
Chapter 14
Carbonic Anhydrases and Brain pH
in the Control of Neuronal Excitability

Eva Ruusuvuori and Kai Kaila

Abstract HC ions are remarkably efficient modulators of neuronal excitability.
This renders brain functions highly sensitive to small changes in pH which are
generated “extrinsically” via mechanisms that regulate the acid–base status of the
whole organism; and “intrinsically”, by activity-induced transmembrane fluxes and
de novo generation of acid–base equivalents. The effects of pH changes on neuronal
excitability are mediated by diverse, largely synergistically-acting mechanisms
operating at the level of voltage- and ligand-gated ion channels and gap junctions.
In general, alkaline shifts induce an increase in excitability which is often intense
enough to trigger epileptiform activity, while acidosis has the opposite effect. Brain
pH changes show a wide variability in their spatiotemporal properties, ranging from
long-lasting global shifts to fast and highly localized transients that take place
in subcellular microdomains. Thirteen catalytically-active mammalian carbonic
anhydrase isoforms have been identified, whereof 11 are expressed in the brain.
Distinct CA isoforms which have their catalytic sites within brain cells and the
interstitial fluid exert a remarkably strong influence on the dynamics of pH shifts
and, consequently, on neuronal functions. In this review, we will discuss the various
roles of HC as an intra- and extracellular signaling factor in the brain, focusing
on the effects mediated by CAs. Special attention is paid on the developmental
expression patterns and actions of the neuronal isoform, CA VII. Studies on the
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various functions of CAs will shed light on fundamental mechanisms underlying
neuronal development, signaling and plasticity; on pathophysiological mechanisms
associated with epilepsy and related diseases; and on the modes of action of CA
inhibitors used as CNS-targeting drugs.

Keywords GABAA receptor • Hippocampus • pH buffering • Neuronal develop-
ment • Brain diseases • KCC2

1 Introduction

pH exerts a strong modulatory effect on the central nervous system (CNS) function
and excitability. Changes in intracellular or extracellular pH (pHi and pHo, respec-
tively) of 0.5 units or less are often sufficient to trigger or suppress paroxysmal
activity and, accordingly, much smaller changes are needed for subtle modulation
of neuronal excitability. The physiologically relevant pH range (pH 6.5–8.0)
corresponds to a very low free HC concentration, from 10 to 300 nM. An interesting
aspect is that this applies to both the intra- and extracellular compartments. Protons
are thus eminently suited to affect HC-sensitive targets both within and outside
brain cells. However, studying the physiological and pathophysiological bases of
HC-modulation of neuronal functions is not a trivial task, because global and local
pH transients are generated by multiple mechanisms operating at various levels
of biological organization, from the whole organism to cellular and subcellular
microdomains.

At the whole-organism level, the key elements in pH regulation are the lungs
which control the partial pressure of CO2 (PCO2) in the blood, and the kid-
neys which are responsible for the net regulation of other important acid–base
species, especially HCO3

� and NH4
C. With the major exception of chemosensitive

neurons controlling breathing [1], the excitability of most central neurons and
neuronal networks is enhanced by an alkalosis and suppressed by an acidosis.
Exogenously-induced respiratory acidosis has a profound suppressing action on
neuronal excitability and on seizures [2–5]. Respiratory alkalosis generated by
hyperventilation is a standard technique used in the clinic for the precipitation
of petit mal-type seizures [6]. Hyperventilation is also involved in the generation
of febrile seizures in animal models [4] and most likely in children as well [7].
Metabolic alkalosis associated with renal dysfunction such as seen in the EAST
syndrome is known to cause epileptiform activity [8].

The brain is protected by the blood–brain barrier (BBB) which is endowed by
acid–base transporter molecules [9] and, as a diffusion barrier, prevents charged
acid–base species from having direct access to brain interstitial fluid. Recent work
has shown that in addition to this protective role, acid extrusion triggered by birth
asphyxia across the BBB can lead to a brain-confined metabolic alkalosis and to
consequent seizures [10, 11].
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At the cellular level, pHi regulation is based on plasmalemmal transporters of
neurons and glia [12, 13]. A fascinating aspect of local HC-signaling within the
brain is that fast, robust and often highly localized pH shifts are evoked by electrical
activity and by synaptic transmission [13–15]. These intrinsic shifts in pHi and
pHo are largely generated by channel or transporter-mediated transmembrane fluxes
of acid–base equivalents, and by accumulation of acid end products of energy
metabolism such as CO2 and lactate. In the former case, the transmembrane shifts
of acid–base species generate pH changes of opposite direction within and outside
neurons, while metabolic acidosis implies a fall of pH in both compartments.
Distinct neuronal populations show a large heterogeneity in transporter and channel
localization and expression [16], and intrinsic pH shifts are therefore likely to
generate spatially restricted extra- and intracellular pH-microdomains.

By definition, the HC-sensitive targets involved in pH-dependent modulation of
neuronal activity consist of charged groups in proteins which are capable of binding
and releasing HC ions in the physiologically and pathophysiologically relevant pH
range. Such interactions affect the conformation and functional properties of a wide
variety of membrane proteins involved in neuronal signaling, including voltage
gated ion-channels [17, 18], GABAA receptors (GABAARs) [19, 20], N-methyl-
D-aspartate receptors (NMDAR) [21, 22], gap junctions [23] and pH-sensing
cation channels such as the acid-sensing ion channels [24] and TWIK-related acid-
sensitive KC channels [25]. The pH sensitivity of ion channels and other key
proteins that control neuronal excitability does not reflect a property common to all
kinds of proteins. Rather, the specific, functionally synergistic patterns of “tuning”
of the pKa values of molecules underlying the pH-modulation of neuronal signalling
suggests an evolutionary origin for the diverse but largely synergistic roles of HC as
an intercellular and intracellular signalling agent in the brain.

Carbonic anhydrases (CAs) are a family of molecules with a key role in the
control of pH at level of the whole organism (e.g. respiratory, energy-metabolic
and renal functions), in the BBB, in neurons and glia, and in the interstitial fluid
in the brain. For the physiologically ubiquitous CO2/HCO3

� buffering to act in
a fast manner, the (de)hydration of CO2 must be catalyzed by CA [26]. The 13
catalytically active CA isoforms identified so far in mammals differ in their tissue
distribution, subcellular localization as well as in their enzymatic activity [27]
providing a versatile molecular machinery for the modulation of pH. The acid–
base equivalents that serve as substrates in the CO2 dehydration-hydration reaction
are also engaged in many carrier- and channel-mediated ion movements. In such
processes, CA activity is in a key position to modulate transmembrane solute fluxes
and their influence on local pH.

Recent findings further suggest that CAs, even if catalytically inactive, can act as
‘proton collecting antennas’ thereby increasing net transmembrane proton flux and
suppressing the formation of HC microdomains [28]. CAs can also affect neuronal
function in a manner not dependent on catalytic activity as shown in studies on mice
devoid of isoform VIII [29]. Together with isoforms X and XI, isoform VIII belongs
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to the carbonic anhydrase related proteins (CARPs) that lack catalytic activity [27].
Mice with spontaneous mutation Car8 show changes in e.g. the morphology and
function of excitatory synapses in the cerebellum [30, 31].

Currently there are no pharmacological tools available that could be used for
isoform-specific inhibition of CAs (see also Chap. 15 in this book). Hence, studies
using genetic disruption of distinct CAs have provided much insight into the
functional and spatial roles of specific isoforms. As will be discussed, mice devoid
of the cytosolic CA II and VII and of the membrane attached isoforms IV and XIV
as well as the double knock-outs of CA IV/XIV and CA II/VII have been used in
studies focusing on the CA-dependent modulation of neuronal signaling [32–34].

The aim of the present chapter is to provide a general overview of the mecha-
nisms and consequences of pH-mediated signalling in the brain, with an emphasis
on the role of various CA isoforms. Despite the obvious, vast potential for
elucidating novel physiological and pathophysiological mechanisms involved in of
fundamental brain functions such as synaptic transmission and control of neuronal
excitability, relatively little work has been done in this field of research. We hope
that this review will act as a source of inspiration for further work on the diverse
pH-sensitive and CA-dependent mechanisms that operate at the molecular, cellular
and neuronal network level in the brain.

2 Generation and Maintenance of the Plasmalemmal
pH Gradient

Before discussing the CA-dependent modulation of neuronal excitability in more
detail, some basic aspects of pH homeostasis need to be addressed.

Passive equilibration of HC across the plasma membrane of a cell with a
membrane potential at �60 mV and a pHo of 7.3 would drive intracellular pH
close to 6.3. However, neuronal pHi (typically around 7.1) is only slightly more
acidic than pHo, which implies active regulation of pHi by membrane-located acid–
base transporters. Provided that the hydration-dehydration reaction of CO2 and the
transmembrane distribution of CO2 are at equilibrium, the transmembrane HCO3

�
distribution is set by the pH gradient:

ŒHCO3
��i D 10.pHi �pHo/ � ŒHCO3

��o

Under these conditions, the equilibrium potential of protons (EH) and bicarbonate
(EHCO3) are equal, with a value of �12 mV set by the pHo and pHi given above [35].
The energy required for maintaining the electrochemical gradient (in our example
of about �50 mV) is spent on combating intracellular acid loading that is generated
by three fundamental mechanisms:

(i). Net transmembrane influx of acid equivalents by transporters working as “acid
loaders”, such as the Ca2C/HC ATPase and the Cl�/HCO3

� exchanger.

http://dx.doi.org/10.1007/978-94-007-7359-2_15
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(ii). All conductive pathways which are permeable for charged acid–base species.
The concentration of HC ions is very low, and directly-measurable proton
conductances have not been described in mammalian neurons [36]. However,
a significant acid-loading HCO3

� conductance is provided by GABAARs and
by glycine receptors.

(iii). Cellular metabolic processes that lead to de novo production of acid. Here,
one should note, however, that weak organic acids such as lactate traverse
the membrane in their neutral, HC-bound form, and thus their generation
by energy metabolism will not contribute to the long-term cellular acid–base
budget.

Perturbations of pHi are not always poised in the acid direction; alkaline
loads are also known to take place following e.g. depolarization of the plasma
membrane (especially in astrocytes [37]) or sudden removal of an acid load.
When a cell is subject to an acid or alkaline load, the rate of pHi change is
proportional to the difference between the acid-extrusion and acid-loading rates,
and inversely proportional to the total intracellular buffering capacity. A number
of cells, including neurons, are equipped with several acid–base transporters which
act as acid extruders or loaders. At first sight, such “push-pull” mechanisms look
wasteful in terms of energy usage, but their concerted action brings about a much
more stable set-point for pHi under physiological conditions where the cell is
subject to rapidly alternating acid and alkaline loads [12]. Moreover, a differential
distribution of transporters in cells with complex geometry, such as neurons, is
likely to bring about pH microdomains within the cell, thus enhancing the spatial
precision of HC ions in intracellular signaling based on pH-sensitive proteins (see
Introduction).

In the mammalian CNS, the predominant transporters involved in pHi regulation
are the secondary-active transporters that belong to the solute carrier gene families
Slc4 and Slc9 [13, 16]. Some studies have reported acid extrusion in the nominal
absence of NaC and CO2/HCO3

� suggesting that a putative HC pump contributes
to neuronal and glial pHi regulation [38–40]. The role of another primary active
transporter, the Ca2C/HC-ATPase, has been described in much more detail. In
neurons Ca2C/HC-ATPase, a major regulator in intracellular free calcium, works
as an acid loader [41–43].

3 pH Buffering and CA Isoforms in Brain Tissue

3.1 pH Buffering Within and Outside Neurons

While transporters are needed for the active extrusion of acid–base equivalents,
HC buffers determine the ability of the cytosol to suppress pHi transients without
any contribution by active transport. The total intracellular, cytoplasmic buffering
capacity consists of a CO2/HCO3

� -dependent (ˇCO2) and a non-bicarbonate
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buffering capacity (ˇi). The latter mainly arises from phosphates and the imidazole
groups of proteins. These buffers cannot cross the plasma membrane and therefore
they form a closed buffer system within the cell [12, 44]. The extracellular fluid
is practically devoid of non-bicarbonate buffers and thus relies on CO2/HCO3

� -
dependent buffering.

In an ideal buffer which is open with respect to CO2, ˇCO2 is given by
ˇCO2 D 2.3[HCO3

�] [12]. However, attaining this value would require instanta-
neous equilibration of the system but, in reality, this is not achieved and ˇCO2

remains much lower than the theoretical maximum in response to fast acid/base
perturbations both within and outside cells. For instance, in the hippocampal slice,
stimulation-induced changes in pHo indicated an extracellular buffering power that
was less than 30 % of the theoretical maximum [45]. Interestingly, despite the
presence of extracellular CA (CAo), the amount of CAo activity can also be rate-
limiting for effective buffering of pHo changes. Addition of CA II to the perfusion
medium has been shown to curtail activity-induced extracellular alkalosis in brain
slices [46, 47] and in vivo [48].

3.2 CA Isoforms with an Extracellular Catalytic Site

Since pHo buffering is determined by the CO2/HCO3
� system, CAo is in a key

position to govern the kinetics of activity-generated pHo transients. The membrane-
bound CA isoforms IV and XIV which have their catalytic site located in the
extracellular space are largely responsible for the CAo activity detected in the rodent
hippocampus [32, 49]. These isoforms differ in the way they are attached to the
membrane and in their cell type-specific expression. CA IV is attached to plasma
membrane by a glycosyl-phosphatidyl-inositol anchor [50] of both neurons and
glia [51]. The more recently identified CA XIV has a membrane-spanning ’-helix
and a short intracellular C-terminus [52], and shows neuron-specific expression
within the brain [53]. The possible contribution of the other membrane-attached
isoforms, CA IX, XII and XV, in the CNS extracellular buffering is unclear as
the regional localization of these isoforms has not been determined. The basal
expression level of CA XII and IX in the CNS is low, but both isoforms are expressed
at higher levels in malignant tumor cells [54, 55]. Their presence can be used as
biomarkers for certain tumors with possible further diagnostic implications in the
prognosis of malignization [56] (see also Chaps. 10, 11, 12, and 13 in this Book).
Pathophysiological conditions such as seizures [57] and asphyxia [58] increase the
expression of CA IV and CA XII also in brain cells with no apparent previous
pathologies. This is expected to suppress the activity-dependent postsynaptic rise
in pHo and consequent NMDAR activation during synchronous neuronal activity,
thus acting as a potential neuroprotective mechanism.

A wealth of data has shown that the developmental expression patterns of
ion transporters, especially of cation-chloride cotransporters, have a major in-
fluence on the fundamental properties of neuronal signalling during brain on-

http://dx.doi.org/10.1007/978-94-007-7359-2_10
http://dx.doi.org/10.1007/978-94-007-7359-2_11
http://dx.doi.org/10.1007/978-94-007-7359-2_12
http://dx.doi.org/10.1007/978-94-007-7359-2_13
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togeny [59]. However, with respect to CAs, data of this kind is largely missing
and there are no published reports on developmental changes of CAo activity.
Developmental expression patterns of CAo isoforms might shape excitatory and
inhibitory transmission in concert with the expression of glutamate as well as
GABAAR subunits and the Cl� transporters. For example, the expression of
functional NMDARs precedes that of AMPA receptors (AMPARs) during post-
natal maturation of rodent cortical structures [60]. Developmentally coinciding
upregulation of functional AMPARs and CAo activity would provide control
over the NMDAR-modulating pHo transients [21, 22] generated by excitatory
transmission.

The contribution of the Cl�-HCO3
� transporting anion exchangers (AEs) in

neuronal Cl� regulation has so far gained surprisingly little attention. In embryonic
motoneurons the Cl�-HCO3

� exchanger isoform 3 (AE3) acts as an important
Cl� uptake mechanism [61]. Since CAo activity has been shown to enhance AE3
mediated Cl�-HCO3

� exchange [49], developmental changes in CAo activity might
have a significant influence on GABAergic synaptic signalling.

3.3 CA Isoforms with a Cytoplasmic Catalytic Site

For long the intracellular CA (CAi) activity in the CNS was thought to be mainly
restricted to glial cells, endothelium of the capillaries and choroid plexus epithelial
cells [62]. Now there is both functional and molecular biological evidence for
the presence of intraneuronal CA in the mammalian CNS [63–70]. The first
observations on the presence of cytosolic CA activity in CNS neurons, and that
this activity promotes GABAAR-mediated net HCO3

� efflux in mammalian CNS
neurons were made by us two decades ago [64].

Due to the lack of isoform-specificity of available cytosolic CA inhibitors,
previous data on CA VII expression in rat pyramidal neurons [70] did not exclude
the possible presence of other neuronal CA isoforms. Using a novel CA VII
KO mouse together with a CA II KO and a CA II/VII double KO mouse we
demonstrated that there is a sequential expression of two different isoforms in mouse
pyramidal neurons (Fig. 14.1a, b) [34]. CA VII fully accounts for the up-regulation
of neuronal CA activity detected at around P10 and is the only cytosolic isoform
during the time window P10-18. After P18 pyramidal neurons start to express CA
II in parallel with CA VII. A notable difference in the cellular expression patterns
of the two isoforms was that CA VII is mainly found in the CNS where it localizes
only to neurons. The ubiquitous CA II is present in a wide variety of tissues [71],
and within the brain parenchyma it is expressed in both glia and neurons.

A possible explanation for the apparently redundant presence of two cytosolic
CAs is that the two isoforms show differences in their biochemical functions
other than (de)hydration of CO2, such as esterase/phosphatase activity [72] or as
oxygen radical scavengers [73]. The importance of the latter finding is underscored
by the fact that a large developmental increase in cerebral oxidative energy
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Fig. 14.1 Cytosolic CA activity in developing mouse CA1 pyramidal neurons is based on
sequential expression of isoforms VII and II. (a) Original pHi traces from WT (P5 and P14)
and CA VII KO neurons on postnatal day 14 (P14). Replacing the CO2/HCO3

� buffer in
the perfusion solution by HEPES (upper horizontal bars) evoked an acetazolamide-sensitive
intracellular alkalinization only in the P14 WT neurons, thereby indicating the presence of CAi

activity (acetazolamide, AZ, 100 �M). (b) Developmental expression of the CA VII and CA II
isoforms. Summary of the results obtained using the cytosolic CA activity detection method shown
in a and quantified as the percentage of the cells showing cytosolic CA activity. (c) At P12�16,
CA VII is solely responsible for promoting GABAAR-mediated Cl� accumulation and consequent
depolarizing GABA responses. Intense stimulation of the interneuronal network evoked a biphasic
GABAergic response in CA1 pyramidal neurons in WT slices that was abolished with picrotoxin
(PiTX, 80 �M). The GABAA-receptor mediated depolarization was large enough to trigger action
potentials in WT but not in the CA VII KO neurons. Figure modified from ref. [34]

metabolism [74] coincides with the upregulation of neuronal CA VII expression.
The existing data do not exclude the possibility that CA II and CA VII are located in
distinct subcellular microdomains. Formation of isoform-specific metabolons with
different acid–base transporters [75–77] would further promote the generation of
developmentally and spatially distinct pHi microdomains.

There are very few reports on intracellular CA expression changes after patho-
physiological insults [57, 58] and, to our knowledge, none on CA activity changes.
The co-operative functions of K-Cl cotransporter KCC2 and CAi in the generation
of HCO3

� -dependent depolarizing GABA responses [78] (see also Sect. 5) raise
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the intriguing question whether changes in CAi expression might take place in
parallel to those of KCCs [59]. Parallel down-regulation of KCC2 and CAi would
lead to the suppression of excitatory GABAergic response (see also Fig. 14.1c) and,
consequently, to suppression of seizures.

Here it is worth recalling that membrane-permeant CA blockers such as aceta-
zolamide have a long history as antiepileptic compounds. The molecular targets
and mechanisms of action of these broad-spectrum CA inhibitors at the neuronal
network level are still poorly understood [27, 79].

4 Mechanisms and Consequences of Activity-induced HC
Transients in Neurons and Neuronal Networks

Most experiments on activity-induced neuronal pH transients have been conducted
using ion-selective electrodes. In mammalian brain tissue practically all data are on
pHo because of the obvious difficulties of impaling the neurons and maintaining
them functionally intact. When evaluating these data, it is important to note that
electrode recordings of pHo are bound to reflect a spatiotemporal average because
of the local damage caused by the tip and the relatively slow response time (at best
in the range 0.1–1 s) of the electrodes [80].

Fluorescent pH indicators are optimally suited for intracellular recordings, and
in this case, the signal-to-noise ratio will largely dictate the data sampling rate and
set the temporal resolution. Interestingly, it seems to be possible to obtain useful
recordings of pHo transients occurring in the extremely narrow (around 20 nm)
extracellular space in brain tissue using pH indicators. Such recordings have also
shown that activity-induced pHo changes are, indeed, fast enough to be able to
modulate on-going synaptic transmission and neuronal activity [46].

Robust activity-induced (i.e., intrinsic) pH changes have been documented in
a large number of studies on the CNS indicating that local pH shifts are a
mandatory consequence of both electrical and synaptic signaling [13–15]. These pH
transients are of different duration and magnitude, and they arise in the intracellular
compartments of both neurons and glia as well as in the interstitial fluid surrounding
them. It is evident that, depending on the cellular cytoarchitecture and synaptic
connectivity of a given neuronal preparation/recording site and on the stimulation
paradigm, the measured pH transients originate from distinct molecular and cellular
sources. The activation patterns of multisynaptic circuits with both excitatory
and inhibitory connections and the fractional volumes of neurons, glia and the
extracellular space are among the key factors that shape local pH shifts. Thus, we
have focused on studies made in the rodent hippocampus. Comprehensive overviews
on activity-dependent pH-modulation in invertebrates, in other cell types and areas
of the CNS are available [13, 81].

Intraneuronal pH measurements in rat hippocampal neurons have shown that
both excitatory (glutamatergic) and inhibitory (GABAergic) signaling result in a
fall of pHi, but the underlying molecular generation mechanisms are completely
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Fig. 14.2 Extracellular carbonic anhydrase activity (CAo) modulates activity-dependent alkaline
shifts. (a) The buffering provided by the CAo-catalyzed CO2/HCO3 system attenuates the rapid
alkaline pHo transient generated by neuronal excitation-induced Ca2C influx (upper panel).
Inhibition of CAo compromises CO2/HCO3 buffering by suppressing the rate of CO2 hydration
and, hence, boosts the alkalosis. (b) In contrast, CAo activity is needed for the generation of
GABAA-receptor mediated alkalosis which is driven by the transmembrane CO2/HCO3 shuttle
(upper panel). CAo inhibitors prevent the fast replenishment of CO2 in the extracellular space and
largely block the alkalosis (for details, see text). The pHo responses evoked by action potentials
(lower panel in a) and stimulation of GABAergic interneurons (lower panel in b) were recorded
using ion-sensitive microelectrodes. The small acid shift in the baseline pHo after CAo inhibition
is likely due to a decrease in extracellular buffering capacity in face of continuous cellular acid
extrusion. The illustrations in the lower panels are modified from ref. [90] (a) and ref. [43] (b)

different. As will be explained, activation of the anion-selective GABAARs leads to
a net efflux of HCO3

� and influx of CO2 which fully explains the GABA-induced
intracellular acidosis as depicted in Fig. 14.2b [64, 82]. Because glutamate-gated
postsynaptic channels are cation-selective, one might assume that conductive HC
would lead to an intracellular acid load. However, this possibility has been excluded
[83]. A key player in this context is the Ca2C/HC-ATPase which is activated by
neuronal depolarization leading to an increase in intracellular Ca2C, regardless of
whether this is caused by synaptic excitation; application of glutamate agonists;
or antidromic stimulation of neurons (Fig. 14.2a) in the continuous presence of
blockers of synaptic transmission [83–85]. As might be expected, metabolic acid
production is likely to contribute to excitation-linked pH shifts [86].
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4.1 CAo-Inhibitors as Tools in Mechanistic Analyses
of pHo Transients

In the presence of CA, the CO2/HCO3
� -system efficiently attenuates fast pH

changes evoked by HC fluxes [26] (Fig. 14.2a). On the other hand, if the acid/base
disturbance arises from a change in CO2 and HCO3

�, CA activity is instrumental
for the generation of a rapid pH shift (Fig. 14.2b). A prime example of the latter
case is the GABAAR-mediated CO2/HCO3

� shuttle, which leads to a fall in the
CO2 concentration on the extracellular surface of the plasma membrane that is
proportionally much higher than the increase in the local HCO3

� concentration.
Accordingly, inhibition of CAo activity abolished the GABAAR-mediated alkaline
pH transient on the surface of crayfish muscle fibres [87].

Taking advantage of the opposing effects of CAo-activity on the magnitude of
pH transients of distinct origin, inhibitors of CAos can be used as diagnostic tools in
the analysis of mechanistically heterogeneous pHo shifts triggered by simultaneous
excitatory and inhibitory transmission, as will be discussed below. Selective CAo

inhibition can be achieved by the poorly-membrane permeable blocker benzolamide
or by membrane-impermeant dextrane-bound sulfonamide derivatives [88].

In the extracellular space, activity-induced transmembrane fluxes of acid–base
species produce pHo changes which are qualitatively opposite to those seen in pHi

recordings. This is because the same molecular mechanisms that are involved in the
intraneuronal acidosis contribute to the increase in pHo [87–90]. Thus, a pronounced
alkalinization is generally the immediate pHo response to intense neuronal activity
(induced by agonist application or electrical stimulation). Using CAo-inhibitors,
it was possible to dissect the relative contributions of the HC shifts caused by
glutamatergic transmission and the HCO3

� shifts caused by GABAAR-mediated
transmission to heterosynaptic (excitatory and inhibitory) stimulation-evoked pHo

responses in hippocampal slices [91]. The results showed that with Schaffer
collateral stimulation delivered at low frequencies (5–20 Hz), the activity-evoked
extracellular alkalinization has a predominantly glutamatergic origin. However, the
dominance is gradually shifted to HCO3

� -dependent, GABAergic alkalinisation by
increasing the stimulation frequency to 50–100 Hz. In view of the pH sensitivity of
NMDA and GABAARs, this frequency-dependence of the mechanisms underlying
activity-induced pHo changes is intriguing. For instance, it is possible that during
high-frequency neuronal activity, typically used in paradigms for induction of long-
term potentiation (LTP), the intense CO2/HCO3

� shuttle and consequent CAo

dependent rise in pHo that will take place in the interstitial fluid close to GABAARs
would reduce the efficacy of inhibition, thereby facilitating LTP. In parallel with
this, the alkalosis might directly enhance the LTP-inducing, pH-sensitive NMDA
current [22, 47, 92–97]. Whether such HC-mediated cross-talk between excitatory
and inhibitory mechanisms takes place in the brain is an interesting question to be
addressed in future studies. The idea that HC does act as a modulatory signal in
microdomains of the brain extracellular space is supported by findings showing that
transporter-mediated acidification of the synaptic microenvironment is sufficient to
enhance GABAergic signaling [98].
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The initial, fast activity-dependent alkalinization is typically followed by a
slower and long-lasting acidification. There is strong evidence that depolarization-
dependent activation of NaC- HCO3

� cotransport in glial cells [99], which is likely
to be associated with an increase in PCO2, accounts for the slow acid shift [100].
This kind of a mechanism will affect both neuronal pHo and pHi over a large
area for a prolonged duration, and is tempting to speculate that it could provide
a powerful control over gross network excitability. There is, indeed, evidence that
such a feedback mechanism acts as an intrinsic antiepileptic mechanism by limiting
the generation and propagation of seizure activity thereby contributing to seizure
termination [101, 102].

5 Intraneuronal CAi Activity Promotes Depolarizing
and Excitatory GABAergic Transmission

The fact that GABAARs show a substantial permeability to HCO3
� leads to a unique

and tight link between the functions of this transmitter system and the pH-regulatory
machinery in brain cells and in the extracellular space [35, 103]. To fully understand
the role of CA activity in GABAergic signalling and especially how it affects the
‘ionic plasticity’ of inhibitory transmission we need to go back and look at the basic
properties of GABAARs.

The transmembrane gradients of Cl� and HCO3
� determine the reversal potential

of GABAARs (EGABA-A) [82]. pHi -regulatory transporters maintain EHCO3 at a
very positive level, around �10 to �15 mV (see Sect. 2) which means that the
current component carried by HCO3

� across GABAARs is always depolarizing.
In mature neurons, the K-Cl cotransporter KCC2 extrudes Cl� which keeps ECl

more negative than the resting membrane potential, thus providing the ionic basis
for conventional hyperpolarizing IPSPs [104]. Thus, with the relative HCO3

�/Cl�
permeability ratio of GABAARs at around 0.2–0.4, EHCO3 > > EGABA-A > ECl

[35]. However, especially during intense or prolonged activation of GABAARs,
a significant conductive uptake of Cl� takes place [82] which produces a large,
activity-dependent depolarizing shift in ECl and consequently, in EGABA-A. In adult
mammalian neurons, and especially in their dendrites which have a large surface-
to-volume ratio [105], CAi is generally thought to be necessary for maintaining the
supply of intracellular HCO3

� that drives GABAergic depolarizing and excitatory
responses [34, 78, 106, 107].

In line with the above, intense activation of GABAA channels evokes biphasic
GABAergic responses [106–111]. The early hyperpolarization, representing fused
individual hyperpolarizing IPSPs, is followed by a prolonged depolarization that is
often associated with pronounced spiking. The initial phase of the depolarization is
generated by the fast shift in ECl driven by the HCO3

� -dependent net uptake of
Cl�. Thereafter, extrusion of the accumulated Cl� via KCC2 leads to a long-lasting
increase in extracellular KC [78] and to a consequent non-synaptically -induced
depolarization of both the neurons and the adjacent glial cells.
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In the present context, the dual role of KCC2 described above is a very important
topic because the depolarizing/excitatory action of GABA in mature pyramidal
neurons shows a strict dependence on neuronal CAi. This conclusion is based on
the findings that (i) inhibition of intra- but not extracellular CA attenuates the post-
tetanic GABAergic depolarization [107] and (ii) the HCO3

� -dependent excitatory
effects of GABA parallel the developmental upregulation of cytosolic CA activity
[34, 70].

The extent of the activity-dependent rapid shifts in EGABA to more depolarizing
values is likely to differ between neuronal subpopulations because of differences
in Cl�-HCO3

� homeostasis [59, 61, 112, 113]. There is also experimental data
suggesting that excitatory GABAergic transmission might contribute to seizure
generation [78, 107, 114].

6 CA VII Contributes to the Generation of Febrile Seizures

We have recently conducted an extensive study on the CA VII KO mouse [34]
where we addressed the role of CA VII in HCO3

� -dependent depolarizing GABA
responses and in the generation of experimental febrile seizures (eFS) induced by
hyperthermia [4]. Given the distinct developmental expression profiles of CA VII
and CA II, the novel CA VII KO mouse provided an excellent opportunity to
examine how this neuron-specific isoform modulates excitability. Whole cell patch
clamp studies on P12-16 WT and CA VII KO hippocampal pyramidal neurons
showed that HCO3

� -dependent net uptake of Cl� via GABAARs is strongly
facilitated by CA VII activity. Consequently, the high-frequency stimulation –
induced, long-lasting GABAergic depolarization was able to induce action potential
firing in WT, but not in CA VII KO neurons (Fig. 14.1c). Boosting GABAAR-
mediated signalling with diazepam in P14 rat hippocampal slices prolonged the
duration of excitatory GABAergic responses and increased the number of action
potentials associated with the depolarization. After P35, when neuronal CA II
expression has also taken place, both isoforms were equally efficient in promoting
HCO3

� -dependent GABAergic depolarization. As expected, in the CA II/CA VII
double KO, i.e. in the absence of CAi activity, GABAergic depolarization remained
small also at adult stage.

The developmental stage of the rodent brain and especially its cortical structures
at P13-P14 is generally thought to be relevant for comparisons to the human
situation, where FS are first seen at an age of 6 months [7, 115]. A striking difference
in seizure generation was found between WT and CA VII KO mice. Cortical EEG
monitoring showed that electrographic seizures were present in WT but not in
CA VII KO mice. Importantly, there were no genotype-dependent differences in
hyperventilation and the consequent respiratory alkalosis which is a major trigger
of eFS [4, 7].

Behavioural experiments on P14 rat pups showed that enhancing GABAAR
signalling by a low dose of diazepam facilitated the triggering of eFS without
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affecting breath rate. At higher concentration diazepam prevented the generation
eFS, probably via suppressed breathing. In fact, the suppression of breathing and
the consequent block of the FS-promoting respiratory alkalosis might be a major
mechanism in the therapeutic actions of diazepam which is routinely given to
children with FS.

In humans FS are the most common type of seizures during early childhood
[116]. Consistent with a role in FS, exon array analysis showed a prenatal
upregulation of CA VII in the human neocortex and hippocampus that precedes
the postnatal time period during which FS are most commonly detected [34].

These data as a whole suggest that designing next-generation isoform-specific
inhibitors of CA VII has much potential as a novel approach in the treatment of FS
and possibly other epileptiform syndromes.

7 Conclusions

In comparison to Ca2C, the multiple and evolutionarily ancient roles of HC ions
in controlling neuronal signaling have received surprisingly little attention. For
instance, the strikingly steep pHo dependency of the gating of GABAA and NMDA
channels has been recognized for decades, but the amount of work done on
the functional impact of activity-evoked pHo transients on synaptic transmission
is sparse [46, 47, 96, 97, 117]. What is known about the actions of HC does
indicate that it is one of the most important physiologically-active agents that
exert a fundamental modulatory role in neuronal development, plasticity, as well
as synaptic and electrical signalling.

Moreover, HC is an amazingly potent agent in the suppression of seizures
[5, 101, 102]. Neuronal pH shifts exert also a strong influence on the outcome
from disease states such as stroke and ischemia/anoxia [118]. Observations of
this kind are consistent with the multiple physiological roles of HC signalling,
and elucidating the underlying processes is likely to be useful in pre-clinical
and clinical work on many other disease states, such as migraine and chronic
pain [119]. In the context of pathophysiological mechanisms, strategies that target
neuronal pH may turn out to be as, or even more relevant, than those designed for
modulation of neuronal Cl� homeostasis [102], an area which has recently attracted
extensive attention within the neuroscience community [59]. Here, one should note
that in addition to tight Ca2C/HC interactions at the molecular and cellular level
[120], pH and Cl� regulation are closely linked, especially via HCO3

� -dependent
mechanisms [121].

The key role of CA isoforms in the suppression, generation and modulation
of pH shifts in the brain and other parts of the CNS makes these molecules
highly interesting in studies of the fundamental mechanisms underlying neuronal
signalling. The developmental profiles of distinct CAs, as well as their strategic
localization seen from the level of the whole organism to subcellular microdomains
points to a high versatility of their regulatory functions thus providing an exciting
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subject for molecular, cellular, physiological, medical and pharmacological research
[27, 119, 122]. Finally, it is obvious that CAs represent a promising family of targets
for CNS drug research and design.
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