
Chapter 16
Natural Products That Inhibit Carbonic
Anhydrase

Sally-Ann Poulsen and Rohan A. Davis

Abstract The chemical diversity, binding specificity and propensity to interact
with biological targets has inspired many researchers to utilize natural products
as molecular probes. Almost all reported carbonic anhydrase inhibitors com-
prise a zinc binding group in their structure of which the primary sulfonamide
moiety (-SO2NH2) is the foremost example and to a lesser extent the primary
sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products
that comprise these zinc binding groups in their structure are however rare and
relatively few natural products have been explored as a source for novel carbonic
anhydrase inhibitors. This chapter will highlight the recent and growing interest
in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural
product chemical space presents a rich source of potential alternate chemotypes for
the discovery of novel drug-like carbonic anhydrase inhibitors.

Keywords Carbonic anhydrase • Natural products • Coumarin • Phenol •
Polyamine • Sulfonamide • Sulfamate

1 Introduction

Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the reversible
hydration of carbon dioxide to bicarbonate and a proton [1]. The active site zinc
cation is the implied target for small molecule inhibitors to block the endogenous
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Fig. 16.1 Natural products (NPs) that comprise a primary sulfonamide or sulfamate moiety in
their structure. (a) NP primary sulfonamides: (�)-altemicidin 1 and psammaplin C 2. (b) NP
primary sulfamates: nucleocidin 3, 50-O-sulfamoyl adenosine 4, 50-O-sulfamoyl 2-chloroadenosine
5, 50-O-sulfamoyl 2-bromoadenosine 6 and 50-O-sulfamoyl tubercidin 7

CA catalyzed reaction. Almost all reported CA inhibitors comprise a zinc binding
group (ZBG) of which the primary sulfonamide moiety (-SO2NH2) is the foremost
example, and to a lesser extent the primary sulfamate (-O-SO2NH2) and primary
sulfamide (-NH-SO2NH2) groups. Compounds sourced from nature that comprise
either a primary sulfonamide, sulfamate or sulfamide moiety in their structure
are exceedingly rare. A literature search of the Dictionary of Natural Products
(DNP) database [2] (a comprehensive and fully-edited database on natural products
(NPs)) revealed just two NP primary sulfonamide compounds, (�)-altemicidin 1
and psammaplin C 2, and five NP primary sulfamate compounds, nucleocidin 3
[3], 50-O-sulfamoyl adenosine 4 [4], 50-O-sulfamoyl 2-chloroadenosine 5 [5], 50-O-
sulfamoyl 2-bromoadenosine 6 [5, 6] and 50-O-sulfamoyl tubercidin 7 (Fig. 16.1)
[7, 8]. (�)-Altemicidin 1 is a marine alkaloid isolated from the actinomycete strain
Streptomyces sioyaensis [9]. This compound exhibited potent acaricidal activity as
well as strong inhibition of tumor cell growth [10]. A total synthesis of 1 as well as
the isolation of two secondary sulfonamide analogues of 1 have subsequently been
reported [9]. Psammaplin C 2 is a bromotyrosine amino acid derivative isolated
from the marine sponge Pseudoceratina purpurea [11, 12]; no bioactivity for this
alkaloid has been reported to date. The sulfamate nucleosides 3–7 were isolated
from actinomycete species belonging to the genus Streptomyces. These structurally
related sulfamates are reported to have a range of biological effects including
cytotoxicity[4], herbicidal activity [6–8, 13], inhibition of blood platelet aggregation
[5], antibacterial activity [5, 14] and antitrypanosomal activity [14]. Nucleocidin 3,
isolated from the fermentation broth of Streptomyces calcus, is of particular note



16 Natural Products That Inhibit Carbonic Anhydrase 327

since it was the first NP to contain either a fluorinated carbohydrate or a primary
sulfamate group. This molecule became an attractive synthetic target owing to its
novel structural features, with the first total synthesis reported in 1976 [15]. Whilst
NP 3 has been shown to exhibit broad spectrum antibacterial effects as well as potent
antitrypanosomal activity, its potential use in the clinic has been limited due to
toxicity [16]. The NPs 1–7 have not been investigated for CA inhibition properties,
however it is likely that these compounds would inhibit CA activity owing to the
presence of an unhindered primary sulfonamide or primary sulfamate moiety within
their structure. Finally, our search of the DNP failed to identify any NP primary
sulfamides.

At the time of writing the Protein Data Bank (PDB) contained X-ray structures
of �160 sulfonamide ligands (R-SO2NH2) in complex with hCA II (h D human).
The binding mode of the sulfonamide anion (R-SO2NH-) to the Zn2C cation
is invariant in these structures, with the sulfonamide anion coordinated to the
active site Zn2C. Primary sulfamates and sulfamides, ZBG isosteres of primary
sulfonamides, contribute an additional �35 X-ray structures of ligands in complex
with hCA II in the PDB. Of the remaining PDB protein-ligand structures most
comprise very simple ligands such as anions or small organic molecules, there are
however several structures comprising more complex alternate CA ligands, some of
which are NPs.

NPs comprise a vast collection of diverse chemical structures and have proven
to be an invaluable source of new chemotherapies [17–22]. Plant NPs have been
the basis of traditional medicine for thousands of years and continue to actively
contribute to contemporary drug discovery [22]. In more recent times, marine
macro- and micro-organisms along with terrestrial microbes have been the source of
numerous lead molecules or drugs [23]. The significance of NPs in drug discovery
is most evident in the anticancer and anti-infective therapeutic areas [20, 24–26].
For example, between 1940 and 2011 48.6 % of all new anticancer small molecule
therapies approved by the FDA were either NPs or NP derivatives [26]. Furthermore
between 1981 and 2011 75 % of all antibacterial new chemical entities were
either NPs or their derivatives [26]. The success of NPs and their semi-synthetic
derivatives as therapeutic agents is intrinsically linked to the fact that NPs have
been biologically pre-validated and selected during evolution to bind to biosynthetic
enzymes [27–32]. It has been hypothesized that this inherent capacity to bind in
biological space allows NPs to also recognize human therapeutic targets [27, 29, 32].
Furthermore, computational studies have shown that NPs occupy complementary
areas of chemical space compared with synthetic compounds, and thus should be
implemented to increase the chemical complexity and drug-likeness of screening
libraries [28–31]. The chemical diversity, binding specificity and efficiency, and
propensity to interact with biological targets have inspired many researchers to
utilize NPs as molecular probes. These studies go beyond the identification of
potential new lead or drug molecules, and have increased our understanding of
biological pathways and systems [33, 34]. While the primary sulfonamide and
sulfamate moieties are poorly represented in NP chemical space, this space does
provide a rich source of alternate chemotypes for the discovery of CA inhibitors
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with a different enzyme binding mode to the typical ZBGs. The remainder of this
chapter will highlight the recent and growing interest in novel CA inhibitors sourced
from nature.

2 Natural Products That Inhibit Carbonic Anhydrase

Several classes of novel CA inhibitors have been identified from screening col-
lections of NPs, most notable are coumarin and phenol containing NPs [35].
NPs comprising these fragments display diverse profiles of CA inhibition when
compared to classical ZBGs and these will be discussed further in the following
sections. In addition a selection of NP-derived CA inhibitors have been synthesized
where the NP scaffold has been synthetically modified to incorporate the classical
ZBG of CA inhibitors i.e. sulfonamide, sulfamate or sulfamide. A summary of these
hybrid molecules will also be presented.

2.1 Coumarins

Coumarin compounds are abundant secondary metabolites in plants and are found
to a lesser extent in microorganisms and animal sources. Plant coumarins are
phytoalexins, defense compounds produced when the plant is under threat from
other organisms, and have attracted interest owing to a range of biological activities
including antimicrobial, molluscicidal, acaricidal, antiviral, anticancer, antioxi-
dant and anti-inflammatory properties [36]. The coumarin structure comprises a
benzopyrone core, with NP coumarins categorized as (a) simple coumarins, (b)
furanocoumarins, (c) pyranocoumarins, (d) bis- and triscoumarins, or (e) coumari-
nolignans [36]. Simple coumarins, including coumarin 8 (Fig. 16.2) are highly
abundant in several plant species belonging to the taxonomic families Umbelliferae,
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Fig. 16.2 NP coumarin CA inhibitors. (a) Coumarin 8. (b) CA hydrolysis of coumarin 9 to form
the cinnamic acid compound 10
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Rutaceae and Compositae [36]. A recent review of coumarin-based drugs highlights
the growing interest in the coumarin compound class to deliver new therapeutics,
[37] which is driving efforts towards the isolation and the structural characterization
of further novel bioactive coumarin derivatives. In recent years it was discovered that
NP coumarins inhibit CA enzymes via an alternate and unprecedented mechanism
to classical sulfonamides [38], these findings are described next.

Nature Bank is a unique drug discovery resource that encompasses a diverse
collection of >50,000 biota samples of plants, fungi and marine invertebrates
collected from Australia, China and Papua New Guinea along with biota ex-
tracts, semi-purified fractions and pure compounds [39]. A selection of Leionema
ellipticum (family Rutaceae) extracts was sourced from Nature Bank and screened
using Fourier transform ion cyclotron resonance electrospray ionization mass
spectrometry (FTICR ESI MS) for binding to bovine CA II (bCA II) [38]. From this
study the NP coumarin, 6-(1S-hydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-
one 9 was identified as a ligand for bCA II as it formed a noncovalent complex
that could be detected by ESI MS. In follow on studies it was demonstrated that
coumarin 9 inhibits a spectrum of human CAs in an unprecedented time dependent
manner [40]. The usual enzyme assay conditions to investigate small molecule
inhibition of CA activity is to incubate the test compound with the CA protein of
interest for 15 min prior to monitoring the effect on CA-mediated CO2 hydration.
Under these conditions this coumarin had only weak CA inhibition prompting
us to extend the pre-incubation time. Following 6 h of pre-incubation with hCA
II the Ki of coumarin 9 dropped to 60 nM (with a similar reduction in Ki at
other CA isozymes also observed). As the coumarin chemotype lacked a classic
ZBG typical of known small molecule CA inhibitors and displayed unusual time-
dependent inhibition it was important to understand how this chemotype binds
to and inhibits CAs. Using protein X-ray crystallography the crystal structure
of hCA II with this NP was obtained at a resolution of 2.0 Å (Fig. 16.3). The
coumarin 9 was not observed, instead the hydrolysis product of 9, the cinnamic
acid derivative 10 was identified [40]. Esterase activity is known for CAs [41–
43] and the observation of cinnamic acid 10 rather than NP coumarin 9, although
unexpected, could be rationalized as a consequence of hCA II esterase activity
leading to hydrolysis of the lactone of 9. The bulky hydrolysis product 10 then
plugged the CA active site cavity entrance, exhibiting no interactions with the
catalytic zinc ion. This unusual inhibition mode is previously unobserved for CAs
and together with the coumarin pedigree in medicinal chemistry is suggestive of
a potential new avenue for drug development compared to the ZBGs of classical
CA inhibitors. Reactive Michael acceptors are a general structural alert in drug
discovery, however it has been demonstrated that simple coumarins exhibit poor
protein binding characteristics compared to other carbonyl containing Michael
acceptors [44, 45]. The lower reactivity of the coumarin double bond compared with
other Michael acceptors, has been attributed to it being part of a pseudoaromatic
system [46].

Following the findings outlined above we performed a substructure search of the
Nature Bank [39] pure compound repository against the bare coumarin scaffold 8.
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Fig. 16.3 Detailed interactions between hCA II and NP coumarin 9 hydrolysis product 10 from
a protein X-ray crystal structure. The catalytic site showing the tetrahedral Zn2C cation (violet
sphere) with the three coordinated His ligands (His94, His96, and His119) and a water molecule
(red sphere). The cinnamic acid 10 (gold) interacts with three active site ordered water molecules
(red spheres), with Phe131 and Asn67 (CPK colors) from the active site as well as with Glu238sym
(yellow) from a symmetry related enzyme molecule. The proton shuttle residue His64 is shown
(CPK colors) (Reprinted with permission from Maresca, A.; Temperini, C.; Vu, H.; Pham, N. B.;
Poulsen, S.-A.; Scozzafava, A.; Quinn, R. J.; Supuran, C. T. J. Am. Chem. Soc. 2009, 131, 3057.
Copyright 2009 American Chemical Society)

A set of 81 coumarins were identified and from this a subset of 27 coumarins
were sourced in sufficient quantity and purity for follow up evaluation as CA
inhibitors [47]. These NP coumarins, compounds 11–37 (Fig. 16.4) comprise 24
plant coumarins (compounds 11–34) and three marine coumarins (compounds
35–37). Specifically, the plant NPs comprise avicennin 11 [48, 49], trans-avicennol
12 [50, 51], calanolide B 13 [39, 52], dihydrogeiparvarin 14 [53], geiparvarin 15
[53, 54], dehydromarmin 16 [53], xanthyletin 17 [55], xanthoxyletin 18 [50, 55],
ceylantin 19 [56], alloxanthoxyletin 20 [55], fraxidin 21 [57], fraxin 22 [58],
scopoletin 23 [59], 6,7,8-trimethoxycoumarin 24 [60], 5,7,8-trimethoxycoumarin
25 [60], 7-hydroxy-8-methoxycoumarin 26 [59], isoscopoletin 27 [61], fraxoside
28 [62], scopolin 29 [63], murralongin 30 [64], (C)-isomurralonginol nicotinate
31 [65], isophellodenol C 32 [66], ellagic acid 33 [67] and nasutin B 34 [68].
The ascidian NP coumarins include lamellarins E 35 [69], B 36 [70], and G 8-
sulfate 37 [71]. A variety of bioactivities have been reported for these coumarins,
for example calanolide B 13 isolated from the tropical rainforest tree Calophyllum
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Fig. 16.4 NP coumarin library (11–37) (sourced from Nature Bank [39, 47])

lanigerum, displayed protection against HIV-1 replication and cytopathicity (EC50

D 0.4 �M) [52]. Dihydrogeiparvarin 14 and geiparvarin 15, both isolated from
Geijera parviflora [53, 54], possessed significant in vitro activity against human
carcinoma of the nasopharynx [72, 73]. Xanthoxyletin 18 [50, 55], purified from
a variety of Citrus species, acts as a DNA-damaging agent [74], while several
synthetic derivatives have been shown to exhibit toxicity towards L-1210 leukemia
cells with IC50 values ranging from 0.9 to 60.3 �M [74]. The inhibition activity data
for the NP coumarins 9 and 11–37 against hCA I and II (off-target isozymes), as well
hCA IX and XII (isozymes of interest in cancer drug development) is presented in
Table 16.1. Data for the simplest coumarin 8 and standard CA inhibitors (Fig. 16.5)
is included for development of structure-activity relationships (SAR).

Since the discovery of the NP coumarin 9 synthetic libraries of coumarins and
thiocoumarins have been prepared and evaluated as CA inhibitors [79–81]. The
complexity and diversity of NP coumarin structures far exceeds that described for
synthetic coumarin CA inhibitors. Coumarin 8, the simplest coumarin, is not an
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Table 16.1 Inhibition data
for coumarins 8, 9, 11–37
against hCA isozymes I, II,
IX and XII [47]. Standard
inhibitors (AZA, ZNS and
TPM) are included for
comparison [75–77]

Ki (�M)a–c

Compd CA I CA II CA IX CA XII

8 3:10 9.20 >1000 >1000
9 0:08 0.06 54.5 48.6
11 7:66 >100 0.62 0.79
12 8:46 >100 0.78 0.77
13 9:31 50.7 0.83 0.81
14 59:2 63.4 0.89 0.60
15 9:75 >100 0.60 0.83
16 7:81 >100 4.03 0.70
17 21:5 >100 7.51 25.7
18 7:71 >100 0.74 0.96
19 9:21 49.3 0.86 8.35
20 5:60 >100 3.50 9.10
21 9:89 >100 0.85 7.84
22 4:86 94.3 0.61 7.70
23 10:56 >100 0.96 4.05
24 0:0097 >100 6.58 18.2
25 4:31 9.65 0.76 0.83
26 36:4 >100 0.85 9.12
27 14:0 >100 7.37 4.14
28 5:04 >100 0.37 7.45
29 5:93 >100 8.72 0.78
30 9:11 >100 8.12 7.44
31 5:84 >100 0.67 7.39
32 7:52 78.9 9.75 0.77
33 68:2 >100 79.8 8.15
34 44:1 >100 17.4 7.42
35 6:45 >100 3.22 9.07
36 40:1 >100 6.33 8.51
37 6:55 >100 3.27 1.79
AZA 0:25 0.012 0.025 0.0057
ZNS 0:056 0.035 0.005 11
TPM 0:25 0.005 0.058 0.0038
aThis inhibition data was acquired following a 6 h
incubation time with enzyme using a stopped flow
assay that monitors the CA catalyzed hydration of
CO2 [78]
bErrors in the range of ˙5 % of the reported value,
from three determinations
cAll proteins were recombinant

appreciable inhibitor of CA IX or XII however it is a weak inhibitor of off-target
CA I and CA II, with Kis of 3.1 and 9.2 �M, respectively. The NP coumarins
are substituted at any of six available sites, with many fused to form tricyclic,
tetracyclic or larger ring systems. This diversity does not readily allow simple SAR
to be defined, however several trends surrounding CA inhibition are evident. Most
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Fig. 16.5 Standard CA inhibitors: acetazolamide AZA, zonisamide ZNS and topiramate TPM

obvious is that the NP coumarin library members are very weak CA II inhibitors,
most have Kis > 100 �M, the only exception being the trimethoxycoumarin 25
(Ki D 9.65 �M). When compared to the structurally related methoxy/hydroxy
coumarins 21–24, 26 and 27, compound 25 differs only in the pattern of substituents,
this SAR indicates that it may be a combination of interacting substituents that
directs the CA inhibition profile at CA II. At CA I, IX and XII many of the
NP coumarins have Kis in the range of 1–10 �M, this tight grouping of Kis
reflects minimal isozyme selectivity with these coumarins, however there are a few
outliers to this general trend and these compounds represent interesting structures
owing to their CA isozyme selectivity characteristics. At CA I there was one stand
out compound being compound 24, a nanomolar CA I inhibitor. This trimethoxy
coumarin is the most potent of any of the NP coumarins at CA I and is a structural
isomer of 25, the only potent CA II coumarin of the study. Around half of the NP
coumarins have submicromolar inhibition of the isozymes CA IX and XII, some of
these coumarins (11, 12, 13, 14, 15, 18 and 25) are submicromolar at both CA IX and
XII, while the remainder are submicromolar at either CA IX (19, 21–23, 26, 28 and
31) or CA XII (16, 29 and 32). This subset of NP coumarins has viable selectivity
characteristics that warrant further studies in cell-based models of CA in cancer.

2.2 Phenols

The first single crystal X-ray structure of phenol 38 and a CA protein (hCA II)
was reported in 1994 and identified that 38 binds in an unprecedented way within
the enzyme active site [82]. It was shown that the phenolic OH interacts with
the zinc-bound water molecule/hydroxide ion through a hydrogen bond while a
second hydrogen bond formed between the phenolic OH and the NH amide of
Thr199, an amino acid critical for the catalysis and inhibition of various CAs. NPs
containing the phenol fragment 38 are highly abundant in nature. A substructure
search of the DNP [2] against the phenol fragment identified >50,000 NPs from
the 246,994 database entries that contain this fragment (�20 % of all entries).
Early CA inhibitory studies focused on simple, commercially available mono-, di-
or tri-substituted phenols that are also found in nature [2] such as pyrocatechol
39, resorcinol 40, hydroquinol 41, salicylic acid 42, p-hydroxybenzoic acid 43, p-
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Fig. 16.6 NP phenols 38–57 tested as CA inhibitors [83, 84, 86, 87]

coumaric acid 44, caffeic acid 45, ferulic acid 46, gallic acid 47 and syringic acid 48
(Fig. 16.6) [83, 84]. A number of phenolic-NPs containing more complex scaffolds
49–57 have since been sourced from the Davis open-access compound repository
housed at the Queensland Compound Library (QCL) [85], and screened against
selected CAs (Fig. 16.6) [86, 87]. These phenolic-derivatives include the endophytic
fungal metabolites, (�)-xylariamide A 49 [88], and its synthetic enantiomer (C)-
xylariamide A 50 [88], xanthones 51 and 52 [89], the marine ascidian-derived
alkaloids, polyandrocarpamines A 53 and B 54 [90, 91] and the plant secondary
metabolites, endiandrins A 55 [92] and B 56, [93] and (�)-dihydroguaiaretic acid
57 [92, 93].
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Table 16.2 Inhibition data
for phenolic NPs 38–57
against hCA isozymes I, II,
VA and VB [83, 84, 86, 87].
Standard inhibitors AZA,
ZNS and TPM are included
for comparison [75–77]

Ki (�M)a,b

Compd CA I CA II CA VA CA VB

38 10.2 5:5 218 543

39 4,003 9:9 55:1 4:2

40 795 7:7 8:7 7:1

41 10.7 0:090 14:1 12:5

42 9.9 7:1 678 355

43 9.8 10:6 9:2 10:5

44 1.07 0:98 5:9 7:7

45 2.38 1:61 6:5 9:1

46 2.89 2:40 7:0 10:5

47 3.20 2:25 4:1 9:9

48 4.15 3:19 6:3 35:4

49 239 8:3 0:095 0:114

50 231 8:0 0:108 0:102

51 201 8:4 0:093 0:103

52 374 9:2 0:094 0:102

53 10.5 9:6 0:099 0:070

54 355 13:1 0:101 0:076

55 368 11:7 0:093 0:069

56 354 12:1 0:098 0:079

57 307 230 0:085 0:071

AAZ 0.25 0:012 0:063 0:054

TPM 0.25 0:010 0:063 0:030

ZNS 0.056 0:035 0:020 6:3

aErrors in the range of ˙5% of the reported value, from
three determinations
bAll proteins were recombinant

The phenols 38–57 have been evaluated for their inhibition of human cytosolic
isoforms CA I and II (off-target) and mitochondrial isozymes CA VA and CA VB,
Table 16.2. The latter have been recognized as potential targets for designing anti-
obesity agents that act with a novel mechanism of action [94, 95]. The simple
phenolic secondary metabolites 38–48 have also been tested against hCA III, IV,
VI, VII, IX, XII, XIII and XIV [83, 84]. These data (not shown) indicate that
the phenol class of NP CA inhibitor exhibits complex SAR, with small chemical
changes leading to large effects on CA enzyme inhibition. The chemical diversity
of phenolic NPs is vast; so far investigation of this chemotype for its interaction with
CAs is in its infancy.

The “-CAs from Helicobacter pylori, Candida albicans, Candida glabrata,
Cryptococcus neoformans and Brucella suis are essential for growth and have
proven susceptible to inhibition with several compound classes including sulfon-
amides, carboxylates and boronic acids [96–103]. A positive correlation from
enzyme assays to a cell-based anti-infective phenotype assay demonstrates that
the “-CAs from these pathogens are potential druggable targets for anti-infective
therapies. Mammals possess only ’-CAs, whilst many pathogenic organisms, such
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Table 16.3 Enzyme inhibition of pathogenic M. tuberculosis “-CA isozymes
Rv3273 and Rv1284, C. albicans isozyme Nce103, C. neoformans isozyme Can2
and human ’-CA isozymes I and II with the NP phenols 49–62 [86] and standard
CA Inhibitors AZA, ZNS, and TPM

Ki (�M)a,b

Compd CA I CA II Rv3273 Rv1284 Nce103 Can2

38 10:1 5:5 79:0 64:0 17:3 25:9

49 239 8:3 11:3 0:84 1:03 1:15

50 231 8:0 10:9 0:71 1:06 1:11

51 201 8:4 11:4 10:5 1:06 1:12

52 374 9:2 10:9 0:99 1:01 1:08

53 10:5 9:6 0:91 11:8 0:92 0:89

54 355 13:1 0:92 0:91 0:90 0:95

55 368 11:7 8:92 0:82 0:73 0:77

56 354 12:1 0:89 0:80 0:70 0:95

57 307 230 9:10 0:85 0:62 0:81

58 430 8:7 12:1 0:85 1:10 1:08

59 309 10:3 11:4 10:8 1:02 0:90

60 309 11:2 9:12 0:85 0:91 0:84

61 265 8:6 10:8 10:3 1:08 1:12

62 237 131 11:2 10:5 1:00 0:85

AAZ 0:25 0:012 0:10 0:48 0:13 0:01

TPM 0:25 0:010 3:02 0:61 1:11 0:37

ZNS 0:056 0:035 0:21 286:8 0:94 0:97

aErrors in the range of ˙5 % of the reported value, from three determinations
bAll proteins were recombinant

as bacteria and fungi encode “-CAs. Similarly to ’-CAs, a zinc cation defines the
location of the active site of the “-CA enzymes. Phenols 49–57 [92, 93] along with
the fungal NP phenols 58–62 [104–106] (Fig. 16.7) have been screened for enzyme
inhibition against selected pathogen “-family CAs, Table 16.3. CAs from Mycobac-
terium tuberculosis, Candida albicans and Cryptococcus neoformans were studied
and selectivity towards the pathogen isozymes over human CAs was assessed.

These studies showed that several phenolic NPs were selective inhibitors of
mycobacterial and fungal “-CAs, with the two best performing NPs identified as
(�)-dihydroguaiaretic acid 57 and 3-chloro-4-hydroxyphenylacetamide 62. Specif-
ically, 57 was a sub-micromolar “-CA inhibitor with up to 495-fold selectivity
over hCA I and 371-fold selectivity over hCA II. Compound 62 was also a low
micromolar inhibitor of the fungal CAs and displayed 130–280-fold selectivity over
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Two conformations of the phenol moiety were observed, giving rise to the appearance of the chloro
substituent on both sides of the phenolic hydroxyl group; the refined occupancies for both positions
are noted at each position (Reprinted with permission from Davis, R. A.; Hofmann, A.; Osman, A.;
Hall, R. A.; Mühlschlegel, F. A.; Vullo, D.; Innocenti, A.; Supuran, C. T.; Poulsen, S. A. J. Med.
Chem. 2011, 54, 1682. Copyright 2011 American Chemical Society)

the two human CAs. These compounds were the first non-sulfonamide inhibitors
that display “ over ’ CA selectivity. In order to determine how the phenolic-
based NPs 38–62 interacted with CAs, soaking and co-crystallization studies were
undertaken with the readily available protein hCA II. While the most selective
NPs 57 and 62 did not yield co-crystals with CAs suitable for X-ray diffraction
studies, compound 50 [(C)-xylariamide A] did at a resolution of 2.0 Å. While it
was predicted that the phenolic moiety present in 50 would play a major role in the
hCA II binding it was discovered that instead the ester carbonyl of 50 interacts with
a zinc-bound water molecule and is further engaged in a hydrogen bond donated
by the backbone amide group of Thr198 (Fig. 16.8). In this crystal structure the
electron density of the inhibitor is well defined, allowing unambiguous placement
of the ligand. This was a totally new binding mode to CAs.

2.3 Polyamines

Polyamines belong to an alkaloid structure class and have been reported from
various natural sources including terrestrial and marine animals, plants, fungi and
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Fig. 16.9 NP polyamine CA inhibitors spermine 63 and spermidine 64 [114]

bacteria [2]. Two of the simplest polyamines isolated to date include spermine 63
and spermidine 64 (Fig. 16.9). A substructure search of the DNP against 63 and 64
identified >400 NPs from the 246,994 database entries that comprise these alkaloid
fragments [2]. The polyamine chemotype has been shown to modulate multiple
biological processes including gene expression, cell proliferation, translation, cell
signaling, membrane stabilization and ion channel inhibition as well as antibacterial
activity [107–113]. Despite the myriad bioactivities reported for polyamine NPs
until recently no CA inhibition had been reported. Carta et al. showed that 63, 64 and
several semi-synthetic polyamine analogues inhibited hCA I-XIV with Ki values
ranging from low nanomolar to millimolar [114]. A single crystal X-ray structure of
spermine 63 with hCA II (at a resolution of 2.0 Å) was also reported [114] showing
compound 63 anchored to the zinc bound water ligand (as for phenol 38) through a
network of hydrogen bonds. The terminal amine moiety of 63 is hydrogen bonded
with residues Thr200 and Pro201. Notably 63 binds differently to hCA II when
compared to either sulfonamides, phenols or coumarins and thus polyamines have
the potential for the identification and development of additional CA inhibitors with
a unique mechanism of binding and CA selectivity profile. This alkaloid structure
class warrants further investigation and we expect that NPs will provide future
opportunities to study additional polyamine alkaloids for CA inhibition.

2.4 Semi-synthetic NPs Modified to Incorporate a ZBG
and Inhibit CA

2.4.1 Carbohydrate-ZBG Hybrid Molecules

Carbohydrates represent an abundant group of NPs and a selection of naturally
occurring mono- and disaccharides have been modified to incorporate CA rec-
ognizing ZBG’s to give glycosyl primary sulfonamides (sugar-SO2NH2) [115],
glycosyl primary sulfamides (sugar-NH-SO2NH2) [116], and glycoconjugate sulfa-
mates (sugar-O-SO2NH2) [117]. Compounds 65–74 derived from the monosaccha-
rides D-glucose, D-galactose, D-mannose and the disaccharide maltose are shown
(Fig. 16.10). An aromatic group, which is typical for classical CA inhibitors, is
absent from these compounds and instead they comprise the hydrophilic mono-
or disaccharide fragment directly attached to the ZBG. These NP-ZBG hybrid
molecules have been evaluated as CA inhibitors, Table 16.4. All carbohydrate-
ZBG hybrid compounds behaved as weak inhibitors of hCA I, with the anomeric
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Fig. 16.10 Carbohydrate-ZBG hybrid molecules 65–74: glycosyl primary sulfonamides
(sugar-SO2NH2), glycosyl primary sulfamides (sugar-NH-SO2NH2) and glycoconjugate sulfa-
mates (sugar-O-SO2NH2) [115–117]

sulfonamides 65–67 and sulfamides 68–70 also weak micromolar inhibitors of
hCA II, IX and XII. In contrast the C-6 sulfamates 71–74 delivered good activity,
particularly monosacchrides 71–73, which showed Ki <10 nM against hCA XII.
The glucose sulfamate 71 also has a Ki <10 nM at hCA IX and displayed selectivity
for inhibiting the tumor-associated isoforms CA IX and XII over cytosolic CA I and
II. The interested reader is directed to crystal structures for anomeric sulfonamides
and glycoconjugate sulfamates in complex with hCA II in the PDB (accession
codes: 3HKN, 3HKQ, 3HKT, 3HKU, 3T82, 3T83, 3T84, and 3T85).

The membrane permeability properties were measured for selected carbohydrate-
ZBG hybrid CA inhibitors, the results confirm that the compounds are expected
to have poor passive membrane permeability. cLog P is an indicator of passive
diffusion through cell membranes and values <0 are indicative of molecules with
poor membrane permeability. The cLog P values of the hybrid molecules 65–74
range from �2.7 for monosaccharides to �5.5 for dissacharides, Table 16.4. The
compound design, employing a deliberate approach towards CA IX/XII isozyme
selectivity by changing the physicochemical properties to impart poor membrane
permeability, is consistent with these cLog P values. Membrane permeable ester
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Table 16.4 Inhibition data of
hCA Isozymes I, II, IX and
XII and cLog P values for
carbohydrate-ZBG hybrid
molecules 65–74 [115–117]

Ki (nM)a

Compd CA Ib CA IIb CA IXc CA XIIc cLog Pd

65 3,900 4,910 4,050 4,690 �2.8
66 3,930 4,550 4,190 4,800 �2.8
67 4,150 4,100 4,220 4,840 �5.0
68 75,400 4,680 6,470 1,970 �2.7
69 65,800 48,500 940 8,230 �2.7
70 91,900 21,200 1,790 5,440 �2.7
71 1,180 82 8.6 7.3 �3.3
72 4,500 93 62 7.6 �3.3
73 5,960 104 53 9.5 �3.3
74 8,750 513 497 138 �5.5
aErrors in the range of ˙5–10 % of the reported value, from
three determinations
bHuman (cloned) isozymes
cCatalytic domain of human (cloned) isozymes
dcLog P data calculated using ChemBioDraw Ultra 11.0

‘prodrugs’ of the carbohydrate-ZBG hybrids were also synthesized, this allows for
potential oral administration, with the polar carbohydrate-ZBG hybrid molecules
‘unmasked’ in vivo enabling targeting of extracellular CA IX and XII.

2.4.2 Coumarin-ZBG and Steroid-ZBG Hybrid Molecules

A selection of NP-derived sulfamates are potent inhibitors of the cancer drug target
steroid sulfatase (STS) and are being developed as a therapy for hormone-dependent
breast cancer [118]. This includes the steroidal sulfamate oestrone-3-O-sulphamate
(EMATE) 75 and two coumarin based sulfamates, COUMATE-667 76 and STX-
118 77 (Fig. 16.11), which at a simpler structural level may also be considered
phenolic sulfamates. These NP hybrids, modified with the sulfamate ZBG, are
also potent CA inhibitors, Table 16.5 [119–121]. It is hypothesized that dual
steroid sulfatase/CA inhibitors may represent a novel method for treating hormone
dependent breast cancer tumors, with the reversible binding of the sulfamates to
erythrocyte CA II increasing the metabolic stability of the compounds by protecting
the sulfamate moiety from rapid degradation [122]. This indirect improvement of
biopharmaceutical properties may persist alongside the direct effect of modulating
the activity of cancer-associated CA IX and XII. The X-ray crystal structure of hCA
II with both 75 [123] and 76 [122] are reported. These structures conform to the
classical ZBG interactions with the sulfamate moiety binding to the active site Zn2C
cation. The steroid fragment of 75 and the coumarin fragment of 76 interact with
the residues in the hydrophobic half of the CA II active site.
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Fig. 16.11 Steroidal sulfamate oestrone-3-O-sulphamate (EMATE) 75 and two coumarin based
sulfamates, COUMATE-667 76 and STX-118 77

Table 16.5 Inhibition data of
hCA Isozymes I, II, IX and
XII for steroid- and
coumarin-ZBG hybrid
molecules 75–77

Ki (nM)

Compd CA I CA II CA IX CA XII

75 [119] 37 10 30 nd
76 [120] 3,450 21 34 12
77 [121] nd IC50 D 59 nd nd

nd not determined

3 Conclusion

Contemporary drug discovery is under increased pressure to identify more suitable
small molecules as chemical starting points for drug development and finding novel
compounds as starting points for optimisation is one of the major challenges in
drug discovery research. NPs already provide a significant portion of FDA approved
drugs and have emerged as an effective way to sample chemical diversity. The
chemical diversity within NPs is vast and while the investigation of NP chemotypes
for interaction with CAs is in its infancy, an encouraging start has been made. The
NP compounds presented here (phenols, coumarins and polyamines) are suggestive
of a tremendous opportunity that NPs provide for the discovery of novel chemotypes
for selectively targeting either human or pathogen CAs. It will be imperative
for future efforts to further evaluate the NP or NP-hybrid compounds in cell-
based models of CA associated disease alongside classical control compounds
for validation. The identification of unique CA binding for any NPs might offer
possibilities for future rational drug discovery design and development. Thus the use
of NPs in the search for new CA inhibitors has a strategic advantage since nature’s
unique chemical diversity has only been superficially explored in this particular field
of research. We predict additional NP structures classes will be identified as binding
to and perturbing CA function as further research is undertaken.
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