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Abstract This paper investigates a new approach for solving the forward kinemat-
ics of cable-driven parallel robots. This approach combines an interval algorithm
with neural networks to provide a fast but accurate initial guess. The neural net-
works increase the computation speed by a factor of 200 or more, while the interval
algorithm provides guaranteed convergence and a definite solution to any chosen
degree of accuracy. Iterative techniques are faster still, but the proposed algorithm is
considered real-time feasible.
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1 Introduction

Cable-driven parallel robots, from now on referred to as cable robots, are a class of
parallel robots actuated by flexible cables instead of rigid members.

We will differentiate between two types of cable robots. Completely/redundantly
restrained cable robots, where the number of cables m exceeds the degrees of freedom
n in order to achieve full control; and a second type of cable robot: the suspended
cable robots. Suspended cable robots rely on an external wrench to control the robot
position and are most often seen as hanging structures.

The forward kinematics—obtaining platform pose from cable lengths—of par-
allel machines is a difficult problem. However, for the operation and for advanced

V. Schmidt (B) · B. Müller · A. Pott
Fraunhofer Institute for Manufacturing Engineering and Automation IPA,
70569 Stuttgart, Germany
e-mail: Valentin.Schmidt@ipa.fraunhofer.de

B. Müller
e-mail: Bertram.Mueller@ipa.fraunhofer.de

A. Pott
e-mail: Andreas.Pott@ipa.fraunhofer.de

F. Thomas and A. Pérez Gracia (eds.), Computational Kinematics, 103
Mechanisms and Machine Science 15, DOI: 10.1007/978-94-007-7214-4_12,
© Springer Science+Business Media Dordrecht 2014



104 V. Schmidt et al.

control techniques of cable robots, a numerically stable and fast computation of the
forward kinematics is needed. In practice, this is often achieved by using optimization
algorithms.

In this paper an algorithm for completely restrained cable robots, based on com-
bining neural networks with interval arithmetic, is introduced and tested. This com-
bined approach offers greater computational speed than algorithms purely based on
interval arithmetic, whilst maintaining strict confidence in the obtained solution.

2 Literature Review

Various methods to compute the forward kinematics of parallel manipulators already
exist. In some specific cases the problem can be simplified due to specific geomet-
rical traits, resulting in a set of algebraic descriptions which can easily be solved
symbolically [3, 12]. Algebraic formulations have also been made for the general
case, resulting in high-degree polynomials which are very difficult to solve [7].

Merlet introduced a numerically more stable approach for the general parallel
machine using Interval Arithmetic [9].

These approaches stand in contrast to the iterative optimization techniques, which
evaluate the inverse Kinematics repeatedly, to gain an increasingly accurate pose
with each step. The computation time of such techniques is acceptable and has been
successfully implemented for real-time execution on robot systems [10].

Suspended cable robots require additional considerations when evaluating the
kinematics. Since the external wrench applied by gravity is an integral part to the
robots structure, it needs to be taken into account when evaluating the robot’s pose.
Recent publications discuss this static and dynamic coupling and propose algebraic
solutions [2, 4]. Ghasemi has presented a successful implementation of neural net-
works to find the solution for a suspended cable robot [5].

2.1 Shortcomings of Existing Methods

Despite having a wide range of computational approaches to choose from, the eval-
uation of forward kinematics remains a challenge, especially when considering real
time constraints on modern machines. Simplifying the problem through the selection
of special geometries is not always a feasible step depending on the constraints of
the robot considered.

Mathematically exact methods, which are capable of finding all possible solutions
and using heuristics to select the right one, are not feasible for production machines
due to numerical instabilities or excessive computation time. Interval arithmetic on
the other hand yields certain guarantees due to its deterministic nature. Unfortunately,
interval arithmetic routines are based on exhaustive search algorithms and typically
do not perform in a real-time environment.
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Faster iterative optimization algorithms, however, demand a good initial guess
for the solution and do not guarantee convergence. This can have unexpected con-
sequences and requires additional sub-routines to manage non-convergence, or even
divergence from the solution.

Neural networks are computationally fast algorithms but also lack the capability
of providing a guaranteed solution or any indication of confidence. Further, these
networks need to be trained a-priori, consuming additional time and effort.

All approaches suffer under kinematic sensitivity [8]. This provides a measure
of how numerically sensitive the poses are to changes in the cable lengths and an
indication why some solutions are hard to find. Further discussion is out of scope for
this paper.

2.2 Benefits of the Combined Approach

Using neural networks to provide a fast initial estimate for the solution and then
applying an interval algorithm to the smaller search space, combines the strengths
of these two methods. Unlike optimization algorithms interval analysis can easily
differentiate between whether an exact solution can be found in the given bound,
to a predetermined level of accuracy, or whether a solution is indeterminable. Even
detecting singularities is plausible [9]. Neural Networks, once trained, provide a very
fast evaluation with minimal computational effort.

It is this combination approach which enables a robust, but still relatively fast
computational method.

3 Description of the Combination Approach

The cable-driven parallel robot IPAnema illustrated in Fig. 1, has eight cables and
six degrees of freedom, making it redundantly restrained. The geometry is described
using two coordinate systems, one for the platform KP and one global coordinate
system for the base KO. The vector notation describes the inverse kinematics for
cable i as:

‖ai − r − Rbi‖2 = li for i = 1, . . . , m (1)

where ai , bi , r are vectors describing attachment points and platform position, li is
the length of the cable and R the rotation matrix at a given pose.

The forward kinematics currently implemented in the IPAnema cable robot [10]
uses a Levenberg-Marquardt (LM) algorithm to optimize the function

Ψi (l, r, R) = (‖ai − r − Rbi‖2)
2 − l2

i for i = 1, . . . , m (2)

to finde the pose r, R for a set of cable lengths li .
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Fig. 1 IPAnema Robot with Geometrical Parameters: base vector ai and platform vector bi

For the interval algorithm a different parameterization, based on distance equa-
tions, is used. This parameterization focuses on finding the position of f linearly
independent reference points in the global coordinate frame and hence the pose of
the platform. These reference points on the platform were chosen to be cable attach-
ment points and are chosen so that all other attachment points j are linearly dependent
on these reference points k. This relation in the coordinate system KP is described by

b j =
∑

k

Cbk, (3)

where the conversion matrix C is calculated offline.
The equation sets describing the kinematics, which are solved by the interval

algorithm are then as follows. The cable length for each reference point (xk, yk, zk)
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and the distance between reference point pairs
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(
x p − xq

)2 +(
yp − yq

)2 +(
z p − zq

)2 = δ2
pq for p, q ∈ 1, 2, . . . , f , p �= q. (6)

This parameterization is better suited for interval methods as it avoids overestimation
of the interval bounds due to each variable being represented only once in each
equation. It was found that this formulation of the forward kinematics problem was
not beneficial for the iterative methods over an Euler Angle representation used to
generate rotation matrix R in Eqs. (1) and (2).

3.1 Neural Network

In the combination approach the pose of the platform is initially estimated by a set of
neural networks. This greatly reduces the search space for the more time consuming
interval algorithm. The neural network sets return a particular solution for the four
reference point positions, whose error/uncertainty bounds define the initial search
space of the interval algorithm.

The neural network was designed and implemented using the “Stuttgart Neural
Network Simulator” (RSNNS) in the R statistical programming language [1]. The
design is based on the multilayer perceptron (MLP), also used by Ghasemi [5]. In
this case one neural network was used to determine the position (x, y, z) of a given
reference point. Each neural network was built with four hidden layers containing
70 neurons each. Since the IPAnema cable robot has eight cables this results in a
8 × 70 × 70 × 70 × 70 × 3 MLP architecture.

The neural network was trained in a supervised approach with standard back-
propagation, using default learning parameters of RSNNS. For a random pose the
reference point positions and cable lengths are evaluated through the inverse kine-
matics (1). Then the artificial neural network calculates the reference point positions.
The error residual sum of squares in the computed reference point positions is used
to determine the weight adjustments of the individual neurons. One epoch repeats
this process for every pose in a training set. A test set evaluates the performance of
the neural network whose error is minimized over 800 epochs.

The full set of poses consists of 1,00,000 random poses in a workspace of 6×5×
4 m in x, y, z and rotations in the range of ±20◦ about each axis. 40,000 poses were
used as a training set and the remaining 60,000 as a test set. Feature normalization
was also applied for the cable lengths in the stated workspace.

Graphs in Fig. 2 show the results of a single network training. The histogram
shows the distribution of the final absolute error of the test set. The maximum error
determines the bounds of initial search space for the interval algorithm, ±0.02 m.
This speeds up the computation time. While interval analysis is a complex iterative
procedure, successive operations necessary for each neuron will only be evaluated
once.
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Fig. 2 Single neural network training results

3.2 Interval Algorithm

The interval algorithm based on [9] resembles a bisection method. The workspace is
divided into successively smaller boxes which are then evaluated against the para-
metric Eqs. (4–6) with interval arithmetic. A box is a 12 dimensional hyper-cube
of the (x, y, z) values of the four reference points. The starting box was based on
the maximum error produced by the neural network test set. Interval arithmetic then
determines whether a solution to the parametric equations exists within this box,
does not exist, or cannot be determined. This branch and bound algorithm discards
boxes containing no solution and continues to divide the rest, until a sufficiently
small (specified by the desired accuracy) box without a solution is reached.

This is a deterministic and time consuming method to obtain a solution to the for-
ward kinematics problem. Several techniques to speed up this process by reducing
box sizes are implemented. One technique is evaluating for hull (or 2B) consistency
as in constraint satisfaction problems as shown in [9]. Here the constraints of a single
variable in the parametric equations are shrunk by those defined for the other vari-
ables. This can be repeated indefinitely, but tests showed that once the improvement
was below 25 % it was more efficient to return to the branch and bound.

Another very effective method to reduce box size was the Interval-Gauss-Seidel
method [11], which not only reduces the hyper-volume of a box, but also mitigates
effects of solution clustering. Here the variable bounds are also shrunk individually
using an iterative technique by applying the formula of a classic linear equation
system to this variable.

These methods make the computation more efficient, but not to the same scale as
the initial guess by the neural network.
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Table 1 Computation time tested on IPAnema geometry

Interval algorithm Interval algorithm Levenberg-Marquardt
with neural network optimization [10]

Max. evaluation time [s] 0.764 0.016 N/A
Avg. evaluation time [s] 0.292 0.00121 0.000015
Max. no. of boxes/iterations 173356 303 5
Avg. no. of boxes/iterations 60690 77 4

4 Performance Evaluation

The algorithms for solving the forward kinematics are implemented in C++. This
enables the use of SIMD instruction sets on an x64 architecture to provide a significant
increase in speed for interval calculations and is discussed in detail by [6]. The
processor used for testing was an Intel i7–2600 K with 3.40 GHz.

Table 1 shows the results of a quick comparative benchmark of three algorithms
implemented under identical conditions. A random pose list of 1000 poses, with
corresponding cable lengths was generated using Eq. (1). Poses were in a 4×4×3 m
box in the workspace and described by a rotation of −10◦ to 10◦ for each Euler Angle.
Each algorithm calculated every pose to an accuracy of 0.00001 m.

The computational speed of the Interval Algorithm is greatly increased through
the use of neural networks. The average computation time decreased by more than
a factor of 200, the number of boxes even more. This makes the approach more
real-time feasible.

Maximum time to solution could not be evaluated for the LM optimization as it
was too fast for the timer resolution, so the average was taken from the total time
over 1,000 iterations. Keeping in mind that the initial pose estimate is tailored for
this cable robot geometry, the optimization algorithm computes extremely fast.

Neural networks do need to be retaught for significant geometry changes, but have
no limitations as to the type of geometry to solve. Further, the interval algorithm
still can provide certainty of the solution and guarantee convergence, which the
optimization cannot.

5 Conclusions

It was shown that combining neural networks with the standard implementation of
interval arithmetic to solve the forward kinematics of cable robots provides significant
decrease in computation time. This enables a more real-time feasible implementation,
while retaining strengths of the interval methods. While the speed does not surpass
that of highly optimized LM iterative solutions, it provides a method with guaranteed
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convergence, and the possibility of finding numerous poses. It is a viable alternative
for actual real-time controllers.

Improvements can still be made. The neural network training algorithm could
be optimized to provide a more accurate initial guess. Several steps in the interval
algorithm could be taken to optimize the switching between the branch and bound,
consistency checks, and the Interval-Gauss-Seidel method. This is difficult to opti-
mize for the general case.

The teaching of neural networks is still an issue, as it diminishes the ease of
changing geometric configuration. However, slight configuration changes still enable
the neural network to converge enough for the interval algorithm to run at acceptable
speeds. Further, the only requirement for teaching the networks is a working inverse
kinematic implementation. This process can be heavily automated.

Problems of kinematic sensitivity are not addressed by either of these algorithms,
but are still subject of ongoing research.
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