6 Fluctuation

population number as a

function of time for enzyme

(CVEn) from averaging of

1,000 simulations via

Gillespie algorithm
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14.3.5 Comparison of Gillespie and Poisson Fluctuation
of Population

Gillespie and Poisson algorithms have been used for investigation of fluctuation

population of product species as a function of time. Result of average of 1,000

stochastic simulations is shown in Fig. 14.10. It indicates fluctuation population for

product species via Gillespie algorithm is greater than Poisson algorithm. Fluctua-

tion population for product species approaches a constant value as a function of

time. On the other hand fluctuation population for product species via Gillespie

algorithm first increases, after some time it approaches its maximum value, then it

decreases and approaches zero finally.

Fig. 14.7 Average of 1,000

stochastic simulations of

substrate species (CVS)

versus time via Gillespie

algorithm

Fig. 14.8 Fluctuation

population of intermediate

species (CVES) as a

function of time via

Gillespie algorithm
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14.3.6 Numerical Solution of Master Equation
of Some Elementary Reactions

Master Equation for Second Order Reversible Reaction

An example of a second order reversible reaction is the horse liver alcohol dehy-

drogenase which catalyses the NADþ (nicotinamide heterocyclic ring) for oxidation

of ethanol to acetaldehyde. Incubation of the enzyme with deuterated ethanol

CH3CD2OH followed by re-isolation of oxidized NADþ revealed no deuterium

Fig. 14.9 Gillespie

algorithm for fluctuation

population of product

species (CVP) as a function

of time

Fig. 14.10 Comparison

of Gillespie and Poisson

algorithms for fluctuation

of product population as

a function of time
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incorporation into the oxidized cofactor, showing that the deuterium atom transfer

to the cofactor is stereospecific, which is removed in the reverse reaction [34].

ð14:18Þ
In order to derive the master equation for the second order reversible reaction,

Eq. 14.2, we suppose a, b, c and d, with their values achieved randomly, as the

number of A, B, C, D species, respectively. The possible states of a system at time

t which could lead to state specified by a, b, c, d at time tþ Δt are (a + 1, b + 1,
c-1, d-1) and (a, b, c, d ). Consequently, we may choose Δt! 0 . If the initial

concentrations of A, B, C and D are a0, b0, c0 and d0, respectively at t ¼ 0, then due

to the fact that the total number of species is constant, we may get a conclusion as

below:

a0 � a ¼ b0 � b ¼ c� c0 ¼ d � d0 (14.19)

Then

dPaðtÞ
dt
¼k1ðaþ 1Þðb0 � a0 þ aþ 1ÞPaþ1ðtÞ þ k2ðc0 þ a0 � aþ 1Þðd0 þ a0 � aþ 1ÞPa�1ðtÞ
� ½k1aðb0 � a0 þ aÞ þ k2ðc0 þ a0 � aÞðd0 þ a0 � aÞ�PaðtÞ

(14.20)

This is the master equation for the reversible second order reaction. This

equation has been already derived by McQuarrie without giving any solution for

it [20]. Later, we will discuss its numerical solution.

Master Equation for Three Kinds of Third Order Reaction

The solution of deterministic reaction rate for Eq. 14.3 can be shown:

With a similar argument which led to Eq. 14.20, we may find the ME as:

dPxðtÞ
dt
¼ 1

6
Pxþ3ðtÞ � k � ðxþ 3Þ � ðxþ 2Þ � ðxþ 1Þ

� 1

6
PxðtÞ � k � ðxÞ � ðx� 1Þ � ðx� 2Þ (14.21)
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To obtain master equation Eq. 14.4, let concentrations of A and B at time t be
X(t) and Y(t), respectively. We may define

Z0 � 2YðtÞ � XðtÞ (14.22)

According to both Eqs. 14.8 and 14.22 we can write:

dPxðtÞ
dt
¼ 1

4
Pxþ2ðtÞ � ðxþ 2Þ � ðxþ 1Þ � ðxþ Z0 þ 2Þ

� 1

4
PxðtÞ � k � ðxÞ � ðx� 1Þ � ðxþ Z0Þ (14.23)

In Eq. 14.23, coefficient 1
4
is derived from Eq. 14.22 and combinational term.

To obtain master equation Eq. 14.5, let the concentrations of A, B and C be x(t),
y(t), z(t), respectively, at time t. We define the time independent variablesZ1 andZ2 as:

Z1 � BðtÞ � AðtÞ (14.24)

Z2 � CðtÞ � AðtÞ (14.25)

With a similar discussion which led to Eq. 14.20 we find the master equation as:

dPxðtÞ
dt
¼Pxþ1ðtÞ � k � ðxþ 1Þ � ðxþ Z1Þ � ðxþ Z2Þ
� PxðtÞ � k � ðxÞ � ðxþ Z1Þ � ðxþ Z2Þ (14.26)

Numerical Solution of Master Equation

Number of particles given by deterministic approach, Ad , can be easily obtained

from the solution of the rate equation (Note that Ad is the same as A). However, the

average number of particles obtained from the solution of Master equation, hAmi,
given by the stochastic approach may be easily calculated as:

Am ¼
X
A

APAðtÞ (14.27)

where A(t) is the number of A and PAðtÞ is the probability of having A particles at

time t. Consider the following equation:

ΔAðtÞ ¼ Am � Ad (14.28)
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where Am and Ad are the average number of A species obtained from the Master

equation and deterministic approaches, respectively (Note that the probability

distribution function for A in deterministic approach is a delta function). At t ¼ 0

the initial conditions are:

PAð0Þ ¼ 1 if A ¼ A0 (14.29)

PAð0Þ ¼ 0 if A 6¼ A0 (14.30)

then Am ¼ A0 and

ΔAð0Þ ¼ Am � Ad ¼ 0 (14.31)

For numerical solution of Master equation, we have chosen the value of dt
¼ 0.00005 s for each time step, for smaller time steps all quantities become

unchanged. Besides that, we have calculated all values of PAðtÞ and then the

average number of A molecules. Result of probability distribution of Eqs. 14.3,

14.4, and 14.5 is shown in Fig. 14.11, right to left, respectively. In the same way, the

mean value of A2
� �

and hAi2 can be calculated, from which we may calculate the

coefficient variation, CF, as follows:

CF ¼ hA
2i � Ah i2
Ah i2 (14.32)

Fig. 14.11 Probability of having A molecules as a function of time and number of A particles for

Eqs. 14.3, 14.4, and 14.5, when total number of molecules is 30
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It is worthwhile to note that the value of CF versus time for three different types

of third order reactions are shown in Fig. 14.12 and are compared to those obtained

from equilibrium statistical mechanics 1ffiffiffi
A
p . As shown in Fig. 14.12, the value of CF

obtained from the solution of ME is smaller than 1ffiffiffi
A
p of the equilibrium statistical

mechanics for all reactions. By using Markov assumption via the mentioned time

step, the probability of having A molecules at time t;PAðtÞ , may be calculated

numerically. The results of such calculations for Eq. 14.2 are given in Fig. 14.13.

Also the CF for the second order reversible reaction is calculated, for which the

results are shown in Fig. 14.14.

14.4 Conclusions

We have simulated enzyme kinetics reaction via stochastic simulation. Two different

algorithms namely Gillespie and Poisson have been used for stochastic simulation.

Our results show that equilibrium time via Poisson algorithm is smaller than Gillespie

algorithm. Fluctuation population via Poisson algorithm is lower than Gillespie

algorithm as a function of time. There is an asymptotic limit for fluctuation popula-

tion for product species as a function of time via Poisson algorithm. Fluctuation

population via Gillespie algorithm is zero at the first time, and it increases as a

function of time, then it approaches its maximum value. Finally it decreases and goes

to zero. Average population number via Gillespie algorithm is less than Poisson

algorithm. Also Master equations have been solved for three different third order

reactions, namely Eqs. 14.3, 14.4, and 14.5, and for the reversible second order

Fig. 14.12 The comparison

of CF obtained from

equilibrium statistical

mechanics (a, b, c) and the

Master equation (d, e, f) for
three different third order

reactions Eqs. 14.3, 14.4,

and 14.5 respectively

(Initial number of reactant

in all of the reactions is

90 and Z1 ¼ 0, Z2 ¼ 0)
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reaction Eq. 14.2. Graph of probability of particles and fluctuation about the mean

value for third order and reversible second order reactions are shown in Figs. 14.11,

14.12, 14.13, and 14.14 respectively. For all third order reactions, fluctuation about

the mean value is greater than those of the second order reactions (see Figs. 14.12 and

14.13). For elementary kinetics of small systems, maximum coefficient variance is

smaller than 1ffiffiffi
N
p (Fig. 14.12) (N is number of particles). Besides that, by increasing a

variety of species, coefficient variation decreases (see Fig. 14.12).
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Fig. 14.13 Probability of

having A molecules for

Eq. 14.2 as a function of

time and the number of A

molecules

Fig. 14.14 Calculated

coefficient variation for

Eq. 14.2 when A ¼ 10

(dash –), 20 (dash dot -.-.),
30 solid -) as a function

of time
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