
Natural Logic and Natural Language Inference

Bill MacCartney and Christopher D. Manning

Abstract We propose a model of natural language inference which identifies valid
inferences by their lexical and syntactic features, without full semantic interpreta-
tion. We extend past work in natural logic, which has focused on semantic contain-
ment and monotonicity, by incorporating both semantic exclusion and implicativ-
ity. Our model decomposes an inference problem into a sequence of atomic edits
linking premise to hypothesis; predicts a lexical entailment relation for each edit;
propagates these relations upward through a semantic composition tree according to
properties of intermediate nodes; and joins the resulting entailment relations across
the edit sequence. A computational implementation of the model achieves 70 % ac-
curacy and 89 % precision on the FraCaS test suite. Moreover, including this model
as a component in an existing system yields significant performance gains on the
Recognizing Textual Entailment challenge.

1 Introduction

Natural language inference (NLI) is the problem of determining whether a natu-
ral language hypothesis h can reasonably be inferred from a given premise p. For
example:

(1) p: Every firm polled saw costs grow more than expected, even after adjusting
for inflation.

h: Every big company in the poll reported cost increases.

A capacity for open-domain NLI is clearly necessary for full natural language
understanding, and NLI can also enable more immediate applications, such as se-
mantic search and question answering. Consequently, NLI has been the focus of
intense research effort in recent years, centered around the annual Recognizing Tex-
tual Entailment (RTE) competition (Dagan et al. 2006).
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For a semanticist, the most obvious approach to NLI relies on full semantic in-
terpretation: first, translate p and h into some formal meaning representation, such
as first-order logic (FOL), and then apply automated reasoning tools to determine
inferential validity. While the formal approach can succeed in restricted domains, it
struggles with open-domain NLI tasks such as RTE. For example, the FOL-based
system of Bos and Markert (2005) was able to find a proof for less than 4 % of
the problems in the RTE1 test set. The difficulty is plain: truly natural language
is fiendishly complex. The formal approach faces countless thorny problems: id-
ioms, ellipsis, paraphrase, ambiguity, vagueness, lexical semantics, the impact of
pragmatics, and so on. Consider for a moment the difficulty of fully and accurately
translating example (1) to a formal meaning representation.

Yet example (1) also demonstrates that full semantic interpretation is often not
necessary to determining inferential validity. To date, the most successful NLI sys-
tems have relied on surface representations and approximate measures of lexical and
syntactic similarity to ascertain whether p subsumes h (Glickman et al. 2005; Mac-
Cartney et al. 2006; Hickl et al. 2006). However, these approaches face a different
problem: they lack the precision needed to properly handle such commonplace phe-
nomena as negation, antonymy, downward-monotone quantifiers, non-factive con-
texts, and the like. For example, if every were replaced by some or most through-
out (1), the lexical and syntactic similarity of h to p would be unaffected, yet the
inference would be rendered invalid.

In this paper, we explore a middle way, by developing a model of what Lakoff
(1970) called natural logic, which characterizes valid patterns of inference in terms
of syntactic forms which are as close as possible to surface forms. For example,
the natural logic approach might sanction (1) by observing that: in ordinary upward
monotone contexts, deleting modifiers preserves truth; in downward monotone con-
texts, inserting modifiers preserves truth; and every is downward monotone in its
restrictor NP. Natural logic thus achieves the semantic precision needed to handle
inferences like (1), while sidestepping the difficulties of full semantic interpretation.

The natural logic approach has a very long history,1 originating in the syllogisms
of Aristotle (which can be seen as patterns for natural language inference) and con-
tinuing through the medieval scholastics and the work of Leibniz. It was revived
in recent times by van Benthem (1988, 1991) and Sánchez Valencia (1991), whose
monotonicity calculus explains inferences involving semantic containment and in-
versions of monotonicity, even when nested, as in Nobody can enter without a valid
passport |= Nobody can enter without a passport. However, because the monotonic-
ity calculus lacks any representation of semantic exclusion, it fails to license many
simple inferences, such as Stimpy is a cat |= Stimpy is not a poodle.

Another model which arguably belongs to the natural logic tradition (though not
presented as such) was developed by Nairn et al. (2006) to explain inferences in-
volving implicatives and factives, even when negated or nested, as in Ed did not
forget to force Dave to leave |= Dave left. While the model bears some resemblance

1For a useful overview of the history of natural logic, see van Benthem (2008). For recent work on
theoretical aspects of natural logic, see (Fyodorov et al. 2000; Sukkarieh 2001; van Eijck 2005).
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to the monotonicity calculus, it does not incorporate semantic containment or ex-
plain interactions between implicatives and monotonicity, and thus fails to license
inferences such as John refused to dance |= John didn’t tango.

We propose a new model of natural logic which extends the monotonicity calcu-
lus to incorporate semantic exclusion, and partly unifies it with Nairn et al.’s account
of implicatives. We first define an inventory of basic entailment relations which in-
cludes representations of both containment and exclusion (Sect. 2). We then describe
a general method for establishing the entailment relation between a premise p and
a hypothesis h. Given a sequence of atomic edits which transforms p into h, we de-
termine the lexical entailment relation generated by each edit (Sect. 4); project each
lexical entailment relation into an atomic entailment relation, according to proper-
ties of the context in which the edit occurs (Sect. 5); and join atomic entailment
relations across the edit sequence (Sect. 3). We have previously presented an imple-
mented system based on this model (MacCartney and Manning 2008); here we offer
a detailed account of its theoretical foundations.

2 An Inventory of Entailment Relations

The simplest formulation of the NLI task is as a binary decision problem: the
relation between p and h is to be classified as either entailment (p |= h) or
non-entailment (p �|= h). The three-way formulation refines this by dividing non-
entailment into contradiction (p |= ¬h) and compatibility (p �|= h ∧ p �|= ¬h).2 The
monotonicity calculus carves things up differently: it interprets entailment as a se-
mantic containment relation � analogous to the set containment relation ⊆, and
thus permits us to distinguish forward entailment (p � h) from reverse entailment
(p � h). Moreover, it defines � for expressions of every semantic type, including
not only complete sentences but also individual words and phrases. Unlike the three-
way formulation, however, it lacks any way to represent contradiction (semantic ex-
clusion). For our model, we want the best of both worlds: a comprehensive inventory
of entailment relations that includes representations of both semantic containment
and semantic exclusion.

Following Sánchez Valencia, we proceed by analogy with set relations. In a uni-
verse U , the set of ordered pairs 〈x, y〉 of subsets of U can be partitioned into
16 equivalence classes, according to whether each of the four sets x ∩ y, x ∩ y,
x ∩ y, and x ∩ y is empty or non-empty.3 Of these 16 classes, nine represent de-
generate cases in which either x or y is either empty or universal. Since expres-
sions having empty denotations (e.g., round square cupola) or universal denotations
(e.g., exists) fail to divide the world into meaningful categories, they can be re-
garded as semantically vacuous. Contradictions and tautologies may be common in

2The first three RTE competitions used the binary formulation, while the three-way formulation
was adopted for RTE4. The three-way formulation was also employed in the FraCaS test suite
(Cooper et al. 1996) and has been investigated in depth by Condoravdi et al. (2003).
3We use x to denote the complement of set x in universe U ; thus x ∩ x = ∅ and x ∪ x = U .
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Table 1 The set B of seven basic entailment relations

Symbola Name Example Set theoretic definitionb

x ≡ y equivalence couch ≡ sofa x = y

x � y forward entailment crow � bird x ⊂ y

x � y reverse entailment European � French x ⊃ y

x ∧ y negation human ∧ nonhuman x ∩ y = ∅ ∧ x ∪ y = U

x | y alternation cat | dog x ∩ y = ∅ ∧ x ∪ y �= U

x � y cover animal � nonhuman x ∩ y �= ∅ ∧ x ∪ y = U

x # y independence hungry # hippo (all other cases)

aSelecting an appropriate symbol to represent each relation is a vexed problem. We sought symbols
which (a) are easily approximated by a single ASCII character, (b) are graphically symmetric iff
the relations they represent are symmetric, and (c) do not excessively abuse accepted conventions.
The ∧ symbol was chosen to evoke the logically similar bitwise XOR operator of the C program-
ming language family; regrettably, it may also evoke the Boolean AND function. The | symbol was
chosen to evoke the Sheffer stroke commonly used to represent the logically similar Boolean NAND
function; regrettably, it may also evoke the Boolean OR function. The � and � symbols were obvi-
ously chosen to resemble their set-theoretic analogs, but a potential confusion arises because some
logicians use the horseshoe ⊃ (with the opposite orientation) to represent material implication
bEach relation in B obeys the additional constraints that ∅ ⊂ x ⊂ U and ∅ ⊂ y ⊂ U (i.e., x and y

are non-vacuous)

logic textbooks, but they are rare in everyday speech. Thus, in a practical model
of informal natural language inference, we will rarely go wrong by assuming the
non-vacuity of the expressions we encounter.4 We therefore focus on the remaining
seven classes, which we designate as the set B of basic entailment relations, shown
in Table 1.

First, the semantic containment relations (� and �) of the monotonicity calculus
are preserved, but are factored into three mutually exclusive relations: equivalence
(≡), (strict) forward entailment (�), and (strict) reverse entailment (�). Next, we
have two relations expressing semantic exclusion: negation (∧), or exhaustive exclu-
sion, which is analogous to set complement; and alternation (|), or non-exhaustive
exclusion. The next relation is cover (�), or non-exclusive exhaustion. Though its
utility is not immediately obvious, it is the dual under negation of the alternation
relation.5 Finally, the independence relation (#) covers all other cases: it expresses
non-equivalence, non-containment, non-exclusion, and non-exhaustion. Note that #

4Our model can easily be revised to accommodate vacuous expressions and relations between
them, but then becomes somewhat unwieldy. The assumption of non-vacuity is closely related
to the assumption of existential import in traditional logic. For a defense of existential import in
natural language semantics, see (Böttner 1988).
5We describe relations R and S as duals under negation iff ∀x, y : 〈x, y〉 ∈ R ⇔ 〈x, y〉 ∈ S. Thus
� and � are dual; | and � are dual; and ≡, ∧, and # are self-dual. The significance of this duality
will become apparent in Sect. 5.
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is the least informative relation, in that it places the fewest constraints on its argu-
ments.6

Following Sánchez Valencia, we define the relations in B for all semantic types.
For semantic types which can be interpreted as characteristic functions of sets,7 the
set-theoretic definitions can be applied directly. The definitions can then be extended
to other types by interpreting each type as if it were a type of set. For example,
propositions can be understood (per Montague) as denoting sets of possible worlds.
Thus two propositions stand in the | relation iff there is no world where both hold
(but there is some world where neither holds). Likewise, names can be interpreted
as denoting singleton sets, with the result that two names stand in the ≡ relation iff
they refer to the same entity, or the | relation otherwise.

By design, the relations in B are mutually exclusive, so that we can define a func-
tion β(x, y) which maps every ordered pair of expressions8 to the unique relation
in B to which it belongs.

3 Joining Entailment Relations

If we know that entailment relation R holds between x and y, and that entailment
relation S holds between y and z, then what is the entailment relation between x and
z? The join of entailment relations R and S, which we denote R �� S,9 is defined by:

R �� S
def= {〈x, z〉 : ∃y (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S)}

Some joins are quite intuitive. For example, it is immediately clear that ���� =
�, ���� = �, ∧ �� ∧ = ≡, and for any R, (R ��≡) = (≡�� R) = R. Other joins are less
obvious, but still accessible to intuition. For example, | �� ∧ = �. This can be seen
with the aid of Venn diagrams, or by considering simple examples: fish | human and
human ∧ nonhuman, thus fish � nonhuman.

But we soon stumble upon an inconvenient truth: not every join yields a relation
in B. For example, if x | y and y | z, the relation between x and z is not determined.
They could be equivalent, or one might contain the other. They might be independent

6Two sets selected uniformly at random from 2U are overwhelmingly likely to belong to # (for
large |U |).
7That is, all functional types whose final output is a truth value. If we assume a type system whose
basic types are e (entities) and t (truth values), then this includes most of the functional types en-
countered in semantic analysis: e �t (common nouns, adjectives, and intransitive verbs), e � e �t

(transitive verbs), (e �t ) � (e �t) (adverbs), (e �t) � (e �t) � t (binary generalized quantifiers),
and so on.
8Assuming the expressions are non-vacuous, and belong to the same semantic type.
9In Tarskian relation algebra, this operation is known as relation composition, and is often repre-
sented by a semi-colon: R ; S. To avoid confusion with semantic composition (Sect. 5), we prefer
to use the term join for this operation, by analogy to the database JOIN operation (also commonly
represented by ��).



134 B. MacCartney and C.D. Manning

Table 2 The join table for the basic entailment relations

�� ≡ � � ∧ | � #

≡ ≡ � � ∧ | � #

� � � ≡��|# | | �∧|�# �|#
� � ≡���# � � � ∧|�# � ��#
∧ ∧ � | ≡ � � #

| | � ∧|�# | � ≡��|# � �|#
� � � � ∧|�# � � ≡���# ��#

# # ��# �|# # �|# ��# •

or alternative. All we can say for sure is that they are not exhaustive (since both are
disjoint from y). Thus, the result of joining | and | is not a relation in B, but a union
of such relations, specifically

⋃{≡,�,�, |,#}.10

We will refer to (non-trivial) unions of relations in B as union relations.11 Of
the 49 possible joins of relations in B, 32 yield a relation in B, while 17 yield a
union relation, with larger unions conveying less information. Union relations can be
further joined, and we can establish that the smallest set of relations which contains
B and is closed under joining contains just 16 relations.12 One of these is the total
relation, which contains all pairs of (non-vacuous) expressions. This relation, which
we denote •, is the black hole of entailment relations, in the sense that (a) it conveys
zero information about pairs of expressions which belong to it, and (b) joining a
chain of entailment relations will, if it contains any noise and is of sufficient length,
lead inescapably to •.13 This tendency of joining to devolve toward less-informative
entailment relations places an important limitation on the power of the inference
method described in Sect. 7.

A complete join table for relations in B is shown in Table 2.14

In an implemented model, the complexity introduced by union relations is easily
tamed. Every union relation which results from joining relations in B contains #,
and thus can safely be approximated by #. After all, # is already the least infor-
mative relation in B—loosely speaking, it indicates ignorance of the relationship
between two expressions—and further joining will never serve to strengthen it. Our
implemented model therefore has no need to represent union relations.

10We use this notation as shorthand for the union ≡ ∪ � ∪ � ∪ | ∪ #. To be precise, the result of
this join is not identical with this union, but is a subset of it, since the union contains some pairs of
sets (e.g. 〈U \ a,U \ a〉, for any |a| = 1) which cannot participate in the | relation. However, the
approximation makes little practical difference.
11Some union relations hold intrinsic interest. For example, in the three-way formulation of the NLI
task described in Sect. 2, the three classes can be identified as

⋃{≡,�}, ⋃{∧, |}, and
⋃{�,�,#}.

12That is, the relations in B plus 9 union relations. Note that this closure fails to include most of
the 120 possible union relations. Perhaps surprisingly, the unions

⋃{≡,�} and
⋃{∧, |} mentioned

in footnote 11 do not appear.
13In fact, computer experiments show that if relations are selected uniformly at random from B, it
requires on average just five joins to reach •.
14For compactness, we omit the union notation here; thus �|# stands for

⋃{�, |,#}.
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4 Lexical Entailment Relations

Suppose x is a compound linguistic expression, and let e(x) be the result of ap-
plying an atomic edit e (the deletion, insertion, or substitution of a subexpression)
to x. The entailment relation which holds between x and e(x), which we denote
β(x, e(x)), will depend on (1) the lexical entailment relation generated by e, which
we label β(e), and (2) other properties of the context x in which e is applied (to
be discussed in Sect. 5). For example, suppose x is red car. If e is SUB(car, con-
vertible), then β(e) is � (because convertible is a hyponym of car). On the other
hand, if e is DEL(red), then β(e) is � (because red is an intersective modifier).
Crucially, β(e) depends solely on the lexical items involved in e, independent of
context.

How are lexical entailment relations determined? Ultimately, this is the province
of lexical semantics, which lies outside the scope of this work. However, the an-
swers are fairly intuitive in most cases, and we can make a number of useful obser-
vations.

Substitutions The entailment relation generated by a substitution edit is simply
the relation between the substituted terms: β(SUB(x, y)) = β(x, y). For open-class
terms such as nouns, adjectives, and verbs, we can often determine the appropri-
ate relation by consulting a lexical resource such as WordNet. Synonyms belong
to the ≡ relation (sofa ≡ couch, forbid ≡ prohibit); hyponym-hypernym pairs be-
long to the � relation (crow � bird, frigid � cold, soar � rise); and antonyms
and coordinate terms generally belong to the | relation (hot | cold, cat | dog).15

Proper nouns, which denote individual entities or events, will stand in the ≡ rela-
tion if they denote the same entity (USA ≡ United States), or the | relation otherwise
(JFK | FDR). Pairs which cannot reliably be assigned to another entailment relation
will be assigned to the # relation (hungry # hippo). Of course, there are many diffi-
cult cases, where the most appropriate relation will depend on subjective judgments
about word sense, topical context, and so on—consider, for example, the pair system
and approach. And some judgments may depend on world knowledge not readily
available to an automatic system. For example, plausibly skiing | sleeping, but skiing
# talking.

Closed-class terms may require special handling. Substitutions involving gener-
alized quantifiers generate a rich variety of entailment relations: all ≡ every, every
� some, some ∧ no, no | every, at least four � at most six, and most # ten or more.16

Two pronouns, or a pronoun and a noun, should ideally be assigned to the ≡ relation
if it can determined from context that they refer to the same entity, though this may
be difficult for an automatic system to establish reliably. Prepositions are somewhat
problematic. Some pairs of prepositions can be interpreted as antonyms, and thus

15Note that most antonym pairs do not belong to the ∧ relation, since they typically do not exclude
the middle.
16Some of these assertions assume the non-vacuity (Sect. 2) of the predicates to which the quanti-
fiers are applied.
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assigned to the | relation (above | below), but many prepositions are used so flexibly
in natural language that they are best assigned to the ≡ relation (on [a plane] ≡ in
[a plane] ≡ by [plane]).

Generic Deletions and Insertions For deletion edits, the default behavior is to
generate the � relation (thus red car � car). Insertion edits are symmetric: by de-
fault, they generate the � relation (sing � sing off-key). This heuristic can safely
be applied whenever the affected phrase is an intersective modifier, and can use-
fully be applied to phrases much longer than a single word (car which has been
parked outside since last week � car). Indeed, this principle underlies most current
approaches the RTE task, in which the premise p often contains much extraneous
content not found in the hypothesis h. Most RTE systems try to determine whether
p subsumes h: they penalize new content inserted into h, but do not penalize content
deleted from p.

Special Deletions and Insertions However, some lexical items exhibit special
behavior upon deletion or insertion. The most obvious example is negation, which
generates the ∧ relation (didn’t sleep ∧ did sleep). Implicatives and factives (such as
refuse to and admit that) constitute another important class of exceptions, but we
postpone discussion of them to Sect. 6. Then there are non-intersective adjectives
such as former and alleged. These have various behavior: deleting former seems to
generate the | relation (former student | student), while deleting alleged seems to
generate the # relation (alleged spy # spy). We lack a complete typology of such
cases, but consider this an interesting problem for lexical semantics. Finally, for
pragmatic reasons, we typically assume that auxiliary verbs and punctuation marks
are semantically vacuous, and thus generate the ≡ relation upon deletion or inser-
tion. When combined with the assumption that morphology matters little in infer-
ence,17 this allows us to establish, e.g., that is sleeping ≡ sleeps and did sleep ≡
slept.

5 Entailment Relations and Semantic Composition

How are entailment relations affected by semantic composition? In other words,
how do the entailment relations between compound expressions depend on the en-
tailment relations between their parts? Say we have established the value of β(x, y),
and let f be an expression which can take x or y as an argument. What is the value
of β(f (x), f (y)), and how does it depend on the properties of f ?

The monotonicity calculus of Sánchez Valencia provides a partial answer. It ex-
plains the impact of semantic composition on entailment relations ≡, �, �, and # by
assigning semantic functions to one of three monotonicity classes: UP, DOWN, and
NON. If f has monotonicity UP (the default), then the entailment relation between x

17Indeed, the official definition of the RTE task explicitly specifies that tense be ignored.
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and y is projected through f without change: β(f (x), f (y)) = β(x, y). Thus some
parrots talk � some birds talk. If f has monotonicity DOWN, then � and � are
swapped. Thus no carp talk � no fish talk. Finally, if f has monotonicity NON, then
� and � are projected as #. Thus most humans talk # most animals talk.

The monotonicity calculus also provides an algorithm for computing the ef-
fect on entailment relations of multiple levels of semantic composition. Although
Sánchez Valencia’s presentation of this algorithm uses a complex scheme for anno-
tating nodes in a categorial grammar parse, the central idea can be recast in simple
terms: propagate a lexical entailment relation upward through a semantic compo-
sition tree, from leaf to root, while respecting the monotonicity properties of each
node along the path. Consider the sentence Nobody can enter without pants. A plau-
sible semantic composition tree for this sentence could be rendered as (nobody (can
((without pants) enter))). Now consider replacing pants with clothes. We begin with
the lexical entailment relation: pants � clothes. The semantic function without has
monotonicity DOWN, so without pants � without clothes. Continuing up the seman-
tic composition tree, can has monotonicity UP, but nobody has monotonicity DOWN,
so we get another reversal, and find that nobody can enter without pants � nobody
can enter without clothes.

While the monotonicity calculus elegantly explains the impact of semantic com-
position on the containment relations (chiefly, � and �), it lacks any account of the
exclusion relations (∧ and |, and, indirectly, �). To remedy this lack, we propose to
generalize the concept of monotonicity to a concept of projectivity. We categorize
semantic functions into a number of projectivity signatures, which can be seen as
generalizations of both the three monotonicity classes of Sánchez Valencia and the
nine implication signatures of Nairn et al. (see Sect. 6). Each projectivity signature is
defined by a map B �→ B which specifies how each entailment relation is projected
by the function. (Binary functions can have different signatures for each argument.)
In principle, there are up to 77 possible signatures; in practice, probably no more
than a handful are realized by natural language expressions. Though we lack a com-
plete inventory of projectivity signatures, we can describe a few important cases.

Negation We begin with simple negation (not). Like most functions, it projects ≡
and # without change (not happy ≡ not glad and isn’t swimming # isn’t hungry). As
a downward monotone function, it swaps � and � (didn’t kiss � didn’t touch). But
we can also establish that it projects ∧ without change (not human ∧ not nonhuman)
and swaps | and � (not French � not German and not more than 4 | not less than 6).
Its projectivity signature is therefore {≡:≡,�:�,�:�, ∧ : ∧, | :�,�: |,#:#}.
Intersective Modification Intersective modification has monotonicity UP, but
projects both ∧ and | as | (living human | living nonhuman and French wine | Span-
ish wine), and projects � as # (metallic pipe # nonferrous pipe). It therefore has
signature {≡:≡,�:�,�:�, ∧ : |, | : |,�:#,#:#}.18

18At least for practical purposes. The projection of ∧ and | as | depends on the assumption of non-
vacuity, and � is actually projected as

⋃{≡,�,�, |,#}, which we approximate by #, as described
in Sect. 3.
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Table 3 Projectivity signatures for various quantifiers

Projectivity for 1st argument Projectivity for 2nd argumentQuantifier

≡ � � ∧ | � # ≡ � � ∧ | � #

some ≡ � � � † # � † # ≡ � � � † # � † #

no ≡ � � |† # |† # ≡ � � |† # |† #

every ≡ � � |‡ # |‡ # ≡ � � |† |† # #

not every ≡ � � � ‡ # � ‡ # ≡ � � � † � † # #

Quantifiers While semanticists are well acquainted with the monotonicity prop-
erties of common quantifiers, how they project the exclusion relations may be less
familiar. Table 3 summarizes the projectivity signatures of the most common binary
generalized quantifiers for each argument position.

A few observations:

• All quantifiers (like most other semantic functions) project ≡ and # without
change.

• The table confirms well-known monotonicity properties: no is downward-
monotone in both arguments, every in its first argument, and not every in its
second argument.

• Relation | is frequently “blocked” by quantifiers (i.e., projected as #). Thus no
fish talk # no birds talk and someone was early # someone was late. A notable
exception is every in its second argument, where | is preserved: everyone was
early | everyone was late. (Note the similarity to intersective modification.)

• Because no is the negation of some, its projectivity signature can be found by
projecting the signature of some through the signature of not. Likewise for not
every and every.

• Some results depend on assuming the non-vacuity of the other argument to the
quantifier: those marked with † assume it to be non-empty, while those marked
with ‡ assume it to be non-universal. Without these assumptions, # is projected.

Verbs Verbs (and verb-like constructions) exhibit diverse behavior. Most verbs
are upward-monotone (though not all—see Sect. 6), and many verbs project ∧, |,
and � as # (eats humans # eats nonhumans, eats cats # eats dogs, and eats mam-
mals # eats nonhumans). However, verbs which encode functional relations seem
to exhibit the same projectivity as intersective modifiers, projecting ∧ and | as |,
and � as #.19 Categorizing verbs according to projectivity is an interesting problem
for lexical semantics, which may involve codifying some amount of world knowl-
edge.

19Consider the verbal construct is married to: is married to a German | is married to a non-
German, is married to a German | is married to an Italian, is married to a European # is married
to a non-German. The AUCONTRAIRE system (Ritter et al. 2008) includes an intriguing approach
to identifying such functional phrases automatically.
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Table 4 Implicatives and factives

Signature β(DEL(·)) β(INS(·)) Example

implicatives (UP) +/− ≡ ≡ he managed to escape ≡ he escaped

+/◦ � � he was forced to sell � he sold

◦/− � � he was permitted to live � he lived

implicatives (DOWN) −/+ ∧ ∧ he forgot to pay ∧ he paid

−/◦ | | he refused to fight | he fought

◦/+ � � he hesitated to ask � he asked

factives (NON) +/+ � � he admitted that he knew � he knew

−/− | | he pretended he was sick | he was sick

◦/◦ # # he wanted to fly # he flew

6 Implicatives and Factives

In (Nairn et al. 2006), Nairn et al. offer an elegant account of inferences involv-
ing implicatives and factives20 such as manage to, refuse to, and admit that. Their
model classifies such operators into nine implication signatures, according to their
implications—positive (+), negative (−), or null (◦)—in both positive and negative
contexts. Thus refuse to has implication signature −/◦, because it carries a negative
implication in a positive context (refused to dance implies didn’t dance), and no
implication in a negative context (didn’t refuse to dance implies neither danced nor
didn’t dance).

Most of the phenomena observed by Nairn et al. can be explained within our
framework by specifying, for each implication signature, the relation generated
when an operator of that signature is deleted from (or inserted into) a compound
expression, as shown in Table 4.

This table invites several observations. First, as the examples make clear, there
is room for variation regarding the appearance of infinitive arguments, complemen-
tizers, passivization, and morphology. An implemented model must tolerate such
diversity.

Second, some of the examples may seem more intuitive when one considers their
negations. For example, deleting signature ◦/− generates �; under negation, this is
projected as � (he wasn’t permitted to live � he didn’t live). Likewise, deleting
signature ◦/+ generates �; under negation, this is projected as | (he didn’t hesitate
to ask | he didn’t ask).

Third, a fully satisfactory treatment of the factives (signatures +/+, −/−, and
◦/◦) would require an extension to our present theory. For example, deleting signa-
ture +/+ generates �; yet under negation, this is projected not as �, but as | (he

20We use “factives” as an umbrella term embracing counterfactives and nonfactives along with
factives proper.
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didn’t admit that he knew | he didn’t know). The problem arises because the impli-
cation carried by a factive is not an entailment, but a presupposition.21 As is well
known, the projection behavior of presuppositions differs from that of entailments
(van der Sandt 1992). It seems likely that our model could be elaborated to account
for projection of presuppositions as well as entailments, but we leave this for future
work.

We can further cement implicatives and factives within our model by specify-
ing the monotonicity class for each implication signature: signatures +/−, +/◦,
and ◦/− have monotonicity UP (force to tango � force to dance); signatures −/+,
−/◦, and ◦/+ have monotonicity DOWN (refuse to tango � refuse to dance); and
signatures +/+, −/−, and ◦/◦ (the propositional attitudes) have monotonicity NON

(think tangoing is fun # think dancing is fun). We are not yet able to specify the
complete projectivity signature corresponding to each implication signature, but we
can describe a few specific cases. For example, implication signature −/◦ seems to
project ∧ as | (refuse to stay | refuse to go) and both | and � as # (refuse to tango #
refuse to waltz).

7 Putting It All Together

We now have the building blocks of a general method to establish the entailment
relation between a premise p and a hypothesis h. The steps are as follows:

1. Find a sequence of atomic edits 〈e1, . . . , en〉 which transforms p into h: thus
h = (en ◦ . . . ◦ e1)(p). For convenience, let us define x0 = p, xn = h, and xi =
ei(xi−1) for i ∈ [1, n].

2. For each atomic edit ei :

a. Determine the lexical entailment relation β(ei), as in Sect. 4.
b. Project β(ei) upward through the semantic composition tree of expression

xi−1 to find an atomic entailment relation β(xi−1, xi), as in Sect. 5.

3. Join atomic entailment relations across the sequence of edits, as in Sect. 3:

β(p,h) = β(x0, xn) = β(x0, e1) �� . . . �� β(xi−1, ei) �� . . .�� β(xn−1, en)

However, this inference method has several important limitations, including the
need to find an appropriate edit sequence connecting p and h;22 the tendency of

21Of course, the implicatives may carry presuppositions as well (he managed to escape � it was
hard to escape), but these implications are not activated by a simple deletion, as with the factives.
22The order of edits can be significant, if one edit affects the projectivity properties of the context
for another edit. In practice, we typically find that different edit orders lead to the same final result
(albeit via different intermediate steps), or at worst to a result which is compatible with, though less
informative than, the desired result. But in principle, edit sequences involving lexical items with
unusual properties—not exhibited, so far as we are aware, by any natural language expressions—
could lead to incompatible results. Thus we lack any formal guarantee of soundness.
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Table 5 An example
inference involving semantic
exclusion

i ei xi = ei(xi−1) β(ei ) β(xi−1, xi ) β(x0, xi )

Stimpy is a cat

1 SUB(cat, dog) | | |
Stimpy is a dog

2 INS(not) ∧ ∧ �
Stimpy is not a dog

3 SUB(dog, poodle) � � �
Stimpy is not a poodle

the join operation toward less informative entailment relations, as described in
Sect. 3; and the lack of a general mechanism for combining information from multi-
ple premises.23 Consequently, the method has less deductive power than first-order
logic, and fails to sanction some fairly simple inferences, including de Morgan’s
laws for quantifiers. But the method neatly explains many inferences not handled by
the monotonicity calculus.

For example, while the monotonicity calculus notably fails to explain even the
simplest inferences involving semantic exclusion, such examples are easily accom-
modated in our framework. We encountered an example of such an inference in
Sect. 1: Stimpy is a cat |= Stimpy is not a poodle. Clearly, this is a valid natural
language inference. To establish this using our inference method, we must begin by
selecting a sequence of atomic edits which transforms the premise p into the hypoth-
esis h. While there are several possibilities, one obvious choice is first to replace cat
with dog, then to insert not, and finally to replace dog with poodle. An analysis of
this edit sequence is shown in Table 5. In this representation (of which we will see
several more examples in the following pages), we show three entailment relations
associated with each edit ei , namely:

• β(ei), the lexical entailment relation generated by ei ,
• β(xi−1, xi), the atomic entailment relation which holds across ei , and
• β(x0, xi), the cumulative join of all atomic entailment relations up through ei .

This can be calculated in the table as β(x0, xi−1) �� β(xi−1, xi).

In Table 5, x0 is transformed into x3 by a sequence of three edits. First, replacing
cat with its coordinate term dog generates the lexical entailment relation |. Next,
inserting not generates ∧, and | joined with ∧ yields �. Finally, replacing dog with its
hyponym poodle generates �. Because of the downward-monotone context created
by not, this is projected as �, and � joined with � yields �. Therefore, premise x0

entails hypothesis x3.

23However, some inferences can be enabled by auxiliary premises encoded as lexical entailment re-
lations. For example, men � mortal can enable the classic syllogism Socrates is a man � Socrates
is mortal.
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Table 6 An example
inference involving an
implicative

i ei xi = ei(xi−1) β(ei ) β(xi−1, xi ) β(x0, xi )

We were not permitted to smoke

1 DEL(permitted to) � � �
We did not smoke

2 DEL(not) ∧ ∧ ]|
We smoked

3 INS(Cuban cigars) � � |
We smoked Cuban cigars

For an example involving an implicative, consider the inference in Table 6.
Again, x0 is transformed into x3 by a sequence of three edits.24 First, deleting per-
mitted to generates �, according to its implication signature; but because not is
downward-monotone, this is projected as �. Next, deleting not generates ∧, and
� joined with ∧ yields |. Finally, inserting Cuban cigars restricts the meaning of
smoked, generating �, and | joined with � yields |. So x3 contradicts x0.

Let’s now look at a more complex example (first presented in (MacCartney and
Manning 2008)) that demonstrates the interaction of a number of aspects of the
model we’ve presented. The inference is:

p: Jimmy Dean refused to move without blue jeans.
h: James Dean didn’t dance without pants.

Of course, the example is quite contrived, but it has the advantage that it compactly
exhibits several phenomena of interest: semantic containment (between move and
dance, and between pants and jeans); semantic exclusion (in the form of negation);
an implicative (namely, refuse to); and nested inversions of monotonicity (created
by refuse to and without). In this example, the premise p can be transformed into
the hypothesis h by a sequence of seven edits, as shown in Table 7. This time we
include even “light” edits yielding ≡ for the sake of completeness.

We analyze these edits as follows. The first edit simply substitutes one variant of
a name for another; since both substituends denote the same entity, the edit generates
the ≡ relation. The second edit deletes an implicative (refuse to) with implication
signature −/◦. As described in Sect. 6, deletions of this signature generate the |
relation, and ≡ joined with | yields |. The third edit inserts an auxiliary verb (did);
since auxiliaries are more or less semantically vacuous, this generates the ≡ relation,
and | joined with ≡ yields | again. The fourth edit inserts a negation, generating the ∧

relation. Here we encounter the first interesting join: as explained in Sect. 3, | joined
with ∧ yields �. The fifth edit substitutes move with its hyponym dance, generating
the � relation. However, because the edit occurs within the scope of the newly-
introduced negation, � is projected as �, and � joined with � yields �. The sixth
edit deletes a generic modifier (blue), which generates the � relation by default. This

24We neglect edits involving auxiliaries and morphology, which simply yield the ≡ relation.
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Table 7 Analysis of a more complex inference

i ei xi = ei(xi−1) β(ei) β(xi−1, xi ) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 SUB(Jimmy Dean, James Dean) ≡ ≡ ≡
James Dean refused to move without blue jeans

2 DEL(refused to) | | |
James Dean moved without blue jeans

3 INS(did) ≡ ≡ |
James Dean did move without blue jeans

4 INS(n’t) ∧ ∧ �
James Dean didn’t move without blue jeans

5 SUB(move, dance) � � �
James Dean didn’t dance without blue jeans

6 DEL(blue) � � �
James Dean didn’t dance without jeans

7 SUB(jeans, pants) � � �
James Dean didn’t dance without pants

time the edit occurs within the scope of two downward-monotone operators (without
and negation), so we have two inversions of monotonocity, and � is projected as �.
Again, � joined with � yields �. Finally, the seventh edit substitutes jeans with its
hypernym pants, generating the � relation. Again, the edit occurs within the scope
of two downward-monotone operators, so � is projected as �, and � joined with �
yields �. Thus p entails h.

Of course, the edit sequence shown in Table 7 is not the only sequence which can
transform p into h. A different edit sequence might yield a different sequence of in-
termediate steps, but the same final result. Consider, for example, the edit sequence
shown in Table 8. Note that the lexical entailment relation β(ei) generated by each
edit is the same as before. But because the edits involving downward-monotone op-
erators (namely, INS(n’t) and DEL(refused to)) now occur at different points in the
edit sequence, many of the atomic entailment relations β(xi−1, xi) have changed,
and thus the sequence of joins has changed as well. In particular, edits 3 and 4 oc-
cur within the scope of three downward-monotone operators (negation, refuse, and
without), with the consequence that the � relation generated by each of these lexical
edits is projected as �. Likewise, edit 5 occurs within the scope of two downward-
monotone operators (negation and refuse), and edit 6 occurs within the scope of one
downward-monotone operator (negation), so that | is projected as �. Nevertheless,
the ultimate result is still �.

However, it turns out not to be the case that every edit sequence which transforms
p into h will yield equally satisfactory results. Consider the sequence shown in
Table 9. The crucial difference in this edit sequence is that the insertion of not,
which generates lexical entailment relation ∧, occurs within the scope of refuse,
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Table 8 An alternative analysis of the inference from Table 7

i ei xi = ei(xi−1) β(ei) β(xi−1, xi) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 INS(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 INS(n’t) ∧ ∧ ∧

Jimmy Dean didn’t refuse to move without blue jeans

3 DEL(blue) � � |
Jimmy Dean didn’t refuse to move without jeans

4 SUB(jeans, pants) � � |
Jimmy Dean didn’t refuse to move without pants

5 SUB(move, dance) � � |
Jimmy Dean didn’t refuse to dance without pants

6 DEL(refuse to) | � �
Jimmy Dean didn’t dance without pants

7 SUB(Jimmy, James) ≡ ≡ �
James Dean didn’t dance without pants

Table 9 A third analysis of the inference from Table 7

i ei xi = ei(xi−1) β(ei) β(xi−1, xi) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 INS(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 INS(not) ∧ | |
Jimmy Dean did refuse not to move without blue jeans

3 DEL(refuse to) | | ≡��|#
Jimmy Dean didn’t move without blue jeans

4 DEL(blue) � � •
Jimmy Dean didn’t move without jeans

5 SUB(jeans, pants) � � •
Jimmy Dean didn’t move without pants

6 SUB(move, dance) � � •
Jimmy Dean didn’t dance without pants

7 SUB(Jimmy Dean, James Dean) ≡ ≡ •
James Dean didn’t dance without pants

so that ∧ is projected as atomic entailment relation | (see Sect. 5). But the deletion of
refuse to also produces atomic entailment relation | (see Sect. 6), and | joined with
| yields a relatively uninformative union relation, namely

⋃{≡,�,�, |,#} (which
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could also be described as the NON-EXHAUSTION relation). The damage has been
done: further joining leads directly to the “black hole” relation •, from which there is
no escape. Note, however, that even for this infelicitous edit sequence, our inference
method has not produced an incorrect answer (because the • relation includes the
� relation), only an uninformative answer (because it includes all other relations in
B as well).

Additional examples are presented in (MacCartney 2009).

8 Implementation and Evaluation

The model of natural logic described here has been implemented in software as
the NatLog system. In previous work (MacCartney and Manning 2008), we have
presented a description and evaluation of NatLog; this section summarizes the main
results. NatLog faces three primary challenges:

1. Finding an appropriate sequence of atomic edits connecting premise and hy-
pothesis. NatLog does not address this problem directly, but relies instead on
edit sequences from other sources. We have investigated this problem separately
in (MacCartney et al. 2008).

2. Determining the lexical entailment relation for each edit. NatLog learns to pre-
dict lexical entailment relations by using machine learning techniques and ex-
ploiting a variety of manually and automatically constructed sources of informa-
tion on lexical relations.

3. Computing the projection of each lexical entailment relation. NatLog identifies
expressions with non-default projectivity and computes the likely extent of their
arguments in a syntactic parse using hand-crafted tree patterns.

We have evaluated NatLog on two different test suites. The first is the FraCaS
test suite (Cooper et al. 1996), which contains 346 NLI problems, divided into nine
sections, each focused on a specific category of semantic phenomena. The goal is
three-way entailment classification, as described in Sect. 2. On this task, NatLog
achieves an average accuracy of 70 %.25 In the section concerning quantifiers, which
is both the largest and the most amenable to natural logic, the system answers all
problems but one correctly. Unsurprisingly, performance is mediocre in four sec-
tions concerning semantic phenomena (e.g., ellipsis) not relevant to natural logic
and not modeled by the system. But in the other five sections (representing about
60 % of the problems), NatLog achieves accuracy of 87 %. What’s more, precision
is uniformly high, averaging 89 % over all sections. Thus, even outside its areas of
expertise, the system rarely predicts entailment when none exists.

The RTE3 test suite (Giampiccolo et al. 2007) differs from FraCaS in several
important ways: the goal is binary entailment classification; the problems have
much longer premises and are more “natural”; and the problems employ a diver-

25Our evaluation excluded multi-premise problems, which constitute about 44 % of the test suite.
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sity of types of inference—including paraphrase, temporal reasoning, and relation
extraction—which NatLog is not designed to address. Consequently, the NatLog
system by itself achieves mediocre accuracy (59 %) on RTE3 problems. However,
its precision is comparatively high, which suggests a strategy of hybridizing with a
broad-coverage RTE system. We were able to show that adding NatLog as a com-
ponent in the Stanford RTE system (Chambers et al. 2007) led to accuracy gains
of 4 %.

9 Conclusion

The model of natural logic presented here is by no means a universal solution to the
problem of natural language inference. Many NLI problems hinge on types of infer-
ence not addressed by natural logic, and the inference method we describe faces a
number of limitations on its deductive power (discussed in Sect. 7). Moreover, there
is further work to be done in fleshing out our account of projectivity, particularly
in establishing the proper projectivity signatures for a broader range of quantifiers,
verbal constructs, implicatives and factives, logical connectives, and other semantic
functions.

Nevertheless, we believe our model of natural logic fills an important niche.
While approximate methods based on lexical and syntactic similarity can handle
many NLI problems, they are easily confounded by inferences involving nega-
tion, antonymy, quantifiers, implicatives, and many other phenomena. Our model
achieves the logical precision needed to handle such inferences without resorting to
full semantic interpretation, which is in any case rarely possible. The practical value
of the model is demonstrated by its success in evaluations on the FraCaS and RTE3
test suites.
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