
Uniform and Efficient Exploration of State
Space Using Kinodynamic Sampling-Based
Planners

Rakhi Motwani, Mukesh Motwani and Frederick C. Harris Jr

Abstract Sampling based algorithms such as RRTs have laid down the foundation
for solving motion planning queries for systems with high number of degrees of
freedom and complex constraints. However, lack of balanced state-space exploration
of RRTs calls for further improvement of these algorithms. Factors such as drift,
underactuation, system dynamics and constraints, and the lack of an energy/time
based distance metric in state space can cause RRT propagation to be uneven. This
paper focuses on improving the coverage of the RRT algorithm for physical systems
that demonstrate a tendency to restrict the growth of RRT to certain regions of the
state space. A localized principal component analysis based approach is proposed to
learn the propagation bias of state-space points sampled on a grid during an offline
learning phase. To compensate for this bias, expansion of the RRT in real-time is
steered in the direction of the least principal component of the propagation of the
state-space sample selected for expansion. The algorithm is tested on various systems
with high degres of freedom and experimental results indicate improved and uniform
state-space coverage.

Keywords Uniform state-space coverage · Local-PCA based RRT

R. Motwani (B) ·M. Motwani · F. C. Harris Jr
University of Nevada, Reno, NV, USA
e-mail: rakhi@cse.unr.edu

M. Motwani
e-mail: mukesh@cse.unr.edu

F. C. Harris Jr
e-mail: fredh@cse.unr.edu

F. Thomas and A. Pérez Gracia (eds.), Computational Kinematics, 67
Mechanisms and Machine Science 15, DOI: 10.1007/978-94-007-7214-4_8,
© Springer Science+Business Media Dordrecht 2014

68 R. Motwani et al.

1 Introduction

Motion planning algoirthms can be categorized as Exact planning methods, Analyti-
cal solutions, Numerical approaches, and Approximate methods [3]. Exact methods
[2, 13], Analytical solutions [11] and Approximate methods such as grid-based search
techniques [4] do not scale well beyond systems with few degrees of freedom while
Numerical approaches [1] converge to locally optimal solutions. Sampling-based
methods such as RRT [9], Expansive Spaces [6], and the PDST algorithm [8], also
fall under the category of approximate methods and are used for high dimensional
systems.

This paper presents a technique to improve one of the most widely used kinody-
namic sampling-based planners i.e. Rapidly exploring Random Trees (RRT) [9].RRT
is a popular planner for complex systems with geometric and differential contraints
due to its capability of quickly exploring high-dimensional state spaces through sam-
pling. The RRT algorithm makes use of an implicit Voronoi bias to evenly explore
the state space. However, this Voronoi bias is no longer available if there is no good
distance metric in the state space (that determines proximity of points in state-space
in terms of time, or energy) or if drift and other dynamic constraints introduce unde-
sired biases. For example, when using a Euclidean distance metric for systems such
as Acrobot and Lunar Lander, the RRT growth is restricted to certain regions of the
configuration-space, as illustrated by figures in Table 1. Uniform state space explo-
ration of RRT is desired as it reduces the time to find solution trajectories. Typically,
anRRT is grown for several thousand nodes for a system under consideration in order
to find a solution path. If balanced coverage can be obtained by a relatively smaller
sized tree, then we save computational cost and time.

The objective of the work presented here is to make improvements to the standard
RRT algorithm to result in a tree of similar or smaller size that spans the state-space
evenly. The focus of this paper is to address the issue of the lack of a good distance
metric for physical systems that incorporates the effects of system dynamics and
contraints when determining which states are closer. The contributions of this paper
are as follows. The proposed approach provides a uniform state-space coverage for
an RRT by computing the local exploration bias of the dynamic system at each point
in the discretized state-space, and using this information to guide the expansion of the
tree out of the biased region into least explored areas of the state-space. Experimental
results indicate improvement inRRT’s state-space exploration for systems that exhibit
a bias in coverage towards a specific direction in the state-space. However, it must
be noted that this technique is only effective in situations when RRTs fail to evenly
explore the state space. If RRT for systems grow uniformly in the state-space the
proposed approach does not contribute towards further improvement of the state-
space coverage. The contribution is unique in that no related work has employed
localized approaches to obtain balanced RRT exploration.

Uniform and Efficient Exploration of State Space 69

2 Related Work

The research community has published a variery of algorithms [10] that enhance
the performance of standard RRT algorithm by proposing modifications to decrease
metric sensitivity, reduce the rate of failed expansion, control the sampling domain,
guide tree expansion using local reachability information, bias sampling distributions
to search in subspace of complete state space or goal region. There is limited literature
[5, 12] that addresses the exploration performance of sampling-based algorithms.
Li et al.’s [12] work focused on using principal component analysis(PCA) globally
to compensate for the undesirable biases introduced by a physical system’s dynamic
contraints on the exploration of an RRT algorithm. Their approach is composed of
two steps: (i) an offline learning procedure which constructs an RRT for the physical
system and executes a PCA on the entire tree to represent the principal directions
that the tree has expanded inside the task space; (ii) altering the propagation step
for RRT during the online operation by modifying the config-space coordinates of
the random state sample in each iteration towards directions in which the variance is
lower in the offline generated tree, and choosing the control which takes the system
closer to this modified version of the random state sample. As a result, growth of
the online tree is promoted towards the least explored direction in the task space.
This algorthm has only been tested on a Three-link Acrobot and Car-like systems,
and has motivated the authors of this paper to implement this technique on variety
of systems to compare it’s performance with the proposed algorithm.

Glassman and Tedrake’s [5] work is based on control theory to derive an approxi-
mation to the exact minimum-time distance pseudometric by adapting the minimum
time linear quadratic regulator (LQR) and it’s associated cost-to-go function for
affine systems. The proposed technique linearizes the system dynamics at the ran-
domly sampled state space point in the RRT framework and defines a cost function
based on time and effort which is used as the distance measure. The authors use a
finite horizon affine quadratic regulator to compute the optimal cost-to-go functions
of linearizations of the physical system for multiple time horizons to locally approx-
imate the optimal distance measure. The proposed affine quadratic regulator-based
(AQR) distance metric improves exploration of the state space of double integrator
and simple pendulum but proves to be ineffective as the systems’ nonlinearity and
complexity increases such as the cartpole and torque limited 2-link Acrobot. How-
ever, the local-PCA basedRRT approach presented in this paper focusses on complex
non-linear systems.

3 Approach

The proposed technique is comprised of two steps: (i) an offline step to learn the direc-
tion of propagation of state-space points sampled on a grid when system dynamics
are simulated at these points, and (ii) the alteration of the propagation step of basic

70 R. Motwani et al.

RRT algorithm during the online construction of the tree. The offline step determines
the principal components of the direction of propagation of state-space points on a
grid of appropriate resolution, when numerous controls are applied to simulate the
system dynamics at that point. These principal components represent the different
propagation biases in different parts of the state-space. The online phase utilizes this
information during the propagation step of building an RRT to reposition the random
sample so as to compensate for the biases and even out the RRT’s overall exploration
of state-space. Henceforth, the proposed algorithm is referred to as LPCA-RRT.

Algorithm 1 Offline Step - Input: N, M, �t
for i = 1 to N do

x ← Sample_Grid_State();
u[] ← Sample_Random_Controls(M);
s[] ← Simulate_New_States(x, u[],�t);
s′[] ← Transform(x, s[]);
lpcax ← PCA(s′subset);

end for
Return lpca_grid

For the offline learning phase, state space points are sampled on a grid of appro-
priate resolution. Each sampled point represents a region, i.e. bin, in the state-space.
For each sampled state space point, the system dynamics are simulated for a specific
timestep for a certain amount of controls (i.e. between 50 and 250 depending on the
system) to derive a set of new states. The coordinates of the new states are trans-
formed such that the grid point serves as the new origin for these states. Principal
Component Analysis (PCA) [7] is executed on a subset of the state-space coordinates
of this set of new states. A subset of the state-space dimensions is considered for
computational feasibility and also due to the fact that coverage of configuration space
is desired as opposed to good coverage in state-space which comprises of derivates
of the configuration space parameters. This PCA is referred to as the local PCA and
is stored for each state-space point on the grid.

Algorithm 1 summarizes the offline step of the proposed approach, where N
represents the total number of states sampled on the grid. N is determined by the
grid bounds, grid resolution, and the dimension of state-space. M denotes the number
of controls. M varies from system to system and is experimented with values starting
from 50 going up to 50,000 at increments of 100 to determine at what value does
the local PCA converge. The algorithm returns local PCAs for points sampled on the
entire grid.

The pseudo-code for the online phase is provided in Algorithm 2. The basic
RRT algorithm is adapted from [9] where at each iteration a random state xrand

is sampled from the state space. For construction of the RRT, the node xnear on
the tree which is nearest to xrand is selected for expansion. A Euclidean distance
metric is used to determine the nearest neighbor along the tree. The coordinates of
xnear are evaluated to calculate the bin from the offline state-space grid that this node

Uniform and Efficient Exploration of State Space 71

belongs to. The offline generated local PCA is then retrieved for the state xnear . Since
this local PCA is representative of a bin from the offline state-space grid therefore
it is only an approximate representation of the direction of propagation of the tree
from xnear . The configuration space coordinates of the randomly sampled state-space
point at the corresponding iteration of RRT are then modified to position the random
sample in the direction of the least significant components of this local PCA. The
controls that extend the tree from the selected node closer to the altered random
sample state are chosen for propagation of the tree thereby leading the RRT out of
the regions, where it would have originally been focussed, into unexplored areas of
the state space.

Algorithm 2 Online Step - Input: xinit , N , lpca_grid
T ree.init(xinit)
for i = 1 to N do

xrand ← Sample_Random_State();
xnear ← Determine_Nearest_Neighbor(xrand , T ree);
binxnear ← Evaluate_Bin(xnear , lpca_grid);
lpcaxnear ← Retrieve_PCA(binxnear , lpca_grid);
x ′rand ←Modify(inv(lpcaxnear), xrand);
[xnew, xedge] ← Propagate(xnear , x ′rand);
T ree.V ertex_Add(xnew)
T ree.Edge_Add(xnear , xedge)

end for
Return T ree
Modify(inv(lpcaxnear), xrand)
xad j ← inv(lpcaxnear) ∗ xrand ;
for i = 1 to n do

x ′(i)ad j ← l1
li

*x(i)ad j ;
end for
x ′rand ← lpcaxnear ∗ x ′ad j ;
Return x ′rand

The algorithm then propagates the selected node xnear by applying m random
controls to obtain new states. The closest new state to x ′rand , denoted by xnew, and
the corresponding control are selected for the expansion step of the algorithm.

4 Experiments

The algorithm was tested on various systems—Three-link Acrobot, Car-like system,
Cart Pole, Hovercraft, and Lunar Lander. The results were compared against the basic
RRT, and Li et al.’s algorithm henceforth referred to as GPCA-RRT. Performance
of these algorithms was measured in terms of the percentage of bins populated
by the generated tree on the discretized subset of state-space and execution time,
measured in seconds. Trees were grown for sizes spanning from 1000 to 20,000 nodes

72 R. Motwani et al.

Table 1 Configuration-space coverage plots for trees grown for 20,000 nodes

and the performance results represent an average of ten test runs. The algorithms
were implemented in Octave 3.0.5 and executed on the UNR Research Grid. The
implementation stores RRT in an array and uses linear search for nearest neighbor
search, hence recorded processing times are higher. Therefore, the authors would like
to emphasize that this is just a proof-of-concept implementation. For GPCA-RRT,
the experiment used the global PCA of the standard RRT of the same size i.e. an RRT
was grown for N nodes, the global PCA was computed for this RRT and was used to
generate the GPCA-RRT of size N nodes. The figures in Table 1 display a projection
of the trees, plotted for various systems, in those configuration space parameters for
which the tree exploration was not uniform.

Three-Link Acrobot: The Acrobot was simulated in Passive-Active-Active mode
with torque applied at active joints. The angles θi are relative to the global reference
frame and do not correspond to the angles between consecutive links. As indicated by
Table 2,LPCA-RRToutperforms both algorithms by 15−20 % in terms of coverage at
the expense of spending an average of 2.5 % more in time. Moreover, it was observed

Table 2 Three-link Acrobot Results: (θ1, θ2, θ3) config-space is divided into 50× 50× 50 bins to
measure coverage

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 644 1691 2583 8536
time 28.61 203.41 510.59 28210

GPCA Populated bins 693 1893 2998 9800
time 28.70 202.97 510.98 28471

LPCA Populated bins 722 2015 3170 11285
time 32.82 209.44 519.30 29329

Uniform and Efficient Exploration of State Space 73

that the tree generated by LPCA-RRT for 5000 nodes covered the config-space more
uniformly than RRT grown for 20,000 nodes.

Car-like System: LPCA-RRT causes the car to move straight with less turns as
in the case of RRT or GPCA-RRT. Results indicated that neither GPCA-RRT nor
LPCA-RRT provide an improvement in terms of coverage for this system. Results
for coverage have not been listed due to space contraints.

Cart Pole: Experiments on Cart Pole system showed that LPCA-RRT resulted
in an average improvement of 35 % in coverage with only 1 % increase in time to
grow the tree of same size. Space contraints prohibit the authors from sharing the
results. From the coverage plots in Table 2, it can be seen that the exploration of θ

space (plotted along y-axis) was improved for both LPCA-RRT and GPCA-RRT.
Hovercraft: LPCA-RRT demonstrated a uniform coverage of (x, y) space as

compared to RRT. GPCA-RRT tends to skew the growth of RRT towards the upward
left direction, which is the principal direction of variance represented by the global
PCA computed for the basic RRT algorithm. As per Table 3, coverage of LPCA-RRT
improved by an average of 25 % with an average of 1.5 % increase in time cost.

Lunar Lander: The system was simulated in Ascent mode. For RRT and
GPCA-RRT, the branches of the tree tend to grow downwards, however LPCA-RRT
promotes the growth of the tree sideways. Results from Table 4, show thatLPCA-RRT
provided an improvement in coverage by 25 % at the cost of 4 % increase in compu-
tational time.

Table 3 Hovercraft Results: (x, y, θ) config-space is divided into 50 × 50 × 50 bins to measure
coverage in terms of number of populated bins

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 530 1581 2588 9969
time 19.68 125.11 316.20 4001

GPCA Populated bins 477 1113 1772 9234
time 21.79 127.48 317.59 4261

LPCA Populated bins 568 1655 2704 9875
time 53.28 226.26 481.69 4944

Table 4 Lunar lander results: (x , y, θ) config-space is divided into 50× 50× 50 bins to measure
coverage

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 361 1089.5 1483 5215
time 17.249 112.79 313.281 4231

GPCA Populated bins 323 1104 1773 6501
time 17.344 113.88 313.289 4247

LPCA Populated bins 555 1374 1800 6672
time 23.375 133.54 324.123 4398

74 R. Motwani et al.

5 Conclusion

The proposed technique improves RRT exploration by learning the local effects of
constraints in a physical system during an offline phase and then counteracts these
effects that inhibit the uniform growth of the RRT during the online operation of RRT
by adapting the propagation step. This work executes PCA locally and enables better
approximation of the underlying non-linear bias by decomposing the state-space into
regions where the bias may be varying. The approach is tested on various systems and
experimental results demonstrate that this technique works on systems that exhibit
a consistent exploration bias regardless of the size of the tree, and that exploration
performance is improved by 15–35 % thereby reducing the cost of finding a solution
to specific motion planning queries. One key conclusion is that the algorithm is
only effective in scenarios where the standard RRT algorithm fails to uniformly and
quickly explore the state-space, as seen in the case of Car-like system. Overall, this
technique compensates for the lack of good distance metric in the state-space and
can be adopted by various sampling-based planning algorithms.

Acknowledgments The authors would like to thank their colleagues Yanbo Li and Kostas Bekris
for providing guidance and assisting with replicting results from [12].

References

1. Betts, J.T.: Survey of numerical methods for trajectory optimization. AIAA J. Guidance,
Control Dyn. 21(2), 193–207 (1998)

2. Canny, J., Rege, A., Reif, J.: An exact algorithm for kinodynamic planning in the plane.
Discrete Comput. Geom. 6, 461–484 (1991)

3. Choset, H.M.: Principles of robot motion: theory, algorithms, and implementation Intelligent
robotics and autonomous agents. MIT Press, Cambridge (2005)

4. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM 40(5),
1048–1066 (1993)

5. Glassman, E.L.: A quadratic regulator-based heuristic for rapidly exploring state space. Mas-
ter’s thesis, Massachusetts Institute of Technology, Massachusetts (2010)

6. Hsu, D., Kindel, R., Latombe, J.C.: Rock . Randomized kinodynamic motion planning with
moving obstacles (2000)

7. Jolliffe, I.: Principal component analysis, 2nd edn. Springer, New York (2010)
8. Ladd, A.M., Kavraki, L.E.: Motion planning in the presence of drift, underactuation and

discrete system changes. In: Robotics: science and systems I, pp. 233–241. MIT Press, Boston
(2005)

9. LaValle, S., Kuffner, J.: Rapidly exploring random trees: progress and prospects. In: Proceed-
ings Workshop on Algorithmic Foundations of Robotics WAFR, pp. 293–308 (2001)

10. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
11. Lewis, F.L.: Applied optimal control and estimation: digital design and implementation. Pren-

tice Hall, New Jersey (1992)
12. Li, Y., Bekris, K.E.: Balancing state-space coverage in planning with dynamics. In: IEEE

International Conference on Robotics and Automatio (ICRA), pp. 3246–3253 (2010)
13. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: Ii. general techniqies for computing

topological properties of algebraic manifolds. Commun. Pure Appl. Math. 36, 345–398 (1983)

	8 Uniform and Efficient Exploration of State Space Using Kinodynamic Sampling-Based Planners
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiments
	5 Conclusion
	References

