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Abstract Recently a complete kinematic description of the 3-RPS parallel manip-
ulator was obtained using algebraic constraint equations. It turned out that the
workspace decomposes into two components describing two kinematically differ-
ent operation modes and that self-motions of this manipulator in both operation are
possible. In this paper for the first time it is shown that this manipulator has the
property of non singular assembly mode change.
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1 Introduction

Non-singular assembly mode change has been discussed a lot for parallel manipu-
lators since Innocenti and Parenti-Castelli [1] showed examples of such a behavior.
Especially planar 3-RPR parallel manipulators were extensively investigated with
respect to non-singular assembly mode change (see e.g. [2] and [3]). In [4] it was
shown, that every generic planar 3-RPR has two aspects, meaning that the singularity
surface divides the workspace into two parts and therefore non-singular assembly
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mode change is always possible. To the best of the knowledge of the authors singu-
larity free assembly mode change has never been shown explicitly for spatial lower
mobility parallel manipulators. It is the motivation to demonstrate this behavior for
such a manipulator. One of the best investigated designs of lower mobility parallel
manipulators is the 3-RPS manipulator introduced by Hunt [5]. This manipulator is
simple enough to make this task feasible.

A 3-RPS manipulator is a three degree of freedom (DOF) parallel manipulator.
It consists of an equilateral triangular fixed platform and a similar moving platform
connected by three identical RPS legs. The first joint (R-joint) is connected to the base
and the last joint (S-joint) is connected to the moving platform (see Fig. 1). The legs
are extensible, changing lengths via prismatic joints (P-joints), thereby moving the
platform with three highly coupled DOFs. In the past few years the 3-RPS obtained
a lot of attention in the kinematics community, see e.g. [6].

In [7] an overview of existing results up to the year 2008 can be found. Local
analysis, mostly using screw theory was performed in most of the existing investiga-
tions especially in [8] and [9]. More recently in [10], using an algebraic description
of the manipulator, together with Study’s kinematic mapping, a complete character-
ization of the forward kinematics, the operation modes, the singular poses and the
transitions between the operation modes was given. It turned out that the manipulator
has two kinematically different operation modes. The first one is characterized by
finite π -screws. Axes of these screws are tilted with respect to the base and the trans-
lation distance depends on the chosen axis. The second mode has horizontal screw
axes with rotation angle and translation distance depending on the chosen axis. Note,
that this characterization refers to finite screws and not instantaneous screws. The
singularities in both operation modes were derived in the kinematic image space as
well as in the joint space. In joint space the singularity surfaces are of degree 24 and
it was shown that for input joint combinations fulfilling an eight order polynomial
transition from one operation mode to the other is possible. In [11] it was shown,
that the manipulator can perform a spherical and “butterfly” self-motion for special
leg lengths.

In this paper an example of singularity free assembly mode change will be given.
To prove this property a singularity free path will be constructed that moves the
manipulator around a cusp in a slice of its workspace.

The paper is organized as follows: In Sect. 2 a description of the architecture of the
3-RPS is given and the set of constraint equations is recalled. Section 3 introduces a
method to construct a nonsingular assembly mode change path for this manipulator.

2 Robot Design

With respect to Fig. 1 we consider the 3-RPS parallel manipulator with the following
architecture: The base of the 3-RPS consists of an equilateral triangle with vertices
A1, A2 and A3 and circumradius h1. The origin of the fixed frame Σ0 coincides
with the circumcenter of the triangle A1, A2 and A3. The yz-plane of Σ0 is defined
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Fig. 1 Design of the 3-RPS
parallel robot

by the plane A1, A2, A3. Finally, A1 lies on the z-axis of Σ0. In the platform there
is another equilateral triangle with vertices B1, B2 and B3 and circumradius h2.
The circumcenter of the triangle B1, B2 and B3 lies in the origin of Σ1, which is
the moving frame. Again, the plane defined by B1, B2 and B3 coincides with the
yz-plane of Σ1 and B1 lies on the z-axis of Σ1.

The two design parameters h1 and h2 are taken to be strictly positive numbers.
Now each pair of vertices Ai , Bi (i = 1, . . . , 3) is connected by a limb, with a
rotational joint at Ai and a spherical joint at Bi . The length of each limb is denoted
by ri and is adjusted via an actuated prismatic joint. The axes αi of the rotational
joints at Ai are tangent to the circumcircle and therefore lie within the yz-plane
of Σ0. Overall we have five parameters, namely h1, h2, r1, r2 and r3. While h1
and h2 determine the design of the manipulator, the parameters r1, r2 and r3 are
joint parameters, which determine the motion of the robot. We can consider the
joint parameters to be like design parameters when they are assigned with specific
leg lengths ri . In some computations the leg lengths ri will be replaced with their
squares which then will be denoted by Ri . Deriving the constraint equations is one
essential step in solving the kinematics of a manipulator. To compute these equations
which describe the motion capability, the direct kinematics and also the singularities
of the manipulator, we use the Study-parameterization of the motion group SE(3).
The vertices of the base triangle and the platform triangle in Σ0 resp. Σ1 are

A1 = (1, 0, 0, h1), A2 = (1, 0,
√

3h1/2,−h1/2), A3 = (1, 0,−√
3h1/2,−h1/2)

b1 = (1, 0, 0, h2), b2 = (1, 0,
√

3h2/2,−h2/2), b3 = (1, 0,−√
3h2/2,−h2/2)

thereby using projective coordinates with the homogenizing coordinate in first place.
To avoid confusion coordinates with respect to Σ0 are written in capital letters and
those with respect to Σ1 are in lower case. To obtain the coordinates B1, B2 and B3
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of b1, b2 and b3with respect to Σ0 a coordinate transformation has to be applied.
To describe this coordinate transformation we use Study’s parameterization of a
spatial Euclidean transformation matrix M ∈ SE(3) (for detailed information on
this approach see [12]).

M =
(

x2
0 + x2

1 + x2
2 + x2

3 0�
MT MR

)
, MT =

⎛
⎝ 2(−x0 y1 + x1 y0 − x2 y3 + x3 y2)

2(−x0 y2 + x1 y3 + x2 y0 − x3 y1)

2(−x0 y3 − x1 y2 + x2 y1 + x3 y0)

⎞
⎠

MR =
⎛
⎝ x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

⎞
⎠

The vector MT represents the translational part and MR represents the rotational
part of the transformation M. The parameters x0, x1, x2, x3, y0, y1, y2, y3 which
appear in the matrix M are called Study-parameters of the transformation M. The
mapping

κ : SE(3) → P ∈ P
7 (1)

M(xi , yi ) �→ (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T �= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

is called kinematic mapping and maps each Euclidean displacement of SE(3) to a
point P on a quadric S2

6 ⊂ P
7. In this way, every projective point (x0 : x1 : x2 :

x3 : y0 : y1 : y2 : y3) ∈ P
7 represents a spatial Euclidean transformation, if it

fulfills the following equation S2
6 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0 and inequality:

x2
0 + x2

1 + x2
2 + x2

3 �= 0 (see [12]).
The coordinates of bi with respect to Σ0 are obtained by:

Bi = M · bi , i = 1, . . . , 3.

Now, as the coordinates of all vertices are given in terms of the transformation
parameters x0, x1, x2, x3, y0, y1, y2, y3 and the design constants, we obtain constraint
equations by examining the geometry of the manipulator more closely. First of all the
limb connecting Ai and Bi has to be orthogonal to the corresponding rotational axis
αi . That means, the scalar product of the vector connecting Ai Bi and the direction
of αi vanishes. After computing this product, removing the common denominator
(x2

0 + x2
1 + x2

2 + x2
3 ) and performing some elementary simplifications the following

equations are obtained:

g1 : x0x1 = 0

g2 : h2x2
2 − h2x2

3 − 2x0 y3 − 2x1 y2 + 2x2 y1 + 2x3 y0 = 0 (2)

g3 : 2h2x0x1 + h2x2x3 − x0 y2 + x1 y3 + x2 y0 − x3 y1 = 0.
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This set of equations is augmented by three leg length conditions:

g4 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h1 + h2)
2x2

2 + (h1 − h2)
2x2

3 + 4(h1 − h2)x0 y3 + 4(h1 + h2)x1 y2

− 4(h1 + h2)x2 y1 − 4(h1 − h2)x3 y0 + 4(y2
0 + y2

1 + y2
2 + y2

3 ) − (x2
0 + x2

1 + x2
2 + x2

3 )R1 = 0

g5 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h2
1 + h2

2 − h1h2)x2
2 + (h2

1 + h2
2 + h1h2)x2

3 − 2(h1

− h2)x0 y3 − 2(h1 + h2)x1 y2 + 2(h1 + h2)x2 y1 + 2(h1 − h2)x3 y0 − 2
√

3(h1

− h2)x0 y2 + 2
√

3(h1 + h2)x1 y3 + 2
√

3(h1 − h2)x2 y0 − 2
√

3(h1 + h2)x3 y1

− 2
√

3h1h2x2x3 + 4(y2
0 + y2

1 + y2
2 + y2

3 ) − (x2
0 + x2

1 + x2
2 + x2

3 )R2 = 0

g6 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h2
1 + h2

2 − h1h2)x2
2 + (h2

1 + h2
2 + h1h2)x2

3 − 2(h1

− h2)x0 y3 − 2(h1 + h2)x1 y2 + 2(h1 + h2)x2 y1 + 2(h1 − h2)x3 y0 + 2
√

3(h1

− h2)x0 y2 − 2
√

3(h1 + h2)x1 y3 − 2
√

3(h1 − h2)x2 y0 + 2
√

3(h1 + h2)x3 y1

+ 2
√

3h1h2x2x3 + 4(y2
0 + y2

1 + y2
2 + y2

3 ) − (x2
0 + x2

1 + x2
2 + x2

3 )R3 = 0.

A detailed explanation of how this set of equations is derived is left out for sake of
lack of space but can be found in [10]. To complete the system, we add the Study-
equation (g7), because all the solutions have to be within the Study-Quadric and a
normalizing condition (g8).

g7 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0, g8 : x2
0 + x2

1 + x2
2 + x2

3 = 1 (3)

It is emphasized that Ri in equations g4, g5, g6 denote the squares of the input
parameters (leg lengths). The set of equations describing a general 3-RPS manipulator
forms the ideal

I = 〈g1, g2, g3, g4, g5, g6, g7, g8〉 (4)

From the first equation in this set it is obvious, that this ideal consists of two compo-
nents K1 = 〈x0, g2, g3, g4, g5, g6, g7, g8〉 and K2 = 〈x1, g2, g3, g4, g5, g6, g7, g8〉.
It was shown in [10] that these two components can be treated separately to compute
the direct kinematics and all singularities of this manipulator. Therefore the same
can be done for computing non singular assembly mode change of this manipulator
type.

3 Non-Singular Assembly Mode Change

The main idea in [4] to prove the non-singular assembly mode change behavior
is the representation of the singularity surface in the three dimensional kinematic
image space, where the two aspects of the singularity surface can be visualized and
singularity free assembly mode changing paths can be constructed easily. A similar
method was used in [13] and [14] to prove the assembly mode changing property for
spherical 3-RPR parallel manipulators.
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Fig. 2 Singularity surface S in joint space h1 = 1, h2 = 2 Slice through S at R3 = 100

The same method as in planar and spherical cases cannot be used for a 3-dof spatial
manipulator. It is not possible to derive the singularity surface in a 3-dim kinematic
image space and construct singularity free paths, because the singularity surface is
contained in the 7-dim kinematic image space of spatial displacements and therefore
difficult to handle. In the following a new method is presented to overcome these
difficulties and to prove that non-singular assembly mode change is also possible in
case of a 3-RPS parallel manipulator.

The two governing ideals K1 and K2 which describe the motion capabilities of the
manipulator, are treated separately. It was already shown in [10] that the singularity
surface for each component can be computed in the kinematic image space and in
the joint space.

The singularity surface in the joint space, by using the leg lengths ri , i = 1 . . . 3
as coordinates, has degree 24. A closer inspection shows that the variables of the
singularity surface in joint space have only even powers. Therefore it makes sense to
use the squares of the leg lengths as new coordinates. After the substitution Ri = r2

i
the resulting singularity surface S has only degree 12. A part of S for the parameters
h1 = 1, h2 = 2 is displayed in (Fig. 2).

Next the univariate polynomial of one ideal Ki in one of the Study parameters is
computed. This can be done without specifying the leg length parameters Ri . For this
purpose an ordered Groebner basis of the ideal e.g. K1 is computed and this yields
a univariate polynomial F of degree eight in one variable (e.g. x2) having only even
powers

F : a0x8
2 + b0x6

2 + c0x4
2 + d0x2

2 + f0 = 0, (5)

where a0, b0, c0, d0, f0 are polynomials in the input parameters R1, R2, R3 and the
design parameter h2 (without loss of generality h1 = 1 has been set). In the follow-
ing we will take x2 as paradigmatic example for the used Study parameter. Note that
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x2 could be replaced by any other Study parameter if the univariate polynomial had
been computed in this other parameter.

Then a slice through the singularity surface is taken by setting one joint parameter
constant Ri = c. Figure 2 shows an example of such a slice; the intersection curve
is denoted k (the chosen joint parameters in the example are R1 = R2 = 120, R3 =
100). The constant value c is also substituted into F . The result is a polynomial Fp

in two joint parameters and one Study parameter. This polynomial can be viewed as
level-set in the Study parameter x2. The graph of this level-set is a surface

Fp(R j , Rk, v) = 0, j, k ∈ {1, 2, 3}, j, k �= i

of degree 4 in the square of the Study parameter v := x2
2 . We display it in the same

coordinate system as the slice and extend the intersection curve k also to a level
set. This level-set is trivial, because it is only the cylinder SL above the intersection
curve. It is interesting to note, that SL is tangent to Fp. The curve of tangency is
exactly the set of singularities of the manipulator, which belong to values of x2 on
Fp. The cusps on the inner part of k indicate that the surface FP folds back and a
singularity free assembly mode changing path can be constructed. The interior of the
inner most part of the curve k is a four solutions region of the direct kinematics and
outside of this region and inside of the outermost part of k there are two solutions.
Now the methodology used in [3] can be applied. We construct in the plane Ri = c a
path around the cusp starting at the point S in the interior of the three cusp curve and
ending at the point E which is coincident with S but belonging to another solution
of the direct kinematics (Fig. 3, lower picture). This path is projected orthogonally
in the direction of the v coordinate onto the surface Fp. And in this projection one
can see that the level set folds such that S and E are the same points in the slicing
plane but belong to different solutions of the direct kinematics. This projection is the
computationally most complicated part, because the path, which consists of three
line segments in the plane Ri = const., parameterized by a parameter t must be
substituted into the polynomial F . The result is a polynomial of degree four in v and
degree 8 in t , which must be solved for v. This yields four v coordinate functions,
corresponding to four curves which project onto the given three line segment curve in
the plane Ri = c. Not all four curves will be real in the considered interval. Figure 4
shows that this algorithm is computationally feasible. One can see how the projected
curve b runs on the surface Fp. The red wireframe surface is SL .

In a last step one has to prove that the curve b does not intersect the singularity
curve on F . This can be done numerically and is visualized in a classical two view
orthogonal projection. The top view is the plane Ri = c (Fig. 3 lower picture). For the
front view we take R j , v as coordinates (Fig. 3 upper picture). The singularity curve
on Fp in the top view is the curve k′. The three segment curve was designed such
that it runs around the cusp of k′. We have to show that the two apparent intersection
points P ′

1, P ′
2 in the top view are no intersection points of the curves k and b in space.

It can be computed easily that the two apparent intersection points P ′
1, P ′

2 are not
on the curve k′′ in the front view. Graphically this is also shown in Fig. 3. Note that
the top view of the singularity curve is computed as the resultant of SL and Fp with
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Fig. 3 Singularity curve on F in front view and top view

respect to the coordinate which is missing in the top view. The same arguments were
used to show that the apparent intersection point between the two curves in the front
view is no intersection point of the two curves. This proves that the constructed curve
connects the two solutions of the direct kinematics without crossing a singularity.
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Fig. 4 3-D view of the level-set F singularity levelset SL and constructed assembly changing curve

4 Conclusion

By constructing a complete example it was shown for the first time that a 3-RPS
parallel mechanism allows non-singular assembly mode change. To prove this feature
a level set was used and an assembly-mode changing path on the graph of this level
set was constructed.
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