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Abstract A new speech enhancement architecture using convolutive blind signal
separation (CBSS) and subspace-based speech enhancement is presented. The
spatial and spectral information are integrated to enhance the target speech signal
and suppress both interference noise and background noise. Real-world experi-
ments were carried out in a noisy office room. Experimental results demonstrate
the superiority of the proposed architecture.

Introduction

Many multiple- microphone speech enhancement methods have been proposed to
exploit spatial information to extract the single source signal [1–4]. To signifi-
cantly reduce the number of microphones and do not require a priori information
about the sources, blind signal separation (BSS) methods are adopted to effectively
separate interfering noise signals from the desired source signal. The second-order
decorrelation based convolutive blind signal separation (CBSS) algorithm was
recently developed [5]. Since estimating second-order statistics is numerically
robust and the criteria leads to simple algorithms [6].

We proposed a novel architecture, in which critical-band filterbank is utilized as
a preprocessor to provide improved performance and further savings on conver-
gence time and computational cost. However, only critical-band CBSS does not
work for removing background noise, which originates from a complex combi-
nation of a large number of spatially distributed sources. Therefore, a subspace-
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based speech enhancement method is utilized to reduce the background noise by
exploiting additional spectral information [7].

Proposed Architecture

Figure 1 schematically depicts the block diagram of the proposed speech
enhancement system. This architecture comprises a critical-band CBSS module
and a subspace-based speech enhancement module. The input mixed signals are
first processed by using the critical-band CBSS to separate the target speech from
the interference noise. Next, the extracted target speech is fed into the subspace-
based speech enhancement module to reduce the residual interferences and
background noise. The proposed architecture adopts both spatial and spectral
processing, and needs only two microphones.

Critical-Band Convolutive Blind Signal Separation

First, a critical-band filterbank based on the perceptual wavelet transform (PWT) is
built from the psycho-acoustic model. The recorded signal mixtures are decimated
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Fig. 1 Block diagram of proposed speech enhancement system
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into critical band time series by PWT. The CBSS is performed to separate the
noisy speech and the interference noise in each critical band. A signal selection
strategy based on high order statistics is then adopted to extract the target spee-
ches. Finally, the inverse perceptual wavelet transform (IPWT) is applied to the
critical-band extracted speeches to reconstruct the full-band separated noisy
speech.

Perceptual auditory modeling is very popular for speech analysis and recog-
nition. The wavelet packet decomposition is designed to adjust the partitioning of
the frequency axis into critical bands which are widely used in perceptual auditory
modeling. Within the 4 kHz bandwidth, this work uses 5-level wavelet tree
structure to approximate the 17 critical bands derived based on the measurement
[8, 9].

Convolutive Blind Signal Separation

This work assumes that two mixture signals �xðtÞ ¼ ½x1ðtÞ; x2ðtÞ�T composed of two

point source signals �sðtÞ ¼ ½s1ðtÞ; s2ðtÞ�T and additive background noise �nðtÞ are
recorded at two different microphone locations:

�xðtÞ ¼
XP

s¼0

AðsÞ�sðt � sÞ þ �nðsÞ: ð1Þ

The mixing matrix A is a 2 9 2 matrix and P represents the convolution order.
Passing through the critical-band filterbank, PWT separates mixture signals into 17
critical-band wavelet packet coefficients. In each critical band, using an M-point
windowed discrete Fourier transformation (DFT), the time-domain equation (1)
can be converted into frequency-domain. The convolutive BSS is then performed
in each critical band.

Signal Selection

In each critical-band, the CBSS has separated the mixed signals as speech dom-
inant and interference dominant signals. Next, we should identify the target speech
from the two separated outputs. Nongaussianity can be considered as a measure for
discriminating the target speech and the interference noise by using kurtosis [3].

The last stage simply synthesize the enhanced speech using the inverse
perceptual wavelet transform (IPWT).
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Subspace-Based Speech Enhancement

The subspace-based speech enhancement is used to enhance the separated noisy
speech by minimizing the background noise. The additive noise removal problem
can be described as a clean signal �s being corrupted by additive noise �n. The
resulting noisy signal �u can be expressed as

�u ¼ �sþ �n; ð2Þ

where �s= [s(1), s(2), …, s(L)]T, �n = [n(1), n(2), …, n(L)]T, and �u = [u(1), u(2), …,
u(L)] T. The observation period has been denoted as L. Henceforth, the vectors �s, �n,
and �u will be considered as part of real space RL.

Ephraim and Van Trees proposed a subspace-based speech enhancement
method [7]. The goal of this method is to find an optimal estimator that would
minimize the speech distortion by adopting the constraint that the residual noise
fell below a preset threshold.

Fig. 2 a The original clean speech signals; b the 2-channel corrupted speeches under babble
noise
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Experiment Results

The experiment was performed with a speech source and a babble interference
noise at an angle of 150� and a distance of 40 cm from the center of the micro-
phone array. Twenty different spoken sentences were played, each with about
50,000 samples and babble noise in AURORA database was employed as inter-
ference noise.

For objective evaluation, the SNR measure was adopted to evaluate these
speech enhancement algorithms. Additionally, the modified Bark spectral distor-
tion (MBSD) was also applied to assess speech quality. Since MBSD measure,
presented by Yang et al. [10], is a perceptually motivated objective measure for
mimicking human performance in speech quality rating. In both measures, the
proposed architecture significantly outperforms conventional subspace enhance-
ment method.

Figure 2 shows the spectrograms of original clean speech and two speeches
corrupted by babble noise. Figure 3 illustrates the spectrograms of the critical-
based CBSS outputs and the enhanced result. Figure 3a clearly reveals that one
output is target speech dominant, while the other is interference dominant.

Fig. 3 a The two-channel critical-band CBSS outputs; b the selected enhanced speech
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Conclusion

This work develops a spatio-spectral architecture for speech enhancement. The
architecture consists of a critical-band CBSS module and a subspace-based speech
enhancement module. The spatial and spectral information are exploited to
enhance the target speech, and to suppress strong interference noise and back-
ground noise using two microphones. Kurtosis analysis is then adopted to select
the target CBSS output. The enhancement performance is improved significantly.
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