
Chapter 2
Physiological Functions of the Alpha Class
of Carbonic Anhydrases

Susan C. Frost

Abstract Carbonic anhydrases are ubiquitous enzymes that catalyze the reversible
hydration of carbon dioxide. These enzymes are of ancient origin as they are found
in the deepest of branches of the evolutionary tree. Of the five different classes of
carbonic anhydrases, the alpha class has perhaps received the most attention because
of its role in human pathology. This review focuses on the physiological function of
this class of carbonic anhydrases organized by their cellular location.
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1 Introduction

Carbonic anhydrases catalyze the reversible hydration of CO2 (CO2 C H2O $
HCO3

� C HC), which allows this enzyme to regulate intra- and extra-cellular
concentrations of CO2, HC, and HCO3

�. Decades of research have implicated CA
in a broad range of physiological processes including gas exchange at the air water
interface, transport of CO2 and HCO3

� across membranes, biosynthetic reactions
in metabolically active tissue, acid–base balance, secretion, calcification, signal
transduction, oncogenesis, proliferation, among the many that have been reported
[1–16]. These seemingly disconnected functions are mediated by specific isoforms
in the ’-CA family. Sixteen members of this family have been identified which have
distinct tissue-specific expression, kinetic properties, and sensitivity to inhibitors
[17]. It appears unlikely that this family will be expanded further as searches of
genomic databases have not identified any additional CA sequences [18]. Among
those identified, there are eight cytosolic proteins (CA I, CA II, CA III, CA VII, CA
VIII, CA X, CA XI, CA XIII), two mitochondrial matrix proteins (CA VA, CA VB),
one secreted protein (CA VI), two glycosylphosphatidylinositol (GPI)-anchored
proteins (CA IV and CA XV), and three transmembrane proteins (CA IX, CA XII,
CA XIV). Three of the cytosolic isoforms (VIII, X, and XI) have no activity as they
lack one or more of the histidine residues that coordinate the zinc ion in the catalytic
pocket. As a group, these are called CA-related proteins and appear to be expressed
exclusively in the brain [19]. The other isoforms have varied activities based on the
efficiency of proton transfer, differences in active site residues, quaternary structure,
and potentially localization [17, 20–22]. In this chapter, the physiological role of the
catalytically active forms of CA will be discussed from the perspective of location:
cytosolic, mitochondrial, secretory, and membrane-associated.

2 Cytosolic CAs

The role of carbonic anhydrase in CO2 excretion is well known. In red blood cells
(RBCs), CA activity accelerates the rate of conversion between molecular CO2,
which easily diffuses across membranes, and HCO3

�, the form in which the ma-
jority of CO2 is transported in the circulation. CO2 produced by tissues diffuse into
RBCs where it is hydrated to form bicarbonate ions that are transported via the band
3 anion exchanger and protons that are buffered by hemoglobin. The reverse occurs
at gas exchange organs where HCO3

� is dehydrated producing CO2 that then dif-
fuses across the water/air interface down its partial pressure gradient. RBC CA is in-
directly related to O2 loading and unloading through the Bohr effect [23] [reviewed
in [24, 25]]. Mammalian RBCs express both CA II and CA I [25, 26]. It is thought
that CA II activity dominates because of its fast kinetics, although the intracellular
microenvironment may influence how these enzymes operate in vivo. On the other
hand, it is widely accepted that CO2 excretion in vertebrates is not limited by RBC
CA activity [1]. Further details on this topic can be found in Chap. 18 (Swenson).

http://dx.doi.org/10.1007/978-94-007-7359-2_18
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Hemolytic anemia is a disease in which RBCs are destroyed prematurely which
leads to anemia. Glucose-6 phosphate dehydrogenase deficiency induces hemolytic
anemia [27]. These patients have significantly lower CA I expression compared to
control patients [10]. It is postulated that this is related to the rate of synthesis of CA
I relative to hemoglobin since data are normalized to hemoglobin content. That said,
CA II expression is increased, as is total CA activity. While CA I has substantially
lower activity than CA II, which is the more physiologically relevant isoform, CA I
expression may serve as a marker for hemolytic anemia.

CA II is also highly expressed in kidney intercalated cells and at lower levels
in the proximal tubules, loop of Henle, and collecting duct principal cells [28, 29]
where CA II regulates bicarbonate flux. CA II deficiency is an autosomal recessive
trait characterized by renal tubular acidosis, osteopetrosis, cerebral calcification, and
growth retardation [30]. A mouse model has been developed which partially mimics
the human disease [31]. Kidneys of these mice are virtually devoid of medullary
collecting duct intercalated cells [32] where CA II expression is normally high.
Interestingly, these cells are present at birth, but at some point during post-natal
development, intercalated cells are selectively removed in the medullary collect
ducts and replaced by principal cells. This suggests that CA II may play a role
in regulating cell-type diversity in kidney collecting ducts. Indeed, chronic acetazo-
lamide treatment of adult rats causes significant remodeling of the cellular profile of
collecting ducts [33]. This may represent an adaptive process to correct or stabilize
the metabolic acidosis that would otherwise ensue following loss of CA II function.

In addition to its ability to mediate the reversible hydration of CO2, CA II appears
to interact with a variety of membrane-bound carriers to balance cytoplasmic
pH. Examples of these include the chloride/bicarbonate exchanger AEI [34, 35],
the sodium bicarbonate cotransporter NBC1 [36, 37], and the sodium/hydrogen
exchanger NHE1 [38]. These interactions increase the activity of the transporters
and have been coined “transport metabolons” [35]. Specific amino acid motifs,
along with individual residues, have been identified that are required for the binding
of the metabolon partners [39, 40]. Post-translational modifications have also been
implicated in these interactions. For example, phosphorylation of NHE1 in the
C-terminal cytoplasmic tail significantly increases the interaction with CA II and
thus its activity [39]. Metabolons may also play a role in human pathologies. For
instance, the interactions between CA II and NHE1 and AE3 have been implicated
in cardiomyocyte hypertrophy [7]. In addition to the above transporters, CA II
also interacts with members of the monocarboxylate transporter family (MCT1 and
MCT4) and increases their activity, leading to enhanced export of lactate from
Xenopus oocytes [41, 42] and astrocytes [43]. Protons, provided by CA II, are
cotransported by the MCTs leading to the hypothesis that CA II acts as a “proton col-
lecting antenna” [44]. In contrast to other transport metabolons, the interaction be-
tween CAII and the MCTs does not require the catalytic activity of CA II but rather
its ability to shuttle protons via the proton wire, with residue His64 playing a central
role [44, 45]. These features are described in more detail in Chap. 7 (Becker et al.).

CA III has several characteristics that distinguish it from other isozymes.
Expression of CA III is remarkably high in skeletal muscle [46] and adipose, both

http://dx.doi.org/10.1007/978-94-007-7359-2_7
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white [47] and brown [48]. However, CA III activity is low, at only 3 % of that
of CA II [17]. This difference in activity has led to the idea that CA III may play a
different role in cellular function beyond is catalytic activity. CA III has two reactive
sulfhydryl groups that can reversibly bind to glutathione through disulfide bonds
[49, 50]. This reaction would likely protect cells from irreversible protein oxidation
[51]. Indeed, overexpression of CA III in cells protects them from H2O2-induced
apoptosis [52]. Further, aged rats showed increased tissue levels of irreversibly
oxidized CA III associated with decreased glutathione concentrations [53]. These
data suggest that CA III might protect cells from oxidative damage [54]. However,
muscle tissue in the CA III global knockout mouse responded no differently than
muscle in wild type mice in response to hyperoxic challenge or muscle fatigability
[55]. In fact, these authors showed that CA III expression is not required for normal
growth, development, or life span of the mouse.

Adipose tissue stores fat and is central to energy homeostasis [56]. New
adipocytes arise from precursors called adipose-derived stems cells or pre-
adipocytes in a process called adipogenesis. Light and electron microscopy have
revealed that these cells arise from perivascular sites [57–59]. Several studies
have now shown that perivascular cells isolated from adipose have the ability
to differentiate [60–65]. Importantly, the nuclear hormone receptor peroxisome
proliferator-activated receptor ”2 (PPAR”2) that acts as the master regulator of
adipogenesis is found in these precursor cells [66]. CA III expression is induced
during adipogenesis [67] and possibly provides HCO3

� to acetyl CoA carboxylase
[68], the rate determining step in fatty acid biosynthesis. However, CA III is down-
regulated in obese states [69] in the face of enhanced fatty acid biosynthesis [70].
This questions a role in substrate metabolism. Yet, recent data reveals that CA
III regulates adipogenesis at the level of PPAR”2 gene expression [71]. While
no changes in adipose content were noted in the CA III knockout mouse [see
above [55]], Mitterberger et al. have shown that adipogenesis is enhanced in mouse
embryonic fibroblasts (MEFs) isolated from CA III knockout mice [71]. This was
associated with a 1000-fold increase in PPAR”2 expression. This suggests that CA
III expression exerts a negative effect on PPAR”2 expression. Despite the fact the
CA III expression is increased during adipogenesis as mentioned [67], it apparently
is not required for the normal terminal differentiation of adipose tissue. Rather, it
appears that CA III controls steps early in the differentiation process. Still unknown
is the mechanism by which CA III regulates PPAR”2 expression and whether it
serves a similar role in muscle during development. As noted above, CA III may
play a protective role in oxidative damage. PPAR”2 also plays a role in oxidative
stress. It has been shown that pharmacological activation of PPAR”2 attenuates
the production of reactive oxygen species (ROS) in 3 T3-L1 adipocytes and in the
insulin-resistant leptin deficient ob/ob mouse [72]. Thus, CA III may provide long
term regulation during adipogenesis and protection in response to oxidative stress.

Carbonic anhydrase VII is one of the least characterized of the CA family. The
human form was identified through genomic screening [73]. While it was predicted
to have CO2-hydrase activity, this was proven later using mouse [74] and human
[75] recombinant proteins. The human form has catalytic activity that is close to
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that of CA II [75]. It also has the highest esterase activity among the CA family
members [75]. There are two forms of this protein: the long form is the predominant
form and the shorter form is missing 56 residues at the N-terminus [76]. Based
on western blotting, the protein is primarily expressed in colon, liver, and skeletal
muscle, although it is also noted in brain [76]. Similar to CA III, it has two
reactive cysteines and can be glucothionylated [75] suggesting a role as an oxygen
free radical scavenger. CA VII has also been implicated in neuronal excitation
by providing HCO3

� which can mediate current through channels coupled to
GABAA receptors [77]. This activity is suppressed when treated with membrane-
permeant sulfonamides, supporting the hypothesis that CA VII plays a role in
neuronal excitation and seizures [78]. Kaila and Ruusuvuori discuss this in further
detail in Chapter 14. In addition, CA VII may play a role in neuropathic pain as
acetazolamide in combination with midazolam treatment synergistically reduces
neuropathic allodynia after spinal nerve damage [79]. In that regard, CA VII may
represent a new drug target for managing neuropathic pain.

Human CA XIII isozyme was identified and characterized in 2004 [80]. In this
study, the authors showed that CO2 hydration activity is similar to that of CA I
and CA V, each of which are characterized as having moderate catalytic activity.
Inhibition profiles are similar to CA II [81]. CA XIII was localized to several
tissues including the thymus, kidney, submandibular gland, small intestine, and
notably in reproductive organs of both sexes [80]. Since pH and ion balance are
likely to be tightly regulated in reproductive organs to ensure normal fertilization
[80], it is surmised that CA XIII may contribute to reproductive processes by
controlling optimal HCO3

� concentration and pH homeostasis for the maintenance
of sperm mobility. One could also postulate that CA XIII might contribute to
normal fertilization process by producing the appropriate bicarbonate concentration
to alkalinize the cervical and endometrial mucus [82]. CA XIII deficient animals
are not yet available so testing these hypotheses must wait. However, there are data
regarding a role of CA IV in bicarbonate-mediated activation of mouse and human
sperm [83], an enzyme that will be discussed later in this chapter and Chap. 9 (Sly
and Waheed). With renewed interest in tumor-associated CAs, Kummola et al. have
demonstrated that CA XIII, along with two other cytosolic CAs (CA I and CA
II), is down-regulated in colorectal cancer [82]. Because these three CAs genes
are closely linked on chromosome 8, these authors suggest that down-regulation
is related to reduced levels of a common transcription factor. The physiological
reasons for down-regulation are left to speculation at this point.

3 Mitochondrial CAs

Chappell and Crofts demonstrated that HCO3
� was impermeant to the inner

mitochondria membrane [84]. While Elder initially proposed that HCO3
� could

provide the counter ion for energy-dependent Ca2C transport [85], shortly thereafter
it was shown that CO2, not HCO3

�, served this function [86]. With the advent

http://dx.doi.org/10.1007/978-94-007-7359-2_14
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of molecular technology, we now know that the bicarbonate transporter family
(SLC4A) includes 11 members (see http://slc.bioparadigms.org), none of which
are located in the inner mitochondrial membrane. Thus, de novo synthesis of
HCO3

� within the mitochondrial compartment is required for providing substrate
for pyruvate carboxylase in the gluconeogenic pathway and carbamoyl phosphate
synthetase I in ureagenesis in the liver [87, 88].

The first mitochondrial CA was isolated from guinea pig liver and called CA V
[89]. It was subsequently identified in mouse, rat, and human through molecular
cloning [90–92]. That the transcript for mouse CA V was only identified in liver
[90] while a wider distribution was suggested by western blotting [91], led to a
search of the EST database revealing that there were two mouse mitochondrial
CA sequences. Ultimately, these sequences were named CA VA and CA VB,
respectively, and northern and western blotting revealed a significantly different
tissue-specific distribution pattern between the two [93]. Interestingly, the hu-
man ortholog for the CA5B, which also has broad tissue expression, has been
mapped to chromosome Xp22.1 [94] while CA5A was mapped to chromosome
16q24 [95].

Carbamoyl phosphate synthetase I utilizes HCO3
� rather than CO2 for the

synthesis of carbamoyl phosphate [96]. This is the committed step in ureagenesis.
Ornithine transcarbamylase utilizes carbamoyl phosphate as a co-substrate in the
synthesis of citrulline [97–99], which is the first intermediate of the urea cycle.
Dodgson et al. demonstrated that the synthesis of citrulline could be blocked by
acetazolamide in guinea pig liver mitochondria [100]. Indeed, the inhibition curve
for citrulline synthesis was identical to the inhibition curve for mitochondrial
CA (CA VA). This was the first physiological evidence that carbonic anhydrase
enhances access of HCO3

� to the synthetase reaction, so CA must be considered
a participant in ureagenesis. These studies raised the possibility that HCO3

�
created in the CA V reaction could drive other biosynthetic reactions, particularly
that of the carboxylase family of enzymes. Pyruvate carboxylase mediates the
first reaction in gluconeogenesis from pyruvate. Dodgson and Forester showed
that pyruvate carboxylase activity was blocked by ethoxzolamide, a membrane
permeant sulfonamide, in mitochondria isolated from liver from starved guinea
pigs [87]. While earlier studies had suggested that sulfonamides inhibit pyruvate
carboxylase directly [101], Dodgson and Forester showed that the inhibitory effect
of ethoxzolamide on pyruvate carboxylase activity was lost in experiments where
guinea pig liver mitochondria were pretreated with digitonin, in the presence of
high bicarbonate, to compromise membrane integrity. These and other data suggest
that the effect of ethoxzolamide is on mitochondrial CA, not pyruvate carboxylase.
Dodgson and Forester also demonstrated that glucose production in hepatocytes was
blocked by ethoxzolamide, further implicating the dependence of the anapleurotic
reaction mediated by pyruvate carboxylase on CA VA.

As mentioned, carbon fixation at pyruvate carboxylase increases the con-
centration of mitochondrial intermediates for other biosynthetic reactions. For
gluconeogenesis, it is malate that is drawn from the cycle. For lipogenesis, it is
citrate that is drawn off the cycle. Citrate is made from the condensation of acetyl

http://slc.bioparadigms.org
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CoA and oxaloacetate, the product of the pyruvate carboxylase reaction. Citrate can
be transported out of the mitochondria where it is cleaved to re-form oxaloacetate
and acetyl CoA, the latter of which is the substrate for cytoplasmic acetyl CoA
carboxylase, the rate-limiting step in de novo lipogenesis. Hazen et al. showed
that ethoxzolamide inhibits lipogenesis from pyruvate in 3T3-L1 adipocytes, a
mouse adipocyte model [102]. Acetyl CoA carboxylase, like pyruvate carboxylase,
utilizes HCO3

� as a substrate, in this case for the carboxylation of acetyl CoA.
That acetyl CoA carboxylase was not the target of sulfonamide inhibition was
demonstrated by lack of sulfonamide inhibition of lipogenesis from glutamate,
another anapleurotic substrate that increases the concentrations of Krebs cycle
intermediates but independently from pyruvate carboxylation. 13C-NMR studies,
reported in 2009, support these conclusions [103]. Together, these data suggest that
carboxylation of pyruvate by CA VB in the mitochondria of adipocytes is required
for lipogenesis and by extension CA VA in liver mitochondria [104].

While mitochondrial diseases are often associated with defects in the oxidative
phosphorylation [105], the above data suggest the possibility that the mitochondrial
CAs could serve as targets for modulating gluconeogenesis and lipogenesis, both of
which are dysregulated in obesity and insulin resistance. Interestingly, an adverse
effect of sulfonamide- and sulfamate-containing anti-epileptic drugs is weight
loss in obese patients [106]. Indeed, a randomized trial in 2003 demonstrated
significant weight loss in a study of 60 non-epileptic obese patients given Zon-
isamide, a marketed anti-epileptic aliphatic sulfonamide with known serotonergic
and dopaminergic activity in addition to blocking sodium and calcium channels
[107]. Furthermore, Topiramate, a sulfamate-substituted saccharide, was approved
for weight loss by the FDA in 2012 to be used in conjunction with phentermine
treatment (which decreases appetite). While the mechanism for this effect is
currently unknown, De Simone et al. have shown that Zonisamide strongly inhibits
recombinant CA VA (Ki D 20 nM) [108]. Like Zonisamide, Topiramate inhibits
CA VA, although with somewhat less efficacy (Ki D 63 nM) [13]. As an aside,
Topiramate is also a strong inhibitor of CA VB (Ki D 30 nM), unlike Zonisamide
which is relatively poor inhibitor (Ki D 6.0 �M). However, both drugs block CA
II in low nM range which raises questions regarding the in vivo target. That said,
Topiramate has been shown to be block lipogenesis from pyruvate, not acetate, in
3T3-L1 adipocytes [103]. Presently, each of these isoforms is being pursued as novel
anti-obesity targets [109–111].

4 Secreted CAs

CA VI is the only secreted isoform among the ’-carbonic anhydrase family
[reviewed in [112]]. The existence of CA activity in saliva has been known for
decades, but it was not until 1979 when it was realized that the activity was unique
from that of erythrocyte CA activity (CAII) [113]. Feldstein and Silverman provided
the initial biochemical and kinetic characterization revealing that rat salivary CA
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VI had a molecular weight of 42 kDa and was glycosylated which predicted a
secretory protein [114]. While the kinetic parameters were similar to that of CAII,
CA VI exhibited a somewhat lower affinity for sulfonamide inhibitors. Murakami
and Sly reported comparable data for CA isolated from human saliva, at which
point the name CA VI was adopted [115]. Interestingly Parkkila et al. have shown
that salivary CA VI secretion follows circadian rhythm [116], low during sleep and
rising in concentration at awakening and breakfast. Subsequently, CA VI has been
found in milk [117], tears [118], respiratory airways [119], epithelial lining of the
alimentary canal [120], and enamel organs [121]. It has also been found in human
serum [122]. Although the physiological function of CA VI is not fully established,
there are clues that it regulates against acidic environments.

Saliva plays a critical role in oral homeostasis and decreased rates of secretion
increases the risk of oral infections and dental caries [123]. The buffering capacity
of salivary secretions depends primarily on bicarbonate ions and provides protection
against enamel erosion [124]. Several studies have shown that CA VI is responsible
for acid neutralization in dental biofilm, originating from bacterial metabolism. For
example, Kimoto et al. showed that patients who rinsed their mouths with sucrose
in the presence of acetazolamide had significantly higher salivary pH values than
patients who rinsed with only sucrose [125]. In this study, CA activity associated
with plaque was specifically identified as CA VI, not CA I or CA II. In another
study, Kivela et al. demonstrated that a low concentration of CAVI in saliva is
associated with a higher incidence of dental caries [126]. However, a study by
Frasseto et al. revealed that CA VI activity in the oral cavity of children with
dental caries was higher than that found in children who were caries-free, although
the statistical significance of this observation was border-line [4]. Additionally,
the variation in CA VI activity in saliva, before and after a sucrose wash, was
significantly greater in children with dental caries than those without. Given that
there did not appear to be differences in the concentration of CA VI, the authors
suggest that genetic polymorphisms may be related to the differences in CA VI
activity seen across these two patient populations. Indeed, polypmorphisms have
been described that are associated with higher buffering activity but, interestingly,
buffering capacity is decreased in healthy children [127]. These authors have
suggested that polymorphisms in the coding region may affect secondary structure
to alter CA VI function. Others have shown that both pH and buffering capacity
of saliva is lower in diabetics compared to normal controls [128]. While CA
activity was positively correlated with frequency of polymorphisms, there was no
correlation between polymorphism frequency and pH or buffering capacity. These
data suggest that there is still no consensus regarding the role of CA VI and pH
control in the oral cavity.

CA VI is also known as gustin [129]. It has been shown that gustin is decreased in
parotid saliva of patients who experience loss of taste [130–132]. This phenomenon
was associated with aberrant taste bud morphology [133], consistent with apoptosis.
Return of taste function has been demonstrated by exposure to exogenous zinc
[132]. Interestingly, Topiramate and other CA sulfonamide inhibitors cause taste
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perversion [134] perhaps targeting CA VI. Together, these data suggest a role for
CA VI in taste perception. Perhaps weight loss in patients given Topiramate (see
above) is in part related to the loss of food appreciation!

The crystal structure of CA VI has been solved revealing a prototypical mam-
malian CA fold, but with a novel dimeric arrangement as compared to previously
reported CA structures [135]. The active site cavity contains a cluster of non-
conserved residues that may be involved in ligand binding. This discovery may open
opportunities for developing an isoform-specific inhibitor, which has been difficult
because of the conservation in the catalytic site across most CA isoforms.

5 Membrane-Associated CAs

The human membrane-associated CAs include CA IV, CAIX, CA XII, and CA XIV.
CA XV, like CA IV, is a GPI-anchored form of CA but is not expressed in humans
or chimpanzees [136]. These enzymes are poised to reversibly hydrate CO2 in the
extracellular space. Several of these family members will be discussed in depth in
later chapters in this book (Sly and Waheed, Chap. 9; Oosterwijk, Chap. 10; Benej
et al., Chap. 11; Tafreshi et al., Chap. 12; and McDonald and Dedhar, Chap. 13), so
please refer to those chapters as well.

A membrane-bound form of CA was initially purified from lung and tenta-
tively called CA IV [137]. A “second” membrane-bound form was ultimately
purified from human kidney [138]. Subsequently, Zhu and Sly reported a more
efficient purification that allowed them to show that lung and kidney expressed
the same membrane-bound form of CA [139]. These authors also showed that
about 50 % of the enzyme could be released from the membrane by treatment with
phosphoinositide-specific phospholipase C, suggesting that the enzyme is attached
to the membrane by a GPI linkage. Human CA IV was cloned in 1992 by Okuyama
et al. [140]. The deduced amino acids included an 18-amino acid signal sequence, a
260 amino acid stretch that show similarity to the catalytic regions of CA I, CA II,
and CA III, with an additional 27 amino acid C-terminus containing a hydrophobic
domain in the last 21 amino acids. Expression of CA IV cDNA in COS cells
generated a 35 kDa membrane-bound protein. Baird et al. reported that CA IV is
a high-activity isozyme showing pH independence in the hydration direction [141].
In the dehydration direction, the catalytic rate is even higher than that observed in
CA II, although the esterase activity is lower. CA IV has also been localized to heart
[142], brain [143], capillary bed of the eye [144], and erythrocytes [145].

Because kidney expresses both CA II and CA IV, the question arose as to whether
the cytosolic CA or the membrane-bound CA was responsible for the CO2 hydration
that leads to the acidification of urine and reabsorption of filtered bicarbonate.
In 1996, Conroy et al. designed a pegylated sulfonamide (F-3500) that inhibited
CA activity, but was impermeant to cells [146]. This allowed the investigators
to distinguish between intracellular and membrane-associated CA activity, and

http://dx.doi.org/10.1007/978-94-007-7359-2_9
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specifically that of CA II and CA IV in kidney [147]. Low molecular weight CA
inhibitors, like acetazolamide, produce urine with a concentration of 100–200 mM
HCO3

� in all mammalian species tested [148]. Under these circumstances, both
intracellular and membrane-associated CA activity will be inhibited. In contrast,
rats treated with F-3500 produced urine containing only 40 mM HCO3

� that is
taken as the effect of inhibiting CA IV while retaining CA II activity. These data
support the hypothesis that both CA II and CA IV are important in bicarbonate
reabsorption. These results agree with studies in humans lacking CA II where
bicarbonate concentration became elevated in response to acetazolamide [149]. We
now know that another membrane-associated CA (CA XII) is expressed in kidney
[150, 151]. At this point in time, we cannot distinguish between CA IV and CA XII
function for lack of isoform-specific inhibitors so the studies above could support
the involvement of both CA IV and CA XII in bicarbonate reabsorption in the
kidney.

Like CA II, CA IV interacts with Cl�/HCO3
� transporters [152]. In this study,

Sterling et al. demonstrated that CA IV interacts directly with the 4th extracellular
loop of AE1. This interaction increases the activity of bicarbonate transport. CA IV
also creates a functional complex with the NaC/bicarbonate co-transporter (NBC1)
[153]. This latter study showed that this interaction is required for maintaining
appropriate pH balance within the environment of the retina and retinal pigment
epithelium, although neither CA IV nor NBC1 are expressed in the retinal or retinal
pigment epithelium. This requirement is based on the finding that mutant forms
of CA IV appear to be responsible for an autosomal dominant form of retinitis
pigmentosa [154] causing rod and cone photoreceptor degeneration [153]. These
mutations are associated with a loss of CA activity or the inability of CA IV to
interact with NCB1, in choriocapillaris leading to impaired pH homeostasis [153].
Based on the importance of CA IV in the survival of photoreceptor cells, this raises
a flag for long-term use of CA inhibitors, particularly in the treatment of glaucoma,
which may adversely affect vision.

CA IX and CA XII are specifically tumor-related [14, 155]. CA IX has
garnered more interest because of its limited normal expression [156, 157], and
its apparent role in cell proliferation and migration [158, 159], cell adhesion
[160], tumorigenesis [161], and pH control [162–165]. CA IX is a transmembrane
glycoprotein whose catalytic domain is oriented toward the extracellular milieu
[166]. CAIX is expressed as a 49.7 kDa protein but is truncated to the mature
form during processing [167]. This mature form contains an N-terminal “exofacial”
proteoglycan-like domain and catalytic domain (homologous to CA II) that is
attached via a transmembrane segment to a cytoplasmic tail. CA IX exists primarily
as a dimer stabilized by disulfide bonds [168–170]. In rat cardiomyocytes, CA
IX interacts with the NBCe1 NaC/HCO3

� cotransporter enhancing bicarbonate
influx [171]. The cytoplasmic tail of CA IX contains the phosphorylation motif for
protein kinase A (PKA) that is important for catalytic activity [15]. Recombinant
CA IX, containing the catalytic domain has activity similar to that of CA II [168,
172]. CA IX is regulated by hypoxia [173], and in general predicts poor patient
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outcome [174–177]. The secondary structure and orientation of CA XII is similar
to that of CA IX, but is a monomer, lacks the proteoglycan-like domain, and is
missing the PKA motif [150]. Its catalytic activity is lower than that of CA IX
[13, 178, 179] which may influence its role in pH control in tissues compared
to CA IX. Northern blot analysis initially revealed CA XII expression in kidney
and colon [150]. Western blotting and immunohistochemistry show a much wider
tissue distribution including kidney, lung, prostate, ovaries, uterine endometrium,
breast, and the basolateral membrane of epithelial cells of the gut [155, 180–182].
In contrast to CA IX, CA XII is regulated by estrogen [183, 184]. In breast cancer
patients, CA XII expression correlates with positive prognosis [183–186]. In other
cancers, CA XII expression can be positive, negative, or neutral as a predictor of
patient outcome [177, 182, 187, 188]. Interestingly, CA XII has been associated with
metabolic acidosis in patients receiving carbonic anhydrase inhibitors, specifically
Topiramate or Zonisamide (see Sects. 3 and 4, this chapter) [189]. Patients sensitive
to these drugs typically have serum bicarbonate concentrations of less than 20 mM.
Low bicarbonate was associated with polymorphisms in CA XII (rs2306719 and
rs4984241). While these data warrant further investigation, this indicates a role
of CA XII in renal function. In addition, a Glu143Lys mutation in CA XII has
been linked to individuals with failure to thrive, hypoatremic dehydration and
hyperkalemica with isolated sweat salt wasting [190]. This autosomal recessive
mutation behaves similarly to the excessive salt loss from sweat glands observed
in pseudohypoaldosteronism type 1 which arises from mutations in genes encoding
epithelial NaC channel (ENaC) subunits. These data demonstrate the importance
of bicarbonate anion and proton production on salt concentration in sweat and its
significance for sodium homeostasis, and implies a specific role for CA XII.

The least studied of the human CAs is CA XIV which was cloned in 1999
[191] and bears strongest sequence similarity to CA XII. CA XIV mRNA shows
strong expression in most parts of the brain with weaker signals in colon, small
intestine, urinary bladder and kidney. RT-PCR analysis revealed an intense signal
in liver and spinal cord, but much weaker in kidney. However, by western blot
and immunohistochemistry, CA XIV shows significant luminal co-localization with
CA IV (but not CA XII) in regions that are involved with urinary acidification
[192]. This suggests functional overlap between CA IV and CA XIV. CA XIV
has also been implicated in acid–base balance in muscle and erythrocytes in an
adaptive response to chronic hypoxia as observed at high elevation [193]. Like other
membrane-bound CAs, CA XIV interacts with bicarbonate transporters [194]. In
heart myocardium, it has been demonstrated that CA XIV interacts with AE3. In
hypertrophic hearts from hypertensive rats, CA XIV expression is elevated along
with AE-mediated bicarbonate transporter. This suggests a role for CA XIV in
AE3 hyperactivity. Finally, CA XIV, in contrast to CA IV, has been localized to
the apical and basal membranes of the retinal pigment epithelium, along with the
plasma membrane of Müller cells [195]. Because CA II is also found in Müller cells
[196], this implies that CA II and CA XIV have specific and unique functions in the
context of acid based balance in the retina.

http://dx.doi.org/10.1007/978-94-007-7359-2_3
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6 Concluding Remarks

While the physiological functions of some of the mammalian isozymes of CA
are still uncertain, it is clear that the CAs are important in many physiological
processes in both normal and pathological states. CA inhibitors are now widely used
in the clinic to treat a number of diseases including glaucoma, epilepsy, mountain
sickness, ulcers, osteoporosis, and obesity. Yet, these inhibitors collectively target
enzymatic activity, which limits their targeting specificity because of the structural
similarity of the CA catalytic pockets. Thus, our greatest challenge is to develop
CA-specific inhibitors to further our understanding of function, develop diagnostic
tools, and treat diseases in a selective fashion. This requires a better understanding
of the CA structures to facilitate the design of novel drugs. In addition, it may be
possible to use surface motifs for docking a catalytic inhibitor to provide specificity.
Also encouraging are the membrane-impermeant compounds, which block only
membrane-associated CA isoforms (discussed in Chap. 15, McKenna and Supuran).
These should increase our ability to target cancer-related CAs, like CA IX and
CA XII. One can also imagine nanoparticle delivery systems that use cell surface
epitopes for tissue-specific drug targeting. While we have a long road ahead in the
discovery process, it is clear that the stakes are high in exploiting the secrets of this
ancient but critical enzyme.
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