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Computing Meaning: Annotation,
Representation, and Inference

Harry Bunt, Johan Bos, and Stephen Pulman

Abstract This chapter introduces the subsequent chapters in the book and how they
are related, against the background of a discussion of the nature and the complex-
ity of processes that compute the meanings of natural language expressions. The
discussion focuses on three aspects of the computation of meanings that play an
important part in later chapters: (1) the nature of meaning representations; (2) the
integration of inferencing with compositional interpretation; and (3) the construc-
tion of semantically annotated corpora and their use in machine learning of meaning
computation.

1 Introduction

While computers are very good at computing in general, they are not very good at
computing meaning. There are at least three reasons why this may be so: (R1) the
very notion of meaning, as expressed in natural language, is something extremely
complex, and therefore difficult to compute; (R2) the process of computing mean-
ings is extremely complex, because it requires the effective use of a variety of ex-
tremely rich information sources (linguistic knowledge, general knowledge of the
world, specific knowledge of the domain of discourse, knowledge of interactive set-
tings, . . . ); and (R3) the very notion of meaning is not well enough understood to
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effectively program and/or teach computers what it is and how it can be computed
for a given natural language expression, occurring in a given context.

Most of the work in formal as well as in computational semantics tacitly as-
sumes, different from (R3), that we do have a clear understanding of what we mean
by meaning, and different from (R1), that natural language meanings are simple
enough to be represented by very simple structures, such as formulas in first-order
logic (or, equivalently, Discourse Representation Structures). Assuming that such
structures are adequate representations of meaning, computing the meaning of a
given natural language expression comes down to syntactic parsing of it and com-
posing the semantic representations of the parts to form the meaning representation,
which itself has a semantics defined by the representation formalism.

Since computational semantics started to develop, in the last two decades of the
twentieth century (see Blackburn and Bos 2005), it has become clear that the dream
of computing meaning representations by syntactic/semantic (de-)composition,
made popular especially through the work of Richard Montague (see Thomason
1974), cannot become reality, simply because natural language expressions much
of the time do not contain sufficiently much information to construct such a repre-
sentation. Other information sources are indispensable. This insight has inspired the
introduction of the notion of an underspecified meaning representation, which rep-
resents the semantic information that is present in the sentence without disambiguat-
ing those aspects for which the sentence does not contain sufficient information. It
also became very clear that relying solely on linguistic information for computing
meanings would lead to impossibly complex interpretation processes, due to the
astronomical number of readings that ordinary sentences have when considered in
isolation (see Bunt and Muskens 1999). Again, underspecified meaning representa-
tions offer solace here, as they obviate the need to fully disambiguate. Several of the
chapters in this book, in particular in Part I, witness the ongoing search for appro-
priate forms of meaning representation and for methods of exploiting linguistic as
well as other information in their computation.

A problematic aspect of the use of underspecified semantic representations is
that they do not allow straightforward application of logic-based inference methods,
since different resolutions of underspecifications may result in interpretations that
allow different inferences (see e.g. van Deemter 1996; Blackburn et al. 2001). This
is indeed problematic on the traditional view of meaning representations as unam-
biguously supporting a specific set of inferences, thereby explaining differences in
meaning and relations between different meanings. One way to deal with this prob-
lem is to move away from strictly deductive approaches to inferencing, and instead
turn to abductive methods (Hobbs et al. 1993) or to textual entailment, where infer-
encing is performed directly on natural language expressions, rather than on their
interpretations, and logical proof is replaced by psychological plausibility (see e.g.
Dagan et al. 2008 and Bos 2013). One way or another, the use of inference pro-
cesses involving natural language expressions and/or their interpretations is needed,
since nonlinguistic information must be exploited in order to arrive at intended and
contextually appropriate interpretations; methods for combining pieces of informa-
tion therefore have to be applied in order to arrive at a appropriate interpretations.
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The chapters in Part II of this book are all concerned with forms of inferencing (or
combining pieces of information) in the computation of meanings.

Related to the limitations of effectively following strictly logic- and rule-based
methods in the computation of meaning is the exploration of statistical and machine
learning techniques that have been successfully applied in other areas of computa-
tional linguistics. These techniques presuppose the availability of large corpora, and
can benefit in particular from semantically annotated resources. The development
of such corpora (e.g. Basile et al. 2012), and of well-founded semantic annotation
methodologies (see Bunt 2013), have supported the use of these new methods in
computational semantics research (see e.g. Clark and Pulman 2007), as reflected in
several of the chapters in this book, both in Part I and in Part III.

2 About This Book

The chapters in this book are organized into three parts. A first cluster of four chap-
ters is focused on aspects of the representation of meaning and the computation of
these representations. A second group of four chapters is concerned with issues of
inferencing and its role in language understanding. The chapters in the third and
final cluster of four deal with resources for meaning computation and their use.

2.1 Semantic Representation and Compositionality

In the opening chapter of this part of the book, entitled Deterministic Statistical
Mapping of Sentences to Underspecified Semantics, the authors Hiyan Alshawi, Pi-
Chuan Chang and Michael Ringgaard present a method for training a statistical
model for mapping natural language sentences to semantic expressions. The seman-
tics are expressions of an underspecified logical form that has properties making it
particularly suitable for statistical mapping from text. An encoding of the semantic
expressions into dependency trees with automatically generated labels allows appli-
cation of existing methods for statistical dependency parsing to the mapping task
(without the need for separate traditional dependency labels or parts of speech). The
encoding also results in a natural per-word semantic-mapping accuracy measure.

The authors report on the results of training and testing statistical models for
mapping sentences of the Penn Treebank into the semantic expressions, for which
per-word semantic mapping accuracy ranges between 79 % and 86 % depending on
the experimental conditions.

The particular choice of algorithms used also means that the trained mapping is
deterministic (in the sense of deterministic parsing), paving the way for large-scale
text-to-semantics mapping.

In the next chapter, A Formal Approach to Linking Logical Form and Vector-
Space Lexical Semantics, the authors Dan Garrette, Katrin Erk and Raymond
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Mooney argue that first-order logic provides a powerful and flexible mechanism
for representing natural language semantics, but that it is an open question of how
best to integrate it with uncertain, weighted knowledge, for example regarding word
meaning. They describe a mapping between predicates of logical form and points in
a vector space. This mapping is used to project distributional inferences to inference
rules in logical form. The authors then describe the first steps of an approach that
uses this mapping to recast first-order semantics into the probabilistic models that
are part of Statistical Relational AI. Specifically, they show how Discourse Rep-
resentation Structures can be combined with distributional models for word mean-
ing inside a Markov Logic Network and used to successfully perform inferences
that take advantage of logical concepts such as negation and factivity, as well as
weighted information on word meaning in context.

In the chapter Annotations that Effectively Contribute to Semantic Interpretation,
Harry Bunt presents a new perspective on the use of semantic annotations. He argues
that semantic annotations should capture semantic information that is supplemen-
tary to the information that is expressed in the source text, and should have a formal
semantics. If the latter condition is satisfied then the information in semantic anno-
tations can be effectively combined with information extracted by a compositional
semantic analysis. This can be used (1) for making semantic relations explicit which
are not expressed in the text as such, such as coreference relations and implicit dis-
course relations, and (2) for specializing an interpretation to one that is contextually
appropriate.

Bunt shows how such uses of semantic annotations can be optimally facilitated
by defining a semantics of annotations in the form of a compositional translation
of annotations into a formalism that is also suitable for underspecified semantic
representations as commonly built by compositional semantic analyzers, allowing
a unification-like combination of pieces of information from different sources. He
shows that slightly modified Discourse Representation Structures, where discourse
referents are paired with annotation markables, are particularly convenient for this
purpose.

The approach is illustrated with examples from recent efforts concerning the an-
notation of information about time and events, about coreference, about semantic
roles, and about discourse relations.

In the last chapter of this part of the book, entitled Concrete Sentence Spaces
for Compositional Distributional Models of Meaning, a group of authors consisting
of Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke, and
Stephen Pulman describe a compositional model of meaning that they have devel-
oped for distributional semantics, in which each word in a sentence has a meaning
vector and the distributional meaning of the sentence is a function of the tensor
products of the word vectors. Abstractly speaking, this function is the morphism
corresponding to the grammatical structure of the sentence in the category of finite
dimensional vector spaces.

The authors provide a concrete method for implementing this linear meaning
map by presenting an algorithm for computing representations for various syntac-
tic classes which have functional types; this algorithm results in assigning con-
crete corpus-based vector spaces to the abstract type of ‘sentence’. The construction
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method is based on structured vector spaces whose basis vectors are pairs of words
and grammatical roles. The concrete sentence spaces only depend on the types of
the verbs of sentences; the authors use an embedding of these spaces and compare
meanings of sentences with different grammatical structures by simply taking the
inner product of their vectors in the bigger space. The constructions are exemplified
on a toy corpus.

2.2 Inference and Understanding

In the first of the four chapters forming the second part of the book, entitled
Recognising Textual Entailment and Computational Semantics, Johan Bos notes that
recognising textual entailment (RTE)—deciding whether one piece of text contains
new information with respect to another piece of text—remains a big challenge in
natural language processing.

One attempt to deal with this problem is combining deep semantic analysis and
logical inference, as is done in the Nutcracker RTE system. In doing so, various ob-
stacles will be met on the way: robust semantic interpretation, designing interfaces
to state-of-the-art theorem provers, and acquiring relevant background knowledge.
The coverage of the parser and semantic analysis component is high (nearly reach-
ing 100 %). Yet the performance on RTE examples yields high precision but low
recall.

An empirical study of the output of Nutcracker reveals that the true positives
are caused by sophisticated linguistic analysis such as coordination, active-passive
alternation, pronoun resolution and relative clauses; the small set of false positives
are caused by insufficient syntactic and semantic analyses. Most importantly, the
false negatives are produced mainly by lack of background knowledge.

The next chapter, entitled Abductive Reasoning with a Large Knowledge Base
for Discourse Processing, presents a discourse processing framework based on
weighted abduction. The authors, Ekaterina Ovchinnikova, Niloofar Montazeri,
Theodore Alexandrov, Jerry Hobbs, Michael C. McCord, and Rutu Mulkar-Mehta,
elaborate on ideas concerning abduction in language understanding described in
Hobbs et al. (1993) and implement the abductive inference procedure in a system
called Mini-TACITUS. Particular attention is paid to constructing a large and reliable
knowledge base for supporting inferences. For this purpose such lexical-semantic
resources are exploited as WordNet and FrameNet. English Slot Grammar (McCord
1990) is used to parse text and produce logical forms.

The proposed procedure and the resulting knowledge base are tested on the Rec-
ognizing Textual Entailment task using the data sets from the RTE-2 challenge for
evaluation. In addition, an evaluation is provided of the semantic role labeling pro-
duced by the system taking the Frame-Annotated Corpus for Textual Entailment as
a gold standard.

In the chapter Natural Logic and Natural Language Inference Bill MacCartney
and Christopher Manning propose a model of natural language inference which
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identifies valid inferences by their lexical and syntactic features, without full se-
mantic interpretation. They extend past work in natural logic, which has focused on
semantic containment and monotonicity, by incorporating both semantic exclusion
and implicativity. The proposed model decomposes an inference problem into a se-
quence of atomic edits linking premise to hypothesis; predicts a lexical entailment
relation for each edit; propagates these relations upward through a semantic com-
position tree according to properties of intermediate nodes; and joins the resulting
entailment relations across the edit sequence.

A computational implementation of the model achieves 70 % accuracy and 89 %
precision on the FRACAS test suite (Cooper et al. 1996). Moreover, including this
model as a component in an existing system is shown to yield significant perfor-
mance gains on the Recognizing Textual Entailment challenge.

In the final chapter of this part of the book, Designing Efficient Controlled Lan-
guages for Ontologies, the authors Raffaella Bernardi, Diego Calvanese, and Camilo
Thorne describe a methodology to recognize efficient controlled natural languages
that compositionally translate into ontology languages, and as such are suitable for
using in natural language front-ends to ontology-based systems. Efficiency in this
setting is defined as the tractability (in the sense of computational complexity the-
ory) of logical reasoning in such fragments, measured in the size of the data they
aim to manage.

In particular, to identify efficient controlled languages, fragments are considered
which correspond to the DL-Lite family of description logics, known to underpin
data intensive ontologies and systems. The proposed methodology exploits the link
between syntax and semantics of natural language captured by categorial gram-
mars, controlling the use of lexical terms that introduce logical structure outside the
allowed fragments. A major role is played by the control of function words intro-
ducing logical operators in first-order meaning representations.

Bernardi et al. present a preliminary analysis of semantically parsed English writ-
ten corpora, which was carried out in order to show how empirical methods may be
useful in identifying CLs that provide good trade-offs between coverage and effi-
ciency.

2.3 Semantic Resources and Annotation

Part III of the book opens with a chapter entitled A Context-Change Semantics for
Dialogue Acts where Harry Bunt presents an update semantic for dialogue acts, de-
fined in terms of combinations of very simple ‘elementary update functions’ for
updating the information state of an addressee of a dialogue act. This approach,
which is rooted in Dynamic Interpretation Theory (Bunt 1995; 2000) is motivated
by the observation that related types of dialogue acts such as answers, confirmations,
and disconfirmations give rise to similar but slightly different information state up-
dates, which can be described elegantly in terms of overlapping sets of elementary
update functions. This makes fine-grained distinctions between types of dialogue
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acts explicit and explains semantic relations like entailment and exclusion between
dialogue acts.

The approach is applied to dialogue act representations as defined in the Dialogue
Act Markup Language (DiAML), which forms part of the recently established ISO
standard 24617-2 (ISO 2012) for dialogue annotation, and to the varieties of dia-
logue act types defined in this standard and in the DIT++ taxonomy of dialogue
acts.

Next is a chapter by Susan Windisch Brown, Dmitriy Dligach, and Martha
Palmer on the semantic classification of verb senses, entitled VerbNet Class Assign-
ment as a WSD Task. The VerbNet lexical resource classifies English verbs based
on semantic and syntactic regularities and has been used for a variety of NLP tasks,
most notably, semantic role labeling. Since, in addition to thematic roles, it also pro-
vides semantic predicates, it can serve as a foundation for further inferencing. Many
verbs belong to multiple VerbNet classes, with each class membership correspond-
ing roughly to a different sense of the verb. A VerbNet token classifier is essential
for current applications using the resource and could provide the basis for a deep
semantic parsing system, one that made full use of VerbNet’s extensive syntactic
and semantic information. The authors describe their VerbNet classifier, which uses
rich syntactic and semantic features to label verb instances with their appropriate
VerbNet class. It is shown to achieve an accuracy of 88.67 % with multiclass verbs,
which is a 49 % error reduction over the most frequent class behaviour as a baseline.

In the chapter Annotation of Compositional Operations with GLML James Puste-
jovsky, Jessica Moszkowics, Olga Batiukova, and Anna Rumshisky introduce a
methodology for annotating compositional operations in natural language text and
describe the Generative Lexicon Mark-up Language (GLML), a mark-up language
inspired by the Generative Lexicon model, for identifying such relations. While
most annotation systems capture surface relationships, GLML captures the “com-
positional history” of the argument selection relative to the predicate. The chapter
provides a brief overview of GL before moving on to the proposed methodology for
annotating with GLML.

Three main tasks are described in this chapter. The first one is based on atomic
semantic types and the other two exploit more fine-grained meaning parameters
encoded in the Qualia Structure roles: (i) argument selection and coercion anno-
tated for the SemEval-2010 competition; (ii) qualia in modification constructions;
(iii) type selection in modification constructions and verb-noun combinations in-
volving dot objects. The authors explain what each task comprises and include the
XML format for annotated sample sentences. It is shown that, by identifying and
subsequently annotating the typing and subtyping shifts in these constructions, an
insight is gained into the workings of the general mechanisms of composition.

In the closing chapter of this book, entitled Incremental Recognition and Predic-
tion of Dialogue Acts, by Volha Petukhova and Harry Bunt, is concerned with in-
cremental machine-learned recognition of the communicative functions of dialogue
utterances. Language use in human conversation is fundamentally incremental, and
human language processing is continuously sensitive to multiple partial constraints,
where contextual ones play a very important role. The question arises whether di-
alogue systems can be enabled to access and use various sources of information
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well enough and fast enough to interpret incoming spoken utterances from its users
in real time. This chapter focuses on the on-line recognition of the communicative
functions of user utterances, more specifically on the question of how the intended
(multi-)functionality of dialogue utterances can be recognized on the basis of ob-
servable features of communicative behaviour in a data-oriented way.

The authors discuss and examine an incremental approaches to dialogue utter-
ance interpretation. A token-based approach combining the use of local classifiers,
which exploit local utterance features, and global classifiers which use the outputs of
local classifiers applied to previous and subsequent tokens, is shown to result in ex-
cellent dialogue act recognition scores for unsegmented spoken dialogue. This can
be seen as a significant step forward towards the development of fully incremental,
on-line methods for computing the meaning of utterances in spoken dialogue.
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Deterministic Statistical Mapping of Sentences
to Underspecified Semantics

Hiyan Alshawi, Pi-Chuan Chang, and Michael Ringgaard

Abstract We present a method for training a statistical model for mapping natu-
ral language sentences to semantic expressions. The semantics are expressions of
an underspecified logical form that has properties making it particularly suitable
for statistical mapping from text. An encoding of the semantic expressions into de-
pendency trees with automatically generated labels allows application of existing
methods for statistical dependency parsing to the mapping task (without the need
for separate traditional dependency labels or parts of speech). The encoding also
results in a natural per-word semantic-mapping accuracy measure. We report on the
results of training and testing statistical models for mapping sentences of the Penn
Treebank into the semantic expressions, for which per-word semantic mapping ac-
curacy ranges between 79 % and 86 % depending on the experimental conditions.
The particular choice of algorithms used also means that our trained mapping is
deterministic (in the sense of deterministic parsing), paving the way for large-scale
text-to-semantic mapping.

1 Introduction

Producing semantic representations of text is motivated not only by theoretical con-
siderations but also by the hypothesis that semantics can be used to improve au-
tomatic systems for tasks that are intrinsically semantic in nature such as question
answering, textual entailment, machine translation, and more generally any natural
language task that might benefit from inference in order to more closely approxi-
mate human performance. Since formal logics have formal denotational semantics,
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and are good candidates for supporting inference, they have often been taken to be
the targets for mapping text to semantic representations, with frameworks empha-
sizing (more) tractable inference choosing first order predicate logic (Stickel 1985)
while those emphasizing representational power favoring one of the many available
higher order logics (van Benthem 1995).

It was later recognized that in order to support some tasks, fully specifying cer-
tain aspects of a logic representation, such as quantifier scope, or reference resolu-
tion, is often not necessary. For example, for semantic translation, most ambiguities
of quantifier scope can be carried over from the source language to the target lan-
guage without being resolved. This led to the development of underspecified seman-
tic representations, such as QLF (Alshawi and Crouch 1992) and MRS (Copestake
et al. 2005), which are easier to produce from text without contextual inference but
which can be further specified as necessary for the task being performed.

While traditionally mapping text to formal representations was predominantly
rule-based, for both the syntactic and semantic components (Montague 1974;
Pereira and Shieber 1987; Alshawi 1992), good progress in statistical syntactic pars-
ing (Collins 1999; Charniak 2000) led to systems that applied rules for semantic in-
terpretation to the output of a statistical syntactic parser (e.g. Bos et al. 2004). More
recently researchers have looked at statistical methods to provide robust and train-
able methods for mapping text to formal representations of meaning (Zettlemoyer
and Collins 2005).

In this paper we further develop the two strands of work mentioned above, i.e.
mapping text to underspecified semantic representations and using statistical parsing
methods to perform the analysis. Here we take a more direct route, starting from
scratch by designing an underspecified semantic representation (Natural Logical
Form, or NLF) that is purpose-built for statistical text-to-semantics mapping. An
underspecified logic whose constructs are motivated by natural language and that
is amenable to trainable direct semantic mapping from text without an intervening
layer of syntactic representation. In contrast, the approach taken by Zettlemoyer and
Collins (2005), for example, maps into traditional logic via lambda expressions, and
the approach taken by Poon and Domingos (2009) depends on an initial step of
syntactic parsing.

In this paper, we describe a supervised training method for mapping text to
NLF, that is, producing a statistical model for this mapping starting from training
pairs consisting of sentences and their corresponding NLF expressions. This method
makes use of an encoding of NLF expressions into dependency trees in which the
set of labels is automatically generated from the encoding process (rather than be-
ing pre-supplied by a linguistically motivated dependency grammar). This encoding
allows us to perform the text-to-NLF mapping using any existing statistical meth-
ods for labeled dependency parsing (Eisner 1996; Yamada and Matsumoto 2003;
McDonald et al. 2005). A side benefit of the encoding is that it leads to a natu-
ral per-word measure for semantic mapping accuracy which we use for evaluation
purposes. By combing our method with deterministic statistical dependency models
together with deterministic (hard) clusters instead of parts of speech, we obtain a
deterministic statistical text-to-semantics mapper, opening the way to feasible map-
ping of text-to-semantics at a large scale, for example the entire web.
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This paper concentrates on the text-to-semantics mapping which depends, in part,
on some properties of NLF. We will not attempt to defend the semantic representa-
tion choices for specific constructions illustrated here. NLF is akin to a variable-free
variant of QLF or an MRS in which some handle constraints are determined during
parsing. For the purposes of this paper it is sufficient to note that NLF has roughly
the same granularity of semantic representation as these earlier underspecified rep-
resentations.

We outline the steps of our text-to-semantics mapping method in Sect. 2, intro-
duce NLF in Sect. 3, explain the encoding of NLF expressions as formal dependency
trees in Sect. 4, and report on experiments for training and testing statistical models
for mapping text to NLF expressions in Sect. 5.

2 Direct Semantic Mapping

Our method for mapping text to natural semantics expressions proceeds as follows:

1. Create a corpus of pairs consisting of text sentences and their corresponding NLF
semantic expressions.

2. For each of the sentence-semantics pairs in the corpus, align the words of the
sentence to the tokens of the NLF expressions.

3. “Encode” each alignment pair as an ordered dependency tree in which the labels
are generated by the encoding process.

4. Train a statistical dependency parsing model with the set of dependency trees.
5. For a new input sentence S, apply the statistical parsing model to S, producing a

labeled dependency tree DS .
6. “Decode” DS into a semantic expression for S.

For step 1, the experiments in this paper (Sect. 5) obtain the corpus by converting
an existing constituency treebank into semantic expressions. However, direct anno-
tation of a corpus with semantic expressions is a viable alternative, and indeed we
are separately exploring that possibility for a different, open domain, text corpus.

For steps 4 and 5, any method for training and applying a dependency model
from a corpus of labeled dependency trees may be used. As described in Sect. 5, for
the experiments reported here we use an algorithm similar to that of Nivre (Nivre
2003).

For steps 2, 3 and 6, the encoding of NLF semantic expressions as dependency
trees with automatically constructed labels is described in Sect. 4.

3 Semantic Expressions

NLF expressions are by design amenable to facilitating training of text-to-semantics
mappings. For this purpose, NLF has a number of desirable properties:
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Fig. 1 Example of an NLF
semantic expression

[acquired
/stealthily
:[in, ^, 2002],

Chirpy+Systems,
companies.two

:profitable
:[producing,
^,
pet+accessories]]

1. Apart from a few built-in logical connectives, all the symbols appearing in NLF
expressions are natural language words.

2. For an NLF semantic expression corresponding to a sentence, the word tokens of
the sentence appear exactly once in the NLF expression.

3. The NLF notation is variable-free.

Technically, NLF expressions are expression of an underspecified logic, i.e. a se-
mantic representation that leaves open the interpretation of certain constructs (for
example the scope of quantifiers and some operators and the referents of terms such
as anaphora, and certain implicit relations such as those for compound nominals).
NLF is similar in some ways to Quasi Logical Form, or QLF (Alshawi 1992), but the
properties listed above keep NLF closer to natural language than QLF, hence natu-
ral logical form.1 There is no explicit formal connection between NLF and Natural
Logic (van Benthem 1986), though it may turn out that NLF is a convenient starting
point for some Natural Logic inferences.

In contrast to statements of a fully specified logic in which denotations are typ-
ically taken to be functions from possible worlds to truth values (Montague 1974),
denotations of a statement in an underspecified logic are typically taken to be rela-
tions between possible worlds and truth values (Alshawi and Crouch 1992; Alshawi
1996). Formal denotations for NLF expressions are beyond the scope of this paper
and will be described elsewhere.

3.1 Connectives and Examples

A NLF expression for the sentence In 2002, Chirpy Systems stealthily acquired two
profitable companies producing pet accessories is shown in Fig. 1.

The NLF constructs and connectives are explained in Table 1. For variable-free
abstraction, an NLF expression [p, ^, a] corresponds to λx.p(x, a). Note that
some common logical operators are not built-in since they will appear directly as
words such as not .2

1The term QLF is now sometimes used informally (e.g. Liakata and Pulman 2002; Poon and
Domingos 2009) for any logic-like semantic representation without explicit quantifier scope.
2NLF does include Horn clauses, which implicitly encode negation, but since Horn clauses are not
part of the experiments reported in this paper, we will not discuss them further here.
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Table 1 NLF constructs and connectives

Operator Example Denotation Lang. constructs

[...] [sold, Chirpy, Growler] predication tuple clauses,
prepositions, . . .

: company:profitable intersection adjectives, relative
clauses, . . .

. companies.two (unscoped) quantification determiners,
measure terms

^ [in, ^, 2005] variable-free abstract prepositions,
relatives, . . .

_ [eating, _, apples] unspecified argument missing verb
arguments, . . .

{...} and{Chirpy, Growler} collection noun phrase
coordination, . . .

/ acquired/stealthily type-preserving operator adverbs, modals, . . .

+ Chirpy+Systems implicit relation compound
nominals, . . .

@ meeting@yesterday temporal restriction bare temporal
modifiers, . . .

& [...] & [...] conjunction sentences, . . .

|...| |Dublin, Paris, Bonn| sequence paragraphs,
fragments, lists, . . .

% met%as uncovered op constructs not
covered

We currently use the unknown/unspecified operator, %, mainly for linguistic con-
structions that are beyond the coverage of a particular semantic mapping model. An
example that includes % in our converted WSJ corpus is Other analysts are nearly
as pessimistic for which the NLF expression is

[are, analysts.other, pessimistic%nearly%as]

In Sect. 5 we give some statistics on the number of semantic expressions contain-
ing % in the data used for our experiments and explain how it affects our accuracy
results.

4 Encoding Semantics as Dependencies

We encode NLF semantic expressions as labeled dependency trees in which the
label set is generated automatically by the encoding process. This is in contrast to
conventional dependency trees for which the label sets are presupplied (e.g. by a
linguistic theory of dependency grammar). The purpose of the encoding is to enable
training of a statistical dependency parser and converting the output of that parser
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for a new sentence into a semantic expression. The encoding involves three aspects:
Alignment, headedness, and label construction.

4.1 Alignment

Since, by design, each word token corresponds to a symbol token (the same word
type) in the NLF expression, the only substantive issue in determining the align-
ment is the occurrence of multiple tokens of the same word type in the sentence.
Depending on the source of the sentence-NLF pairs used for training, a particular
word in the sentence may or may not already be associated with its corresponding
word position in the sentence. For example, in some of the experiments reported in
this paper, this correspondence is provided by the semantic expressions obtained by
converting a constituency treebank (the well-known Penn WSJ treebank). For sit-
uations in which the pairs are provided without this information, as is the case for
direct annotation of sentences with NLF expressions, we currently use a heuristic
greedy algorithm for deciding the alignment. This algorithm tries to ensure that de-
pendents are near their heads, with a preference for projective dependency trees. To
guage the importance of including correct alignments in the input pairs (as opposed
to training with inferred alignments), we will present accuracy results for semantic
mapping for both correct and automatically infererred alignments.

4.2 Headedness

The encoding requires a definition of headedness for words in an NLF expression,
i.e., a head-function h from dependent words to head words. We define h in terms
of a head-function g from an NLF (sub)expression e to a word w appearing in that
(sub)expression, so that g(w)=w, and, recursively:

g
([e1, . . . , en]

)= g(e1)

g(e1 : e2)= g(e1)

g(e1.e2)= g(e1)

g(e1/e2)= g(e1)

g(e1@e2)= g(e1)

g(e1&e2)= g(e1)

g
(|e1, . . . , en|

)= g(e1)

g
(
e1{e2, . . . , en}

)= g(e1)

g(e1 + · · · + en)= g(en)

g(e1%e2)= g(e1).
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Then a head word h(w) for a dependent w is defined in terms of the smallest
(sub)expression e containing w for which

h(w)= g(e) �=w.

For example, for the NLF expression in Fig. 1, this yields the heads shown in Ta-
ble 3. (The labels shown in that table will be explained in the following section.)

This definition of headedness is not the only possible one, and other variations
could be argued for. The specific definition for NLF heads turns out to be fairly
close to the notion of head in traditional dependency grammars. This is perhaps
not surprising since traditional dependency grammars are often partly motivated by
semantic considerations, if only informally.

4.3 Label Construction

As mentioned, the labels used during the encoding of a semantic expression into a
dependency tree are derived so as to enable reconstruction of the expression from
a labeled dependency tree. In a general sense, the labels may be regarded as a kind
of formal semantic label, though more specifically, a label is interpretable as a se-
quence of instructions for constructing the part of a semantic expression that links
a dependent to its head, given that part of the semantic expression, including that
derived from the head, has already been constructed. The string for a label thus con-
sists of a sequence of atomic instructions, where the decoder keeps track of a current
expression and the parent of that expression in the expression tree being constructed.
When a new expression is created it becomes the current expression whose parent
is the old current expression. The atomic instructions (each expressed by a single
character) are shown in Table 2.

A sequence of instructions in a label can typically (but not always) be para-
phrased informally as “starting from head word wh, move to a suitable node (at or
above wh) in the expression tree, add specified NLF constructs (connectives, tuples,
abstracted arguments) and then add wd as a tuple or connective argument.”

Continuing with our running example, the labels for each of the words are shown
in Table 3.

Algorithmically, we find it convenient to transform semantic expressions into
dependency trees and vice versa via a derivation tree for the semantic expression
in which the atomic instruction symbols listed above are associated with individual
nodes in the derivation tree.

The output of the statistical parser may contain inconsistent trees with formal
labels, in particular trees in which two different arguments are predicated to fill the
same position in a semantic expression tuple. For such cases, the decoder that pro-
duces the semantic expression applies the simple heuristic of using the next avail-
able tuple position when such a conflicting configuration is predicated. In our ex-
periments, we are measuring per-word semantic head-and-label accuracy, so this
heuristic does not play a part in that evaluation measure.
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Table 2 Atomic instructions
in formal label sequences Instruction Decoding action

[, {, | Set the current expression to a newly
created tuple, collection, or sequence.

:, /, ., +, &, @, % Attach the current subexpression to its
parent with the specified connective.

* Set the current expression to a newly
created symbol from the dependent word.

0, 1, . . . Add the current expression at the
specified parent tuple position.

^, _ Set the current subexpression to a newly
created abstracted-over or unspecified
argument.

- Set the current subexpression to be the
parent of the current expression.

Table 3 Formal labels for an
example sentence Dependent Head Label

in acquired [:^1-*0

2002 in -*2

Chirpy Systems *+

Systems acquired -*1

stealthily acquired */

acquired [*0

two companies *.

profitable companies *:

companies acquired -*2

producing companies [:^1-*0

pet accessories *+

accessories producing -*2

5 Experiments

5.1 Data Preparation

In the experiments reported here, we derive our sentence-semantics pairs for train-
ing and testing from the Penn WSJ Treebank. This choice reflects the lack, to our
knowledge, of a set of such pairs for a reasonably sized publicly available corpus,
at least for NLF expressions. Our first step in preparing the data was to convert the
WSJ phrase structure trees into semantic expressions. This conversion is done by
programming the Stanford treebank toolkit to produce NLF trees bottom-up from
the phrase structure trees. This conversion process is not particularly noteworthy in
itself (being a traditional rule-based syntax-to-semantics translation process) except
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Table 4 Datasets used in experiments

Dataset Null labels? Auto align? WSJ sections Sentences

Train+Null-AAlign yes no 2–21 39213

Train-Null-AAlign no no 2–21 24110

Train+Null+AAlign yes yes 2–21 35778

Train-Null+AAlign no yes 2–21 22611

Test+Null-AAlign yes no 23 2416

Test-Null-AAlign no no 23 1479

perhaps to the extent that the closeness of NLF to natural language perhaps makes
the conversion somewhat easier than, say, conversion to a fully resolved logical
form.

Since our main goal is to investigate trainable mappings from text strings to se-
mantic expressions, we only use the WSJ phrase structure trees in data preparation:
the phrase structure trees are not used as inputs when training a semantic mapping
model, or when applying such a model. For the same reason, in these experiments,
we do not use the part-of-speech information associated with the phrase structure
trees in training or applying a semantic mapping model. Instead of parts-of-speech
we use word cluster features from a hierarchical clustering produced with the un-
supervised Brown clustering method (Brown et al. 1992); specifically we use the
publicly available clusters reported by Koo et al. (2008).

Constructions in the WSJ that are beyond the explicit coverage of the con-
version rules used for data preparation result in expressions that include the un-
known/unspecified (or ‘Null’) operator %. We report on different experimental set-
tings in which we vary how we treat training or testing expressions with %. This
gives rise to the data sets in Table 4 which have +Null (i.e., including %), and -Null
(i.e., not including %) in the data set names.

Another attribute we vary in the experiments is whether to align the words in
the semantic expressions to the words in the sentence automatically, or whether
to use the correct alignment (in this case preserved from the conversion process,
but could equally be provided as part of a manual semantic annotation scheme, for
example). In our current experiments, we discard non-projective dependency trees
from training sets. Automatic alignment results in additional non-projective trees,
giving rise to different effective training sets when auto-alignment is used: these
sets are marked with +AAlign, otherwise -AAlign. The training set numbers shown
in Table 4 are the resulting sets after removal of non-projective trees.

5.2 Parser

As mentioned earlier, our method can make use of any trainable statistical depen-
dency parsing algorithm. The parser is trained on a set of dependency trees with
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Table 5 Per-word semantic
accuracy when training with
the correct alignment

Training Test Accuracy (%)

+Null-AAlign +Null-AAlign 81.2

-Null-AAlign +Null-AAlign 78.9

-Null-AAlign -Null-AAlign 86.1

+Null-AAlign -Null-AAlign 86.5

Table 6 Per-word semantic
accuracy when training with
an auto-alignment

Training Test Accuracy (%)

+Null+AAlign +Null-AAlign 80.4

-Null+AAlign +Null-AAlign 78.0

-Null+AAlign -Null-AAlign 85.5

+Null+AAlign -Null-AAlign 85.8

formal labels as explained in Sects. 2 and 4. The specific parsing algorithm we use
in these experiments is a deterministic shift reduce algorithm (Nivre 2003), and the
specific implementation of the algorithm uses a linear SVM classifier for predicting
parsing actions (Chang et al. 2010). As noted above, hierarchical cluster features
are used instead of parts-of-speech; some of the features use coarse (6-bit) or finer
(12-bit) clusters from the hierarchy. More specifically, the full set of features is:

• The words for the current and next input tokens, for the top of the stack, and for
the head of the top of the stack.

• The formal labels for the top-of-stack token and its leftmost and rightmost chil-
dren, and for the leftmost child of the current token.

• The cluster for the current and next three input tokens and for the top of the stack
and the token below the top of the stack.

• Pairs of features combining 6-bit clusters for these tokens together with 12-bit
clusters for the top of stack and next input token.

5.3 Results

Tables 5 and 6 show the per-word semantic accuracy for different training and test
sets. This measure is simply the percentage of words in the test set for which both
the predicted formal label and the head word are correct. In syntactic dependency
evaluation terminology, this corresponds to the labeled attachment score.

All tests are with respect to the correct alignment; we vary whether the correct
alignment (Table 5) or auto-alignment (Table 6) is used for training to give an idea
of how much our heuristic alignment is hurting the semantic mapping model. As
shown by comparing the two tables, the loss in accuracy due to using the automatic
alignment is only about 1 %, so while the automatic alignment algorithm can prob-
ably be improved, the resulting increase in accuracy would be relatively small.
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Table 7 Per-word semantic
accuracy after pruning label
sets in Train-Null+AAlign
(and testing with
Test-Null-AAlign)

# Labels # Train sents Accuracy (%)

151 (all) 22611 85.5

100 22499 85.5

50 21945 85.5

25 17669 83.8

12 7008 73.4

As shown in the Tables 5 and 6, two versions of the test set are used: one that
includes the ‘Null’ operator %, and a smaller test set with which we are testing
only the subset of sentences for which the semantic expressions do not include this
label. The highest accuracies (mid 80’s) shown are for the (easier) test set which
excludes examples in which the test semantic expressions contain Null operators.
The strictest settings, in which semantic expressions with Null are not included in
training but included in the test set effectively treat prediction of Null operators as
errors. The lower accuracy (high 70’s) for such stricter settings thus incorporates a
penalty for our incomplete coverage of semantics for the WSJ sentences. The less
strict Test+Null settings in which % is treated as a valid output may be relevant to
applications that can tolerate some unknown operators between subexpressions in
the output semantics.

Next we look at the effect of limiting the size of the automatically generated for-
mal label set prior to training. For this we take the configuration using the TrainWSJ-
Null+AAlign training set and the TestWSJ-Null-AAlign test set (the third row in
Table refPerWordSemanticAccuracyAAlign for which auto-alignment is used and
only labels without the NULL operator % are included). For this training set there
are 151 formal labels. We then limit the training set to instances that only include
the most frequent k labels, for k = 100,50,25,12, while keeping the test set the
same. As can be seen in Table 7, the accuracy is unaffected when the training set is
limited to the 100 most frequent or 50 most frequent labels. There is a slight loss
when training is limited to 25 labels and a large loss if it is limited to 12 labels.
This appears to show that, for this corpus, the core label set needed to construct
the majority of semantic expressions has a size somewhere between 25 and 50. It
is perhaps interesting that this is roughly the size of hand-produced traditional de-
pendency label sets. On the other hand, it needs to be emphasized that since Table 7
ignores beyond-coverage constructions that presently include Null labels, it is likely
that a larger label set would be needed for more complete semantic coverage.

6 Conclusion and Further Work

We’ve shown that by designing an underspecified logical form that is motivated by,
and closely related to, natural language constructions, it is possible to train a direct
statistical mapping from pairs of sentences and their corresponding semantic ex-
pressions, with per-word accuracies ranging from 79 % to 86 % depending on the
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strictness of the experimental setup. The input to training does not require any tra-
ditional syntactic categories or parts of speech. We also showed, more specifically,
that we can train a model that can be applied deterministically at runtime (using a
deterministic shift reduce algorithm combined with deterministic clusters), making
large-scale text-to-semantics mapping feasible.

In traditional formal semantic mapping methods (Montague 1974; Bos et al.
2004), and even some recent statistical mapping methods (Zettlemoyer and Collins
2005), the semantic representation is overloaded to performs two functions: (i) rep-
resenting the final meaning, and (ii) composing meanings from the meanings of
subconstituents (e.g. through application of higher order lambda functions). In our
view, this leads to what are perhaps overly complex semantic representations of
some basic linguistic constructions. In contrast, in the method we presented, these
two concerns (meaning representation and semantic construction) are separated, en-
abling us to keep the semantics of constituents simple, while turning the construc-
tion of semantic expressions into a separate structured learning problem (with its
own internal prediction and decoding mechanisms).

Although in the experiments we reported here we do prepare the training data
from a traditional treebank, we are encouraged by the results and believe that an-
notation of a corpus with only semantic expressions is sufficient for building an
efficient and reasonably accurate text-to-semantics mapper. Indeed, we have started
building such a corpus for a question answering application, and hope to report re-
sults for that corpus in the future. Other further work includes a formal denotational
semantics of the underspecified logical form and elaboration of practical inference
operations with the semantic expressions. This work may also be seen as a step
towards viewing semantic interpretation of language as the interaction between a
pattern recognition process (described here) and an inference process.
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A Formal Approach to Linking Logical Form
and Vector-Space Lexical Semantics

Dan Garrette, Katrin Erk, and Raymond Mooney

Abstract First-order logic provides a powerful and flexible mechanism for repre-
senting natural language semantics. However, it is an open question of how best to
integrate it with uncertain, weighted knowledge, for example regarding word mean-
ing. This paper describes a mapping between predicates of logical form and points
in a vector space. This mapping is then used to project distributional inferences to
inference rules in logical form. We then describe first steps of an approach that uses
this mapping to recast first-order semantics into the probabilistic models that are
part of Statistical Relational AI. Specifically, we show how Discourse Representa-
tion Structures can be combined with distributional models for word meaning in-
side a Markov Logic Network and used to successfully perform inferences that take
advantage of logical concepts such as negation and factivity as well as weighted
information on word meaning in context.

1 Introduction

Logic-based representations of natural language meaning have a long history (Mon-
tague 1970; Kamp and Reyle 1993). Representing the meaning of language in a first-
order logical form is appealing because it provides a powerful and flexible way to
express even complex propositions. However, systems built solely using first-order
logical forms tend to be very brittle as they have no way of integrating uncertain
knowledge. They therefore tend to have high precision at the cost of low recall (Bos
and Markert 2005).

Recent advances in computational linguistics have yielded robust methods that
use statistically-driven weighted models. For example, distributional models of
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word meaning have been used successfully to judge paraphrase appropriateness by
representing the meaning of a word in context as a point in a high-dimensional se-
mantics space (Erk and Padó 2008; Thater et al. 2010; Reisinger and Mooney 2010;
Dinu and Lapata 2010; Van de Cruys et al. 2011). However, these models only
address word meaning, and do not address the question of providing meaning rep-
resentations for complete sentences. It is a long-standing open question how best to
integrate the weighted or probabilistic information coming from such modules with
logic-based representations in a way that allows for reasoning over both. See, for
example, Hobbs et al. (1993).

The goal of this work is to establish a formal system for combining logic-based
meaning representations with weighted information into a single unified framework.
This will allow us to obtain the best of both situations: we will have the full expres-
sivity of first-order logic and be able to reason with probabilities. We believe that
this will allow for a more complete and robust approach to natural language under-
standing.

While this is a large and complex task, this chapter proposes first steps toward
our goal by presenting a mechanism for injecting distributional word-similarity in-
formation from a vector space into a first-order logical form. We define a map-
ping from predicate symbols of logical form to points in vector space. Our main
aim in linking logical form to a vector space in this chapter is to project in-
ferences from the vector space to logical form. The inference rules that we use
are based on substitutability. In a suitably constructed distributional representa-
tion, distributional similarity between two words or expressions A and B indi-
cates that B can be substituted for A in text (Lin and Pantel 2001). This can be
described through an inference rule A → B . Distributional information can also
be used to determine the degree η to which the rule applies in a given sentence
context (Szpektor et al. 2008; Mitchell and Lapata 2008; Erk and Padó 2008;
Thater et al. 2010; Reisinger and Mooney 2010; Dinu and Lapata 2010; Van de
Cruys et al. 2011). This degree η can be used as a weight on the inference rule
A→ B .

In this chapter, we first present our formal framework for projecting inferences
from vector space to logical form. We then show how that framework can be ap-
plied to a real logical language and vector space to address issues of ambiguity in
word meaning. Finally, we show how the weighted inference rules produced by our
approach interact appropriately with the first-order logical form to produce correct
inferences.

Our implementation uses Markov Logic Networks (MLN) (Richardson and
Domingos 2006) as the underlying engine for probabilistic inference. We are able
to demonstrate that an MLN is able to properly integrate the first-order logical rep-
resentation and weighted inference rules so that inferences involving correct word
sense are assessed as being highly probable, inferences involving incorrect word
sense are determined to be low probability, and inferences that violate hard logical
rules are determined to have the lowest probability.
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2 Background

Textual Entailment Recognizing Textual Entailment (RTE) is the task of deter-
mining whether one natural language text, the premise, implies another, the hypoth-
esis. For evaluation of our system, we have chosen to use a variation on RTE in
which we assess the relative probability of entailment for a of set of hypotheses.

We have chosen textual entailment as the mode of evaluation for our approach
because it offers a good framework for testing whether a system performs correct
analyses and thus draws the right inferences from a given text. As an example, con-
sider (1) below.

(1) p: The spill left a stain.
h1: The spill resulted in a stain.

h2*: The spill fled a stain.
h3*: The spill did not result in a stain.

Here, hypothesis h1 is a valid entailment, and should be judged to have high proba-
bility by the system. Hypothesis h2 should have lower probability since it uses the
wrong sense of leave and h3 should be low probability because the logical operator
not has reversed the meaning of the premise statement.

While the most prominent forum using textual entailment is the Recognizing
Textual Entailment (RTE) challenge (Dagan et al. 2005), the RTE datasets do not
test the phenomena in which we are interested. For example, in order to evaluate our
system’s ability to determine word meaning in context, the RTE pair would have to
specifically test word sense confusion by having a word’s context in the hypothesis
be different from the context of the premise. However, this simply does not occur
in the RTE corpora. In order to properly test our phenomena, we construct hand-
tailored premises and hypotheses based on real-world texts.

Logic-Based Semantics Boxer (Bos et al. 2004) is a software package for wide-
coverage semantic analysis that provides semantic representations in the form of
Discourse Representation Structures (Kamp and Reyle 1993). It builds on the C&C
CCG parser (Clark and Curran 2004).

Bos and Markert (2005) describe a system for Recognizing Textual Entailment
(RTE) that uses Boxer to convert both the premise and hypothesis of an RTE pair
into first-order logical semantic representations and then uses a theorem prover to
check for logical entailment.

Distributional Models for Lexical Meaning Distributional models describe the
meaning of a word through the context in which it appears (Landauer and Dumais
1997; Lund and Burgess 1996), where contexts can be documents, other words, or
snippets of syntactic structure. Based on the hypothesis that words that are similar
in meaning will occur in similar contexts (Harris 1954; Firth 1957), distributional
models predict semantic similarity between words based on distributional similar-
ity. They can be learned in an unsupervised fashion. Recently distributional mod-
els have been used to predict the applicability of paraphrases in context (Erk and
Padó 2008; Thater et al. 2010; Reisinger and Mooney 2010; Dinu and Lapata 2010;



30 D. Garrette et al.

Van de Cruys et al. 2011). For example, in “The spill left a stain”, result in is a better
paraphrase for leave than flee, because of the context of spill and stain. In the sen-
tence “The suspect left the country”, the opposite is true: flee is a better paraphrase.
Usually, the distributional representation for a word mixes all its usages (senses).
For the paraphrase appropriateness task, these representations are then reweighted,
extended, or filtered to focus on contextually appropriate usages.

Markov Logic In order to perform logical inference with weights, we draw
from the large and active body of work related to Statistical Relational AI (Getoor
and Taskar 2007). Specifically, we make use of Markov Logic Networks (MLNs)
(Richardson and Domingos 2006) which employ weighted graphical models to rep-
resent first-order logical formulas. MLNs are appropriate for our approach because
they provide an elegant method of assigning weights to first-order logical rules,
combining a diverse set of inference rules, and performing probabilistic inference.

An MLN consists of a set of weighted first-order clauses. It provides a way of
softening first-order logic by making situations in which not all clauses are satisfied
less likely, but not impossible (Richardson and Domingos 2006). More formally, if
X is the set of all propositions describing a world (i.e. the set of all ground atoms),
F is the set of all clauses in the MLN, wi is the weight associated with clause fi ∈
F , Gfi

is the set of all possible groundings of clause fi , and Z is the normalization
constant, then the probability of a particular truth assignment x to the variables in X

is defined as:

P(X = x)= 1

Z exp

( ∑

fi∈F
wi

∑

g∈Gfi

g(x)

)
= 1

Z exp

( ∑

fi∈F
wini(x)

)

where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) = ∑
g∈Gfi

g(x) is the
number of groundings of fi that are satisfied given the current truth assignment
to the variables in X. This means that the probability of a truth assignment rises
exponentially with the number of groundings that are satisfied.

Markov Logic has been used previously in other NLP applications (e.g. Poon and
Domingos (2009)). However, this chapter differs in that it is an attempt to represent
deep logical semantics in an MLN.

While it is possible to learn rule weights in an MLN directly from training data,
our approach at this time focuses on incorporating weights computed by external
knowledge sources. Weights for word meaning rules are computed from the distri-
butional model of lexical meaning and then injected into the MLN. Rules governing
implicativity are given infinite weight (hard constraints).

We use the open source software package Alchemy (Kok et al. 2005) to perform
MLN inference.

3 Linking Logical Form and Vector Spaces

In this section we define a link between logical form and vector space representa-
tions through a mapping function that connects predicates in logical form to points



A Formal Approach to Linking Logical Form and Vector-Space Lexical Semantics 31

in vector space. Gärdenfors (2004) uses the interpretation function for this purpose,
such that logical formulas are interpreted over vector space representations. How-
ever, the conceptual spaces that he uses are not distributional. Their dimensions are
qualities, like the hue and saturation of a color or the taste of a fruit. Points in a
conceptual space are, therefore, potential entities. In contrast, the vector spaces that
we use are distributional in nature, and, therefore, cannot be interpreted as poten-
tial entities. A point in such a space is a potential word, defined through its ob-
served contexts. For this reason, we define the link between logical form and vector
space through a second mapping function independent of the interpretation function,
which we call the lexical mapping function.

3.1 Lexical Mapping and Inference Projection

Let V be a vector space whose dimensions stand for elements of textual context. We
also write V for the set of points in the space. We assume that each word is repre-
sented as a point in vector space.1 The central relation in vector spaces is semantic
similarity. We represent this through a similarity function

sim : V × V →[0,1]
that maps each pair of points in vector space to their degree of similarity. While most
similarity functions in the literature are symmetric, such that sim(�v, �w)= sim( �w, �v),
our definition also accommodates asymmetric similarity measures like Kotlerman
et al. (2010).

We link logical form and a vector space through a function that maps every pred-
icate symbol to a point in space. Let L be a logical language. For each n≥ 0, let the
set of n-ary predicate symbols of L be Pn

L, and let PL =∪n≥0Pn
L. Let V be a vector

space. Then a lexical mapping function from L to V is a function � : PL→ V .
A central property of distributional vector spaces is that they can predict simi-

larity in meaning based on similarity in observed contexts (Harris 1954). Lin and
Pantel (2001) point out that in suitably constrained distributional representations,
distributional similarity indicates substitutability in text. If two words v and w are
similar in their observed contexts, then w can be substituted for v in texts. This can
be written as an inference rule v→w, weighted by sim(�v, �w).

We use this same idea to project inference rules from vector space to logical
form through the lexical mapping function. If the lexical mapping function maps
the n-ary predicate P to �v and the n-ary predicate Q to �w, and sim(�v, �w)= η, then
we obtain the weighted inference rule ∀x1, . . . , xn[P(x1, . . . , xn)→Q(x1, . . . xn)]

1The assumption of a single vector per word is made for the sake of simplicity. If we want to cover
models in which each word is represented through multiple vectors (Reisinger and Mooney 2010;
Dinu and Lapata 2010), this can be done through straightforward extensions of the definitions
given here.
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with weight η. More generally, let L be a logical language with lexical mapping � to
a vector space V . Let sim be the similarity function on V . For all Q ∈ PL and Q⊆
PL, let ζ(Q,Q)⊆Q. Then the inference projection for the predicate P ∈Pn

L is

Πsim,ζ,�(P )= {(F,η) | ∃Q ∈ ζ(P,Pn
L)[

F = ∀x1, . . . , xn[P(x1, . . . , xn)→Q(x1, . . . , xn)],
η= sim(�(P ), �(Q))]}

That is, the inference projection for P is the set of all weighted inference rules
(F,η) predicted by the vector space that let us infer some other predicate Q from P .
Additionally, we may have information on the inferences that we are willing to
project that is not encoded in the vector space. For example we may only want to
consider predicates Q that stand for paraphrases of P . For this reason, the function ζ

can be used to limit the predicates Q considered for the right-hand sides of rules. If
ζ(P,Pn

L)=Pn
L, then a rule will be generated for every Q ∈Pn

L.

3.2 Addressing Polysemy

When a word is polysemous, this affects the applicability of vector space-based
inference rules. Consider the rule ∀e[fix(e)→ correct(e)] (any fixing event is a cor-
recting event): this rule applies in contexts like “fix a problem”, but not in contexts
like “fix the date”. We therefore need to take context into account when consider-
ing inference rule applicability. We do this by computing vector representations for
word meaning in context, and predicting rule applicability based on these context-
specific vectors. We follow the literature on vector space representations for word
meaning in context (Erk and Padó 2008; Thater et al. 2010; Reisinger and Mooney
2010; Dinu and Lapata 2010; Van de Cruys et al. 2011) in assuming that a word’s
context-specific meaning is a function of its out-of-context representation and the
context. The context may consist of a single item or multiple items, and (syntactic
or semantic) relations to the target word may also play a role (Erk and Padó 2008;
Thater et al. 2010; Van de Cruys et al. 2011).

We first define what we mean by a context. Given a vector space V and a finite
set R of semantic relations, the set C(V,R) of contexts over V and R consists of
all finite sets of pairs from V ×R. That is, we describe the context in which a target
word occurs as a finite set of pairs (�v, r) of a context item �v represented as a point in
vector space, and the relation r between the context item and the target. For a word
w in a context c ∈ C(V,R), the context-specific meaning �wc of w is a function of
the out-of-context vector �w for w and the context c:

�wc = α( �w,c)

The function α is a contextualization function with signature α : V ×C(V,R)→ V .
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This definition of contextualization functions is similar to the framework of
Mitchell and Lapata (2008), who define the meaning �p of a two-word phrase
p = vw as a function of the vectors for v and w, and their syntactic relation r in the
text: �p = f (�v, �w, r,K), where f is some function, and K is background knowledge.
However, we use contextualization functions to compute the meaning of a word in
context, rather than the meaning of a phrase. We map predicate symbols to points in
space, and predicate symbols need to map to word meanings, not phrase meanings.
Also, Mitchell and Lapata only consider the case of two-word phrases, while we
allow for arbitrary-size contexts.

In existing approaches to computing word meaning in context, bag-of-words rep-
resentations or syntactic parses of the sentence context are used to compute the con-
textualization. In contrast, we use the logical form representation, through a function
that maps a logic formula to a context in C(V,R). Given a logical language L, a
vector space V , and set R of semantic relations, a context mapping is a function that
computes the context c ∈ C(V,R) of a predicate P in a formula G as

c= κ(P,G)

The signature of a context mapping function is κ :PL ×L→ C(V,R).
We can now compute a context-specific vector space representation �wP,G for

a predicate P in a formula G from the context-independent vector �(P ) and the
context κ(P,G). It is

�wP,G = α(�(P ), κ(P,G))

To obtain an inference projection for P that takes into account its context in the
formula G, we adapt the lexical mapping function. Given a lexical mapping �, let
�[Q/�v] be the function that is exactly like � except that it maps Q to �v. Let Πsim,ζ,� be
an inference projection for vector space V and logical language L, let α be a contex-
tualization function on V and R, and κ a context mapping from L to C(V,R). Then
the contextualized inference projection for predicate P ∈Pn

L in formula G ∈ L is

ΠG
sim,ζ,�(P )=Πsim,ζ,�[P/α(�(P ),κ(P,G))

(P )

In this contextualized inference projection, any rule ∀x1, . . . , xn[P(x1, . . . , xn)→
Q(x1, . . . , xn)] is weighted by similarity sim(α(�(P ), κ(P,G)), �(Q)) between the
context-specific vector for P and the vector for Q. This follows common practice
in vector space models of word meaning in context of computing a context-specific
representation of the target, but not the paraphrase candidate. But if the paraphrase
candidate is polysemous, it may be useful to compute a representation for it that
is also specific to the sentence context at hand (Erk and Padó 2010). We can do
this by defining a lexical mapping γ P,G specific to predicate P and formula G by
γ P,G(Q)= α(�(Q), κ(P,G)). Then we can compute the contextualized inference
projection of P as ΠG

sim,ζ,�(P )=Πsim,ζ,γ P,G(P ).
In computational semantics, polysemy is mostly addressed by using multiple

predicates. For example, for the noun “bank” there would be predicates bank1,
bank2 to cover the financial and riverside senses of the word. In contrast, we use
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a separate predicate for each word token, but these predicates are not associated
with any particular fixed senses. Instead, we vary the lexical mapping of a predicate
based on the formula that it appears in: a predicate P in a formula G is mapped
to the vector α(�(P ), κ(P,G)), which depends on G. We make this change for
two reasons. First, a system that uses distinct predicates bank1, bank2 has to rely
on an external word sense disambiguation system that decides, during semantics
construction, which of the senses to use. In contrast, we determine lexical meaning
based on the overall semantic representation of a sentence, directly linking sentence
semantics and lexical semantics. Second, in the case of polysemy, the senses to dis-
tinguish are not always that clear. For example, for a noun like “onion”, should the
vegetable sense and the plant/bulb sense be separate (Krishnamurthy and Nicholls
2000)? Through the vector space model, we can model word meaning in context
without ever referring to distinct dictionary senses (Erk 2010). But if we do not
want to consider a fixed list of senses for a word w, then we also cannot represent
its meanings through a fixed list of predicates.

4 Transforming Natural Language Text to Logical Form

In transforming natural language text to logical form, we build on the software pack-
age Boxer (Bos et al. 2004). Boxer is an extension to the C&C parser (Clark and
Curran 2004) that transforms a parsed discourse of one or more sentences into a se-
mantic representation. Boxer outputs the meaning of each discourse as a Discourse
Representation Structure (DRS) that closely resembles the structures described by
Kamp and Reyle (1993).

We chose to use Boxer for two main reasons. First, Boxer is a wide-coverage
system that can deal with arbitrary text. Second, the DRSs that Boxer produces are
close to the standard first-order logical forms that are required for use by the MLN
software package Alchemy. Our system interprets discourses with Boxer, augments
the resulting logical forms by adding inference rules, and outputs a format that the
MLN software Alchemy can read.

5 Ambiguity in Word Meaning

In order for our system to be able to make correct natural language inferences, it
must be able to handle paraphrasing. For example, in order to license the entailment
pair in (2), the system must recognize that “owns” is a valid paraphrase for “has”,
and that a “car” is type of “vehicle”:

(2) p: Ed owns a car.
h: Ed has a vehicle.

We address this problem as described in Sect. 3: we use distributional informa-
tion to generate inferences stating, for example, that “has” can be substituted for
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“owns”. This inference is weighted by the degree to which “owns”, in the context in
which it is used in (2), is similar to “has”. To integrate these inference rules with the
logical form representations of sentences like (2), we use the formalism introduced
in Sect. 3. We now describe how we instantiate it in the current chapter.

First, we generate a vector space V . We have chosen to implement a very sim-
ple vector space based on a bag-of-words representation of context. To ensure that
the entries in the vector space correspond to the predicates in our logical forms, we
first lemmatize all sentences in our corpus using the same lemmatization process as
Boxer. The features used by V are the N most frequent lemmas, excluding stop-
words. To calculate the vector in V for a lemma, we count the number of times the
lemma appears in the same sentence as each feature, and then calculate the point-
wise mutual information (PMI) between the lemma and each feature. The resulting
PMI values for each feature are used as the vector for the lemma.

As the similarity function sim on our vector space, we use cosine similarity. For
two vectors �v and �w, their similarity is

sim(�v, �w)= cosine(�v, �w)= �v · �w
‖�v‖‖ �w‖

Logical forms in our system are generated by Boxer, so our logical language L
is the set of formulas that may be returned from Boxer (modulo some modifica-
tions described in Sect. 6). Likewise, the set of predicate symbols PL are the pred-
icates generated by Boxer. Boxer’s predicates, as represented by the pred relation
in Boxer’s Prolog output,2 consist of a word lemma and a token index indicating the
original token that generated that predicate. Our lexical mapping function maps each
predicate symbol to the vector that represents the lemma portion of the predicate.

In order to assess the similarity between a word’s context and a possible re-
placement word, we must define a context mapping that generates a context from a
predicate P ∈PL and a formula G ∈ L. For the current chapter we use the simplest
possible definition for κ , which ignores semantic relations. We define the context
of P as the vectors of all predicates Q that occur in the same sentence as P . Since
every predicate in a logical form returned by Boxer is indexed with the sentence
from which it was generated, we can define a simple context mapping that defines
a predicate’s context solely in terms of the other predicates generated by Boxer for
that sentence.

κ(P,G)= {(same-sentence, �(Q)) |Q is a predicate found in G,

Q’s sentence index= P ’s sentence index, and

Q �= P }
Note that the only predicates Q that are used are those derived from the lemmas
of words found in the text. Meta-predicates representing relations such as agent,
patient, and theme are not included.

2See http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs for the detailed grammar of Boxer DRS
output.

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs
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The context mapping κ computes a context for a predicate P occurring in a for-
mula G. Next we require a contextualization function that uses the context returned
by κ to compute a context-specific vector for P . Again we use the simplest instanti-
ation possible. Our contextualization function just computes the sum of the vectors
for each lemma in the context

α(�v, c)=
∑

(ri , �wi)∈c

�wi

Other, more complex instantiations of κ and α are possible. We comment on this
further in Sect. 8.

Based on these definitions, we compute the contextualized inference projection
ΠG

sim,ζ,�(P ), the set of weighted inference rules mapping predicate P to its potential
replacements, as described in Sect. 3.

Finally, in order to limit the number of inference rules generated in the inference
projection, we define a restriction function ζ that specifies, for a predicate P ∈
Pn
L, which of the predicates in Pn

L may serve as replacements. Our system uses
WordNet (Miller 2009) to restrict substitutions only to those predicates representing
synonyms or hypernyms of the lemma underlying P . So, for a predicate P ∈ Pn

L
and a set of predicates Q⊆Pn

L, we define ζ as

ζ(P,Q)= {Q ∈Q |Q’s lemma is a synonym of, a hypernym of, or equal to P ’s}

5.1 A Lexical Ambiguity Example

Assume we have sentence (3), which is parsed by C&C and translated into DRT by
Boxer, as shown in Fig. 1.

(3) p: A stadium craze is sweeping the country.
h1: A craze is covering the nation.

h2*: A craze is brushing the nation.

The DRS in Fig. 1b, a formula of logical language L, shall be denoted by G.
Formula G contains a unary predicate sweep1005. In order to generate weighted
substitution rules for sweep1005, we calculate the contextualized inference projection
of sweep1005: the set of inference rules mapping sweep1005 to each (unary) predicate
Q ∈ P1

L, with each rule weighted by the similarity of the vector representing the
context of sweep1005 in G to the vector representing the replacement Q. This is

ΠG
sim,ζ,�(sweep1005)

= {(F,η) | ∃Q ∈ ζ(P,P1
L)[

F = ∀x.[sweep1005(x)→Q(x)] and

η= sim(α(�(sweep1005), κ(sweep1005,G)), �(Q))]}
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Fig. 1 Dependency parse tree and DRT interpretation of the premise in (3)

Let us assume that our logical language L also includes unary predicates
cover2004 and brush3004 and that the lemmas cover and brush are known to be syn-
onyms of sweep (though from different senses). In other words,

{cover2004,brush3004} ∈ ζ(sweep1005,P1
L)

So, in the calculation of ΠG
sim,ζ �(sweep1005), we will generate weighted inference

rules (F,η) for both cover2004 and brush3004. This will allow us to calculate the
probability of inference for both hypotheses in (3).

We look first at cover2004. The rule formula F is instantiated simply as

∀x.[sweep1005(x)→ cover2004(x)]
The weight η is the similarity between the context of sweep1005 in G, and cover2004.
The context vector for sweep1005 is calculated as

α(�(sweep1005), κ(sweep1005,G))

Since we defined the lexical mapping �(P ) to simply return the vector from V for
the lemma portion of the predicate P , �(sweep1005) = −−−→sweep and �(cover2004) =−−−→cover.

The context of P in G, κ(P,G) is the set of a set of predicates and their relations
to P , so

κ(sweep1005,G)= {(�(stadium1002), same-sentence)}
(�(craze1003), same-sentence),

(�(country1007), same-sentence),

= {(−−−−→stadium, same-sentence),

(−−→craze, same-sentence),

(
−−−−→country, same-sentence)}
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We defined our contextualization function α(�v, c) to be the vector sum of word
vectors from the context c, so

α(�(sweep1005), κ(sweep1005,G))= α(−−−→sweep, {(−−−−→stadium, same-sentence),

(−−→craze, same-sentence),

(
−−−−→country, same-sentence)})

=−−−−→stadium+−−→craze+−−−−→country

Finally, since we have the vector representing the context of sweep1005 in G and
the vector representing the replacement predicate cover2004, we can compute the
weight, η for our inference rule ∀x.[sweep1005(x)→ cover2004(x)] as

sim(α(�(sweep1005), κ(sweep1005,G)), �(Q))

= sim(
−−−−→
stadium+−−→craze+−−−−→country,−−−→cover)

= cosine(
−−−−→
stadium+−−→craze+−−−−→country,−−−→cover)

Likewise, the rule for replacing sweep1005 by brush3004 would be ∀x.[sweep1005(x)

→ brush3004(x)] weighted by cosine(
−−−−→
stadium+−−→craze+−−−−→country,

−−−→
brush).

Since, cosine(
−−−−→
stadium + −−→craze + −−−−→country,−−−→cover) > cosine(

−−−−→
stadium + −−→craze +−−−−→country,

−−−→
brush), cover is considered to be a better replacement for sweep than

brush in the sentence “A stadium craze is sweeping the country”. Thus, the rule
∀x.[sweep1005(x)→ cover2004(x)] will be given more consideration during infer-
ence, and hypothesis h1 will be determined to be more probable than h2.

5.2 Hypernymy

According to our definition of ζ above, we construct inference rules of the form
∀x1, . . . , xn[P(x1, . . . , xn) → Q(x1, . . . xn)] where Q is a synonym or hypernym
of P . Thus, for two synonyms A and B , we will generate rules A→ B and B →A.
However, for hypernym relationships, we only construct the inference rule entailing
up the hierarchy: from the hyponym to the hypernym. This is important for licensing
correct inferences. Consider example (4).

(4) p: Ed owns a car.
h: Ed has a vehicle.

Here the inference is valid since a car is a type of vehicle. For this pair, our system
will generate the rule ∀x[car(x) → vehicle(x)] and assign a weight based on the
similarity of the lemma vehicle to the context of car in the premise sentence. How-
ever, an inference in the reverse direction of (4) would be invalid, which is why we
do not generate the reverse inference rule.

With hypernymy, we can see how our system naturally integrates logical phe-
nomena with distributional information. In example (4), the distributional similarity
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between vehicle and the context of car affects the overall probability of inference
for the pair. However, it does not override the logical requirements imposed by the
hypernym relationship: if the premise and hypothesis were reversed then it would
not matter how similar the words were since the inference would be impossible.

The logical rules generated for hypernyms work properly with other logical as-
pects as well. For example, in (5) below we can see that the direction of entailment
along the hypernym hierarchy is reversed when the words appear in negative con-
texts. Our system handles this correctly.

(5) p: Ed does not own a vehicle.
h: Ed does not have a car.

6 Implicativity

Implicativity and factivity are concerned with analyzing the truth conditions of
nested propositions (Nairn et al. 2006). For example, in the premise of the entail-
ment pair shown in example (6) below, the locking is the event that Ed forgot to do,
meaning that it did not happen. In example (7), build is the main verb of the com-
plement of hope, so we cannot infer that the building event occurred, nor can we
infer that it did not occur. Correctly recognizing nested propositions and analyzing
their contexts is necessary for preventing the licensing of entailments like (6) and
rejecting those like (7).

(6) p: Ed forgot to lock the door.3

h: Ed did not lock the door.

(7) p: The mayor hoped to build a new stadium.4

h: *The mayor built a new stadium.

Nairn et al. (2006) presented an approach to the treatment of inferences involv-
ing implicatives and factives. Their approach identifies an “implication signature”
for every implicative or factive verb. This signature specifies the truth conditions for
the verb’s nested proposition, depending on whether the verb occurs in a positive or
negative environment. Following MacCartney and Manning (2009), we write impli-
cation signatures as “x/y” where x represents the entailment to which the speaker
commits in a positive environment and y represents entailment in a negative environ-
ment. Both x and y have three possible values: “+” for positive entailment, meaning
the nested proposition is entailed, “-” for negative entailment, meaning the negation
of the proposition is entailed, and “o” for “null” entailment, meaning that neither
the proposition nor its negation is entailed. Figure 2 gives concrete examples.5

3Example (6) is derived from examples by MacCartney and Manning (2009).
4Example (7) is adapted from document wsj_0126 from the Penn Treebank.
5Note that forget to and forget that have different implication signatures. As such, in order to select
the right signature, it is necessary to examine not simply the verb but the entire subcategorization
frame. To do this, we make use of the dependency parse generated by the C&C parser that is input
to Boxer.
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Signature Example

forgot that +/+ he forgot that Dave left � Dave left
he did not forget that Dave left � Dave left

managed to +/- he managed to escape � he escaped
he did not manage to escape � he did not escape

forgot to -/+ he forgot to pay � he did not pay
he did not forget to pay � he paid

refused to -/o he refused to fight � he did not fight
he did not refuse to fight � {he fought, he did not fight}

Fig. 2 Implication signatures

Fig. 3 Boxer’s DRT interpretation of “John did not manage to leave.”

6.1 Inferences with Nested Propositions

The standard conversion from DRT to first-order logic (FOL) (the one used by
Boxer) falls short in its analysis of nested propositions. Consider the entailment
pair “John did not manage to leave” and “John left”. The DRT interpretation of the
premise and its corresponding FOL conversion are shown in Fig. 3.

It should be clear that “John did not manage to leave” does not entail “John left”
(and, in fact, entails the opposite). Unfortunately, the FOL formula shown in Fig. 3b
does entail the FOL representation of “John left”, which is

∃x0 e1.[john1001(x0) & leave1006(e1) & agent(e1, x0)]
The incorrect inference occurs here because the standard DRT-to-FOL transla-

tion loses some information. DRT expressions are allowed to have labeled subex-
pressions, such as p2 in Fig. 3a that is used to reference the theme of the manage
event: the leave event. The FOL expression, on the other hand, shows that p2 is the
theme of event e1, but has no way of stating what p2 refers to.
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Fig. 4 First (insufficient) attempt at correcting for the loss of labeled sub-expression information

In order to capture the information that the DRT labels provide, we modify the
DRT expression to contain explicit subexpression triggers. That is, for a sub-DRS A

labeled by p, we replace A with two new expressions in the same scope: POS(p)→
A and NEG(p)→¬A. The result of such a replacement on the DRS in Fig. 3a can
be see in Fig. 4a.

Now that our labeled subexpression has triggers, we can introduce inference rules
to activate those triggers. The purpose of these inference rules is to capture the be-
havior dictated by the implication signature of the implicative or factive verb for
which the relevant subexpression is the theme. For example, according to the im-
plication signature in Fig. 2, the implicative manage to is positively entailing in
positive contexts and negatively entailing in negative contexts. This means that if
John managed to do what is described by p, then the event described by p occurred,
or in other words, the subexpression of p is true. Likewise, if John did not manage
to do what is described by p, then the event described by p did not occur, meaning
that the subexpression of p is false.

The triggering inference rules for managed to are shown in Fig. 4b. The first
rule, for positive contexts, says that for all propositions p, if p is “managed”, then
p’s subexpression is true, so trigger the “positive entailment” subexpression which,
in our example, says that the leaving event occurred. The second rule, for negative
contexts, says that for all propositions p, if there is no “managing” of p, then p’s
subexpression is false, so trigger the “negative entailment” subexpression to say that
there is no event of leaving.
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While this approach works for positive contexts, there is a subtle problem for
negative contexts. The negative context rule in Fig. 4b can be translated to FOL as

∀p.[¬∃e.[manage1004(e)∧ theme(e,p))]→ NEG(p)]
This expression is stating that for all propositions p, p is false if there is no “man-
aging” of p. Now, we want this inference rule to be used in cases where it is stated
that “managing” did not occur, such as in the expression of Fig. 4a, where we see
that is the case that

¬
e1
manage1004(e1)
theme(e1, p2)
agent(e1, x0)

which is equivalent to the FOL expression

¬∃e1[manage1004(e1)∧ theme(e1,p2)∧ agent(e1, x0)]
stating that there is no “managing” of p2 by x0. However, the antecedent of our
negative context rule states that there is no “managing” of the proposition, so the
rule would only be used if it could be proven that there is no “managing” event at
all. Unfortunately, stating that p2 is not “managed” by x0 does not entail that p2 is
not “managed” at all since p2 could be managed by someone other than x0.

To overcome this problem, we modify our representation of a negated event.
Instead of representing an event, such as the “managing” event, that did not oc-
cur as ¬∃e.[manage(e)], we represent it explicitly as an event of non-occurrence:
∃e.[not_manage(e)]. Applying this change to the DRS and inference rules in Fig. 4,
we arrive at our final form in Fig. 5.

Using this strategy, we can see that the negative context rule is active when there
exists a “not-managing” state, and the representation of “John did not manage to
leave” explicitly requires that there is such an state, meaning that the rule will be
used in the inference. With all of these pieces in place, the inference works as ex-
pected.

Thus, we transform the output of Boxer in two ways. First, we identify any la-
beled propositions and replace them with pairs of proposition triggers. Then, we
modify any negated DRSs by extracting the verb and theme atoms, changing the
verb predicate to a “not_” predicate,6 and finally ensuring that all other expressions
under the negated DRS (aside from the labeled proposition itself), remain under a
negated DRS.

Once the sentence representations have been modified, we generate inference
rules for each implicative verb. If the verb is positively entailing in positive contexts,
we generate a rule of the form

∀p.[∃e.[〈verb〉(e)∧ theme(e,p))]→ POS(p)]

6The lexical mapping for these new predicates ignores the negation, i.e. �(not_manage) =
�(manage).
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Fig. 5 Explicit capturing of sub-expression information

but if it is negatively entailing in positive contexts, we instead generate a rule of the
form

∀p.[∃e.[〈verb〉(e)∧ theme(e,p))]→ NEG(p)]
If the verb is positively entailing in negative contexts, we generate a rule of the form

∀p.[∃e.[not_〈verb〉(e)∧ theme(e,p))]→ POS(p)]
but if it is negatively entailing in negative contexts, we instead generate a rule of the
form

∀p.[∃e.[not_〈verb〉(e)∧ theme(e,p))]→ NEG(p)]
If the verb is non-entailing in either positive or negative contexts, then we do not
generate a rule for that context polarity.

This approach works for arbitrarily long chains of nested implicatives and fac-
tives. For example, consider the entailment in (8).

(8) Dave managed to fail to not forget to leave � Dave did not leave

Our approach is able to predict this entailment by correctly handling the three nested
implicatives along with the negation. Figure 6 shows the nested polarity environ-
ments and how the implicative verbs and negations modify the polarity. The top-
level verb managed to maintains its same polarity and predicts a positive environ-
ment for the fail to event. The fail to reverses the polarity for the not forget to
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Fig. 6 Nested polarity environments showing how implicative verbs and negation modify polarity

state. Since the negation of forget is in a negative environment, the negations can-
cel, putting forget in a positive environment, thus predicting a negative environment
for the leaving event. Since the leaving event is in a negative environment, we can
say that the sentence entails that the leaving did not occur.

6.2 Interaction with Other Phenomena

MacCartney and Manning (2009) extended the work by Nairn et al. (2006) in order
to correctly treat inference involving monotonicity and exclusion. Our approach to
implicativity and factivity combines naturally with hypernymy to ensure correct
entailment judgements. For example, no additional work is required to license the
entailments in (9).

(9) (a) John refused to dance � John didn’t tango
(b) John did not forget to tango � John danced

Likewise, no further work is needed for our implicativity and factivity approach
to interact correctly with our approach to ambiguity in word meaning. For exam-
ple, consider example (10). Here the premise contains the verb prevent in a posi-
tive context, which is negatively entailing. It also contains the word leave which is
synonymous with both result in and flee through different senses. As the example
shows, our approach is able to correctly handle the interaction between the lexical
ambiguity and the implicative verb.

(10) p: He prevented the spill from leaving a stain.
h1: The spill did not result in a stain.

h2*: The spill did not flee a stain.
h3*: The spill resulted in a stain.

In example (11), the prevent event is nested under the null-entailing verb try. As
such, neither alternate sense of leave is entailed since try says nothing about the
truth or falsity of its nested proposition.

(11) p: He tried to prevent the spill from leaving a stain.
h1*: The spill did not result in a stain.
h2*: The spill did not flee a stain.
h3*: The spill resulted in a stain.
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7 Preliminary Evaluation

As a preliminary evaluation of our system, we constructed the set of demonstrative
examples included in this paper to test our system’s ability to handle the previously
discussed phenomena and their interactions. We ran each example with both a stan-
dard first-order theorem prover and Alchemy to ensure that the examples work as
expected. Note that since weights are not possible when running an example in the
theorem prover, any rule that would receive a non-zero weight in an MLN is simply
treated as a “hard clause” following Bos and Markert (2005). For the experiments,
we generated a vector space from the entire New York Times portion of the English
Gigaword corpus (Graff and Cieri 2003).

The example entailments evaluated were designed to test the interaction between
the logical and weighted phenomena. For example, in (12), “fail to” is a negatively
entailing implicative in a positive environment, so according to the theorem prover,
p entails both h1 and h2. However, using our weighted approach, Alchemy outputs
that h1 is more probable than h2.

(12) p: The U.S. is watching closely as South Korea fails to honor U.S. patents.7

h1: South Korea does not observe U.S. patents.
h2*: South Korea does not reward U.S. patents.

The first-order approach, which contains inference rules for both paraphrases as
hard clauses, cannot distinguish between good and bad paraphrases, and considers
both of them equally valid. In contrast, the weighted approach can judge the degree
of fit of the two potential paraphrases. Also, it does so in a context-specific manner,
choosing the paraphrase observe over reward in the context of patents.

Our ability to perform a full-scale evaluation is currently limited by problems in
the Alchemy software required to perform probabilistic inference. This is discussed
more in Sect. 8.

8 Future Work

Our plans for continued work can be divided into two categories: work on the theo-
retical side and work on implementation and evaluation.

From a theoretical perspective, we have used a simplistic bag-of-words approach
for computing a context-specific vector for a predicate based on its formula con-
text (functions α and κ). We plan to move to a more informative construction that
takes semantic relations into account. This will be interesting in particular because
the relations that can be read off a logical form differ from those available in a de-
pendency parse. For example, we can check whether two predicates occur within
the same DRS, or whether they apply to a common variable. We can also ask what
influence different logical connectives have on perceived word meaning.

7Sentence adapted from Penn Treebank document wsj_0020.
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Additionally, up to this point we have only addressed word-level paraphrasing
with weighted lexical ambiguity rules that connect individual words. However, our
framework could easily be extended to allow for weighted paraphrase rules for
higher-order phrases such as noun-noun compounds, adjective-noun compounds,
or full noun phrases.

We would also like to extend our formalism to address a wider range of linguis-
tic phenomena. Many phenomena are better described using weights than through
categorial analyses, and first-order representations do not correctly address this. By
extending our framework, we hope to be able to apply weights derived from dis-
tributional information to a wide variety of modeled concepts. The inference rules
generated by our approach to factivity might be good candidates for this extension.
Nairn et al. (2006) proposed that there may be “degrees of factivity” based on the
context of the verb. Because the inference rules that we use to activate the presup-
position triggers are externalized, they can be weighted independently of the rest
of the semantic analysis. Right now the rules are either generated or not, which is
equivalent to assigning a weight of either 1 or 0, but a weighted approach could be
taken instead.

From an implementation perspective, we would like to run a large-scale evalua-
tion of our techniques. However, the major barrier to scaling up is that the Alchemy
software has severe inefficiencies in terms of memory requirements and speed. This
prevents us from executing larger and more complex examples. There is on-going
work to improve Alchemy (Gogate and Domingos 2011), so we hope to be able to
make use of new probabilistic inference tools as they become available.

9 Conclusion

In this paper, we have defined a link between logical form and vector spaces through
a lexical mapping of predicate symbols to points in space. We address polysemy not
through separate predicate symbols for different senses of a word, but by using a
single predicate symbol with a lexical mapping that gets adapted to the context in
which the predicate symbol appears. We use the link to project weighted inferences
from the vector space to the logical form.

We showed how these weighted first-order representations can be used to per-
form probabilistic first-order inferences using Markov Logic. We have shown how
our approach handles three distinct phenomena, word meaning ambiguity, hyper-
nymy, and implicativity, as well as allowing them to interact appropriately. Most
importantly our approach allows us to model some phenomena with hard first-order
techniques and other phenomena with soft weights, and to do all of this within a sin-
gle, unified framework. The resulting approach is able to correctly solve a number
of difficult textual entailment problems that require handling complex combinations
of these important semantic phenomena.
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Annotations that Effectively Contribute
to Semantic Interpretation

Harry Bunt

Abstract This chapter presents a new perspective on the use of semantic annota-
tions. It is argued that semantic annotations should themselves have a semantics in
order to be really useful. It is shown that, when this is the case, the information in a
semantic annotation can be effectively combined with the results of compositional
semantic analysis, with the effect of removing some of the underspecification in
a compositional interpretation, or narrowing the interpretation down to one that is
appropriate in a given context.

1 Introduction: Functions of Semantic Annotations

Annotations add information to a primary text. In the pre-digital age, anno-
tations took the form of bibliographical, historical, or interpretative notes in
the margin or in footnotes. In the digital age, annotations take on a different
form, but their function is essentially the same: they add information to a given
text.

An annotation that does not add any information would seem not make much
sense, but consider the following example of the annotation of a temporal expression
using TimeML (Pustejovsky et al. 2003):1

(1) <timeml>

The CEO announced that he would resign as of
<TIMEX3 tid="t1" type="date" value="2008-12-01"/>

the first of December 2008
</TIMEX3>

</timeml>

1For simplicity, the annotations of the events that are mentioned in this sentence and the way they
are linked to the date that is mentioned, are suppressed here.
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In this annotation, the subexpression (2) adds to the noun phrase the first of Decem-
ber 2008 the information that his phrase describes the date “2008-12-01”.

(2) <TIMEX3 tid="t1" type="date" value="2008-12-01"/>

This does not add any information; it rather paraphrases the noun phrase in
TimeML. This could be useful if the expression in the annotation language had a
formally defined semantics, which could be used directly by computer programs
for applications like information extraction or question answering. Unfortunately,
TimeML is just a particular form of XML, and as such does not have a seman-
tics.

A case where the annotation of a date as in (1) does add something, is the fol-
lowing.

(3) Mr Brewster called a staff meeting today.

In the absence of context information we do not know which date today refers to; in
this case the annotation (4) would be informative.

(4) <timeml>

Mr Brewster called a staff meeting
<TIMEX3 tid=t1 type="date" value="2012-05-14"/>

today
</TIMEX3>

</timeml>

Note that the annotations in TimeML (1) and (4) are ‘old-fashioned’ in the sense that
the TIMEX3 element is wrapped around the annotated string, so the annotations are
inserted in the primary text, similar to the annotations in pre-digital times that were
inserted in the same printed text. Modern annotation methods prefer a ‘stand-off’
approach, where annotations are contained in a separate file and point to locations
in the primary text. For example, instead of the TIMEX3 element in (1), an element
is used as in (5), where the attribute @target points to the sequence #w10...#w14
of word tokens that form the string the first of December 2008. In addition to re-
specting the integrity of the original text, this has the advantage of allowing multiple
annotations linked to the same primary text.

(5) <TIMEX3 xml:id="t1" target="#w10...#w14" type="date"

value="2008-12-01"/>

The examples in (1) and (4) illustrate two different functions that semantic anno-
tations may have: recoding information contained in a natural language expression
in a formal annotation language, and interpreting a context-dependent natural lan-
guage expression. This is for instance also the function of coreference annotations,
as illustrated in (6), and of the markup of discourse connectives in the Penn Dis-
course Treebank (PDTB, Prasad et al. (2008)), illustrated in (7).2

2The annotation in (7) uses a modified version of the PDTB representation, following Bunt et al.
(2012b).
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(6) a. Robin looked at Chris. She seems happy, he thought.
b. <refml>

<refEntity xml:id="r1" target="#w1" name="robin"/>

<refEntity xml:id="r2" target="#w4" name="chris"/>

<refEntity xml:id="r3" target="#w5" natGender="female"/>
<refEntity xml:id="r4" target="#w8" natGender="male"/>
<refLink anaphor="#r3" antecedent="#r2"
relType="identity"/>

<refLink anaphor="#r4" antecedent="#r1"
relType="identity"/>

</refml>

This annotation provides the information that She is interpreted as indicating Chris
(and thus that Chris is a female person; from which it follows that he does not refer
to Chris but rather to Robin, and that Robin is a male person).

The annotations (4), (5) and (6) are especially useful if the information which
they contain about the interpretation of deictic and anaphoric expressions can be
combined effectively with the interpretation of the rest of the sentence. Applying
a syntactic parser and a compositional semantic analyzer to the sentence (3), for
example, will lead to a semantic representation which leaves the date indicated by
today unspecified. Such a representation is underspecified in the sense that it does
not contain sufficient information to compute its truth value. The information in an
underspecified semantic representation (USR) and that in a semantic annotation can
be effectively combined if the annotation has a well-defined semantics of its own, so
once again we see that the usefulness of a semantic annotation depends on whether
it has a formal semantics.

There is a third function that semantic annotations may have, namely to make
explicit how two subexpressions of a natural language expression are semantically
related, or what is the function of a subexpression. This is illustrated in (7) for the
function of a discourse connective (temporal or causal sense of since); in (8) (dis-
cussed in Sect. 3.3.2) for the implicit coherence relation connecting two sentences
in a discourse; in (9) (discussed in more detail in Sect. 3.3) for the function of a tem-
poral expression (at six o’clock indicating the time of occurrence of the set-event or
the time at which the alarm is to sound); and in (10) for the semantic role of the
referent of a noun phrase.

(7) a. 1. since as a temporal discourse connective:
The Mountain View, Calif., company has been receiving 1,000 calls a
day about the product since it was demonstrated at a computer publish-
ing conference several weeks ago.

2. since as a causal discourse connective:
It was a far safer deal for lenders since NWA had a healthier cash flow
and more collateral on hand.
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b. Annotation of (7a1):
<dRelML>
<discourseRelation xml:id="dr1"
arg1="#a1" arg2="#a2" rel="#r1"/>

<dRelArgument xml:id="a1"target="#w1...#w14"/>
<dRelArgument xml:id="a2" target="#w16...#w26"/>
<explRel xml:id="r1" target="#w15"
sense="succession"/>

</dRelML>

(8) Some have raised their cash positions to record levels. [Implicit=because] High
cash positions help buffer a fund when the market falls.

(9) Henry set the alarm at six o’clock.

(10) a. He drew a gun.
b. First interpretation (a gun is taken out of its holster):

<xml>
<refEntity xml:id="p1" target="#w1" natGender="male"/>

<event xml:id="e1" target="#w2" pred="draw1"/>

<refEntity xml:id="p2" target="#w3 #w4" pred="gun"/>

<semRole event="#e1" participant="#p1"
relType="agent"/>

<semRole event="#e1" participant="#p2"
relType="theme"/>

</xml>

c. Second interpretation (a drawing is made of a gun):
<xml>
<refEntity xml:id="p1" target="#w1" natGender="male"/>

<event xml:id="e1" target="#w2" pred="draw2"/>

<refEntity xml:id="p2" target="#w3 #w4" pred="gun"/>

<semRole event="#e1" participant="#p1"
relType="agent"/>

<semRole event="#e1" participant="#p2"
relType="result"/>

</xml>

The annotation in (10b) represents the interpretation where a gun was taken out of
its holster; the one in (10c) where a drawing was made of a gun.

In sum, a semantic annotation of an expression E in a primary text may have the
following functions:

a. Recoding: re-expression of the meaning of E in the annotation language;
b. Contextualization: specification of the interpretation of a context-specific deic-

tic or anaphoric expressions E;
c. Explicitation: representation of an implicit semantic relation or function of one

or more subexpressions of E.
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Semantic annotations nearly always have the second or third function; this is where
their usefulness mainly lies, and what the rest of this chapter will focus on. We have
seen that semantic annotations that have the first function do not make much sense if
they don’t have a semantics, and that the usefulness of semantic annotations having
the second or third function also depends on having a formal semantics (see also
Bunt and Romary (2002)).

The combination of annotations and USRs is optimally facilitated when the
semantics of annotation structures is defined via a translation into the same for-
mat as that used in USRs. Bunt (2007a) has shown that an ‘interpretation-by-
translation’ semantics can be defined for TimeML, by means of a systematic, com-
positional translation of TimeML expressions into Discourse Representation Struc-
tures (DRSs, Kamp and Reyle 1993). In Sect. 3 of this chapter we will show how
DRSs interpreting semantic annotations can effectively be combined with under-
specified DRSs constructed by a compositional semantic analyzer.

In Sect. 2 we first consider some work concerned with the design of semantic
annotation languages that have a formal semantics.

2 The Semantics of Semantic Annotations

2.1 Interpreting Annotations Expressed in XML

Attempts to provide a semantics for semantic annotations include the Interval Tem-
poral Logic semantics for TimeML by Pratt-Hartmann (2007); the event-based se-
mantics for TimeML by Bunt and Overbeeke (2008a), and other attempts to for-
mally interpret temporal annotations by Katz (2007) and Lee (2008). The most
elaborate proposal for a semantics of semantic annotation is formulated in Bunt
(2007a) and Bunt and Overbeeke (2008a,b), where a semantic annotation language
is presented with a formal semantics, that integrates temporal information, semantic
roles, and coreference relations. These proposals all involve a translation of seman-
tic annotations into first-order logic; however it has been shown to be very hard to
achieve this in a satisfactory, compositional manner, where the translation of an an-
notation structure would be systematically constructed from the translations of its
components (see Lee (2008), Bunt (2011)).

Bunt (2011) provides a DRS-based semantics for (a revised version of) ISO-
TimeML, the annotation language that forms part of the ISO 24617-1 standard
for the annotation of time and events (ISO 2012a). While formally equivalent to
first-order logic, the representation formalism of DRSs offers an attractive alter-
native, since it was designed to facilitate the incremental construction of semantic
representations. For annotations which are expressed in XML, as is the case for
ISO-TimeML annotations, a semantic interpretation via translation into DRSs can
exploit the existence of certain structural correspondences between XML expres-
sions and DRSs. Semantic annotations such as (6b), (7b), (10b) and (10c), consist
of XML elements of two kinds: (A) those which associate semantic information with
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a stretch of primary text, that is identified by the value of the @target attribute;
and (B) those which contain semantic information about an implicit relation (hence
having no @target attribute) between two stretches of primary data.3 These two
kinds of elements can be translated into DRSs as follows.

A. An XML element of the form <ENTITY xml:id="id1" target="#m1
attribute_1="val_1" . . .attribute_n="val_n"/> can be trans-
lated into a DRS which introduces a discourse referent that corresponds
to the value of the attribute @xml:id, and for every feature specification
attribute_i="val_i" contains a corresponding condition of the form
a′i (x, v′i ), where a′i translates attributei , x is the newly introduced discourse
referent, and v′i translates val_i.

For example, <refEntity xml:id="#r1" target="#m1"

name="robin"> �
x

NAME(x, robin)
.

B. An XML element of the form <RELATION attribute_1="val_1" . . .
attribute_n="val_n"/> can be translated into a DRS which introduces
two discourse referents, and for each feature specification attribute_i =
"val_i" contains a condition of the form a′i (x, y), where a′i is the translation
of attributei , and x and y are the two newly introduced discourse referents.4

For example, <TIME_ANCHORING eventID="#e1"

relatedToTime="#t1" relType="before"/> �
e, t

BEFORE(e, t)
.

These correspondences make it attractive to interpret annotations expressed in
XML via a translation into DRSs. According to the Linguistic Annotation Frame-
work (LAF, ISO 24616; see ISO (2012c)), however, an annotation standard should
not be defined at the level of representation formats, like XML, but at a more ab-
stract level. The semantics of a annotations should therefore be defined likewise at a
more abstract level than that of XML. In the next subsection we will see that system-
atic correspondences can also be established between abstract annotation structures
and DRSs.

3A relation between two stretches of primary data which is explicitly expressed in the primary text
corresponds to an XML element of type A. Here we consider only XML elements of type A which
have an XML identifier as value of the attribute @xml:id, and elements of type B which have no
such identifier. For other cases see Bunt (2013a).
4For certain attributes which have a particular status the DRS interpretation of a specification
attribute_i ="val_i" has to be stipulated separately. An example is the TimeML attribute
@polarity, of which a specification of the value negative gives rise to the negation of the
DRS interpreting the rest of the XML element in which it occurs.
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2.2 The Design of Semantic Annotation Languages

2.2.1 The CASCADES Design methodology

The Linguistic Annotation Framework draws a distinction between the concepts of
annotation and representation. The term ‘annotation’ refers to the linguistic infor-
mation that is added to segments of primary data, independent of the format in which
the information is represented, while the term ‘representation’ refers to the format
in which an annotation is rendered, independent of its content. According to LAF,
annotations are the proper level of standardization, rather than representations.

In order to (a) comply with the Linguistic Annotation Framework, and (b) satisfy
the requirement that semantic annotations should have a semantics, we have devel-
oped a methodology for defining languages for semantic annotation, called ‘CAS-
CADES’ (Conceptual analysis, Abstract syntax, Semantics, and Concrete syntax for
Annotation language DESign); Bunt (2010, 2013a). This approach introduces in the
definition of an annotation language a component which specifies the categories of
linguistic information that can be used to build semantic annotations, and their pos-
sible combinations. This component is called an abstract syntax; it specifies the set
of possible annotations in abstract, set-theoretical terms. To avoid overloading the
term ‘annotation’, we will use the term ‘annotation structure’ for the set-theoretical
constructs defined by an abstract syntax. Following this approach, the annotation
language definition has three parts: (1) an abstract syntax, defining annotation struc-
tures; (2) the specification of a representation format for annotation structures, called
a ‘concrete syntax’; and (3) a semantics. The semantics is defined for the abstract
rather than the concrete syntax; this has the important advantage that any concrete
syntax which specifies a way of representing the annotation structures defined by
the abstract syntax inherits the same semantics, from which it follows that alterna-
tive representation formats are semantically equivalent, and hence convertible from
one to another (see Bunt (2010, 2013a) for formal definitions and proofs).

The distinction between abstract and concrete syntax, which is at the heart of the
CASCADES approach, with the definition of a semantics for an abstract syntax, was
developed during the project of defining an ISO standard for the annotation of time
and events, in order to make this standard compatible with the Linguistic Annotation
Framework. More recently, the CASCADES method was developed further (Bunt
2013a) by specifying in some detail the steps of (1) defining an abstract syntax given
a conceptual analysis of the annotation task; (2) defining the semantics of a given
abstract syntax; (3) and specifying a XML-based concrete syntax given an abstract
syntax. Moreover, steps backward were defined for feedback loops in this process,
as visualized in Fig. 1. Using these steps, the CASCADES method has been applied
in the development of ISO standard 24617-2 for dialogue act annotation, resulting
in the 3-part definition of the Dialogue Act Markup Language DiAML (see ISO
(2012b); Bunt et al. (2010, 2012a); and Bunt (2013b)). The approach is currently
applied in ISO projects for defining standards for the annotation of discourse rela-
tions (see Bunt et al. (2012b)), semantic roles (see Bunt and Palmer (2013)), and
spatial information (Pustejovsky et al. (2012)).
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Fig. 1 Steps in the CASCADES model

In the rest of this section we summarize the application of CASCADES to the
definition of an abstract syntax and its semantics for the ISO-TimeML language
(Bunt and Pustejovsky 2012; Pustejovsky et al. 2010a,b).

2.2.2 The Case of ISO-TimeML

Abstract Syntax An abstract syntax specification consists of two parts, a concep-
tual inventory, specifying the elements from which annotation structures are built
up, and a specification of the possible ways of combining these elements into anno-
tation structures.

The conceptual inventory for ISO-TimeML consists of finite sets of elements
called ‘event types’, ‘time points’, ‘tenses’, ‘aspects’, ‘temporal relations’, ‘tempo-
ral units’, ‘aspectual relations’, and ‘event-subordination relations’.

An annotation structure is a set of two kinds of structures, built up from elements
of the conceptual inventory: entity structures and link structures. An entity struc-
ture contains information about a segment of primary text; a link structure contains
information about the relation between two (or more) segments of primary text.
An entity structure is formally a pair 〈s, a〉, where s identifies a segment of source
text5 and a is a set-theoretical construct whose elements belong to the conceptual

5Segments of source text may be identified directly (see TEI (2009)) or via the output of another
layer of processing, such as a tokeniser.
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inventory. In the case of ISO-TimeML, a is simply an n-tuple of such concepts.6

A link structure is formally a triple 〈ε,E,ρ〉, consisting of an entity structure ε, a
non-empty set E of entity structures, and a relation ρ, which may itself be a struc-
tured object.

Four types of entity structure are distinguished and five types of link structure:7

(11) a. Types of entity structure:

1. event structure;
2. time point structure;
3. temporal interval structure;
4. time-amount structure.

b. Types of link structure:

1. temporal anchoring structure, anchoring an event (or state; more gener-
ally, an eventuality) in time;

2. temporal relation structure, relating a time point or interval to another
time point or interval;

3. event-duration structure, relating an event or state to its duration;
4. aspectual structure, describing an aspectual relation between two

events;
5. subordination structure, capturing a subordination relation between two

events.

Note that, while in general a link structure may relate an entity structure to a set
of other entity structures, in ISO-TimeML a link structure always relates an en-
tity structure to a single other entity structure; moreover, the relational component
of a link structure in ISO-TimeML is not a structured object but simply a rela-
tion.

Semantics It was noted above that certain correspondences between XML and
DRS representations can be used to define a semantics for annotation representa-
tions. The same is true for defining a semantics of abstract annotation structures, for
the simple reason that both entity structures and link structures are n-tuples, simi-
lar to the sequence of attribute-value pairs in an XML element, the significance of
an element in an n-tuple being encoded by its position rather than by an XML at-

6See Bunt (2013b) for more complex entity structures.
7The four types of entity structure correspond to four different XML elements in the concrete
syntax; the five types of link structure correspond to three relational tags in the concrete syntax,
where, following the original TimeML representation format, the TLINK tag is used for each of the
first three kinds of relation listed in (11b), as well as for representing temporal relations between
events. This forms a mismatch between the abstract and the concrete syntax of ISO-TimeML,
which should be remedied in the future. In TimeML TLINK was also used for relating a temporal
interval to its length; ISO-TimeML has the separate MLINK tag for this purpose.
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tribute.8 Similar to the XML-DRS translation sketched in Sect. 2.1, a mapping from
annotation structures to DRSs can be defined as follows:9

1. An entity structure 〈m,s〉, with s = 〈a1, . . . , an〉 is mapped into a DRS which
introduces a discourse referent x and which contains for each ε-component ai a
condition π(x, a′i ), where πi is a predicate that interprets the position of ai and
a′i is the translation of ai ;

2. A link structure 〈ε1, {ε2},R〉 is interpreted as a DRS that introduces two
discourse referents, x1 and x2, and which contains a condition of the form
R′(x1, x2), where R′ is a predicate translating the relation R.

For example, ISO-TimeML annotation of the temporal information in the sentence

(12) John called at midnight

uses in its abstract annotation structure an entity structure ε1 for the call event and an
entity structure ε2 for the time point midnight, while the temporal anchoring relation
between the event and the time point gives rise to a link structure L1 connecting the
two.

The entity structure for an event contains an n-tuple 〈a1, . . . , an〉, with 1≤ n≤ 6,
depending on the types of information which are available or relevant about the
event. In this example only an event type and a tense are relevant, so the n-tuple is
a pair 〈event type, tense〉.

The entity structure for the time specification is a pair 〈s, time zone, clock time〉;
in this chapter we will suppress the use of time zones, which is not relevant here.
The semantics maps the entity and link structures to mini-DRSs as follows:

(13) ε1 �
e1

type(e1, call)
tense(e1, past)

ε2 �
t1

clocktime(t1,2400)

L1 �
e2, t2

at-time(e2, t2)

Merging these DRSs results in (14) for the annotation structure 〈{ε1, ε2}, {L1}〉:

8In defining a semantics for the above abstract syntax, it was found (Bunt 2011) that finer distinc-
tions need to be made in the conceptual inventory than those listed in (11). Date structures were
added as a type of entity structure, and two types of link structure were added: one for linking
an interval to its length (interval measurement structure) and one for expressing temporal relations
between events (event-temporal relation structures); the latter two were necessary in order to avoid
the semantically problematic overloading that occurs in TimeML of the TLINK relation.
9For more details see Bunt (2011, 2013a).
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(14)

e, t

type(e, call)
tense(e, past)
clocktime(t,2400)
at-time(e, t)

This says that a call event occurred in the past, at 24:00 o’clock.

Concrete Syntax The XML-based ISO-TimeML-ics representation format, de-
fined by the concrete syntax, is an ideal format (Bunt 2010) in the sense that (a) ev-
ery annotation structure, defined by the abstract syntax, can be represented in that
format; and (b) every ISO-TimeML-ics expression represents only one annotation
structure, defined by the abstract syntax. The semantics of an ISO-TimeML-ics rep-
resentation is therefore defined simply as the semantics of the abstract annotation
structure that it represents.

3 Combining Semantic Annotations and Semantic
Representations

In this section we consider the use of semantic annotations for making the interpreta-
tion of a given sentence or text more specific than its purely compositional semantic
analysis, by specifying the interpretation of a deictic or an anaphoric expression, or
by adding disambiguating information, or by specifying semantic relations between
textual elements.

For the representation of ambiguous or underspecified meanings, as the result of
purely compositional semantic analysis, we will use an extended form of DRSs. In
an overview of representation techniques, Bunt (2007b) shows that underspecified
representation of a wide range of semantic phenomena is possible by using labels
with scope constraints, as in UDRT (Reyle 1993), or hole variables or handles as in
Hole Semantics (Bos 1996) and in Minimal Recursion Semantics (Copestake et al.
1996), in combination with metavariables, as proposed e.g. by Pinkal (1999). La-
bels, holes and handles are particularly useful for the representation of structural
ambiguities, like relative quantifier scoping, while metavariables are suitable for
representing local ambiguities, like anaphora, deixis, metonymy, and sense ambi-
guities. DRSs with labels and metavariables therefore form a powerful formalism
for underspecified semantic representation. The usefulness of DRSs for defining the
semantics of semantic annotations having been noted already, we will in the rest of
this chapter use (extended) DRSs for both purposes.

3.1 Contextualization

The annotation of coreference relations can be used to effectively reduce the un-
derspecificity in an semantic representation due to the occurrence of anaphoric ex-



60 H. Bunt

pressions. Example (15) illustrates this. The USR in (15b) representing the result
of compositional semantic analysis of the sentence John saw Bill when he left the
house introduces a discourse referent (z) as the individual who left the house, allow-
ing z to denote John or Bill. The annotation, in the form of an abstract annotation
structure in (15c1) and in concrete XML representation form in (15c2), stipulates
that the referential entities corresponding to Bill and he are identical.

(15) a. John saw Bill when he left the house.
b. Underspecified semantic representation:

x, y, z, e1, e2, t1, t2
name(x, john)
name(y, bill)
see(e1, x, y, t1)
lefthouse(e2, z, t2)

c. Annotation of coreference, with its representation and interpretation:

c1. Annotation structure: a = 〈{ε1, ε2, ε3}, {L2}〉, where

– ε1 = 〈m1, a1〉: markable m1 identifies the word token w1 ( John);
a1 is an individual named “John”;

– ε2 = 〈m2, a2〉: markable m2 identifies the word token w3 (Bill);
a2 is an individual named “Bill”;

– ε3 = 〈m3, a3〉: markable m3 identifies the word token w5 (he);
a3 is an individual indicated by “he”;

– L2 = 〈ε2, {ε3},RID〉: RID is the identity relation between
individuals.

c2. Representation of annotation structure:
<xml>
<refEntity xml:id="r1" target="#w1" name="john"/>

<refEntity xml:id="r2" target="#w3" name="bill"/>

<refEntity xml:id="r3" target="#w5"
natGender="male"/>

<refLink anaphor="#r3" ante="#r2"
relType="identity"/>

</xml>

d. Interpretation of annotation structure:

x, y, z

name(x, john)
name(y, bill)
gender(z, male)
y = z

Unification of this interpretation of the coreference annotation with the semantic
representation (15b) gives the following fully specified representation:
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(16)

x, y, z, e1, e2, t1, t2

name(x, john)
name(y, bill)
see(e1, x, y, t1)
gender(z, male)
lefthouse(e2, z, t2)
y = z

3.2 Semantic Alignment

The example of contextualization in the previous subsection may suggest that the
combination of the information in an annotation with that in a USR is simply a
matter of DRS merging. This is not quite true, however. This subsection forms an
intermezzo in which we show that things may be more complicated, and that a
process is required that keeps track of exactly to which segment of source text a
component of a semantic annotation applies.

Consider the text fragment (17a), which contains four occurrences of the pronoun
he and one of him, used anaphorically, that are all ambiguous between having Chris
or Robin as their antecedent. An underspecified semantic representation of the text
is shown in (17b) on the left; on the right the DRS-interpretation of a coreference
annotation is shown.

(17) a. Chris saw Robin when he left the house. He was happy. He had phoned
him last week and warned that he might be unable to come.

b. Underspecified representation (USR) and representation of annotation in-
terpretation (AIR):

USR AIR

x, y, z,u, v,w, r, a, b, c, d, f, g,h

e1, e2, e3, e4

name(x, chris) name(a, chris)
name(y, robin) name(b, robin)
see(e1, x, y, t1) c= b

gender(z, male) gender(c, male)
lefthouse(e2, z, t2) gender(d , male)
when(e1, e2) d = a

gender(u, male) gender(f , male)
be(u, happy) f = b

gender(v, male) gender(g, male)
gender(w, male) g = a

phone(e3, v,w, t3) gender(h, male)
in-time(e3, last_week) h= b

(. . . )
gender(r , male)
come(e4, r)
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The alignment of the elements in the USR and those in the AIR immediately suggest
a possible merge of the two DRSs by unifying a with x, b with y, c with z, d with
us, and so on, corresponding to the reading:

(18) Chris saw Robin when Robin left the house. Chris was happy. Robin had
phoned Chris last week and warned that he [Robin] might be unable to come.

Let us assume that this is the intended reading. From a technical point of view,
however, the AIR variable c might just as well unify with (for example) the USR
variable u, rather than with z, and similarly the variables d , f , g and h could unify
with any of the variables in the USR, giving rise to a different (possibly inconsistent)
interpretation of the USR variables that were introduced for anaphoric expressions.
These unifications are all possible because the only information about the variables
c, d, . . . , h in the AIR is that they are either equal to the discourse referent a or to
the discourse referent b, but that doesn’t impose any constraints on how they may
unify with the USR variables z,u, . . . , r . This reveals an inadequacy in the AIR:
the interpretation of the anaphoric links in the annotation has lost the information
concerning which token of he/him corresponds to which discourse referent; in that
sense the AIR is not well ‘aligned’ with the source text.

This can be remedied by treating the information in semantic annotations about
their textual anchoring as semantically significant, and taking it along in their inter-
pretation. This information can then be exploited when combining the AIR with the
USR, if the USR components are likewise anchored to the source text segments that
they interpret. This can be accomplished by replacing discourse referent introduc-
tions by pairs, consisting of an identifier of the text segment which gives rise to its
introduction, and the discourse referent itself—see (19), which corresponds to the
first part of (17).

(19) a. Chris saw Robin when he left the house. He was happy.
b. Tokenization:

m1="Chris" m2="saw" m3="Robin" m4="when" m5="he"
m6="left the house" m7="he" m8="was happy"

c. Underspecified semantic representation and representation of annotation
interpretation:

USR AIR

〈m1, x〉, 〈m3, y〉, 〈m5, z〉, 〈m7, u〉, 〈m1, a〉, 〈m3, b〉,
〈m2, e1〉, 〈m6, e2〉, 〈m2, t1〉, 〈m6, t2〉 〈m5, c〉, 〈m9, d〉
name(x, chris) name(a, chris)
name(y, robin) name(b, robin)
see(e1, x, y, t1) c= b

gender(z, male) gender(c, male)
lefthouse(e2, z, t2) gender(d , male)
when(e1, e2) d = a

gender(u, male) gender(f , male)
be(u, happy) f = b
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By unifying markable-variable pairs 〈m,α〉 rather than just the variables, we ensure
that effectively only those AIR and USR discourse referents unify that correspond
to the same source text segments. Once the unification has been performed, and the
anaphors have been resolved, the markables in the conditions can be eliminated,
having done their duty, leading to a standard type of DRS as in (20):

(20)

x, y, z,u, e1, e2, t1, t2
name(a, chris)
name(b, robin)
see(e1, x, y, t1)
gender(z, male)
z= x

lefthouse(e2, z, t2)
when(e1, e2)
gender(u, male)
be(u, happy)
u= x

3.3 Explicitation

In this section we show how a semantic annotation can be used to make an im-
plicit semantic relation between parts of a sentence or text fragment explicit. Two
cases are considered: (a) the semantic role of a prepositional temporal phrase, as
either anchoring an event in time or as specifying a time-related participant in the
event; (b) the semantic relation between the contents of two sentences in a coherent
discourse, when this relation is not expressed in the text.

3.3.1 Semantic Roles

In example (21a) the prepositional phrase at six o’clock can be understood as spec-
ifying the time that Henry set an alarm clock for waking him up the next morning
(as in Before switching off his bed light, Henry set the alarm clock), or as speci-
fying the time that the alarm will sound (as in Henry set the alarm to wake him
up at six o’clock). In order to distinguish the two interpretations, we make use of
semantic roles in DRS conditions both in the annotation and in the compositional
semantic interpretation (rather than multi-argument event predicates). The seman-
tic role annotation is inspired by the proposals for semantic roles annotation in the
LIRICS project (see LIRICS (2006)) and in ISO project 24617-5 (ISO 2013; Bunt
and Palmer 2013; Bonial et al. 2011).

The USR in (21b) represents the set event and its three participants, identifying
Henry as the agent and the alarm as the theme, but leaving the semantic role of the
time unspecified.
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(21) a. Henry set the alarm at six o’clock.
b. Underspecified semantic representation:

〈m1,x〉, 〈m3,y〉, 〈m4,t〉, 〈m2, e〉
name(x, henry)
type(e, set)
type(y, alarm)
clocktime(t , 600)
agent(e, x)
theme(e, y)

c. Annotation of time and events, with its representation and interpretation:

c1. Annotation structure: α = 〈{ε1, ε2}, {L1}〉, where

– ε1 = 〈m1, 〈et2, past〉〉: markable m1 identifies the word token w2
(set); et2 is an event type;

– ε2 = 〈m2, ct600〉: markable m2 identifies token sequence [w6,w7]
(six o’clock); ct600 identifies a clock time;

if at six o’clock is interpreted as a temporal specifier of the set-event,
then

– L1 = 〈ε1, ε2,Rat〉 (relation Rat anchoring events in time);

else at six o’clock is interpreted as specifying a temporal participant in
the set-event, and

– L1 = 〈ε1, ε2,Rgoal〉 (semantic role relation Rgoal).

c2. Representation of annotation structure:

a. For at six o’clock as specification of event-time:
<xml>
<event xml:id="e1" target="#w2" pred="set"/>

<instant xml:id="t1" target="#w6 #w7"‘
clockTime="600"/>

<timeAnchoring event="#e1" time="#t1"
relType="at"/>

</xml>

b. For at six o’clock as description of event participant:
<xml>
<event xml:id="e1" target="#w2" pred="set"/>

<instant xml:id="t1" target="#w6 #w7"
clockTime="600"/>

<semRole event="#e1" participant="#t1"
relType="goal"/>

</xml>

c3. Semantic interpretation of annotation structure:
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a. For at six o’clock as specification of event-time:

〈m2,e〉, 〈m4,t〉
type(e, set)
clocktime(t , 600)
at-time(e, t)

b. For at six o’clock as description of event participant:

〈m1,e〉, 〈m2,t〉
type(e, set)
clocktime(t , 600)
goal(e, t)

Merging the URS in (21b) with either of the AIRs in (21c3) gives the fully specified
semantic representation of either interpretation, as shown in (22):

(22) a.

x, y, t, e

name(x, henry)
type(e, set)
type(y, alarm)
clocktime(t , 600)
agent(e, x)
theme(e, y)
at-time(e, t)

b.

x, y, t, e

name(x, henry)
type(e, set)
type(y, alarm)
clocktime(t , 600)
agent(e, x)
theme(e, y)
goal(e, t)

3.3.2 Implicit Discourse Relations

Example (23), from the Penn Discourse Treebank, illustrates the use of a semantic
annotation for interpreting the relation between sentences in a coherent discourse,
when not expressed explicitly. The intended interpretation is that the second sen-
tence provides a reason why the event mentioned in the first sentence occurs.

The underspecified representation shown in (23b) is simply the combined seman-
tic representations of the two sentences in (23a). The annotation in (23c) applies the
ISO standard for discourse relation annotation under development as ISO 24617-8
(see Bunt et al. (2012b)). The attribute @aoType is used to represent an ‘abstract
object type’ in the sense of Asher (1993), and the attribute @attribution is
used to represent the source to whom statements in the annotated text are attributed.
Semantically, a discourse relation which connects two sentences by establishing a
relation between an event expressed in the first sentence and another event expressed
in the second, requires the annotation to indicate exactly which events are related,
since each of the sentences may mention several events. The attributes @headID
and @headPred are introduced for this purpose; the first specifies the relevant
markable, the second the event type. This information is used to construct a repre-
sentation of the interpretation as shown in (23c3).
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(23) a. Some have raised their cash positions to record levels. Implicit=because
High cash positions help buffer a fund when the market falls.

b. Underspecified semantic representation:

〈m1, x〉, 〈m3,y〉, 〈m4,z〉, 〈m5,u〉, 〈m8,v〉, 〈m9,w〉,
〈m2,e1〉, 〈m6,e2〉, 〈m7,e3〉, 〈m10,e4〉
type(e1, raise),
some(x), agent(e1, x),
cashposition(y), theme(e1, y),
recordlevel(z), goal(e1, z),
type(e2, help),
hicashposition(u), instrument(e2, u),
type(e3, buffer), theme(e2, e3),
fund(v), theme(e3, v),
type(e4, fail), when(e4, e3),
market(w), theme(e4,w)

c. Annotation of discourse relations, with representation and interpretation:

c1. Annotation structure: α = 〈{ε1, ε2}, {L1}〉, where

– ε1 = 〈m1, 〈et3,past〉〉 (event type et3);
– ε2 = 〈m2, 〈et4〉〉 (event type et4);
– L1 = 〈ε1, ε2,Rreason〉; Rreason is the ‘reason’ relation between

events).

c2. Representation of annotation structure:
<dRelML>
<discourseRelation xml:id="dr1"
arg1="#a1" arg2="#a2" rel="#r1"/>
<dRelArgument xml:id="a1" target="#w1...#w9"
aoType="event" headID="#w3"
headPred="raise" attribution="#at1"/>
<dRelArgument xml:id="a2" target="#w10...#w20"
aoType="event" headID="#w13"
headPred="help" attribution="#at1"/>
<implRel xml:id="r1" discRel="reason"
attribution="#at1"/>
<attributionRep xml:id="at1" aSource="author"/>
</dRelML>

c3. Semantic interpretation of annotation structure:

〈m2, e1〉, 〈m6, e2〉
type(e1, raise)
type(e2, help)
reason(e1, e2)

Unification of the semantic representations of the two sentences, construed as a
single DRS in (23b), with the interpretation of the annotation (and dropping the
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markables associated with the discourse referents) leads to the representation (24)
of the discourse fragment as a whole.

(24)

x, y, z,u, v,w, e1, e2, e3, e4

type(e1, raise),
some(x), agent(e1, x),
cashposition(y), theme(e1, y),
recordlevel(z), goal(e1, z),
type(e2, help),
hicashposition(u), instrument(e2, u),
type(e3, buffer), theme(e2, e3),
fund(v), theme(e3, v),
type(e4, fail), when(e4, e3),
market(w), theme(e4,w),
reason(e2, e3)

4 Conclusions and Perspectives

In this paper we have indicated how the information, contained in semantic anno-
tations, may effectively be used to resolve ambiguities and to narrow down under-
specified meanings. This is possible if the annotations are expressed in an anno-
tation language that has a formal semantics. This is often not the case, but under
the influence of efforts of the international organisation for standards ISO, projects
are under way that do indeed aim to define such annotation languages. Studies
by Pratt-Hartmann, Katz, Lee, and the author have demonstrated the feasibility
of doing so for substantial fragments of semantic annotation languages, as illus-
trated by the annotation language ISO-TimeML of ISO standard 24617-1 (Time
and Events) and annotation language DiAML of ISO standard 24617-2 (Dialogue
Acts).

This approach opens the possibility to exploit semantic annotations in a com-
putational interpretation process, as we have shown by casting the interpretation of
semantic annotations in a DRS-based representation format that is suitable for un-
derspecified semantic representation, allowing a unification-based process for com-
bining the information in semantic annotations with that obtained through compo-
sitional semantic analysis.

This is potentially very useful, since semantic annotations are constructed using
quite different techniques (machine learning from corpora, exploitation of domain
ontologies, searching metadata, . . . ) than the compositional syntactic-semantic anal-
ysis techniques that make sentential semantic content explicit. The approach that
we have described here therefore makes it possible to effectively combine hetero-
geneous processes and information sources in order to arrive at maximally specific
and contextually appropriate interpretations.
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Abstract Coecke et al. (2010) developed a compositional model of meaning for
distributional semantics, in which each word in a sentence has a meaning vector and
the distributional meaning of the sentence is a function of the tensor products of
the word vectors. Abstractly speaking, this function is the morphism corresponding
to the grammatical structure of the sentence in the category of finite dimensional
vector spaces. In this chapter, we provide a concrete method for implementing this
linear meaning map by presenting an algorithm for computing representations for
various syntactic classes which have functional types; this algorithm results in as-
signing concrete corpus-based vector spaces to the abstract type of ‘sentence’. Our
construction method is based on structured vector spaces whose basis vectors are
pairs of words and grammatical roles. The concrete sentence spaces only depend on
the types of the verbs of sentences; we use an embedding of these spaces and com-
pare meanings of sentences with different grammatical structures by simply taking
the inner product of their vectors in the bigger space. Our constructions are exem-
plified on a toy corpus.
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1 Introduction

Representing the meanings of words and sentences in a form suitable for use by a
computer is a central problem in Computational Linguistics and Natural Language
Processing (Jurafsky and Martin 2000). The problem is of theoretical interest—to
linguists, philosophers, cognitive scientists and computer scientists—but also has
practical implications: finding a suitable meaning representation can greatly im-
prove the effectiveness of a Natural Language Processing system, whether it be for
automatically translating sentences from one language to another, paraphrasing, an-
swering questions, or summarising articles (to give just a few examples).

There have been two distinct approaches to the representation of meaning in Nat-
ural Language Processing. Distributional semantic models adapt geometric methods
from information retrieval (Manning et al. 2008) to implement the philosophical
view of semantics that meaning is determined by use. These models are often re-
lated to Wittgenstein’s philosophy of language (Wittgenstein 1953), but the closer
connection is with the work of structural linguists such as Firth (1957). In concrete
terms, the meanings of words are equated with the distributions of contexts in which
they occur, where ‘context’ is typically taken to mean ‘tokens that occur near the tar-
get word’ (Schuetze 1998). In practice, such distributions are modeled as vectors in
high-dimensional Hilbert spaces, and existing geometric distance metrics are used
to determine the semantic similarity of words by measuring the distance between
their vector representations (Widdows 2004). This approach to natural language
semantics has found applications in many areas of Natural Language Processing,
e.g. Landauer and Dumais (1997) and Grefenstette (1994), demonstrating its power
for modelling the meanings of individual words. However, this class of model does
not naturally lend itself to modeling meanings of larger units of text, as such models
do not explicitly define a canonical composition operation by which the meanings
of words can be composed to form the meaning of the resulting phrase.

Formal semantic models exhibit almost opposite qualities to distributional se-
mantic models. They are built as extensions of existing syntactic analysis models
(typically generative grammars), and associate with each grammatical production
rule a semantic composition rule (Montague 1970). Such composition rules gener-
ally involve the application of the semantic interpretation of one of the grammatical
components to that of the semantic representation of the other grammatical com-
ponent(s), thereby treating the semantic interpretation of some grammatical com-
ponents as functions, and that of others as arguments. Concretely, formal seman-
tic models implement a view popular in philosophy from Leibniz to Frege (1892)
stating that natural language serves as an imperfect vehicle for the ideal rational
language of the mind embodied by logic. The interpretations of functions and argu-
ments in these models correspond to partial expressions of a predicate logic formed
by predicates, relations and arguments enhanced by elements of a lambda calculus,
and composition merely involves applying such partial expressions to one another to
obtain the logical form of the sentence through β-reduction. While formal semantic
models naturally support syntax-driven semantic compositionality—a feature dis-
tributional semantic models lack—they have their own shortcoming: the underlying
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semantic representation is a predicate logic. While the reduction of meaning to logi-
cal form may be appropriate for some tasks, it is unclear how this view of semantics
might be adapted to deal with the language processing tasks that involve, for ex-
ample, classification, search or summarisation, as the notion of semantic similarity
at play in such cases is usually more topic driven than a matter of equivalence or
closeness of logical form or truth value. Additionally, unlike distributional seman-
tic models, the basic meanings of words are not learned, but stipulated by a logical
model which must be provided, leaving open the question as to how formal semantic
models may be constructed empirically.

Given that the weaknesses of formal semantic models seem to be addressed by
distributional semantic models and vice-versa, several researchers such as Mitchell
and Lapata (2008), Coecke et al. (2010), and Clark and Pulman (2007) have be-
gun investigating the development of models of semantics that would exhibit the
syntax-driven compositionality of formal semantics while retaining the empirical
nature of distributional models: we call such models Compositional Distributional
Models of Semantics. In this chapter, we introduce a concrete implementation of
one such model. In Sect. 2, we present the mathematical foundations of an existing
compositional distributional semantic framework (Coecke et al. 2010). In Sect. 3
we introduce the foundations for a concrete implementation of such a framework,
and present an algorithm for computing representations for various syntactic classes
which have functional types in Sect. 4. In Sect. 5, we discuss concrete sentence
spaces and an embedding between them which allows the comparison of meanings
of sentences with different grammatical structures, and in Sect. 6 we discuss how
such models provide implicit disambiguation through composition. These concrete
constructions are exemplified on a toy hand-made corpus, which provides a basis
for further large-scale experimentation with this model. In Sect. 7, we present a
brief overview of work in this field relating to the new approach to compositional
distributional semantics presented here.

2 Background

Coecke et al. (2010) develop a mathematical framework for a compositional distri-
butional model of meaning, based on the intuition that syntactic analysis guides the
semantic vector composition. The setting consists of two parts: a formalism for a
type-logical syntax and a formalism for vector space semantics. Each word is as-
signed a grammatical type and a meaning vector in the space corresponding to its
type. The meaning of a sentence is obtained by applying the function corresponding
to the grammatical structure of the sentence to the tensor product of the meanings
of the words in the sentence. Based on the type-logic used, some words will have
atomic types and some compound function types. The compound types live in a
tensor space where the vectors are weighted sums (i.e. superpositions) of the tuples
of basis vectors from each space. Compound types are “applied” to their arguments
by taking inner products, in a similar manner to how predicates are applied to their
arguments in Montague semantics.
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For the type-logic we use Lambek’s pregroup grammars (Lambek 2008). The
use of pregoups is not essential, but leads to a more elegant formalism, given its
proximity to the categorical structure of vector spaces (see Coecke et al. (2010)).
A pregroup is a partially ordered monoid where each element has a right and left
cancelling element, referred to as an adjoint. A pregroup can be seen as the algebraic
counterpart to the cancellation calculus of Harris (1968). The operational difference
between a pregroup and Lambek’s original type-algebra, the Syntactic Calculus, is
that in the latter, the monoid multiplication of the algebra (used to model juxtaposi-
tion of the types of the words) has a right and a left adjoint, whereas in the pregroup
the elements themselves have adjoints. The adjoint types are used to denote func-
tions, e.g. that of a transitive verb with a subject and object as input and a sentence
as output. In the pregroup setting, these function types are still denoted by adjoints,
but this time they are the adjoints of the elements themselves.

As an example, consider the sentence “dogs chase cats”. We assign the type n

(for noun phrase) to “dog” and “cat”, and nrsnl to “chase”, where nr and nl are the
right and left adjoints of n, and s is the type of a (declarative) sentence. The type
nrsnl expresses the fact that the verb is a predicate that takes two arguments of type
n as input, on its right and left, and outputs the type s of a sentence. The parsing of
the sentence is the following reduction:

n
(
nrsnl

)
n≤ 1s1= s

This parse is based on the cancellation of n and nr , and also nl and n; i.e. nnr ≤ 1
and nln≤ 1 for 1 the unit of juxtaposition. The reduction expresses the fact that the
juxtapositions of the types of the words reduce to the type of a sentence.

On the semantic side, we assign the vector space N to the type n, and the tensor
space N ⊗ S ⊗ N to the type nrsnl . Recall that a basis vector of the tensor space
A ⊗ B is a pair of basis vectors of A and B . Recall also that any vector can be
expressed as a weighted sum of basis vectors; e.g. if {−→vi }i is a basis of A then any
vector −→a ∈ A can be written as −→a = ∑

i Ci
−→vi where the Ci ∈ R are weighting

factors. Now for {−→vi }i a basis of A and {−→v′i }i a basis of B , a vector −→c in the tensor
space A⊗B can be expressed as follows:

∑

ij

Cij

(−→vi ⊗
−→
v′j

)

where the tensor of basis vectors −→vi ⊗−→v′j stands for their pair (−→vi ,
−→
v′j ). In general

−→
c is not separable into the tensor of two vectors, except for the case when −→c

is not entangled. For non-entangled vectors we can write −→c = −→a ⊗−→b for −→a =
∑

i Ci
−→vi and

−→
b =∑

j C′
j

−→
v′j ; hence the weighting factor of −→c can be obtained by

simply multiplying the weights of its tensored counterparts, i.e. Cij = Ci × C′
j . In

the entangled case these weights cannot be determined as such and range over all
the possible weights. We take advantage of this fact to encode meanings of verbs,
and in general all words that have compound types and are interpreted as predicates,
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relations, or functions. For a brief discussion, see the last paragraph of this section.
Finally, we use the Dirac notation to denote the dot or inner product of two vectors
〈−→a | −→b 〉 ∈R defined by

∑
i Ci ×C′

i .

Returning to our example, for the meanings of nouns we have
−−→
dogs,

−→
cats ∈ N ,

and for the meanings of verbs we have
−−−→
chase ∈N ⊗S⊗N , i.e. the following super-

position:
∑

ijk

Cijk(
−→
ni ⊗−→sj ⊗−→nk )

Here −→ni and −→nk are basis vectors of N and −→sj is a basis vector of S. From the
categorical translation method presented in Coecke et al. (2010) and the grammati-
cal reduction n(nrsnl)n ≤ s, we obtain the following linear map as the categorical
morphism corresponding to the reduction:

εN ⊗ 1s ⊗ εN :N ⊗ (N ⊗ S ⊗N)⊗N → S

Using this map, the meaning of the sentence is computed as follows:

−−−−−−−−−−→
dogs chase cats= (εN ⊗ 1s ⊗ εN)(

−−→
dogs⊗−−−→chase⊗−→cats)

= (εN ⊗ 1s ⊗ εN)

(−−→
dogs⊗

(∑

ijk

Cijk(
−→
ni ⊗−→sj ⊗−→nk )

)
⊗−→cats

)

=
∑

ijk

Cijk〈−−→dogs | −→ni 〉−→sj 〈−→nk | −→cats〉

There are two key features to this operation. First, that the inner-products re-
duce dimensionality by ‘consuming’ tensored vectors and by virtue of the following
linear map:

εN :N ⊗N →R :: −→a ⊗−→b �→ 〈−→a | −→b 〉
Thus the image of εN⊗1s⊗εN on the tensored vector

−−→
dogs⊗−−−→chase⊗−→cats is a vector

in a sentence space S which is common to all sentences regardless of their grammat-

ical structure or complexity. Second, note that the tensor product
−−→
dogs⊗−−−→chase⊗−→cats

does not need to be calculated, since all that is required for computation of the sen-
tence vector are the noun vectors and the Cijk weights for the verb. Note also that
the inner product operations are simply picking out basis vectors in the noun space,
an operation that can be performed in constant time. Hence this formalism avoids
two problems faced by approaches in the vein of Smolensky and Legendre (2005)
or Clark and Pulman (2007), which use the tensor product as a composition opera-
tion. The first problem is that the sentence meaning space is high dimensional and
grammatically different sentences which even have the same type of verb have rep-
resentations with different dimensionalities, preventing them from being compared
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directly using inner products. The second problem is that the space complexity of
the tensored representation grows exponentially with the length and grammatical
complexity of the sentence. In contrast, the model we propose does not require the

combination of the tensored vectors, e.g.
−−→
dogs ⊗ −−−→

chase ⊗ −→
cats, to be represented

explicitly.

Note that we have taken the vector of the transitive verb, e.g.
−−−→
chase, to be an

entangled vector in the tensor space N ⊗ S ⊗N . If this was a separable vector, the
meaning of the verb would be as follows:

−−−→
chase=

∑

i

Ci
−→
ni ⊗

∑

j

C′
j
−→
sj ⊗

∑

k

C′′
k
−→
nk

The meaning of the sentence would then become

−−−−−−−−−−→
dogs chase cats=

∑

i

Ci〈−−→dogs | −→ni 〉 ×
∑

k

C′′
k 〈−→nk | −→cats〉 ×

∑

j

C′
j
−→
sj

The problem is that here there is no interaction between meanings of subject and ob-
ject: the verb consists of three independent entities: a subject part

∑
i Ci

−→
ni that acts

on the subject to produce a real number
∑

i Ci〈−−→dogs | −→ni 〉, an object part
∑

k C′′
k
−→
nk

that acts on the object to produce another real number
∑

k C′′
k 〈−→nk | −→cats〉, and a sen-

tence part, which is a vector
∑

j C′
j
−→
sj that has not acted on anything. Whereas in

the non-entangled case, the vector meanings of subject and object do interact with
each other via the Cijk weights to produce a vector on the sentence basis −→sj .

3 From Truth-Theoretic to Corpus-Based Meaning

The model presented above is compositional and distributional, but still abstract.
To make it concrete, N and S have to be constructed by providing a method for
determining the Cijk weightings. Coecke et al. (2010) show how a truth-theoretic
meaning can be derived in the compositional framework. For example, assume that
N is spanned by all animals and S is the two-dimensional space spanned by

−→
true

and
−−→
false. We use the weighting factor to define a model-theoretic meaning for the

verb as follows:

Cijk
−→
sj =

{−→
true chase(−→ni ,

−→
nk )= true−−→

false o.w.

The definition of our meaning map ensures that this value propagates to the mean-

ing of the whole sentence. So chase(
−−→
dogs,−→cats) becomes true whenever “dogs chase

cats” is true and false otherwise. This is exactly how meaning is computed in the
model-theoretic view on semantics. One way to generalise this truth-theoretic mean-



Concrete Sentence Spaces for Compositional Distributional Models of Meaning 77

ing is to assume that chase(−→ni ,
−→
nk ) has degrees of truth, for instance by defining

chase as a combination of run and catch, such as:

chase= 2

3
run+ 1

3
catch

Again, the meaning map ensures that these degrees propagate to the meaning of the
whole sentence. For a worked out example see Coecke et al. (2010). But neither of
these examples provide a distributional sentence meaning.

Here we take a first step towards a corpus-based distributional model, by attempt-
ing to recover a meaning for a sentence based on the meanings of the words derived
from a corpus. But crucially this meaning goes beyond just composing the meanings
of words using a vector operator, such as tensor product, summation or multiplica-
tion (Mitchell and Lapata 2008). Our computation of sentence meaning treats some
vectors as functions and others as function arguments, according to how the words
in the sentence are typed, and uses the syntactic structure as a guide to determine
how the functions are applied to their arguments. The intuition behind this approach
is that syntactic analysis guides semantic vector composition.

The contribution of this chapter is to introduce some concrete constructions for
a compositional distributional model of meaning. These constructions demonstrate
how the mathematical model of Coecke et al. (2010) can be implemented in a con-
crete setting which introduces a richer, not necessarily truth-theoretic, notion of nat-
ural language semantics which is closer to the ideas underlying standard distribu-
tional models of word meaning. We leave full evaluation to future work, in order
to determine whether the following method in conjunction with word vectors built
from large corpora leads to improved results on language processing tasks, such as
computing sentence similarity and paraphrase evaluation.

Nouns and Transitive Verbs We take N to be a structured vector space, as in
Erk and Padó (2008) and Grefenstette (1992). The basis elements of N are annotated
by ‘properties’ obtained by combining dependency relations with nouns, verbs and
adjectives. For example, basis vectors might be associated with properties such as
“arg-fluffy”, denoting the argument of the adjective fluffy, “subj-chase” denoting
the subject of the verb chase, “obj-buy” denoting the object of the verb buy, and so
on. We construct the vector for a noun by counting how many times in the corpus a
word has been the argument of ‘fluffy’, the subject of ‘chase’, the object of ‘buy’,
and so on.

The framework of Coecke et al. (2010) offers no guidance as to what the sen-
tence space should be. Here we take the sentence space S to be N ⊗N , so its basis
elements are of the form −→

sj = (
−→
ni ,

−→
nk ). The intuition is that, for a transitive verb,

the meaning of a sentence is determined by the meaning of the verb together with
its subject and object.1 The verb vectors Cijk(

−→
ni ,

−→
nk ) are built by counting how

many times a word that is ni (e.g. has the property of being fluffy) has been sub-
ject of the verb and a word that is nk (e.g. has the property that it is bought) has

1Intransitive and ditransitive verbs are interpreted in an analogous fashion; see Sect. 5.
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been its object, where the counts are moderated by the extent to which the subject
and object exemplify each property (e.g. how fluffy the subject is). To give a rough
paraphrase of the intuition behind this approach, the meaning of “dog chases cat” is
given by: the extent to which a dog is fluffy and a cat is something that is bought
(for the N ⊗N property pair “arg-fluffy” and “obj-buy”), and the extent to which
fluffy things chase things that are bought (accounting for the meaning of the verb
for this particular property pair); plus the extent to which a dog is something that
runs and a cat is something that is cute (for the N ⊗ N pair “subj-run” and “arg-
cute”), and the extent to which things that run chase things that are cute (accounting
for the meaning of the verb for this particular property pair); and so on for all noun
property pairs.

Adjective Phrases Adjectives are dealt with in a similar way. We give them the
syntactic type nnl and build their vectors in N⊗N . The syntactic reduction nnln→
n associated with applying an adjective to a noun gives us the map 1N⊗εN by which
we semantically compose an adjective with a noun, as follows:

−−−−→
red fox= (1N ⊗ εN)(

−→
red⊗−→fox)=

∑

ij

Cij
−→
ni 〈−→nj | −→fox〉

We can view the Cij counts as determining what sorts of properties the arguments
of a particular adjective typically have (e.g. arg-red, arg-colourful for the adjective
“red”).

Prepositional Phrases We assign the type nrn to the whole prepositional phrase
(when it modifies a noun), for example to “in the forest” in the sentence “dogs chase
cats in the forest”. The pregroup parsing is as follows:

n
(
nrsnl

)
n
(
nrn

)≤ 1snl1n≤ snln≤ s1= s

The vector space corresponding to the prepositional phrase will thus be the tensor
space N ⊗ N and the categorification of the parse will be the composition of two
morphisms: (1S ⊗ εl

N ) ◦ (εr
N ⊗ 1S ⊗ 1N ⊗ εr

N ⊗ 1N). The substitution specific to the
prepositional phrase happens when computing the vector for “cats in the forest” as
follows:

−−−−−−−−−−→
cats in the forest= (

εr
N ⊗ 1N

)
(
−→
cats⊗−−−−−−−→in the forest)

= (
εr
N ⊗ 1N

)(−→
cats⊗

∑

lw

Clw
−→
nl ⊗−→nk

)

=
∑

lw

Clw〈−→cats | −→nl 〉−→nw

Here we set the weights Clw in a similar manner to the cases of adjective phrases
and verbs with the counts determining what sorts of properties the noun modified by
the prepositional phrase has, e.g. the number of times something that has attribute
nl has been in the forest.
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Adverbs We assign the type sr s to the adverb, for example to “quickly” in the
sentence “Dogs chase cats quickly”. The pregroup parsing is as follows:

n
(
nrsnl

)
n
(
sr s

)≤ 1s1sr s = ssr s ≤ 1s = s

Its categorification will be a composition of two morphisms (εr
S ⊗ 1S) ◦ (εr

N ⊗ 1S ⊗
εl
N ⊗ 1S ⊗ 1S). The substitution specific to the adverb happens after computing the

meaning of the sentence without it, i.e. that of “Dogs chase cats”, and is as follows:

−−−−−−−−−−−−−−−−→
Dogs chase cats quickly

= (
εr
S ⊗ 1S

) ◦ (
εr
N ⊗ 1S ⊗ εl

N ⊗ 1S ⊗ 1S

)
(
−−→
Dogs⊗−−−→chase⊗−→cats⊗−−−−→quickly)

= (
εr
S ⊗ 1S

)(∑

ijk

Cijk〈−−→dogs | −→ni 〉−→sj 〈−→nk | −→cats〉 ⊗−−−−→quickly

)

= (
εr
S ⊗ 1S

)(∑

ijk

Cijk〈−−→dogs | −→ni 〉−→sj 〈−→nk | −→cats〉 ⊗
∑

lw

Clw
−→
sl ⊗−→sw

)

=
∑

lw

Clw

〈∑

ijk

Cijk〈−−→dogs | −→ni 〉−→sj 〈−→nk | −→cats〉 | −→sl
〉
−→
sk

The Clw weights are defined in a similar manner to the above cases, i.e. according
to the properties the adverb has, e.g. which verbs it has modified. Note that now the
basis vectors −→sl and −→sw are themselves pairs of basis vectors from the noun space,
(
−→
ni ,

−→
nj ). Hence, Clw(

−→
ni ,

−→
nj ) can be set only for the case when l = i and w = j ;

these counts determine what sorts of properties the verbs that happen quickly have
(or more specifically what properties the subjects and objects of such verbs have).
By taking the whole sentence into account in the interpretation of the adverb, we
are in a better position to semantically distinguish between the meaning of adverbs
such as “slowly” and “quickly”, for instance in terms of the properties that the verb’s
subjects have. For example, it is possible that elephants are more likely to be the
subject of a verb which is happening slowly, e.g. run slowly, and cheetahs are more
likely to be the subject of a verb which is happening quickly.

4 Concrete Computations

In this section we first describe how to obtain the relevant counts from a parsed
corpus, and then give some similarity calculations for some example sentence pairs.

Let Cl be the set of grammatical relations (GRs) for sentence sl in the corpus.
Define verbs(Cl ) to be the function which returns all instances of verbs in Cl , and
subj (and similarly obj) to be the function which returns the subject of an instance
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Vinstance of a verb V , for a particular set of GRs for a sentence:

subj(Vinstance)=
{

noun if Vinstance is a verb with subject noun

εn o.w.

where εn is the empty string. The question of what is the vector of the empty string
is left open for now. We propose an answer in Sect. 5, when we treat intransitive
verbs as transitive verbs with an empty object.

We express Cijk for a verb V as follows:

Cijk =
{∑

l

∑
v∈verbs(Cl )

δ(v,V )〈−−−−→subj(v) | −→ni 〉〈−−−→obj(v) | −→nk 〉 if −→sj = (
−→
ni ,

−→
nk )

0 o.w.

where δ(v,V ) = 1 if v = V and 0 otherwise. Thus we construct Cijk for verb V

only for cases where the subject property ni and the object property nk are paired
in the basis −→sj . This is done by counting the number of times the subject of V has
property ni and the object of V has property nk , then multiplying the respective
values, as prescribed by the inner products (which simply pick out the properties ni

and nk from the noun vectors for the subjects and objects).
The procedure for calculating the verb vectors, based on the formulation above,

is as follows:

1. For each GR in a sentence, if the relation is subject and the head is a verb, then
find the complementary GR with object as a relation and the same head verb. If
none, set the object to εn.

2. Retrieve the noun vectors
−−−−→
subject,

−−−→
object for the subject dependent and object

dependent from previously constructed noun vectors.
3. For each (ni, nk) ∈ basis(N)× basis(N) compute the inner-product of −→ni with−−−−→

subject and −→nk with
−−−→
object (which involves simply picking out the relevant basis

vectors from the noun vectors). Multiply the inner-products and add this to Cijk

for the verb, with j such that −→sj = (
−→
ni ,

−→
nk ).

We now give a number of example calculations. We first manually define the
distributions for nouns, which in practice would be obtained from a corpus:

bankers cats dogs stock kittens
1. arg-fluffy 0 7 3 0 2
2. arg-ferocious 4 1 6 0 0
3. obj-buys 0 4 2 7 0
4. arg-shrewd 6 3 1 0 1
5. arg-valuable 0 1 2 8 0

We aim to make these counts match our intuitions, in that bankers are shrewd and a
little ferocious but not furry, cats are furry but not typically valuable, and so on.

We also define the distributions for the transitive verbs ‘chase’, ‘pursue’ and
‘sell’, again manually specified according to our intuitions about how these verbs
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are used. Since in the formalism proposed above, Cijk = 0 if −→sj �= (
−→
ni ,

−→
nk ), we can

simplify the weight matrices for transitive verbs to two dimensional Cik matrices as
shown below, where Cik corresponds to the number of times the verb has a subject
with attribute ni and an object with attribute nk . For example, the matrix below
encodes the fact that something ferocious (i = 2) chases something fluffy (k = 1)
seven times in the hypothetical corpus from which we might have obtained these
distributions.

Cchase =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
7 1 2 3 1
0 0 0 0 0
2 0 1 0 1
1 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

Cpursue =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
4 2 2 2 4
0 0 0 0 0
3 0 2 0 1
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

Csell =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
0 0 3 0 4
0 0 0 0 0
0 0 5 0 8
0 0 1 0 1

⎤

⎥⎥⎥⎥
⎦

These matrices can be used to perform sentence comparisons:

〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−−−→dogs pursue kittens〉

=
〈(∑

ijk

Cchase
ijk 〈−−→dogs | −→ni 〉−→sj 〈−→nk | −→cats〉

) ∣
∣
∣
∣

(∑

ijk

C
pursue
ijk

〈−−→dogs | −→ni 〉−→sj 〈−→nk | −−−→kittens〉
)〉

=
∑

ijk

Cchase
ijk C

pursue
ijk

〈−−→dogs | −→ni 〉〈−−→dogs | −→ni 〉〈−→nk | −→cats〉〈−→nk | −−−→kittens〉

The raw number obtained from the above calculation is 14844. Normalising it by
the product of the length of both sentence vectors gives the cosine value of 0.979.

Consider now the sentence comparison 〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−→cats chase dogs〉. The
sentences in this pair contain the same words but the different word orders give
the sentences very different meanings. The raw number calculated from this inner
product is 7341, and its normalised cosine measure is 0.656, which demonstrates the
sharp drop in similarity obtained from changing sentence structure. We expect some
similarity since there is some non-trivial overlap between the properties identifying
cats and those identifying dogs (namely those salient to the act of chasing).

Our final example for transitive sentences is 〈−−−−−−−−−−→dogs chase cats | −−−−−−−−−−−→bankers sell stock〉,
as two sentences that diverge in meaning completely. The raw number for this in-
ner product is 6024, and its cosine measure is 0.042, demonstrating the very low
semantic similarity between these two sentences.

Next we consider some examples involving adjective-noun modification. The Cij

counts for an adjective A are obtained in a similar manner to transitive or intransitive
verbs:
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Cij =
{∑

l

∑
a∈adjs(Cl )

δ(a,A)〈−−−−−−→arg-of (a) | −→ni 〉 if −→ni =−→nj

0 o.w.

where adjs(Cl ) returns all instances of adjectives in Cl ; δ(a,A)= 1 if a = A and 0
otherwise; and arg-of (a) = noun if a is an adjective with argument noun, and εn

otherwise.
As before, we stipulate the Cij matrices by hand (and we eliminate all cases

where i �= j since Cij = 0 by definition in such cases):

Cfluffy = [9 3 4 2 2] Cshrewd = [0 3 1 9 1] Cvaluable = [3 0 8 1 8]

We compute vectors for “fluffy dog” as follows:

−−−−−−→
fluffy dog= (3 · 9)

−−−−−→
arg-fluffy+ (6 · 3)

−−−−−−−−→
arg-ferocious+ (2 · 4)

−−−−−→
obj-buys

+ (5 · 2)
−−−−−−−→
arg-shrewd+ (2 · 2)

−−−−−−−→
arg-valuable

and “shrewd banker” as follows:

−−−−−−−−−→
shrewd banker= (0 · 0)

−−−−−→
arg-fluffy+ (4 · 3)

−−−−−−−−→
arg-ferocious+ (0 · 0)

−−−−−→
obj-buys

+ (6 · 9)
−−−−−−−→
arg-shrewd+ (0 · 1)

−−−−−−−→
arg-valuable

Vectors for
−−−−−→
fluffy cat and

−−−−−−−−−→
valuable stock are computed similarly. We obtain the

following similarity measures:

cosine(
−−−−−−→
fluffy dog,

−−−−−−−−−→
shrewd banker)= 0.389

cosine(
−−−−−→
fluffy cat,

−−−−−−−−−→
valuable stock)= 0.184

These calculations carry over to sentences which contain the adjective-noun pairings
compositionally and we obtain an even lower similarity measure between sentences
with dissimilar meanings:

cosine(
−−−−−−−−−−−−−−−−−−→
fluffy dogs chase fluffy cats,

−−−−−−−−−−−−−−−−−−−−−−−→
shrewd bankers sell valuable stock)= 0.016

To summarise, our example vectors provide us with the following similarity mea-
sures:

Sentence 1 Sentence 2 Degree of similarity
dogs chase cats dogs pursue kittens 0.979
dogs chase cats cats chase dogs 0.656
dogs chase cats bankers sell stock 0.042
fluffy dogs chase fluffy cats shrewd bankers sell valuable stock 0.016
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5 Different Grammatical Structures

So far we have only presented the treatment of sentences with transitive verbs. For
sentences with intransitive verbs, it suffices for the sentence space to be just N . To
compare the meaning of a transitive sentence with an intransitive one, we embed the
meaning of the latter from N into the former N ⊗N , by taking −→εn (the ‘object’ of
an intransitive verb) to be

∑
i
−→
ni , i.e. the sum of all basis vectors of N .

Following the method for the transitive verb, we calculate Cijk for an intransitive
verb V and basis pair −→sj = (

−→
ni ,

−→
nk ) as follows, where l ranges over the sentences

in the corpus:

∑

l

∑

v∈verbs(Cl )

δ(v,V )
〈−−−−→
subj(v) | −→ni

〉〈−−−→
obj(v) | −→nk

〉

=
∑

l

∑

v∈verbs(Cl )

δ(v,V )
〈−−−−→
subj(v) | −→ni

〉〈−→εn | −→nk 〉

and 〈−→εn | −→ni 〉 = 1 for any basis vector ni .
We can now compare the meanings of transitive and intransitive sentences by

taking the inner product of their meanings (despite the different arities of the verbs)
and then normalising by vector length to obtain the cosine measure. For example:

〈−−−−−−−−−−→dogs chase cats | −−−−−−→dogs chase〉

=
〈(∑

ijk

Cijk〈−−→dogs | −→ni 〉−→sj 〈−→nk | −−→cats 〉
) ∣∣∣∣

(∑

ijk

C′
ijk〈

−−→
dogs | −→ni 〉−→sj

)〉

=
∑

ijk

CijkC
′
ijk〈

−−→
dogs | −→ni 〉〈−−→dogs | −→ni 〉〈−→nk | −→cats〉

The raw number for the inner product is 14092 and its normalised cosine measure
is 0.961, indicating high similarity (but some difference) between a sentence with
a transitive verb and one where the subject remains the same, but the verb is used
intransitively.

Comparing sentences containing nouns modified by adjectives to sentences with
unmodified nouns is straightforward:

〈−−−−−−−−−−−−−−−−−−→fluffy dogs chase fluffy cats | −−−−−−−−−−→dogs chase cats〉
=

∑

ij

C
fluffy
i C

fluffy
j Cchase

ij Cchase
ij 〈−−→dogs | −→ni 〉2〈−→nj | −→cats〉2

= 2437005

From the above we obtain the following similarity measure:

cosine(
−−−−−−−−−−−−−−−−−−→
fluffy dogs chase fluffy cats,

−−−−−−−−−−→
dogs chase cats)= 0.971
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For sentences with ditransitive verbs, the sentence space changes to N ⊗ N ⊗ N ,
on the basis of the verb needing two objects; hence its grammatical type changes
to nrsnlnl . The transitive and intransitive verbs are embedded in this larger space
in a similar manner to that described above; hence comparison of their meanings
becomes possible.

6 Ambiguous Words

The two different meanings of a word can be distinguished by the different prop-
erties that they have. These properties are reflected in the corpus, by the different
contexts in which the words appear. Consider the following example from Erk and
Padó (2008): the verb “catch” has two different meanings, “grab” and “contract”.
They are reflected in the two sentences “catch a ball” and “catch a disease”. The
compositional aspect of our meaning computation enables us to realise the different
properties of the context words via the grammatical roles they take in the corpus. For
instance, the word ‘ball’ occurs as argument of ‘round’, and so has a high weight for
the base ‘arg-round’, whereas the word ‘disease’ has a high weight for the base ‘arg-
contagious’ and as ‘mod-of-heart’. We extend our example corpus from previously
to reflect these differences as follows:

ball disease
1. arg-fluffy 1 0
2. arg-ferocious 0 0
3. obj-buys 5 0
4. arg-shrewd 0 0
5. arg-valuable 1 0
6. arg-round 8 0
7. arg-contagious 0 7
8. mod-of-heart 0 6

In a similar way, we build a matrix for the verb ‘catch’ as follows:

Ccatch =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

3 2 3 3 3 8 6 2
3 2 3 0 1 4 7 4
2 4 7 1 1 6 2 2
3 1 2 0 0 3 6 2
1 1 1 0 0 2 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

The last three rows are zero because we have assumed that the words that can take
these roles are mostly inanimate objects and hence cannot catch anything. Given
these values, we compute the similarity measure between the two sentences “dogs
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catch a ball” and “dogs catch a disease” as follows:

〈−−−−−−−−−−−→dogs catch a ball | −−−−−−−−−−−−−→dogs catch a disease〉 = 0

In an idealised case like this where there is very little (or no) overlap between the
properties of the objects associated with one sense of “catch” (e.g. a disease), and
those properties of the objects associated with another sense (e.g. a ball), disam-
biguation is perfect in that there is no similarity between the resulting phrases. In
practice, in richer vector spaces, we would expect even diseases and balls to share
some properties. However, as long as those shared properties are not those typically
held by the object of catch, and as long as the usages of catch play to distinctive
properties of diseases and balls, disambiguation will occur by the same mechanism
as the idealised case above, and we can expect low similarity measures between
such sentences.

7 Related Work

Mitchell and Lapata introduce and evaluate a multiplicative model for vector com-
position (Mitchell and Lapata 2008). The particular concrete construction of this
chapter differs from that of Mitchell and Lapata (2008) in that our framework sub-
sumes truth-theoretic as well as corpus-based meaning, and our meaning construc-
tion relies on and is guided by the grammatical structure of the sentence. The ap-
proach of Erk and Padó (2008) is more in the spirit of ours, in that extra information
about syntax is used to compose meaning. Similar to us, they use a structured vector
space to integrate lexical information with selectional preferences. Finally, Baroni
and Zamparelli (2010) model adjective-noun combinations by treating an adjective
as a function from noun space to noun space, represented using a matrix, as we do
in this chapter.
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Part II
Inference and Understanding



Recognizing Textual Entailment
and Computational Semantics

Johan Bos

Abstract Recognizing textual entailment (RTE)—deciding whether one piece of
text contains new information with respect to another piece of text—remains a big
challenge in natural language processing. One attempt to deal with this problem is
combining deep semantic analysis and logical inference, as is done in the Nutcracker
RTE system. In doing so, various obstacles will be met on the way: robust seman-
tic analysis, designing interfaces to state-of-the-art theorem provers, and acquiring
relevant background knowledge. The coverage of the parser and semantic analysis
component is high, yet performance on RTE examples yields high precision but low
recall. An empirical study of Nutcracker’s output reveals that the true positives are
caused by sophisticated linguistic analysis such as coordination, active-passive al-
ternation, pronoun resolution and relative clauses; the small set of false positives
are caused by insufficient syntactic and semantic analyses. But most importantly,
the false negatives are produced mainly by lack of background knowledge that is
only implicit in the RTE examples.

1 Introduction

Textual entailment has long been used as an illustrational device in formal semantics
to show or convince scholars that certain natural language inferences hold or don’t
(as in popular textbooks such as Gamut 1991; Heim and Kratzer 1998, and Chierchia
and McConnell-Ginet 1991). This has merely been a theoretical exercise, until the
introduction of recognizing textual entailment (RTE) as a shared task in the area of
natural language processing Dagan et al. (2006) in 2005, even though the idea of the
computational variant was aired much earlier (Cooper et al. 1996; Monz and de Ri-
jke 2001). The RTE challenge consists of predicting whether one (short) text en-
tails another (short) text. The RTE data-sets are a collection of such text–hypothesis
pairs, labelled with a gold standard tag. Here are two such examples, one labelled as

J. Bos (B)
Center for Language and Cognition (CLCG), University of Groningen, Groningen,
The Netherlands
e-mail: johan.bos@rug.nl

H. Bunt et al. (eds.), Computing Meaning, Text, Speech and Language Technology 47,
DOI 10.1007/978-94-007-7284-7_6,
© Springer Science+Business Media Dordrecht 2014

89

mailto:johan.bos@rug.nl
http://dx.doi.org/10.1007/978-94-007-7284-7_6


90 J. Bos

FALSE (no entailment, i.e. hypothesis H contains new information with respect to
text T), and one labelled as TRUE (entailment, i.e. no new information in H given T):

Example 1: FALSE

T: I recently took a round trip from Abuja to Yola, the capital of Adamawa State and
back to Abuja, with a fourteen-seater bus.

H: Abuja is located in Adamawa State.

Example 2: TRUE

T: Bountiful arrived after war’s end, sailing into San Francisco Bay 21 August 1945.
Bountiful was then assigned as hospital ship at Yokosuka, Japan, departing San
Francisco 1 November 1945.

H: Bountiful reached San Francisco in August 1945.

It soon became clear that RTE is an extremely difficult task: simple baseline sys-
tems based on textual surface features are hard to outperform by more sophisticated
systems. Not only does one need a robust and accurate analysis of text, also the use
of external resources to inform the inference process are essential.

Various approaches to RTE have been proposed, ranging from surface-oriented
techniques to methods using sophisticated semantic analysis. This focus of this
chapter is on a method belonging in the latter category, namely determining tex-
tual inferences on the basis of logical inference. The idea is simple and rooted in
the formal approaches to natural language semantics mentioned before: we trans-
late the texts into logical formulas, and then use (classical) logical inference to find
out whether T entails H, whether T and H are consistent or contradictory, and so on.

Even though the idea itself is simple in theory, its practical execution isn’t. In
this chapter I describe a framework and implementation for textual inference based
on first-order logic and formal theory. It comprises a system for RTE, Nutcracker,
developed by myself over the years since the start of the RTE challenge (Bos and
Markert 2005) and has been briefly described by others in a wider context (Balduc-
cini et al. 2008), but never been the subject of publication itself. The aim is to find
an answer to the question whether there is a significant role for computational se-
mantics to play in the current state of RTE. From this “big” question several smaller
questions arise, that are probably easier to answer, and I will concentrate on these
first:

1. Can we use deep semantic analysis and logical inference, or are we lacking cov-
erage?

2. Are the RTE data-sets suitable for black-box testing of systems claiming to per-
forming natural language understanding?

3. And finally, given the knowledge that RTE is a hard (and yet unsolved) problem:
can we identify a bottleneck—is it in semantic analysis, selecting background
knowledge, or in theorem proving?

This chapter is organized as follows. First the framework and implementation of
the logical approach to RTE, is presented in Sect. 2. This includes syntactic and se-
mantic analysis, with a description of the parser (based on categorial grammar) and
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El Salvador
------[lex] ---[lex]
n:nam/n:nam n:nam
-----------------[>]

a crisis in n:nam
---[lex] --[lex] -----[lex] -----------------[*]

Alfredo Cristiani np/n:nom n:nom (np\np)/np np
------[lex] ----[lex] -------------[>] ----------------------------[>]
n:nam/n:nam n:nam caused np np\np
------------------[>] --------[lex] ---------------------------------------------[<]
n:nam (s:dcl\np)/np np
------------------[*] -----------------------------------------------------------[>]
np s:dcl\np .
---------------------------------------------------------------------------------[<] ------[lex]
s:dcl s:dcl\s:dcl
---------------------------------------------------------------------------------------------[<]
s:dcl

Fig. 1 Output of the C&C parser, a CCG derivation, as displayed by Boxer

the semantic interpretation component (Boxer, implementing a version of Discourse
Representation Theory), and the use of off-the-shelf theorem provers to perform in-
ferences on the textual analyses of RTE examples. In Sect. 3 I look critically at the
performance of the logical approach to RTE, and show where it acts well and on
what examples it fails to deliver the goods.

2 The Logical Method

2.1 Robust Semantic Analysis

With “semantic analysis” I mean the process of mapping text into logical formula.
Traditionally, this is performed by a syntactic analysis (with the help of a parser)
followed by a semantic analysis that produces a logical form based on the output
of the syntactic parser. For the purposes of RTE based on logical inference, the
linguistic analysis needs to be reasonably sophisticated and at the same time offer
large coverage. It needs to be sophisticated in analysis because a shallow analysis
would not support the logical inferences that need to be drawn and hence sacrifice
precision in performance. It needs to be robust and offer large coverage to achieve a
high recall in performance. As a practical rule of thumb, the loss in coverage should
still outweigh the gain in performance using deep linguistic analysis.

Nowadays there are several (statistical) parsers available that offer broad cover-
age syntactic analysis on news-wire texts. The parser of our choice, the C&C parser
(Clark and Curran 2004), combines speed and robustness with detailed syntactic
analyses in the form of derivations of combinatory categorial grammar (Fig. 1).

Categorial grammar offers a principled way to construct formal meaning repre-
sentations with the help of the λ-calculus. In a nutshell, it works as follows. Each
basic syntactic category is associated with a basic semantic type, and using the re-
cursive definition of categories and types, this also fixes the semantic types of com-
plex syntactic categories. This results in a strongly lexically-driven approach, where
only the semantic representations have to be provided for the lexical categories.
Function application will take care of the rest and produce meaning representations
for phrases beyond the token level and eventually for the entire sentence.
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Alfredo Cristiani caused a crisis in El Salvador.
------------------------------- --------------
|x0 x1 | |x2 x3 |
|...............................| |..............|

(|named(x0,alfredo_cristiani,per)|A|crisis(x2) |)
|named(x1,el_salvador,loc) | |in(x2,x1) |
------------------------------- |cause(x3) |

|agent(x3,x0) |
|patient(x3,x2)|
--------------

Fig. 2 Boxer output for a simple text, a DRS (Discourse Representation Structure)

As for choice of meaning representation language, it needs to be something that
supports logical inference as well as adequately describe natural language mean-
ing. There is an uneasy and unsolved tension here between expressiveness on the
one hand and efficiency on the other. The formalisms proposed by linguists and
philosophers are usually not computationally attractive—most of them exceed the
expressive power of first-order logic, and theorem proving for first-order logic is al-
ready undecidable (more precisely, first-order logic is known to be semi-decidable
(Blackburn and Bos 2005)). Yet, there are powerful theorem provers for first-order
logic available developed by the automated deduction research community, and it
seems a good compromising choice as language to perform logical inference given
the current state-of-the-art.

However, we won’t use standard first-order formula syntax, but adopt a variant
of Discourse Representation Theory’s DRSs, Discourse Representation Structures,
graphically visualized as boxes (Fig. 2). DRT (Kamp and Reyle 1993) offers a way
to deal with many linguistic phenomena in a principled way, including quantifiers,
pronouns, presupposition and events. Diverging slightly from standard DRT, I adopt
a neo-Davidsonian way for describing events (rather than the Davidsonian approach
employed in classical DRT), because this results in a lower number of background
knowledge rules (meaning postulates) required to draw correct inferences. Turning
to implementation, the meaning representations are produced by the semantic parser
Boxer (Bos 2008), which works on the output of the aforementioned C&C parser.

Boxer performs pronoun resolution, presupposition projection, thematic role la-
belling and assigns scope to quantifiers, negation and modal operators. It produces
one semantic representations for each input, and its logical form is fully disam-
biguated. Note that semantic underspecification, a technique to pack several mean-
ings into one compact representation, isn’t a feasible option here, as it remains un-
clear how theorem provers would work with underspecified representations.

2.2 Applying Theorem Proving

In the previous section I showed how to produce a DRS for a text and hypothesis of a
pair of the RTE data-set. The next step involves translating these DRSs into formulas
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of first-order logic, and pass on the result in a suitable way to a theorem prover. If
the theorem prover then succeeds in finding a proof, we predict an entailment for
this RTE pair. However, the standard translation from DRS to FOL (Muskens 1996;
Kamp and Reyle 1993) gives wrong predictions to RTE problems because it doesn’t
take modalities and embedded propositions into account. The standard translation,
for instance, would predict an entailment for the following example pair:

Example 3: FALSE

T: Leakey believed Kenya’s wildlife, which underpins a tourist industry worth Dol-
lars 450m a year, could be managed in a profitable and sustainable manner.

H: Kenya’s wildlife is managed in a profitable manner.

Why is this? In the standard translation, it is impossible to connect the embed-
ded proposition to a belief report (or other propositional attitude) or modal operator,
because first-order terms can’t be formulas. The modal translation, that I adopt, is
based on a technique called reification. It translates a basic DRS condition with n

terms into a first-order formula with n+1 arguments, where the added term is a first-
order variable ranging over entities. (I won’t give the full translation from DRSs to
modal FOL here for reasons of space, but instead refer the interested reader to Bos
2004.) One might want to refer to these entities as “possible worlds”, “situations”,
or simply “propositions”. Whatever you call them, this way it is possible to con-
nect embedded propositions to attitudinal nouns and verbs or modal operators, and
therefore prevents unwanted entailments such as in the example above. In cases with
factive constructions (as in the sentence “Bill knows that Mary smokes” or “the fact
that Mary smokes”), meaning postulates could specify the project content of the
embedded clause to be interpreted as if it were in the main clause.

Theorem proving doesn’t just play the role for checking entailment between T
and H. We also need to check whether T and H are logically consistent. This is
necessary because otherwise we might predict incorrect entailments. If T is incon-
sistent, anything would follow from that. Logically speaking that would be sound,
but for natural language entailment this is (perhaps) an unwanted result. If H is in-
consistent, then checking whether T entails H would boil down to checking whether
T is consistent. Again, this is something we should be able to detect. And finally, if
T and H taken together are inconsistent, then clearly T does not entail H (in fact, H
is very informative in such a case!).

This brings us to the basic algorithm for applying first-order theorem proving
to an RTE example with text T and hypothesis H. For convenience, we write X′
to designate the FOL translation of natural language text X, derived from a DRS
produced for X. The Boolean function proof has as input a formula, and returns
true if it finds a proof (given certain time and space constraints), false otherwise.
Figure 3 shows all the steps of the algorithm.

Note that in Fig. 3 we check for the consistency of a formula φ by trying to
prove its negation—if we manage to do so, ¬φ is a theorem, and therefore φ has
no model, in other words is inconsistent. Steps 1 and 2 apply to cases where—for
whatever reason—the text or hypothesis is inconsistent itself. There isn’t much point
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IF proof(not(T’)) THEN % STEP 1
OUTPUT "unknown"

ELSE
IF proof(not(H’)) THEN % STEP 2

OUTPUT "unknown"
ELSE

IF proof(not(and(T,H))) THEN % STEP 3
OUTPUT "informative"

ELSE
IF proof(not(and(T,not(H))) THEN % STEP 4

OUTPUT "entailment"
ELSE

OUTPUT "informative" % STEP 5
ENDIF

ENDIF
ENDIF

ENDIF

Fig. 3 Core of the Nutcracker algorithm for recognizing textual entailment

to continue at this stage. Step 3 checks for a contradiction between T and H. If this
is the case, there is no entailment. Step 4 is the moment of truth: the check whether
T entails H, and applies only when both T and H are consistent. If a proof is found,
then entailment is reported for this pair. Step 5, finally, is a fallback clause in case
no proof was found in previous steps of the algorithm.

Any theorem prover for first-order logic could be used in theory. In practice,
there is quite a lot of choice, thanks to the active area of automated deduction that
offers various efficient state-of-the-art provers for research purposes, and a lot of
variation in performance, too. The theorem prover used in our experiments reported
later in this chapter is Vampire (Riazanov and Voronkov 2002), the currently highest
ranked prover in CASC, the annual competition for inference engines (Sutcliffe and
Suttner 2006). In addition to a theorem prover, we use the model builder Paradox
to find counter models (Claessen and Sörensson 2003). Following Blackburn and
Bos (2005), for each inference problem called in Fig. 3 the theorem prover and
model builder work in parallel, where the model builder gets the negated input of
the theorem prover. If a proof is found for problem ¬φ, the model builder is halted
because it would never be able to find a model for φ—if a model is found for φ, the
theorem prover is halted because it would never be able to find a proof for ¬φ.

The model builder searches for models up to a specified domain size n, and
terminates if it can’t construct a model for sizes 1− n. In theory, because first-order
logic is semi-decidable, this setting always terminates with one of three results:
(i) proof found, (ii) no proof found but finite countermodel constructed with domain
size n, or (iii) no proof and no model for size n (for instance for inputs that have non-
finite models). Case (i) succeeds if we give enough resources (time and space) to
the theorem prover, but in practice we use a time-out. For case (ii) by specifying the
maximum domain size as high as possible while maintaining reasonable response
times. Case (iii) is one that we wish to avoid in practice.
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Table 1 Coverage of the
C&C parser and Boxer on
RTE examples

Data-set Pairs Semantics Coverage

RTE–2 dev 800 784 98.0 %

RTE–2 test 800 782 97.8 %

RTE–3 dev 800 780 97.5 %

RTE–3 test 800 786 98.3 %

Total 3,200 3,132 97.9 %

Table 2 Proofs found on
RTE-2 and RTE-3 (3,132
pairs)

Data-set Proofs Precision Recall

RTE-2 Dev 13 100 % 3.3 %

RTE-2 Test 14 86 % 3.0 %

RTE-3 Dev 14 93 % 3.3 %

RTE-3 Test 13 77 % 2.8 %

2.3 Implementation and Results

The approach to RTE as described above is implemented as the Nutcracker RTE
system.1 Nutcracker is basically a wrapper around a pipeline of NLP components,
comprising a tokeniser, POS tagger, lemmatiser (Minnen et al. 2001) and named
entity recognizer, followed by the C&C parser and Boxer. Nutcracker further coor-
dinates the communication with the external theorem provers and model builders as
designed in Fig. 3.

Coming back to one of the key questions posed at the beginning of this chapter,
what is the coverage and quality of our NLP pipeline on RTE examples, and is it
good enough? The coverage of the pipeline on RTE examples is shown in Table 1,
from which we can conclude that the coverage for producing semantic representa-
tions is high (around 98 %), and therefore suitable for a task such as RTE, assuming
we can recover from the loss of 2 % in recall by achieving a high precision. How-
ever, even though producing semantic representations in a robust way is a good start
for performing well on the RTE task, it is merely a single step in the NLP pipeline.
The ultimate success depends on the number and accuracy of the proofs that are
found. As Table 2 shows in terms of precision and recall, the accuracy of proofs is
high, but the number of proofs is very low.

As it stands, using simply logical inference would just about outperform the sim-
plest baseline (flipping a coin, assuming an equal distribution between the TRUE
and FALSE entailment pairs in the data-set, which is usually the case in RTE exer-
cises). As a matter of fact, the Nutcracker system employs a slightly more sophis-
ticated baseline system based on word overlap in the cases where it fails to find a

1The source code of the system can be downloaded via the website of the C&C tools Curran et al.
(2007).
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proof, a baseline that performs remarkably well. In the next section we try to find
out why precision is not 100 %, explain why recall is low, and make suggestions for
how to improve on this.

3 A Critical Evaluation of Performance

RTE is measured in terms of recall (how many instances of the total given to a
system are correctly predicted) and precision (how many instances attempted by a
system are correctly predicted). RTE systems based on logical inference tend to be
low in recall and high in precision. Why is this so? In this section we would like
to find an answer by inspecting the output of Nutcracker on the RTE-2 and RTE-3
data-sets.

The logical approach to RTE assumes there is no entailment for an T–H pair
unless a proof is found. However, not every proof corresponds to an entailment in
the RTE data-set, and not every entailment in the RTE data-set triggers a proof.
Hence, we can evaluate and verify the performance of the system by dividing the
data into four classes:

1. true positives (proofs found for an entailment);
2. false positives (proofs found for a non-entailment);
3. true negatives (no proof found for a non-entailment);
4. false negatives (no proof found for an entailment).

A moment of reflection informs us that it is not very interesting to discuss the
true negatives, because, in a way, this can be viewed as a default behaviour of the
system. It is however interesting to have a closer look at the remaining three classes
of system output, and we will do so here.

3.1 Proofs Found for Entailment Pairs (True Positives)

In this class we can distinguish several semantic phenomena whose analyses in DRT
correctly predict entailments. I will group them into various categories: conjunction
elimination, coordination, active-passive altnernation, pronoun resolution, relative
clauses, appositives, and control constructions.

3.1.1 Conjunction Elimination

The largest set of true positives is caught by conjunction elimination, a basic infer-
ence rule that says that from a conjunctive statement φ ∧ψ one can infer φ and ψ .
We encountered thirteen cases that were correctly classified by Nutcracker as en-
tailment due to conjunction elimination in the RTE data. Some examples are shown
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below, where the relevant phrases in T and H are set in bold face. (In these and
following examples, some are abbreviated versions of the original entry in the RTE
data-set to save space. The gold-standard judgments (TRUE/FALSE) are taken from
the RTE data-set.)

Example 4: TRUE

T: The Gurkhas come from mountainous Nepal and are extremely tenacious. . .

H: The Gurkhas come from Nepal.

Example 5: TRUE

T: At least eight people have been killed in a suicide bomb attack on Sri Lanka’s. . .

H: People were killed in suicide attacks.

Example 6: TRUE

T: A male rabbit is called a buck and a female rabbit is called a doe, just like deer.

H: A female rabbit is called a doe.

Example 7: TRUE

T: Tom Cruise is married to actress Nicole Kidman and the couple has. . .

H: Tom Cruise is married to Nicole Kidman.

Example 8: TRUE

T: Spirou was created in 1938 by Rob-Vel, who sold the rights to. . .

H: Spirou was created by Rob-Vel.

As these examples illustrate, several syntactic constructions fall into this category
of valid inferences: intersective adjectives (“X is from mountainous Y” entails “X is
from Y”), noun-noun compounds (a suicide bomb attack is also a bomb attack),
appositives (“X is the actress Nicole Kidman” entails that “X is Nicole Kidman”),
and clauses (“X and Y” entails Y). The last example shows that the order of event
modifiers is not sensitive to entailment (“created in X by Y” entails “created by‘Y”).
Nutcracker makes corrected predictions for this type of examples, although, as we
will see below, in some cases conjunction elimination doesn’t always yield the de-
sired result.

3.1.2 Verb Phrase Coordination

This category of examples shows that a correct syntactic and semantic analysis for
verb phrase coordination can contribute to finding an entailment. Approaches based
on surface features will likely run into problems for this class of examples. Consider
the following examples that Nutcracker handled correctly:
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Example 9: TRUE

T: Pibul was anti-communist as well as nationalistic.

H: Pibul was nationalistic.

Example 10: TRUE

T: Bush withheld judgment Monday on. . . Iraq, and said angry protests in Indone-
sia. . .

H: Bush said that protests in Indonesia. . .

Both examples are cases of verb phrase coordination (“X was P as well as Q”
entails “X was Q”, and “X did P and did Q” entails “X did Q”). These are non-trivial
RTE examples because they require a sophisticated linguistic analysis; shallow RTE
approach based on surface forms would have a hard time predicting these inferences.
We found three cases of VP coordination entailment in the RTE data-set.

3.1.3 Active-Passive Alternation

In Boxer, verb phrases in passive form are semantically represented as their active
paraphrase. Put differently, the Boxer system will produce the same semantic rep-
resentation for the active sentence “Batman chased the Joker” and “The Joker was
chased by Batman.” This enables Nutcracker to make inferences of the following
kind:

Example 11: TRUE

T: Initially the Bundesbank opposed the introduction of the euro but was. . .

H: The introduction of the euro has been opposed.

Example 12: TRUE

T: In India, carpets are made mostly in Uttar Pradesh, which adopted a “Child
Labour Abolition and Regulation Act” in 1986.

H: The Child Labour Abolition and Regulation Act was adopted in 1986.

The Nutcracker system is able to deal with this because the C&C parser is able
to detect verb phrases in passive mood, for which Boxer select the correct thematic
roles. For instance, the active-passive alternation example above translates as “X op-
posed Y” entails “Y has been opposed”. There were four cases of active-passive
alternation in the studied RTE data-sets.

3.1.4 Past and Present Participles

Past and present participles that modify nouns are analysed in Boxer like events
introduced by ordinary verb phrases. This ensures that Nutcracker predicts entail-
ments as in the following examples:
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Example 13: TRUE

T: Another factor in the rising cost of paper is the increased cost of wood pulp,
from which paper is made.

H: The cost of paper is rising.

Example 14: TRUE

T: The provincial veterinarian with the Department of Forest Resources and Agri-
foods, Dr. Hugh Whitney, confirmed today another case of rabies in Labrador,
bringing the total number of confirmed rabies cases to nine in Labrador since
November 2000.

H: A case of rabies was confirmed.

The two examples above were the only ones that I found in the RTE data. In the
first example the present participle “rising” is analysed by Boxer as an event with
the thematic roles for the corresponding intransitive verb. In the second example,
the past participle “confirmed” is treated by Boxer as a passive verb.

3.1.5 Relative Clauses and Control Constructions

Relative clauses and control constructions invoke interesting semantic dependen-
cies. Nutcracker is able to correctly predict entailments for the following examples,
covering standard relative clauses, a reduced relative clause, and a control construc-
tion.

Example 15: TRUE

T: Franz Liszt, a Hungarian composer who lived from 1811 to 1886 was the equiv-
alent of a rock star in his day. His piano compositions were extremely popular
and he often gave concerts to his multitude of fans. Liszt was also the pioneer
of many musical techniques, including the symphonic poem and the technique of
transforming themes.

H: Franz Liszt lived from 1811 to 1886.

Example 16: TRUE

T: The prize is named after Alfred Nobel, a pacifist and entrepreneur who invented
dynamite in 1866. Nobel left much of his wealth to establish the award, which
has honoured achievements in physics, chemistry, medicine, literature and efforts
to promote peace since 1901.

H: Alfred Nobel invented dynamite in 1866.

Example 17: TRUE

T: The Pharos, a monumental lighthouse built around 280 BC and standing 330 ft
high, lit the entrance to Alexandria harbour for centuries, but archeologists have
never been able to identify positively any remains.

H: The Pharos Lighthouse was built around 280 BC.
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Example 18: TRUE

T: The 84-year-old pope was wheeled to a hospital window, and blessed the crowd
by making the sign of the cross in clear gestures, as a Vatican photographer
snapped pictures.

H: The pope made the sign of the cross.

Note that the first three examples also interact with a proper analysis of appos-
itives. Example 18 is correctly predicted thanks to the lexical semantics of “by”, a
VP modifiers sub-categorizing for a present participle, ensuring that the subject of
the participle is the same as the subject of the VP it is modifying.

3.1.6 Pronouns

The current version of Boxer performs pronoun resolution using a simple rule-based
algorithm that emphasizes precision at the cost of recall. This mean that not all
pronouns are resolved, but when they are, they are usually associated with a correct
antecedent. Consider the following examples that Boxer got correct and caused a
correct entailment when running Nutcracker:

Example 19: TRUE

T: Aeschylus was born in 525 BC, and spent his youth as a soldier in the Athenian
army. He wrote The Persians when he was 53 years old, but it is his earliest
surviving work.

H: “The Persians” was written by Aeschylus.

Example 20: TRUE

T: Yunus, who shared the 1.4 million prize Friday with the Grameen Bank that he
founded 30 years ago, pioneered the concept of “microcredit”. . .

H: Yunus founded the Grameen Bank 30 years ago.

Both examples demonstrate the need of pronoun resolution for RTE. We note
in passing that the first example also shows active-passive alternation, and that the
second example requires a proper treatment of object relative clauses, underlining
that in real-world RTE there is often more than one complex phenomenon that one
needs to get right to correctly predict entailments.

3.2 Incorrect Proofs Found (False Positives)

Assuming that the theorem prover that one uses is sound, any proof that is produced
by it is mathematically correct. But in the RTE setting that we are examining, find-
ing a proof doesn’t automatically mean predicting a correct entailment. These cases,
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the false positives, are usually caused by a wrong semantic analysis of Boxer. For-
tunately, this doesn’t happen often. But when it does happen, it is interesting to find
out why, because it informs you where semantic analysis (sometimes unexpectedly)
failed and points out weak points in the semantic analysis. We will look at these
cases in this section.

3.2.1 Incorrect Syntactic Analyses

An incorrect syntactic analysis automatically yields an incorrect semantic analysis.
Sometimes this leads to incorrect entailment predictions. For the examples below
Nutcracker predicted entailments, although they were tagged as non-entailments in
the gold standard annotation:

Example 21: FALSE

T: Yunus, who was nominated for the peace prize at least twice before, is the first
person from Bangladesh, a country of 147 million, to win a Nobel Prize.

H: Yunus is the first person to win a Nobel Prize.

Example 22: FALSE

T: Germany will pay more into the EU coffers than Britain had originally
proposed—but still less than it had been prepared to pay at the last summit six
months ago.

H: Germany will pay more into the EU coffers than Britain.

In Example 21, the set of alternatives for the superlative expression “first” com-
prises persons from Bangladesh (not just persons), blocking the entailment. Com-
puting the alternative set of superlatives was recognized as an important problem in
Bos and Nissim (2006), and the example above supports this once more. In Exam-
ple 22 a wrong syntactic analysis of the comparative caused a false positive. The
best remedy to deal with these kinds of problems is train the parser on more data or
on revised gold-standard data, as in Honnibal et al. (2010).

3.2.2 Incorrect Semantic Analysis

This is a motley crew of examples, including unjustified conjunction elimination
(Example 23), not covering certain downward entailing quantifiers (Example 24),
wrongly resolved pronouns (Example 25), and not taking care of intensional adjec-
tives (Example 26):

Example 23: FALSE

T: Boys and girls will be segregated during sex education in junior high school.

H: Boys and girls will be segregated in junior high school.
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Example 24: FALSE

T: There are approximately 3.7 million European Citizens with intellectual disabil-
ity.

H: There are approximately 3.7 million European Citizens.

Example 25: FALSE

T: The rhinestone-studded Nudie suit was invented by Nudie Cohn in the 1940s, an
Americanization of the matador’s “suit of lights”.

H: The matador’s “suit of lights” was invented by Nudie Cohn.

Example 26: FALSE

T: Belknap was impeached by a unanimous vote of the House of Representatives for
allegedly having received money in return for post tradership appointments.

H: Belknap received money in return for post tradership appointments.

For some of these phenomena there are relatively easy fixes thinkable: equip
Nutcracker with a better anaphora resolution component, and extend Boxer with
a proper analysis of intensional adjectives. But such fixes probably won’t have a
high impact on the overall results of Nutcracker on the RTE data-sets, because they
represent a long tail of various rare cases.

3.3 Missing Proofs (False Negatives)

A large class of predictions is formed by the false negatives: no proof was found by
Nutcracker, but it should have. A great setting for the blame game to commence.
Can you blame the parser? Boxer? The theorem prover? Where is the bottleneck?

As far as the RTE data-sets is concerned, none of the traditional pipeline compo-
nents in Nutcracker is responsible for the majority of errors. To illustrate this point, I
randomly picked a sequence of examples that had “missing proofs” (i.e. RTE exam-
ples that were labelled as TRUE but for which Nutcracker predicted no entailment)
and examined them closely:

Example 27: TRUE

T: The Pentagon is rejecting demands by Kyrgyzstan to pay for the past use
of Manas air base, a key military facility for US aircraft flying missions to
Afghanistan.

H: Manas air base is located in Kyrgyzstan.

Example 28: TRUE

T: He also referred to the “illegal” arrest on 31 May of Mexican Professor Maria
Eugenia Ochoa Garcia, whom the Salvadoran government accused of having con-
nections with the Salvadoran guerrillas.

H: Maria Eugenia Ochoa Garcia was arrested in May.
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Example 29: TRUE

T: Mercedes-Benz USA (MBUSA), headquartered in Montvale, New Jersey, is re-
sponsible for the sales, marketing and service of all Mercedes-Benz and Maybach
products in the United States.

H: MBUSA is based in New Yersey.

Example 30: TRUE

T: Since joining the Key to the Cure campaign three years ago, Mercedes-Benz has
donated over million toward finding new detection methods, treatments and cures
for women’s cancers.

H: Mercedez-Benz supports the Key to the Cure campaign.

Example 31: TRUE

T: ASCAP is a membership association of more than 200,000 U.S. composers, song-
writers, lyricists and music publishers of every kind of music.

H: More than 200,000 U.S. composers, songwriters, lyricists and music publishers
are members of ASCAP.

The inference in Example 27 can only be made with the knowledge that if a
government of X demands someone to pay for the use of a facility Y, then Y is
located in X. Similarly, the inference in Example 28 can only be made with the
knowledge that if an arrest on time T of a person X takes place, then X was arrested
on T. Likewise, the inference in Example 29 can only be made with the knowledge
that if X is headquarted in Y, then X is based in Y. The inference in Example 30 can
only be made with the knowledge that if X joins Y, then X supports Y. And finally,
the inference in Example 31 can only be made with the knowledge that if X is a
membership association of Y, then Y are members of X.

These aren’t special cases, but are representative for a problem for logical ap-
proaches to RTE, and perhaps even for purely statistical approaches. These exam-
ples make clear that for the majority of the cases there is implicit knowledge required
to make the requested inference. I don’t think that this is knowledge that should be
supplied by a dedicated component, rather than by the semantic analyzer (Boxer, in
the case of the Nutcracker RTE system).

I am not aware of any resource that makes available background knowledge rules
of the kind required by the class of false negatives represented above. Current lex-
ical resources, such as WordNet and VerbNet, certainly do not offer such detailed
information. Unsupervised knowledge mining approaches could be a future, partial
answer to this problem; the current state-of-the-art in this area (Lin and Pantel 2001)
shows interesting high-recall results, albeit with relatively low precision.

4 Discussion and Conclusion

Coverage for producing semantic representations is high (around 98 %), and there-
fore suitable for a task such as RTE. The number of proofs found is small. But when
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a proof is found, it is usually correct in playing a role for predicting entailment. The
rare, incorrect proofs are due to insufficient syntactic and semantic analysis and usu-
ally of complex linguistic nature. However, the bottleneck for the logical approach to
RTE isn’t the current state of automated semantic analysis or theorem proving, but
the lack of supporting background knowledge. The question is whether resources
such as WordNet and VerbNet could play a role in filling this gap, or whether more
elaborated knowledge bases are needed. This is an important question for future
research on RTE and computational semantics.
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1 Introduction

In this chapter, we elaborate on a semantic processing framework based on a mode
of inference called abduction, or inference to the best explanation. In logic, ab-
duction is a kind of inference which arrives at an explanatory hypothesis given an
observation. Hobbs et al. (1993) describe how abductive reasoning can be applied
to the discourse processing problem viewing the process of interpreting sentences
in discourse as the process of providing the best explanation of why the sentence
would be true. In this framework, interpreting a sentence means

• proving its logical form,
• merging redundancies where possible, and
• making assumptions where necessary.

As the reader will see later in this chapter, abductive reasoning as a discourse
processing technique helps to solve many pragmatic problems such as reference res-
olution, the interpretation of noun compounds, and the resolution of some kinds of
syntactic and semantic ambiguity as a by-product. We adopt this approach. Specifi-
cally, we use a system we have built called Mini-TACITUS1 (Mulkar et al. 2007) that
provides the expressivity of logical inference but also allows probabilistic, fuzzy, or
defeasible inference and includes measures of the “goodness” of abductive proofs
and hence of interpretations of texts and other situations.

The success of a discourse processing system based on inferences heavily de-
pends on a knowledge base. This chapter shows how a large and reliable knowledge
base can be obtained by exploiting existing lexical semantic resources and can be
successfully applied to reasoning tasks on a large scale. In particular, we experi-
ment with axioms extracted from WordNet (Fellbaum 1998), and FrameNet (Rup-
penhofer et al. 2006). In axiomatizing FrameNet we rely on the study described in
(Ovchinnikova et al. 2010; Ovchinnikova 2012).

We evaluate our inference system and knowledge base in recognizing textual en-
tailment (RTE). As the reader will see in the following sections, inferences carried
out by Mini-TACITUS are fairly general and not tuned for a particular application.
We decided to test our approach on RTE because this is a well-defined task that cap-
tures major semantic inference needs across many natural language processing ap-
plications, such as question answering, information retrieval, information extraction,
and document summarization. For evaluation, we have chosen the RTE-2 Challenge
data set (Bar-Haim et al. 2006), because besides providing text-hypothesis pairs and
a gold standard this data set has been annotated with FrameNet frame and role labels
(Burchardt and Pennacchiotti 2008), which gives us the possibility of evaluating our
frame and role labeling based on the axioms extracted from FrameNet.

This chapter is structured as follows. Section 2 introduces weighted abduction.
In Sect. 3, we briefly describe our discourse processing pipeline and explain how
abductive reasoning can be applied to discourse processing. Section 4 concerns uni-
fication in weighted abduction. In Sect. 5, we describe the obtained knowledge base.

1http://www.rutumulkar.com/tacitus.html

http://www.rutumulkar.com/tacitus.html


Abductive Reasoning with a Large Knowledge Base for Discourse Processing 109

In Sect. 6, optimizations of the Mini-TACITUS system required to make the system
able to handle large knowledge bases are described. Section 7 presents our proce-
dure for recognizing textual entailment. In Sect. 8, we provide an evaluation of our
discourse processing pipeline on the RTE-2 data set. The last section concludes the
chapter and gives an outlook on future work and perspectives.

2 Weighted Abduction

Abduction is inference to the best explanation. Formally, logical abduction is de-
fined as follows:

Given: Background knowledge B , observations O , where both B and O are sets
of first-order logical formulas,

Find: A hypothesis H such that H ∪ B |= O , H ∪ B �|=⊥, where H is a set of
first-order logical formulas.

Typically, there exist several hypotheses H explaining O . To rank candidate hy-
potheses according to plausibility, we use the framework of weighted abduction as
defined by Hobbs et al. (1993). In this framework, observation O is a conjunction
of propositions existentially quantified with the widest possible scope

P1 : c1 ∧ . . .∧ Pn : cn (1)

where Pi are propositions and ci are positive real-valued costs (i ∈ {1, . . . , n}). We
use the notation P : c to say that proposition P has cost c, and cost(P ) to represent
the cost of P . The background knowledge B is a set of first-order logic formulas of
the form

P
w1
1 ∧ . . .∧ P wn

n →Q1 ∧ . . .∧Qm (2)

where Pi , Qj are propositions and wi is a positive real-valued weight (i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}). We use the notation P w to indicate that proposition P

has weight w. All variables on the left-hand side of such axioms are universally
quantified with the widest possible scope. Variables occurring on the right-hand
side only are existentially quantified.2

The two main inference operations in weighted abduction are backward chain-
ing and unification. Backward chaining is the introduction of new assump-
tions given an observation and background knowledge. For example, given O =
∃x(q(x) : 10) and B = {∀x(p(x)1.2 → q(x))}, there are two candidate hypothe-
ses: H1 = ∃x(q(x) : 10) and H2 = ∃x(p(x) : 12). In weighted abduction, a cost
function f is used in order to calculate assumption costs. The function takes two
arguments: costs of the propositions backchained on and weight of the assumption.
Usually, a multiplication function is used, i.e. f (c,w)= c ·w, where c is the cost of

2In the rest of this chapter we omit quantification.
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the propositions backchained on and w is the weight of the corresponding assump-
tion. For example, if q(x) costs 10 and w of p is 1.2 in the example above, then
assuming p in H2 costs 12.

Unification is the merging of propositions with the same predicate name by as-
suming that their arguments are the same and assigning the smallest cost to the
result of the unification. For example, O = ∃x, y(p(x) : 10∧p(y) : 20∧ q(y) : 10).
There is a candidate hypothesis H = ∃x(p(x) : 10 ∧ q(x) : 10). The idea behind
such mergings is that if an assumption has already been made then there is no need
to make it again.

Both operations (backchaining and unification) can be applied any number of
times to generate a possibly infinite set of candidate hypotheses. Weighted abduction
defines the cost of hypothesis H as

cost(H)=
∑

h∈H

cost(h) (3)

where h is an atomic conjunct in H (e.g., p(x) in the above H ). In this frame-
work, minimum-cost explanations are best explanations. The main idea of weighted
abduction is to favor explanations involving fewer assumptions and more reliable
assumptions.

3 Discourse Processing Pipeline and Abductive Reasoning

Our discourse processing pipeline produces interpretations of texts given an appro-
priate knowledge base. A text is first input to the English Slot Grammar (ESG)
parser (McCord 1990, 2010; McCord et al. 2012). For each segment, the parse pro-
duced by ESG is a dependency tree that shows both surface and deep structure. The
deep structure is exhibited via a word sense predication for each node, with logical
arguments. These logical predications form a good start on a logical form (LF) for
the whole segment. A component of ESG converts the parse tree into a LF in the
style of Hobbs (1985).

The LF is a conjunction of predications, which have generalized entity arguments
that can be used for showing relationships among the predications. Hobbs (1985)
extends Davidson’s approach (Davidson 1967) to all predications and posits that
corresponding to any predication that can be made in natural language, there is an
eventuality. Correspondingly, any predication in the logical notation has an extra
argument, which refers to the “condition” in which that predication is true. Thus, in
the logical form John(e1, j)∧ run(e2, j) for the sentence John runs, e2 is a running
event by John and e1 is a condition of j being named “John”.

In terms of weighted abduction, logical forms represent observations, which need
to be explained by background knowledge. In the context of discourse processing,
we call a hypothesis explaining a logical form an interpretation of this LF. In our
pipeline, the interpretation of the text is carried out by an inference system called
Mini-TACITUS (Mulkar-Mehta 2007). Mini-TACITUS tries to prove the logical form
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of the text, allowing assumptions where necessary. Where the system is able to prove
parts of the LF, it is anchoring it in what is already known from the overall discourse
or from a knowledge base. Where assumptions are necessary, it is gaining new infor-
mation. Obviously, there are many possible proofs in this procedure. A cost function
on proofs enables the system to chose the “best” (the cheapest) interpretation. The
key factors involved in assigning a cost are the following.

1. Proofs with fewer assumptions are favored.
2. Short proofs are favored over long ones.
3. Plausible axioms are favored over less plausible axioms.
4. Proofs are favored that exploit the inherent implicit redundancy in texts.

Let us illustrate the procedure with a simple example. Suppose that we want to
construct the best interpretation of the sentence John composed a sonata. As a by-
product, the procedure will disambiguate between two readings of compose, namely
between the “put together” reading instantiated, for example, in the sentence The
party composed a committee, and the “create art” reading After being processed
by the parser, the sentence will be assigned the following logical form, where the
numbers (10) after every proposition correspond to the default costs of these propo-
sitions.3 The total cost of this logical form is equal to 30:

John(e1, x1) : 10∧ compose(e0, x1, x2) : 10∧ sonata(e2, x2) : 10

Suppose our knowledge base contains the following axioms:

(1) put_together(e, x1, x2)
0.6 ∧ collection(e2, x2)

0.6 → compose(e, x1, x2)

(2) create_art(e, x1, x2)
0.6 ∧work_of _art(e2, x2)

0.6 → compose(e, x1, x2)

(3) sonata(e, x)1.5 → work_of _art(e, x)

Axioms (1) and (2) correspond to the two readings of compose. Axiom (3) states
that a sonata is a work of art. The propositions on the right hand side (compose,
work_of_art) correspond to the given information, whereas the left hand side propo-
sitions will be assumed.

Two interpretations can be constructed for the LF above. The first one is the
result of the application of Axiom (1). The costs of the backchained propositions
(compose, sonata) are set to 0, because their costs are now carried by the newly
introduced assumptions (put_together, collection). The total cost of the first inter-
pretation I1 is 32.

I1: John(e1, x1) : 10∧ compose(e, x1, x2) : 0∧ sonata(e2, x2) : 10∧
put_together(e0, x1, x2) : 6∧ collection(e2, x2) : 6

The second interpretation is constructed in several steps. First, Axiom (2) is ap-
plied, so that compose is backchained on to create_art and work_of_art with the
costs 6. Then, Axiom (3) is applied to work_of_art.

3The actual value of the default costs of the input propositions does not matter, because the in-
terpretation costs are calculated using a multiplication function. The only heuristic we use here
concerns setting all costs of the input propositions to be equal (all propositions cost 10 in the
discussed example). This heuristic needs further investigation.
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I2: John(e1, x1) : 10∧ compose(e, x1, x2) : 0∧ sonata(e2, x2) : 10∧
create_art (e0, x1, x2) : 6∧work_of _art(e2, x2) : 0∧ sonata(e2, x2) : 9

The total cost of I2 is 35. This interpretation is redundant, because it contains
the predicate sonata twice. The procedure will unify propositions with the same
predicate name, setting the corresponding arguments of these propositions to be
equal and assigning the minimum of the costs to the result of merging. Thus, the
final form of the second interpretation I2 with the cost of 25 contains only one
sonata with the cost of 9. The “create art” meaning of compose was chosen because
it reveals implicit redundancy in the sentence.

Thus, on each reasoning step the procedure (1) applies axioms to propositions
with non-zero costs and (2) merges propositions with the same predicate, assigning
the lowest cost to the result of merging. Reasoning terminates when no more axioms
can be applied. The procedure favors the cheapest interpretations. Among them, the
shortest proofs are favored; i.e. if two interpretations have the same cost then the
one that has been constructed with fewer axiom application steps is considered to
be “better”.

The described procedure provides solutions to a whole range of natural language
pragmatics problems, such as resolving ambiguity and discovering implicit rela-
tions in noun compounds, prepositional phrases, or discourse structure; see (Hobbs
et al. 1993) for detailed examples. Moreover, this account of interpretation solves
the problem of where to stop drawing inferences, which could easily be unlimited
in number; an inference is appropriate if it is part of the lowest-cost proof of the
logical form.

4 Unification in Weighted Abduction

Frequently, the lowest-cost interpretation results from identifying two entities with
each other, so that their common properties only need to be proved or assumed
once. This feature of the algorithm is called “unification”, and is one of the principal
methods by which coreference is resolved.

However, this feature of the weighted abduction algorithm has a substantial po-
tential for overmerging. Merging propositions with the same predicate names does
not always give the intended solution. If we know animal(e1, x) and animal(e2, y),
we do not want to assume x equals y if we also know dog(e3, x) and cat(e4, y). For
John runs and Bill runs, with the logical form John(e1, x)∧run(e2, x)∧Bill(e3, y)∧
run(e4, y), we do not want to assume John and Bill are the same individual just be-
cause they are both running.

For the full treatment of the overmerging problem, one needs a careful analysis
of coreference, including the complicated issue of event coreference. In this study,
we adopt a heuristic solution.

The Mini-TACITUS system allows us to define non-merge constraints, which pre-
vent undesirable mergings at every reasoning step. Non-merge constraints have the
form x1 �= y1, . . . , xn �= yn. These constraints are generated by the system at each
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reasoning step. Given the propositions p(x1) and p(x2) occurring in the input log-
ical form and the non-merge constraint x1 �= x2, Mini-TACITUS does not merge
p(x1) and p(x2), because it would imply a conflict with the non-merge constraint.
In the experiments described in this book, we used the following rule for generating
non-merge constraints.

For each two propositions p(e1, x1, . . . , xn) and p(e2, y1, . . . , yn), which occur
in the input, if

• e1 is not equal to e2,
• p is not a noun predicate, and
• ∃i ∈ {1, . . . , n} such that xi is not equal to yi , and both xi and yi occur as

arguments of propositions other than p(e1, x1, . . . , xn) and p(e2, y1, . . . , yn),

then add e1 �= e2 to the non-merge constraints.

This rule ensures that nouns can be merged without any restriction and other
predicates can be merged only if all their non-first arguments are equal (due to the
previous mergings) or uninstantiated. As seen from the statements above, the ar-
gument merging restriction concerns first arguments only. First arguments of all
predicates in the logical forms are treated by Mini-TACITUS as “handles” referring
to conditions, in which the predicate is true of its arguments, i.e. referring to the
predication itself, rather than to its semantic arguments.

The proposed non-merge rule is a heuristic, which corresponds to the intuition
that it is unlikely that the same noun refers to different entities in a short discourse,
while for other predicates this is possible. According to this rule the two eat propo-
sitions can be merged in the sentence John eats an apple and he eats the fruit slowly
having the following logical form:4

John(e1, x1)∧ eat(e2, x1, x2)∧ apple(e3, x2)∧ and(e4, e2, e5)∧
he(e1, x1)∧ eat(e5, x1, x3)∧ fruit(e6, x3)∧ slowly(e7, e5)

In the logical form above, the propositions eat(e2, x1, x2) and eat(e5, x1, x3) can-
not be merged, because they do not refer to nouns and their third arguments x2
and x3 are not equal. If the knowledge base contains the axiom apple(e1, x1) →
fruit(e1, x1) then the logical form above can be expanded into the following:

John(e1, x1)∧ eat(e2, x1, x2)∧ apple(e3, x2)∧ and(e4, e2, e5)∧
he(e1, x1)∧ eat(e5, x1, x3)∧ fruit(e6, x3)∧ apple(e6, x3)∧ slowly(e7, e5)

After the expansion, the noun propositions apple(e3, x2) and apple(e6, x3) can be
merged. Now, when all the arguments of the two eat propositions are equal, these
propositions can be merged as well.

Concerning the sentence John eats an apple and Bill eats an apple, merging of
two eat propositions is impossible, unless the system manages to prove that the
predicates John and Bill can refer to the same individual.

4The anaphoric he in the logical form is already linked to its antecedent John.
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There are cases when the proposed rule does not block undesired mergings. For
example, given the sentence John owns red apples and green apples, it is wrong to
merge both apple propositions, because “being red” and “being green” are incom-
patible properties that cannot be both assigned to the same entity. Thus, it seems to
be reasonable to check whether two propositions to be merged have incompatible
properties. A detailed study of coreference in an abductive framework is described
in (Inoue et al. 2012).

5 Knowledge Base

The proposed discourse processing procedure is based on a knowledge base (KB)
consisting of a set of axioms. In order to obtain a reliable KB with a large coverage
we exploited existing lexical-semantic resources.

First, we have extracted axioms from WordNet (Fellbaum 1998), version 3.0.,
which has already proved itself to be useful in knowledge-intensive NLP applica-
tions. The central entity in WordNet (WN) is called a synset. Synsets correspond to
word senses, so that every lexeme can participate in several synsets. We used the
lexeme-synset mapping for generating axioms. For example, in the axioms below,
the verb compose is mapped to synset-X, which represents one of its senses.

synset-X(s, e)→ compose(e, x1, x2)

Moreover, we have converted the following WordNet relations defined on synsets
into axioms: hypernymy, instantiation, entailment, similarity, and meronymy. Hy-
pernymy and instantiation relations presuppose that the related synsets refer to the
same entity (the first axiom below), whereas other types of relations relate synsets
referring to different entities (the second axiom below).

synset-1(e0, e1)→ synset-2(e0, e1)

synset-1(e0, e1)→ synset-2(e2, e3)

WordNet also provides morphosemantic relations, which relate verbs and nouns,
e.g., buy-buyer. These relations can be used to generate axioms like the following
one.

buyer(e1, x1)→ buy(e2, x1, x2)

Additionally, we have exploited the WordNet synset definitions. In WordNet the
definitions are given in natural language form. We have used the extended WordNet
resource,5 which provides logical forms for the definition in WordNet version 2.0.
We have adapted logical forms from extended WordNet to our representation format
and converted them into axioms; for example, the following axiom represents the
meaning of the synset containing such lexemes as horseback.

on(e1, e2, x1)∧ back(e3, x1)∧ of (e4, x1, x2)∧ horse(e5, x2)→ synset-X(e0, x0)

5http://xwn.hlt.utdallas.edu/

http://xwn.hlt.utdallas.edu/
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The second resource, which we have used as a source of axioms, is FrameNet,
release 1.5, see Ruppenhofer et al. (2006). FrameNet has a shorter history in NLP
applications than WordNet, but its potential to improve the quality of question an-
swering (Shen and Lapata 2007) and recognizing textual entailment (Burchardt et al.
2009) has been demonstrated. The lexical meaning of predicates in FrameNet is rep-
resented in terms of frames, which describe prototypical situations spoken about in
natural language. Every frame contains a set of roles corresponding to the partici-
pants of the described situation. Predicates with similar semantics are assigned to
the same frame. For example, both give and hand over refer to the GIVING frame.
For most of the lexemes FrameNet provides syntactic patterns showing the surface
realization of these lexemes and their arguments. We used the patterns for deriving
axioms. For example, the axiom below corresponds to phrases like John gave a book
to Mary.

GIVING(e1, x1, x2, x3)∧ DONOR(e1, x1)∧ RECIPIENT(e1, x2)∧ THEME(e1, x3)

→ give(e1, x1, x3)∧ to(e2, e1, x2)

FrameNet also introduces semantic relations defined on frames such as inheri-
tance, causation or precedence; for example, the GIVING and GETTING frames are
connected with the causation relation. Roles of the connected frames are also linked,
e.g. DONOR in GIVING is linked with SOURCE in GETTING. Frame relations have
no formal semantics in FrameNet. In order to generate corresponding axioms, we
used the previous work on axiomatizing frame relations and generating new rela-
tions from corpora (Ovchinnikova et al. 2010; Ovchinnikova 2012). An example of
an axiomatized relation is given below.

GIVING(e1, x1, x2, x3)∧ DONOR(e1, x1)∧ RECIPIENT(e1, x2)∧ THEME(e1, x3)

→
GETTING(e2, x2, x3, x1)∧ SOURCE(e2, x1)∧ RECIPIENT(e1, x2)∧ THEME(e1, x3)

Axiom weights are calculated using the frequency of the corresponding word
senses in the annotated corpora. The information about frequency is provided both
by WordNet and FrameNet. In our framework, axioms of the type species → genus
should have weights greater than 1, which means that assuming species costs more
than assuming genus, because there might be many possible species for the same
genus. The weights of such axioms are heuristically defined as ranging from 1
to 2.

In order to assign a weight wi to a sense i of a lexeme, we use information about
the frequency fi of the word sense in the annotated corpora. An obvious way of
converting the frequency fi to the weight wi is the following equation:

wi = 2− fi∑
1≤n≤|S| fn

(4)

where S is a set of all senses of the lexeme. All axioms representing relations receive
equal weights of 1.2.
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Table 1 Statistics for extracted axioms

Axiom type Source Number of axioms

Lexeme-synset mappings WN 3.0 207,000

Lexeme-synset mappings WN 2.0 203,100

Synset relations WN 3.0 141,000

Derivational relations WN 3.0 (annotated) 35,000

Synset definitions WN 2.0 (parsed, annotated) 115,400

Lexeme-frame mappings FN 1.5 49,100

Frame relations FN 1.5 + corpora 5,300

Both WordNet and FrameNet are manually created resources, which ensures a
relatively high quality of the resulting axioms as well as the possibility of exploiting
the linguistic information provided for structuring the axioms. Although manual
creation of resources is a very time-consuming task, WordNet and FrameNet, being
long-term projects, have an extensive coverage of English vocabulary. The coverage
of WordNet is currently larger than that of FrameNet (155 000 vs. 12 000 lexemes).
However, the fact that FrameNet introduces complex argument structures (roles)
for frames and provides mappings of these structures makes FrameNet especially
valuable for reasoning.

The complete list of axioms we have extracted from these resources is given in
Table 1. The number of axioms is approximated to the nearest hundred.

6 Adapting Mini-TACITUS to a Large Knowledge Base

Mini-TACITUS (Mulkar et al. 2007) began as a simple backchaining theorem-prover
intended to be a more transparent version of the original TACITUS system, which
was based on Stickel’s PTTP system (Stickel 1988). Originally, Mini-TACITUS was
not designed for treating large amounts of data. A clear and clean reasoning proce-
dure rather than efficiency was in the focus of its developers. In order to make the
system work with the large knowledge base, we had to perform several optimization
steps and add a couple of new features.

6.1 Time and Depth Parameters

For avoiding the reasoning complexity problem, we introduced two parameters.
A time parameter t is used to restrict the processing time. After the processing time
exceeds t the reasoning terminates and the best interpretation so far is output. The
time parameter ensures that an interpretation will be always returned by the proce-
dure even if reasoning could not be completed in a reasonable time.
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Algorithm 1 Mini-TACITUS reasoning algorithm: interaction of the time and depth
parameters
Require: a logical form LF of a text fragment, a knowledge base KB ,

a depth parameter D, a cost parameter C, a time parameter T

Ensure: the best interpretation Ibest of LF

1: Iinit := {p(e, x1, . . . , xn,C,0)|p(e, x1, . . . , xn) ∈ LF }
2: I_set := {Iinit}
3: apply_inference(Iinit)
4: Cheapest_I := {I |I ∈ I_set and ∀I ′ ∈ I_set : cost(I )≤ cost(I ′)}
5: Best_I := {I |I ∈ Cheapest_I and

∀I ′ ∈ Cheapest_I : proof _length(I )≤ proof _length(I ′)}
6: return Ibest , which is the first element of Best_I

Subroutine apply_inference

Require: interpretation I

1: while processing_time < T do
2: for α ∈KB do
3: for PropSubset⊆ I such that ∀p(e, x1, . . . , xn, c, d) ∈ PropSubset : d < D do
4: if α is applicable to PS then
5: Inew := result of application of α to PS
6: I_set := I_set ∪ {Inew}
7: apply_inference(Inew)
8: end if
9: end for

10: end for
11: end while

A depth parameter d restricts the depth of the inference chain. Suppose that a
proposition p occurring in the input has been backchained on and a proposition p′
has been introduced as a result. Then, p′ will be backchained on and so on. The
number of such iterations cannot exceed d . The depth parameter reduces the number
of reasoning steps.

The interaction between the time and depth parameters is shown in Algorithm 1.

6.2 Filtering out Axioms and Input Propositions

Since Mini-TACITUS processing time increases exponentially with the input size
(sentence length and number of axioms), making such a large set of axioms work
was an additional issue. For speeding up reasoning it was necessary to reduce both
the number of the input propositions and the number of axioms. In order to re-
duce the number of axioms, the axioms that could never lead to any merging are
filtered out. Suppose that the initial logical form contains the following proposi-
tions:

a(x1, . . . , xn)∧ b(y1, . . . , ym)∧ c(z1, . . . , zk)
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and the knowledge base consists of the following axioms:

(1) d(x1, . . . , xl)→ a(y1, . . . , yn)

(2) b(x1, . . . , xm)→ d(y1, . . . , yl)

(3) e(x1, . . . , xt )→ c(y1, . . . , yk)

Given the logical form above, Axiom (3) is obviously useless. It can be evoked
by the input proposition c(z1, . . . , zk) introducing the new predicate e, but it can
never lead to any merging reducing the interpretation cost. Thus, there is no need to
apply this axiom.

Similarly, proposition c(z1, . . . , zk) in the input logical form can never be merged
with any other proposition and can never evoke an axiom introducing a proposi-
tion, which can be merged with any other. Therefore, removing the proposition
c(z1, . . . , zk) from the input for the reasoning machine and adding it to the best
interpretation after the reasoning terminates (replacing its arguments with new vari-
ables if mergings took place) does not influence the reasoning process.

In logical forms, propositions that could not be linked to the rest of the discourse
often refer to modifiers. For example, consider the sentence Yesterday, John bought a
book, but he has not started reading it yet. The information concerning John buying
a book is in the focus of this text fragment; it is linked to the second part of the
sentence. However, the modifier yesterday just places the situation in time; it is not
connected to any other part of the discourse.

7 Recognizing Textual Entailment

As the reader can see from the previous sections, the discourse processing procedure
we have presented is fairly general and not tuned for any particular type of inference.
We have evaluated the procedure and the KB derived from WordNet and FrameNet
on the recognizing textual entailment (RTE) task, which is a generic task that seems
to capture major semantic inference needs across many natural language processing
applications. In this task, the system is given a text (T) and a hypothesis (H) and must
decide whether the hypothesis is entailed by the text plus commonsense knowledge.

Our approach is to interpret both the text and the hypothesis using Mini-
TACITUS, and then see whether adding information derived from the text to the
knowledge base will reduce the cost of the best abductive proof of the hypothesis as
compared to using the original knowledge base only. If the cost reduction exceeds a
threshold determined from a training set, then we predict entailment.

A simple example would be the text John gave a book to Mary and the hypothesis
Mary got a book. Our pipeline constructs the following logical forms for these two
sentences.

T: John(e1, x1) : 10∧ give(e0, x1, x2) : 10∧ book(e2, x2) : 10∧
to(e4, e0, x3) : 10∧Mary(e3, x3) : 10

H: Mary(e1, x1) : 10∧ get(e0, x1, x2) : 10∧ book(e2, x2) : 10
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These logical forms constitute the Mini-TACITUS input. Mini-TACITUS applies
the axioms from the knowledge base to the input logical forms in order to reduce
the overall cost of the interpretations. Suppose that we have the following FrameNet
axioms in our knowledge base.

(1) GIVING(e1, x1, x2, x3)
0.9 → give(e1, x1, x3)∧ to(e2, e1, x2)

(2) GETTING(e1, x1, x2, x3)
0.9 → get(e1, x1, x2)

(3) GIVING(e1, x1, x2, x3)
1.2 → GETTING(e2, x2, x3, x1)

The first axiom maps give to to the GIVING frame, the second one maps get to
GETTING and the third one relates GIVING and GETTING with the causation rela-
tion. As a result of the application of the axioms the following best interpretations
will be constructed for T and H.

I(T): John(e1, x1) : 10∧ give(e0, x1, x2) : 0∧ book(e2, x2) : 10∧
to(e2, e0, x3) : 0∧Mary(e3, x3) : 20∧ GIVING(e0, x1, x2, x3) : 18

I(H): Mary(e1, x1) : 10∧ get(e0, x1, x2) : 0∧ book(e2, x2) : 10∧
GETTING(e0, x1, x2) : 9

The total cost of the best interpretation for H is equal to 29. Now the best inter-
pretation of T will be added to H with the zero costs (as if T has been totally proven)
and we will try to prove H once again. First of all, merging of the propositions with
the same names will result in reducing costs of the propositions Mary and book to 0,
because they occur in T:

I(I(T)+H): John(e1, x1) : 0∧ give(e0, x1, x2) : 0∧ book(e2, x2) : 0∧
to(e2, e0, x3) : 0∧Mary(e3, x3) : 20∧ GIVING(e0, x1, x2, x3) : 0∧
get(e4, x3, x2) : 0∧ GETTING(e4, x3, x2) : 9

The only proposition left to be proved is GETTING. Using the GETTING-GIVING

relation in Axiom (3) above, this proposition can be backchained on to GIVING,
which will merge with GIVING coming from the T sentence. H appears to be proven
completely with respect to T; the total cost of its best interpretation given T is equal
to 0. Thus, using knowledge from T helped to reduce the cost of the best interpreta-
tion of H from 29 to 0.

In our framework, a full treatment of the logical structure of natural language
would require a procedure for assessing the truth claims of a text given its logi-
cal form. Quantifiers and logical operators would be treated as predicates, and their
principal properties would be expressed in axioms. However, we have not yet im-
plemented this. Without a special account for the logical connectors if, not and or,
given a text If A then B and a hypothesis A and B, our procedure will most likely pre-
dict entailment. Even worse, not A will entail A. Similarly, modality is not handled.
Thus, X said A and maybe A both entail A. At the moment our RTE procedure mainly
accounts for the informational content of texts, being able to detect the “aboutness”
overlap of T and H, and does not reason about the truth or falsity of T and H.
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8 Experimental Evaluation

We evaluated our procedure on the RTE-2 Challenge dataset6 (Bar-Haim et al.
2006). The RTE-2 dataset contains the development and the test set, both including
800 text-hypothesis pairs. Each dataset consists of four subsets, which correspond
to typical success and failure settings in different applications: information extrac-
tion (IE), information retrieval (IR), question answering (QA), and summarization
(SUM). In total, 200 pairs were collected for each application in each dataset.

The main task in the RTE-2 challenge was entailment prediction for each pair
in the test set. The evaluation criterion for this task was accuracy—the percentage
of pairs correctly judged. The accuracy achieved by the 23 participating systems
ranges from 53 % to 75 %. Two systems had 73 % and 75 % accuracy, two systems
achieved 62 % and 63 %, while most of the systems achieved 55 %–61 % (cf. Bar-
Haim et al. 2006).

Garoufi (2007) has performed a detailed study of the RTE-2 dataset investigating
factors responsible for entailment in a significant number of text-hypothesis pairs.
Surprisingly, Garoufi’s conclusion is that such shallow features as lexical overlap
(number of words from hypothesis, which also occur in text) seem to be more useful
for predicting entailment than any sophisticated linguistic analysis or knowledge-
based inference. This fact may have two explanations: Either the RTE-2 dataset is
not properly balanced for testing advanced textual entailment technology, or the
state-of-the-art RTE systems indeed cannot suggest anything more effective than
simple lexical overlap.

Nevertheless, we chose the RTE-2 dataset for our experiments. First, none of
the other RTE datasets has been studied in so much detail, therefore there is no
guarantee that any other dataset has better properties. Second, the RTE-2 test set
was additionally annotated with FrameNet semantic roles, which enables us to use
it for evaluation of semantic role labeling.

8.1 Weighted Abduction for Recognizing Textual Entailment

We evaluated our procedure in RTE as described in Sect. 7. The RTE-2 development
set was used to train the threshold for discriminating between the “entailment” and
“no entailment” cases. Interpretation costs were normalized to the number of propo-
sitions in the corresponding H logical forms. This was done in order to normalize
over the prediction of longer and shorter hypotheses. If hypothesis h1 contains more
propositions than h2, then it can potentially contain more propositions not linked to
propositions in the text.

As a baseline we processed the datasets with an empty knowledge base. The
depth parameter was set to 3. Then, we did different runs, evaluating knowledge

6http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/

http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
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Table 2 Evaluation results for the RTE-2 test set

KB Accuracy Number of axioms

T H

No KB 57.3 % 0 0

WN 3.0 59.6 % 294 111

FN 60.1 % 1233 510

Ext. WN 2.0 58.1 % 215 85

WN 3.0 + FN 62.6 % 1527 521

Task Accuracy

SUM 75 %

IR 64 %

QA 62 %

IE 50 %

extracted from different resources separately.7 Table 2 contains the results of our
experiments.8 The results suggest that the proposed method seems to be promising
as compared to the other systems evaluated on the same task. Our best run gives
62.6 % accuracy.

The obtained baseline of 57.3 % is close to the lexical overlap baselines reported
by the participants of RTE-2 (Bar-Haim et al. 2006). Although FrameNet has pro-
vided fewer axioms than WordNet in total (ca. 50 000 vs. 600 000), its application
resulted in better accuracy than application of WordNet. The reason for this might be
the confusing fine-grainedness of WordNet, which makes word sense disambigua-
tion difficult. Moreover, the average number of WordNet axioms per sentence is
smaller than the number of FrameNet axioms (cf. Table 1). This happens because
the relational network of FrameNet is much more dense than that of WordNet.

The lower performance of the system using the KB consisting of axioms ex-
tracted from extended WordNet (Ext. WN 2.0) can be explained. The axioms ex-
tracted from the synset definitions introduce a lot of new lexemes into the logical
form, since these axioms define words with the help of other words rather than
abstract concepts. These new lexemes trigger more axioms. Finally, too many new
lexemes are added to the final best interpretation, which can often be noisy. The WN
3.0 and FN axioms set do not cause this problem, because these axioms operate on
frames and synsets rather than on lexemes.

For our best run (WN 3.0 + FN), we present the accuracy data for each applica-
tion separately (Table 2). The distribution of the performance of Mini-TACITUS on
the four datasets corresponds to the average performance of systems participating in
RTE-2 as reported by Garoufi (2007). The most challenging task in RTE-2 appeared
to be IE. QA and IR follow, and finally, SUM was titled the “easiest” task, with a
performance significantly higher than that of any other task.9

7The computation was done on a High Performance Cluster (320 2.4 GHz nodes, CentOS 5.0) of
the Center for Industrial Mathematics (Bremen, Germany).
8“Number of axioms” stands for the average number of axioms applied per sentence.
9In order to get a better understanding of which parts of our KB are useful for computing entailment
and for which types of entailment, in future, we are planning to use the detailed annotation of the
RTE-2 dataset describing the source of the entailment, which was produced by Garoufi (2007).
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Experimenting with the time parameter t restricting processing time (see Sect. 6),
we found that the performance of Mini-TACITUS increases with increasing time
of processing. This is not surprising. The smaller t is, the fewer chances Mini-
TACITUS has to apply all relevant axioms. Tracing the reasoning process, we found
that given a long sentence and a short processing time Mini-TACITUS had time to
construct only a few interpretations, and the “real” best interpretation was not al-
ways among them. For example, if the processing time is restricted to 30 minutes
per sentence and the knowledge base contains some hundreds of axioms, then Mini-
TACITUS has not enough time to apply all axioms up to depth 3 and construct all
possible interpretations in order to select the best one, while processing a single sen-
tence for 30 minutes is definitely not feasible in a realistic setting. This suggests that
optimizing the system computationally could lead to producing significantly better
results.

Several remarks should be made concerning our RTE procedure. First, measuring
overlap of atomic propositions, as performed by most of the RTE systems (cf. Dagan
et al. 2010), does not seem to be the perfect measure for predicting entailment. In
the example below, H is fully lexically contained in T. Only one proposition in and
its arguments pointing to the time of the described event actually make a difference
in semantics of T and H and imply “no entailment” prediction.

T: He became a boxing referee in 1964 and became most well-known for his deci-
sion against Mike Tyson, during the Holyfield fight, when Tyson bit Holyfield’s
ear.

H: Mike Tyson bit Holyfield’s ear in 1964.

As mentioned before, a much more elaborate treatment of logical connectors,
quantification, and modality is required. In the example below, H is fully contained
in T, but there is still no entailment.

T: Drew Walker, NHS Tayside’s public health director, said: “It is important to
stress that this is not a confirmed case of rabies.”

H: A case of rabies is confirmed.

In order to address some of the problems mentioned above, one can experiment
with more sophisticated classification methods (e.g., SVM or Decision Trees). The
number of proven/unproven propositions for each part of speech can be used as
a specific feature. This solution might reflect the intuition that an unproven verb,
preposition, or negation is more likely to imply “no entailment” than an unproven
adjective.

Obviously, WordNet and FrameNet alone are not enough to predict entailment.
In the example below, our system inferred that president is related to presidential,
Tehran is a part of Iran, mayor and official can refer to the same person, runoff
and election can mean the same. However, all this information does not help us to
predict entailment. We rather need to interpret the genitive Iran’s election as Iran

We would like to thank one of the reviewers of our IWCS 2011 paper which is the basis of this
chapter for giving us this idea.
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holds election and be able to infer that if there is an election between A and B, then
A faces B in the election.

T: Iran will hold the first runoff presidential election in its history, between Presi-
dent Akbar Hashemi Rafsanjani and Tehran’s hard-line mayor, election officials
said Saturday.

H: Hashemi Rafsanjani will face Tehran’s hard-line mayor in Iran’s first runoff
presidential election ever, officials said Saturday.

The knowledge needed for RTE has been analysed, for example, in (Clark et al.
2007) and (Garoufi 2007). In both works, the conclusion is that lexical-semantic
relations are just one type of knowledge required. Thus, our knowledge base requires
significant extension.

8.2 Semantic Role Labeling

For the run using axioms derived from FrameNet, we have evaluated how well we
do in assigning frames and frame roles. For Mini-TACITUS, semantic role labeling
is a by-product of constructing the best interpretation. But since this task is con-
sidered to be important as such in the NLP community, we provide an additional
evaluation for it. As a gold standard we have used the Frame-Annotated Corpus
for Textual Entailment, FATE (Burchardt and Pennacchiotti 2008). This corpus pro-
vides frame and semantic role label annotations for the RTE-2 challenge test set.10

It is important to note that FATE annotates only those frames that are relevant for
computing entailment. Since Mini-TACITUS makes all possible frame assignments
for a sentence, we provide only the recall measure for the frame match and leave the
precision out.

The FATE corpus was also used as a gold standard for evaluating the Shal-
maneser system (Erk and Pado 2006), which is a state-of-the-art system for as-
signing FrameNet frames and roles. In Table 3, we replicate results for Shalmaneser
alone and Shalmaneser boosted with WordNet Detour to FrameNet (Burchardt et al.
2005). WN-FN Detour extended the frame labels assigned by Shalmaneser with the
labels related via the FrameNet hierarchy or by the WordNet inheritance relation,
cf. Burchardt et al. (2009). In frame matching, the number of frame labels in the
gold standard annotation that can also be found in the system annotation (recall)
was counted. Role matching was evaluated only on the frames that are correctly
annotated by the system. The number of role labels in the gold standard annota-
tion that can also be found in the system annotation (recall) as well as the number

10FATE was annotated with the FrameNet 1.3 labels, while we have been using version 1.5
for extracting axioms. However, in the new FN version the number of frames and roles in-
creases and there is no message about removed frames in the General Release Notes R1.5, see
http://framenet.icsi.berkeley.edu. Therefore we suppose that most of the frames and roles used for
the FATE annotation are still present in FN 1.5.

http://framenet.icsi.berkeley.edu
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Table 3 Evaluation of
frames/roles labeling towards
FATE

System Frame match Role match

Recall Precision Recall

Shalmaneser 0.55 0.54 0.37

Shalmaneser + Detour 0.85 0.52 0.36

Mini-TACITUS 0.65 0.55 0.30

of role labels found by the system that also occur in the gold standard (precision),
were counted.11 Table 3 shows that given FrameNet axioms, the performance of
Mini-TACITUS on semantic role labeling is comparable with those of the system
specially designed to solve this task.12

Unfortunately, FrameNet does not really provide any semantic typing for the
frame roles. This type of information would be extremely useful for solving the
SRL task. For example, consider the phrases John took a bus and the meeting took
2 hours. The lexeme take can be mapped both to the RIDE_VEHICLE and TAK-
ING_TIME frame. Our system can use only the external context for disambigua-
tion of the verb take. For example, if the phrase John took a bus is accompanied
by the phrase He got off at 10th street, it is possible to use the relation between
RIDE_VEHICLE evoked by take and DISEMBARKING evoked by get off. However,
no information about possible fillers of the roles of the RIDE_VEHICLE frame (liv-
ing being and vehicle) and the TAKING_TIME frame (activity and time duration) is
provided by FrameNet itself. Future work on SRL using FrameNet should include
learning semantic preferences for frame roles from corpora.

9 Conclusion and Future Work

This chapter presents a discourse processing framework including the abductive
reasoner called Mini-TACITUS. We showed that interpreting texts using weighted
abduction helps solve pragmatic problems in discourse processing as a by-product.
In this chapter, particular attention was paid to reasoning with a large and reliable
knowledge base populated with axioms extracted from such lexical-semantic re-
sources as WordNet and FrameNet. The inference procedure as well as the knowl-
edge base were evaluated in the recognizing textual entailment task. The data for
evaluation were taken from the RTE-2 Challenge. First, we have evaluated the accu-
racy of the entailment prediction. Second, we have evaluated frame and role labeling
using the Frame-Annotated Corpora for Textual Entailment as the gold standard. In

11We do not compare filler matching, because the FATE syntactic annotation follows different
standards as the one produced by the ESG parser, which makes aligning fillers non-trivial.
12There exists one more probabilistic system labeling text with FrameNet frames and roles, called
SEMAFOR (Das et al. 2010). We do not compare our results with the results of SEMAFOR, because
it has not been evaluated against the FATE corpus yet.
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both tasks our system showed performance comparable with those of the state-of-
the art systems. Since the inference procedure and the axiom set are general and not
tuned for a particular task, we consider the results of our experiments to be promis-
ing concerning possible manifold applications of the proposed discourse processing
pipeline.

The experiments we have carried out have shown that there is still a lot of room
for improving the procedure. First, for successful application of weighted abduc-
tion on a large scale the system needs to be computationally optimized. In its cur-
rent state, Mini-TACITUS requires too much time for producing satisfactory re-
sults. As our experiments suggest, speeding up reasoning may lead to significant
improvements in the system performance. Since Mini-TACITUS was not originally
designed for large-scale processing, its implementation is in many aspects not effec-
tive enough. Recently, an alternative implementation of weighted abduction based
on Integer Linear Programming (ILP) was developed (Inoue and Inui 2011). In this
approach, the abductive reasoning problem is formulated as an ILP optimization
problem. In a preliminary experiment the ILP-based system achieved a speed-up
over Mini-TACITUS of two orders of magnitude (Inoue and Inui 2011).13

Second, in the future we plan to elaborate our treatment of natural language ex-
pressions standing for logical connectors such as implication if, negation not, dis-
junction or and others. Modality and quantifiers such as all, each, some also re-
quire a special treatment. This advance is needed in order to achieve more precise
entailment inferences, which are at the moment based in our approach on the core
information content (“aboutness”) of texts. Concerning the heuristic non-merge con-
straints preventing undesired mergings (see Sect. 4), we have performed a detailed
study of this issue that is published in Inoue et al. (2012).

Another future direction concerns the enlargement of the knowledge base. Hand-
crafted lexical-semantic resources such as WordNet and FrameNet provide both an
extensive lexical coverage and a high-value semantic labeling. However, such re-
sources still lack certain features essential for capturing some of the knowledge
required for linguistic inferences. First of all, manually created resources are static;
updating them with new information is a slow and time-consuming process. By
contrast, commonsense knowledge and the lexicon undergo daily updates. This is
especially true for proper names. Although some of the proper names have been
already included in WordNet, new names appear regularly. In order to accommo-
date dynamic knowledge, we plan to make use of the distributional properties of
words in large corpora. A similar approach is described, for example, in (Peñas and
Ovchinnikova 2012).

Lexical-semantic resources as knowledge sources for reasoning have another
shortcoming: They imply too little structure. WordNet and FrameNet enable some
argument mappings of related synsets or frames, but they cannot provide a more
detailed concept axiomatization. We are engaged in the manual encoding of ab-
stract theories explicating concepts that pervade natural language discourse, such as

13The discourse processing pipeline including the ILP-based abductive reasoner is available at
https://github.com/metaphor-adp/Metaphor-ADP.

https://github.com/metaphor-adp/Metaphor-ADP
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causality, change of state, and scales, and the manual encoding of axioms linking
lexical items to these theories. The core theories should underlie axiomatization of
such highly frequent and ambiguous words as have. A selection of the core theories
can be found at http://www.isi.edu/~hobbs/csk.html.

We believe that implementation of these improvements and extensions will make
the proposed discourse processing pipeline a powerful reasoning system equipped
with enough knowledge to solve manifold NLP tasks on a large scale. In our view,
the experiments with the axioms extracted from the lexical-semantic resources pre-
sented in this chapter show the potential of weighted abduction for natural language
processing and open new ways for its application.
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Natural Logic and Natural Language Inference

Bill MacCartney and Christopher D. Manning

Abstract We propose a model of natural language inference which identifies valid
inferences by their lexical and syntactic features, without full semantic interpreta-
tion. We extend past work in natural logic, which has focused on semantic contain-
ment and monotonicity, by incorporating both semantic exclusion and implicativ-
ity. Our model decomposes an inference problem into a sequence of atomic edits
linking premise to hypothesis; predicts a lexical entailment relation for each edit;
propagates these relations upward through a semantic composition tree according to
properties of intermediate nodes; and joins the resulting entailment relations across
the edit sequence. A computational implementation of the model achieves 70 % ac-
curacy and 89 % precision on the FraCaS test suite. Moreover, including this model
as a component in an existing system yields significant performance gains on the
Recognizing Textual Entailment challenge.

1 Introduction

Natural language inference (NLI) is the problem of determining whether a natu-
ral language hypothesis h can reasonably be inferred from a given premise p. For
example:

(1) p: Every firm polled saw costs grow more than expected, even after adjusting
for inflation.

h: Every big company in the poll reported cost increases.

A capacity for open-domain NLI is clearly necessary for full natural language
understanding, and NLI can also enable more immediate applications, such as se-
mantic search and question answering. Consequently, NLI has been the focus of
intense research effort in recent years, centered around the annual Recognizing Tex-
tual Entailment (RTE) competition (Dagan et al. 2006).
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For a semanticist, the most obvious approach to NLI relies on full semantic in-
terpretation: first, translate p and h into some formal meaning representation, such
as first-order logic (FOL), and then apply automated reasoning tools to determine
inferential validity. While the formal approach can succeed in restricted domains, it
struggles with open-domain NLI tasks such as RTE. For example, the FOL-based
system of Bos and Markert (2005) was able to find a proof for less than 4 % of
the problems in the RTE1 test set. The difficulty is plain: truly natural language
is fiendishly complex. The formal approach faces countless thorny problems: id-
ioms, ellipsis, paraphrase, ambiguity, vagueness, lexical semantics, the impact of
pragmatics, and so on. Consider for a moment the difficulty of fully and accurately
translating example (1) to a formal meaning representation.

Yet example (1) also demonstrates that full semantic interpretation is often not
necessary to determining inferential validity. To date, the most successful NLI sys-
tems have relied on surface representations and approximate measures of lexical and
syntactic similarity to ascertain whether p subsumes h (Glickman et al. 2005; Mac-
Cartney et al. 2006; Hickl et al. 2006). However, these approaches face a different
problem: they lack the precision needed to properly handle such commonplace phe-
nomena as negation, antonymy, downward-monotone quantifiers, non-factive con-
texts, and the like. For example, if every were replaced by some or most through-
out (1), the lexical and syntactic similarity of h to p would be unaffected, yet the
inference would be rendered invalid.

In this paper, we explore a middle way, by developing a model of what Lakoff
(1970) called natural logic, which characterizes valid patterns of inference in terms
of syntactic forms which are as close as possible to surface forms. For example,
the natural logic approach might sanction (1) by observing that: in ordinary upward
monotone contexts, deleting modifiers preserves truth; in downward monotone con-
texts, inserting modifiers preserves truth; and every is downward monotone in its
restrictor NP. Natural logic thus achieves the semantic precision needed to handle
inferences like (1), while sidestepping the difficulties of full semantic interpretation.

The natural logic approach has a very long history,1 originating in the syllogisms
of Aristotle (which can be seen as patterns for natural language inference) and con-
tinuing through the medieval scholastics and the work of Leibniz. It was revived
in recent times by van Benthem (1988, 1991) and Sánchez Valencia (1991), whose
monotonicity calculus explains inferences involving semantic containment and in-
versions of monotonicity, even when nested, as in Nobody can enter without a valid
passport |= Nobody can enter without a passport. However, because the monotonic-
ity calculus lacks any representation of semantic exclusion, it fails to license many
simple inferences, such as Stimpy is a cat |= Stimpy is not a poodle.

Another model which arguably belongs to the natural logic tradition (though not
presented as such) was developed by Nairn et al. (2006) to explain inferences in-
volving implicatives and factives, even when negated or nested, as in Ed did not
forget to force Dave to leave |= Dave left. While the model bears some resemblance

1For a useful overview of the history of natural logic, see van Benthem (2008). For recent work on
theoretical aspects of natural logic, see (Fyodorov et al. 2000; Sukkarieh 2001; van Eijck 2005).
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to the monotonicity calculus, it does not incorporate semantic containment or ex-
plain interactions between implicatives and monotonicity, and thus fails to license
inferences such as John refused to dance |= John didn’t tango.

We propose a new model of natural logic which extends the monotonicity calcu-
lus to incorporate semantic exclusion, and partly unifies it with Nairn et al.’s account
of implicatives. We first define an inventory of basic entailment relations which in-
cludes representations of both containment and exclusion (Sect. 2). We then describe
a general method for establishing the entailment relation between a premise p and
a hypothesis h. Given a sequence of atomic edits which transforms p into h, we de-
termine the lexical entailment relation generated by each edit (Sect. 4); project each
lexical entailment relation into an atomic entailment relation, according to proper-
ties of the context in which the edit occurs (Sect. 5); and join atomic entailment
relations across the edit sequence (Sect. 3). We have previously presented an imple-
mented system based on this model (MacCartney and Manning 2008); here we offer
a detailed account of its theoretical foundations.

2 An Inventory of Entailment Relations

The simplest formulation of the NLI task is as a binary decision problem: the
relation between p and h is to be classified as either entailment (p |= h) or
non-entailment (p �|= h). The three-way formulation refines this by dividing non-
entailment into contradiction (p |= ¬h) and compatibility (p �|= h∧ p �|= ¬h).2 The
monotonicity calculus carves things up differently: it interprets entailment as a se-
mantic containment relation � analogous to the set containment relation ⊆, and
thus permits us to distinguish forward entailment (p � h) from reverse entailment
(p � h). Moreover, it defines � for expressions of every semantic type, including
not only complete sentences but also individual words and phrases. Unlike the three-
way formulation, however, it lacks any way to represent contradiction (semantic ex-
clusion). For our model, we want the best of both worlds: a comprehensive inventory
of entailment relations that includes representations of both semantic containment
and semantic exclusion.

Following Sánchez Valencia, we proceed by analogy with set relations. In a uni-
verse U , the set of ordered pairs 〈x, y〉 of subsets of U can be partitioned into
16 equivalence classes, according to whether each of the four sets x ∩ y, x ∩ y,
x ∩ y, and x ∩ y is empty or non-empty.3 Of these 16 classes, nine represent de-
generate cases in which either x or y is either empty or universal. Since expres-
sions having empty denotations (e.g., round square cupola) or universal denotations
(e.g., exists) fail to divide the world into meaningful categories, they can be re-
garded as semantically vacuous. Contradictions and tautologies may be common in

2The first three RTE competitions used the binary formulation, while the three-way formulation
was adopted for RTE4. The three-way formulation was also employed in the FraCaS test suite
(Cooper et al. 1996) and has been investigated in depth by Condoravdi et al. (2003).
3We use x to denote the complement of set x in universe U ; thus x ∩ x = ∅ and x ∪ x =U .
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Table 1 The set B of seven basic entailment relations

Symbola Name Example Set theoretic definitionb

x ≡ y equivalence couch ≡ sofa x = y

x � y forward entailment crow � bird x ⊂ y

x � y reverse entailment European � French x ⊃ y

x ∧ y negation human ∧ nonhuman x ∩ y = ∅∧ x ∪ y =U

x | y alternation cat | dog x ∩ y = ∅∧ x ∪ y �=U

x � y cover animal � nonhuman x ∩ y �= ∅ ∧ x ∪ y =U

x # y independence hungry # hippo (all other cases)

aSelecting an appropriate symbol to represent each relation is a vexed problem. We sought symbols
which (a) are easily approximated by a single ASCII character, (b) are graphically symmetric iff
the relations they represent are symmetric, and (c) do not excessively abuse accepted conventions.
The ∧ symbol was chosen to evoke the logically similar bitwise XOR operator of the C program-
ming language family; regrettably, it may also evoke the Boolean AND function. The | symbol was
chosen to evoke the Sheffer stroke commonly used to represent the logically similar Boolean NAND
function; regrettably, it may also evoke the Boolean OR function. The � and � symbols were obvi-
ously chosen to resemble their set-theoretic analogs, but a potential confusion arises because some
logicians use the horseshoe ⊃ (with the opposite orientation) to represent material implication
bEach relation in B obeys the additional constraints that ∅ ⊂ x ⊂ U and ∅ ⊂ y ⊂ U (i.e., x and y

are non-vacuous)

logic textbooks, but they are rare in everyday speech. Thus, in a practical model
of informal natural language inference, we will rarely go wrong by assuming the
non-vacuity of the expressions we encounter.4 We therefore focus on the remaining
seven classes, which we designate as the set B of basic entailment relations, shown
in Table 1.

First, the semantic containment relations (� and�) of the monotonicity calculus
are preserved, but are factored into three mutually exclusive relations: equivalence
(≡), (strict) forward entailment (�), and (strict) reverse entailment (�). Next, we
have two relations expressing semantic exclusion: negation (∧), or exhaustive exclu-
sion, which is analogous to set complement; and alternation (|), or non-exhaustive
exclusion. The next relation is cover (�), or non-exclusive exhaustion. Though its
utility is not immediately obvious, it is the dual under negation of the alternation
relation.5 Finally, the independence relation (#) covers all other cases: it expresses
non-equivalence, non-containment, non-exclusion, and non-exhaustion. Note that #

4Our model can easily be revised to accommodate vacuous expressions and relations between
them, but then becomes somewhat unwieldy. The assumption of non-vacuity is closely related
to the assumption of existential import in traditional logic. For a defense of existential import in
natural language semantics, see (Böttner 1988).
5We describe relations R and S as duals under negation iff ∀x, y : 〈x, y〉 ∈ R ⇔ 〈x, y〉 ∈ S. Thus
� and � are dual; | and � are dual; and ≡, ∧, and # are self-dual. The significance of this duality
will become apparent in Sect. 5.



Natural Logic and Natural Language Inference 133

is the least informative relation, in that it places the fewest constraints on its argu-
ments.6

Following Sánchez Valencia, we define the relations in B for all semantic types.
For semantic types which can be interpreted as characteristic functions of sets,7 the
set-theoretic definitions can be applied directly. The definitions can then be extended
to other types by interpreting each type as if it were a type of set. For example,
propositions can be understood (per Montague) as denoting sets of possible worlds.
Thus two propositions stand in the | relation iff there is no world where both hold
(but there is some world where neither holds). Likewise, names can be interpreted
as denoting singleton sets, with the result that two names stand in the ≡ relation iff
they refer to the same entity, or the | relation otherwise.

By design, the relations in B are mutually exclusive, so that we can define a func-
tion β(x, y) which maps every ordered pair of expressions8 to the unique relation
in B to which it belongs.

3 Joining Entailment Relations

If we know that entailment relation R holds between x and y, and that entailment
relation S holds between y and z, then what is the entailment relation between x and
z? The join of entailment relations R and S, which we denote R �� S,9 is defined by:

R �� S
def= {〈x, z〉 : ∃y (〈x, y〉 ∈R ∧ 〈y, z〉 ∈ S)}

Some joins are quite intuitive. For example, it is immediately clear that ���� =
�, ���� = �, ∧�� ∧ =≡, and for any R, (R ��≡) = (≡�� R) = R. Other joins are less
obvious, but still accessible to intuition. For example, | �� ∧ = �. This can be seen
with the aid of Venn diagrams, or by considering simple examples: fish | human and
human ∧ nonhuman, thus fish � nonhuman.

But we soon stumble upon an inconvenient truth: not every join yields a relation
in B. For example, if x | y and y | z, the relation between x and z is not determined.
They could be equivalent, or one might contain the other. They might be independent

6Two sets selected uniformly at random from 2U are overwhelmingly likely to belong to # (for
large |U |).
7That is, all functional types whose final output is a truth value. If we assume a type system whose
basic types are e (entities) and t (truth values), then this includes most of the functional types en-
countered in semantic analysis: e �t (common nouns, adjectives, and intransitive verbs), e � e �t

(transitive verbs), (e �t ) � (e �t) (adverbs), (e �t) � (e �t) � t (binary generalized quantifiers),
and so on.
8Assuming the expressions are non-vacuous, and belong to the same semantic type.
9In Tarskian relation algebra, this operation is known as relation composition, and is often repre-
sented by a semi-colon: R ; S. To avoid confusion with semantic composition (Sect. 5), we prefer
to use the term join for this operation, by analogy to the database JOIN operation (also commonly
represented by ��).
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Table 2 The join table for the basic entailment relations

�� ≡ � � ∧ | � #

≡ ≡ � � ∧ | � #

� � � ≡��|# | | �∧|�# �|#
� � ≡���# � � � ∧|�# � ��#
∧ ∧ � | ≡ � � #

| | � ∧|�# | � ≡��|# � �|#
� � � � ∧|�# � � ≡���# ��#

# # ��# �|# # �|# ��# •

or alternative. All we can say for sure is that they are not exhaustive (since both are
disjoint from y). Thus, the result of joining | and | is not a relation in B, but a union
of such relations, specifically

⋃{≡,�,�, |,#}.10

We will refer to (non-trivial) unions of relations in B as union relations.11 Of
the 49 possible joins of relations in B, 32 yield a relation in B, while 17 yield a
union relation, with larger unions conveying less information. Union relations can be
further joined, and we can establish that the smallest set of relations which contains
B and is closed under joining contains just 16 relations.12 One of these is the total
relation, which contains all pairs of (non-vacuous) expressions. This relation, which
we denote •, is the black hole of entailment relations, in the sense that (a) it conveys
zero information about pairs of expressions which belong to it, and (b) joining a
chain of entailment relations will, if it contains any noise and is of sufficient length,
lead inescapably to •.13 This tendency of joining to devolve toward less-informative
entailment relations places an important limitation on the power of the inference
method described in Sect. 7.

A complete join table for relations in B is shown in Table 2.14

In an implemented model, the complexity introduced by union relations is easily
tamed. Every union relation which results from joining relations in B contains #,
and thus can safely be approximated by #. After all, # is already the least infor-
mative relation in B—loosely speaking, it indicates ignorance of the relationship
between two expressions—and further joining will never serve to strengthen it. Our
implemented model therefore has no need to represent union relations.

10We use this notation as shorthand for the union ≡ ∪� ∪� ∪ | ∪ #. To be precise, the result of
this join is not identical with this union, but is a subset of it, since the union contains some pairs of
sets (e.g. 〈U \ a,U \ a〉, for any |a| = 1) which cannot participate in the | relation. However, the
approximation makes little practical difference.
11Some union relations hold intrinsic interest. For example, in the three-way formulation of the NLI
task described in Sect. 2, the three classes can be identified as

⋃{≡,�}, ⋃{∧, |}, and
⋃{�,�,#}.

12That is, the relations in B plus 9 union relations. Note that this closure fails to include most of
the 120 possible union relations. Perhaps surprisingly, the unions

⋃{≡,�} and
⋃{∧, |} mentioned

in footnote 11 do not appear.
13In fact, computer experiments show that if relations are selected uniformly at random from B, it
requires on average just five joins to reach •.
14For compactness, we omit the union notation here; thus �|# stands for

⋃{�, |,#}.
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4 Lexical Entailment Relations

Suppose x is a compound linguistic expression, and let e(x) be the result of ap-
plying an atomic edit e (the deletion, insertion, or substitution of a subexpression)
to x. The entailment relation which holds between x and e(x), which we denote
β(x, e(x)), will depend on (1) the lexical entailment relation generated by e, which
we label β(e), and (2) other properties of the context x in which e is applied (to
be discussed in Sect. 5). For example, suppose x is red car. If e is SUB(car, con-
vertible), then β(e) is � (because convertible is a hyponym of car). On the other
hand, if e is DEL(red), then β(e) is � (because red is an intersective modifier).
Crucially, β(e) depends solely on the lexical items involved in e, independent of
context.

How are lexical entailment relations determined? Ultimately, this is the province
of lexical semantics, which lies outside the scope of this work. However, the an-
swers are fairly intuitive in most cases, and we can make a number of useful obser-
vations.

Substitutions The entailment relation generated by a substitution edit is simply
the relation between the substituted terms: β(SUB(x, y))= β(x, y). For open-class
terms such as nouns, adjectives, and verbs, we can often determine the appropri-
ate relation by consulting a lexical resource such as WordNet. Synonyms belong
to the ≡ relation (sofa ≡ couch, forbid ≡ prohibit); hyponym-hypernym pairs be-
long to the � relation (crow � bird, frigid � cold, soar � rise); and antonyms
and coordinate terms generally belong to the | relation (hot | cold, cat | dog).15

Proper nouns, which denote individual entities or events, will stand in the ≡ rela-
tion if they denote the same entity (USA≡ United States), or the | relation otherwise
(JFK | FDR). Pairs which cannot reliably be assigned to another entailment relation
will be assigned to the # relation (hungry # hippo). Of course, there are many diffi-
cult cases, where the most appropriate relation will depend on subjective judgments
about word sense, topical context, and so on—consider, for example, the pair system
and approach. And some judgments may depend on world knowledge not readily
available to an automatic system. For example, plausibly skiing | sleeping, but skiing
# talking.

Closed-class terms may require special handling. Substitutions involving gener-
alized quantifiers generate a rich variety of entailment relations: all ≡ every, every
� some, some ∧ no, no | every, at least four � at most six, and most # ten or more.16

Two pronouns, or a pronoun and a noun, should ideally be assigned to the≡ relation
if it can determined from context that they refer to the same entity, though this may
be difficult for an automatic system to establish reliably. Prepositions are somewhat
problematic. Some pairs of prepositions can be interpreted as antonyms, and thus

15Note that most antonym pairs do not belong to the ∧ relation, since they typically do not exclude
the middle.
16Some of these assertions assume the non-vacuity (Sect. 2) of the predicates to which the quanti-
fiers are applied.
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assigned to the | relation (above | below), but many prepositions are used so flexibly
in natural language that they are best assigned to the ≡ relation (on [a plane] ≡ in
[a plane] ≡ by [plane]).

Generic Deletions and Insertions For deletion edits, the default behavior is to
generate the � relation (thus red car � car). Insertion edits are symmetric: by de-
fault, they generate the � relation (sing � sing off-key). This heuristic can safely
be applied whenever the affected phrase is an intersective modifier, and can use-
fully be applied to phrases much longer than a single word (car which has been
parked outside since last week � car). Indeed, this principle underlies most current
approaches the RTE task, in which the premise p often contains much extraneous
content not found in the hypothesis h. Most RTE systems try to determine whether
p subsumes h: they penalize new content inserted into h, but do not penalize content
deleted from p.

Special Deletions and Insertions However, some lexical items exhibit special
behavior upon deletion or insertion. The most obvious example is negation, which
generates the ∧ relation (didn’t sleep ∧ did sleep). Implicatives and factives (such as
refuse to and admit that) constitute another important class of exceptions, but we
postpone discussion of them to Sect. 6. Then there are non-intersective adjectives
such as former and alleged. These have various behavior: deleting former seems to
generate the | relation (former student | student), while deleting alleged seems to
generate the # relation (alleged spy # spy). We lack a complete typology of such
cases, but consider this an interesting problem for lexical semantics. Finally, for
pragmatic reasons, we typically assume that auxiliary verbs and punctuation marks
are semantically vacuous, and thus generate the ≡ relation upon deletion or inser-
tion. When combined with the assumption that morphology matters little in infer-
ence,17 this allows us to establish, e.g., that is sleeping ≡ sleeps and did sleep ≡
slept.

5 Entailment Relations and Semantic Composition

How are entailment relations affected by semantic composition? In other words,
how do the entailment relations between compound expressions depend on the en-
tailment relations between their parts? Say we have established the value of β(x, y),
and let f be an expression which can take x or y as an argument. What is the value
of β(f (x), f (y)), and how does it depend on the properties of f ?

The monotonicity calculus of Sánchez Valencia provides a partial answer. It ex-
plains the impact of semantic composition on entailment relations≡, �, �, and # by
assigning semantic functions to one of three monotonicity classes: UP, DOWN, and
NON. If f has monotonicity UP (the default), then the entailment relation between x

17Indeed, the official definition of the RTE task explicitly specifies that tense be ignored.
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and y is projected through f without change: β(f (x), f (y))= β(x, y). Thus some
parrots talk � some birds talk. If f has monotonicity DOWN, then � and � are
swapped. Thus no carp talk � no fish talk. Finally, if f has monotonicity NON, then
� and � are projected as #. Thus most humans talk # most animals talk.

The monotonicity calculus also provides an algorithm for computing the ef-
fect on entailment relations of multiple levels of semantic composition. Although
Sánchez Valencia’s presentation of this algorithm uses a complex scheme for anno-
tating nodes in a categorial grammar parse, the central idea can be recast in simple
terms: propagate a lexical entailment relation upward through a semantic compo-
sition tree, from leaf to root, while respecting the monotonicity properties of each
node along the path. Consider the sentence Nobody can enter without pants. A plau-
sible semantic composition tree for this sentence could be rendered as (nobody (can
((without pants) enter))). Now consider replacing pants with clothes. We begin with
the lexical entailment relation: pants � clothes. The semantic function without has
monotonicity DOWN, so without pants � without clothes. Continuing up the seman-
tic composition tree, can has monotonicity UP, but nobody has monotonicity DOWN,
so we get another reversal, and find that nobody can enter without pants � nobody
can enter without clothes.

While the monotonicity calculus elegantly explains the impact of semantic com-
position on the containment relations (chiefly, � and �), it lacks any account of the
exclusion relations (∧ and |, and, indirectly, �). To remedy this lack, we propose to
generalize the concept of monotonicity to a concept of projectivity. We categorize
semantic functions into a number of projectivity signatures, which can be seen as
generalizations of both the three monotonicity classes of Sánchez Valencia and the
nine implication signatures of Nairn et al. (see Sect. 6). Each projectivity signature is
defined by a map B �→B which specifies how each entailment relation is projected
by the function. (Binary functions can have different signatures for each argument.)
In principle, there are up to 77 possible signatures; in practice, probably no more
than a handful are realized by natural language expressions. Though we lack a com-
plete inventory of projectivity signatures, we can describe a few important cases.

Negation We begin with simple negation (not). Like most functions, it projects≡
and # without change (not happy ≡ not glad and isn’t swimming # isn’t hungry). As
a downward monotone function, it swaps � and � (didn’t kiss � didn’t touch). But
we can also establish that it projects ∧ without change (not human ∧ not nonhuman)
and swaps | and � (not French � not German and not more than 4 | not less than 6).
Its projectivity signature is therefore {≡:≡,�:�,�:�, ∧ : ∧, | :�,�: |,#:#}.
Intersective Modification Intersective modification has monotonicity UP, but
projects both ∧ and | as | (living human | living nonhuman and French wine | Span-
ish wine), and projects � as # (metallic pipe # nonferrous pipe). It therefore has
signature {≡:≡,�:�,�:�, ∧ : |, | : |,�:#,#:#}.18

18At least for practical purposes. The projection of ∧ and | as | depends on the assumption of non-
vacuity, and � is actually projected as

⋃{≡,�,�, |,#}, which we approximate by #, as described
in Sect. 3.
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Table 3 Projectivity signatures for various quantifiers

Projectivity for 1st argument Projectivity for 2nd argumentQuantifier

≡ � � ∧ | � # ≡ � � ∧ | � #

some ≡ � � � † # � † # ≡ � � � † # � † #

no ≡ � � |† # |† # ≡ � � |† # |† #

every ≡ � � |‡ # |‡ # ≡ � � |† |† # #

not every ≡ � � � ‡ # � ‡ # ≡ � � � † � † # #

Quantifiers While semanticists are well acquainted with the monotonicity prop-
erties of common quantifiers, how they project the exclusion relations may be less
familiar. Table 3 summarizes the projectivity signatures of the most common binary
generalized quantifiers for each argument position.

A few observations:

• All quantifiers (like most other semantic functions) project ≡ and # without
change.

• The table confirms well-known monotonicity properties: no is downward-
monotone in both arguments, every in its first argument, and not every in its
second argument.

• Relation | is frequently “blocked” by quantifiers (i.e., projected as #). Thus no
fish talk # no birds talk and someone was early # someone was late. A notable
exception is every in its second argument, where | is preserved: everyone was
early | everyone was late. (Note the similarity to intersective modification.)

• Because no is the negation of some, its projectivity signature can be found by
projecting the signature of some through the signature of not. Likewise for not
every and every.

• Some results depend on assuming the non-vacuity of the other argument to the
quantifier: those marked with † assume it to be non-empty, while those marked
with ‡ assume it to be non-universal. Without these assumptions, # is projected.

Verbs Verbs (and verb-like constructions) exhibit diverse behavior. Most verbs
are upward-monotone (though not all—see Sect. 6), and many verbs project ∧, |,
and � as # (eats humans # eats nonhumans, eats cats # eats dogs, and eats mam-
mals # eats nonhumans). However, verbs which encode functional relations seem
to exhibit the same projectivity as intersective modifiers, projecting ∧ and | as |,
and � as #.19 Categorizing verbs according to projectivity is an interesting problem
for lexical semantics, which may involve codifying some amount of world knowl-
edge.

19Consider the verbal construct is married to: is married to a German | is married to a non-
German, is married to a German | is married to an Italian, is married to a European # is married
to a non-German. The AUCONTRAIRE system (Ritter et al. 2008) includes an intriguing approach
to identifying such functional phrases automatically.
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Table 4 Implicatives and factives

Signature β(DEL(·)) β(INS(·)) Example

implicatives (UP) +/− ≡ ≡ he managed to escape ≡ he escaped

+/◦ � � he was forced to sell � he sold

◦/− � � he was permitted to live � he lived

implicatives (DOWN) −/+ ∧ ∧ he forgot to pay ∧ he paid

−/◦ | | he refused to fight | he fought

◦/+ � � he hesitated to ask � he asked

factives (NON) +/+ � � he admitted that he knew � he knew

−/− | | he pretended he was sick | he was sick

◦/◦ # # he wanted to fly # he flew

6 Implicatives and Factives

In (Nairn et al. 2006), Nairn et al. offer an elegant account of inferences involv-
ing implicatives and factives20 such as manage to, refuse to, and admit that. Their
model classifies such operators into nine implication signatures, according to their
implications—positive (+), negative (−), or null (◦)—in both positive and negative
contexts. Thus refuse to has implication signature −/◦, because it carries a negative
implication in a positive context (refused to dance implies didn’t dance), and no
implication in a negative context (didn’t refuse to dance implies neither danced nor
didn’t dance).

Most of the phenomena observed by Nairn et al. can be explained within our
framework by specifying, for each implication signature, the relation generated
when an operator of that signature is deleted from (or inserted into) a compound
expression, as shown in Table 4.

This table invites several observations. First, as the examples make clear, there
is room for variation regarding the appearance of infinitive arguments, complemen-
tizers, passivization, and morphology. An implemented model must tolerate such
diversity.

Second, some of the examples may seem more intuitive when one considers their
negations. For example, deleting signature ◦/− generates �; under negation, this is
projected as � (he wasn’t permitted to live � he didn’t live). Likewise, deleting
signature ◦/+ generates �; under negation, this is projected as | (he didn’t hesitate
to ask | he didn’t ask).

Third, a fully satisfactory treatment of the factives (signatures +/+, −/−, and
◦/◦) would require an extension to our present theory. For example, deleting signa-
ture +/+ generates �; yet under negation, this is projected not as �, but as | (he

20We use “factives” as an umbrella term embracing counterfactives and nonfactives along with
factives proper.
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didn’t admit that he knew | he didn’t know). The problem arises because the impli-
cation carried by a factive is not an entailment, but a presupposition.21 As is well
known, the projection behavior of presuppositions differs from that of entailments
(van der Sandt 1992). It seems likely that our model could be elaborated to account
for projection of presuppositions as well as entailments, but we leave this for future
work.

We can further cement implicatives and factives within our model by specify-
ing the monotonicity class for each implication signature: signatures +/−, +/◦,
and ◦/− have monotonicity UP (force to tango � force to dance); signatures −/+,
−/◦, and ◦/+ have monotonicity DOWN (refuse to tango � refuse to dance); and
signatures+/+,−/−, and ◦/◦ (the propositional attitudes) have monotonicity NON

(think tangoing is fun # think dancing is fun). We are not yet able to specify the
complete projectivity signature corresponding to each implication signature, but we
can describe a few specific cases. For example, implication signature −/◦ seems to
project ∧ as | (refuse to stay | refuse to go) and both | and � as # (refuse to tango #
refuse to waltz).

7 Putting It All Together

We now have the building blocks of a general method to establish the entailment
relation between a premise p and a hypothesis h. The steps are as follows:

1. Find a sequence of atomic edits 〈e1, . . . , en〉 which transforms p into h: thus
h = (en ◦ . . . ◦ e1)(p). For convenience, let us define x0 = p, xn = h, and xi =
ei(xi−1) for i ∈ [1, n].

2. For each atomic edit ei :

a. Determine the lexical entailment relation β(ei), as in Sect. 4.
b. Project β(ei) upward through the semantic composition tree of expression

xi−1 to find an atomic entailment relation β(xi−1, xi), as in Sect. 5.

3. Join atomic entailment relations across the sequence of edits, as in Sect. 3:

β(p,h)= β(x0, xn)= β(x0, e1) �� . . . �� β(xi−1, ei) �� . . .�� β(xn−1, en)

However, this inference method has several important limitations, including the
need to find an appropriate edit sequence connecting p and h;22 the tendency of

21Of course, the implicatives may carry presuppositions as well (he managed to escape � it was
hard to escape), but these implications are not activated by a simple deletion, as with the factives.
22The order of edits can be significant, if one edit affects the projectivity properties of the context
for another edit. In practice, we typically find that different edit orders lead to the same final result
(albeit via different intermediate steps), or at worst to a result which is compatible with, though less
informative than, the desired result. But in principle, edit sequences involving lexical items with
unusual properties—not exhibited, so far as we are aware, by any natural language expressions—
could lead to incompatible results. Thus we lack any formal guarantee of soundness.
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Table 5 An example
inference involving semantic
exclusion

i ei xi = ei(xi−1) β(ei ) β(xi−1, xi ) β(x0, xi )

Stimpy is a cat

1 SUB(cat, dog) | | |
Stimpy is a dog

2 INS(not) ∧ ∧ �
Stimpy is not a dog

3 SUB(dog, poodle) � � �
Stimpy is not a poodle

the join operation toward less informative entailment relations, as described in
Sect. 3; and the lack of a general mechanism for combining information from multi-
ple premises.23 Consequently, the method has less deductive power than first-order
logic, and fails to sanction some fairly simple inferences, including de Morgan’s
laws for quantifiers. But the method neatly explains many inferences not handled by
the monotonicity calculus.

For example, while the monotonicity calculus notably fails to explain even the
simplest inferences involving semantic exclusion, such examples are easily accom-
modated in our framework. We encountered an example of such an inference in
Sect. 1: Stimpy is a cat |= Stimpy is not a poodle. Clearly, this is a valid natural
language inference. To establish this using our inference method, we must begin by
selecting a sequence of atomic edits which transforms the premise p into the hypoth-
esis h. While there are several possibilities, one obvious choice is first to replace cat
with dog, then to insert not, and finally to replace dog with poodle. An analysis of
this edit sequence is shown in Table 5. In this representation (of which we will see
several more examples in the following pages), we show three entailment relations
associated with each edit ei , namely:

• β(ei), the lexical entailment relation generated by ei ,
• β(xi−1, xi), the atomic entailment relation which holds across ei , and
• β(x0, xi), the cumulative join of all atomic entailment relations up through ei .

This can be calculated in the table as β(x0, xi−1) �� β(xi−1, xi).

In Table 5, x0 is transformed into x3 by a sequence of three edits. First, replacing
cat with its coordinate term dog generates the lexical entailment relation |. Next,
inserting not generates ∧, and | joined with ∧ yields �. Finally, replacing dog with its
hyponym poodle generates �. Because of the downward-monotone context created
by not, this is projected as �, and � joined with � yields �. Therefore, premise x0

entails hypothesis x3.

23However, some inferences can be enabled by auxiliary premises encoded as lexical entailment re-
lations. For example, men � mortal can enable the classic syllogism Socrates is a man � Socrates
is mortal.
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Table 6 An example
inference involving an
implicative

i ei xi = ei(xi−1) β(ei ) β(xi−1, xi ) β(x0, xi )

We were not permitted to smoke

1 DEL(permitted to) � � �
We did not smoke

2 DEL(not) ∧ ∧ ]|
We smoked

3 INS(Cuban cigars) � � |
We smoked Cuban cigars

For an example involving an implicative, consider the inference in Table 6.
Again, x0 is transformed into x3 by a sequence of three edits.24 First, deleting per-
mitted to generates �, according to its implication signature; but because not is
downward-monotone, this is projected as �. Next, deleting not generates ∧, and
� joined with ∧ yields |. Finally, inserting Cuban cigars restricts the meaning of
smoked, generating �, and | joined with � yields |. So x3 contradicts x0.

Let’s now look at a more complex example (first presented in (MacCartney and
Manning 2008)) that demonstrates the interaction of a number of aspects of the
model we’ve presented. The inference is:

p: Jimmy Dean refused to move without blue jeans.
h: James Dean didn’t dance without pants.

Of course, the example is quite contrived, but it has the advantage that it compactly
exhibits several phenomena of interest: semantic containment (between move and
dance, and between pants and jeans); semantic exclusion (in the form of negation);
an implicative (namely, refuse to); and nested inversions of monotonicity (created
by refuse to and without). In this example, the premise p can be transformed into
the hypothesis h by a sequence of seven edits, as shown in Table 7. This time we
include even “light” edits yielding ≡ for the sake of completeness.

We analyze these edits as follows. The first edit simply substitutes one variant of
a name for another; since both substituends denote the same entity, the edit generates
the ≡ relation. The second edit deletes an implicative (refuse to) with implication
signature −/◦. As described in Sect. 6, deletions of this signature generate the |
relation, and ≡ joined with | yields |. The third edit inserts an auxiliary verb (did);
since auxiliaries are more or less semantically vacuous, this generates the≡ relation,
and | joined with≡ yields | again. The fourth edit inserts a negation, generating the ∧

relation. Here we encounter the first interesting join: as explained in Sect. 3, | joined
with ∧ yields �. The fifth edit substitutes move with its hyponym dance, generating
the � relation. However, because the edit occurs within the scope of the newly-
introduced negation, � is projected as �, and � joined with � yields �. The sixth
edit deletes a generic modifier (blue), which generates the � relation by default. This

24We neglect edits involving auxiliaries and morphology, which simply yield the ≡ relation.
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Table 7 Analysis of a more complex inference

i ei xi = ei(xi−1) β(ei) β(xi−1, xi ) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 SUB(Jimmy Dean, James Dean) ≡ ≡ ≡
James Dean refused to move without blue jeans

2 DEL(refused to) | | |
James Dean moved without blue jeans

3 INS(did) ≡ ≡ |
James Dean did move without blue jeans

4 INS(n’t) ∧ ∧ �
James Dean didn’t move without blue jeans

5 SUB(move, dance) � � �
James Dean didn’t dance without blue jeans

6 DEL(blue) � � �
James Dean didn’t dance without jeans

7 SUB(jeans, pants) � � �
James Dean didn’t dance without pants

time the edit occurs within the scope of two downward-monotone operators (without
and negation), so we have two inversions of monotonocity, and � is projected as �.
Again, � joined with � yields �. Finally, the seventh edit substitutes jeans with its
hypernym pants, generating the � relation. Again, the edit occurs within the scope
of two downward-monotone operators, so � is projected as �, and � joined with �
yields �. Thus p entails h.

Of course, the edit sequence shown in Table 7 is not the only sequence which can
transform p into h. A different edit sequence might yield a different sequence of in-
termediate steps, but the same final result. Consider, for example, the edit sequence
shown in Table 8. Note that the lexical entailment relation β(ei) generated by each
edit is the same as before. But because the edits involving downward-monotone op-
erators (namely, INS(n’t) and DEL(refused to)) now occur at different points in the
edit sequence, many of the atomic entailment relations β(xi−1, xi) have changed,
and thus the sequence of joins has changed as well. In particular, edits 3 and 4 oc-
cur within the scope of three downward-monotone operators (negation, refuse, and
without), with the consequence that the � relation generated by each of these lexical
edits is projected as �. Likewise, edit 5 occurs within the scope of two downward-
monotone operators (negation and refuse), and edit 6 occurs within the scope of one
downward-monotone operator (negation), so that | is projected as �. Nevertheless,
the ultimate result is still �.

However, it turns out not to be the case that every edit sequence which transforms
p into h will yield equally satisfactory results. Consider the sequence shown in
Table 9. The crucial difference in this edit sequence is that the insertion of not,
which generates lexical entailment relation ∧, occurs within the scope of refuse,
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Table 8 An alternative analysis of the inference from Table 7

i ei xi = ei(xi−1) β(ei) β(xi−1, xi) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 INS(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 INS(n’t) ∧ ∧ ∧

Jimmy Dean didn’t refuse to move without blue jeans

3 DEL(blue) � � |
Jimmy Dean didn’t refuse to move without jeans

4 SUB(jeans, pants) � � |
Jimmy Dean didn’t refuse to move without pants

5 SUB(move, dance) � � |
Jimmy Dean didn’t refuse to dance without pants

6 DEL(refuse to) | � �
Jimmy Dean didn’t dance without pants

7 SUB(Jimmy, James) ≡ ≡ �
James Dean didn’t dance without pants

Table 9 A third analysis of the inference from Table 7

i ei xi = ei(xi−1) β(ei) β(xi−1, xi) β(x0, xi)

Jimmy Dean refused to move without blue jeans

1 INS(did) ≡ ≡ ≡
Jimmy Dean did refuse to move without blue jeans

2 INS(not) ∧ | |
Jimmy Dean did refuse not to move without blue jeans

3 DEL(refuse to) | | ≡��|#
Jimmy Dean didn’t move without blue jeans

4 DEL(blue) � � •
Jimmy Dean didn’t move without jeans

5 SUB(jeans, pants) � � •
Jimmy Dean didn’t move without pants

6 SUB(move, dance) � � •
Jimmy Dean didn’t dance without pants

7 SUB(Jimmy Dean, James Dean) ≡ ≡ •
James Dean didn’t dance without pants

so that ∧ is projected as atomic entailment relation | (see Sect. 5). But the deletion of
refuse to also produces atomic entailment relation | (see Sect. 6), and | joined with
| yields a relatively uninformative union relation, namely

⋃{≡,�,�, |,#} (which
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could also be described as the NON-EXHAUSTION relation). The damage has been
done: further joining leads directly to the “black hole” relation •, from which there is
no escape. Note, however, that even for this infelicitous edit sequence, our inference
method has not produced an incorrect answer (because the • relation includes the
� relation), only an uninformative answer (because it includes all other relations in
B as well).

Additional examples are presented in (MacCartney 2009).

8 Implementation and Evaluation

The model of natural logic described here has been implemented in software as
the NatLog system. In previous work (MacCartney and Manning 2008), we have
presented a description and evaluation of NatLog; this section summarizes the main
results. NatLog faces three primary challenges:

1. Finding an appropriate sequence of atomic edits connecting premise and hy-
pothesis. NatLog does not address this problem directly, but relies instead on
edit sequences from other sources. We have investigated this problem separately
in (MacCartney et al. 2008).

2. Determining the lexical entailment relation for each edit. NatLog learns to pre-
dict lexical entailment relations by using machine learning techniques and ex-
ploiting a variety of manually and automatically constructed sources of informa-
tion on lexical relations.

3. Computing the projection of each lexical entailment relation. NatLog identifies
expressions with non-default projectivity and computes the likely extent of their
arguments in a syntactic parse using hand-crafted tree patterns.

We have evaluated NatLog on two different test suites. The first is the FraCaS
test suite (Cooper et al. 1996), which contains 346 NLI problems, divided into nine
sections, each focused on a specific category of semantic phenomena. The goal is
three-way entailment classification, as described in Sect. 2. On this task, NatLog
achieves an average accuracy of 70 %.25 In the section concerning quantifiers, which
is both the largest and the most amenable to natural logic, the system answers all
problems but one correctly. Unsurprisingly, performance is mediocre in four sec-
tions concerning semantic phenomena (e.g., ellipsis) not relevant to natural logic
and not modeled by the system. But in the other five sections (representing about
60 % of the problems), NatLog achieves accuracy of 87 %. What’s more, precision
is uniformly high, averaging 89 % over all sections. Thus, even outside its areas of
expertise, the system rarely predicts entailment when none exists.

The RTE3 test suite (Giampiccolo et al. 2007) differs from FraCaS in several
important ways: the goal is binary entailment classification; the problems have
much longer premises and are more “natural”; and the problems employ a diver-

25Our evaluation excluded multi-premise problems, which constitute about 44 % of the test suite.
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sity of types of inference—including paraphrase, temporal reasoning, and relation
extraction—which NatLog is not designed to address. Consequently, the NatLog
system by itself achieves mediocre accuracy (59 %) on RTE3 problems. However,
its precision is comparatively high, which suggests a strategy of hybridizing with a
broad-coverage RTE system. We were able to show that adding NatLog as a com-
ponent in the Stanford RTE system (Chambers et al. 2007) led to accuracy gains
of 4 %.

9 Conclusion

The model of natural logic presented here is by no means a universal solution to the
problem of natural language inference. Many NLI problems hinge on types of infer-
ence not addressed by natural logic, and the inference method we describe faces a
number of limitations on its deductive power (discussed in Sect. 7). Moreover, there
is further work to be done in fleshing out our account of projectivity, particularly
in establishing the proper projectivity signatures for a broader range of quantifiers,
verbal constructs, implicatives and factives, logical connectives, and other semantic
functions.

Nevertheless, we believe our model of natural logic fills an important niche.
While approximate methods based on lexical and syntactic similarity can handle
many NLI problems, they are easily confounded by inferences involving nega-
tion, antonymy, quantifiers, implicatives, and many other phenomena. Our model
achieves the logical precision needed to handle such inferences without resorting to
full semantic interpretation, which is in any case rarely possible. The practical value
of the model is demonstrated by its success in evaluations on the FraCaS and RTE3
test suites.
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Designing Efficient Controlled Languages
for Ontologies

Camilo Thorne, Raffaella Bernardi, and Diego Calvanese

Abstract We describe a methodology to recognize efficient controlled natural lan-
guages (CLs) that compositionally translate into ontology languages, and as such
are suitable to be used in natural language front-ends to ontology-based systems.
Efficiency in this setting is defined as the tractability (in the sense of computational
complexity theory) of logical reasoning in such fragments, measured in the size
of the data they aim to manage. In particular, to identify efficient CLs, we con-
sider fragments corresponding to the DL-Lite family of description logics, known
to underpin data intensive ontologies and systems. Our methodology exploits the
link between syntax and semantics of natural language captured by categorial gram-
mars, controlling the use of lexical terms that introduce logical structure outside
the allowed fragments. A major role is played by the control of function words in-
troducing logical operators in first-order formal semantics meaning representations.
Finally, we conduct a preliminary analysis of semantically parsed English written
corpora to show how empirical methods may be useful in identifying CLs that pro-
vide good trade-offs between coverage and efficiency.

1 Introduction

The attempts made in the 70s and 80s to build natural language interfaces (NLIs)
to information systems and databases turned into disappointments towards the 90s
(Androutsopoulos et al. 1995). One of the reasons were the challenges posed by
structural and semantic ambiguity in arbitrary natural language input. As a way to
overcome the ambiguity problem, the controlled natural language (CL) paradigm
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was proposed (Huijsen 1998; Kittredge 2003), to build NLIs where only a restricted
fragment of a natural language can be used. An important area of application of
CLs is to provide front-ends to ontologies and ontology-based systems. In this set-
ting, CLs allow the systems to parse efficiently user statements and questions. It is
less clear however whether they can be understood as efficiently, in particular by
ontology-based systems that need to reason over the semantic representations of
user inputs. The present chapter intends to study the semantic complexity of CLs,
together with the conditions under which reasoning with a CL can scale to very large
ontologies and ontology-based systems.

By an ontology we mean here a conceptualization of a domain of interest, ex-
pressed as a set of logical assertions. Specifically, ontologies formulated in variants
of description logics (DLs), which are fragments of first-order logics with well un-
derstood computational properties and for which logical reasoning (e.g., to detect
inconsistencies in a specification) is decidable and in significant cases also compu-
tationally tractable (Baader et al. 2003). DLs provide the formal underpinning for
the Web Ontology Language OWL (Horrocks et al. 2003), which is the ontology
specification language standardized by the W3C.1

The present chapter specifically addresses the questions of (1) which should be
the CL to be used to manage ontologies efficiently, and (2) how can it be defined.
Concretely, our proposal is to determine a methodology for defining exactly those
fragments with a desirable computational complexity. We use DLs as the starting
point to answer Question (1), viz. which is the most suitable NL fragment, and we
use categorial grammars (CGs) to provide an answer to Question (2), viz. how to
capture the syntactic structures corresponding exactly to the semantic representa-
tions allowed by the chosen, efficient DL.

With respect to the kind of DL, we focus our attention on DL-Lite, which is a fam-
ily of DLs studied in the context of ontology-based access to (relational) databases
(Calvanese et al. 2007, 2011). When considering the well-known trade-off between
expressive power and computational complexity of inference, DL-Lite is specifi-
cally optimized for efficient reasoning also in the presence of large datasets, taking
into account that in ontology-based systems the size of the data (stored in relational
databases or in possibly very large triple stores) largely dominates the size of the on-
tology’s intensional descriptions. Indeed, in DL-Lite, reasoning is computationally
tractable in general, and can actually be carried out by exploiting the query answer-
ing functionalities of the data storage layer. This can be contrasted with the com-
putational properties of more expressive DLs, such as SHOIN, the DL underlying
OWL, in which reasoning is computationally intractable also when the complexity
is measured with respect to the size of the data only. With respect to the CG, we
define a grammar that relies on the sub-categorization of syntactic constituents to
capture exactly the intended logic.

We exploit the syntax-semantics interface as realized by CGs to obtain DL-Lite
meaning representations compositionally while parsing (van Benthem 1987; Moort-
gat 1997). To this end we consider of particular value the studies carried out by Pratt

1http://www.w3.org/TR/owl2-primer/

http://www.w3.org/TR/owl2-primer/
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and Third (2006), who have investigated the satisfiability of sets of sentences in frag-
ments of natural language and their computational complexity, but start instead from
the logic (viz., an OWL fragment) as do Kaljurand and Fuchs (2006).

The rest of the chapter is structured as follows. In Sect. 2, we provide an overview
of controlled languages and semantic complexity, highlighting the open questions
that motivate our contributions. In Sects. 3 and 4, we introduce respectively the
DL and the grammar we work with. In Sect. 5, we describe in detail how CGs can
capture exactly the desired fragments of natural language. In Sect. 6, we show how
corpora analysis can be used to justify further CL design choices. In Sect. 7, we pro-
vide an overview of related work, in the form of related results on CLs obtained and
published elsewhere by the authors, and in the form of other CLs for ontologies that
have been proposed in the literature. Finally, in Sect. 8, we summarize our results
and outline our ongoing work regarding the computational properties of controlled
languages, both declarative and interrogative.

2 Controlled Languages and Semantic Complexity

A controlled language (CL) is a fragment of natural language such as English with
a limited lexicon and a small set of grammar rules (Huijsen 1998; Kittredge 2003).
Importantly, CLs are engineered to handle natural language ambiguity, so that their
utterances “compile”, via, e.g., a rule-based, symbolic and compositional syntax-
directed translation algorithm (in a way similar to programming languages’ compi-
lation), in unambiguous logical axioms and/or queries, due to their restricted syntax
and lexicon.

This tight integration with formal ontology and query languages gives rise to a
more general phenomenon: the property of semantic complexity as defined and in-
vestigated by Pratt and Third (2006). They show that each (controlled) fragment of
English generates a logic fragment: the set of its meaning representations (MRs);
semantic complexity is then naturally defined as the computational complexity of
reasoning with its MRs (i.e., the computational complexity of the associated satisfi-
ability problem). Furthermore, they show that semantic complexity correlates with
coverage by considering the impact that particular combinations of English con-
structs (negation, relatives, transitive verbs, etc.) have on semantic complexity, pin-
pointing combinations that are: (i) tractable (PTime semantic complexity), (ii) in-
tractable (NP-hard semantic complexity), or (iii) undecidable.

In our work, we extend both their methodology and their results: their method-
ology, by using categorial grammars to “reverse engineer” English controlled frag-
ments from logics that exhibit desirable computational properties; their results, by
considering semantic data complexity, viz., the semantic complexity of CLs for on-
tologies measured only in the size of the (typically very large) data repositories they
are meant to manage as opposed to the size of the complete logical specification
derived from the natural language utterances. More precisely, we (i) consider logic
constructs that give rise to tractable data complexity, (ii) pinpoint those structures



152 C. Thorne et al.

Table 1 Fragments of English studied by Pratt and Third (2006)

Fragment Coverage Semantic complexity

COP Copula, common, proper nouns, negation,
universal and existential quantifiers

PTime

COP+TV+DTV COP+transitive verbs (“reads”) + ditransitive
verbs (“gives”)

PTime

COP+Rel COP+relative pronouns (“who”, “that”,
“which”)

NP-complete

COP+Rel+TV COP+Rel+transitive verbs ExpTime-complete

COP+Rel+TV+DTV COP+Rel+TV+ditransitive verbs NExpTime-complete

COP+Rel+TV+RA COP+Rel+TV+restr. anaphora (“him”, “she”,
“itself” with bounded anaphoric
co-references)

NExpTime-complete

COP+Rel+TV+GA COP+Rel+TV+gen. anaphora (unbounded
anaphoric pronouns)

undecidable

of English that map (following Montagovian semantics) into those logic constructs,
and (iii) propose grammars that generate such structures. In this way one can de-
termine the best trade-off between coverage and tractability holding for NLIs to
ontologies and ontology-based systems.

Pratt and Third’s Fragments of English The work of Pratt and Third pro-
vides hints on how to determine which fragments hold the right expressiveness for
ontology-based systems, via their notion of semantic complexity. We give now a
brief overview of their controlled fragments of English (cf., Pratt and Third 2006),
which are subsets of standard English meant to capture some simple, albeit for our
purpose important, structures of English.

The fragments of Pratt and Third are built incrementally, starting with copula,
nouns, negation, and the universal and existential quantifiers, and extending later
coverage to larger portions of English—relative constructions, ditransitive verbs,
and anaphora, as summarized in Table 1. The fragments are named after such com-
binations, COP if their sentences contain only the copula, COP+TV if they contain
in addition transitive verbs, and COP+TV+DTV if they contain both transitive and
ditransitive verbs. Further differences are due to the presence in the lexicon of the
relative pronoun (Rel) and of anaphora in a general (GA) or restricted form (RA).

Each NL construct has a MR introducing an n-ary predicate or a logical operation
in First Order Logic (FO): The MRs of relatives (e.g., “who”) introduce conjunction
(∧); negations (e.g., “no”, “not”) introduce logical negation (¬); intransitive verbs
(e.g., “runs”) and nouns (e.g., “man”) correspond to unary predicates; transitive
verbs (e.g., “loves”) correspond to binary predicates, and ditransitive verbs (e.g.,
“sells to”) to ternary predicates; universal quantifiers (“every”, “all”, “everyone”)
to universal quantification (∀), and existentials (“some”, “someone”) to existential
quantification (∃).
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Example 1 COP and COP+TV+DTV generate English utterances such as:

(1) Some people are weak.
[∃x(People(x)∧Weak(x))]

(2) Every husband has a wife.
[∀x(Husband(x)→∃y(Wife(y)∧Has(x, y)))]

(3) Every salesman sells some item to some customer.
[∀x(Salesman(x)→∃y(Customer(y)∧ ∃z(Item(z)∧ Sells(x, z, y))))]

Note that in (2) and (3) above, other translations might be possible due to NL ambi-
guity. However, these are discarded by the grammar, which follows only the surface
order of constituents.

Boolean- and Non-Boolean-Closed Fragments As shown in Table 1, where we
report the results of Pratt and Third (2006), the most expressive fragment of En-
glish they consider is undecidable. As a matter of fact, only the first two fragments,
COP and COP+TV+DTV, are tractable, i.e., have PTime semantic complexity. No-
tice that as soon as we add rules dealing with the relative clause we lose tractabil-
ity. COP+Rel (i.e., COP with relative clauses) is already NP-hard. This is because
relatives express conjunctions which, together with negation, generate logics (i.e.,
fragments of FO) that contain the propositional calculus (for which reasoning is
NP-complete). In other words, COP+Rel and all the fragments containing it are
“Boolean-closed”, and allow negation to be freely combined with conjunction and
relatives. Instead, COP and COP+TV+DTV are “non-Boolean-closed”. The chal-
lenge that we face here is to develop a methodology for defining tractable, “non-
Boolean-closed” CLs that capture tractable ontology languages.

3 DL-Lite and Its Computational Properties

Description logics (DLs) (Baader et al. 2003) are the logics, typically fragments of
FO, that provide the formal underpinning to ontologies and the Semantic Web (Hor-
rocks et al. 2003). They allow one to structure the domain of interest by means of
concepts, denoting sets of objects, and roles, denoting binary relations between (in-
stances of) concepts. Complex concept and role expressions are constructed starting
from a set of atomic concepts and roles by applying suitable constructs. The domain
of interest is then represented by means of a DL knowledge base, consisting of a
TBox (for “terminological box”), storing intensional information, and an ABox (for
“assertional box”), storing extensional information about individual objects of the
domain of interest.

We focus our attention on DL-Lite (Calvanese et al. 2007, 2011), a family of DLs
specifically tailored to manage large amounts of data efficiently. Specifically, we
consider variants of DL-Lite in which the TBox is constituted by a set of inclusion
assertions of the form

Cl� Cr
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MScStudent � Student
MScStudent � Works
MScStudent � ¬BScStudent

∃Reads � Works
Student � ∃Reads

Student � Busy � Works
Student � ∃Reads � Works
∃Reads � ∃Writes � Works

Student � ∃Reads.Book

Fig. 1 An example DL-Litecore TBox (left part), and some additional DL-Lite
R,� assertions (right

part)

where Cl and Cr denote concepts that may occur respectively on the left and right-
hand side of inclusion assertions. The form of such concepts depends on the spe-
cific variant of DL-Lite. Here, we consider two variants, called DL-Litecore and DL-
Lite

R,� , which we define below. In fact, DL-Litecore represents a core part shared by
all logics of the DL-Lite family.

Definition 1 (DL-Litecore and DL-Lite
R,� ) In DL-Litecore, Cl and Cr are defined as

follows:2

Cl−→ B | ∃R Cr−→ B | ¬B | ∃R | ¬∃R
where B denotes an atomic concept, and R denotes an atomic role. In DL-Lite

R,� ,
in addition to the clauses of DL-Litecore, we have also:

Cl−→ Cl1 �Cl2 Cr−→∃R.B

where R denotes again an atomic role.

The � construct denotes conjunction, and ¬ negation (or complement). The ∃R
construct is called unqualified existential quantification, and intuitively denotes the
domain of role R, i.e., the set of objects that are connected through role R to some
(not further specified) object.3 Finally, the ∃R.Cr construct, called qualified existen-
tial quantification, allows one to further qualify the object connected through role
R as an instance of concept Cr.

As an example, consider the DL-Litecore TBox depicted in the left part of Fig. 1,
which makes use of various concepts (Student, MScStudent, BScStudent, Works) and
roles (Reads, Writes) to express some simple knowledge about the student domain.
Specifically, the TBox assertions state that every MSc-student is a student, that MSc-
students work, and that no MSc-student is a BSc-student, i.e., the two concepts are
disjoint. Note that in DL-Lite, negation is used only to express disjointness, as in the
statement in Fig. 1. Additionally, making use of unqualified existential quantifica-
tion, we can express that everyone who reads something (i.e., is in the domain of the
Reads role) works, and that every student reads something. The latter is also called

2We have omitted inverse roles R− from the DLs to simplify the presentation of the main idea we
are investigating.
3Instead, ∃R−, for an inverse role R−, denotes the range of role R.
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a participation constraint, since it forces instances of Student to participate in the
Reads role. In the right part of Fig. 1, we have shown also some DL-Lite

R,� inclu-
sion assertions, which make use of conjunction in the left-hand side to express that
busy students work, that students who read something work, and that everyone who
reads something and writes something works. Finally, to express that every student
reads some book, we can make use of qualified existential quantification (allowed
to appear only in the right-hand side of inclusion assertions).

To formally specify the semantics of DL-Lite, we provide its standard translation
to FO. Specifically, we map each concept C (we use C to denote an arbitrary con-
cept, constructed applying the rules above) to a FO formula ϕ(C,x) with one free
variable x (i.e., a unary formula), and each role R to a binary formula ϕ(R,x, y) as
follows:

ϕ(B,x) = B(x)

ϕ(¬C,x) = ¬ϕ(C,x)

ϕ(C1 �C2, x) = ϕ(C1, x)∧ ϕ(C2, x)

ϕ(R,x, y) = R(x, y)

ϕ(∃R,x) = ∃yϕ(R,x, y)

ϕ(∃R.C,x) = ∃y(R(x, y)∧ ϕ(C,y))

In the translation of ∃R.C, the variable y is considered to be a fresh variable. An in-
clusion assertion Cl� Cr of the TBox corresponds then to the universally quantified
FO sentence ∀x(ϕ(Cl, x)→ ϕ(Cr, x)).

We observe that the above translation actually generates a formula in the guarded
fragment of FO. This holds not only for DL-Lite but for many other expressive DLs
as well, and accounts for the good computational properties of such logics (Baader
et al. 2003).

Finally, in DL-Lite, an ABox is constituted by a set of assertions on individu-
als, of the form B(a) or R(a, b), where B and R denote respectively an atomic
concept and role, and a, b denote constants. As in FO, each constant is inter-
preted as an element of the interpretation domain. The above ABox assertions
correspond to the analogous FO facts, or, by resorting to the above mapping, to
ϕ(B,x)(a) and ϕ(R,x, y)(a, b), respectively. A DL-Lite knowledge base is simply
a pair (Tbox,Abox), where Tbox is a TBox and Abox an ABox. A model of such
knowledge base is a FO interpretation in which the (closed) FO formulae resulting
from the translation of all assertions in Tbox∪ Abox evaluates to true.

To study efficiency we consider the computational reasoning problems relevant
to DL ontologies and knowledge bases. The key problem, to which most other ones
can be reduced, is the problem of knowledge base consistency, in which, given a
knowledge base (Tbox,Abox), we ask whether it has a model. Following Vardi
(1982), when we consider the computational complexity measured only in terms
of the size of the ABox (defined as the number of constants the ABox contains), we
speak about data complexity. When instead the complexity is measured in terms of
the size of the whole input, we speak of combined complexity. A DL can be consid-
ered as “efficient” for ontology-based data management, whenever such complexity
is tractable (in PTime).

It turns out that DL-Lite, and in particular DL-Litecore and DL-Lite
R,� , are “opti-

mally efficient”, in the sense that their data complexity is even lower. Indeed, rela-
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Table 2 Combined
complexity and data
complexity of consistency in
different DLs

DL Combined complexity Data complexity

DL-Litecore in NLogSpace AC0

DL-Lite
R,� PTime-complete AC0

ALC ExpTime-complete coNP-complete

SHOIN NExpTime-hard coNP-hard

tively to consistency, the problem we are interested in this chapter, they are in AC0 4

in data complexity and in PTime in combined complexity.5 The DLs in the DL-Lite
family are essentially the maximal DLs that exhibit such nice computational prop-
erties (Calvanese et al. 2013; Artale et al. 2009). This is a consequence of suitable
syntactic restrictions that have been imposed in such logics:

• Concepts are not closed under Boolean operations: negation is restricted to basic
concepts within the scope of a right Cr, and the use of disjunction is ruled out.

• Value restriction, a typical DL construct corresponding to a form of universal
quantification, is not allowed, and the use of qualified existential quantification is
restricted to the right-hand side of inclusion assertions.

These restrictions ensure that the DL-Lite logics are contained in the Horn frag-
ment of FO. The DL-Lite constructs are nevertheless sufficiently expressive to cover
the main features of conceptual modeling languages such as UML class diagrams
and of concept hierarchies in ontologies and ontology-based systems. This is im-
portant, since it implies that in practice reasoning does indeed scale to very large
ontologies that can capture several naturally arising domains of interest. This has to
be compared with the much higher computational complexity of more expressive
DLs. For illustration, consider in Table 2 the complexity of the DL ALC, which is
the smallest logic containing the DL-Lite logics that we have considered here6 and
closed under Boolean operations. Both for ALCand for SHOIN, the DL that under-
pins OWL DL, reasoning is coNP-hard in data complexity, and provably exponential
in combined complexity. Notice that as soon as a DL becomes closed under Boolean
operations, it is intractable, and hence reasoning does not really scale well with data
growth.

We are interested in studying the linguistic structures that correspond to the DL-
Lite constructs. In what follows (Sect. 5 below), we will look at straightforward
ways to express them in natural language.

4The class AC0, is a complexity class strictly contained in (and hence easier than) PTime. SQL
query evaluation in relational databases is in AC0 in data complexity, which accounts for the effi-
ciency of database management systems in dealing with large amounts of data.
5Notice that Pratt and Third’s complexity results do not distinguish between data and combined
complexity.
6All DL-Lite logics include also the inverse role constructor, which cannot be captured in ALC.
Moreover, some DL-Lite variants use (complex) role inclusions, which also would lead the logic
outside the scope of ALC.
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4 Categorial Grammars

As most of the linguistically motivated formal grammars currently in use, catego-
rial grammars (CGs) are a class (or family of classes) of lexicalized grammars,
i.e., grammars where the lexicon carries most of the information about how words
can be assembled to form grammatical structures. In this framework, syntactic cate-
gories are seen as formulas and their category forming operators as connectives, i.e.,
logical constants. In addition, the Curry-Howard correspondence ensures the Mon-
tagovian homomorphism, a.k.a. syntax-semantics interface, between the (logical)
calculus of syntactic categories and FO MRs (van Benthem 1987).

The peculiarity of CGs is that word assembly is carried out by natural deduc-
tion logical rules (that take care of natural language syntax); such natural deduction
rules are coupled with (via the Curry-Howard correspondence) λ-calculus opera-
tions dealing with the FO meaning assembly, via the intermediate λ-FO formalism,
viz., FO extended with (typed) λ-calculus λ-abstractions and λ-applications. In so
doing, CGs capture better and more elegantly the tight correspondence between
syntax and semantics of NL and its fragments than other equivalent grammatical
formalisms such as semantically-enriched context-free grammars or some simple
kinds of definite clause grammars.

This aspect of the formalism significantly simplifies the implementation task,
since one has to focus only on the construction of the lexicon and can rely on any
existing parser for the calculus. Information both about the syntactic structure where
the word could occur and its meaning are stored in the lexicon. As derivation or
logical deduction rules, we use the product free version of the (non-associative)
Lambek calculus (Lambek 1958; Moortgat 1997).7

Definition 2 (Term labeled lexicon, categorial grammar) A (syntactic) category A

is defined as follows

A−→ np | n | s |A1\A2 |A2/A1

where np (noun phrases), n (nouns) and s (complete sentences) are atomic cate-
gories. Complex categories are built out of atomic categories by means of the direc-
tional left and right functional connectives \ and / (A1\A2, resp. A2/A1, applied to
a category A1 situated to its left, resp. its right, yield category A2). We denote by
CAT the set of all such categories and by ATOM the set {np,n, s}.

We map each syntactic category A to a (semantic) type typ(A) as follows:

typ(np)= e; typ(s)= t; typ(n)= (e, t),

typ(A1/A2)= (typ(A2), typ(A1)); typ(A2\A1)= (typ(A2), typ(A1)).

where the atomic types are e (entities) and t (Booleans), and (τ, τ ′) denotes the
functional type (the type of functions from τ into τ ′).

7The lexicon we present in this chapter has been tested using the GRAIL parser (Moot 1998), based
on the Lambek calculus.
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Given a set Σ of natural language basic expressions (i.e., a natural language
vocabulary), a term labeled categorial lexicon is a relation,

LEX ⊆Σ × (CAT× TERM) s.t., if (w, (A,α)) ∈ LEX, then α ∈ TERMtyp(A)

where TERM is the set of all lambda terms and TERMtyp(A) denotes the set of lambda
terms whose type is mapped to the category A.

Given a term labeled lexicon LEX, a categorial grammar is any finite subset
G� LEX.

This constraint on lexical entries categories and terms enforces the following
requirement: if the expression (or word) w is assigned the syntactic category A and
the term α, then the term α must be of a type appropriate for the category A. We
assign lambda terms whose body is a FO formula, viz., λ-FO terms. We look at the
determiner every, by means of example, since it has a crucial role in our grammar.
The reader is referred to work by Keenan and Faltz (1985) and van Eijck (1985) for
an in-depth explanation of this example in particular and the relationships between
CGs and λ-FO in general.

Example 2 (Determiner) The meaning of “every NOUN” (e.g., “every man”) is the
set of those properties that “every NOUN” (e.g., “man”) has

�every NOUN� = {X | �NOUN� ⊆X}.
In a functional perspective, the determiner “every” is seen as a two-argument

function taking a noun and a verb phrase (a property) as arguments. The syntactic
category expressing this functional view as well as word order is the following

(s/(np\s))/n

where the n is the first argument that must occur to the right of “every” and np\s,
i.e., a verb phrase, the second argument to occur to the right of “every NOUN” (viz.
“every NOUN VERB_PHRASE”). The typed lambda term (according to generalized
quantifier theory, see Barwise and Cooper (1980)) corresponding to this syntactic
category is: λY(e,t).λX(e,t).∀xe(Y (x) → X(x)). In the following, we will not use
types on lambda terms unless necessary.

An important feature of CGs is their “parsing as deduction” approach, which
reduces the problem of checking whether a linguistic string is grammatical to the
problem of proving that the string is of a certain syntactic category. More precisely,
instead of directly recognizing linguistic word strings w1 · · ·wn, we work on the
corresponding set of Lambek calculus formulas: to each lexicon entry (wi, (Ai,αi)),
for i ∈ {1, . . . , n} we associate a (Lambek calculus) sequent Ai �Ai : αi ; thereafter,
following the inference rules of the calculus, a proof (a tree-shaped derivation) of a
sequent Γ � s : φ, with φ of type t (a λ-FO formula) is constructed. More formally:
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Definition 3 (Recognized language) Given a categorial grammar G the language
recognized by G, denoted L(G) is the set of all word strings w1 · · ·wn such that the
sequent Γ � s : φ, has a proof in the Lambek calculus; where Γ consists of a set
{A1 : α1, . . . ,An : αn} of pairs of categories and terms as defined in the term labeled
lexicon {(wi, (Ai,αi)) | i = 1, . . . , n}, and φ is a λ-FO formula (a term of type t).

As by-product of the derivation one derives also the MR of the structure assigned
to the string, i.e., the λ-FO term φ which after reduction gives rise to a FO closed
formula or sentence. As such, NLs (and fragments thereof) recognized by a CG that
does not cover purely higher-order NL constructs such as, e.g., the second-order
determiner “most”, can induce (in a way similar, though more general, to Pratt and
Third’s fragments) a fragment of FO: the set of all the first-order MRs associated
with its (grammatical) complete sentences. We will exploit this particular feature of
the formalism to define a CL in the next section that generates the DL-Lite logics.

5 Lite English and Its Grammar CG-Lite

As mentioned above, the goal of our methodology is to define CLs for ontologies
that are efficient, i.e., tractable w.r.t. semantic data complexity. We propose to this
end to define them vis-à-vis those ontology constructs that give rise to tractable data
complexity. More precisely, we propose to identify English syntactic categories that
lexically control the restrictions imposed by the DL-Lite constructs. Such categories
will naturally induce a CG (i.e., a term-labeled categorial lexicon) expressing exactly
the DL-Lite family of logics as described earlier. In this section we outline such
syntactic categories and how they were obtained. We proceed in three steps. Firstly,
we outline the key constraints to be satisfied for a CL to induce DL-Lite. Secondly,
we provide a sample CG (a finite term-labeled lexicon). Thirdly, we describe the
main features of the fragment thus generated. Notice also that the methodology
proposed is not, per se, grammar dependent, since our CLs can be equally, although
less succinctly and not as elegantly, defined using semantically-enriched context-
free grammars as we did in some previous work (Thorne 2010, Chap. 4). We call
Lite-English the resulting CL, and CG-lite its CG.8

5.1 Fragment of Natural Language for DL-Lite

The constraints expressed in the TBox are universally quantified FO sentences. They
are of the form Cl� Cr, which translates into FO as ∀x(ϕ(Cl, x)→ ϕ(Cr, x)) and
can be expressed by the following NL sentence patterns:

8We refer the reader to Appendix for the formal proofs of the claims made in this section.
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(a) [[Every NOUN︸ ︷︷ ︸
Cl

] VERB_PHRASE︸ ︷︷ ︸
Cr

]

(b) [[Everyone [who VERB_PHRASE]︸ ︷︷ ︸
Cl

] VERB_PHRASE︸ ︷︷ ︸
Cr

]

The determiner “every” and the quantifier phrase “everyone” play a crucial role
in determining the linguistic structures that belong to the natural language fragment
corresponding to a DL-Lite TBox. In the following, we zoom into the NOUN and
VERB_PHRASE constituents. In other words, we spell out how DL-Lite Cl and Cr
concepts can be expressed in English. In doing so, we follow Definition 1.

First of all, a Cl or a Cr could be an atomic concept A. An atomic concept A

corresponds to a unary predicate, which following standard formal semantic theory
can be expressed either by a noun such as “student” (see (4) below), or an intransitive
verb such as “work” (see (5) below).

The introduction of negation ¬A on atomic concepts A, however, can occur only
in a Cr and can thus be expressed only by a predicate VERB_PHRASE such as “is
not a BSc-student” (6), or “does not work” (7).

The introduction of the ∃R in a Cl can be performed by means of the quantifier
phrase “everyone” followed by the relative pronoun “who” (9) (or by the conjunc-
tion that would correspond to the use of � on the Cl part allowed in the DL-Lite

R,�
fragment, see (16) below).

(4) Every MSc-student is a student. [MScStudent� Student]
(5) Every MSc-student works. [MScStudent�Works]
(6) Every MSc-student is not a BSc-student. [MScStudent�¬BScStudent]
(7) Every BSc-student does not work. [BScStudent�¬Works]
(8) Everyone who learns works. [Learns�Works]
(9) Everyone who reads something works. [∃Reads�Works]

On the other hand, the introduction of ∃R on the Cr part corresponds to the use
of a transitive verb followed by an existential quantifier phrase, “something” (10),
and its negation to the use of “does not” to negate such construction (11).

(10) Every student reads something. [Student� ∃Reads]
(11) Every student does not read something. [Student�¬∃Reads]

Note that, as the DL-Lite clause shows, the only reading of the ambiguous sentence
in (11) is the one with every having wide scope and something being in the scope of
not.9

Also, the VERB_PHRASE in (a) and the second VERB_PHRASE in (b) (i.e., the
VERB_PHRASE of the main clause expressing a DL-Lite Cr concept) can be of any
of the structures in (4)–(11). On the other hand, the first VERB_PHRASE in (b) (i.e.,

9For ease of explanation we do not consider the distinction between something and the negative
polarity item anything. This distinction could be incorporated into the fragment, as studied by
Bernardi (2002).



Designing Efficient Controlled Languages for Ontologies 161

the VERB_PHRASE of the relative clause expressing a DL-Lite Cl concept) cannot
contain negation: for it only the cases 5–4 above hold.

When we move to DL-Lite
R,� , the addition of the conjunction in the Cl cor-

responds to the use of the adjective (12), or relative clauses modifying the noun
quantified by “every” (13)–(15), or the “and” coordinating two VPs (16).

(12) Every nice student works. [Student �Nice�Works]
(13) Every student who learns works. [Student � Learns�Works]
(14) Every student who is a BSc-student works. [Student � BScStudent�Works]
(15) Every student who reads something works. [Student � ∃Reads�Works]
(16) Everyone who reads something and writes something works.

[∃Reads � ∃Writes�Works]

Furthermore, the introduction of the qualified existential on the Cr is performed by
the determiner “a” (17).

(17) Every student reads a book. [Student� ∃Reads.Book]

Non-Boolean-Closedness (Tractability) of the Fragment An important point
to emphasize is the presence of the relative pronoun in the above fragment of sen-
tences. Pratt and Third have shown how the uncontrolled use of such expression
leads to NP-complete fragments when allowing the use only of the copula, or even
to ExpTime-completeness when adding transitive verbs. Below, we will show how
relative pronouns can be used in a controlled grammar while preserving tractability
of inferences.

5.2 Expressing DL-Litecore

We start again by looking at the main syntactic constraints over DL-Litecore concepts
and consider, in particular, the two constraints regarding the use of negation:

1. negation of atomic concepts can occur in a Cr but not in a Cl: Cl−→ B , Cr−→
B | ¬B;

2. an unqualified existential can occur both in a Cl and a Cr, but its negation can
occur only in Crs: Cl−→∃R, Cr−→∃R | ¬∃R.

As we anticipated before, Cl and Cr concepts correspond respectively to the
so-called “restrictive scope” (the subject NOUN constituent), and “nuclear scope”
(the predicate VERB_PHRASE constituent) of the sentence-building DET every. We
need to constrain the linguistic structures that occur within them. In particular, we
need to block the occurrences of negation within Cls and express the fact that NOT
cannot outscope any VERB_PHRASE that occurs within the restrictive scope of the
determiner every. As emphasized by Bernardi (2002), in CGs scope is determined by
the sentential categories s that arise from complex CG syntactic categories. Different
(possibly mutually exclusive) scope distributions can be enforced by multiplying
sentential categories via sentential levels, and exploiting the derivability relations
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(and restrictions) among CG categories. It suffices to provide the intuition behind
the proposed solution without going into its details: a complex category A1\A2, can
be applied to either category A1 or to a category A3 that derives A1 (A3 ⇒A1). In
our case, ⇒ is the derivability relation of the logical grammar we use.

We mark the structures that express DL-Lite Cls and Crs and those that are nega-
tive or positive, by means of the four sentential levels scl, scr , s¬, and s, respectively,
and establish the derivability relation below (we rule out any other derivability re-
lations between atomic categorial formulas).10 These sentential levels state that a
negated sentence can be in the Cr construct (s¬ ⇒ scr) while it cannot be in the Cl
part (s¬ � scl) and a positive sentence can be in both (s ⇒ scl, s ⇒ scr):

s¬ � scl, s¬ ⇒ scr, s ⇒ scl, s ⇒ scr, and scl � scr.

Note that this induces a derivability relation between complex categories built
with or containing these atomic sentential categories; for instance, from s ⇒ scr it
follows that np\s ⇒ np\scr . Besides these sentential levels, as we will show below,
we use two other sentential levels: one to mark TBox sentences (stb) and one to mark
constituents built by the relative pronoun who (swho). All the constraints on these
sentential levels are lexically anchored by means of the lexical assignments below.

Example 3 (Lexicon for DL-Litecore) The lexicon entries to use are as below.11 The
content words (intransitive verbs and nouns) are only given by way of example.

• Every ∈ (stb/(np\scr))/n: λX.λY.∀x.(X(x)→ Y(x))

• is a ∈ (np\s)/n: λX.λz.X(z)

• is not a ∈ (np\s¬)/n: λX.λz.¬X(z)

• does not ∈ (np\s¬)/(np\s): λX.λz.¬X(z)

• works ∈ np\s: λz.Works(z)

• learns ∈ np\s: λz.Learns(z)

• student ∈ n: λz.Student(z)

• MSc-student ∈ n: λz.MScStudent(z)

• BSc-student ∈ n: λz.BScStudent(z)

• everyone ∈ (stb/(np\scr))/(np\swho): λX.λY.∀x.(X(x)→ Y(x))

• who ∈ (np\swho)/(np\scl): λP.λz.P (z)

• something ∈ ((np\s∃)/np)\(np\s): λZ.λy.∃x.Z(y, x)

• reads ∈ (np\s∃)/np: λx.λz.Reads(z, x)

A. Using Universal Quantification to Express Concept Subsumption Notice
that in Example 3 the categories assigned to every and everyone rule out the pos-
sibility for them to occur in object position—they can only be in subject position.

10We actually use residuated unary operators to carry out these derivability relations (Kurtonina
and Moortgat 1995) exploiting their logical properties: ♦j�j s ⇒ s ⇒ �i♦i s etc. Examples of
residuated unary operators are “possibility in the past” and “necessity in the future”.
11Notice, in the present work we do not handle features of any sort (morphological etc.). Their
usage will make the lexical entries more complex but won’t have any effect on the main idea we
are presenting.
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Moreover, since they are the only entries yielding a TBox sentence (stb), only sen-
tences starting with them will be considered as grammatical. The negation brings
sentences to the negative sentential level, and once they are there, they are blocked
from occurring in the restrictive scope of every and everyone.

B. Using Existential Quantification, Relatives, and Conjunction to Express Ex-
istentially Qualified Roles and Their Conjunctions Since in the fragment de-
scribed by Example 3, we do not have the � on the Cl, the introduction of the
unqualified existential ∃R in it can be performed only by means of the quantifier
everyone followed by the relative pronoun “who” and a transitive verb composed
with something. The introduction of ∃R on the Cr corresponds to the use of a tran-
sitive verb followed by an existential quantifier, something. The lexical entries for
everyone, who, something, and reads above account for these facts. The need of the
swho categories is due to the fact that everyone must be followed by a relative clause,
i.e., sentences like everyone left or everyone walks and speaks cannot be part of the
grammar. Similarly, transitive verbs can occur on the Cr part but only if followed by
something, hence we use the category s∃ to guarantee this requirement.12 Finally, the
category assigned to “something” is such that it can occur only in object position.

C. Controlling the Behavior of Negation As the reader can see, negation in
Example 3 can only occur within a VERB_PHRASE expressing a Cr. The reader
can gain a better understanding of the mechanisms involved by checking how our
sample lexicon, combined with the constraints CG-lite imposes over its sentential
levels, ensures the ungrammaticality of the sentences below (blocked by s¬ � scl).
Such sentences generate MRs that are not DL-Lite expressible:

(18) Everyone who does not read something works [¬∃Reads�Works]
(19) Everyone who is not a BSc-student works. [¬BScStudent�Works]

D. Expressing ABoxes The fragment of sentences whose meaning representation
belongs to a DL-Litecore ABox is rather easy to build since an ABox consists of a
conjunction of (ground) unary and binary logical atoms. In other words, the lexi-
con is built only with nouns, intransitive verbs, the copula (i.e., unary predicates),
transitive verbs (i.e., binary predicates), individual names and adjectives.

5.3 Expressing DL-LiteR,�

We now move to DL-Lite
R,� , and account for the following additions

1. conjunctions are allowed in Cls: Cl−→ Cl1 �Cl2;
2. the qualified existential can occur in Crs: Cr−→∃R.B .

12Since we have neither np nor np/n entries we could also avoid the use of this extra sentential
level s∃ in the example we are considering.
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Example 4 (Lexicon extension for DL-Lite
R,� ) In order to move to DL-Lite

R,� , we
need to add into the lexicon the following lexical entries. The (intersective, qualita-
tive) adjective nice is given only by way of example.

• nice ∈ ncl/ncl, λX.λz.(X(z)∧ Nice(z))

• who ∈ (ncl\ncl)/(np\scl): λX.λY.λz.(X(x)∧ Y(z))

• and ∈ ((np\scl)\(np\scl))/(np\scl): λX.λY.λz.(X(z)∧ Y(z))

• a ∈ (((np\s∃)/np)\(np\scr))/n: λY.λZ.λy.∃x.(Z(y, x)∧ Y(x))

Again, we use sentential levels to control the occurrence of these constructs. The
extended lexicon accounts also for the structures in (12)–(17).

A. Controlling the Interaction of Conjunction and Negation Notice the need
of having a conjunction operating at the sentential level scl: this blocks the com-
position of negation (does not) with a verb phrase built with an and that would
wrongly give or recognize: does not walk and speak with not outscoping and; such
constituent would yield the MR λz.¬(Walk(z) ∧ Speak(z)) that is not DL-Lite
expressible, and would moreover give rise to intractable data complexity (Cal-
vanese et al. 2013). For similar reasons we have to block the composition of
is not a with a noun phrase built using an intersective adjective. The resulting
NOUN_PHRASE constituent would yield non-DL-Lite-expressible λ-FO formulas
where negation outscopes conjunction; e.g., a phrase like is not a nice student
with MR λz.¬(Nice(z)∧Student(z)). The introduction of the category ncl with
n⇒ ncl makes such phrases ungrammatical.

B. Qualified Existential Restrictions and Recursive Constituents We have
considered a DL, DL-Lite

R,� , with qualified existentials of the form ∃R.A. Hence
the argument taken by the determiner a can only be a bare noun n. Finally, notice
that the lexical entries for the adjective, conjunction, and qualified existential bring
recursion into the language.

6 Distribution of Boolean- and Non-Boolean-Closed Fragments

As we have shown, reverse-engineering efficient CLs from ontologies is a promising
path. Further, as shown by Thorne (2010), our methodology can be easily extended
to define interrogative CLs with tractable data complexity. The question however
remains as to how to identify CLs that, while enjoying the properties we desire
them to have (express ontology and query languages, give rise to at most PTime
data complexity), remain appealing to users.

In this section we propose a distributional methodology which may help in iden-
tifying desirable English constructs by focusing on their frequency in both inter-
rogative and declarative English corpora. We believe that this method can yield
techniques to pinpoint, in particular, CLs that may offer good trade-offs between
coverage and semantic complexity. The intuition behind being that when we trade-
off language coverage for performance (i.e., to attain tractable data complexity) in
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Table 3 Corpora analyzed in this chapter

Corpus Size Domain Sentence type

Brown corpus subset 19,741 sentences Open (news) Declarative17

Geoquery corpus 364 questions Geographical Interrogative

Clinical questions 12,189 questions Clinical Interrogative

TREC 2008 436 questions Open Interrogative

CLs, it makes sense to cover constructs that are frequently used and thus preferred
by speakers. Specifically, we study the co-occurrence of crucial (for semantic com-
plexity) logic constructs: negations, conjunctions, disjunctions, and universal and
existential quantification, in English questions and sentences.

To obtain a representative sample we considered corpora of multiple domains and
with sentences of arbitrary type (declarative and interrogative), since, when manag-
ing an ontology and/or an ontology-based system, users are required not only to
assert but also to update and query (intensional and extensional) information be-
longing to different domains. We thus considered: (i) a subset (A: press articles)
of the Brown corpus;13 (ii) a subset of one (Geoquery880) of the Geoquery cor-
pora;14 (iii) a corpus of clinical questions;15 and (iv) a sample from the TREC 2008
corpus.16 Table 3 summarizes their main features.

To this end we exploited the availability of wide-coverage (statistical) deep se-
mantic parsers such as Boxer, by Bos (2008), which output first-order MRs. We
checked, for each such MR, the co-occurrence of a subset of the set {∀,∃,¬,∧,∨}
of FO operators (and only of that subset). Each such subset identifies MRs belong-
ing, modulo logical equivalence, to a distinct fragment of FO. For instance, the
combination {∀,∃,∧,∨} identifies MRs from the so-called positive fragment of FO.
But it also identifies the class of corpora sentences that give rise to such MRs, and
approximates the (controlled) fragment whose formal semantics may induce such
FO fragment. Finally, with these considerations in mind, we observed the distribu-
tion of:

1. “Boolean-closed” fragments, viz.: {∃,∧,¬}, {∃,∧,¬,∀}, {∃,∧,¬,∀,∨}, {¬,∀},
{∃,∧,∀}, and {∃,∧,∀,∨}.

2. “Non-Boolean-closed” fragments, viz.: {∃,∧} and {∃,∧,∨}.
By “Boolean-closed”, we recall, we mean fragments expressive enough to encode
Boolean satisfiability and which give rise to intractable semantic complexity. A
“non-Boolean-closed” combination, by contrast, cannot express Boolean functions
and gives rise only to tractable semantic complexity.

13http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml
14http://www.cs.utexas.edu/users/ml/nldata/geoquery.html
15http://clinques.nlm.nih.gov/
16http://trec.nist.gov/
17The sample contained only 36 questions.

http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml
http://www.cs.utexas.edu/users/ml/nldata/geoquery.html
http://clinques.nlm.nih.gov/
http://trec.nist.gov/
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Fig. 2 Relative frequency of co-occurring FO operators in sample corpora. Notice the distribution
of “non-Boolean-closed” sentences

The pipeline of Boxer consists of the following three basic steps: (i) each part of
speech in a sentence is annotated with its most likely (categorial grammar) syntactic
category; (ii) the most likely of the resulting possible combinatorial categorial gram-
mar derivations (or proofs) is computed and returned; and (iii) a neo-Davidsonian
semantically weakened18 FO meaning representation is computed using discourse
representation theory (DRT).

Example 5 When parsing Wh-questions from the TREC 2008 corpus such as “What
is one common element of major religions?”, Boxer outputs a FO semantic repre-
sentation of the form

∃y∃z∃e∃u(card(y,u)∧ c1num(u)∧ nnumeral1(u)∧
acommon1(y)∧ nelement1(y)∧ amajor1(z)∧ nreligions1(z)∧

nevent1(e)∧ rof1(y, z))

where ∧ and ∃ co-occur, but not ∨, ¬, or →.

Figure 2 shows the co-occurrence distribution obtained, expressed in terms of
relative frequency (i.e., number of MRs per class/total number of MRs per corpus).

18In this settings, the semantics of verbs is represented in terms of events connected via thematic
roles to verb arguments (agents, themes, etc.). In addition, the semantics of non-FO constructs such
as “most” is weakened to some FO representation.
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Fig. 3 Relative frequency of FO operators in question corpora (Bernardi et al. 2007)

As the figure shows, positive existential, {∃,∧} and {∃,∧,∨}, MRs occur quite fre-
quently. Also, it seems that the same holds for sentences expressing universal quan-
tification whereas the opposite is true for negation (low frequency overall).

This analysis can be compared to the more linguistics-based methodology fol-
lowed by (Bernardi et al. 2007), in which we analyzed the distribution in (solely)
interrogative corpora of classes of logical words which express FO operators, e.g.,
“all”, “both”, “each”, “every”, “everybody”, “everyone”, “any”, “none”, “nothing”.
See Fig. 3.

These results suggest that, while users use negation or disjunction words as fre-
quently as conjunction and existential words, and all these more than universal
words, when combining them within sentences “non-Boolean-closed” combinations
are preferred.

7 Related Work

The work described in this chapter has been complemented by related results ob-
tained by the authors and published elsewhere. In particular, we have applied and
generalized the methodology defined in this chapter to determine which are the frag-
ments of ACE-OWL that are tractable (i.e., at most PTime) and those that are in-
tractable (i.e., coNP-hard) in data complexity (see Thorne and Calvanese 2012).
Table 4 summarizes what these results mean in terms of language coverage, viz.,
which maximal combinations of (English) function and content words give rise to
tractable (“non-Boolean closed”) controlled fragments, and which minimal combi-
nations give rise to intractable (“Boolean closed”) controlled fragments.

Intractability arises with any combination capable of expressing full Boolean
negation (“not”) and full Boolean conjunction (conjunction, relative pronouns).
Note that the good computational properties of Lite-English depend ultimately on
the fact that, while expressing Boolean conjunction, it cannot express full Boolean
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Table 4
Non-“Boolean-closed” and
“Boolean-closed” controlled
English constructs

Data
complexity

Constructs

Tractable Negation (“not”) in a predicate VERB_PHRASE

Relatives (“who”, “which”) everywhere

Conjunction (“and”) everywhere

Transitive verbs (“loves”) everywhere

Existential quantification (“some”) everywhere

Intractable Negation (“not”) in a subject NOUN

Universal quantification (“only”) in a subject NOUN

Disjunction (“or”) in predicate VERB_PHRASE

negation, but rather a very limited form of it. We observe that a similar analysis car-
ried out on Pratt and Third’s fragments (and extending their own) by Thorne (2010)
yielded similar results.

We have also applied the methodology used in this chapter to study controlled
fragments of English questions for which the data complexity of reasoning (or eval-
uation) against an ontology, authored using any of their fragments, is tractable (see
Thorne 2010, Chap. 5). This work shows that positive questions (questions built with
“some”, relative pronouns, conjunction and eventually, disjunction) and restricted to
proper and common nouns, and intransitive and transitive verbs as content words,
give rise to tractability. It also shows that they can be enriched with so-called aggre-
gate determiners, i.e., English constructs such as “the total number of”, “the number
of”, “the average of”, etc., that express aggregate functions,19 in formal query lan-
guages without negatively impacting on the semantic complexity of the controlled
fragments.

As we hinted in the introduction, several CLs, most of which are equipped with
a compositional semantics, have been proposed to provide NLIs to ontologies and
ontology-based systems. In particular, to provide English front ends to (i) ontology
authoring systems, specifically, semantic web ontologies in the form of OWL DL
ontologies (for which its fragment ACE-OWL was engineered) and (ii) controlled
English querying to such ontologies. Table 5 provides an overview of the best known
and used, viz., PENG (Schwitter et al. 2003), Rabbit (Schwitter et al. 2008) and
OWL CNL (Schwitter and Tilbrook 2006), which are to a big extent siblings and/or
children of the main two: Attempto Controlled English (ACE) and its fragment
ACE-OWL (Fuchs et al. 2006; Kaljurand 2007).

While the coverage of ACE, ACE-OWL and its relatives is way greater than
of any of the CLs defined in this chapter, they suffer from our perspective from
the fact of being too expressive. Query evaluation over OWL DL (viz., SHOIN)
ontologies and a fortiori in ACE-OWL NLIs is coNP-hard in the size of the data,

19That is, second-order functions such as, resp., sum(·), #(·), avg(·), defined over sets of individuals
or data values.
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Table 5 An overview of some CLs; DCG stands for “definite clause grammar”, the other acronyms
for known English parsers or parser APIs such as GATE, and “comp.” for “compositional”

CL (English) Comp. Maps to Parser Goal

ACE
(Fuchs et al. 2006)

yes FO APE Knowledge repr.

ACE-OWL
(Kaljurand 2007)

yes OWL DL APE Ontology mgmt

PENG
(Schwitter et al. 2003)

yes OWL DL ECOLE Ontology mgmt

OWL CNL
(Schwitter and Tilbrook 2006)

yes OWL DL DCG parser Ontology mgmt

Rabbit
(Schwitter et al. 2008)

no OWL Full GATE Ontology mgmt

and hence intractable and unsuited for managing large data repositories. In more
expressive CLs such as Rabbit or (full) ACE, reasoning is undecidable.20 However
ACE-OWL and kindred CLs contain (grammatically correct) fragments which may
exhibit better computational properties, which we believe can be defined using our
methodology.

In addition to NLIs to OWL ontologies (Schwitter and Tilbrook 2006; Kaljurand
and Fuchs 2006), systems have been proposed that, e.g., guide the user to formulate
his/her natural language (NL) question via an ontology that incrementally shows
the possible concepts that could be involved in the question (Franconi et al. 2010;
Dongilli and Franconi 2006). Others guide the user via an incremental parser (Bern-
stein et al. 2006; Damljanovic 2010), or engage the user in clarification dialogs
(Gunning et al. 2010).

8 Conclusions

In this chapter we have outlined a methodology for defining controlled fragments
(CLs) of English for NLIs to ontology-based systems, which scale to very large on-
tologies. In addition to their scalability, such CLs can express key ontology language
constructs via a symbolic translation formally underpinned by formal semantics in
the Montagovian tradition.

We have argued that this can be achieved as follows: (i) On the one hand, by
focusing on semantic complexity, viz., the computational complexity of logical rea-
soning in such CLs, which can be studied via the FO fragment induced by their
formal, compositional semantics. We have stressed that a key requirement is for se-
mantic complexity to be at most polynomial in the size of the ontology (or ontology-
based system), and in AC0 in the size of the data stored therein, that is, to have effi-

20Reasoning on OWL Full or FO is undecidable (cf., Baader et al. 2003).
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cient semantic data complexity. (ii) On the other hand, by considering English con-
structs that express ontology languages with efficient data complexity. (iii) Finally,
by putting together those English constructs via CGs to build a CL that expresses
such low complexity ontology languages and that possesses appropriate semantic
data complexity while expressing key ontology language constructs.

Following our methodology, we have identified the fragment of English that cor-
responds to an ontology language suitable for specifying and querying ontologies
with optimal data complexity, namely DL-Lite; and based on this we have defined
an efficient CL, Lite English, using CGs (via the CG-lite grammar).

We have also performed a preliminary corpus analysis regarding the distribution
of relevant English constructs. We believe that this methodology could, if further
developed, help the CL community in identifying suitable CLs that provide good
trade-offs between coverage and tractability.

Acknowledgements This research has been partially supported by the EU under the large-scale
integrating project (IP) Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-
318338.

Appendix

In this appendix we sketch how CG-lite formally captures DL-Lite
R,� (and a fortiori

DL-Litecore). That is, we show that for every DL-Lite
R,� TBox assertion Cl � Cr,

there exists a CG-lite derivation D rooted in stb � stb : ∀x(ϕ(Cl, x)→ ϕ(Cr, x)).

Remark 1 (Cl and Cr vs. λ-FO) Recall that Cl and Cr concepts are defined as below.

Cl−→ B | ∃R | Cl1 �Cl2 and Cr−→ B | ¬B | ∃R | ¬∃R | ∃R.B.

Left concepts correspond to: (i) B , i.e., λx.(B(x)) (in λ-FO), (ii) ∃R, i.e.,
λx.∃y.R(x, y) (in λ-FO), and (iii) Cl1 � Cl2, i.e., λx.(ϕ(Cl, x) ∧ ϕ(Cl, x)) (in λ-
FO). Regarding right concepts, the new concepts that are not Cls are: (i’) ¬B , i.e.,
λx.¬B(x) (in λ-FO), (ii’) ¬∃R, i.e., λx.¬∃y.R(x, y) (in λ-FO), and (iii’) ∃R.B ,
i.e., λx.∃y.(R(x, y)∧ B(y)) (in λ-FO).

Remark 2 In a CG-lite derivation of Γ � A : α, the resulting category A will
match a subcategory A′ occurring in a positive position within the categories oc-
curring in Γ . This means that, when expressing left and right concepts we are inter-
ested in derivations where (Cl1) A = n, (Cl2) A = np\scl, (Cl3) A = np\swho and
(Cr) A= np\scr .

Lemma 1 (Left Cl concepts) For every DL-Lite
R,� left concept Cl, there exists a

CG-lite derivation D satisfying Remarks 1 and 2 that expresses it.

Proof (Sketch) We show, by (structural) induction on left concepts Cl, that there ex-
ists a CG-lite derivation D rooted in either of the following three Lambek sequents:
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(1) n � n : λx.ϕ(Cl, x) or (2) np\scl � np\scl : λx.ϕ(Cl, x) or (3) � np\swho �
np\swho : λx.ϕ(Cl, x), with categories found in or derived from CG-lite’s lexicon
CATlex.

• Base cases: Cl is an atomic concept B or a qualified existential ∃R.

1. Consider the lexicon entry n � n : λx.Student(x); (1) holds.
2. Consider the lexicon entry np\s � np\s : λx.Left(x); (2) holds.
3. Consider the two entries ((np\s∃)/np)\(np\s) � ((np\s∃)/np)\(np\s) :

λZ.λy.∃x.Z(y, x) and (np\s∃)/np � (np\s∃)/np : λx.λz.Reads(z, x). By
applying one to each other, we derive np\s � np\s : λx.∃yReads(x, y).
Since s ⇒ scl, (1) holds.

• Inductive cases: Cl is a complex concept Cl1 � Cl2. By I.H. the property holds
for Cl1 and Cl2. There are several cases. As they are similar, we deal only with
one.

1. Consider the lexicon entry ((np\scl)\(np\scl))/(np\scl) :λX.λY.λz.(X(z)∧
Y(z)), expressing conjunction. By I.H., we may combine it in turn with
the (derived) sequents np\scl � np\scl : λx.ϕ(Cl1, x) and np\scl � np\scl :
λx.ϕ(Cl2, x) (i.e., verifying (2)). This results in a derivation rooted in np\scl �
np\scl : λx.(ϕ(Cl1, x)∧ ϕ(Cl2, x)), which satisfies (2). �

Lemma 2 (Right Cr concepts) For every DL-Lite
R,� right concept Cr, there exists

a CG-lite derivation D satisfying Remarks 1 and 2 that expresses it.

Proof (Sketch) The claim can be proven by case analysis on Cr as in the preceding
lemma (there is no inductive clause in the Cr definition), viz., by showing that a
derivation D rooted in (4) np\scr � np\scr : λx.ϕ(Cr, x) exists. �

Theorem 1 For every DL-Lite
R,� TBox assertion Cl � Cr , there exists a CG-lite

derivation D satisfying Remarks 1 and 2 that expresses it.

Proof The proof follows from the two Lemmas above and by the fact that the only
two lexical entries with stb in a positive position are those for:

1. “every”, i.e., (stb/(np\scr))\ncl� (stb/(np\scr))\ncl : λX.λY.∀x.(X(x)→Y(x));
and, on the other hand,

2. “everyone”, i.e., (stb/(np\scr))/(np\scl) � (stb/(np\scr))/(np\scl) : λX.λY.∀x.

(X(x)→ Y(x)).

Now, by Lemmas 1 and 2, we know that left concepts Cl and right concepts Cr

are CG-lite-expressible, i.e., that there exist derivations for them rooted in np\scl �
np\scl : λx.ϕ(Cl, x) and np\scr � np\scr : λx.ϕ(Cr, x), resp.

When we combine such sequents with the entry for “every”, we obtain im-
mediately stb � stb : ∀x(ϕ(Cl, x) → ϕ(Cr, x)). In the case of “everyone”, we
need to combine them with the entry for “who”, viz., (np\swho)/(np\scl) �
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(np\swho)/(np\scl) : λP.λz.P (z), and we again derive stb � stb : ∀x(ϕ(Cl, x) →
ϕ(Cr, x)). �

For reasons of space, we omit the proof of the converse, viz., that every (com-
plete) sentence w in Lite-English expresses a DL-Lite

R,� assertion. It can be con-
structed in a manner similar to Theorem 1, by induction on CG-lite derivations, i.e.,
by showing how every CG-lite constituent of category n or np\scr (resp. n or n\scl)
gives rise to a right (resp. left) concept. Such constituents are then combined to-
gether into a sentence expressing an assertion via the function words “every” or by
“everyone who”. The sentential levels and the derivability relations that ensue (see
Sects. 5.2 and 5.3) prevent over-generation.
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Part III
Semantic Resources and Annotation



A Context-Change Semantics for Dialogue Acts

Harry Bunt

Abstract This chapter presents an update semantic for dialogue acts, defined in
terms of combinations of ‘elementary update functions’. This approach allows fine-
grained distinctions to be made between related types of dialogue acts, and relations
like entailment and exclusion between dialogue acts to be established. The approach
is applied to the inventory of dialogue act types in the DIT++ taxonomy, using di-
alogue act representations as defined in the Dialogue Act Markup Language (Di-
AML), which is part of the recently established ISO standard 24617-2 for dialogue
act annotation.

1 Introduction

The notion of a dialogue act plays a key role in studies of dialogue, in particular
in the analysis of communicative behaviour and in the design of spoken dialogue
systems and embodied conversational agents. In empirical studies of human con-
versation, dialogue acts are often used to characterize different types of commu-
nicative behaviour. In studies of utterance meaning, dialogue acts are used to relate
utterances to information states and how these are changed by communication. In
spoken dialogue systems, dialogue acts are used in dialogue management, i.e. in the
processes of deciding how to continue an ongoing dialogue.

Over the years, a variety of dialogue act inventories and taxonomies has emerged,
including the TRAINS inventory Allen et al. (1994); the MRDA annotation scheme
(Dhillon et al. 2004); the DIT taxonomy (Bunt 1994); the HCRC Map Task scheme
(Carletta et al. 1996); DAMSL (Allen and Core 1997), Switchboard-DAMSL (Ju-
rafsky et al. 1997); COCONUT (Di Eugenio et al. 1998), the Verbmobil scheme
(Alexandersson et al. 1998), the MALTUS tag set (Popescu-Belis 2004) and
the AMI (2005) annotation scheme (http://corpus.amiproject.org). Each of these
schemes has been used to build annotated dialogue corpora.
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In order to support the creation of interoperable annotated corpora, the Interna-
tional Organisation for Standards ISO has recently developed a standard for dia-
logue act annotation (ISO 24617-2 2012; see also Bunt et al. 2010, 2012), which
is largely based on the DIT++ taxonomy, a comprehensive domain-independent
schema which was constructed by adding to the DIT taxonomy a number of con-
cepts from DAMSL and other schemes and dialogue studies (see Bunt 2009 and
http://dit.uvt.nl).

DIT++ is based on the dynamic approach to utterance meaning of Dynamic In-
terpretation Theory (DIT), which views dialogue acts semantically as update opera-
tions on the information states of the dialogue participants; an approach that is also
known as the ‘information-state update’ or ‘context-change approach’ to utterance
meaning—see e.g. Bunt (2000), Traum and Larsson (2003). On this approach, the
two most important components of a dialogue act are its semantic content, which
describes the objects, properties, relations, or actions that the dialogue act is about,
and its communicative function, which specifies how an addressee should update
his information state with the semantic content.

Utterances are often multifunctional, i.e., they have more than one communica-
tive function. Dialogue analysis and annotation frameworks are therefore often
‘multidimensional’ in the sense of allowing the assignment of multiple dialogue
act tags to utterances; this is e.g. the case for DAMSL, COCONUT, and MRDA.
The multifunctionality of utterances is due not just to the fact that an utterance may
contain parts that have different functions, but also to the phenomenon that they may
contain segments that have more than one communicative function (see Bunt 2011).
In order to accurately describe the relation between dialogue acts and stretches of
speech, text, or other forms of communicative behaviour, the notion of a functional
segment has been introduced in the DIT++ annotation framework, defined as a min-
imal stretch of communicative behaviour that has at least one communicative func-
tion (Geertzen et al. 2007). Functional segments may be discontinuous, may over-
lap, may spread over multiple turns, and may contain parts contributed by different
speakers. The following dialogue fragment illustrates some of these phenomena.

(1) 1. A: could you tell me what departure times there are for flights to Frankfurt
on Saturday morning?

2. B: sure, there’s a Lufthansa flight at. . . let me see. . . 7.45, . . .
3. A: yes,
4. B: and a KLM flight at 08.15, . . .
5. A: yes,
6. B: and then there’s a flight by Philippine airlines, . . .

The response to A’s request includes an enumeration of items, which B communi-
cates one by one in separate turns (of which the example shows the first two items
and part of the third). B’s first utterance consists of several functional segments, of
which the first (“sure”) has the functions of taking the turn and accepting A’s re-
quest; the discontinuous second segment (“there’s a Lufthansa flight at [. . . ] 7.45”)
provides a part of the information that A requested while at the same time indicating
that there’s more to come; and the third segment that is embedded in the second (“let

http://dit.uvt.nl
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me see”) has a time management function (Stalling). In fact, the dialogue act pro-
viding the information that A requested corresponds to a discontinuous, multi-turn
functional segment formed by “there’s a Lufthansa flight at [. . . ] 7.45”, utterance 4,
utterance 6, and subsequent utterances containing further parts of B’s answer. A’s
utterance 3 “yes”, has (by virtue of its intonation) both the function of indicating
positive feedback (viz. that A has understood what B said and accepted the infor-
mation provided) and of giving the turn back to B, encouraging him to go on.

The multidimensional annotation schemes mentioned above use an implicitly
defined notion of dimension as a set of mutually exclusive tags. By contrast, Bunt
(2006) based the design of the DIT++ scheme on a notion of dimension which
reflects the observation that participation in a dialogue involves, beyond activities
strictly related to performing a certain task, also other types of communicative ac-
tivity such as a sharing information about understanding and accepting each other’s
utterances; monitoring contact and attention; managing the use of time; taking turns;
and correcting a speaking error made by oneself or by another speaker. A dimension
in dialogue act analysis is defined as corresponding to such a type of communica-
tive activity. Dialogue acts belonging to different dimensions are thus concerned
with different types of semantic content: feedback acts with the success of process-
ing previous utterances; turn management acts with the allocation of the speaker
role, task-related acts with the dialogue task; and so on. Dimensions thus classify
the semantic contents of dialogue acts.

Petukhova and Bunt (2009a,b) formulate criteria for distinguishing dimensions,
and apply these in the analysis of the structure of 18 existing annotation schemes.
They show that the DIT++ taxonomy has a well-founded set of ten dimensions (nine
of which have been retained in ISO standard 24617-2); namely:

(2) 1. Task/Activity: dialogue acts for performing the task or activity underlying
the dialogue;

2. Auto-Feedback: dialogue acts providing information about the speaker’s
processing of previous utterances;

3. Allo-Feedback: dialogue acts expressing opinions or eliciting information
about the addressee’s processing of previous utterances;

4. Contact Management: dialogue acts for establishing and maintaining con-
tact;

5. Turn Management: dialogue acts concerned with grabbing, keeping, giv-
ing, or accepting the speaker role;

6. Time Management: dialogue acts indicating that the speaker needs some
time to formulate his contribution;

7. Discourse Structuring: dialogue acts for explicitly structuring the conver-
sation;

8. Own Communication Management: dialogue acts for editing the speaker’s
current utterance;

9. Partner Communication Management: dialogue acts to assists or correct
the current speaker;

10. Social Obligations Management: dialogue acts that take care of social con-
ventions such as greetings, apologies, and expressions of gratitude.
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Some communicative functions are specific for a particular dimension; for in-
stance Turn Accept and Turn Release are specific for turn management; Stalling and
Pausing for time management. Other functions can be applied in any dimension; for
instance a Check Question can be used with task-related semantic content, but also
for checking correct understanding (feedback). More generally, all types of ques-
tion and inform can be used in any dimension, and the same is true of directive acts
such as Suggest, Request, Instruct, and Accept Offer, and of commissive acts such
as Offer, Promise, and Accept Request. These functions are called general-purpose
functions—see Fig. 1 in the Appendix, and http://dit.uvt.nl for the taxonomy of
general-purpose communicative functions of ISO 24617-2 and DIT++.

The dimension-specific communicative functions, which can only be used with a
particular type of semantic content to form a dialogue act in that particular dimen-
sion, also form a set with a hierarchical organization. The DIT++ and ISO 24617-2
taxonomies thus consist of two parts: a taxonomy of general-purpose functions and
one of dimension-specific functions. Figure 2 in the Appendix shows the taxonomies
of dimension-specific communicative functions in ISO 24617-2 and DIT++. There
are some differences between the two, since ISO 24617-2 does not have the Contact
Management dimension, lacks communicative functions for different levels of pro-
cessing for feedback, and lacks a few other fine-grained distinctions that are made
in DIT++.

This chapter describes a computational semantics for dialogue acts formed with
a communicative function of the DIT++ taxonomy. This description takes the form
of the definition of the semantics of the annotation language DiAML (Dialogue Act
Markup Language), which forms part of the ISO 24617-2 standard. Expressions in
DiAML describe dialogue act information, associated with a functional segment.
This information consists for each dialogue act of its communicative function; the
type of semantic content; the speaker and the addressee(s); semantic relations of
various kinds to other dialogue acts or functional segments; communicative function
qualifiers (if any); and the functional segment by which the dialogue act is expressed
(verbally, nonverbally, or with a combination of modalities). Section 2 describes the
DiAML language, with the way its semantics is organized, using operations that
update the dialogue participants’ information states. Section 3 discusses the notion
of information state, or ‘dialogue context’. Section 4 describes in some detail the
semantics of the DIT++ communicative functions. Section 5 draws general conclu-
sions and indicates perspectives for future work.

2 DiAML: Dialogue Act Markup Language

The Dialogue Act Markup Language (DiAML) has been designed in accordance
with the ISO Linguistic Annotation Framework,1 which makes a distinction be-
tween annotation and representation. The term ‘annotation’ refers to the linguistic
information that is added to segments of language data, independent of format; ‘rep-

1ISO 24612:2012; see also Ide and Romary (2004).

http://dit.uvt.nl
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resentation’ refers to the format in which an annotation is rendered, independent of
content. Annotation standards are required to be defined not at the level of a repre-
sentation formats, but at the more abstract level of annotations.

This distinction has been implemented in the DiAML definition by applying a
multilevel design methodology, called CASCADES (Bunt 2010, 2013a,b), which
defines an annotation language by means of a syntactic component that specifies, be-
sides a class of XML-based representation structures, also a class of set-theoretical
structures called annotation structures. These two parts of the definition are called
the concrete and the abstract syntax of the language, respectively.

2.1 Abstract Syntax

An abstract syntax consists of: (a) a specification of the elements from which anno-
tation structures are built up, called a ‘conceptual inventory’, and (b) a specification
of the possible ways of constructing annotation structures using these elements.

a. Conceptual Inventory The conceptual inventory of DiAML consists of six
finite sets:

1. a set of dimensions (ten in the case of DIT++; nine in ISO 24617-2);
2. a set of communicative functions;
3. a set of qualifiers, that can be associated with communicative functions; this set

is partitioned into subsets for different aspects of qualification, such as certainty,
conditionality, and sentiment;

4. a set of rhetorical relations, that can hold between dialogue acts or their content;
5. a set of dialogue participants;
6. a set of functional segments of primary data.

The set of functional segments is specific for a particular annotation task; since an-
notation means associating linguistic information with segments of primary data, an
annotation language must have elements for identifying relevant segments, which
in the case of dialogue act annotation correspond to functional segments. The set
of dialogue participants is also specific for a particular annotation task, and is as-
sumed to be specified in the metadata of the dialogue under consideration. The four
other sets of concepts in the conceptual inventory are independent of any particular
annotation task.

b. Annotation Structures An annotation structure is a set of two kinds of ele-
ments, called entity structures and link structures. An entity structure contains se-
mantic information about a functional segment; a link structure describes a seman-
tic relation between segments. Formally, an annotation structure is a set {ε1, . . . , εk,

L1, . . . ,Lm} of one or more entity structures εi and zero or more link structures Lj .
An entity structure in DiAML is a nested pair

(3) ε = 〈
s, 〈α,Δ〉〉
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consisting of a functional segment s, a ‘dialogue act structure’ α, which character-
izes a single dialogue act without the relations that it might have to other dialogue
units, and a ‘dependence structure’ Δ, which describes the semantic dependence
relations between the dialogue act α and other dialogue units.

A ‘dialogue act structure’ is a sixtuple

(4) α = 〈S,A,H,d,f, q〉
where S is the sender of the dialogue act; A is a non-empty set of addressees; H is
a (possibly empty) set of other dialogue participants (such as overhearers or side-
participants; see Clark 1996); d is a dimension; f is a communicative function;
and q is a (possibly empty) set of qualifiers. In order to avoid details which are
irrelevant to the purpose of this chapter, we will only consider cases where the set
H of participants who are neither speakers nor addressees is empty, and where there
is only a single addressee—we will use A to indicate this addressee, rather than the
set consisting of this lone addressee.

A ‘dependence structure’ is a pair consisting of a (possibly empty) set of entity
structures E, whose members α has a dependence relation with, and the element
δ which specifies the nature of a dependence relation (functional or feedback—see
below):

(5) Δ= 〈E,δ〉
The other kind of component of an annotation structure besides entity structures,

a link structure, is a triple consisting of an entity structure ε, a non-empty set E of
entity structures, and a rhetorical relation ρ, which relates the dialogue act α in ε to
the entity structures in E.

(6) L= 〈ε,E,ρ〉
The ‘dependence structures’ that an entity structure may contain2 and that make

entity structures potentially recursive, are semantic relations between a dialogue act
and one or more other units in dialogue that must be taken into account in order
to determine its semantic content. Two such relations are distinguished in DiAML,
called ‘functional dependence’ and ‘feedback dependence’.

A functional dependence relation occurs when a dialogue act is semantically de-
pendent on one or more dialogue acts that occurred earlier in the dialogue, due to
having a communicative function which is responsive in nature. This is for example
the case for answers, whose meaning is partly determined by the question which is
being answered, as is immediately obvious for an answer like “No”, whose meaning
depends almost entirely on the question that is answered. Similarly for the accep-
tance or rejection of offers, suggestions, requests (where “Yes” may illustrate the
point), and acceptance of apologies and thankings.

Feedback-providing and eliciting acts provide or elicit information about the pro-
cessing of something that was said earlier in the dialogue, such as its perception or

2If the set E in a dependence structure Δ = 〈E,δ〉 is empty, then this amounts to there being no
dependences. We will designate a dependence structure Δ= 〈∅, δ〉 by ∅.
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its interpretation, and their meaning often depends on that (or those) earlier con-
tribution(s) to the dialogue. Positive feedback utterances like “OK” and “Yes”, and
negative ones like “What?” and “Excuse me?” illustrate this phenomenon.

Responsive dialogue acts and feedback acts are semantically incomplete with-
out the specification of functional and feedback dependence relations, which are
therefore part of the entity structures that are used to annotate such acts.

A dialogue act may, finally, also be related to other dialogue acts through rhetor-
ical relations, as in (7).

(7) 1. A: it ties you on in terms of the technology and the complexity that you
want

2. A: like for example voice recognition
3. A: because you might need to power a microphone and other things

In this example, from the AMI corpus,3 we see three functional segments, where
the second segment is related to the first through an Exemplification relation, and
the third through an Explanation relation.

Different from functional and feedback dependence relations, rhetorical relations
are not part of the meaning of a dialogue act, but add semantic information to the
way a self-contained dialogue act is related to other dialogue acts (or how their
semantic contents are related—see Petukhova et al. 2010). They therefore turn up in
a different way in annotation structures, namely in link structures.

2.2 Concrete Syntax

The concrete syntax defines a rendering of annotation structures in a particular for-
mat, such as XML. It is defined in accordance with the methodology for defining
semantic annotation languages described in Bunt (2010, 2013a), which introduces
the notion of an ideal representation format, defined as one where (1) every an-
notation structure defined by the abstract syntax can be represented, and (2) every
representation represents one and only one annotation structure. The semantics of
the language is defined for the structures defined by the abstract syntax. This has
the effect that any two ‘ideal’ representation formats are semantically equivalent;
every representation in one such format can be converted by a meaning-preserving
mapping into any other such format.4 The representation format defined by the con-
crete syntax of DiAML is illustrated in (8). P2’s utterance is segmented into two
overlapping functional segments: one (fs2.1) in the Auto-Feedback dimension and
one (fs2.2) in the Task dimension (TA), with value ‘answer’ qualified as ‘uncertain’.

3http://corpus.amiproject.org
4See Bunt (2010) for formal definitions and proofs relating to alternative representation formats
sharing the same abstract syntax, and Bunt (2013a) for a procedure to derive a concrete syntax
from an abstract syntax.

http://corpus.amiproject.org
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(Values with a “#” prefix are defined outside the XML element in which they occur;
either in the metadata or in another layer of annotation.)

(8) a. Segmented dialogue fragment:

1. P1: What time does the next train to Utrecht leave?
TA: fs1: What time does the next train to Utrecht leave?

2. P2: The next train to Utrecht leaves I think at 8:32.
AuFB fs2.1: The next train to Utrecht leaves
TA fs2.2: The next train to Utrecht leaves I think at 8:32.

b. DiAML annotation structure:

AS = 〈{ε1, ε2, ε3},∅〉, where

– ε1 = 〈fs1, 〈α1,∅〉〉;
– ε2 = 〈fs2.1, 〈α2, 〈{fs1},feedback〉〉〉;
– ε3 = 〈fs2.2, 〈α3, 〈{α1},functional〉〉〉

c. DiAML representation:
<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id="da1" target="#fs1"

sender="#p1" addressee="#p2" dimension="task"
communicativeFunction="setQuestion"/>

<dialogueAct xml:id="da2" target="#fs2.1"
sender="#p2" addressee="#p1"
communicativeFunction="inform"
dimension="autoFeedback"
feedbackDependence="#fs1"/>

<dialogueAct xml:id="da3" target="#fs2.2"
sender="#p2" addressee="#p1" dimension="task"
communicativeFunction="answer"
certainty="uncertain"
functionalDependence="#da1"/>

</diaml>

2.3 DiAML Semantics

A dialogue act structure captures the functional part of a dialogue act; it does not
include the full semantic content but only a dimension which classifies the content.
The semantics of a dialogue act structure is therefore defined as a function that can
be applied to a given semantic content to form the interpretation of a full-blown
dialogue act. For a dialogue act without functional or feedback dependences this is
expressed by (9), which defines the interpretation Ia(〈s,α,∅〉) of the entity struc-
ture that associates the dialogue act structure α with the functional segment s. This
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interpretation is a function applied to the semantic content κ1(s) of that segment.

(9) Ia(ε)= Ia

(〈
s, 〈α,∅〉〉)= Ia(α)

(
κ1(s)

)

The interpretation Ia(ε) of a dialogue act structure without function qualifiers is
defined as the interpretation of its communicative function, applied to the interpre-
tations of the other components of the dialogue act structure, where the function F

assigns values to the constants of DiAML:

(10) Ia

(〈S,A,d,f 〉)= Ia(f )
(
F(S),F (A),F (d)

)

To the sender and an addressee of a dialogue act (S and A) the function F assigns
certain individuals, identified in the metadata of the dialogue; to the dimension ar-
gument d , a component is assigned of an Information State (IS) to be updated. The
interpretation of a dialogue act with communicative function qualifiers is discussed
in Sect. 4.2; if the communicative function f has no qualifiers, then Ia(f )= F(f );
see Sect. 4.1 for the definition of F(f ).

A link structure L= 〈ε,E,ρ〉 is interpreted semantically as a set of updates that
create rhetorical links between the representations of the dialogue acts in ε and E

in the participants’ ISs. This assumes that the dialogue acts that occur in a dialogue
are represented as such in an IS, an assumption that is commonly made in proposals
for dialogue context modelling (see Sect. 3). More specifically, the assumption is
that an IS has a part (the ‘Dialogue History’), where a record is kept of the commu-
nicative events in the dialogue, typically in the form of a transcription of what was
said, with an interpretation in terms of dialogue acts. The updates corresponding
to link structures then come down to the addition of rhetorical links between these
representations.

The semantics of an annotation structure {e1, . . . , en,L1, . . . ,Lk}, consisting of
the entity structures {e1, . . . , en} and the link structures {L1, . . . ,Lk}, is defined as
the sequential application of the update functions corresponding to the constituent
entity and link structures, following the textual order <T of their functional seg-
ments, where the update operations corresponding to textually coinciding (‘=T ’) en-
tity structures are unified rather than sequenced. This is expressed in (11), where the
notation ‘α ;/ ! β’ is used to indicate that the operation α should be followed (‘;’)
by the operation β if α <T β , and should be unified (!) if α =T β .

(11)
Ia

({e1, . . . , en,L1, . . . ,Lk}
)

= Ia(e1) ;/ ! . . . ;/ ! Ia(en) ;/ ! Ia(L1) ;/ ! . . . ;/ ! Ia(Lk)

The semantics of an entity structure with dependence relations is defined as fol-
lows, where sε is the functional segment of entity structure ε; fα is the commu-
nicative function of α; κ2a computes the semantic content of a dependent dialogue
act from its local content κ1(sε1) and the contents of the dialogue acts that α, de-
pends on (given the communicative function fα and the nature of the dependence
relation δ).

(12) Ia

(〈
s,α, 〈E,δ〉〉)= Ia(α)

(
κ2a

(
κ1(s),

{
κ1(sε)|ε ∈E

}
, fα, δ

))
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3 Context Model Structure and Content

3.1 Types of Context Information

As the proposed semantics of dialogue acts is in terms of IS updates, the question
arises as to what exactly is an information state in this context; what information
does it contain, and how is it structured. The dialogue act semantics described in this
chapter does not make any assumptions about a particular formalism that is used to
represent information states; proposals in the literature include Discourse Represen-
tation Structures (Poesio and Traum 1997); Constructive Type Theory (Ahn 2001);
Modular Partial Models (Bunt 2000); Record Types (Cooper 2004) and typed fea-
ture structures (Keizer et al. 2011; Petukhova et al. 2010). An IS is assumed to have
a number of components that contain different kinds of information, such as a dia-
logue history and a representation of the state of the underlying task or activity.

The details of an IS update semantics depend on whether only the information
state of an addressee is considered to be updated by dialogue acts, or also that of the
sender, and on whether these updates involve nested or mutual beliefs (as e.g. argued
in Bunt 1989). In this chapter we consider only the updates of a single addressee’s
information state; approaches involving multiple ISs and mutual beliefs are readily
extrapolated from this. In DIT, it is customary to speak of ‘contexts’ or ‘context
models’, rather than ‘information states’, and this terminology will also be used in
the rest of this chapter.

A requirement for an adequate notion of context model is that, for a given range
of dialogue act types, it contains the kinds of information that can be updated by a
dialogue act. For the dialogue acts of the DIT++ taxonomy, we require the context
models to include the following kinds of information: properties of the dialogue task
(and task domain); success/problems in processing previous utterances; allocation
of the speaker role; allocation of time; presence and contact; structuring of the dis-
course; success/problems in utterance production; social obligations and interactive
pressures. It can be argued (see Bunt 2000) that an agent’s context model does not
need to have a separate component for each dimension of the taxonomy, but that it
is convenient to distinguish the following five components:

(13) 1. Linguistic Context, which contains a record of the dialogue history, infor-
mation about discourse plans (if any), and preferences concerning the oc-
cupation of the speaker role;

2. Task Context, which contains the agent’s information and goals relating to
the dialogue task, as well as his assumptions about the dialogue partner’s
task-related goals and beliefs;

3. Cognitive Context, which contains information about the agent’s cognitive
processes concerned with the processing and production of dialogue utter-
ances, including time estimates for these processes;

4. Physical/Perceptual Context, which contains information about physical
and perceptual properties of the interactive situation;

5. Social Context, which contains information relevant for interpreting and
generating ‘social’ acts like greetings, apologies, expressions of gratitude.
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Versions of such a 5-component context model have been implemented in the
PARADIME dialogue manager (Keizer and Bunt 2006, 2007; Keizer et al. 2011)
and for theoretical studies by Petukhova et al. (2010).

A context-update semantics has to take into account that update operations
should not undermine the consistency of the context model. A dialogue participant
may for example change his mind on something in the course of a dialogue, pos-
sibly as an effect of receiving new information which contradicts something that
the participant believed. Updates are therefore not simply additions of information.
Rather then building consistency checks into the semantics of each dialogue act, we
exploit the DIT distinction of several levels of utterance processing: (1) attending,
(2) perceiving, (3) understanding, (4) evaluating, and (5) executing. The level of
understanding determines the meaning of a dialogue segment in terms of dialogue
acts. The evaluation level checks whether the corresponding updates would keep
the current context model consistent. If so, the updates are performed. One way
to implement this approach is to add to a context model a part called the pending
context, which serves as a buffer for items to be inserted in the main context once
their consistency with the current content of the main context has been established.5

Updating the pending context is then simply a matter of adding items to it. For con-
venience we will assume the pending context A∗ of an agent A’s context model to
be structured in the same way as the main context; a piece of information which
is found to be consistent with the main context can then simply be moved from its
pending context component to the corresponding component of the main context.
The notation (14) will be used to designate the operation of adding the informa-
tion z to component A∗i of A’s pending context:

(14) A∗i =+z

3.2 Semantic Primitives

The definitions of the communicative functions in the DIT++ and ISO 24617-2 tax-
onomies make use of a number of formal concepts needed to describe update effects.
This involves such concepts as an agent believing something, an agent wanting to
know something, and an agent being committed to do something. Table 1 lists the
basic concepts that are required for formulating the update semantics of dialogue
acts with a general-purpose function, with the terms used to designate them in the
rest of this chapter.

For convenience, we introduce the following abbreviations: Bel(S,p) abbre-
viates Bel(S,p,firm); Wk-Bel(S,p) abbreviates Bel(S,p,weak); Assumes(S,p)

abbreviates Bel(S,p) ∨ Wk-Bel(S,p). In all action-related attitude operators we
suppress the argument # representing the ‘empty’ condition, hence WilDo(S,α)

abbreviates WilDo(S,α,#), and so on. These semantic primitives are similar to

5This approach has been implemented in the multimodal DenK dialogue system; see Kievit et al.
(2001).
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Table 1 Semantic primitives for the interpretation of general-purpose communicative functions.
(Cα may be the universally true condition #.)

Description Notation Meaning

believes that Bel(S,p,σ ) S believes that p; σ indicates the
strength of this belief (σ = ‘firm’ or
σ = ‘weak’)

knows value of Know-val(S, z) S possesses the information z

has goal Want(S,p) S has the goal that p

is able to do CanDo(S,α) S is able to perform the action α

is willing to do WilDo(S,α,Cα) S is willing to perform the action α

if the condition Cα is satisfied

is committed to do CommitDo(S,α,Cα) S is committed to perform the action
α if the condition Cα is satisfied

is committed to
refrain from doing

RefrainDo(S,α,Cα) S is committed to refrain from
performing the action α if the
condition Cα is satisfied

is considering ConsidDo(X,α,Y,Cα) X is considering the performance of
action α by agent Y , if condition Cα

is satisfied

is in the interest of Interest(Y,α) action α is in the interest of agent Y

Table 2 Dimension-specific semantic primitives

Dimension Primitives

Auto- and Allo-Feedback Attended, Perceived, Understood, Accepted,
Executed, Success-Processing

Turn Management Current-Speaker, Next-Speaker

Time Management Time-Need, small, substantial

Contact Management Present

Discourse Structuring Ready, Available, Start-Dialogue, Close-Dialogue

Own and Partner Communication Man. Delete, Replace, Append

Social Obligations Management Available, Thankful, Regretful, Knows-id, Final

those proposed by Poesio and Traum in their axiomatization of dialogue acts (Poe-
sio and Traum 1997), which is however limited to a small set of general-purpose
functions and positive auto-feedback functions, and does not consider the other di-
mensions, nor communicative function qualifiers.

Since dimension-specific communicative functions are concerned with a specific
kind of semantic content, certain specific semantic primitives are required for rep-
resenting their semantics; these are listed in Table 2.

For expressing the semantics of a feedback act, we must distinguish between
feedback functions which indicate a certain level of processing, and those that do
not. The taxonomy of dimension-specific communicative functions for feedback
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in DIT++ is based on the distinction of five levels of processing that a feedback
act may address: attending, perceiving, understanding, evaluating and executing. At
each of these levels, positive auto-feedback reports that the sender believes his pro-
cessing of one or more previous utterances to be sufficiently successful to go on, not
requiring a repetition or clarification; negative feedback reports that the sender does
not believe that. Similarly, positive allo-feedback reports that the sender believes
that the addressee did process one or more utterances successfully, and negative
allo-feedback that this is not the case. The semantics of feedback acts which are
specific about the level of processing that they refer to, requires the semantic primi-
tives mentioned in Table 2.

Since feedback acts are often not specific for a particular level of processing,
DIT++ also has level-unspecific feedback functions: one for level-unspecific posi-
tive auto-feedback, one for negative auto-feedback, one for positive allo-feedback,
one for negative allo-feedback, and one for feedback elicitation. The ISO 24617-2
standard has only these level-unspecific functions. A study reported in Bunt (2012)
shows that the dialogue participants interpret level-unspecific feedback acts in dif-
ferent ways depending on the interactive setting, and therefore introduces a semantic
primitive Success-Processing whose interpretation is context-dependent, one com-
mon interpretation being “Well understood and possibly also accepted and executed
successfully”—see Bunt (2012) for details. This primitive has therefore been added
to the level-specific primitives in Table 2.

4 Dialogue Act Interpretation

The definition of the semantics of the communicative functions in the DIT++ and
ISO 24617-2 taxonomies is organized in a way that exploits the hierarchical struc-
ture of these taxonomies, which reflects the phenomenon that some communicative
functions are specializations of others. For example, a confirmation is a special kind
of answer, and an answer is a special kind of inform (namely an inform in response
to a question); this is reflected in the taxonomy by the communicative function In-
form dominating the Answer function, which in turn dominates the Confirm func-
tion.

An update semantics of dialogue acts with an Inform, an Answer, or a Confirm
function should bring this out by having in common that in all three cases (1) the
speaker wants to make certain information available to the addressee, and (2) the
speaker assumes that this information is correct. These are (minimally) the updates
of an Inform act. An Answer act has additional update effects, reflecting that (3) the
speaker believes that the addressee wanted to obtain this information; and (4) the
addressee assumed that the speaker possessed the requested information. A Confirm
act has a further additional update effect, reflecting that (5) the speaker believes
that the addressee had an uncertain belief that this information was correct. The
DiAML semantics described below therefore makes use of so-called elementary
update functions, which update an information state with a single information item,
such as (1) or (2) in this example.
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Table 3 Update semantics for information-providing and information-seeking communicative
functions

F (Inform) = λs.λX.λY.λDi .λp.U1(X,Y,Di,p, s) !U2(X,Y,Di,p, s)

F (Agreement) = λs.λX.λY.λDi .λp.U1(X,Y,Di,p, s) !U2(X,Y,Di,p, s)

!U5(X,Y,Di,p)

F (Disagreement) = λs.λX.λY.λDi .λp.U1(X,Y,Di,¬p, s) !U2(X,Y,Di,¬p, s)

!U5(X,Y,Di,p)

F (Correction) = λs.λX.λY.λDi .λp.U1(X,Y,Di,p1, s) !U2(X,Y,Di,¬p1, s)

!U6(X,Y,Di,p2)

F (Answer) = λs.λX.λY.λDi .λp.U1(X,Y,Di,p, s) !U2(X,Y,Di,p, s)

!U9(X,Y,Di,p) !U7(X,Y,Di,p)

F (Confirm) = λs.λX.λY.λDi .λp.U1(X,Y,Di,p, s) !U2(X,Y,Di,p, s)

!U8(X,Y,Di,p) !U9(X,Y,Di,p, s) !U7(X,Y,Di,p)

F (Disconfirm) = λs.λX.λY.λDi .λp.U1(X,Y,Di,¬p, s) !U2(X,Y,Di,¬p, s)

!U8(X,Y,Di,p, s) !U9(X,Y,Di,p) !U7(X,Y,Di,p)

F (Question) = λX.λY.λDi.λz.U10(X,Y,Di, z) !U11(X,Y,Di, z)

F (Prop.Question) = λX.λY.λDi.λp.U10(X,Y,Di,p) !U11(X,Y,Di,p) !U12(X,Y,Di,p)

F (CheckQuestion) = λX.λY.λDi.λp.U10(X,Y,Di,p) !U11(X,Y,Di,p) !U4(X,Y,Di,p)

F (SetQuestion) = λX.λY.λDi.λz.U10(X,Y,Di, z) !U11(X,Y,Di, z) !U13(X,Y,Di, z)

F (ChoiceQuestion) = λX.λY.λDi.λp.U15a(X,Y,Di,p) !U15(X,Y,Di,p) !U16(X,Y,Di,p)

Table 4 Elementary update functions used in the semantics of information-transfer functions

U1(X,Y,Di,p, s) Y∗i =+Bel(Y,Want(X,Bel(Y,p, s)))

U2(X,Y,Di,p, s) Y∗i =+Bel(Y,Bel(X,p, s))

U3(X,Y,Di,p) Y∗i =+Bel(Y,Assume(X,p))

U4(X,Y,Di,p) Y∗i =+Bel(Y,Wk-Bel(X,p))

U5(X,Y,Di,p) Y∗i =+Bel(Y,Bel(X,Assume(Y,p)))

U6(X,Y,Di,p) Y∗i =+Bel(Y,Assume(X,Assume(Y,p)))

U7(X,Y,Di,P ) Y∗i =+Bel(Y,Bel(X,Assume(Y,Know-val(X,P ))))

U8(X,Y,Di,p) Y∗i =+Bel(Y,Assume(X,Wk-Bel(Y,p)))

U9(X,Y,Di,P ) Y∗i =+Bel(Y,Bel(X,Want(Y,Know-val(Y,P ))))

U10(X,Y,Di,P ) Y∗i =+Bel(Y,Want(X,Know-val(X,P )))

U11(X,Y,Di,P ) Y∗i =+Bel(Y,Assume(X,Know-val(Y,P )))

U12(X,Y,Di,p) Y∗i =+Bel(Y,Bel(X,p ∨¬p))

U13(X,Y,Di,P ) Y∗i =+Bel(Y,Assume(X,∃x.P (x)))

U14(X,Y,Di,P ) Y∗i =+Bel(Y,Want(X,Know-val(X,P )))

U15(X,Y,Di,p) Y∗i =+Bel(Y,Assume(X,p1 xor p2))

U15a(X,Y,Di,p) Y∗i =+Bel(Y,Want(X,Bel(X,p1)∨Bel(X,p2)))

U16(X,Y,Di,p) Y∗i =+Bel(Y,Assume(X,Bel(Y,p1)∨Bel(Y,p2)))

The update semantics of the Inform function, as specified in Table 3, is defined as
the combination of the elementary update functions U1 and U2 (defined in Table 4),
which perform the updates illustrated by (1) and (2). The update semantics of the
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Answer function shares the use of U1 and U2 with that of the Inform function,
and adds to that the effects of the elementary update functions U7 and U9 (defined
in Table 4); the semantics of the Confirm function further adds to that the update
defined by U8.

4.1 The Semantics of Communicative Functions

4.1.1 General-Purpose Communicative Functions

The class of general-purpose communicative functions in ISO 24617-2 and DIT++
falls apart into information-transfer functions and action-discussion functions, fur-
ther subdivided into information-providing and information-seeking functions, and
commissives and directives, respectively (see Appendix). We first consider the class
of information-transfer functions.

a. Information-Providing and Information-Seeking Functions The hierarchy
of information-providing functions has the function Inform as the mother of all
information-providing functions; all other functions are specializations of this func-
tion, and therefore have in common that the speaker wants the addressee to possess
certain information which the speaker assumes to be correct.

Using the epistemic operators introduced in Sect. 3.2, these conditions can be
formalized as sown in (15), where (15.b) says that the speaker S believes that the
content p is true, with certainty σ and (15a) says that S wants the addressee A to
also have that belief.

(15) a. Want(S,Bel(A,p,σ ))

b. Bel(A,p,σ )

When addressee A understands an utterance by S as an Inform with the content
denoted by p, then the update effects on the pending context part of A’s IS will be
that A believes that the two conditions in (15) hold.

If a speaker is uncertain about the content of an Answer or an Inform (σ = weak),
then his goal cannot be that the addressee believes for sure that the content is true;
if, on the other hand, the speaker is certain, then it would be strange if he would
want the addressee to be uncertain. The argument σ should therefore have the same
value in both conditions in (15). The semantics of the Inform function, specified in
Table 3, has this effect. (See also below, Sect. 4.2, on certainty qualifiers.)

As an illustration of the update semantics of information-providing functions,
consider the case of the answer in (16.2).

(16) 1. D: twenty-five euros, how much is that in pounds?
2. C: twenty-five euros is something like 20 pounds

Applying the semantics of the Answer function (see Table 3) to the participants
C and D and the semantic content of (16.2), we obtain:



192 H. Bunt

Table 5 Update semantics for commissive and directive functions (selection)

F (Offer) = λCα.λX.λY.λDi .λα.U25a(X,Y,Di,α) !U20(X,Y,Di,α,Cα)

F (AddressRequest) = λCα.λX.λY.λDi .λα.U17a(X,Y,Di,α,Cα) !U18(X,Y,Di,α)

!U26b(X,Y,Di,α)

F (AcceptRequest) = λCα.λX.λY.λDi .λα.U17(X,Y,Di,α,Cα) !U18(X,Y,Di,α)

!U26b(X,Y,Di,α)

F (DeclineRequest) = λCα.λX.λY.λDi .λα.U27(X,Y,Di,α,Cα) !U18(X,Y,Di,α)

!U26b(X,Y,Di,α)

F (Request) = λCα.λX.λY.λDi .λα.U23(X,Y,Di,α,Cα) !U26(X,Y,Di,α)

F (Instruct) = λCα.λX.λY.λDi .λα.U24(X,Y,Di,α,Cα) !U26(X,Y,Di,α)

!U25(X,Y,Di,α)

F (AddressOffer) = λCα.λX.λY.λDi .λα.U17b(X,Y,Di,α,Cα) !U25(X,Y,Di,α)

!U25b(X,Y,Di,α)

F (AcceptOffer) = λCα.λX.λY.λDi .λα.U24(X,Y,Di,α) !U25(X,Y,Di,α)

!U25b(X,Y,Di,α)

(17)

F(Answer)(C,D,Task,e25= £20)

=U1(C,D,TaskC, e25 = £20)

! U2(C,D,Task, e25 = £20)

! U9(C,D,Task, e25 = £20)

! U7(C,D,Task, e25 = £20)

=D∗TaskC =+Bel(D,Want(C,Bel(D,e25 = £20)));
D∗TaskC =+Bel(D,Bel(C,e25 = £20));
D∗TaskC =+Bel(D,Bel(C,Want(D,Know-val(D,e25 = £20))));
D∗TaskC =+Bel(D,Bel(C,Assume(D,Know-val(C,e25= £20))))

Hence the following beliefs are added to D’s pending Task Context:

(18) (1) C wants D to know that e25 = £20;
(2) C believes that e25 = £20;
(3) C believes that D wants to know whether e25 = £20;
(4) C believes that D assumes C to know whether e25 = £20.

b. Commissive and Directive Functions Table 5 specifies the semantics of a
representative selection of the commissive and directive communicative functions;
Table 6 defines the elementary update functions used in the semantics of these func-
tions.

As an example of the interpretation of a directive dialogue act, consider the re-
quest in (19.2):

(19) 1. B: (. . . )
2. A: Please repeat that

Applied to the participants A and B and the semantic content Repeat(u1), which
situates the Request act in the Auto-Feedback dimension, the definition of the Re-
quest semantics in Table 5 leads to the update (20) (where ‘CC’ stands for Cognitive
Context):
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Table 6 Elementary update functions used in the semantics of action-discussion functions

U17(X,Y,Di,α,Cα) Y∗i =+Bel(Y,CommitDo(X,α,Cα))

U17a(X,Y,Di,α,Cα) Y∗i =+Bel(Y,ConsidDo(X,α,X,Cα))

U17b(X,Y,Di,α,Cα) Y∗i =+Bel(Y,ConsidDo(X,α,Y,Cα))

U18(X,Y,Di,α) Y∗i =+Bel(Y,Bel(X,Want(Y,CommitDo(X,α,Cα))))

U20(X,Y,Di,α,Cα) Y∗i =+Bel(Y,WilDo(X,α,Cα))

U21(X,Y,Di,α) Y∗i =+Bel(Y,Bel(X, Interest(α,Y )))

U23(X,Y,Di,α) Y∗i =+Bel(Y,Want(X, [WilDo(Y,α,Cα)→CommitDo(Y,α,Cα)]))
U24(X,Y,Di,α) Y∗i =+Bel(Y,Want(X,CommitDo(Y,α)))

U25(X,Y,Di,α,Cα) Y∗i =+Bel(Y,Bel(X,WilDo(Y,α,Cα)))

U25a(X,Y,Di,α,Cα) Y∗i =+Bel(Y,Want(X,Bel(Y,WilDo(X,α,Cα))))

U25b(X,Y,Di,α,Cα) Y∗i =+Bel(Y,Bel(X,Want(Y,Bel(X,WilDo(Y,α,Cα)))))

U26(X,Y,Di,α) Y∗i =+Bel(Y,Assume(X,CanDo(Y,α)))

U26b(X,Y,Di,α) Y∗i =+Bel(Y,Bel(X,Assume(Y,CanDo(X,α))))

U27(X,Y,Di,α,Cα) Y∗i =+Bel(Y,CommitRefrain(X,α,Cα))

(20)

F(Request)(A,B,Auto-Feedback, 〈Repeat(u1),unconditional〉)
= λCα.λX.λY.λDi.λα.U23(X,Y,Di,α,Cα)

! U26(X,Y,Di,α)(A,B,Auto-Feedback, Repeat(u1),#)

=U23(A,B,CC,Repeat(u1),#) !U26(A,B,CC,Repeat(u1))

= B∗CC =+Bel(B,Want(A, [WilDo(A,Repeat(u1)→
CommitDo(B,Repeat(u1))]));

B∗CC =+Bel(B,Assume(A,CanDo(B,Repeat(u1))))

In words, B’s pending cognitive context is extended with two beliefs: (1) that A

wants B to commit himself to repeating the previous utterance, if he is willing to do
so; (2) that A assumes B is able to repeat that utterance.

4.1.2 Dimension-Specific Communicative Functions

Feedback Functions The communicative functions for providing and eliciting
feedback in DIT++ fall apart in those concerned with the speaker’s own processing
of previous utterances (Auto-Feedback) and those concerned with the addressee’s
processing, as perceived by the speaker (Allo-Feedback). The elementary update
functions for these two dimensions are nearly identical, differing only in whose
processing is concerned. Tables 7 and 8 show the update semantics of a small, rep-
resentative subset of the (altogether twenty-five) DIT++ communicative functions
for providing and eliciting feedback.

Turn Management Functions The communicative functions for turn manage-
ment serve to decide who has or will have the speaker role. The functions for tak-
ing, accepting, grabbing, keeping, releasing, or assigning the turn are therefore all
defined in terms of who currently occupies the speaker role and who wants or should
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Table 7 Elementary update functions for the semantics of auto- and allo-feedback functions (se-
lection)

U31(X,Y, z) Y∗CC =+Bel(Y,Want(X,Bel(Y,Success-Processing(X, z))))

U33(X,Y, z) Y∗CC =+Bel(Y,Want(X,Bel(Y,Perceived(X, z))))

U35(X,Y, z) Y∗CC =+Bel(Y,Want(X,Bel(Y,Accepted(X, z))))

U79(X,Y, z) Y∗CC =+Bel(Y,Want(X,Bel(Y,Perception-Problem(Y, z))))

U76(X,Y, z) Y∗CC =+Bel(Y,Want(X,Bel(Y,Execution-Problem(Y, z))))

U61(X,Y, z) Y∗CC =+Bel(Y,Bel(X,Success-Processing(X, z)))

U62(X,Y, z) Y∗CC =+Bel(Y,Bel(X,Perceived(X, z)))

U64(X,Y, z) Y∗CC =+Bel(Y,Bel(X,Accepted(X, z)))

U67(X,Y, z) Y∗CC =+Bel(Y,Bel(X,Perception-Problem(X, z)))

U85(X,Y, z) Y∗CC =+Bel(Y,Bel(X,Execution-Problem(Y, z)))

Table 8 Semantics of feedback functions (selection)

F (AutoPositive) = λX.λY.λz.U31(X,Y, z) !U61(X,Y, z)

F (AlloPerceptionNegative) = λX.λY.λz.U33(X,Y, z) !U62(X,Y, z)

F (AutoEvaluationPositive) = λX.λY.λz.U35(X,Y, z) !U64(X,Y, z)

F (AlloExecutionNegative) = λX.λY.λz.U76(X,Y, z) !U85(X,Y, z)

have it next. Table 9 defines the semantics of these functions, using the elementary
update functions defined in Table 10.

For example, assigning the turn to a dialogue partner (using a Turn Assign
function) means that the participant who currently occupies the speaker role
wants the indicated other participant to occupy the speaker role next. This is ex-
pressed in the form of a combination of elementary update functions as shown
in (21):

(21)

F(TurnAssign)(A,B)

= λX.λY.[U101(X,Y ) !U102(X,Y )](A,B)

=U101(A,B,TurnM) !U102(A,B)

= B∗LiC =+Bel(B,Bel(A,Current-Speaker(A)))

B∗LiC =+Bel(B,Want(A,Next-Speaker(B)))

In other words, the Linguistic Context component of B’s pending context is up-
dated to contain the beliefs that A is the current speaker and wants B to be the next
speaker.

Time Management Functions Time management acts are used by a speaker
to indicate that he needs some time to compose his utterance, as signalled for in-
stance by protracting (decreasing the speech tempo) or by filled pauses; or that
he needs so much time that he suspends the dialogue as in “Just a moment”. The
semantics of such acts requires a context model that contains information about
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Table 9 Elementary update functions for the semantics of turn management functions

U101(X,Y ) Y∗LiC =+Bel(Y,Bel(X,Current-Speaker(X)))

U102(X,Y ) Y∗LiC =+Bel(Y,Want(X,Next-Speaker(Y )))

U103(X,Y ) Y∗LiC =+Bel(Y,Bel(X,Current-Speaker(Y )))

U104(X,Y ) Y∗LiC =+Bel(Y,Wants(X,Current-Speaker(X)))

U105(X,Y ) Y∗LiC =+Bel(Y,Wants(X,Next-Speaker(X)))

U105(X,Y ) Y∗LiC =+Bel(Y,Want(X,¬Next-Speaker(X)))

U107(X,Y ) Y∗LiC =+Bel(Y,Bel(X,¬Next-Speaker(X)∧¬Next-Speaker(Y )))

U108(X,Y ) Y∗LiC =+Bel(Y,Bel(X,Want(Y,Next-Speaker(X))))

Table 10 Update semantics
of turn management functions F (TurnAccept) = λX.λY.U103(X,Y )!U105(X,Y )!U107(X,Y )

F (TurnAssign) = λX.λY.U101(X,Y ) !U102(X,Y )

F (TurnGrab) = λX.λY.U103(X,Y ) !U104(X,Y )

F (TurnKeep) = λX.λY.U101(X,Y ) !U105(X,Y )

F (TurnRelease) = λX.λY.U101(X,Y ) !U106(X,Y )

F (TurnTake) = λX.λY.U105(X,Y ) !U107(X,Y )

Table 11 Elementary update
functions for the semantics of
time management functions

U111(X,Y,CC) Y∗CC =+Bel(Y,TimeNeed(X, small))

U112(X,Y,CC) Y∗CC =+Bel(Y,TimeNeed(X, substantial))

the amount of time needed by certain cognitive processes; the DIT context model
therefore assumes the representation of estimates of amount of time to be repre-
sented in the Cognitive Context component, which also contains other informa-
tion about the speaker’s utterance processing and generation. In natural human
communication such estimates are rough; an expression like “Just a minute” does
not mean that the speaker thinks he needs one minute to process the utterance in
question. The semantic primitives needed for the semantics of dimension-specific
dialogue act (see Table 2) therefore include only the time estimates ‘small’ and
‘substantial’, which is adequate for interpreting the two time management func-
tions in ISO 24617-2 and DIT++: ‘small’ for Stalling and ‘substantial’ for Paus-
ing.

Consider for example the update semantics of a Stalling act, which uses the ele-
mentary update scheme U111, defined in Table 11:

(22)

Ia(〈Sys,Usr,TimeM, Stalling〉)
= (Stalling)(Sys,Usr,CC)

=U111(Sys,Usr,CC,Time-Need(Sys, small))
=Usr′CC =+Bel(Usr,TimeNeed(Sys, small))

This update operation adds to the pending cognitive context of Usr the information
that Sys needs a small amount of time.
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Table 12 Specification of the
semantics of communicative
function qualifiers

F (certain) = ‘firm’

F (uncertain) = ‘weak’

F (conditional) = ‘cond’

F (unconditional) =# (the ‘empty’ condition)

F (sentimentk) = λX.λY.λa.U500(X,Y,SPk, a)

Other Communicative Functions The semantics of the dimension-specific com-
municative functions for Contact Management, Discourse Structuring, Own Com-
munication Management, Partner Communication Management, and Social Obliga-
tions Management is similar to that of the dimension-specific communicative func-
tions considered above, and can be derived from their definitions as specified in ISO
24617-2 and at http://dit.uvt.nl; the most important difference is the use of other,
dimension-specific semantic primitives.

4.2 Communicative Function Qualifiers

Communicative function qualifiers (Petukhova and Bunt 2010) make the IS updates
of the communicative functions that they qualify more specific. Qualifiers come in
two varieties, “restrictive” and “additive” ones. Restrictive qualifiers make the pre-
conditions of a communicative function more elaborate, for instance specifying for
an answer that there is some uncertainty about the correctness of its content. Ad-
ditive qualifiers, by contrast, enrich a communicative function with additional in-
formation, for instance adding that an offer is accepted happily. ISO 24617-2 and
DIT++ have two classes of restrictive qualifiers, for expressing uncertainty and con-
ditionality, and one class of additive qualifiers, for expressing sentiment. Certainty
qualifiers can apply only to information-providing functions; conditionality only to
action-discussion functions. Sentiment qualifiers can apply to every communicative
function.

The following clauses in the definition of the interpretation function Ia specify
the semantic interpretation of a communicative function qualified by a restrictive
qualifier, by an additive one, and by both a restrictive and an additive one, respec-
tively:

(23) a. Ia(〈f,qr 〉)= Ia(f )(F (qr))

b. Ia(〈f,qa〉)= λS.λz.[F(f )(S, z) ! F(qa)(S, z)]
c. Ia(〈fi, qr , qa〉)= λS.λz.[((Ia(fi))(F (qr )))(S, z) ! F(qa)(S, z)]

The semantics of each of the individual qualifiers is defined in Table 12, with the
elementary update function U500 defined as in (24), where SPk stands for a predicate
that represents a particular sentiment (see Table 12, bottom line).

(24) U500(X,Y,SPk, a) : Y∗CC =+Bel(Y,SPk(X,a))

http://dit.uvt.nl


A Context-Change Semantics for Dialogue Acts 197

We consider two examples. The first concerns a restrictive qualifier, illustrating
the semantics of an answer qualified as uncertain, as in (25) (where tdp5 abbreviates
the proposition that the train to Tilburg leaves from platform 5):

(25) 1. A: Does the train to Tilburg leave from platform 5?
2. B: I think so, probably yes.

Ia(〈Answer, uncertain〉)(B,A,Task, tdp5)=
A∗TaskC =+Bel(A,Want(B,Bel(A, tdp5,weak)));
A∗TaskC =+Bel(A,Bel(B, tdp5,weak));
A∗TaskC =+Bel(A,Bel(B,Want(A,Know-val(A, tdp5))));
A∗TaskC =+Bel(A,Bel(B,Assume(A,Know-val(B, tdp5))))

This means that A’s pending task context is extended with the following pieces
of information:

(26) 1. Bel(B, tdp5,weak), or equivalently: Wk-Bel(B, tdp5); i.e., B holds the un-
certain belief that tdp5;

2. Want(B,Wk-Bel(A, tdp5)), i.e. B has the goal that A also holds this un-
certain belief;

3. Bel(B,Want(A,Know-val(A, tdp5))), i.e. B believes that A wants to
know whether tdp5;

4. Bel(B,Assume(A,Know-val(B, tdp5))): B believes that A assumes that
B knows whether tdp5.

The second example concerns the use of both a restrictive and an additive qualifier,
illustrated by the semantics (using (23c)) of an unconditional Accept Offer with a
happy sentiment, as in (27).

(27) 1. A: How about a cup of coffee?
2. B: Oh yes, that would be wonderful!

(28)

Ia(〈AcceptOffer, unconditional, happy〉)
= λS.λz.[[Ia(AcceptOffer)(Ia(unconditional))](S, z) ! [Ia(happy)](S, z)]
= λS.λz.[[[λX.λY.λDi.λα.λCα.U24(X,Y,Di,α) !U25(X,Y,Di,α,Cα)

! U25b(X,Y,Di,α,Cα)](#)](S, z) !U500(X,Y, HAPPY, α)(S, z)]
= λS.λz.λY.λDi.[U24(S,Y,Di, z) !U25(S,Y,Di, z,#)

! U25b(S,Y,Di, z,#) !U500(X,Y, HAPPY, z)]
Applied to the participants A and B and the action of having coffee, we obtain:

(29)

A∗Task =+Bel(A,Want(B,CommitDo(A,have_coffee)));
A∗Task =+Bel(A,Bel(B,WilDo(A,have_coffee)));
A∗Task =+Bel(A,Bel(B,Want(A,Bel(B,WilDo(A,have_coffee)))));
A∗CC =+Bel(A, HAPPY(B,have_coffee))

In other words, A’s pending context is extended with the beliefs that B wants A

to commit himself to arrange coffee; that A is willing to do so; that A wants B to
believe that; and that B would be happy to get some coffee.
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5 Conclusion

In this chapter we have provided a computational semantics of dialogue acts in the
form of updates of an addressee’s information state. We have formulated this in the
form of a semantics for the annotation structures defined by the abstract syntax of
the language DiAML, the Dialogue Act Markup Language for semantic annotation,
which forms part of ISO standard 24617-2 for dialogue annotation. The semantics
as described in this chapter abstracts away from many of the details concerning
the ‘information states’ or ‘context models’ of dialogue participants, to which the
update operations apply, but by way of example we have adopted some of the as-
sumptions of Dynamic Interpretation Theory regarding the structure and content of
context models, and we have shown how such a choice can be useful for implement-
ing update operations for the interpretation of dialogue acts.

This semantics provides an essential part of the foundations of the ISO standard
for dialogue annotation, as well as of the DIT++ taxonomy of dialogue acts, which
slightly extends the ISO standard. Both the ISO 24617-2 and the DIT++ annotation
schemes go beyond what is commonly done in dialogue act annotation in not just
indicating the communicative functions of utterances but also certain ways in which
these functions may be qualified for uncertainty, conditionality, or sentiment, and
also indicating functional dependence relations, feedback dependence relations, and
rhetorical relations between dialogue acts and other dialogue units. The semantics
described in this chapter takes these extensions into account.

Future work includes computer implementation, testing and evaluation of con-
text models and their use in dialogue act interpretation and dialogue act generation
for the entire ISO 24617-2 and DIT++ taxonomies, extending the partial implemen-
tations of Petukhova et al. (2010) and Keizer et al. (2011).
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Fig. 1 General-purpose communicative functions in ISO 24617-2 and DIT++

Fig. 2 Dimension-specific communicative functions in ISO 24617-2 and DIT++. Functions and
dimensions in italics are defined only in DIT++
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VerbNet Class Assignment as a WSD Task

Susan Windisch Brown, Dmitriy Dligach, and Martha Palmer

Abstract The VerbNet lexical resource classifies English verbs based on semantic
and syntactic regularities and has been used for numerous NLP tasks, most notably,
semantic role labeling. Since, in addition to thematic roles, it also provides semantic
predicates, it can serve as a foundation for further inferencing. Many verbs belong
to multiple VerbNet classes, with each class membership corresponding roughly to
a different sense of the verb. A VerbNet token classifier is essential for current appli-
cations using the resource and could provide the basis for a deep semantic parsing
system, one that made full use of VerbNet’s extensive syntactic and semantic infor-
mation. We describe our VerbNet classifier, which uses rich syntactic and semantic
features to label verb instances with their appropriate VerbNet class. It achieves an
accuracy of 88.67 % with multiclass verbs, which is a 49 % error reduction over the
most frequent class baseline.

1 Introduction

Rich verb representations are central to deep semantic parsing, requiring the identi-
fication of not only a verb’s meaning but also how it connects the participants in the
sentence. Disambiguating verbs using a lexicon that has already been enriched with
syntactic and semantic information, rather than a more traditional lexicon, can bring
end systems a step closer to accurate knowledge representation and reasoning. One
such lexical resource, VerbNet, groups verbs into classes based on commonalities
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in their semantic and syntactic behavior. It is widely used for a number of seman-
tic processing tasks, including semantic role labeling (Swier and Stevenson 2004),
the creation of conceptual graphs (Hensman and Dunnion 2004), and the creation
of semantic parse trees (Shi and Mihalcea 2005). In addition, the detailed seman-
tic predicates associated with each VerbNet class have the potential to contribute to
text-specific semantic representations and, thereby, to inferencing tasks. However,
application of VerbNet’s semantic and syntactic information to specific text requires
first identifying the appropriate VerbNet class of each verb token. This is equivalent
to a word sense disambiguation task.

Studies that have made use of VerbNet have dealt with the issue of multiclass
verbs in different ways. When deciding on the class for a particular token of a verb
in text, Zapirain et al. (2008) simply assigned the most frequent class for the verb
rather than attempt to disambiguate. Their data consisted of any sentences in the
Semlink corpus (Loper et al. 2007) in which the thematic roles mapped completely
between PropBank and VerbNet, which resulted in a corpus that contained about
56 % of the original. For the data in their study, the most frequent class label was
accurate 97 % of the time. Multiclass verbs throughout the entire Semlink corpus,
however, have a most frequent class baseline of 73.8 %.

Other systems seem to have set aside the problem of multiclass verbs. For ex-
ample, Bobrow et al. (2007) describe using VerbNet’s semantic predicates in the
PARC’s question-answering system to derive pre- and post-conditions of events,
such as the change of location of entities. For a verb like leave, the system attempts
to use the semantic predicates provided by the VerbNet Leave-51.2 class:

MOTION(DURING(E), THEME)
LOCATION(START(E), THEME, SOURCE)
NOT(LOCATION(END(E), THEME, SOURCE))
DIRECTION(DURING(E), FROM, THEME, SOURCE)

to show that an entity was located in one place before the event and was in an-
other location after the event. However, leave has multiple usages, not all of them
involving physical change of location.

Table 1 shows its VerbNet classes and their semantic predicates. The PARC sys-
tem would need to identify only those instances in their data where leave has the
change of location meaning.

Zaenen et al. (2008) explain that the problem of automatically selecting only
those instances that fit the desired class remains to be solved, especially in terms
of dividing metaphorical from literal tokens of a verb: “We ignore the problem of
metaphorical extensions for the relevant verbs. Resources other than VerbNet will
need to be exploited to insure that these non-physical interpretations are excluded.”
Although they do not state which ones are the relevant verbs, for many verbs this
problem could be alleviated by disambiguating the class assignment for a specific
verb instance. To continue our example, leave has six VerbNet classes: Escape, Ful-
filling, Future_having, Keep, Leave and Resign. Only the Leave class and the Resign
class have the START location and END location information they are looking for,
and, for the Resign class, the CHANGE OF LOCATION is metaphorical. Therefore,
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Table 1 VerbNet classes and semantic predicates for the verb leave

VerbNet class Example VerbNet semantics

Escape-51.1 The students left. MOTION(DURING(E), THEME)
DIRECTION(DURING(E), PREP_DIR, THEME)

Leave-51.2 Elvis has left the
building.

MOTION(DURING(E), THEME)
LOCATION(START(E), THEME, SOURCE)
NOT(LOCATION(END(E), THEME, SOURCE))
DIRECTION(DURING(E), FROM, THEME,
SOURCE)

Resign-10.11 He left Microsoft
in 2008.

CAUSE(AGENT, E)
LOCATION(START(E), SOURCE)
NOT(LOCATION(END(E), SOURCE))

Fulfilling-13.1.4 He left the tenant
with his business
card.

HAS_POSSESSION(START(E), AGENT,
THEME)
HAS_POSSESSION(END(E), RECIPIENT,
THEME)
TRANSFER(DURING(E), THEME)
CAUSE(AGENT, E)

Future_having-13.3 He left Sam his
stamp collection.

HAS_POSSESSION(START(E), AGENT,
THEME)
FUTURE_POSSESSION(END(E), RECIPIENT,
THEME)
CAUSE(AGENT, E)

Keep-15.2 She left the papers
in her desk.

PREP(DURING(E), THEME, LOCATION)
CAUSE(AGENT, E)

the Leave class is the only class for this verb that suits their purposes. Classifying in-
stances with the appropriate VerbNet class would enable them to apply the Location
predicate to only those instances that are relevant. For the Semlink corpus, applying
a most frequent class heuristic for leave would result in only 59 % accuracy. This is
only one example of how an accurate, automatic VerbNet classifier would be useful.

2 Related Work

We know of only two previous efforts to create a VerbNet class disambiguator for
verb tokens, those of Girju et al. (2005) and Abend et al. (2008). Girju et al. used
a supervised machine learning methodology, with features from the words within
three positions of the verb. These features included lemma, part of speech tag, phrase
type from a syntactic chunker and named entity information. First, however, they
faced the problem of creating a training set tagged with VerbNet class labels. They
automatically constructed one by mapping from PropBank roleset labels to VerbNet
classes, choosing to label only those verb instances in which the PropBank roleset
mapped to only one VerbNet class. This methodology resulted in a set of target verbs
in which 96 % belonged to only one VerbNet class. The high most-frequent-class
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baseline of 96.5 % reflects the predominance of monosemous verbs and explains
the low level of improvement over it: only 2 %. Because our classifier uses only
multiclass verbs and a gold standard corpus with VerbNet class labels, it is not com-
parable to the Girju classifier.

The disambiguator developed by Abend et al. (2008) supports a much closer
comparison. They also approach the task as a supervised machine learning problem,
training and testing on the Semlink corpus. Polysemous verbs account for 58 % of
their data, and they report results for all verbs and for just polysemous verbs. The
Semlink corpus has annotated the verbs in the Wall Street Journal corpus with Verb-
Net classes. They selected instances that had been labeled with a VerbNet class, dis-
regarding those verb instances that had been labeled as having no appropriate Verb-
Net class. Their system achieved 96.4 % accuracy, which was a 2.9 % increase over
the 93.7 % baseline. The high baseline can also be attributed to the large number
of monosemous verbs in their data. Considering only the polysemous verbs and the
model using an automatic parser, the scenario most closely resembling our experi-
mental setup, the most frequent class baseline was 88.6 % and the system accuracy
was 91.9 %, which represents an error reduction of 28.95 %.

The results of the Abend et al. study suggest that automatic disambiguation of
VerbNet classes is a reasonable line of research, and a possible method for verb
sense disambiguation. The classifier relies on lexical and syntactic features, such as
part of speech and heads of phrases. The classifier we describe is similar in several
ways, although it adds several unique syntactic and semantic features and trains and
tests only on multiclass verbs. The following sections will include comparisons of
features and results where appropriate.

3 Method

To achieve verb token classification with VerbNet classes, we use a supervised ma-
chine learning approach. Using a corpus annotated with VerbNet class labels, we
create a feature vector for each verb instance. A learning algorithm is then applied
to generate a classifier. The following sections describe the data, the features and
the experimental setup.

3.1 The Data

The training and test data are drawn from the Semlink corpus (Loper et al. 2007),
which consists of the Penn Treebank portions of the Wall Street Journal corpus.
A combination of automatic and manual techniques was used to label each verb
instance with the appropriate VerbNet class. The resulting corpus is the largest
repository of VerbNet token classification available. The corpus contains 113 K
verb instances, 97 K of which are verbs represented in at least one VerbNet class
(i.e., 86 %). Semlink includes 495 verbs that have instances labeled with more than
one class (including verbs labeled with a single VerbNet class and None). We have
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Table 2 Classifier features

Lexical All open class words from target sentence and the surrounding sentences

The two words preceding the target and their POS tags

The two words following the target and their POS tags

Syntactic The path through the parse tree from the target verb to its arguments

Whether the target has a subj or obj and their head wds and POS

Whether the target has a subordinate clause

Whether the target has a PP adjunct

The subcategorization frame

The verb’s voice (active or passive)

Semantic Named-entity tags of the target’s arguments

WN hypernyms of the target’s arguments

WN synonyms of the target’s arguments

Dynamic Dependency Neighbors (DDNs)

trained and tested with all of these verbs that have 10 or more instances, resulting
in a set of 344 verbs. The average number of classes for these verbs is 2.7, and the
average number of instances was 133. All instances in the corpus for each verb were
used, which created a dataset of 45,584 instances.

3.2 Features

We use a wide variety of features, including lexical, syntactic and semantic fea-
tures, all derived automatically. Previous work has focused on lexical and syntactic
features possibly because of the strong association of a VerbNet class to its syntac-
tic alternations. However, a verb’s membership in different classes also depends on
its meaning, making the inclusion of semantic features a possible benefit. As men-
tioned earlier, multiple class memberships usually correlate with different senses of
the verb, making VerbNet class disambiguation much like verb sense disambigua-
tion. For this reason, we thought it was appropriate to treat the task as a verb sense
disambiguation task. Some of the features are fairly standard ones used for general
word sense disambiguation, but we have added some rich syntactic and semantic
features that have proven useful for sense disambiguation of verbs. All features,
which were previously also shown to be useful for WSD (Dligach and Palmer 2008)
are summarized in Table 2 and explained more fully in the sections that follow.

3.2.1 Lexical Features

The lexical features include all open class words drawn from the target sentence and
the sentence directly before and the sentence directly after it. In addition, we use a
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feature that pairs each of the two words before and the two words after the target
verb with their respective part-of-speech tag.

3.2.2 Syntactic Features

The syntactic features are drawn from syntactic parses automatically created with
the Bikel Parser (Bikel et al. 1999). These features focus on the type of patterns
that often distinguish one verb sense from another and that help delineate Verb-
Net classes. These include whether the target verb is in an active or passive form,
whether it has a subject, an object, a subordinate clause, or a prepositional phrase
adjunct. For each of these dependent items, the head word and its part of speech are
included as features.

We also implement several unusual syntactic features that seem particularly well
suited for VerbNet class disambiguation. The first is the path through the parse tree
from the target verb to the verb’s arguments, and the second is the sentence’s subcat-
egorization frame, as used in semantic role labeling. Because syntactic alternations,
or patterns of subcategorization frames, play a large role in the organization of Verb-
Net classes, we expect these final two features to be particularly useful.

3.2.3 Semantic Features

Our use of semantic features is motivated by the work of Patrick Hanks (1996), who
proposed that sense distinctions in verbs often rely on the membership of the verb’s
arguments in narrowly defined verb-specific semantic classes that he called lexical
sets. A lexical set could consist, for example, of such nouns as fist, finger, hand, etc.
(but not all body-parts); its members, when used as objects of shake, form instances
of the communicative act sense of shake. This view corroborates our motivation that
states the necessity of capturing the semantics of the verb’s arguments and semantic
similarities among them.

To illustrate with an example from our data, the verb fix falls into two VerbNet
classes: (1) Preparing-26.3, (e.g., He fixed lunch for the team; My mom fixed me
a peanut butter and bacon sandwich) and (2) Price-54.4, with the sense of “estab-
lish” (e.g., They fixed the interest rate at 3 %; The lawyers fixed the terms of the
agreement at their last meeting). These two senses can be distinguished largely on
the basis of the objects lunch, sandwich, rate and terms, the first two indicating the
Preparing-26.3 class and the latter two indicating the Price-54.4 class. Not surpris-
ingly, semantic features drawn from a target verb’s arguments have been shown to
improve verb sense disambiguation above and beyond lexical and syntactic features
(Dligach and Palmer 2008).

Another study that reinforces a similar idea was reported by Federici et al. (1999).
They describe their SENSE system that relies on inter-contextual analogies between
tagged and untagged instances of a word to infer that word’s sense. For example, if
a verb’s sense is preserved when used with two different objects, it is often possible
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Table 3 Semantic features for one sense of the verb fix

Object NE tag WN synset WN hypernyms Sample DDNs

price n/a price, terms,
damage

cost raise, bring, increase, put, reduce,
cut, have, offer, set

terms n/a price, terms,
damage

cost reduce, cut, have, offer, set

rate n/a charge per unit cost raise, bring, increase, put, reduce,
cut, have, offer, set

number n/a figure amount raise, bring, increase, put, reduce,
cut, have, offer, set

to conclude by analogy that the sense of another verb is also preserved when it is
used with the same two objects.

In word sense disambiguation, the existing approaches to extracting semantic
features are often based on obtaining lexical knowledge about the target verb’s argu-
ments from electronic dictionaries such as WordNet (Fellbaum 1998). WordNet syn-
onyms and hypernyms are often used as semantic features (Dang and Palmer 2002;
Dligach and Palmer 2008). Named entity tags, another source of lexical knowledge,
can be obtained from the output of a named-entity tagger such as IdentiFinder (Bikel
et al. 1999).

Four types of semantic features are used, all derived from the arguments of the
target verb: (1) named entity tags for all of the arguments of the target verb, extracted
using IdentiFinder; (2) synonyms of the arguments as listed in their synonym sets
in WordNet; (3) hypernyms of the arguments, also taken from WordNet; and (4) dy-
namic dependency neighbors (DDNs) (Dligach and Palmer 2008), which connect
objects of the verb based on the type of verbs they frequently occur with in ob-
ject position. In this paper we utilized object-based DDNs to capture the semantics
of the target verb’s object. Elsewhere (citation below) we also experimented with
subject-based DDNs in the context of verb sense disambiguation. We discovered
that subject-based DDNs do not improve the performance over and above object-
based DDNs. For these experiments the DDNs were calculated from the verbs’ and
objects’ occurrence in the English Gigaword corpus, parsed with the dependency
MaltParser (Nivre et al. 2007).

This last feature finds similarities between objects that can be missed by the
other three, as can be seen in Table 3. The similarity in the first two objects, price
and terms, is captured by the WordNet synset. The third object, rate, can be grouped
with these via the WordNet hypernym. The fourth object, however, has none of these
features in common with the others. Even moving up the WN hypernym hierarchy,
number does not connect to the others until the very general category of Abstract
Entity. However, objects with very different hypernyms or named entity tags may
still be common objects of the same verbs. Objects grouped in this way can often
help identify the particular sense of a verb (Dligach and Palmer 2008). Comparing
lists of the top 50 verbs that each object occurs with shows a great deal of overlap
and notably draws the noun number into a group with the other three.
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3.3 Experimental Setup

Like all supervised word sense disambiguation, each verb required the training and
testing of its own classifier. We classified using support vector machines (Chang and
Lin 2001). Accuracy and error rates were computed with 5-fold cross validation.
Baselines were established for each target verb type by calculating the accuracy that
would be achieved if all instances of a verb were labeled with its most frequent
VerbNet class. The average baseline for our verb set was 77.78 %.

4 Results

The average accuracy of the system with the target verbs was 88.67 %, which repre-
sents an error reduction of 49 % over the baseline of 77.78 %. The closest compari-
son to the Abend et al. classifier is to their results based on only polysemous verbs
and using features drawn from an automatic parser. In this scenario, their classifier
had an accuracy of 91.9 %, with an error reduction of 28.95 % over their baseline
of 88.6 %.

In order to assess the contribution of the features we use to the performance of the
classifier, we developed several different models composed of various combinations
of our features. In addition we created a dedicated test set using 30 % of the Semlink
corpus so that each model would be evaluated on identical training and test sets,
assuring consistent comparisons. Using this test set, the overall performance of our
classifier (the model with all features) was 84.64 %. This result is somewhat lower
than the classifier accuracy using 5-fold cross-validation described above, possibly
because of the smaller amount of training data used for this method. Compared to
the most frequent class baseline, this figure still represents an error reduction of
31 %.

Lexical features are generally the most standard in supervised WSD systems and
seem to contribute the most to the accuracy. Therefore, we used a model containing
only the lexical features as our most stripped-down model. This model had an ac-
curacy of 83.07 %. The second model added syntactic features to that, and achieved
an accuracy of 84.44 %. Adding semantic features brought the accuracy to 84.65 %.
We were particularly interested in assessing the contribution of the DDN feature,
given that it can be generated automatically and requires no manually built lexi-
cal resource. For that reason, we also created a model with all the features but the
DDN and a model with all the features but the non-DDN semantic features, which
resulted in accuracies of 84.12 % and 84.89 % respectively, validating the efficacy
of the DDN feature. See Table 4 for a summary of these results, along with error
reduction figures.

5 Discussion

The accuracy of our VerbNet classifier approaches 90 %, the level that several re-
searchers have indicated is needed for useful WSD (Sanderson 2000; Ide and Wilks



VerbNet Class Assignment as a WSD Task 211

Table 4 Accuracy and error reduction of models using various features

Model Baseline (%) Accuracy (%) Error reduction (%)

Lexical features only 77.78 83.07 23.81

Lexical + syntactic 77.78 84.44 29.97

Lexical + semantic 77.78 83.75 26.87

All but DDN 77.78 84.12 28.53

Lexical + syntactic + DDN 77.78 84.89 32.00

All features 77.78 84.65 30.92

2006). Using VerbNet classes as sense distinctions makes available sets of seman-
tic predicates that can be used for deeper analysis. WSD is not an end in itself; it
is only useful in so far as it improves more complex applications. By substituting
VerbNet classification for verb sense disambiguation, we would gain both a coarse-
grained sense of the verb and direct mappings to VerbNet’s class-specific syntactic
and semantic information. With the goal of improving future VerbNet classifiers, we
discuss several pertinent issues in the following sections.

5.1 Contributions of the Features

The difference between the model with only lexical features and that with both lex-
ical and syntactic features was statistically significant (p= .0005), suggesting that
our syntactic features were a notable improvement to the model. Given the strong
basis of VerbNet classes on syntactic alternations, we expected that syntactic fea-
tures focused on argument structure would improve the system, and this comparison
supports that hypothesis.

The semantic features showed a more complex pattern. A model with lexical
and semantic features achieved an accuracy of 83.75 %. Compared to the accuracy
of the lexical-only model, this was a significant improvement (p= .0182), although
less strongly so than the syntactic features. Interestingly, when the lexical+syntactic
model (no semantic features) was compared to one with lexical, syntactic and se-
mantic features, the difference in accuracy was not significant (p = .6982), sug-
gesting that the small improvement we saw with the semantic features was only
replicating some of the information the system was gaining from the syntactic fea-
tures.

When the semantic features were tested separately, however, we found that the
DDN feature substantially improved the system, while the other semantic features
did not help the system. A model with all the features but the DDN feature showed
no significant improvement over the lexical+syntactic model. This suggests that the
named entity, WordNet synset, and WordNet hypernym features added nothing to
the model. In a head-to-head comparison between the model with all features but
the DDN and one with lexical, syntactic, and only DDNs, we found that the DDN
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feature significantly improved the system (p < .05). With an error reduction of 32 %,
the lexical + syntactic + DDN model performed the best of all those we tested.

These results suggest that the system could be streamlined by removing the
named entity tag, WordNet synset, and WordNet hypernym features and leaving
the DDNs as the only semantic features. This would reduce the system’s depen-
dence on other resources with no loss of accuracy. In addition, the DDN feature is
created dynamically, and can be done with any corpus, increasing the portability of
this system to new domains.

5.2 Semlink Annotation

A couple of matters came to light during a close examination of some of the Semlink
annotation in our dataset. First, for some of the verbs, the mapping from PropBank
to VerbNet that was the basis of the semiautomatic labeling inappropriately mapped
some VerbNet classes. For example, the verb fix belongs to the Preparing class,
which primarily describes events of food preparation. The thematic roles and se-
mantic predicates for this class indicate the creation of some entity, such as He fixed
me a sandwich. This class was used in the Semlink data to label such instances, but
also to label instances of fix as a repair event, such as We had to fix his car, a usage
that is currently not covered by any VerbNet class. Accuracy for this verb was still
high at 89 %, possibly because the feature patterns were still consistent when these
instances were labeled with the Preparing class.

The consequences of inappropriate labeling in this case are mixed. If thematic
roles were assigned based on this label, they would likely still be correct. Both
senses of fix call for an Agent and a Patient. The subject in We had to fix his car
would be correctly labeled as an Agent and the object would be correctly labeled
as a Patient. For semantic role labeling, this sort of error should have little negative
effect. Any inferences based on the semantic predicates, however, would be mis-
leading. In a Repair event, such as We had to fix his car no new entity is created,
but the Preparing class label would incorrectly imply that the car is a newly created
entity. It is not clear whether such inappropriate mapping is an isolated problem or
not. In Sect. 7 we discuss some methods for assessing the existing annotation and
for efficiently augmenting it.

5.3 Metaphorical Interpretations

A more common issue concerns the extension of VerbNet classes to metaphorical
or figurative usages of a verb. Although some classes include metaphorical usages
of the member verbs, such as the Amalgamate-22.2 class, others restrict the uses to
literal events. For example, the Bump-18.4 class describes events of contact between
a Theme and a Location, such as The grocery cart hit the wall. The class restricts
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both the Theme and Location to [+concrete] arguments. A natural extension of this
sense of hit would apply to abstract arguments and metaphorical events of contact,
such as The Bank of England was hit hard by the financial slump. This usage of hit
would not strictly fit the Bump-18.4 class because the financial slump (the Theme)
is not a concrete entity and the Bank of England would not qualify as a concrete
location, at least as it is used in this sentence. There is currently no VerbNet class,
however, that would accommodate this usage of hit.

For several verbs in our set, including hit and pay, class labels were applied to
metaphorical sense extensions. It is unclear whether this affected the accuracy of
the classifier; for these two examples, the accuracy for hit was 75 %, whereas for
pay, it was 97 %. More importantly, in terms of applying the labeled data to further
semantic processing, metaphorical extensions should have little detrimental effect.
Any thematic roles assigned based on the class label would be correct, although the
semantic restrictions on the roles (e.g., +concrete) would not. The semantic predi-
cates would also be correct, as long as they were interpreted metaphorically as well.

6 Conclusion

The VerbNet class disambiguator we present in this paper achieves 89 % accuracy
with polysemous verbs, which is a 49 % error reduction over the most frequent class
baseline. Given that most applications that currently use verb mappings to VerbNet
classes rely on a most-frequent-class heuristic (or hand-selected data), this classifier
should improve the functioning of these applications.

In addition, we have demonstrated that VerbNet class disambiguation often cor-
responds to coarse-grained verb sense disambiguation. However, unlike sense dis-
ambiguation with more traditional lexicons, VerbNet class disambiguation would
not only help disambiguate the senses of verbs in context, it would automatically
connect that context to detailed information about likely thematic roles, semantic
representations, and related verbs. In combination with a syntactic parse of the sen-
tence, knowing the appropriate VerbNet class could help select a semantic repre-
sentation of the events in the sentence. By choosing VerbNet as a sense inventory,
the next steps in complex knowledge representation and reasoning tasks could be
facilitated.

7 Future Work

Some additional steps can be taken to improve the usefulness of VerbNet class label-
ing. The coverage of verbs and verb senses could be improved, both in the Semlink
corpus and in VerbNet itself: 25 % of the verb tokens in the Semlink corpus have
no VerbNet class label. However, Semlink is based on version 2.1 of VerbNet. The
current version, 3.1, incorporates over 700 new verb senses, many of which intro-
duce very common verbs, such as seem, involve, and own. Updating the corpus with
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annotations for these new verbs and verb senses would improve coverage. A more
long-term goal is to annotate data from other types of corpora than the WSJ, which
would likely improve any VerbNet classifier’s portability to new domains.

We plan to increase VerbNet annotation in the Semlink corpus using methods that
take advantage of existing mappings between PropBank and VerbNet and efficient
manual annotation (Dligach 2011). Semlink expansion can be accomplished in two
ways. First, more data can be labeled using some form of active learning (Settles
2010) (e.g., batch mode uncertainty sampling). Once more annotated data has been
acquired, it may be a good idea to double annotate all or parts of the data, leading to
a more error-free labeled corpus. Various error detection techniques can be used to
reduce the amount of the second round of annotation (Dligach 2011). These methods
can also be used to judge the reliability of the semiautomatic annotation that has
already been done, which should indicate how widespread mislabeling is (such as
with the verb fix, see Sect. 5.2).

The question of metaphorical extensions in the VerbNet annotation is currently
being addressed by the VerbNet team. Plans are underway to enhance VerbNet
classes with metaphorical information, where appropriate. These enhancements will
indicate any changes in thematic role restrictions with a metaphoric usage, and any
changes necessary for a semantic predicate to be interpreted correctly.

Given the success of the DDN feature, we would like to see if expanding its
contribution would further enhance our classifier. Currently, the DDN feature is only
calculated for objects of the verb, but the feature could be encoded for the subject
of the verb as well.

We see this classifier as an important step toward using VerbNet for deep seman-
tic analysis. We have shown that verbs in multiple VerbNet classes can be disam-
biguated with close to 90 % accuracy. Another related task, semantic role labeling,
has made great strides lately (Palmer et al. 2010). Using the output from both these
tasks should enable us to identify the specific VerbNet frame and semantic predi-
cate for the sentence. For example, VerbNet class disambiguation and semantic role
labeling would identify the sentence He left Sam his stamp collection as

Agent V(class:Future-having-13.3) Recipient Theme.

Only one frame in the Futurehaving13.3 class has that pattern: the NP V NPdative
NP frame. Its semantic predicates are

HAS_POSSESSION(START(E), AGENT, THEME)
FUTURE_POSSESSION(END(E), RECIPIENT, THEME)
CAUSE(AGENT, E).

Given the argument labels from the semantic role labeling, it is straightforward
to map from the original sentence to the semantic representation:

HAS_POSSESSION(START(E), HE, THE STAMP COLLECTION)
FUTURE_POSSESSION(END(E), SAM, THE STAMP COLLECTION)
CAUSE(HE, E).

Recent work in coreference resolution (Haghighi and Klein 2009) and implicit
argument resolution (Gerber and Chai 2010) suggest how this representation could
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be enriched by identifying the referent of he from the surrounding text. All of these
pieces of the semantic puzzle have the potential to fit together into a richer and
deeper semantic representation of text. To further this goal, we intend to develop
our classifier for all of the verbs in VerbNet and release the system to the public,
along with an expanded version of the Semlink corpus.1
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Abstract In this paper, we introduce a methodology for annotating compositional
operations in natural language text and describe the Generative Lexicon Mark-up
Language (GLML), a mark-up language inspired by the Generative Lexicon model,
for identifying such relations. While most annotation systems capture surface re-
lationships, GLML captures the “compositional history” of the argument selection
relative to the predicate. We provide a brief overview of GL before moving on to
our proposed methodology for annotating with GLML. There are three main tasks
described in the paper. The first one is based on atomic semantic types and the other
two exploit more fine-grained meaning parameters encoded in the Qualia Structure
roles: (i) Argument Selection and Coercion Annotation for the SemEval-2010 com-
petition; (ii) Qualia Selection in modification constructions; (iii) Type selection in
modification constructions and verb-noun combinations involving dot objects. We
explain what each task comprises and include the XML format for annotated sample
sentences. We show that by identifying and subsequently annotating the typing and
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subtyping shifts in these constructions, we gain an insight into the workings of the
general mechanisms of composition.

1 Introduction: Motivation and Previous Work on Semantic
Annotation

In recent years, a number of annotation schemes that encode semantic information
have been developed and used to produce data sets for training machine learning
algorithms. Semantic markup schemes initially focused on annotating entity types
and, more generally, word senses, have been extended to include semantic relation-
ships between sentence elements, such as the semantic role (or label) assigned to the
argument by the predicate (see Palmer et al. 2005, Ruppenhofer et al. 2006, Kipper
2005, Burchardt et al. 2006, Subirats 2004).

The Generative Lexicon Markup Language (GLML) takes one step further and
attempts to capture the “compositional history” of the argument selection relative to
the predicate, and the modifier interpretation relative to the head noun. The emphasis
here will be on identifying the nature of the compositional operation rather than
merely annotating the surface types of the entities involved in argument selection.

Consider the well-known example below. The distinction in semantic types ap-
pearing as subject in (1) is captured by entity typing (HUMAN versus ORGANIZA-
TION), but not by any sense tagging from, e.g., FrameNet (Ruppenhofer et al. 2006)
or PropBank (Palmer et al. 2005).

(1) a. Mary called yesterday.
b. The Boston office called yesterday.

While this has been treated as type coercion or metonymy in the literature (Hobbs
et al. 1993; Pustejovsky 1991; Nunberg 1979; Egg 2005), the point here is that an
annotation using frames associated with verb senses should treat the sentences on
par with one another. Yet this is not possible if the entity typing given to the subject
in (1a) is HUMAN and that given for (1b) is ORGANIZATION.

The SemEval Metonymy task (Markert and Nissim 2007) was a good attempt
to annotate such metonymic relations over a larger data set. This task involved two
types with their metonymic variants:

(2) i. Categories for Locations: literal, place-for-people, place-for-event, place-
for-product;

ii. Categories for Organizations: literal, organization-for-members, orga-
nization-for-event, organization-for-product, organization-for-facility.

One of the limitations with this approach, however, is that, while appropriate for
these specialized metonymy relations, the annotation specification and resulting cor-
pus are not an informative guide for extending the annotation of argument selection
more broadly.

In fact, the metonymy example in (1) is an instance of a much more pervasive
phenomenon of type shifting and coercion in argument selection. For example, in
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(3) below, the sense annotation for the verb enjoy should arguably assign similar
values to both (3a) and (3b).

(3) a. Mary enjoyed drinking her beer.
b. Mary enjoyed her beer.

The consequence of this, however, is that, under current sense and role annotation
strategies, the mapping to a syntactic realization for a given sense is made more
complex, and as a result, proves challenging for machine learning algorithms oper-
ating over subcategorization types for the verb.

The goal of the present work is to: (a) create a broadly applicable specification
of the compositional operations involved in argument selection; (b) apply this spec-
ification over a corpus of natural language texts, in order to encode the selection
mechanisms implicated in the compositional structure of the language.

The creation of a corpus that explicitly identifies the “compositional history” as-
sociated with argument selection will be useful to computational semantics in sev-
eral respects: (a) the actual contexts within which type coercions are allowed can be
more correctly identified and perhaps generalized; (b) machine learning algorithms
can take advantage of an enriched feature set for deeper semantic interpretation,
in the training phase; and (c) some consensus might emerge on the general list of
type-changing operations involved in argument selection, as the tasks are revised
and enriched.

The rest of this chapter proceeds as follows: after reviewing the theoretical as-
sumptions from GL in Sect. 2, in Sect. 3 we present the general methodology and
architecture for GL annotation, which was tested in the Argument Selection and
Coercion task within the SemEval-2010 evaluation exercise. We briefly describe the
task and go through the different phases of corpus development. Section 4 gives an
overview of a more sophisticated qualia-based annotation in adjectival modification
constructions and nominal compounds headed by natural and artifactual types (in
Sects. 4.1.1 and 4.1.2, respectively). Section 4.2 deals with complex types in both
modification constructions and verb-noun combinations.1

2 Theoretical Preliminaries: Modes of Composition
in the Generative Lexicon Theory

Generative Lexicon (hereafter GL) introduces a knowledge representation frame-
work which offers a rich and expressive vocabulary for lexical information. The
motivations for this are twofold. Overall, GL is concerned with explaining the cre-
ative use of language; we consider the lexicon to be the key repository holding
much of the information underlying this phenomenon. More specifically, however,
it is the notion of a constantly evolving lexicon that GL attempts to emulate. This is
in contrast to views of static lexicon design, where the set of contexts licensing the
use of words is determined in advance, and no formal mechanisms are offered for
expanding this set.

1A complete overview of the GLML specification as well as updates on the annotation effort can
be found at www.glml.org.

http://www.glml.org
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One of the most difficult problems faced by theoretical and computational seman-
tics is defining the representational interface between linguistic and non-linguistic
knowledge. GL was initially developed as a theoretical framework for encoding se-
lectional knowledge in natural language. This in turn required making some changes
in the formal rules of representation and composition. Perhaps the most controver-
sial aspect of GL has been the manner in which lexically encoded knowledge is
exploited to construct interpretations for linguistic utterances.

The theoretical foundations for compositional operations within the sentence
have long been developed in considerable detail. Type shifting and type coercion
operations have been recognized as playing an important role in many formal de-
scriptions of language, in order to maintain compositionality (cf. Partee and Rooth
1983; Chierchia 1998; Groenendijk and Stokhof 1989; Egg 2005; Pinkal 1999;
Pustejovsky 1995, and many others). The novelty of the approach to composition
within GL is that it is based on a rich type system, ultimately derived from fine-
grained lexical features of the predicate arguments (cf. Pustejovsky 2006a and Asher
and Pustejovsky 2006).

These lexical features constitute the qualia structure, which specifies four es-
sential aspects of a word’s meaning (cf. Pustejovsky 1991):

(4) a. FORMAL: that which distinguishes it within a larger domain;
b. CONSTITUTIVE: the relation between an object and its constituent parts;
c. TELIC: the purpose or function of the object, if there is one;
d. AGENTIVE: the factors involved in the object’s origins or “coming into be-

ing”.

Pustejovsky (2001) separates the domain of individuals into three distinct type levels
according to which roles are prominent in each case:

(5) a. NATURAL TYPES: Natural kind concepts consisting of reference only to
formal and constitutive qualia roles (e.g. tree, woman; arrive, rain; red,
big).

b. ARTIFACTUAL TYPES: Concepts making reference to purpose or function
(e.g. violin, dancer; spoil, repair; useful, broken).

c. COMPLEX TYPES: Concepts making reference to an inherent relation be-
tween types (e.g. lunch is typed as both PHYSICAL OBJECT and EVENT).

The mechanisms mediating the information required by a predicate and that en-
coded by its arguments are type-sensitive. Pustejovsky (2006a) and Asher and Puste-
jovsky (2006) distinguish the following modes of composition in natural language
(cf. Pustejovsky (2011) for the most recent discussion of this model).

(6) a. PURE SELECTION (Type Matching): the type a function requires is directly
satisfied by the argument;

b. ACCOMMODATION: the type a function requires is inherited by the argu-
ment;

c. TYPE COERCION: the type a function requires is imposed on the argument
type. This is accomplished by either:
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i. Exploitation: taking a part of the argument’s type;
ii. Introduction: wrapping the argument with the required type.

Let us consider the artifactual predicate spoil as an example. Nouns denoting arti-
facts satisfy it directly, as in the food spoiled. When combined with complex types,
such as lunch, it takes advantage of one of its types by the rule of EXPLOITATION:
my lunch spoiled refers to spoiled food, not to a “spoiled” event. Finally, when a
natural type is in the subject position (as in the water spoiled), it acquires functional
interpretation by the rule of INTRODUCTION: ‘the water was going to be used for
something, and now it cannot fulfill the intended function’.

3 Verb-Based Annotation. Methodology of Annotation
in the Argument Selection and Coercion Task

This section focuses on the data preparation for the task Argument Selection and Co-
ercion (hereafter ASC), included in the SemEval-2010 competition. The SemEval
tasks are intented to test automatic systems for semantic analysis of text in any
aspect relevant to particular NLP applications (machine translation, information re-
trieval, and information extraction).

3.1 MATTER

Before introducing the specifics of the ASC task, we will briefly review our assump-
tions regarding the role of annotation in computational linguistic systems.

We assume that the features we use for encoding a specific linguistic phe-
nomenon are rich enough to capture the desired behavior. These linguistic descrip-
tions are typically distilled from extensive theoretical modeling of the phenomenon.
The descriptions in turn form the basis for the annotation values of the specification
language, which are themselves the features used in a development cycle for train-
ing and testing a labeling algorithm over a text. Finally, based on an analysis and
evaluation of the performance of a system, the model of the phenomenon may be
revised.

These steps follow the MATTER methodology, as described in Pustejovsky
(2006b), Pustejovsky and Stubbs (2012) and diagrammed in Fig. 1.

Model: Structural descriptions provide theoretically informed attributes derived
from empirical observations over the data;

Annotate: Annotation scheme assumes a feature set that encodes specific structural
descriptions and properties of the input data;

Train: Algorithm is trained over a corpus annotated with the target feature set;
Test: Algorithm is tested against held-out data;
Evaluate: Standardized evaluation of results;
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Fig. 1 The MATTER

methodology

Revise: Revisit the model, annotation specification, or algorithm, in order to make
the annotation more robust and reliable.

Some of the current and completed annotation efforts that have undergone such a
development cycle include PropBank (Palmer et al. 2005), NomBank (Meyers et al.
2004), and TimeBank (Pustejovsky et al. 2005).

3.2 Task Description

The ASC task involves identifying the selectional mechanism used by the predicate
over a particular argument. For the purposes of this task, the possible relations be-
tween the predicate and a given argument were restricted to selection (as in (7)) and
coercion (as in (8)).

The task is defined as follows: for each argument of a predicate, identify whether
the entity in that argument position satisfies the type expected by the predicate. If
not, then identify how the entity in that position satisfies the typing expected by the
predicate; that is, identify the source and target types in a type-shifting or coercion
operation.

(7) a. The spokesman denied the statement (PROPOSITION).
b. The child threw the stone (PHYSICAL OBJECT).
c. The audience didn’t believe the rumor (PROPOSITION).

Coercion encompasses all cases when a type-shifting operation (e.g. exploitation
or introduction, cf. Sect. 2) must be performed on the complement NP in order to
satisfy selectional requirements of the predicate. In the examples (8) below, the
event nominal attack has to be interpreted as PROPOSITION in order to match the
selectional requirements of deny; the White House changes from the type LOCATION

to HUMAN in order to be compatible with deny; update, another event nominal,
acquires the type INFORMATION imposed by call. Note that coercion operations
may apply to any argument position in a sentence, including the direct object, as in
(8a), the subject, as in (8b), and prepositional object, as in (8c).
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(8) a. The president denied the attack (EVENT → PROPOSITION).
b. The White House (LOCATION → HUMAN) denied this statement.
c. The Boston office called with an update (EVENT → INFO).

In order to determine whether type-shifting has taken place, the classification task
must then involve (1) identifying the verb sense and the associated syntactic frame,
(2) identifying selectional requirements imposed by that verb sense on the target
argument, and (3) identifying the semantic type of the target argument.

3.3 The Type System for Annotation

The type system we have chosen for annotation is purposefully shallow, but we also
aimed to include those types that would ease the complexity of the annotation task.
The type system is not structured in a hierarchy, but rather is presented as a set of
types. For example, HUMAN is a subtype of both ANIMATE and PHYSICAL OBJECT,
but annotators and system developers were instructed to choose the most relevant
type (e.g., HUMAN) and to ignore inheritance. The types used for annotation were
the following:

(9) ABSTRACT ENTITY, ANIMATE, ARTIFACT, ATTITUDE, DOCUMENT, DRINK,
EMOTION, ENTITY, EVENT, FOOD, HUMAN, HUMAN GROUP, IDEA, INFOR-
MATION, LOCATION, OBLIGATION, ORGANIZATION, PATH, PHYSICAL OB-
JECT, PROPERTY, PROPOSITION, RULE, SENSATION, SOUND, SUBSTANCE,
TIME PERIOD, VEHICLE

These types were taken from the Brandeis Shallow Ontology (BSO), which is a shal-
low hierarchy of types developed as a part of the CPA effort (Hanks 2009; Puste-
jovsky et al. 2004; Rumshisky et al. 2006). Types were selected for their prevalence
in manually identified selection context patterns developed for several hundred En-
glish verbs. That is, they capture common semantic distinctions associated with the
selectional properties of many verbs.

3.4 Corpus Development

We prepared the data for this task in two phases: the data set construction phase and
the annotation phase (see Fig. 2). The first phase consisted of (1) selecting the target
verbs to be annotated and compiling a sense inventory for each target, and (2) data
extraction and preprocessing. The prepared data was then loaded into the annotation
interface. During the annotation phase, the annotation judgments were entered into
the database and an adjudicator resolved disagreements. The resulting database was
then exported in an XML format.

The English data set for the task was created using the following steps:

1. The verbs were selected by examining the data from the BNC (BNC 2000) us-
ing the Sketch Engine (Kilgarriff et al. 2004) as described in Rumshisky and
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Fig. 2 Corpus development architecture

Batiukova (2008). Verbs that consistently impose semantic typing on one of their
arguments in at least one of their senses (strongly coercive verbs) were included
in the final data set: arrive (at), cancel, deny, finish, and hear.

2. Sense inventories were compiled for each verb, with the senses mapped to
OntoNotes (Pradhan et al. 2007) whenever possible. For each sense, a set of type
templates was compiled using a modification of the CPA technique (Hanks and
Pustejovsky 2005; Pustejovsky et al. 2004): every argument in the syntactic pat-
tern associated with a given sense was assigned a type specification. The coercive
senses of the chosen verbs were associated with the following type templates:

a. Arrive (at), sense ‘reach a destination or goal’: HUMAN arrive at LOCATION

b. Cancel, sense ‘call off’: HUMAN cancel EVENT

c. Deny, sense ‘state or maintain that something is untrue’: HUMAN deny
PROPOSITION

d. Finish, sense ‘complete an activity’: HUMAN finish EVENT

e. Hear, sense ‘perceive physical sound’: HUMAN hear SOUND

3. A set of sentences was randomly extracted for each target verb from the BNC.
The extracted sentences were parsed automatically and subsequently organized
according to the grammatical relation the target verb was involved in. Sentences
were excluded from the set if the target argument was expressed as an anaphor
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or was not present in the sentence. The semantic head for the target grammatical
relation was identified in each case.

4. Word sense disambiguation of the target predicate was performed manually on
each extracted sentence, matching the target against the sense inventory and the
corresponding type templates as described above. The appropriate senses were
then saved into the database along with the associated type template.

5. For the annotation phase, the sentences containing coercive senses of the target
verbs were loaded into the Brandeis Annotation Tool (Verhagen 2010). Annota-
tors were presented with a list of sentences and asked to determine whether the
argument in the specified grammatical relation to the target belongs to the type
associated with that sense in the corresponding template. Disagreements were
resolved by adjudication.

6. To guarantee robustness of the data, two additional steps were taken. First, only
the most recurrent coercion types were selected, up to a total of six. Preference
was given to cross-domain coercions, where the source and the target types are
not related ontologically:

a. EVENT → LOCATION (arrive at)
b. ARTIFACT → EVENT (cancel, finish)
c. EVENT → PROPOSITION (deny)
d. ARTIFACT → SOUND (hear)
e. EVENT → SOUND (hear)
f. DOCUMENT → EVENT (finish)

Second, the distribution of selection and coercion instances were skewed to in-
crease the number of coercions. The final English data set contains about 30 %
coercions.

7. Finally, the data set was randomly split in half into a training set and a test set.
The training data included 1032 instances, 311 of which were coercions, and the
test data included 1039 instances, 314 of which were coercions.

3.5 The Data Format

The test and training data were provided in XML. The relation between the predicate
(viewed as a function) and its argument was represented by composition link ele-
ments (CompLink), as shown below. The test data differed from the training data
in the omission of CompLink elements.

In case of coercion, there is a mismatch between the source and the target types,
and both types need to be identified; e.g., The State Department repeatedly denied
the attack:

The State Department repeatedly
<SELECTOR sid="s1">denied</SELECTOR>
the <TARGET id="t1">attack</TARGET>.
<CompLink cid="cid1"

compType="COERCION"
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selector_id="s1"
relatedToTarget="t1"
sourceType="EVENT"
targetType="PROPOSITION"/>

When the compositional operation is selection, the source and target types must
match; e.g., The State Department repeatedly denied the statement:

The State Department repeatedly
<SELECTOR sid="s2">denied</SELECTOR>
the <TARGET id="t2">statement</TARGET>.
<CompLink cid="cid2"

compType="SELECTION"
selector_id="s2"
relatedToTarget="t2"
sourceType="PROPOSITION"
targetType="PROPOSITION"/>

The results of the participating systems are summed up in Pustejovsky et al.
(2010).

4 Noun-Based Annotation. Exploiting the Qualia

The verb-noun annotation as it was described in the previous section is based on
atomic semantic types. A more fine-grained annotation can refer to the particular
parameter of meaning acted on by the predicate. As mentioned in Sect. 2, these
meaning parameters are the Qualia Structure roles in the GL model.

The following sentences illustrate qualia selection in verb-noun contexts; the
qualia of the noun being activated by the verb is shown in parentheses.

(10) a. Antonio Stradivari finished the violin. (AGENTIVE)
b. John bought a violin. (FORMAL)
c. The audience enjoyed the violin. (TELIC)
d. Mary heard the violin. (TELIC)

Note that the verbs finish and hear were associated with the type coercions AR-
TIFACT → EVENT and ARTIFACT → SOUND in the ASC task, respectively (as
described in Sect. 3.4). A qualia-based approach explains why these coercions are
possible and identifies the semantic nature of the link between the argument and the
verb selecting it. In the example above, violin can be interpreted as the EVENT of
building this musical instrument because this information is encoded in the lexical
entry of the noun (in its agentive role). Similarly, hear selects for the type SOUND,
encoded in the telic role of violin. All the cases above are instances of exploita-
tion, a specific kind of coercion whereby a part of the argument’s type satisfies the
selectional requirements of the predicate.

In what follows we will present several kinds of constructions involving nouns,
which tap into sub-lexical aspects of nominal semantics. We will show that, by iden-
tifying and subsequently annotating the qualia roles acted on in these constructions,
we gain insight into the workings of the general mechanisms of composition.
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4.1 Qualia Selection in Modification Constructions

In these tasks, the annotation identifies the manner in which the modifying expres-
sion semantically relates to the target element, typically a noun. We follow Bouillon
(1997) in distinguishing different modification relations of an adjective over a head
as cases of distinct qualia selection.

4.1.1 Adjectival Modification

This task involves annotating how particular noun qualia values are bound by the
adjectives. Following Pustejovsky (2000), we assume that the properties grammat-
ically realized as adjectives “bind into the qualia structure of nouns, to select a
narrow facet of the noun’s meaning.” The different types of binding of the adjectival
modification can be better understood if we examine the modification structure of
large carved wooden useful arrow in (11):

(11)

Large refers to the arrow as a physical object, its FORMAL type, so that the adjec-
tive is associated with that quale. Similarly, carved is associated with the creation
of the arrow (AGENTIVE), wooden is associated with a material part of the arrow
(CONSTITUTIVE), and useful is associated with how the arrow is used (TELIC).

Many adjectives are specialized with respect to the qualia they bind and, in these
cases, they identify the concrete value of the relevant quale. See the examples in
(12)–(15).

(12) CONSTITUTIVE

a. wooden house
b. wrinkled face
c. mountainous region

(13) FORMAL heavy, red, large, sweet, raw, rough, hard, simple, responsible, happy,
short, narrow, poor, bitter, new

(14) TELIC useful, effective, good (knife/table/teacher)
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(15) AGENTIVE
a. carved figure
b. hand-made shoes
c. synthetic material
d. natural light

The task begins with sense disambiguation of the target nouns. Questions are
then used to help the annotator identify which relations are selected. For example,
the TELIC question for the noun woman would be “Is the verb associated with a
specific role of woman?” These questions will change according to the type asso-
ciated with the noun. That is, for PHYSICAL OBJECT-denoting nouns, the question
corresponding to the AGENTIVE role involves “making or destroying” the object,
while the EVENT-denoting nouns elicit a question involving the “beginning or end-
ing” of the event. QLinks are then created based on the annotator’s answers, as in
the following example:

The walls and the wooden table had all been lustily scrubbed.

<SELECTOR sid="s1">wooden</SELECTOR>
<NOUN nid="n1">table</NOUN>
<QLink qid="qid1" sID="s1" relatedToNoun="n1" qType="CONST"/>

4.1.2 Nominal Compounds

This task explores the semantic relationship between elements in nominal com-
pounds. The general relations presented in Levi (1978) are a useful guide for be-
ginning a classification of compound types, but the relations between compound
elements quickly proves to be too coarse-grained. Warren’s comprehensive work
(Warren 1978) is a valuable resource for differentiating relation types between com-
pound elements.

The class distinction in compound types in language can be broken down into
three forms (cf. Spencer 1991):

(16) a. ENDOCENTRIC COMPOUNDS: One element in the construction functions
as the head, e.g. taxi driver, pastry chef ;

b. EXOCENTRIC COMPOUNDS (BAHUVRIHI): Neither element in the con-
struction functions as the head, i.e. neither is the hyponym of the head:
e.g. houndstooth is a textile pattern, not a hound or a tooth;

c. DVANDVA compounds: a simple conjunction of two elements, without a
dependency holding between them, e.g. hunter-gatherer.

Following Bisetto and Scalise (2005), however, it is possible to distinguish three
slightly differently constructed classes of compounds, each exhibiting endocentric
and exocentric behavior:

(17) a. SUBORDINATING: the head acts functionally over N1, incorporating it as
an argument;

b. ATTRIBUTIVE: a general modification relation;
c. COORDINATE: the dvandva construction mentioned above.
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We will focus on the two classes of subordinating and attributive compounds.
Within each of these, we will distinguish between synthetic and non-synthetic com-
pounds. The former are deverbal nouns, and when acting functionally (subordinat-
ing), they take the sister noun as an argument, as in bus driver and window cleaner.
The non-synthetic counterparts of these include pastry chef and bread knife, where
the head is not deverbal in any obvious way. While Bisetto and Scalise’s distinction
is a useful one, it does little to explain how non-relational sortal nouns such as chef
and knife act functionally over the accompanying noun in the compound, as above.

This construction has been examined within GL by Johnston and Busa (1999).
We will assume much of that analysis in our definition of the task described here.
Our basic assumption regarding the nature of the semantic link between both parts of
compounds is that it is generally similar to the one present in adjectival modification.
The only difference is that in nominal compounds, for instance, the qualia of a head
noun are activated or exploited by a different kind of modifier, a noun.

Following Johnston and Busa (1999), consider the following [N1 N2] construc-
tions in English and the corresponding [N2 P N1] constructions in Italian.

(18) a. coltello da pane
‘bread knife’

b. bicchiere da vino
‘wine glass’

c. foro di pallottola
‘bullet hole’

d. succo di limone
‘lemon juice’

e. porta a vetri
‘glass door’

In compounds (18a,b), the relation between N1 and N2 can be identified as the Telic
role for the heads, knife and glass, while in (18c,d), the relation can be identified
with the Agentive of the respective heads, hole and juice. In (18e), on the other
hand, glass is the Constitutive of the head door. Interestingly, Johnston and Busa
(1999) illustrate how in Italian, the choice between da and di in compounds is not in
free variation, but is rather conditioned by the semantic relation between the nouns.2

Using the strategy of qualia selection outlined above by Johnston and Busa
(1999), we can identify a broad range of semantic relations in noun compound
constructions as qualia-based. As illustration, consider the attributive compounds
in (19)–(20).

(19) [N1 N2]: N1 is the TELIC of N2:

a. fishing rod
b. magnifying glass

2Specifically, they argue that it is the particular quale binding the two nouns that determines the
choice. They correlate the use of da with the Telic quale while di can be associated with either
Agentive or Constitutive.



230 J. Pustejovsky et al.

c. swimming pool
d. shopping bag
e. drinking water

(20) [N1 N2]: N1 is the CONSTITUTIVE of N2:
a. paper napkins
b. metal cup
c. gold filling

Synthetic subordinating compounds may also be characterized as qualia relations,
even though they are acting functionally. The examples in (21) are both subordinat-
ing and AGENTIVE-selecting compounds:

(21) [N1 N2]: N1 is the AGENTIVE of N2:
a. food infection
b. heat shock

Interestingly, there are corresponding non-synthetic compounds, which also act
functionally and are AGENTIVE-selecting:

(22) [N1 N2]: N1 is the AGENTIVE of N2:
a. university fatigue
b. automobile accident
c. sun light

The annotation for this task is performed just as it is for the adjectival modification
task, given their similarity. A QLink is created as in the following example:

Our guest house stands some 100 yards away.

<SELECTOR sid="s1">guest</SELECTOR>
<NOUN nid="n1">house</NOUN>
<QLink qid="qid1" sID="s1" relatedToNoun="n1" qType="TELIC"/>

4.2 Type Selection Involving Dot Objects

This task involves annotating how particular types within dot objects are exploited
in adjectival and nominal modification constructions as well as verb-noun combina-
tions. Dot objects or complex types (Pustejovsky 1995) are defined as the product of
a type constructor • (“dot”), which creates dot objects from any two types a and b,
creating a • b. Complex types are unique because they are made up of seemingly
conflicting types such as FOOD and EVENT for lunch, for example (see Sect. 2).

Given a complex type c= a • b, there are three possible options:

1. the modifier/verbal predicate applies to both a and b

2. the modifier/verbal predicate applies to a only
3. the modifier/verbal predicate applies to b only
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Option 1 is illustrated by the following examples of modification and argument
selection:

(23) a. good book (+INFO, +PHYSOBJ)
purchase the book (+INFO, +PHYSOBJ)

b. long lecture (+INFO, +EVENT)
prepare the lecture (+INFO, +EVENT)

c. new appointment (+EVENT, +HUMAN)
welcome the appointment (+EVENT, +HUMAN)

Options 2 and 3 can be illustrated by:3

(24) a. lunch (EVENT • FOOD):
delicious lunch (FOOD) vs. long lunch (EVENT)
share lunch (FOOD) vs. skip lunch (EVENT)

b. book (INFO • PHYSOBJ):
boring book (INFO) vs. heavy book (PHYSOBJ)
illustrate the book (INFO) vs. close the book (PHYSOBJ)

c. rumor (ACTIVITY • PROPOSITION):
false rumor (PROPOSITION) vs. persistent rumor (ACTIVITY)
spread the rumor (PROPOSITION) vs. trigger the rumor (ACTIVITY)

d. lecture (EVENT • INFO):
morning lecture (EVENT) vs. interesting lecture (INFO)
miss the lecture (EVENT) vs. write the lecture (INFO)

e. concert (EVENT • INFO):
open-air concert (EVENT) vs. orchestral concert (INFO)
host the concert (EVENT) vs. record the concert (INFO)

f. lamb (ANIMAL • FOOD):
roast lamb (FOOD) vs. newborn lamb (ANIMAL)
eat lamb (FOOD) vs. sacrifice the lamb (ANIMAL)

g. construction (PROCESS • RESULT):
wooden construction (RESULT) vs. road construction (PROCESS)
admire the construction (RESULT) vs. supervise the construction (PROCESS)

h. appointment (EVENT • HUMAN):
urgent appointment (EVENT) vs. troubled appointment (HUMAN)
arrange an appointment (EVENT) vs. see the (next) appointment (HUMAN)

The sense inventory for the collection of dot objects chosen for this task includes
only homonyms. That is, only contrastive senses such as the river bank versus fi-
nancial institution for bank will need to be disambiguated. Complementary senses
such as “the financial institution” itself versus “the building where it is located” are
not included.

In order to create the appropriate CompLink, the annotator will select which type
from a list of component types for a given dot object is exploited in the sentence.
The resulting GLML is:

3See Pustejovsky (2005), Rumshisky et al. (2007) for an expanded listing of dot objects.
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After a while more champagne and a delicious lunch was served.

<SELECTOR sid="s1">delicious</SELECTOR>
<NOUN nid="n1">lunch</NOUN>
<CompLink cid="cid1" sID="s1" relatedToNoun="n1" gramRel="mod"
compType="SELECTION" sourceType="[PHYS_OBJ,EVENT]"
targetType="PHYS_OBJ" />

5 Conclusion

In this chapter, we approach the problem of annotating the relation between a predi-
cate and its argument as one that encodes the compositional history of the selection
process. This allows us to distinguish surface forms that directly satisfy the selec-
tional (type) requirements of a predicate from those that are accommodated or co-
erced in context. We described a specification language for selection, GLML, based
largely on the type selective operations in GL, and three annotation tasks using this
specification to identify argument selection behavior.

There are clearly many compositional operations in language that have not been
addressed here. The framework is general enough, however, to describe a broad
range of type selective behavior. As the tasks become more refined, the extensions
will also become clearer. Furthermore, as other languages are examined for annota-
tion, new tasks will emerge reflecting perhaps language-specific constructions.
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Incremental Recognition and Prediction
of Dialogue Acts

Volha Petukhova and Harry Bunt

Abstract This chapter is concerned with the incremental understanding of utter-
ances in spoken dialogue, with a focus on how their intended (possibly multiple)
communicative functions can be recognized in a data-oriented way on the basis
of observable features of communicative behaviour. An incremental, token-based
approach is described which combines the use of local classifiers, that exploit lo-
cal utterance features, and global classifiers that use the outputs of local classifiers
applied to previous and subsequent tokens. This approach is shown to result in ex-
cellent dialogue act recognition scores for unsegmented spoken dialogue. This can
be seen as a significant step forward towards the development of fully incremental,
on-line methods for computing the meaning of utterances in spoken dialogue.

1 Introduction

When reading a sentence in a text, a human language understander obviously does
not wait trying to understand what he is reading until he has come to the end of
the sentence. Similarly for trying to understand what is said in a spoken conver-
sation; evidence from the examination of transcripts of spoken conversations and
from psycholinguistic experiments suggests that interpretation starts long before a
complete utterance is constructed. Psycholinguistic studies provide further support
for this view, for example, eye-tracking experiments reported by Tanenhaus et al.
(1995), Sedivy et al. (1999) and Sedivy (2003) show that definite descriptions are
resolved incrementally when the referent is visually accessible. Other evidence sug-
gests that understanding involves parallel generation of multiple hypothesis. It has
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been shown, e.g. for processing ambiguous words by Swinney (1979) and Simpson
(1994), for definite expression resolution (Tanenhaus et al. 1995), and for pronoun
interpretation (Corbett and Chang 1983), that all possible hypotheses are activated
in parallel until it is possible to identify a single candidate, or at least reduce their
number.

Observations of natural dialogue behaviour show that humans process dialogue
contributions incrementally, and are often able to anticipate the end of the utterance
(see e.g. de Ruiter et al. 2006). People are also able to predict turn endings with
high accuracy using semantic, syntactic, pragmatic, prosodic and visual features
(Ford and Thompson 1996; Grosjean and Hirt 1996; Barkhuysen et al. 2008, among
others). Dialogue phenomena such as backchannelling (providing feedback while
someone else is speaking), the completion of a partner utterance, and requests for
clarification that overlap the utterance of the main speaker, illustrate this. Studies of
nonverbal behaviour in dialogue show that participants start to perform certain body
movements that are perceived and interpreted by others as dialogue acts while some-
one else is still speaking, see e.g. Petukhova and Bunt (2009). All these observations
provide evidence for the incremental nature of human dialogue understanding.

Traditional models of language understanding for dialogue systems are pipelined
and modular, and operate on complete utterances. Typically, such systems have a
speech recognition module, a language understanding module responsible for syn-
tactic and semantic analysis, an interpretation manager, a dialogue manager, a nat-
ural language generation module, and a module for speech synthesis. The output of
each module is the input for another. The language understanding module typically
performs the following tasks:

1. segmentation: identification of relevant segments in the input, such as sentences;
2. lexical analysis: lexical lookup, possibly supported by morphological processing,

and by additional resources such as WordNet, VerbNet, or lexical ontologies;
3. parsing: construction of syntactic interpretations;
4. semantic analysis: computation of propositional, referential, or action-related

content;
5. pragmatic analysis: determination of speaker intentions.

Of these tasks, lexical analysis, being concerned with local information at word
level, can be done for each word as soon as it has been recognized, and is natu-
rally performed as an incremental part of utterance processing, but syntactic, se-
mantic and pragmatic analysis are traditionally performed on complete utterances.
Tomita’s pioneering work in left-to-right syntactic parsing has shown that incre-
mental parsing can be much more efficient and of equal quality as the parsing of
complete utterances (Tomita 1986). Computational approaches to incremental se-
mantic and pragmatic interpretation have been less successful (see e.g. Haddock
1989; Milward and Cooper 2009), but work in computational semantics on the de-
sign of underspecified representation formalisms has shown that such formalisms,
developed originally for the underspecified representation of quantifier scopes, can
also be applied in situations where incomplete input information is available (see
e.g. Bos 2002; Bunt 2007; Hobbs 1985; Pinkal 1999) and as such hold a promise
for incremental semantic interpretation.
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Pragmatic interpretation is primarily based on the recognition of the speaker’s
intentions. The recognition of the intentions encoded in user utterances is one of the
most important aspects of language understanding for a dialogue system. Compu-
tational modelling of dialogue behaviour in terms of dialogue acts aims to capture
speaker intentions in the communicative functions of dialogue acts, and offers an
effective integration with semantic content analysis through the information state
update approach (Poesio and Traum 1998; Bunt 2000; Traum and Larsson 2003).
In this approach, a dialogue act is viewed as having as its main components a com-
municative function and a semantic content, where the semantic content is the ref-
erential, propositional, or action-related information that the dialogue act addresses,
and the communicative function defines how an understander’s information state is
to be updated with that information.

Evaluation of a non-incremental dialogue system and its incremental counterpart
reported in Aist et al. (2007) showed that the latter is faster overall than the former
due to the incorporation of pragmatic information in early stages of the understand-
ing process. Since users formulate utterances incrementally, partial utterances may
be available for a substantial amount of time and may be interpreted by the sys-
tem. An incremental interpretation strategy may allow the system to respond more
quickly, by minimizing the delay between the time the user finishes and the time the
utterance is interpreted (DeVault and Stone 2003).

Although human language processing is largely incremental, some decisions
need to be postponed. In some cases, a hypothesis cannot be resolved immediately,
because there is insufficient evidence for disambiguation. Some semantic phenom-
ena cannot be resolved incrementally, e.g. scope assignment; here, partial interpre-
tations may initially be constructed and refined later. In this chapter we present
the results of a series of experiments carried out in order to assess the automatic
incremental segmentation and classification of dialogue acts, investigating the auto-
matic recognizability of multiple communicative functions on the basis of observ-
able features such as linguistic cues, intonation properties and dialogue history. We
will show that in order to arrive at the best output prediction two different classi-
fication strategies are needed: (1) local classification that is based on features ob-
served in dialogue behaviour and that can be extracted from the annotated data;
and (2) global classification that takes the locally predicted context into account.
The first strategy corresponds with Fine-Grained Incremental Interpretation, where
each small portion of an utterance is analyzed immediately when it is encountered,
such as each token either word or vocal signal. The second strategy corresponds
with Coarse-Grained Incremental Interpretation, the processor having fine-grained
results waits until larger chunks of an utterance are encountered (cf. Chater et al.
1995).

This chapter is structured as follows. Section 2 discusses approaches and results
of studies of automatic dialogue act recognition. In Sect. 3 we outline the experi-
ments we performed, describing the data, tag set, features, algorithms and evaluation
metrics that were used. Section 4 reports on the experimental results, applying a va-
riety of machine learning techniques and feature selection algorithms, to assess the
automatic recognition and classification of dialogue acts using simultaneous incre-
mental segmentation and dialogue act classification.
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2 Related Work

The state of the art in dialogue act recognition is to use all available information
sources from multiple modalities. These sources include: (1) linguistic information,
that can be derived from the surface form of an utterance: lexical, collocational and
syntactic information; (2) perceptual information from multiple channels available
for dialogue participants, including acoustic and prosodic properties of utterances as
well as information from visual and other modalities; (3) contextual information ob-
tained from the preceding dialogue context and dialogue structure, as well as global
context properties like dialogue setting, knowledge about dialogue participants, and
so on.

Various machine learning techniques have been applied successfully to natural-
language based dialogue analysis. For example, techniques based on n-gram lan-
guage modelling were applied by Reithinger and Klesen (1997) to the Verbmobil
corpus, with a reported tagging accuracy of 74.7 %. Hidden Markov Models (HMM)
have been tried for dialogue act classification in the Switchboard corpus (Stolcke
et al. 2000), achieving a tagging accuracy of 71 % on word transcripts. Another
approach that has been applied to dialogue act recognition by Samuel et al. (1998),
uses transformation-based learning; they achieved an average tagging accuracy of
75.12 % for the Verbmobil corpus. Keizer (2003) used Bayesian Networks applying
a slightly modified version of DAMSL with an accuracy of 88 % for backward-
looking functions and 73 % for forward-looking functions in the SCHISMA cor-
pus.1 Lendvai et al. (2004) adopted a memory-based approach, based on the k-
nearest-neighbour algorithm, and report a tagging accuracy of 73.8 % for the OVIS
data.2

Apart from using different techniques, these approaches also differ with respect
to feature selection strategies. Some approaches rely solely on the wording of an in-
put utterance, using n-gram models or cue-phrase, e.g. Reithinger and Klesen (1997)
and Webb et al. (2005). Others successfully integrate prosodic features that facili-
tate accurate dialogue act recognition, e.g. Shriberg et al. (1998), Jurafsky et al.
(1998), Fernandez and Picard (2002), Stolcke et al. (2000). Again others combine
the predictions derived from the utterance and its context, e.g. Keizer (2003), Stol-
cke et al. (2000), Samuel et al. (1998), Lendvai et al. (2004). None of these ap-
proaches deals with the possible multifunctionality of dialogue segments; Stolcke
et al. (2000) for example use dialogues from the Switchboard as segmented into
‘slash-units’ (Meteer and Taylor 1995), which has been shown to preclude an ac-
curate characterization of utterances in terms of multiple communicative functions
(Bunt et al. 2013).

Nakano et al. (1999) proposed a method for incremental understanding of user
utterances whose boundaries are not known. The Incremental Sentence Sequence

1The SCHISMA corpus consists of 64 dialogues in Dutch collected in Wizard-of-Oz experiments,
has keyboard-entered utterances within the information exchange and transaction task domain,
where users can make inquiries about theatre performances scheduled and make ticket reservations.
2Openbare Vervoer Informatie Systeem (Public Transport Information System), see http://www.
let.rug.nl/~vannoord/Ovis/.

http://www.let.rug.nl/~vannoord/Ovis/
http://www.let.rug.nl/~vannoord/Ovis/
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Search (ISSS) algorithm finds plausible boundaries of utterances, called ‘significant
utterances’ (SUs), that can be a full sentence or a subsentential phrase, such as a
noun phrase or a verb phrase. Any phrase that can change the belief state is defined
as SU. In this sense an SU corresponds more or less with what we call a functional
segment. ISSS maintains multiple possible belief states, and updates those belief
states when a word hypothesis is input (i.e. word-by-word). The ISSS approach
does not deal with the multifunctionality of segments, however, and does not allow
segments to overlap.

Lendvai and Geertzen (2007) proposed token-based dialogue act segmentation
and classification, worked out in more detail in (Geertzen 2009). This approach
takes dialogue data that is not segmented into syntactically or semantically complete
units, but operates on the transcribed speech as a stream of words and other vocal
signs (e.g. laughs or breathing), including disfluent elements (e.g. abandoned or
interrupted words) for each dialogue participant. Segmentation and classification of
dialogue acts are performed simultaneously in one step. Geertzen (2009) reports on
classifier performance on this task for the DIAMOND data3 using DIT++ labels;
F -scores range from 47.7 to 81.7. It was shown that performing segmentation and
classification together results in better segmentation performance, but affects the
dialogue act classification negatively.

The incremental dialogue act recognition method as proposed here takes the
token-based approach for building classifiers for the recognition of multiple dia-
logue acts for each input token.

3 Set-Up of Classification Experiments

3.1 Tag Set

The data used in the experiments was annotated with the DIT++ Release 4 tag set.4

The DIT++ taxonomy distinguishes 10 dimensions, addressing information about:
the domain or task (Task), feedback on communicative behaviour of the speaker
(Auto-Feedback) or other interlocutors (Allo-Feedback), managing difficulties in
the speaker’s contributions (Own-Communication Management) or those of other
interlocutors (Partner Communication Management), the speaker’s need for time
to continue the dialogue (Time Management), establishing and maintaining contact
(Contact Management), who should have the next turn (Turn Management), the way
the speaker is planning to structure the dialogue, introducing, changing or closing
a topic (Dialogue Structuring), and conditions that trigger dialogue acts by social
convention (Social Obligations Management), see Table 1.

3The DIAMOND corpus (Geertzen et al. 2004) contains human-machine and human-human Dutch
dialogues that have an assistance-seeking nature. The dialogues were video-recorded in a setting
where the subject could communicate with a help desk employee using an acoustic channel and
ask for explanations on how to configure and operate a fax machine.
4For more information about the tag set and the dimensions that are identified, please visit http://dit.
uvt.nl/ or see Bunt (2009).

http://dit.uvt.nl/
http://dit.uvt.nl/


240 V. Petukhova and H. Bunt

For each dimension, a functional segment can be assigned at most one commu-
nicative function (not counting implied functions, see Bunt 2011), which is either a
function that can occur in this dimension only (a dimension-specific (DS) function)
or a function that can occur in any dimension (a general-purpose (GP) function).
Dialogue acts with a DS communicative function can only be concerned with a par-
ticular type of information, such as a Turn Grabbing act, which is concerned with
the allocation of the speaker role, or a Stalling act, which is concerned with the tim-
ing of utterance production. GP functions, by contrast, are not specifically related to
any dimension in particular, e.g. one can ask a question about any type of semantic
content, provide an answer about any type of content, or request the performance
of any type of action (such as Could you please close the door or Could you please
repeat that). These communicative functions include Question, Answer, Request,
Offer, Inform, and many other familiar core speech acts.

The tag set used in these studies contains 38 dimension-specific functions and
44 general-purpose functions. A tag consists either of a pair consisting of a com-
municative function (CF) and the addressed dimension (D), or (in the case of a DS
function), of just a communicative function.

3.2 Features and Data Encoding

We used data selected from the AMI meeting corpus5 and the Map Task corpus.6 For
training we used three annotated AMI meetings that contain 17,335 tokens which
form 3,897 functional segments. The Map Task training set contains 6 dialogues
consisting of 5,941 tokens that form 2,589 functional segments. Table 1 shows the
distribution of annotated dialogue acts over the DIT++ dimensions for both corpora,
indicating the percentage of identified functional segments per dimension. Table 2
presents the percentage of functional segments with general-purpose functions. Note
that for better recognition of pragmatic and semantic distinctions between different
types of Inform acts they are divided into two categories: Informs tout court and
Informs that are rhetorically related to previous dialogue acts, e.g. elaborating, jus-
tifying, or explaining them.

Features extracted from the data considered here relate to dialogue history: func-
tional tags of the 10 previous turns; timing: token duration and floor-transfer off-

5The Augmented Multi-party Interaction http://www.amiproject.org/ corpus contains human-
human multi-party interactions in English. Meeting participants (mostly four) play different roles
in a fictitious design team that takes a new project from kick-off to completion over the course of a
day. The AMI corpus contains manually produced orthographic transcriptions for each individual
speaker, including word-level timings that have been derived using a speech recogniser in forced
alignment mode. The meetings are video-recorded and each dialogue is also provided with sound
files (for our analysis we used recordings made with close-talking microphones to eliminate noise).
6Detailed information about the Map Task project can be found at http://www.hcrc.ed.ac.uk/
maptask/. The corpus contains so-called instruction dialogues, where one participant plays the role
of an instruction-giver and another that of instruction-follower, who navigates through the map
following the instructions of the instruction-giver. The Map Task corpus contains orthographic
transcriptions for each individual speaker, including word-level timings.

http://www.amiproject.org/
http://www.hcrc.ed.ac.uk/maptask/
http://www.hcrc.ed.ac.uk/maptask/


Incremental Recognition and Prediction of Dialogue Acts 241

Table 1 Distribution of functional segments across dimensions for AMI and Map Task corpora

Dimension AMI corpus Map Task corpus

Task 31.8 52.4

Auto-Feedback 20.5 15.7

Allo-Feedback 0.7 4.7

Turn Management 50.2 24.3

Social Obligation Management 0.5 0.1

Discourse Structuring 2.8 0.5

Own Communication Management 10.3 2.8

Time Management 26.7 13.4

Partner Communication Management 0.3 0.3

Contact Management 0.1 1.7

Table 2 Distribution of functional tags for general-purpose communicative functions for the AMI
and Map Task corpora (in %)

General-purpose function AMI corpus Map Task corpus

Propositional Question 5.8 7.1

Set Question 2.3 2.9

Check Question 3.3 7.1

Propositional Answer 9.8 4.3

Set Answer 3.9 2.4

Inform 11.7 7.8

Inform (Rhetorical) 21.9 13.4

Instruct 0.3 26.8

Suggest 10.1 0

set7 computed in milliseconds; prosody: minimum, maximum, mean, and standard
deviation for pitch (F0 in Hz), energy (RMS), voicing (fraction of locally unvoiced
frames and number of voice breaks) and speaking rate (number of syllables per
second);8 and lexical information: each token is coded as a feature, and bi- and tri-
gram models were constructed and used as lexical features. For the AMI data, being
multi-party dialogues, we also include the speaker (A, B, C, D) and the addressee
(other participants individually or the group as a whole) as features.

7Difference between the time that a turn starts and the moment the previous turn ends.
8These features were computed using the PRAAT tool, see http://www.praat.org. We examined
both raw and normalized versions of these features. Speaker-normalized features were obtained
by computing z-scores (z = (X-mean)/standard deviation) for the feature, where mean and stan-
dard deviation were calculated from all functional segments produced by the same speaker in the
dialogues. We also used normalizations by first speaker turn and by previous speaker turn.

http://www.praat.org
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Speaker Token Task Auto-F. Allo-F. TurnM. TimeM. ContactM. DS OCM PCM SOM

B it B:inf O O O O O O O O O
B has I:inf O O O O O O O O O
B to I:inf O O O O O O O O O
B look I:inf O O O O O O O O O
B you O O B:check O O O O O O O
B know O O E:check O O O O O O O
B cool I:inf O O O O O O O O O
D mmhmm O BE:positive O O O O O O O O
B and I:inf O O BE:t_keep O O O O O O
B gimmicky E:inf O O O O O O O O O

Fig. 1 Encoding of segment boundaries and communicative functions in different dimensions

For classification experiments based on complete segments, word occurrence is
represented by a bag-of-words vector9 indicating the presence or absence of words
in the segment. In total, 1,668 features are used for the AMI data and 829 features
for the Map Task data.

To be able to identify segment boundaries, we assign to each token its commu-
nicative function label and indicate whether a token starts a segment (B), is inside
a segment (I), ends a segment (E), is outside a segment (O), or forms a functional
segment on its own (BE). Thus, the class labels consist of a segmentation prefix
(IBOE) and a communicative function label, see example in Fig. 1.

3.3 Classifiers and Evaluation Metrics

A wide variety of machine-learning techniques has been used for NLP tasks with
various instantiations of feature sets and target class encodings. For dialogue pro-
cessing, it is still an open issue which techniques are the most suitable for which
task. We used two types of classifier to test their performance on our data: a proba-
bilistic one and a rule inducer.

As a probabilistic classifier we used Bayes Nets. This classifier estimates prob-
abilities rather than produce predictions, which is often more useful because this
allows us to rank predictions. Bayes Nets estimate the conditional probability dis-
tribution on the values of the class attributes given the values of the other attributes.

As a rule induction algorithm we chose Ripper (Cohen 1995). The advantage
of a rule inducer is that the regularities discovered in the data are represented as
human-readable rules.

The results of all experiments were obtained using 10-fold cross-validation.10 As
a baseline it is common practice to use the majority class tag, but for our data sets

9With a size of 1,640 entries for AMI data and 802 entries for the Map Task data.
10In order to reduce the effect of imbalances in the data, it is partitioned ten times. Each time a
different 10 % of the data is used as test set and the remaining 90 % as training set. The procedure is
repeated ten times so that in the end every instance has been used exactly once for testing, and the
scores are averaged. The cross-validation was stratified, i.e. the 10 folds contained approximately
the same proportions of instances with relevant tags as the entire dataset.
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such a baseline is not very useful because of the relatively low frequencies of the
tags in some dimensions. Instead, we use a baseline that is based on a single feature,
namely, the tag of the previous dialogue utterance, unless specified differently.

Several metrics have been proposed in the literature for the evaluation of clas-
sifier performance. For assessing the performance of the joint segmentation and
classification of dialogue acts, a word-based and a dialogue act-based metric are
used. The word-based metric has been introduced in (Ang et al. 2005). It measures
the percentage of words that were placed in a segment perfectly identical to that
in the reference. In other words, if an output segment perfectly matches a corre-
sponding reference segment on the word level, each word in that segment is counted
as correct. All other placements of words are counted as incorrect. A dialogue act-
based metric (DER) was proposed in (Zimmermann et al. 2005), which considers
a word to be correctly classified if and only if it has been assigned the correct di-
alogue act type and it lies in exactly the same segment as the corresponding word
of the reference. Thus, the DER metric not only requires a dialogue act candidate
to have exactly matching boundaries but also to be tagged with the correct dialogue
act type. We use the combined DERsc metric to evaluate joint segmentation (s) and
classification (c):

DERsc = tokens with wrong boundaries and/or wrong function class

total number of tokens
× 100.

The most commonly used performance metrics are accuracy, precision, recall and
F -scores. The overall success rate (accuracy) is computed by dividing the number
of correct classifications by the total number of classifications. A common metric
which represents the balance between precision and recall is the F-score:

F -score= 2 · recall · precision

recall+ precision
= 2 · tp

2 · tp+ fp+ fn
.

We will use these standard metrics when evaluating classification results.

4 Classification Results

4.1 Joint Segmentation and Classification

We performed token-based machine-learning experiments on the AMI and Map
Task data. The results for joint segmentation and classification for different clas-
sifiers are presented in Table 3 for the AMI data.

The results show that both classifiers outperform the baseline by a broad margin.
The BayesNet classifier marginally outperforms the Ripper rule-inducer, showing
no significant differences in overall performance. Comparing our results with those
reported in (Geertzen 2009) for the DIAMOND data, we see that the F -scores ob-
tained in our experiments are slightly higher. This may be due to the fact that our
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Table 3 Overview of F -scores and DERsc for joint segmentation and classification in each DIT++
dimension for AMI data. (Best scores indicated by numbers in bold face.)

Classification BL BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc

Task 32.7 51.2 52.1 48.7 66.7 42.6

Auto-Feedback 43.2 84.4 62.7 33.9 60.1 45.6

Allo-Feedback 70.2 59.5 73.7 35.1 71.3 49.1

Turn Management: initial 34.2 95.2 57.0 58.4 54.3 81.3

Turn Management: final 33.3 92.7 54.2 46.9 49.3 87.3

Time management 43.7 96.5 64.5 46.1 61.4 53.1

Discourse Structuring 41.2 35.1 72.7 19.9 50.2 30.9

Contact Management 59.9 53.2 71.4 49.9 83.3 37.2

OCM 36.5 87.9 68.3 51.3 58.3 76.8

PCM 49.5 59.0 58.5 45.5 51.4 58.7

SOM 34.5 47.5 86.5 35.9 83.3 44.3

Table 4 Overview of F - and DERsc-scores for joint segmentation and classification in each
DIT++ dimension for Map Task data. (Best scores indicated by numbers in bold face.)

Classification task BL BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc

Task 43.8 70.2 79.7 41.9 77.7 58.5

Auto-Feedback 64.6 60.6 65.4 55.2 80.1 43.9

Allo-Feedback 30.7 91.2 59.3 54.0 72.7 51.8

Turn Management 50.3 47.5 70.8 40.9 81.4 36.2

Time management 54.2 28.4 72.1 20.3 83.6 10.4

Discourse Structuring 33.2 95.1 62.5 44.3 66.7 43.5

Contact Management 24.7 93.2 57.0 79.5 11.0 93.5

OCM 11.2 97.4 42.9 64.7 28.6 92.1

PCM 14.3 95.2 61.5 55.2 66.7 50.1

SOM 08.8 96.2 40.0 71.8 85.7 21.4

training set is three times larger. For better comparison, we decided to perform the
same experiments using Map Task dialogues. Table 4 shows the overall performance
of the classifiers for joint segmentation and classification for these data.

The classifiers perform better on the Map Task data than on the AMI data, for the
five most frequently occurring dimensions: Task, Auto- and Allo-Feedback, Turn
Management and Time Management. This is because the classifiers need to deal
with less complex phenomena in these data.

Although the results are encouraging, the performance for joint segmentation
and classification does not outperform the two-step segmentation and classification
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Table 5 Overview of F -scores on the baseline (BL) and the classifiers on two-step segmentation
and classification tasks. (Best scores indicated by numbers in bold face.)

Classification BL NBayes Ripper IB1

Task 66.8 71.2 72.3 53.6

Auto-Feedback 77.9 86.0 89.7 85.9

Allo-Feedback 79.7 99.3 99.2 98.8

Turn M.: initial 93.2 92.9 93.2 88.0

Turn M.: final 58.9 85.1 91.1 69.6

Time management 69.7 99.2 99.4 99.5

Discourse Structuring 69.3 99.3 99.3 99.1

Contact Management 89.8 99.8 99.8 99.8

OCM 89.6 90.0 94.1 85.6

PCM 99.7 99.7 99.7 99.7

SOM 99.6 99.6 99.6 99.6

scores reported in (Geertzen et al. 2007) and summarized in Table 5. It was noticed
that lower F -scores are due to lower recall. Beginnings and endings of segments
were often not found. For example, the beginnings of Set Questions are identified
with perfect precision (100 %), but about 60 % of the cases were not found. The
reason that classifiers still show reasonable performance is that most tokens occur
inside segments and were better classified, e.g. inside-tokens of Set Questions were
classified with high precision (83 %) and reasonably high recall scores (76 %). In
general, the correct identification of the start of a relevant segment is crucial for
further decisions.

4.2 Fine-Grained Incremental Interpretation: Local Classification

Dialogue utterances are often multifunctional, having a function in more than one
dimension (see e.g. Bunt 2011). This makes dialogue act recognition a complex
task. Splitting up the learning task may make the task more manageable. A widely
used strategy is to split a multi-class learning task into several binary learning tasks.
Learning multiple classes, however, allows a learning algorithm to exploit interac-
tions among classes. We split the classification task in such a way that a classi-
fier needs to learn (1) communicative functions in isolation; (2) semantically re-
lated functions together, e.g. all information-seeking functions (questions) or all
information-providing functions (all answers and all informs). We have built in to-
tal 64 classifiers for dialogue act recognition for the AMI data and 43 classifiers for
the Map Task data. The difference in the number of classifiers is due to the fact that
there are fewer general-purpose functions in the Map Task dialogues (9 comparing
to 16 in the AMI corpus). Some of the tasks were defined as binary ones, e.g. the
dimension recognition task, others are multi-class learning tasks.
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Table 6 Overview of F-scores and DERsc for the baseline (BL) and the classifiers upon joint
segmentation and classification for each DIT++ communicative function or cluster of functions
for AMI data. (Best scores indicated by numbers in bold face.)

Classification BL BayesNet Ripper

Communicative function F1 DERsc F1 DERsc F1 DERsc

General-purpose functions

Propositional Questions 47.0 39.1 94.9 3.9 75.8 23.5

Check Questions 43.8 56.4 68.5 19.6 61.3 33.1

Set Questions 44.8 52.1 74.1 18.6 76.3 17.7

Choice Question 41.8 54.2 68.6 15.7 73.1 21.4

Inform 45.8 39.9 79.8 18.7 66.5 30.5

Inform (Elaborate) 37.2 38.9 69.1 13.4 68.7 23.9

Inform (Justify) 46.3 35.2 80.5 11.2 75.7 31.6

Inform (Conclude) 43.2 48.5 66.7 13.5 59.0 37.2

Inform (Remind) 47.5 38.6 63.3 21.4 56.2 22.7

(Dis-)Agreement 41.3 79.1 72.1 12.6 71.6 60.2

PropositionalAnswer 32.0 77.8 66.8 26.1 52.2 53.8

(Dis-)Confirm 25.0 87.3 47.3 30.3 46.5 47.2

Set Answer 44.3 54.2 77.5 13.2 57.3 44.1

Suggest 45.8 38.4 65.6 17.3 48.8 35.6

Request 45.8 49.3 75.8 14.5 50.3 36.9

Instruct 46.3 49.3 60.5 14.5 46.3 36.9

Address Request 34.8 74.8 79.0 15.3 54.2 42.1

Offer 25.0 93.7 65.3 23.9 45.6 34.3

Dimension-specific functions

Auto-Feedback 57.1 23.5 78.8 13.2 66.7 15.5

Allo-Feedback 89.3 4.4 95.1 2.9 94.3 3.9

Turn Management 24.8 21.9 72.8 7.4 46.3 10.7

Time management 68.3 32.3 82.4 13.7 92.8 11.4

Discourse Structuring 40.7 13.6 72.6 2.5 74.5 1.7

Contact Management 21.4 48.6 89.2 5.7 92.3 3.6

Own Communication Management 26.7 48.6 78.0 11.6 68.1 20.0

Partner Communication Management 33.4 18.2 77.8 8.5 88.9 6.5

Social Obligation Management 60.0 18.7 88.9 8.3 90.1 5.5

We trained a classifier for each general-purpose and dimension-specific function
defined in the DIT++ taxonomy, and observed that this has the effect that the various
classifiers perform significantly better. These functions were learned (1) in isolation;
(2) as semantically related functions together. Both the recognition of communica-
tive functions and that of segment boundaries improves significantly. Table 6 gives
an overview of the overall performance (best obtained scores) of the trained classi-
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Table 7 Overview of F -scores and DERsc-scores for the baseline (BL) and the classifiers upon
joint segmentation and classification for each DIT++ communicative function or cluster of func-
tions for Map Task data. (Best scores indicated by numbers in bold face.)

Classification BL BayesNet Ripper

Communicative function F1 DERsc F1 DERsc F1 DERsc

General-purpose functions

Propositional Questions 29.5 73.9 87.8 13.5 71.6 27.1

Check Questions 25.0 73.2 59.8 63.6 52.8 57.9

Set Questions 24.8 72.6 69.3 42.2 69.0 43.1

Choice Question 23.5 73.4 66.7 48.9 67.1 45.7

Inform 24.1 72.7 69.3 50.9 59.8 60.7

Inform (Clarify) 24.8 73.7 65.0 46.7 60.5 54.8

Inform (Elaborate/Explain) 16.3 71.7 47.8 62.7 62.2 60.9

Propositional Answer 19.6 70.7 63.3 58.2 76.0 41.7

Set Answer 24.8 73.0 61.5 38.9 63.8 40.6

Instruct 36.0 66.3 74.3 26.7 69.5 41.3

Dimension-specific functions

Auto-Feedback 51.7 36.9 67.2 27.6 79.5 13.5

Turn Management 50.3 47.5 70.8 40.9 81.4 36.2

Time management 54.2 28.4 72.1 20.3 83.6 10.4

Discourse Structuring 65.3 17.2 92.3 10.4 93.2 8.9

Contact Management 33.3 34.6 54.6 26.2 70.5 12.2

Own Communication Management 11.2 97.4 42.9 64.7 28.6 92.1

Partner Communication Management 14.3 95.2 61.5 55.2 66.7 50.1

Social Obligation Management 08.8 96.2 40.0 71.8 85.7 21.4

fiers after splitting the learning task for the AMI data and Table 7 for the Map Task
data.

Both the recognition of communicative function and that of segment bound-
aries is fairly accurate. In general, classifiers performed well on this task. F -scores
achieved are much higher than baseline scores. The recognition of some acts was
not so successful, for example, (Dis-)Confirm acts were often confused with Propo-
sitional Answers because they share the same vocabulary. Since (Dis-)Confirm acts
entail Propositional Answer acts, this would have only marginal consequences for
an interactive system that makes use of online dialogue act understanding.

The realization of dimension-specific functions is highly conventional: dialogue
participants use certain formulae to take or keep the turn, to open or close the di-
alogue, to move from one topic to another, to signal positive or negative feedback,
and so on. Both corpora do not have dimension-specific functions for the Task di-
mension, which is why this dimension is left out. The Map Task data does not have
dimension-specific functions in the Allo-Feedback dimension.
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Table 8 Overview of F -scores and DERsc for complex label classification (boundary+communi-
cative function+dimension) in AMI data. (Best scores indicated by numbers in bold face.)

Classification BL BayesNet Ripper

Dimension F1 DER F1 DER F1 DER

Task 28.0 83.2 62.0 78.2 48.0 77.8

Auto-Feedback 31.2 85.7 45.3 68.3 33.3 69.1

Allo-Feedback 23.3 96.2 37.6 80.3 24.7 83.6

Discourse Structuring: delimitation 24.5 93.9 32.9 87.1 29.4 91.6

Discourse Structuring: topic organization 13.3 87.1 23.0 63.8 20.1 69.5

Segments having a general-purpose functions may address any of the ten DIT++
dimensions. The task of dimension recognition can be approached in two ways. One
approach is to learn segment boundaries, communicative function label and dimen-
sion in one step (e.g. the class label B:task;inform). This task is very complicated,
however. First, it leads to data which are high-dimensional and sparse, which will
have a negative influence on the performance of the trained classifiers. Second, in
many cases the dimension can be recognized reliably only with some delay; for the
first few segment tokens it is often impossible to say what the segment is about. For
example:

(1) 1. What do you think who we’re aiming this at?
2. What do you think we are doing next?
3. What do you think Craig?

The three Set Questions in (1) start with exactly the same words, but they ad-
dress different dimensions: Question 1 is about the Task (in AMI—the design the
television remote control); Question 2 serves the purpose of discourse structuring;
and Question 3 elicits feedback.

Another approach is to first recognize segment boundaries and communicative
function, and define dimension recognition as a separate classification task.

We tested both strategies. The F -scores for the joint learning of complex class
labels range from 23.0 (DERsc = 68.3) to 45.3 (DERsc = 63.8) (see Table 8). The
results are reported only for those dimensions that are addressed in our data by gen-
eral purpose functions in a substantial number of cases. We have no or only very few
examples of general-purpose functions used for Turn, Time, Contact, Own/Partner
Communication and Social Obligation Management.

For dimension recognition as a separate learning task the F -scores are signifi-
cantly higher, ranging from 70.6 to 97.7 (see Table 9). The scores for joint segmen-
tation and function recognition in the latter case are those listed in Table 6. Figure 2
gives an example of predictions made by five classifiers for the input What you guys
have already received um in your mails. Hypotheses about the type of semantic con-
tent are generated for each token. The probability score for the first segment tokens
are, however, lower than for the other tokens belonging to the same segment.
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Table 9 Overview of F -scores for dimension recognition for general-purpose functions in AMI
data

Classification GP functions Dimension recognition for GP functions

Communicative function F1 DERsc Task Auto-F. Allo-F. Dial. Struct.

Propositional Question 94.9 3.9 99.0 84.4 91.0 81.6

Set Question 74.1 18.6 94.8 79.6 na 87.5

Check Question 68.5 19.6 94.1 76.5 80.6 86.8

Inform 79.8 18.7 93.8 76.6 na 86.5

Inform (Elaborate) 69.1 13.4 94.6 na 58.3 86.9

Inform (Justify) 80.5 11.2 94.2 76.8 na 86.6

Inform (Conclude) 66.7 13.5 94.3 na na 86.9

Inform (Remind) 63.3 21.4 94.1 na na 86.9

(Dis-)Agreement 72.1 12.6 94.1 76.8 57.9 86.8

Propositional Answer 66.8 26.1 94.0 76.8 58.1 86.9

(Dis-)Confirm 47.3 30.3 94.1 76.7 58.0 na

Set Answer 77.5 13.2 94.1 76.7 na 86.8

Suggest 65.6 17.3 96.1 77.1 na 97.1

Request 75.8 14.5 99.1 na na 86.8

Instruct 60.5 14.5 99.4 na na 96.8

Address Request 79.0 15.3 99.0 na na 86.2

Offer 65.3 23.9 96.1 na na 78.3

Tokens SetQuestion Task Auto-F. TurnM. Complex label (BIOE:D;CF)
label p label p label p label p label p

what B:setQ 0.85 O 0.71 O 1 O 0.68 O 0.933
you I:setQ 1 task 0.985 O 1 B:give 0.64 O 0.869
guys I:setQ 1 task 0.998 O 1 E:give 0.66 O 0.937
have I:setQ 1 task 0.997 O 1 O 1 I:task;setQ 0.989
already I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.903
received I:setQ 1 task 0.987 O 1 O 1 I:task;setQ 0.813
um O 0.93 O 0.89 O 1 BE:keep 0.99 O 0.982
in I:setQ 1 task 0.826 O 1 O 0.89 I:task;setQ 0.875
your I:setQ 1 task 0.996 O 1 O 0.99 I:task;setQ 0.948
mails E:setQ 0.99 task 0.987 O 1 O 1 E:task;setQ 0.948

Fig. 2 Predictions with indication of confidence scores (highest p class probability selected) for
each token assigned by five trained classifiers simultaneously

4.3 Managing Local Classifiers: Global Classification and Global
Search

As was shown in the previous section, given a certain input all possible output pre-
dictions (hypotheses) were obtained from local classifiers. Some predictions made
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Table 10 Overview of F -scores and DERsc when global classifiers are used for AMI and Map
Task data, based on added predictions of local classifiers for five previous tokens. (Best scores
indicated by numbers in bold face.)

Classification AMI data Map Task data

BayesNet Ripper BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc F1 DERsc

Task 65.3 14.9 79.1 21.8 81.6 17.8 82.4 14.1

Auto-Feedback 72.9 8.1 77.8 7.2 77.2 26.5 81.3 17.6

Allo-Feedback 67.7 10.9 74.2 9.5 68.3 35.4 74.3 20.6

Turn Management: initial 72.2 11.5 69.5 11.4 82.9 11.4 81.4 18.4

Turn Management: close 82.7 5.0 83.0 4.9 72.9 29.1 67.2 28.9

Time Management 70.0 3.0 73.5 2.1 91.3 8.7 75.8 19.3

Discourse Structuring 72.3 4.9 63.7 3.6 78.1 19.3 81.3 17.3

Contact Management 79.1 4.5 84.3 4.6 79.5 17.9 78.5 18.9

OCM 66.0 2.4 68.3 2.3 80.4 17.6 67.3 28.9

PCM 63.2 7.8 59.5 11.4 72.7 33.2 66.7 29.1

SOM 88.4 0.9 81.6 1.7 95.7 6.3 95.7 6.4

by local classifiers are false, but once a local classifier has made a decision it is
never revisited. Humans, by contrast, may revise their previous decisions while in-
terpreting utterances, as illustrated for example by the well-known ‘garden-path’
phenomena (see e.g. Bever 1970; Frazier and Rayner 1982). It is therefore impor-
tant to base a decision not only on local features of the input, but to take outputs
of all local classifiers into account as well. Thus, broader contextual information
should be combined with a variety of local information to guide dialogue act recog-
nition over time. For example, making use of the partial output predicted so far, i.e.
of the history of previous predictions, and taking this as features into the next clas-
sification step, would help to discover and correct errors and make more accurate
predictions. This is known as the ‘recurrent sliding window strategy’ (see Dietterich
2002) when the true values for previous predictions are used as features. However,
this suffers not only from the label bias problem when a classifier overestimates
the importance of certain features, but also depicts an unrealistic situation, since
this information is not available to a classifier in real time. A solution proposed by
Van den Bosch (1997) is ‘adaptive training’, when the actual predicted output of
previous processing steps are used as features.

We trained higher-level classifiers (often referred to as ‘global’) that have, along
with features extracted locally from the input data as described above, the partial
output predicted so far from all local classifiers. We used five previously predicted
class labels, assuming that long distance dependencies may be important, and tak-
ing into account that the average length of a functional segment in our data is 4.4
tokens. Table 10 gives an overview of the results. We can observe an improvement
of about 10–15 % on average (cf. Tables 3 and 4). The classifiers still make some
incorrect predictions, because the decision is sometimes based on incorrect previous
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Table 11 Overview of F -scores and DERsc when global classifiers are used for AMI and Map
Task data, based on added predictions of local classifiers for five previous and five next tokens.
(Best scores indicated by numbers in bold face.)

Classification AMI data Map Task data

BayesNet Ripper BayesNet Ripper

Dimension F1 DERsc F1 DERsc F1 DERsc F1 DERsc

Task 82.6 9.5 86.1 8.3 85.8 12.2 80.8 9.1

Auto-Feedback 81.9 1.9 95.1 0.6 84.4 15.0 93.0 7.6

Allo-Feedback 96.3 0.6 95.7 0.5 95.3 4.6 94.6 6.9

Turn Management: initial 85.7 1.5 81.5 1.6 89.5 8.2 91.0 8.0

Turn Management: close 90.9 3.8 91.2 3.6 82.9 17.1 77.2 18.9

Time management 90.4 2.4 93.4 1.7 94.9 5.5 92.8 6.1

Discourse Structuring 82.1 1.7 78.3 1.8 85.7 12.4 87.4 8.2

Contact Management 87.9 1.2 94.3 0.6 87.4 9.9 88.3 7.4

OCM 78.4 2.2 81.6 2.0 87.2 9.8 87.4 7.6

PCM 71.8 2.4 70.0 4.6 86.7 11.1 86.8 9.8

SOM 98.6 0.4 98.6 0.5 97.9 1.1 97.9 1.2

predictions. An optimized global search strategy may lead to further improvements
of these results.

A strategy to optimize the use of output hypotheses is to perform a global search
in the output space looking for best predictions. Our classifiers do not just predict the
most likely class for an instance, but also generate a distribution of output classes.
Class distributions can be seen as confidence scores of all predictions that led to a
certain state. Our confidence models are based on token-level information given the
dialogue left-context (i.e. dialogue history, wording of the previous and currently
produced functional segment). This is particular useful for dialogue act recogni-
tion because the recognition of intentions should be based on the understanding of
discourse and not just on the interpretation of an isolated utterance. Searching the
(partial) output space for the best predictions is not always the best strategy, how-
ever, since the highest-ranking predictions are not always correct in a given context.
A possible solution to this is to postpone prediction until some (or all) future pre-
dictions have been made for the rest of the segment. For training, the classifier then
uses not only previous predictions as additional features, but also some or all future
predictions of local classifiers (till the end of the current segment or to the beginning
of the next segment, depending on what is recognized). This forces the classifier to
not immediately select the highest-ranking predictions, but to also consider lower-
ranking predictions that could be better in the context of the rest of the sequence.

Table 11 gives an overview of the global classification results based on added
previous and next predictions of local classifiers. We can observe a further improve-
ment in terms of high F -scores and quite low error rate. Both classifiers performed
very well on this task. The results show the importance of optimal global classi-
fication for finding the best output prediction. The use of local classifiers only is
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outperformed by a broad margin (see Tables 3 and 4 for AMI and Map Task data
respectively). For instance, using global classifiers for the important Task dimension
an F -score was reached of 86.1, while the best obtained F -score using only local
classifiers is 79.7. F -scores for communicative function recognition by local classi-
fiers range from 54.2 to 86.5, while the F -scores using global classifiers range from
71.8 to 97.9 (statistically significant, p < .05, one-tailed z-test). The performance
of global classifiers is very close to the performance of classifiers upon two-step
segmentation and classification reported in Table 5. Global classifiers perform sig-
nificantly better for recognizing the Task dimension (F -score of 86.1 compared to
72.3 for AMI data using Ripper) and the Auto-Feedback dimension (95.1 compared
to 89.7), which are the most important and frequently occurring categories of dia-
logue acts. It may be noted that the overall performance of global classifiers reported
here is generally substantially better than the results of other approaches that have
been reported in the literature (see the introduction to this chapter).

To summarize, we have shown that a token-based approach combining the use of
local classifiers, which exploit local utterance features, with the use of global clas-
sifiers that exploit the outputs of local classifiers applied to previous and subsequent
tokens, results in excellent dialogue act recognition scores for unsegmented spoken
dialogue. This may be seen as a significant step forward towards the development
of fully incremental, on-line methods for computing the meaning of utterances in
spoken dialogue.

5 Conclusions and Future Research

This chapter presented a machine learning-based approach to the incremental un-
derstanding of dialogue utterances, with a focus on the recognition of their commu-
nicative functions. We discussed various strategies in the automatic recognition of
dialogue acts. Not only word-level features are taken into account but also word
N-grams, prosodic and acoustic features, and features calculated from speaker’s
and partner’s previous utterances. The latter is particularly useful for communica-
tive function recognition, because the recognition of a speaker’s intention should be
based on the understanding of the preceding discourse, and not just on understand-
ing an utterance in isolation.

One of the main conclusions is that the commonly used strategy to first de-
termine segment boundaries and subsequently perform dialogue act classification
has serious theoretical and practical disadvantages. The identification of dialogue
unit boundaries heavily depends on how a dialogue unit is defined (see Traum and
Heeman 1997). The definition of a functional segment is based on the criterion
of carrying a communicative function: a functional segment is a minimal stretch
of behaviour that has at least one communicative function. As a consequence, the
identification of boundaries cannot precede the recognition of communicative func-
tions.

Incremental dialogue act recognition is a complex task. Splitting up the out-
put structure may make the task more manageable. Sometimes, however, learning
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of multiple classes allows a learning algorithm to exploit the interactions among
classes. Combining these two strategies resulted in building a number of classi-
fiers that show substantial improvement both in communicative function recognition
and in segment boundary detection, and result in excellent dialogue act recognition
scores.

The incremental construction of input interpretation hypotheses has the effect
that the understanding of an input segment is already nearly ready when the last
token of the segment is received; viewing a dialogue act as a recipe for updating
an information state, this means that the specification of the update operation is
almost ready at that moment. It may even happen that the confidence score of a
partially processed input segment is that high, that the system may decide to go for-
ward and update its information state without waiting until the end of the segment,
and prepare or produce a response based on that update. Of course, full incremental
understanding of dialogue utterances includes not only the recognition of commu-
nicative functions, but also that of semantic content. However, many dialogue acts
have no or only marginal semantic content, such as turn-taking acts, backchannels
(m-hm) and other feedback acts (okay), time management acts (Just a moment), and
in general dialogue acts with a dimension-specific function; for these acts the pro-
posed strategy can work well without semantic content analysis, and will increase
the system’s interactivity significantly. Moreover, given that the average length of a
functional segment in our data is no more than 4.4 tokens, the semantic content of
such a segment tends not to be very complex, and its construction therefore does not
seem to require very sophisticated computational semantic methods, applied either
in an incremental fashion (see e.g. Aist et al. 2007; DeVault and Stone 2003) or to a
segment as a whole.

Interactivity is however not the sole motivation for incremental interpretation.
The integration of pragmatic information obtained from the dialogue act recognition
module, as proposed here, at early processing stage can be beneficially used by an
incremental semantic parser as well as by a syntactic parser module. For instance,
information about the communicative function of the incoming segment at an early
stage of processing can defuse a number of ambiguous interpretations, e.g. used for
the resolution of anaphoric expressions. A challenge for future work is to integrate
the incremental recognition of communicative functions with incremental automatic
speech recognition, and incremental syntactic and semantic parsing, and to exploit
the interaction of prosodic, lexical, syntactic, semantic and pragmatic hypotheses
in order to understand incoming dialogue segments incrementally in an optimally
efficient manner.
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