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    Abstract      Trypanosoma cruzi trans -sialidase (TcTS) has intrigued researchers all 
over the world since it was shown that  T .  cruzi  incorporates sialic acid through a 
mechanism independent of sialyltransferases. The enzyme has being involved in a 
vast myriad of functions in the biology of the parasite and in the pathology of 
Chagas’ disease. At the structural level experiments trapping the intermediate with 
fl uorosugars followed by peptide mapping, X-ray crystallography, molecular 
modeling and magnetic nuclear resonance have opened up a three-dimensional 
understanding of the way this enzyme works. Herein we review the multiple bio-
logical roles of TcTS and the structural studies that are slowly revealing the secrets 
underlining an effi cient sugar transfer activity rather than simple hydrolysis by TcTS.  

  Abbreviations 

   4-MUNeu5Ac    4-methylumbelliferyl-N-acetyl neuraminic acid   
  Gal f     Galactofuranose   
  Gal p     Galactopyranose   
  GlcNAc     N -acetylglucosamine   
  Neu5Ac     N -acetylneuraminic   
  Neu5Gc     N -glycolylneuraminic acid   
  NGF    Nerve growth factor receptor   
  pNPNeu5Ac    p-nitrophenyl-N-acetyl-neuraminic acid   
  SAPA    Shed acute phase antigen   
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  Sias    Sialic acids   
  Siglecs    Sia-binding Ig-like lectin   
  TcTS     Trypanosoma cruzi trans -sialidase   
  TSs     Trans -sialidase family   
  UTR    Untranslated regions   

1           Introduction 

 The initiation of communication between  Trypanosoma cruzi , the etiologic agent of 
Chagas’ disease, and mammalian cells requires contact between parasite molecules 
and host ligands. The parasite membrane is covered with a dense coat formed 
mainly of molecules of the  trans -sialidase (TSs) family and of sialic acids (Sias) 
containing glycoproteins; this coat assures an interface with the host environment 
(Freitas et al.  2011 ; De Pablos and Osuna  2012 ). Sias are acidic monosaccharides 
found at the outermost ends of the sugar chains of glycoconjugates involved in a 
myriad of functions ranging from cell recognition to cell life and death (Varki  
 2006 ).  T .  cruzi  is not able to synthesize Sias by the well-known route in which cyti-
dine monophosphate-sialic acid is an intermediate. Instead,  T .  cruzi  is part of a 
restrict group of parasites evolutionarily adapted to incorporate sialic acid from 
exogenous sialoglycoconjugates by means of a glycoside hydrolase known as  trans - 
sialidase  (TcTS) (Previato et al.  1985 ). Further evidences suggest that TcTS activity 
play several functions in the course of  T .  cruzi  infection ensuring a life-long parasit-
ism in humans. The multifunctional role of TcTS is due to its ability to dialogue 
with different cells from the mammalian host (Fig.  8.1 ) (Mendonça-Previato et al. 
 2010 ;    dC-Rubin and Schenkman  2011 ; Chuenkova and Pereiraperrin  2011 ; Schauer 
and Kamerling  2011 ; Freire-de-Lima et al.  2012 ). Alongside, structural works are 
deciphering the way this enzyme works. TcTS was the fi rst example of a retaining 
glycosidase utilizing an aryl glycoside intermediate (Watts et al.  2003 ; Amaya et al. 
 2004 ). Such fi nding had shed light in the catalytic mechanisms of other sialidases of 
medical importance (Kim et al.  2013 ; Vavricka et al.  2013 ).

   Herein, we discuss the importance of this unique enzyme in curse of infection of 
mammalian host by  T .  cruzi , highlighting the studies that are deciphering the mech-
anism of TcTS catalysis.  

2     Structure and Catalytic Mechanism of TcTS 

 TcTS is a retaining glycoside hydrolase (Todeschini et al.  2000 ) member of the fam-
ily number 33 (GH-33) (  http://www.cazy.org/GH33.html    ) that preferentially trans-
fers sialic acid units to β-galactopyranosyl (β-Gal p )-containing molecules and 
exclusively synthesizes α2-3-linkages (Fig.  8.2a ). In the absence of a galactoside, 
TcTS catalyzes sialoside hydrolysis (Fig.  8.2b ) with retention of confi guration 
(Todeschini et al.  2000 ).
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   The TcTS structure consists of three domains (Fig.  8.3a ): (i) an N-terminal 
domain containing a binding site (green in Fig.  8.3a ) that folds into a six-bladed 
β propeller-structure (Buschiazzo et al.  2002 ), (ii) a globular C-domain with a lectin- 
like organization (blue in Fig.  8.3a ) that is not required for TcTS activity, and (iii) a 
C-terminal and unfolded domain that is formed by 12-amino-acid repeats, known as 
a ‘shed acute phase antigen’ (SAPA) (Pollevick et al.  1991 ).

   TcTS is linked to the surface of blood-derived trypomastigotes by a glyco-
sylphosphatidylinositol-anchor; the lipid portion of this anchor consists of ceramide 
and hexadecylglycerol (Agusti et al.  1997 ), while in metacyclic trypomastigotes, 
ceramide is the sole constituent lipid (Agusti et al.  1998 ). The presence of ceramide 
in the glycosylphosphatidylinositol-anchor allows the enzyme to be actively cleaved 
from the surface of  T .  cruzi  (Pollevick et al.  1991 ) by the action of a phospholipase 
C (Rosenberg et al.  1991 ). These data explain the presence of SAPA antigens 
(Parodi et al.  1992 ) and  trans -sialidase activity in the serum of patients in the acute 
phase of Chagas’ disease (De Titto and Araújo  1988 , Mallimaci et al.  2010 ; Gil et al. 
 2011 ). The SAPA repeats cause enzyme oligomerization and induce the production 
of antibodies (Cazzulo and Frasch  1992 ). The insect-derived epimastigote forms 
express a monomeric and transmembrane TcTS lacking the SAPA portion (Chaves 
et al.  1993 ). 

  Fig. 8.1    Possible interactions of TcTS with different cells. The multifunctional role of TcTS dur-
ing  T .  cruzi  infection is due to its ability to dialogue with different cells from the mammalian host       

 

8  Trans-Sialidase from Trypanosoma cruzi



184

  Fig. 8.2    ( a ) Transfer of Neu5Ac from Neu5Ac α-2-3Galβ1-x-containing linkage donors to termi-
nal β-galactopyranosyl (β-Gal p ) catalyzed by TcTS. ( b ) Sialoside hydrolysis catalyzed by TcTS       

  Fig. 8.3    ( a ) Overall structure of TcTS. The  square  shows the catalytic site position. ( b ) The active 
site of TcTS. The catalytic amino acid residues Tyr342, Glu230, and Asp59 ( yellow ), the Asp96 
residue ( magenta ), the triad of arginines Arg35, Arg245, Arg314 ( blue ) and the gatekeepers 
Trp312 and Tyr119 ( orange ) are highlighted       
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 The C-terminal globular domain is formed by two antiparallel β-sheets in a 
β-sandwich-like structure (Buschiazzo et al.  2002 ); this structure is linked to the 
N-terminal domain by a long α-helix (yellow in Fig.  8.2a ), the largest of the few 
reported in the TcTS (Buschiazzo et al.  2002 ). The N-terminal domain comprises 
approximately 680 amino acids (Schenkman et al.  1992 ; Campetella et al.  1994 ) 
folded into a six-bladed β propeller, similar to the crooked β-barrel structure char-
acteristic of microbial sialidases (Taylor  1996 ). This domain contains all the amino 
acid residues that are involved in sialic acid binding: (i) the motif S-x-D-x-G-x-T-W 
(also called Asp-box), repeated three to fi ve times in the sequences of bacterial and 
mammalian sialidases (Roggentin et al.  1989 ), (ii) the x-R-x-P (or FRIP) region 
found at the N-terminal domain of the Asp-box, and (iii) three arginines known to 
bind the carboxylate group of sialic acid (Gaskell et al.  1995 ). Such a structure 
forms a deep catalytic pocket with hydrophobicity produced by residues such as 
Met95, Phe115, Trp120 and Val176 (Buschiazzo et al.  2000 ); these residues are 
suitable for the transfer reaction because they may contribute to water exclusion 
from the cleft, thus reducing the hydrolytic potential of the enzyme. The hydropho-
bic residues Trp312 and Tyr119 (Fig.  8.2b ) are at the protein surface in close contact 
with water, thus acting as “gatekeepers” of the cleft (Carvalho et al.  2010 ). The 
loops carrying these residues move according to the incoming or outgoing of 
reagents (Demir and Roitberg  2009 ). The crystal structure of TcTS shows that 
Tyr119 adopts different positions in the absence or presence of sialoside (Buschiazzo 
et al.  2002 ). The loop carrying the Trp312 residue is at the opposite side of the cata-
lytic cleft. This residue stabilizes the galactoside moiety of the substrate in the 
enzyme pocket through CH/π interactions (Nesmelova et al.  2010 ). The W312A 
mutation changes the substrate specifi city, resulting in a mutant capable of hydro-
lyzing both α2-3- and α2-6-linked sialosides and leading to the loss of  trans - 
 sialidase activity (Paris et al.  2001 ). 

 The catalytic mechanism of TcTS represented in Fig.  8.4  shows that, as the sialo-
side approaches Tyr119 and Trp312 move away to allow the entry of the substrate 
into the catalytic cleft. Within the catalytic site, the carboxyl group of the sialoside 
binds to the arginine triad composed of Arg35, Arg245 and Arg314 (blue in Fig.  8.2b ), 
while its acetamido group interacts with Asp96, forcing the ring to adopt a  4 H 5  con-
formation. The hydroxyl group of Tyr342 reacts as a nucleophile, assisted by the 
nearby Glu230, and forms a covalent intermediate with the sialic acid ring. X-ray 
structures and experiments trapping the intermediate with fl uorosugars followed by 
peptide mapping and crystallography support this mechanism (Watts et al.  2003 ; 
Amaya et al.  2004 ). The covalent intermediate assumes a  2 C 5  conformation, and 
Asp59 donates its proton to the substrate aglycone. TcTS was the fi rst enzyme 
described to undergo acid/base catalysis and to have a tyrosine (Tyr342) as the cata-
lytic nucleophile (Watts et al.  2003 ). The use of a tyrosine as a nucleophile presents 
a distinct advantage over the use of a negatively charged carboxylate because the 
anomeric center of Sias is itself negatively charged and could therefore be subject to 
interfering charge repulsion. The single mutation from Tyr342 to His in the naturally 
occurring TcTS Y342H  causes enzymatic inactivation (Cremona, et al.  1995 ) but con-
serves binding to Sia and β-Gal p -containing glycans (Todeschini et al.  2002a ,  2004 ).
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   According to a ping-pong mechanism (Fig.  8.4 ), the aglycone leaves the pocket 
to enable the sialic acid acceptor substrate to bind to the enzyme. The transfer to the 
acceptor occurs through the attack of the 3-OH group of a lactose moiety or of water 
(as in other sialidases) deprotonated by the Asp59 residue acting as an acid/base 
catalyst (Damager et al.  2008 ) on the C2 of the sialyl-enzyme intermediate. 

 Further works have helped to elucidate the structural features that underlie effi -
cient sugar transfer activity rather than simple hydrolysis by TcTS. Important evi-
dences reveal that the TcTS Y342H  binding site undergoes large conformational 
changes upon sialoside engagement, thus triggering the opening of a second binding 
pocket that accommodates a β-Gal p  moiety in a ternary complex (Todeschini et al. 
 2004 ; Haselhorst et al.  2004 ). The incubation of TcTS Y342H  with α2-6-sialyllactose 
in the presence of lacto-N-tetraose has shown that the incorrect positioning of sialo-
side into the binding site of TcTS does not trigger β-Gal p  binding. Moreover, sur-
face plasmon resonance results showed that lactose binds to an inactive mutant 
(TcTS D59N ) in the presence of α2-3-sialyllactose (Buschiazzo et al.  2002 ). Other key 

  Fig. 8.4    Proposed reaction mechanism for TcTS. ( a ) Upon binding a sialic acid donor, the 
hydroxyl group of Tyr342 reacts as a nucleophile, assisted by the nearby Glu230 acting as a gen-
eral base catalyst, and Asp59 protonates the leaving group. ( b ) Tyr342 attacks C2 from the sialyl 
moiety, and the reaction reaches its transition state. ( c ) The reaction proceeds with the complete 
breakdown of the glycosidic linkage, releasing the aglycone. At this time, the covalent intermedi-
ate of sialic acid bound to Tyr342 is formed. Such a state is perturbed by the entrance of an accep-
tor ( red ) in the active site of TS. ( d ) Asp59 acts as a basic catalyst by deprotonating the hydroxyl 
from C3 of terminal Gal, which, in turn, attacks the covalent intermediate, promoting a new transi-
tion state. ( e ) Gal completes the nucleophilic attack, and the reaction ends with the retention of the 
confi guration of the sialic acid moiety       
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residues that contribute to the plasticity of the binding site were identifi ed by muta-
genesis studies (Paris et al.  2001 ; Carvalho et al.  2010 ), by hybrid quantum mechan-
ics/molecular mechanics simulations and by molecular dynamic simulation (Demir 
and Roitberg  2009 ; Mitchell et al.  2010 ; Pierdominici-Sottile and Roitberg  2011 ; 
Pierdominici-Sottile et al.  2011 ). 

2.1     TcTS Substrate Specifi city 

 TcTS catalyzes the transfer of Sias N-acetylneuraminic (Neu5Ac) and its derivative 
the N-glycolylneuraminic acid (Neu5Gc) from Siaα-2-3Galβ1-x-containing donors 
to terminal β-galactopyranosyl (β-Gal p )-containing acceptors and attaches them in 
α2-3-linkage (Vandekerckhove et al.  1992 ). 

 Natural sialic acid acceptors for TcTS on the surface of  T .  cruzi  consist mainly 
of a family of highly  O -glycosylated, threonine-rich mucin-like glycoproteins 
(Buscaglia et al.  2006 ; Mendonça-Previato et al.  2008 ) that are glycosylphosphati-
dylinositol- anchored to the parasite membrane (Previato et al.  1995 ). The Tc-mucins 
are the most expressed components of  T .  cruzi  (2 × 10 6  copies per parasite) and 
compose the third most widely expanded gene family in the genome, comprising 
more than 1,000 genes (El-Sayed et al.  2005a ,  b ; De Pablos and Osuna  2012 ). 
Carrying up to 60 % of their total mass in carbohydrates, mucins form an elaborate 
and highly decorated glycocalyx that allows the parasite to interact with and respond 
to its external environment. The structures of the sialic acid acceptors of non-infec-
tive epimastigote forms were described (Previato et al.  1994 ,  1995 ; Todeschini et al. 
 2001 ,  2009 ; Agrellos et al.  2003 ; Jones et al.  2004 ) as  O -linked oligosaccharides 
attached to the peptide backbone through an  N -acetylglucosamine (α-GlcNAc) resi-
due (Previato et al.  1995 , Mendonça-Previato et al.  2013 ) further substituted by 
β-Gal residues on O-4 and O-6. The major sialylated oligosaccharides reported thus 
far comprise a Neu5Acα2-3Gal p β1- 4GlcNAc sialoside (Jones et al.  2004 ), a Gal f β1-
4(Neu5Acα2-3Gal p β1-6) GlcNAc sialoside (Agrellos et al.  2003 ), a Gal p β1-
4(Neu5Acα2-3Gal p β1-6)GlcNAc sialoside, and a Galpβ1-6(Neu5Acα2-3Gal p β1-4)
GlcNAc sialoside (Previato et al.  1995 ; Todeschini et al.  2001 ). The Neu5Ac resi-
due was distributed approximately equally between the digalactosylated species of 
the 4-arm and 6-arm. This observation suggests that the addition of the fi rst Neu5Ac 
residue hinders the addition of a second residue (Previato et al.  1995 ), as disialylated 
forms were not observed. Neither the terminal β-galactofuranose- (β-Gal f )-linked 
residues found in  O -glycans from G (Previato et al  1994 ), DM28c (Agrellos et al. 
 2003 ), Tulahuen (Jones et al.  2004 ) or Colombiana (Todeschini et al.  2009 ) strains 
nor the α-galactosyl residues found in the mucin glycans of infective trypomastigotes 
(Almeida et al.  1994 ) were found to be acceptors for TcTS. 

 A wide variety of molecules containing a terminal β-Gal p -unit are suitable 
acceptors for  trans -sialidase activity in vitro (Vandekerckhove et al.  1992 ; Scudder 
et al.  1993 ). The natural acceptor N-acetyllactosamine (Galβ1-4GlcNAc) is a bet-
ter substrate for the TcTS reaction than is lactose (Lac, Gal p β1-4Glc) 
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(Vandekerckhove et al.  1992 ). In addition, TcTS shows higher transfer rates for 
the Galβ1–4-linkage than for the Galβ1–3-linkage. The lactose open-chain deriva-
tives lactitol and lactobionic acid and the products generated by the addition of 
Gal p , Gal f  or benzyl residues to the lactitol molecule were found to be good 
acceptors of sialic acid (Agustí et al.  2004 ,  2007 ). Recently, the reactions of a 
series of octyl galactosides and octyl  N -acetyllactosamines with TcTS were tested. 
The results showed that the TcTS acceptor binding site does not tolerate the sub-
stitution of Gal p  at positions 2 and 4, while substitutions at position 6 of the Gal 
ring are well accepted (Harrison et al.  2011 ). 

 The tolerance of TcTS to modifi cations in the C-6 position of the acceptor Gal 
moiety makes the 6-deoxy-galactose (D-Fuc) derivative D-Fucβ1-6GlcNAc-α-
benzyl an interesting acceptor. As the disaccharide is not a substrate for galactose 
oxidase, it was reported to be an acceptor substrate for TcTS activity in a quantifi cation 
assay (Sartor et al.  2010 ). 

 In terms of donor substrates, neither thiosialosides (Harrison et al.  2001 ) nor 
2-6-, 2-8-, or 2-9-linked sialic acids are substrates for TcTS and TcTS Y342H  
(Vandekerckhove et al.  1992 ). Both proteins recognize α2-3-linked sialic acid and 
its 7-carbon analog (Previato et al.  1985 ; Todeschini et al.  2002a ). Binding can be 
abolished by either fucosylation or carboxyl reduction (Vandekerckhove et al.  1992 ; 
Todeschini et al.  2002a ). Therefore, the ligands of the selectins sialyl Lewis x  and 
sialyl Lewis a  are not ligands for TcTS or TcTS Y342H . 

 Given that the pocket around the glycerol moiety of sialoside (comprising the 
amino acids W120, T121, Q195, V203) is too small to accommodate bulky groups, 
acetylation at C7 and C8 prevents enzyme to bind, so does modifi cation at the 
C4 position (Vandekerckhove et al.  1992 ). Interestingly, incorporation of aryl 
groups such as umbelliferyl and benzamide at the C9 position of the 2,3-difl uorosia-
lic acid produced selective and potent inhibitors of TcTS (Buchini et al.  2008 ). 

 The synthetic donors 4-methylumbelliferyl- N -acetyl neuraminic acid 
(4-MUNeu5Ac) and p-nitrophenyl-N-acetyl-neuraminic acid (pNPNeu5Ac) are 
poorer sialic acid donors to the enzyme than are α2-3sialyllactose (Neu5Acα2-
3Galβ1- 4Glc) or α2-3sialyllactosamine (Neu5Acα2-3Galβ1-4GlcNAc) 
(Ribeirão et al.  1997 ; Todeschini et al.  2000 ). In fact, natural sialosides would 
fi t correctly in the TcTS catalytic pocket, thus inducing the acceptor donor to 
bind and increasing transfer rates, while synthetic donors such as 4-MUNeu5Ac 
and pNPNeu5Ac would not be able to trigger a suffi cient shifting in the enzyme 
framework to allow acceptor binding and would thus be better substrates for 
hydrolysis reaction (Harrison et al.  2001 ). 

 Other sialosides such as 2-difl uoromethyl-4-nitrophenyl- N -acetyl neuraminic 
acid and 5-acetamido-2-(4-N-5-dimethylaminonaphthalene-1-sulfonyl-2-difl uoro-
methylphenyl)- N -acetyl neuraminic acid were suicide substrates for TcTS (Carvalho 
et al.  2010 ). The 2-difl uoromethylphenyl aglycone released upon sialoside hydrolysis 
irreversibly inactivates TcTS. Recently, the synthesis of 1,2,3- triazole-linked sialic 
acid-6-O-galactose and the sialic acid-galactopyranoside were reported as a pro-
totype for further design of new neoglycoconjugates as TcTS substrates (Campo 
et al.  2012 ). 
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 Unlike free sialic acid, the synthetic monosaccharide 2,3-difl uorosialic acid is 
recognized as a donor by the enzyme (Watts et al.  2003 ). The molecule α2,3-
difl uorosialic acid temporarily inactivates TcTS through covalent binding with the 
hydroxyl group of Tyr342, thus opening new avenues for the design of irreversible 
TcTS inhibitors (Watts et al.  2003 ). 

 Besides, recognition of a wide variety of substrates, glycoproteins, glycolipids, 
and oligosaccharides recognized by TcTS makes it an appropriate tool for enzy-
matic glycosylation of glycans (Šardzík et al. 2011).   

3      Trypanosoma cruzi Trans -Sialidase Superfamily (TSs) 

 TcTS is part of the  trans -sialidase-like superfamily (TSs), a large and highly 
polymorphic gene family comprising 1,430 gene members and 693 pseudogenes 
(Freitas et al.  2011 ) divided into eight groups. Group I contains active TcTS and 
inactive TcTS Y342H  proteins, expressed in trypomastigote (tTS) and epimastigote 
(eTS) forms. Although the primary sequences of eTS and tTS are highly conserved 
(Chaves et al.  1993 ; Briones et al.  1995 , Jäger et al.  2008 ), their 3′ untranslated 
regions (3′UTR) are entirely different (Jager et al.  2007 ). The 3′UTRs of the region 
regulate the expression of several genes in  T .  cruzi  (Nozaki and Cross  1995 ; Weston 
et al.  1999 ; Di Noia et al.  2000 ) and are thought to play a role in the coordinated 
modulation of TSs stage-specifi c expression (Jager et al.  2007 ,  2008 ). Genes encod-
ing TcTS Y342H  members in the  T .  cruzi  genome are found in the same number of 
copies (60–80 per haploid genome) as those encoding TcTS (Cremona et al.  1999 ). 
Group II comprises members of TSs proteins that have no  trans -sialidase activity, 
including members of the family of gp85 surface glycoproteins gp82, TSA-1, SA85, 
gp90 and ASP-2. These proteins bind to β-galactose (Yoshida  2008 ), laminin 
(Giordano et al.  1994 ), fi bronectin (Ouaissi et al.  1988 ), collagen (Velge et al.  1988 ; 
Santana et al.  1997 ), and cytokeratin (Magdesian et al.  2001 ) and are implicated in 
host cell attachment and invasion. Recently, it was demonstrated that regulatory ele-
ments in the 3′UTR of the GP82 are responsible for its stage-specifi c expression in 
 T .  cruzi  metacyclic trypomastigotes (Bayer-Santos et al.  2012 ). FL-160, a represen-
tative of group III, is a regulatory protein that inhibits the alternative and classical 
complement pathways (Mathieu-Daudé et al.  2008 ). Tc13 is representative of group 
IV with an unknown function (García et al.  2008 ). 

 Various groups of the TSs family present motifs common to bacterial and 
mammalian sialidases, including FRIP (xRxP) and Asp box (Freitas et al.  2011 ), 
suggesting that other inactive members of TcTS might have lectinic properties. For 
instance, evidences have shown that the insect vector-derived metacyclic trypomas-
tigote uses its stage-specifi c surface molecule gp82 to bind to gastric mucin and 
establish  T .  cruzi  infection via an oral route (Neira et al.  2003 ; Yoshida  2008 ; 
Staquicini et al.  2010 ; Cortez et al.  2012a ,  b ). 

 The signifi cant sequence variability observed thus far suggests a strong selective 
pressure on the TSs gene family to diversify. This pressure may be provided in part 
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by the mammalian immune response because TSs proteins are targets of both 
humoral and cell-mediated immune responses (Frasch  2000 ). The TSs family is 
much smaller in  T .  brucei  than in  T .  cruzi , and it is absent in  L .  major  (El-Sayed 
et al.  2005a ,  b ). 

 Studies show that all groups of the TSs are represented in the subtelomeric 
regions. Most of the sequences are members of group II (GP82, GP85, TC85), 
which includes 22 complete genes (Moraes Barros et al.  2012 ). To confi rm that TSs 
and other subtelomeric genes were translated, the authors searched for peptides in 
the database of proteins expressed by  T .  cruzi  (TriTrypDB). The results of this 
search suggest that  T .  cruzi  subtelomeric regions can contain expression sites. 
The abundance of surface protein genes in the subtelomeric regions suggests that 
these regions may have acted as sites for DNA recombination and expansion and for 
the generation of new variants of surface proteins (Moraes Barros et al.  2012 ). 

3.1     TcTS and Its Role in Host Parasite Interaction 

 Immune evasion is particularly important for organisms that target long-lived hosts. 
The sialylation of parasite glycoconjugates by TcTS activity plays a major role in 
protecting the infective agent from the host’s innate immune response, thus favoring 
parasite survival. Evidence suggests that the sialylation of trypomastigote glycans 
confers resistance to killing by lytic antibodies (Almeida et al.  1994 ) directed to 
terminal α-galactosyl residues (Pereira-Chioccola et al.  2000 ). Indeed, the presence 
of Sia groups on the parasite mucins protects the blood forms of the parasite against 
complement-induced lysis and macrophage uptake (Tomlinson et al.  1994 ). 

  T .  cruzi  is an intracellular parasite and invasion of host cell is necessary to 
establish the infection. Infection of mammalian host cells by  T .  cruzi  is a multi-
step process that requires activation of multiple signal transduction pathways in 
both the host and the parasite that lead to parasite entry (Caradonna and Burleigh 
 2011 ). The host cells contain macromolecules such as laminin, thrombospondin, 
fi bronectin and glycoconjugates that cover the surface of the host cells. The TSs 
family and sialic acids containing glycoproteins present on parasite surface assure 
an interface with host environment. In this scenario, the importance of Sia on the 
parasite surface during host cell infection is still not elucidated. While some stud-
ies have shown that the Sia-containing epitopes on parasite augment  T .  cruzi  
infection (Piras et al.  1987 ; Schenkman et al.  1991 ), other groups suggest that the 
presence of Sia is not required for the invasion of host cells (Araújo-Jorge and 
De Souza  1988 ; Yoshida et al.  1997 ). The fi nding that TcTS Y342H , a natural mutant 
of TcTS, has two carbohydrate binding sites may explain these apparently ambig-
uous results. Although Schenkman et al. ( 1991 ) showed that the sialylation of the 
Ssp-3 epitope of mammalian cell-derived trypomastigotes is required for target 
cell recognition, Yoshida et al. ( 1997 ) reported that the removal of Sia from the 
surface of insect-derived metacyclic trypomastigotes enhances parasite-host 
interactions. The removal of Sia from  T .  cruzi  glycoproteins and the concomitant 
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exposure of cryptic β-Gal p  residues would favor TcTS Y342H  interaction with both 
host sialoglycoconjugates and terminal β-Gal p -containing glycoproteins on the 
parasite surface, thus enhancing  T .  cruzi /host adhesion by the removal of Sia and 
the concomitant exposure of β-Gal p  residues from host cell glycans. This phe-
nomenon was well characterized for CD22, a mammalian Sia-binding lectin 
(Varki and Gagneux  2012 ). Thus, the removal of Sia and the concomitant expo-
sure of β-Gal p  residues from host cell glycans can be physiologically signifi cant 
by promoting parasite adherence and penetration of host cells. 

 Another hypothesis is that TcTS sialylates the parasite glycomolecules, generating 
ligands for Sia-binding Ig-like lectin (Siglecs). Recent studies have shown that 
 T .  cruzi  sialylglycoproteins binds to siglecs on the host cell surface (Erdmann et al. 
 2009 ; Jacobs et al.  2010 ). Siglecs are a family of sialic-acid-binding immunoglobulin- 
like lectins that promote cell–cell interactions and regulate the functions of cells in 
the innate and adaptive immune systems through glycan recognition (Varki and 
Gagneux  2012 ).  T .  cruzi  mucin engagement with the Sia-binding protein Siglec-E 
promotes the immunosuppression of dendritic cells (Erdmann et al.  2009 ). 

 Concerning host cells it has being shown that TcTS promotes parasite attachment 
and entry into host cells through sialyl receptors (Souza et al.  2010 ). Experiments 
with Sia-defi cient mutants of Chinese Hamster Ovaries (CHO) (Ciavaglia et al. 
 1993 ; Ming et al.  1993 ) fi rst supported this premise. Sia-defi cient cells were less 
infective than wild type cells, suggesting that the sialylation of glycoconjugates on 
CHO cell surfaces is necessary during  T .  cruzi  invasion. The role of TcTS in para-
site adhesion to and invasion of host cells is supported by results showing that the 
treatment of cells with modifi ed Sia precursors N-acylmannosamines (Lieke et al. 
 2011 ) or with an irreversible inhibitor of the enzyme decreased cell invasion by 
 T .  cruzi  (Carvalho et al.  2010 ). Studies with endothelial cells support the impor-
tance of TcTS and Sia-containing molecules on the fi rst steps of parasite interaction 
and penetration of host cells. However, transfer reaction does not seem to be 
involved in this process as the inactive mutant TcTS Y342H  also up regulates parasite 
entry into endothelial cells. The data show that TcTS Y342H  binds α2-3-sialic acid 
containing molecules on endothelial cells resulting in NF-κB activation, expression 
of cell adhesion molecules E-selectin, intercellular adhesion molecule-1, vascular 
cell adhesion molecule-1, and rescue from apoptosis (Dias et al.  2008 ). Other evi-
dences show that TcTS promotes trypanosome-host cell interaction independent of 
sialidase/ trans -sialidase activities. TcTS mediates invasion of neural, epithelial, and 
phagocytic cells via nerve growth factor receptor (NGF) TrkA (Melo- Jorge and 
PereiraPerrin  2004 ,  2007 ). The effect is reproduced by TcTS mutants lacking cata-
lytic activity (Chuenkova et al.  1999 ) and a ~22mer synthetic peptide (and thus 
without enzymatic activity) reproduces biological activities of the TcTS (Chuenkova 
and PereiraPerrin  2005 ). 

 Nevertheless, studies suggest that a major function of TcTS in host cell infection 
is to facilitate the escape of the trypomastigote forms from the parasitophorous 
vacuole into the cytosol and their subsequent differentiation into amastigotes 
(Hall et al.  1992 ; Hall  1993 ; Hall and Joiner  1993 ; Lopez et al.   2002 ; Rubin-de-Celis 
et al.  2006 ). The exit of trypomastigotes from the parasitophorous vacuole in sialic 
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acid-defi cient cells occurs earlier than in wild-type cells suggesting that Sia may act 
as a barrier for parasite to escape (Hall et al. 1992; Hall and Joiner  1993 ; Rubin-de-
Celis et al.  2006 ). Likewise, parasites over expressing TcTS on the surface escaped 
earlier from the vacuole than non-transfected parasites indicating that TcTS may 
help parasites to enter the cytosol (Rubin-de-Celis et al.  2006 ). TcTS seems to 
metacyclics over remove sialic acid from lysosomal membranes, which fuse with 
 T .  cruzi  containing phagolysosomes after parasite invasion (Andrews  2002 ; Andrade 
and Andrews  2004 ). This appears to facilitate phagosomal membrane disruption by 
TcTox, the parasite pore forming molecule (Andrews et al.  1990 ). 

 In addition to its role in mammalian cell invasion, TcTS is involved in the patho-
genicity of  T .  cruzi ; indeed, the  in vivo  injection of small amounts of purifi ed native 
TcTS activity increased parasitemia and mortality in  T .  cruzi -infected mice 
(Chuenkova and Pereira  1995 ; Freire-de-Lima et al.  2010 ). The effect observed was 
specifi c to the transfer activity of TcTS, as the same effect did not occur in mice 
primed with viral or bacterial sialidases. Nevertheless, the injection of TcTS into 
defi cient SCID mice had no effect on parasitemia or mortality, suggesting that the 
mechanisms responsible for the observed effects involve host B and T lymphocytes 
(Chuenkova and Pereira  1995 ). These fi ndings suggest that the soluble form of 
TcTS is a virulence determinant molecule with relevant biological effects on the 
host immune system. Consistent with TcTS functioning as a virulence factor, the 
heterologous expression of TcTS in  Leishmania major  enhances parasite virulence 
(Belen-Carrillo et al.  2000 ). 

 Multiple effects of TcTS on host T- and B-lymphocyte function were demon-
strated (Fig.  8.1 ). The SAPA repeats induce the production of antibodies (Cazzulo 
and Frasch  1992 ; Buscaglia et al.  1998 ). The high immunogenicity of SAPA anti-
gens might play a role  in vivo  by increasing the half-life of the protein in the blood 
and by delaying the formation of inhibitory antibodies against the catalytic site of 
TcTS (Buscaglia et al.  1999 ; Pitcovsky et al.  2002 ), which correlates with control of 
parasite levels (Risso et al.  2007 ). The crystal structure of an inhibitory antibody 
fragment in complex with the globular region of TcTS was recently determined 
(Buschiazzo et al.  2012 ). The structure showed that the antibody does not occlude 
the catalytic site enzyme, instead, the antibody performs a delicate action by inhibit-
ing the movement of an assisting Tyr119, whose mobility is known to play a key 
role in the catalyze reaction. Moreover, the C-terminal region of TcTS activates 
B cells, inducing the production of nonspecifi c antibodies independent of the activity 
of T cells (Gao et al.  2002 ). 

 Furthermore, the engagement of TcTS and its inactive analog TcTS Y342H  with 
epitopes containing α2-3-Sia on CD43 from host CD4 +  T cells, triggers a co- 
stimulatory response through the mitogen-activated protein kinase ERK1/2 cas-
cade inducing mitogenesis (Todeschini et al.  2002b ). These results suggest that 
TcTS is responsible for host polyclonal lymphocyte activation, a condition 
underlying the induction of immunopathology and preventing effective vaccina-
tion (Reina-San- Martin et al.  2000 ; Minoprio  2001 ) in the course of  T .  cruzi  
infection; these observations also corroborate the hypothesis that TcTS Y342H  pro-
motes glycan cross-linking. 
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 Studies on the effect of TcTS on CD8 +  T cells show that TcTS resialylates CD8 +  
T cell surface, thereby dampening the Ag-specifi c response and favoring parasite 
persistence in the mammalian host (Freire-de-Lima et al.  2010 ). TcTS-mediated resi-
alylation  in vitro  and  in vivo  decreases the cytotoxic activity of antigen- experienced 
CD8 +  T cells against the immunodominant synthetic peptide IYNVGQVSI (Freire-
de-Lima et al.  2010 ). These results demonstrate that  T .  cruzi  subverts sialylation to 
attenuate CD8 +  T cell interactions with peptide/MHC class I complexes. CD8 +  T cell 
resialylation may represent a sophisticated strategy to ensure lifetime host parasit-
ism. In an attempt to establish the nature of the Sia acceptor for TcTS on the CD8 +  
T cell surface, CD8 +  T cells from mice lacking the ST3Gal-I sialyltransferase, an 
enzyme required for sialylation of core 1  O -glycans (Priatel et al.  2000 ), were 
infected with  T .  cruzi . The loss of ST3Gal-I sialyltransferase exposes the Gal1-
3GalNAc-Ser/Thr moiety, creating an attractive model to establish CD43 as a natural 
receptor for native TcTS during  T .  cruzi  infection. Indeed, the infection of mice lack-
ing ST3-Gal-I sialyltransferase restores, at least in part, the binding of anti-CD43 S7 
mAbs that recognize Sia-containing epitopes on CD43 of CD8 +  T cells. These fi nd-
ings indicate that CD43 is a target receptor for TS on the CD8 +  T cell surfaces. 
However, the resialylation by TcTS was also observed on CD8 +  T cells from CD43 
KO mice, suggesting that, in the absence of CD43, other molecules are substrates for 
TcTS. Other studies using azido-modifi ed unnatural Sia revealed that CD45 isoforms 
are Sia acceptors for TcTS activity as well (Muiá et al.  2010 ). Moreover, the 
sialylation of thymocytes by TcTS activity is crucial to deciding the outcome of the 
cells during interaction with thymic lectins. The alteration of the surface sialylation 
by TcTS (Mucci et al  2006 ) leads to  in vivo  depletion of the CD4 + CD8 +  double-
positive thymocytes inside the “nurse cell complex” (Leguizamón et al.  1999 ). 

 TcTS activity can also compromises host cell homeostasis. Tribulatti and co- authors 
( 2005 ) demonstrated that the administration of TcTS to uninfected mice reduces the 
Sia content of platelets (Fig.  8.1 ), thus exposing terminal galactose residues, which 
may explain the severe thrombocytopenia observed in  T .  cruzi -infected individuals. 
The recognition of the terminal galactose moiety exposed on the platelet surface 
accelerates platelet clearance by asialoglycoprotein receptor-expressing scavenger 
cells (Sørensen et al.  2009 ). The effect of TcTS on the lifetime of other cell types 
and plasma glycoproteins should be further verifi ed. 

 Another interesting example of how TcTS activity can modulate host responses is 
the effect of the sialylation of host cell receptors. The desialylation of sialyl TOLL-
like receptor 4 (TLR4) by TcTS induces receptor dimerization and facilitates MyD88/
TLR4 complex formation and NF-kappaB activation in a manner similar to the 
responses observed with LPS (Amith et al.  2010 ). Likewise, TcTS alters the sialylation 
status of the tyrosine kinase receptor-A (TrkA) in PC12 cells, inducing receptor inter-
nalization, activation, neuronal differentiation and rescue from apoptosis (Woronowicz 
et al.  2004 ,  2007 ). The observed effects are triggered by the hydrolysis of Sia residues 
of TrkA by TcTS because a purifi ed recombinant α2-3- neuraminidase, but not a cata-
lytically inactive mutant of TcTS, induces the receptor phosphorylation. 

 Due its role in neuronal differentiation, neural repair and neuron protection 
against apoptosis upon Trk receptor binding, TcTS was termed a “parasitokine” or 
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“parasite-derived neurotrophic factor (PDNF)” (Chuenkova and Pereira  2000 ,  2003 ; 
Chuenkova and Pereiraperrin  2005 ,  2011 ). Trk receptors are a family of tyrosine 
kinases that regulate synaptic strength and plasticity in the mammalian nervous 
system (Fig.  8.1 ). TcTS binds to the TrK through the globular C-domain corre-
sponding to the amino acid sequence 425–445 (Chuenkova and Pereiraperrin  2005 ), 
thus independently of any enzymatic activity. Following binding to Trk, TcTS 
causes receptor dimerization, the phosphorylation of tyrosine residues in the cyto-
plasmic domain and the generation of cell signals critical for neuronal survival 
(Chuenkova and Pereiraperrin  2011 ). More recently, it was demonstrated that TcTS- 
TrkA interaction in cardiac fi broblast induces an increased production of NGF, 
enabling, in a paracrine fashion, myocytes to resist oxidative stress (Aridgides et al. 
 2013 ). Thus, TcTS-elicited regenerative responses likely prolong parasite persis-
tence in infected tissues.   

4     Conclusions 

 On the basis of the above observations it would be reasonable to compare the appar-
ently contradictory effects of TcTS during  T .  cruzi  infection outlined in this review 
to the Chinese concept of yin-yang used to describe how seemingly opposite or 
contrary forces are interconnected, interacting to form a whole greater than either 
separate part. Thus, it would be more appropriate to say that TcTS effects are actu-
ally complementary, not opposing, effects, sometimes favoring the host, sometimes 
favoring the parasite ensuring a parasitism that last for host whole life. 

 Beyond the urgency of alternative drugs to treat the illness, to pursuit of TcTS 
inhibitors might clarify the role of TcTS in the pathogenesis of Chagas’ disease. 
Although effective TcTS inhibitors have not yet been reached, efforts made in this 
area have found interesting lead compounds. 

 Furthermore, recognition of a wide variety of substrates recognized by TcTS 
makes it the proper tool for direct enzymatic glycosylation of sialyloligosaccharides 
in glycans synthesis. Finally the TcTS may be used as therapeutic agents to treat not 
only infectious diseases but also unrelated disorders.     
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