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Preface

This book contains the Proceedings of the 6th International Workshop on
Computational Kinematics (CK2013) sponsored by IFToMM, the International
Federation for the Promotion of Mechanism and Machine Science.

This time this workshop comes to Barcelona, taking place from 12 to 15, May
2013. In this occasion, 73 papers have been received. After peer-reviewed eval-
uation, 44 papers, from 21 different countries, have been accepted for presentation.
The community of kinematicians, thus, continues to exhibit its traditional vitality.

The reader will find here a representative sample of the most modern techniques
available nowadays for the solution of challenging problems arising in computa-
tional kinematics. In light of its contents, this book should be of interest to
researchers, graduate students, and practicing engineers working in kinematics or
related areas. Especially, roboticists, biomechanicists, machine designers, and
computer scientists will find here a useful source of information comprising
methods, algorithms, and applications.

In the nineteenth century, Pafnuty Chebyshev, who was a great enthusiast for
kinematics, said that Kinematics is more fruitful than Geometry because it adds a
fourth dimension of time to the three-dimensional space. The researchers gathering
in Barcelona on occasion of CK2013 will continue to make this truth, and to show
how their results have an important influence in many different domains that range
from Robotics to Proteomics.

We thank the authors for the valuable contributions, as well as the 45 reviewers
for having completed their work in a timely manner. Last, but not least, we thank
Ana Canales and Victor Vilchez for taking care of all the organizational details,
and Josep M. Porta for his help during the painstaking labor of the final typesetting
of this book.

Barcelona, Spain Federico Thomas
Pocatello, USA Alba Pérez Gracia
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On the Minimum 2-Norm Positive Tension
for Wire-Actuated Parallel Manipulators

Leila Notash

Abstract Utilizing the Moore-Penrose generalized inverse of the Jacobian matrix
of wire-actuated parallel robot manipulators, one or more wire tensions could be
negative. In this paper, a methodology for calculating positive wire tensions, with
minimum 2-norm for tension vector, is presented. A planar parallel manipulator is
simulated to illustrate the proposed methodology.

Keywords Cable-driven robots · Positive wire tension ·Minimum 2-norm solution

1 Introduction

In wire/cable-actuated parallel robot manipulators, also known as wire/cable-driven
parallel manipulators, the motion of mobile platform (end effector) is constrained by
wires/cables. Because wires act in tension and cannot exert forces in both directions
along their lines of action, i.e., their inputs are unidirectional and irreversible, to
fully constrain an m degrees of freedom (DOF) rigid body suspended by wires, in
the absence of gravity and external force/moment (wrench), the number of wires
should be larger than the DOF of manipulator (Fig. 1), i.e., n ◦ m + 1.

The manipulator failure could be defined as any event that affects its performance
such that the manipulator cannot complete its task as required. Wire-actuated manip-
ulators could fail because of the hardware and/or software failures, including failure
of a wire, sensor, actuator, or transmission mechanism; as well as computational fail-
ure. These failures could result in the loss of DOF, actuation, motion constraint, and
information [1]. From the force point of view, the failure of manipulator occurs if the
wire does not provide the required force/torque, e.g., when the actuator force/torque
is lost partially or fully or the actuator is saturated. This could also happen when

L. Notash (B)
Institute of Complex Systems, Queen’s University, Kingston, ON, Canada
e-mail: notash@me.queensu.ca

F. Thomas and A. Pérez Gracia (eds.), Computational Kinematics, 1
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2 L. Notash

(a) (b)

Fig. 1 Planar wire-actuated manipulators a 2 DOF; and b 3 DOF

the wire is broken or slack (zero tension), wire is jammed (constant length), or its
actuating mechanism malfunctions such that a different wire force is provided.

For a given wrench to be applied/resisted by the mobile platform of wire-actuated
parallel manipulators, because n ◦ m + 1, there are infinite solutions for the wire
tension vector. The minimum 2-norm solution could result in negative tension for
wires, which is not acceptable, and generally the homogeneous solution is used to
adjust the tension to positive values if the platform position and orientation (pose) is
within the wrench closure workspace, e.g., [2]. Due to space limitation, a review of
pertinent literature is not included.

In this paper, formulation of a non-negative wire tension vector for wire-actuated
parallel manipulators is investigated when the DOF of manipulator m is one less
than the number of wires n, i.e., n = m + 1. In Sect. 2, the implementation of the
methodology of [3] for achieving minimum 2-norm positive wire tension vector
is presented. Simulation results are reported in Sect. 3. The article concludes with
Sect. 4.

2 Wrench Recovery for Negative Wire Tension

For the n-wire-actuated parallel manipulators, the n × 1 vector of wire forces τ =[
τ1 · · · τn

]T is related to the m×1 vector of forces and moments (wrench) F applied
by the platform with the m × n transposed Jacobian matrix JT as

F = JT τ =
[
JT

1 JT
2 · · · JT

i · · · JT
n−1 JT

n

]
τ =

n∑

j=1

JT
j τ j (1)

where m ≤ 6 depending on the dimension of task space. Column j of JT , JT
j , is

a zero pitch screw corresponding to the wrench applied on the platform by the j th
wire/actuator. The solution of F = JT τ for the wire tensions is

τ = τp + τh = J#T F+
(

I− J#T JT
)

k = J#T F+ N λ (2)
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where J#T is the Moore-Penrose generalized inverse of JT , τp = J#T F is the mini-
mum 2-norm (particular) solution, and τh =

(
I− J#T JT

)
k and τττh = N λ represent

the homogeneous solution.
(
I− J#T JT

)
k is the projection of an n × 1 vector k

onto the null space of JT . Columns of the n × (n − m) matrix N correspond to the
orthonormal basis of the null space of JT , referred here as the null space vectors,
and λλλ is an (n − m)-vector. When one or more entries of τp = J#T F are negative
the wire tensions could be adjusted by identifying the correctional tension τh that
would set all the wire tensions to positive values provided the manipulator pose is in
the wrench closure workspace. The adjusted wire tensions should satisfy the tension
limits τmin ≤ τp l + τh l = τp l + nlλ ≤ τmax, for l = 1, . . . , n, where the entries
of τh corresponding to negative τp must be positive in order to have non-negative
tension vector after adjustment.

2.1 Conditions for Non-negative Wire Tension

When the platform pose is in the wrench closure workspace of manipulator a non-
negative solution to τ = τττp+τh = J#T F+Nλλλ exists. The criteria for non-negative
wire tension could be defined based on the orthonormal basis of the null space of the
m × n transposed Jacobian matrix JT and of the m × (n + t) augmented transposed
Jacobian matrix JT

aug of JT
augτaug =

[
JT

1 JT
2 · · · JT

n−1 JT
n WT

1 · · ·WT
t

]
τaug = 0.

JT
aug and τaug are formed by re-writing Eq. (1) as JTτττ− F = 0 and augmenting JT

and τ respectively with t wrenches and t number of 1’s corresponding to t non-zero
components of F, where t ≤ m ≤ 6. WT is a wrench with zeros for all entries except
for the one that is equal to the negative of corresponding non-zero entry of F.

The orthonormal basis of the null space of the m×n transposed Jacobian matrix JT ,
with full-row rank, is defined by n−m number of n-vectors, i.e., the dimension of the
null space vectors of JT is n× 1. The sufficient condition for rectifying the negative
tension of particular solution to positive tension is the existence of a null space
vector n of JT with all positive entries, e.g., refer to [2]. In the presence of external
wrench, even if there is no null space vector of JT with consistent sign, positive wire
tension is feasible if there exist a null space vector naug of the augmented Jacobian
matrix JT

aug with non-negative values for the first n entries (corresponding to wires)
and positive values for the last t entries (corresponding to non-zero components of
external wrench). Detailed discussion on the conditions for positive tension in wires
are presented in [3].

2.2 Methodology for Adjusting Negative Wire Tension

When n = m + 1 and the pose is in the wrench closure workspace, if the minimum
norm solution results in negative tension for wire i , i.e., τpi < 0, wire i could be



4 L. Notash

Fig. 2 Three-wire-actuated
parallel manipulator with
slack wire 2

considered as “failed” and its tension should be set to a non-negative value τci . If
wire i is left as slack (Fig. 2) τci = 0 . To increase the wrench capability and stiffness
of manipulators, the tension of wire i could be adjusted to a positive value, τci > 0.
Rewriting Eq. (2) for wire i

τpi + τhi = τpi + niλ = τci ◦ 0 (3)

or niλ = τci +
∣∣τpi

∣∣, where ni corresponds to entry i of the null space vector n and∣∣τpi
∣∣ is the magnitude (absolute value) of τpi . Then, the platform wrench becomes

F f =
[
JT

1 JT
2 · · · JT

i · · · JT
n−1 JT

n

]
τ f =

n∑

j=1

JT
j τpj − JT

i (τpi − τci ) (4)

where τ f = [τp 1 τp 2 · · · τci · · · τp n−1 τp n]T and the change in tension of wire
i after adjusting its negative value is

∣∣τpi − τci
∣∣. To provide the platform wrench F,

the remaining wires must balance the wrench corresponding to the adjusted negative
wire tension. With the “correctional” force provided by the remaining wires τcorr =
[τcorr 1 τcorr 2 . . . 0 . . . τcorr n−1 τcorr n]T , the recovered wrench will be

Fr = JT τ f + JT
f τcorr (5)

where column i of JT
f =

[
JT

1 JT
2 · · · 0 · · · JT

n−1 JT
n

]
and entry i of τcorr are

replaced by zeros. Then, the change in the platform wrench will be F−Fr = JT (τp−
τττ f ) − JT

f τττcorr . When the minimum 2-norm solution results in negative tension for
g wires, after adjusting the negative tensions to positive values, the platform wrench
that should be balanced by the remaining wires is

∑

g
JT

i (τpi − τci ) = JT (τp − τττ f ),

where the summation is taken over the wires with negative tension.
To fully compensate for the adjusted negative tensions, i.e., for F − Fr = 0, the

correctional force provided by the remaining wires should be [3]
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τcorr = J#T
f

∑
JT

i (τpi − τci ) = J#T
f JT (τp − τ f ) (6)

where g columns of JT , corresponding to the wires with negative tension, are replaced
by zeros resulting in JT

f . Then, the overall wire force will be

τtot = τ f + τcorr = J#T
f JT τp + (I− J#T

f JT )τ f (7)

These τcorr and τtot are minimum 2-norm solutions for the chosen τci [4]. If JT
f

has full row-rank, i.e., F belongs to the range space of JT
f , F ≡ ≈(JT

f ), F≈⊥ =(
I− JT

f J#T
f

)
F = 0, the right-generalized inverse (GI) of JT

f is J#T
f = J f

(
JT

f J f

)−1

as the vector of wire forces is physically consistent. Otherwise, the weighted left-
GI of JT

f is used to obtain the platform wrench that best approximates the required
wrench in the least-square sense.

When the minimum norm solution results in negative tension for g wires and
the pose is in the wrench closure workspace τpi + τhi = τci ◦ τmin ◦ 0 for
each of g wires, where τmin is the minimum allowable tension. In the following
subsections, formulations of τci are presented for n = m + 1. The implementation
of this methodology for adjusting negative wire tensions when the null space basis
of JT is spanned by two or more vectors, i.e., when n > m + 1, is presented in [5].

2.3 Minimum 2-Norm with Negative Wire Tension

Negative tension for one wire. When the pose is in the wrench closure workspace
and the minimum norm solution results in negative tension for wire i , τpi < 0,
considering the non-negative null space vector n, τpi + niλ = τci ◦ τmin, there is
no condition on τci provided the adjusted wire tensions do not exceed the maximum
value. The minimum 2-norm solutions for the correctional and overall wire tension
vectors are calculated using Eqs. (6) and (7) for the chosen τci ◦ τmin value.

For the poses that n has both positive and negative entries, when τpi < 0 all wire
tensions could be adjusted to non-negative values if

τmin +
∣
∣τpi

∣
∣

ni
≤ τmin − τpj

n j
for ni > 0 and n j < 0 (8)

with τpj > 0 for j �= i . That is, when the condition on naug is met and τpi < 0 the
wire tensions could be set to positive values using τci ◦ τmin.

Negative tension for two or more wires. When the pose is in the wrench closure
workspace and the minimum norm solution results in negative tension for wires i
and j the non-negative values for these two wires, i.e., τci ◦ τmin and τcj ◦ τmin,
cannot be selected arbitrarily. Using a non-negative null space vector n
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λi ◦ τmin−τpi
ni

for ni > 0

λ j ◦ τmin−τpj
n j

for n j > 0
(9)

The largest of λi and λ j corresponds to the dominating wire and its τc is set to
τmin. The adjusted tension of non-dominating wire, e.g., wire j , is calculated using
τcj = τpj + n jλdw > τmin. Equation (9) is also valid when n has both positive and
negative entries with ni > 0 and n j > 0. It should be noted that when ni and n j

have opposite signs, e.g., ni > 0 and n j < 0, the pose is not in the wrench closure
workspace as λi > 0 and λ j < 0. When ni = n j , the dominating wire ldw is the
wire corresponding to max (

∣∣τpi
∣∣ ,

∣∣τpj
∣∣). Then, the minimum 2-norm solutions for

the correctional and overall wire tension vectors are calculated using Eqs. (6) and (7)
for the chosen τc values.

The dominating wire can also be identified using Q = (τpi n j −τpj ni )/(n j −ni ).
For example, when ni �= n j , provided τpj + n jλdw > τmin

Q = τpi n j − τpj ni

n j − ni
≤ τmin ⇒ ldw = i, τci = τmin (10)

The procedure could be generalized for the case that the minimum 2-norm solution
results in negative tension for g wires to identify the dominating wire as

λdw = max (λi , λ j , . . .) = max

(
τmin +

∣∣τpi
∣∣

ni
,
τmin +

∣∣τpj
∣∣

n j
, . . .

)

(11)

Minimum norm positive tension within upper limit. To ensure the adjusted non-
negative wire tensions do not exceed the maximum allowable tension, i.e., τpl +
nlλdw ≤ τmax, for l = 1, . . . , n, the following conditions should be satisfied.

When the entries of the null space vector n have consistent signs (non-negative),
while adjusting the negative tension of wires, e.g., wire i with τpi + niλ ◦ τmin,
the tension of wires with positive particular solution will be increased (will remain
unchanged if the corresponding entry of n is zero). When wire k has the smallest
λk = (τmax− τpk)/nk among all wires with positive particular solution the adjusted
tension of wires will not exceed the limit as long as

0 <
τmin +

∣
∣τpi

∣
∣

ni
≤ τmax − τpk

nk
for ni > 0 and nk > 0 (12)

When more than one wire has negative tension, in Eq. (12) wire i corresponds to the
dominating wire of Eq. (11). Hence, the sufficient condition for exceeding the upper
limit is τpk ◦ τmax, while the necessary condition is τpk > τmax − nkλdw.

When ni and nk have opposite signs, e.g., ni > 0 and nk < 0, for τpk + nkλdw ≤
τmax, the limit on maximum tension is satisfied as long as τpk ≤ τmax + |nk | λdw.
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Fig. 3 Parameters of planar wire-actuated parallel manipulators

3 Case Study

In the planar wire-actuated parallel manipulators, the mobile platform is connected
to the base by n wires, each wire with a length of li and orientation of αi (Fig. 3). The
attachment points of wire i to the base and platform are denoted as points Ai and Bi ,
respectively. The angular positions of points Bi on the platform are denoted by θi .
For a 2 DOF translational manipulator with three wires, the coordinates of Ai , i =
1, …, 3, are (–2, –1.5), (2, –1.5) and (0, 1.5), respectively, and points Bi coalesce.
At the platform pose of p = [0.5 −0.5]T meters, which is in the wrench closure
workspace, the wire forces τ are related to the platform wrench F using F = JT τ,
where

JT =
[

cosα1 cosα2 cosα3
sin α1 sin α2 sin α3

]
=

[−0.929 0.832 −0.243
−0.371 −0.555 0.970

]
(13)

For F = [−3.309 14.737]T N, the minimum norm vector of wire forces is τp =
J#T F = [−4.236 − 5.699 10.310]T with a magnitude of

∥∥τp
∥∥

2 = 12.519 and
negative tension for wires 1 and 2. Then, the 2× 5 JT

aug is

JT
aug =

[
JT

1 JT
2 JT

3 WT
1 WT

2

]
=

[−0.929 0.832 −0.243 3.309 0
−0.371 −0.555 0.970 0 −14.737

]
(14)

A non-negative null space vector of JT
aug is naug = [0.413 0.576 9.981 0.703

0.625]T . The non-negative null space vector of JT is n = [0.463 0.682 0.567]T ,
with non-zero entries corresponding to wires 1 and 2. As τp1n2−τp2n1

n2−n1
= −1.143 <

τmin = 1, wire 1 is the dominating wire and its tension is adjusted to τc1 = 1 N
and the tension of wire 2 is calculated as τc2 = 2.014 N. These adjusted tensions
correspond to λ = max(λ1 = 11.315, λ2 = 9.829). Then

τcorr = J#T
f

∑
JT

i (τpi − τci ) =
[

0 0 6.414
]

(15)
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τtot = τ f + τcorr = [1.000 2.014 16.724]T (16)

which produces the original wrench, and ∩τττcorr∩2 = 6.414 , ∩τττtot∩2 = 16.875.
At the platform pose of p = [2 0]T m, wire 2 is in Y direction, and for F =

[−17.363 2.489]T N, the minimum norm vector of wire forces is τp = J#T F =
[10.490 –0.516 9.427]T with a magnitude of

∥∥τp
∥∥

2 = 14.113 and negative tension
for wire 2, using

JT =
[

–0.936 0 –0.800
–0.351 –1.000 0.600

]
(17)

The null space vector of JT is n = [−0.536 0.565 0.628]T , with a negative entry
corresponding to wire 1. Therefore, in the absence of external force this pose is not
within the wrench closure workspace. A non-negative null space vector of JT

aug is
naug = [0.680 0.074 0.725 0.070 0.049]T , hence wire tensions could be adjusted to
positive. This is also evident using condition (8)

τmin +
∣∣τp2

∣∣

n2
= 2.684 ≤ τmin − τp1

n1
= 17.702 (18)

The tension of wire 2 is set to τc2 = 1 N, which corresponds to λ = 2.684. Then

τcorr = J#T
f JT

2 (τp2 − τc2) = [–1.439 0 1.684]T (19)

τtot = τ f + τcorr = [9.051 1.000 11.111]T (20)

which produces the original wrench, and ∩τττcorr∩2 = 2.215 , ∩τττtot∩2 = 14.366.

4 Conclusion

For wire-actuated parallel manipulators, the minimum 2-norm solution for the vector
of wire tensions could result in negative tension for one or more wires. The negative
tensions could be adjusted to positive values using the null space vector of the trans-
posed Jacobian matrix and adding the homogeneous solution to the particular solu-
tion. In this paper, a methodology for adjusting the negative tension of the minimum
2-norm solution using the generalized inverse of the transposed Jacobian matrix was
presented. The method results in minimum 2-norm positive (non-negative) solution
for wire tension vector while satisfying the upper limit on tension. The implementa-
tion of the methodology was illustrated on a 2 DOF translational manipulator.
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Further Analysis of the 2-2 Wire-Driven
Parallel Crane

J.-P. Merlet

Abstract The 2-2 wire-driven parallel crane is the most simple planar parallel crane
actuated by wires with two wires connected at two different points on the platform.
We present original contributions on the kinematics of such robot, namely full inverse
kinematics, trajectory, static and singularity analysis in the joint space.

Keywords Cable-driven robots · Kinematics

1 Introduction

The 2-2 wire-driven parallel crane has two coilable wires connected at two different
points B1, B2 on the platform (Fig. 1). The wires can be coiled by winches fixed to the
ground, whose output points are A1, A2 . Hence, provided that gravity is included,
it is a 2 d.o.f. robot that allows to control the planar motion of the platform center
of mass G, that lies in the vertical plane that includes A1, A2 (and also includes
B1, B2). The lengths of the wires will be denoted by ρ1, ρ2. We will assume that the
distance between B1, B2 is smaller than the distance between A1, A2 so that both
wires cannot be parallel. To the best of the author’s knowledge the kinematics of
such a robot has been addressed only in [3, 5].

We introduce a reference frame R = (A1, x, y) where y is the vertical direction
pointing upward. In this frame the coordinates of A2 are (xa2 > 0, ya2 ) and the
coordinates of G are (xg, yg). We also define a mobile frame Rm = (G, xm, ym)

and in this frame the coordinates of the Bi are (xbi , ybi ).
A rotation matrix R of angle θ is used to get the components in R of a vector

whose components is known in Rm . Especially the coordinates (xi , yi ) of Bi in R
are obtained as:
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Fig. 1 The 2-2 robot

xi = xg + cos θxbi − sin θybi yi = yg + sin θxbi + cos θybi (1)

The length ρi of wire i is obtained as

ρ2
i = (xi − xai )

2 + (yi − yi )
2 (2)

Let F = (0,−mg, 0, 0, 0, 0)T be the force and torque applied on the platform,
where m is its mass and let τ = (τ1, τ2)

T be vector of tensions in the wires. Static
equilibrium is obtained when

F = J−Tτ (3)

where J−T is a 6× 2 matrix whose i th column J−T
i is

J−T
i =

(
AiBi

ρi

GBi × AiBi

ρi

)T

(4)

This column is the Plücker vector of the line going through Ai , Bi while F is the
vertical line going through G. Eq. (3) indicates that at mechanical equilibrium the
lines A1 B1, A2 B2 and the vertical line going through G span a linear complex i.e.
meet at the same point. Note that the coordinate of AiBi along the z axis of R is 0
and consequently (3) admits a reduced form: if Fr = (0,−mg, 0)T and J−T

r is a

matrix whose i th column is (AiBix
ρi
,

AiBi y
ρi
,

GBix AiBi y−GBi yAiBix
ρi

), then we have

Fr = J−T
rτ (5)

Let us define the 3×3 matrix M whose first and third columns are the first and second
columns of J−T

r , while its second column is Fr . If we define α = (τ1,−1, τ2), then
Eq. (5) may be written as Mα = 0. As α is not equal to 0 the mechanical equilibrium
condition may also be written as:

|M| = 0 (6)
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Note that Eqs. (5, 6) are only necessary conditions for mechanical equilibrium as we
have also to ensure that the tensions in the wires are all positive.

2 Trajectory, Equilibrium Condition and Inverse Kinematics

Let (Xi ,Yi ) be the components of the vector GBi in R. The equilibrium condition
(6) may be written as

(Y2 − Y1)x
2
g + (X1 − X2)xg yg + (xa2(Y 1− Y 2)+ ya2(X2 + Y2 X1 − Y1 X2)xg

−xa2 X1 yg + X1(ya2 X2 − xa2 Y2) = 0 (7)

Hence if θ is fixed (and consequently so are the Xi ,Yi ), then G moves along an
hyperbola whose principal axes makes an angleφ with the x axis (such that tan(2φ) =
(X1 − X2)/(Y2 − Y1)) and whose center admits xa2 X1/(X1− X2) as x coordinate.
An analysis of this hyperbola allows one to determine if a given orientation θ is
reachable either over the full workspace or at least on part of it. For example the
coefficient of yg in (7) cancels for xg = xs

g = xa2 X1/(X1 − X2); consequently if
xs

g ∈ [0, xa2 ], then the workspace is separated into two components and it is not
possible to maintain the given orientation over the workspace of the crane. Note that
the equilibrium condition (7) is a function of xg, yg, θ but we will see in Sect. 3 that
it may also be expressed as a function of xg, yg, ρ1, ρ2.

While the 2-2 is a 2 d.o.f. robot, the platform has still 3 d.o.f. Hence for solving the
inverse kinematics it is necessary to specify 2 of this 3 d.o.f while the value of the
remaining variable X will be determined by solving the Eq. (7). We examine now
the possible different cases:

• xg, θ are fixed: Eq. (7) is linear in yg , there is a single possible value for yg

• yg, θ are fixed: Eq. (7) is a second order polynomial in xg , there is up to two
possible values for xg

• xg, yg are fixed: using the Weierstrass substitution on (7) leads to a 4th order
polynomial in T = tan(θ/2) that may have four real roots that furthermore leads
to positive tensions in the wires. For example for xa2 = 20, ya2 = 10, xb1 = −20,
xb2 = 20, y + b1 = yb2 = 1, xg = 10, yg = −20 we get indeed four possible
values for θ that all leads to positive wire tensions.

3 Direct Kinematics

The direct kinematics (DK) of the 2-2 robot has been presented in [5]. The solutions
can be obtained by solving a 12th order univariate polynomial and [5] provides a
geometrical explanation of order of the polynomial that is related to the sextic nature
of the coupler curve of the 2-2. But, as mentioned by Carricato [3] if the platform
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may perform out of the plane motion, then there may be up to 24 solutions: indeed
we have to consider possible reflection of the problem or equivalently we have to
consider the solutions that are are obtained when reversing the role of A1, A2.

We first simply propose here another approach to derive the 12th order polynomial.
The static equilibrium condition (7) is a function of sin θ, cos θ , while Eq. (2) are
linear functions of these quantities. Solving these two equations in these unknowns
and reporting the result in (7) leads to an equilibrium condition E1 that is function of
xg, yg, ρ1, ρ2 of degree 7 in xg and 6 in yg . The constraint sin2 θ + cos2 θ − 1 = 0
leads to another equation E2. The resultant of E1, E2 in yg is a 24th order polynomial
in xg that factors out in a 12th order polynomial and a third order polynomial that
is raised at the power of 4. This second polynomial provides only solutions with
yg > 0 while the first polynomial provides the valid solutions. Stability analysis of
these solutions have been addressed in [1, 2].

We have then to consider that obtaining all the solutions from the solving of the
univariate polynomial may not be the best method: indeed numerical round-off errors
will affect the calculation of the polynomial coefficients while the solving of a 12th
order polynomial may be numerically unstable. Instead of using the polynomial, it is
possible to transform the problem into an eigenvalue problem, which is numerically
more stable, but still the results cannot be guaranteed. Hence we propose to use
interval analysis (IA) on a set of DK equations, as this method allows to provide all
solutions exactly (i.e. with an arbitrary accuracy). The efficiency of this method is
however dependent upon the set of equations that has to be solved. Hence we may
consider several forms of the problem:

1. with 8 equations and 8 unknowns: these unknowns are xg, yg, x1, y1, x2, y2, τ1, τ2.
The equations are the five Eqs. (2, 3) and the three geometrical constraints
G defined as ||B1B2||2 = d2

12, ||B1G||2 = d1G , ||B2G||2 = d2G , where
d12, d1G , d2G are the known distances between (B1, B2), (B1,G), (B2,G)

2. with 6 equations and the 6 unknowns xg, yg, x1, y1, x2, y2. The constraints are
the three equations (2, 6) and the three geometrical constraints G

3. with 5 equations and the 5 unknowns xg, yg, θ, τ1, τ2. The constraints are the 5
Eqs. (2, 3)

4. with 4 equations and the 4 unknowns xg, yg, sin θ, cos θ . The constraints are the
3 Eqs. (2, 6) and the constraint sin2 θ + cos2 θ = 1.

5. with 3 equations and the 3 unknowns xg, yg, θ . The constraints are the 3 Eqs.
(2, 5).

6. with 2 equations and 2 unknowns: these unknowns are either xg or yg and θ . The
difference between the two Eqs. (2) is linear in xg, yg and is used to obtain one
of these variables. The constraints are one of (2) and (5)

Note that methods 1 and 2 take reflection into account and hence provide all solutions
in a single pass, while the other methods required to be applied twice.

To compare the efficiency of the solving in the various cases we consider a
specific robot, called test robot, that will be used all over this paper, such that:
A1 = (0, 0) A2 = (100, 10) B1 = (−10, 1) B2 = (10, 2) and we solve the DK
for ρ1 = 110, ρ2 = 100. The solving times in seconds for the above methods are
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Fig. 2 The eight solutions
of the DK obtained for the
test robot with ρ1 = 180,
ρ2 = 190
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0.95 (4), 0.49 (4), 0.8 (2), 0.04 (2), 0.11 (2), 3.66 (6), where the number in parenthesis
is the number of solutions. The total number of solutions with positive tensions is 4
as indicated by methods 1 and 2. Methods 3, 4, 5 provide only half of the solutions
because reflection is not taken into account and method 6 provides 6 solutions but
only 2 with positive tensions. Hence the most efficient methods are 2 and 4 (which
requires 2 passes to get all solutions).

We have conducted a study of the number of solutions with positive tensions
by selecting randomly 400 wire lengths and solving the DK in each case. We have
found that the DK has 2 solutions in 34 % of the cases, 3 in 8.75 %, 4 in 45.5 %
5 in 0.75 %, 6 in 8.5 %, 7 in 0.5 % and 8 in 2 %. Evidently we cannot claim that
even with this relatively high number of trials these numbers will always be relevant.
Figure 2 shows an example with 8 solutions obtained for ρ1 = 180, ρ2 = 190. The
solution (xg, yg, θ ) obtained for the rotation matrix are (45.19, −168.50, 174.79),
(30.31, −168.47, 142.38), (49.34, −177.12, 3.10), (68.01, −168.40, 223.97) with
θ in degree. For the reflection we get (48.46, −171.49, 175.96), (12.35, −169.36,
85.78), (49.29, −174.13, 357.43), (85.36, −169.37, 267.40). Note that if out of the
plane motion is possible, then we have only 2 stable solutions.

4 Statics in the Joint Space

If the pose parameters are known, then Eq. (3) allows to determine the tensions in
the wires. It may however be of interest to study kinematics in the joint space ρ1, ρ2.
In this section we will address two problems:

1. determining the wire tensions as functions of ρ1, ρ2 only
2. determining the region W in the joint space such that |τ1|, |τ2| ≤ τmax , where
τmax is a fixed threshold



16 J.-P. Merlet

For point 1 we note that the two first equations of (5) are linear in xg, yg . Solving
this linear system and reporting the result in the last equation of (5) and in the 2 Eqs.
(2) leads to a system of 3 equations in θ, τ1, τ2. This system may be converted into
an algebraic system by using the Weierstrass substitution T = tan(θ/2). Taking the
resultant with respect to T of each pair of equations leads to two polynomials P1, P2
in τ1, τ2, which have degree (6,6). For a given robot geometry the resultant of P1, P2
in τ2 factor out in two polynomials of degree 12 and 20 in τ1, only the former one
leading to valid values for τ1. Solving this polynomial and back substituting its roots
in P1, P2 allow to calculate τ2, which complete the static analysis in the joint space.

For point 2 checking if, for a given mass of the platform, the value of the wire
tensions are lower than the breaking point is clearly of interest. If only joint control
is use we are interested in determining the location of the points such that one of the
wire tension is equal to its allowed maximum τmax in the joint space ρ1, ρ2.

Assume that we set τ1 = τmax ; Eqs. (2, 3) become a system of 5 equations in
the unknowns xg, yg, θ, τ2. The first equation of (3) is used to determine τ2, while
the difference between the 2 Eq. (2) is linear in xg and is used to determine xg .
The second equation of (3) is linear in yg: after solving it remains 2 equations (the
third equation of (3) and one of the Eq. (2), that are only function of θ . If we define
T = tan(θ/2) the first equation may be written as the product of 3 polynomials
A × B(T, ρ1, ρ2) × C(T, ρ1, ρ2) of degree 2, 2, 4 in T , the polynomial B having
only terms in ρ2

1 or ρ2
2 , while C is a 3rd order polynomial in ρ1 and includes only

terms with ρ2
2 . The second equation may be written as A × D(T, ρ1, ρ2) where D

is a sixth order polynomial in T and in ρ1, while it includes only ρ4
2 , ρ

2
2 terms. The

common term A cancels when both wires are parallel, a case we have excluded. and
consequently both equations will cancel either when the resultant of B, D or the
resultant of C, D is equal to 0. The resultant of B, D factors out in a polynomial of
degree 6 in ρ1 and includes only ρ4

2 , ρ
2
2 terms. The resultant of C, D is too large to

be obtained when the geometrical parameters of the robot are kept symbolic but it
may be easily obtained for a given geometry and leads to a polynomial of degree 16
in ρ1 and 12 in ρ2 with a total degree 16.

To determine the region W of the ρ1 − ρ2 joint space where we have τ1 ≤ τmax

and τ2 ≤ τmax we have to plot the above curves for the two cases τ1 = τmax and
τ2 = τmax . These curves will be splitted in arcs whose start and end extremities are
points such that either τ1 = τ2 = τmax or τ1 ≤ 0 or τ2 ≤ 0 (the calculation in the
joint space in the two later case being presented in Sect. 5). Classicaly the border
of W will be obtained as a set of such arcs, which are determined by checking the
constraints for the mid-point of the arcs, using a method that is similar to the one
used for determining the workspace of a parallel robot [4].

We consider the test robot and we choose τmax = 2F . Figure 3 shows the curves
with the following notation: a curve denoted tij is such that τi = τmax and a curve
denoted vi corresponds to the case where wire i supports all the load.

Consider the case where we have ρ1 = 40. Setting τ1 = τmax leads to
4 solutions U j = (ρ2, τ2, xg, yg) with U1 = (42.96, 2.095, 49.7146 − 6.66),
U2 = (83.87, 1.989, 28.548,−8.8), U3 = (115.52,−1.517,−20.134,−23.017),
U4 = (151.688,−1.4219,−35.554,−34.846). These points correspond to the
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Fig. 3 The curves that appear in the calculation of the region in the ρ1 − ρ2 space for which
|τ1|, |τ2| ≤ τmax

G

A2

A1

G

A2

A1

G

A2

A1

G

A2

A1

–40

–30

–20

–10

0

10

–40 –20 20 40 60 80 100

Fig. 4 The poses of the solutions obtained for ρ1 = 40

intersection of the line ρ1 = 40 with the arcs of curve denoted t10, t13, t13,
t12. It may be noted that for points U3,U4 we have τ2 < 0: this is quite normal as
these points are over the line v1. We notice also that for point U1 we have τ2 > 2. If
we now plot the 4 solutions (Fig. 4) we note that the solution U2 corresponds to the
unstable case where G lies over the point B1, B2 and, as expected, solutions U3,U4
lies on the left side of the y axis which is the limit in which wire 1 supports the
whole load while wire 2 is slack. Hence none of these point may belong to the border
of W . If we consider the case τ2 = τmax we get also 4 solutions (not represented
in the figure) Vj = (ρ2, τ1, xg, yg) with V1 = (43.22, 1.905, 49.629,−7.192),
V2 = (83.834, 2.01, 28.568,−8.733), V3 = (116.067,−2.262,−25.997, 14.647),
V4 = (153.893365,−2.337226,−42.997, 25.872). For solutions V3, V4 we have
τ1 < 0, while for V2 we have τ1 > τmax and a further analysis shows that this
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solution is also unstable. Hence the only valid solution is U1 which is a point of the
border of W . A more complete analysis, that cannot be presented here for lack of
space, shows that the region W has as border the curve v1, v2, one arc of the curve
t10 and one arc of the curve t20.

5 Singularities

Wire-driven parallel robot have the same singularity than parallel robots with rigid
legs (provided that the wire tensions are positive). In the 2-2 case this singularity
will be obtained if the line A1 B1, A2 B2 are colinear. But this situation cannot occur
for a crane as the mechanical equilibrium cannot be satisfied (the equilibrium along
the x axis imposes τ1 = −τ2 and therefore the vertical force resulting from the wire
tension is 0 and therefore cannot balance the weight of the platform).

But another type of singularity has to be considered namely when a wire tension
cancels, as in that case we loose control of one d.o.f. For the 2-2 this happens when
G, A1, B1 (or G, A2, B2) lies on the same vertical line. If we assume that only wire 1
is under tension we get xg = 0, x1 = 0 from which we get tan θ = xbi /ybi while yg

has an arbitrary negative value. The minimal length of wire 2 may then be computed
for a given yg with equation (2). However it may be of interest to get the singularity
condition in the joint space ρ1, ρ2. If d1 is the distance between G and B1 we have
yg = −ρ1 ± d1 Substituting this value in (2) leads to

ρ2
2 ≥

(
yb1 xb2 − xb1 yb2

d1
− xa2

)2

+
(
−ρ1 ± d1 + xb1 xb2 + yb1 yb2

d1
− ya2

)2

(8)

which are the singularity conditions in the joint space. Another singularity condition
can be obtained in the same way if wire 2 only is under tension.

6 Conclusion

In spite of its apparent simplicity the kinematics of the 2-2 robot is quite complex.
This paper has addressed not so well known kinematics issues that may be of interest
for the robot control either in the operational or in the joint space. The next step will
then to extend the concepts proposed in this paper to spatial wire robots with 3 to 6
wires.
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Some Rational Vehicle Motions

J. M. Selig

Abstract It is observed that the kinematic equations of many vehicles take the same
form. This form is that the body-fixed velocity twist of the vehicle lies in a fixed
screw-system of a particular type. The Cayley map can be used to pull-back these
equations to the Lie algebra of the group of rigid-body motions. Rational solutions
to the equations can be found by the method of undetermined coefficients. Since the
Cayley map is a rational map, mapping these rational solutions back to the group
gives rational rigid-body motions. A 3-parameter family of rational Frenet-Serret
motions is found in this way. Multiplying these motions by a rational roll-motion
gives a 4-parameter family of aeroplane motions.

Keywords Rational rigid-body motions · Cayley map · Cars · Aeroplanes.

1 Introduction

Many vehicles are modelled as non-holonomic systems. Usually the kinematic equa-
tions for a vehicle’s motion have the form

G(t)−1 dG(t)

dt
= SB, (1)

here G(t) lies in the group of rigid-body motions and represents the motion of the
vehicle. The body fixed velocity twist SB is constrained to lie in some fixed screw
system. The ubiquity of this type of model can be explained by the fact that for most
vehicles the actuators are fixed with respect to the body and provide forces or torques
along screws fixed in the body. Many examples exist, a few are listed below.

Bicycles and cars. Perhaps the motivating example and the most intensely studied
one. It is of course, a planar problem so the analysis can be done in the group of planar
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rigid displacements, SE(2). The body-fixed velocity of such a vehicle is restricted
to a forward velocity in only one direction and a rotational velocity about a line
perpendicular to the plane.

Aeroplanes, roller-coasters, autonomous underwater vehicles. These vehicles
can translate forward, in a fixed direction relative to the vehicle, but can also roll,
pitch and yaw. Hence the body-fixed velocity twist SB , of such a vehicle lies in a
particular 4-system of screws.

Needle steering. The problem of steering a long flexible needle or cannula with a
bevelled tip is now well known in robotics. The motion of the needle tip is a Frenet-
Serret motion (see below) but based on a curve with constant curvature. This means
that SB for this system lies in a 2-system of screws. The kinematic equations for this
problem can be found in [5], see also [3].

Frenet-Serret motions. Not the motion of a vehicle but it does have that same
kinematic equation as given in (1). Here the body-fixed velocity twist SB , lies in a
particular 3-system of screws. This example is often studied in computer aided design
but these motions have also been proposed as suitable motions for the end-effector
of a manipulator arm. See also Bishop motions [3].

Many workers have studied the path-planning problem for such vehicles. Here
a very simple view is taken. The idea is to plan rigid-body motions using simple
interpolation schemes. It is well known that polynomial interpolation on the group
of rigid motions is far from straightforward due to the non-linear nature of the group.
Moreover, another problem arises, not all motions in the group satisfy the kinematic
equation (1), for the vehicle. This work addresses the problem of finding simple
families of motions satisfying the vehicle’s kinematic equations. Such families need
to be large enough to be able to interpolate a wide range of possible motions yet
simple enough to be easy to work with especially for computers. For these reasons
rational motions are preferred.

The following strategy is used to find such families of motions. First the Cayley
map is used to pull-back the kinematic equation to R

6. Since the Cayley map is a
rational map, rational curves in R

6 will be mapped to rational curves in the group.
Then a rational anzatz is substituted into the equation to turn the differential equation
into algebraic equations. Solutions of the resulting algebraic equations will produce
motions with the desired properties.

2 The 4 × 4 Cayley Map

In classical differential geometry a standard problem is to reconstruct a space-curve
from its curvature and torsion functions. The differential equations to be solved for
this problem have exactly the same for as given in (1). However, G lies in SO(3), the
group of rotations about a point. The classical approach to the problem is to make a
substitution which turns the equation into a Riccati equation, see [1] for example.

This approach generalises to other matrix groups. The substitution required is the
standard Cayley map. Suppose G ∈ G, the matrix Lie group. Let S be a square matrix
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representing an element of the Lie algebra to G. The Cayley map is given by,

G = (I + S)(I − S)−1, (2)

see [2] for more details. Substituting this into the kinematic equation (1) gives,

d S

dt
= 1

2
(I + S)SB(I − S) = 1

2
(I + SSB − SB S − SSB S). (3)

This is an example of a matrix Riccati equation. If SB is a known function of time
then this equation can be solved numerically to simulate the motion of the vehicle.

Here G ∈ SE(3),the group of proper rigid-body displacements in 3-dimensions.
It is assumed that all that is known is that SB lies in a known screw-system; a linear
subspace of the Lie algebra to SE(3). In the 4× 4 representation of the Lie algebra
to SE(3) a general twist can be written as,

S =
⎧
Ω v
0 0

⎪
, (4)

where Ω is the anti-symmetric 3 × 3 matrix corresponding to the angular velocity
vector ω. That is, Ωp = ω × p for any vector p. The vector v is the linear velocity
of the origin.

The motion within this system is usually specified by a number of control functions
related to the physical actuators. To project out these control functions Eq. (3) can
be rearranged to give,

2(I + S)−1 d S

dt
(I − S)−1 = SB . (5)

Next we write the equation using the adjoint representation of the group. In this
representation twists are represented as 6-dimensional column vectors. These vector
are usually written in a partitioned form with the first three components of s given
by ω and the second three by v. In this representation Eq. (5) becomes,

F(s)
ds
dt
= sB, (6)

where F(s) is the matrix.

F(s) = 2

1+ |ω|2
⎧

I −Ω 0
VΩ − V (1+ |ω|2)I −Ω +Ω2

⎪
. (7)

Here V is the 3 × 3 anti-symmetric matrix corresponding to v. This result can be
found using the methods presented in [2].

Suppose W1, . . .Wn are a set of linearly independent wrenches forming a basis
of the dual space to screw-system that sB lies in. That is WT

i sB = 0, i = 1, . . . , n.
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x

y

Fig. 1 Bicycle paths. The left-hand figure shows the body-fixed frame in the bike. On the right three
different rational motions between the same positions are illustrated. The motion of the body-fixed
frame is shown for the top path

Finally the kinematic equations can be written as,

WT
i F(s)

ds
dt
= 0, i = 1, . . . , n. (8)

To make this clearer a simple example is presented in the next section.

3 Rational Bicycle Motions

This is a planar problem so let,

S =
⎛

⎝
0 −ω vx

ω 0 vy

0 0 0

⎞

⎠ or as a column vector s =
⎛

⎝
ω

vx

vy

⎞

⎠ .

with the coordinates given in Fig. 1 the bicycle can translate in the x-direction or
rotate about a vertical line located on the y-axis. In general any combination of these
two infinitesimal motion is possible so that,

sB = ν
⎛

⎝
0
1
0

⎞

⎠+ μ
⎛

⎝
1
0
0

⎞

⎠ , (9)

where the arbitrary coefficients ν andμ are related to the forward velocity and turning
velocity. The only wrench dual to every possible sB is given byWT = (0, 0, 1). This
expresses the fact that the bicycle cannot instantaneously translate in the y-direction.
In this planar problem the matrix F(s) reduces to,
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F(s) = 2

1+ ω2

⎛

⎝
1 0 0
−vy 1 ω

vx −ω 1

⎞

⎠ . (10)

Hence the kinematic equation for the motion reduces to,

vx ω̇ − ωv̇x + v̇y = 0. (11)

We can produce polynomial solutions to this equation by choosing arbitrary polyno-
mials for ω and vx , substituting these into Eq. (11) and solving for vy by inte-
gration. For example, choosing ω = a1t + a2t2 and vx = b1t + b2t2 gives
vy = (1/3)(a1b2 − a2b1)t3. The constant terms, including the integration constant,
have been chosen as zero, so that the motion begins at the identity when t = 0. This
gives a 4-parameter family of motions, with a1, a2, b1 and b2 as the 4-parameters.

The Cayley map can now be used to map this result to the 3× 3 representation of
the group,

G P (t) =
⎛

⎜
⎝

(1+a1t+a2t2)(1−a1t−a2t2)

1+(a1+a2t)2t2
−2(a1t+a2t2)

1+(a1+a2t)2t2 δx

2(a1t+a2t2)

1+(a1+a2t)2t2
(1+a1t+a2t2)(1−a1t−a2t2)

1+(a1+a2t)2t2 δy

0 0 1

⎞

⎟
⎠ , (12)

where

δx = 2
⎦
3b1t + 3b2t2 − a1(a1b2 − a2b1)t4 − a2(a1b2 − a2b1)t5

)

3
⎦
1+ (a1 + a2t)2t2

) , (13)

δy = 2
⎦
3a1b1t2 + (2a1b2 + 4a2b1)t3 + 3a2b2t4

)

3
⎦
1+ (a1 + a2t)2t2

) . (14)

Examples of this motion are shown in Fig. 1.

4 Rational Frenet-Serret Motions

Frenet-Serret motions are usually defined with respect to a space-curve. Given a
regular curve in space its Frenet-Serret motion is the motion of a body rigidly attached
to the Frenet frame of the curve. This frame is sometimes known as the normal-
tangent-binormal coordinate system. The origin of the coordinate frame fixed in the
body to be the point on the curve, the x-axis of the body-fixed frame will be aligned
with the tangent to the curve and y-axis will be taken to lie along the curve’s normal
vector.

The motion of this frame can be written as a curve of group elements G(t) satis-
fying the famous Frenet-Serret equations, which coincide with Eq. (1). In this case
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SB has the form,

SB =

⎛

⎜
⎜
⎝

0 −νκ 0 1
νκ 0 −ντ 0
0 ντ 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , (15)

where ν, κ and τ are respectively the speed, curvature and torsion of the curve
generating the motion. The adjoint representation of this twist is,

sB = α
⎧

k
0

⎪
+ β

⎧
i
0

⎪
+ γ

⎧
0
i

⎪
, (16)

where i, j and k are the unit vectors in the x, y and z-directions respectively and the
coefficients α = νκ, β = ντ and γ = ν.

The three wrenches dual to any sB are clearly given by,

W1 =
⎧

j
0

⎪
, W2 =

⎧
0
j

⎪
and W3 =

⎧
0
k

⎪
.

Using the result for F(s) from Eq. (7) above the three equations defining the motion
can be given as,

0 = ω̇y + ωx ω̇z − ω̇xωz, (17)

0 = (ωxωy − ωz)v̇x + (1+ ω2
y)v̇y + (ωx + ωyωz)v̇z

+(ω̇z + ω̇xωy − ωx ω̇y)vx − (ω̇x + ω̇yωz − ωyω̇z)vz (18)

0 = (ωxωz + ωy)v̇x + (ωyωz − ωx )v̇y + (1+ ω2
z )v̇z

−(ω̇y + ωx ω̇z − ω̇xωz)vx + (ω̇x + ω̇yωz − ωyω̇z)vy . (19)

Notice that the common denominators in these relations have been cancelled.
Now consider Eq. (17), this has exactly the same form as Eq. (11). Expressions

forωx andωz can be chosen and then the solution forωy can be found by integration.
Let us set ωx = at and ωz = bt this gives ωy = 0. To find possible solutions for
vx , vy and vy consider the anzatz,

vx = α1t+α2t2+α3t3+α4t4, vy = β1t+β2t2+β3t3+β4t4, vz = γ1t+γ2t2+γ3t3+γ4t4.

Substituting the chosen solution for ωi and the anzatz for the v j into Eqs. (18) and
(19) gives a pair of polynomial equations in t . These equations have degree 4 and
5 in t and the coefficients are linear in the undetermined coefficients αi , β j and γk .
These polynomials must vanish for all values of t hence the coefficients can be set
equal to zero. This produces a set of 11 linear equations in the 12 unknowns. The
system can be solved easily to give,
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vx = α1t + 1

3
α1(a

2 + 2b2)t3, vy = 1

6
α1(a

2 + b2)bt4, vz = 1

3
α1abt3.

These results give the entries of S and hence, using the Cayley map, the corresponding
4× 4 matrix function of t can be calculated,

G F S(t) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

1+ (a2 − b2)t2

1+ (a2 + b2)t2
−2bt

1+ (a2 + b2)t2
2abt2

1+ (a2 + b2)t2
2c

3
(3t + (a2 − b2))t3

2bt

1+ (a2 + b2)t2
1− (a2 + b2)t2

1+ (a2 + b2)t2
−2at

1+ (a2 + b2)t2 2bct2

2abt2

1+ (a2 + b2)t2
2at

1+ (a2 + b2)t2
1− (a2 − b2)t2

1+ (a2 + b2)t2
4

3
abct3

0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

,

(20)
note that α1 has been replaced by c in the above for neatness. This is a 3-parameter
family of rational Frenet-Serret motions. It includes the rational Frenet-Serret motion
found by Wagner and Ravani [4], which is reproduced by setting a = b = c = 1/

√
2

and a change of the coordinate frame.

5 Rational Aeroplane Motions

In [3] it is proved that these general moving frame motions can be factored into the
product of a Frenet-Serret motion with a pure rotation about the heading direction,
the tangent to the curve. Hence all that is needed to produce a rational family of
such motions is to compose a rational rotation with a family of rational Frenet-Serret
motions, such as the family derived above.

The required pure rotation is about the x-axis in the body and can be written,

G R(t) =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0

0
1− λ2t2

1+ λ2t2

−2λt

1+ λ2t2 0

0
2λt

1+ λ2t2

1− λ2t2

1+ λ2t2 0

0 0 0 1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

, (21)

the parameter λ is essentially the rate of rotation. Combining this with the Frenet-
Serret motions given in (20) gives a 4-parameter family of rational Aeroplane
motions,
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G A(t)

= G F S(t)G R (t)

=

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

1+ (a2 − b2)t2

1+ (a2 + b2)t2

−2(bt − (2a + λ)bλt3)

(1+ (a2 + b2)t2)(1+ λ2t2)

2(2+ a)bt2 − abλ2t4

(1+ (a2 + b2)t2)(1+ λ2t2)
ax

2bt

1+ (a2 + b2)t2

1− (a2 + b2 + 4aλ+ λ2)t2 + (a2 + b2)λ2t4

(1+ (a2 + b2)t2)(1+ λ2t2)

−2((a + λ)t − (a2 + b2 + aλ)λt3)

1+ (a2 + b2)t2 ay

2abt2

1+ (a2 + b2)t2

2((a + λ)t − (a2 − b2 + aλ)λt3)

(1+ (a2 + b2)t2)(1+ λ2t2)

1− (a2 − b2 + 4aλ+ λ2)t2 + (a2 − b2)λ2t4

(1+ (a2 + b2)t2)(1+ λ2t2)
az

0 0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

,

where,

ax = 2c

3
(3t + (a2 − b2))t3, ay = 2bct2, az = 4

3
abct3.

6 Conclusion

In this work a new class of rigid-body motion has been introduced. These vehicle
motions include many well known types associated to various types of vehicle as
well as some other motions of interest in Computer Aided Design. By unifying these
different types of motion it is possible to find methods which can be applied to
any of them. For example the Cayley substitution given in Sect. 2, will transform
the kinematic equations for any vehicle motion into a Riccarti equation. The rest of
the paper gives another method that can be used for any of these vehicle motions. The
problem addressed is to find rational motions satisfying the kinematic equations for
the vehicle. In Robotics this has applications in path planning, in Computer Aided
Design is has applications to motion interpolations for example.

The results given here are only intended to be indicative, the main purpose is to
show that very similar methods can be used for rather different vehicles. However,
it is not too difficult to see how the solutions presented could be extended to more
practical techniques.
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mous reviewers.
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Topological Representation and Operation
of Motion Space Exchange Reconfiguration
of Metamorphic Mechanisms

Shujun Li, Hongguang Wang, Jiansheng Dai, Xiaopeng Li, Zhaohui Ren
and Shichao Xiu

Abstract The paper presents a topological representation of mechanical chains
based on proposed joint-axis matrix based on our previous study, and motion space
exchange reconfiguration metamorphic processes of multi-loop mechanisms are
operated by the matrix. The matrix operations of metamorphic process are performed
by replacing the joint of planar mechanisms with passive mobility joint to form the
passive mobility mechanisms firstly, and then changing the orientation of metamor-
phic joint of the passive mobility planar mechanisms to transform the configuration
of the mechanisms from planar to spatial one. The matrix operations of 8-link multi-
loop mechanism are illustrated to show the motion space exchange reconfiguration
processes.

Keywords Motion space reconfiguration · Matrix metamorphic operation ·
Augmented adjacency matrix

1 Introduction

Since the metamorphic mechanism was proposed a decade ago [1], interests and
attentions are aroused in the field of mechanisms study. Parise et al. [2] proposed a new
class of mechanisms called ortho-planar mechanisms. Li et al. [3] presented a method
of structural synthesis of metamorphic mechanisms based on the configuration
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transformations. Liu and Yang [4] studied the metamorphic ways, new concept of
metamorphic kinematic pair was introduced and two new basic metamorphic ways
are presented. Generally, the adjacency matrix was used to study the variable topolo-
gies of metamorphic mechanisms via matrix operation to show the configuration
changes of the mechanisms [5]. The symbols of joints are added in adjacency matrix
to show the changes of type and/or number of joints in the mechanisms [6, 7]. Li et al
proposed a topological characteristic matrix of kinematic chains with loop relations,
types of joints and orientation of joints [8], and introduced a matrix representation and
of motion space exchange metamorphic operations of single-loop kinematic chains
[9]. In the paper, we study the motion space exchange reconfiguration operation of
multi-loop mechanisms.

2 The Topological Representation of Metamorphic Chains

2.1 Joint–Axis Matrix

The topological information of a joint Ji j which connects the ith and jth links can
be presented by following four elements joint-axis matrix Ji j

Ji j =
⎧

1 Ji j

ai j 1

⎪

2X2
(1)

where

Ji j = J ji =
⎛

R, P, ..., or by corresponding number assumed

0 when link i and j are not connected

The element ai j presents the orientation of axis of turning joint and/or normal of
translating joint of Ji j

ai j = a ji =
⎛

1, 2, ..., 8

0 when link i and j are not connected

The values ai j are assumed as in Table. 1.

Table 1 Proposed axis–orientation–relation and the value

ai j 1 2 3 4 5 6 7 8

Orientation Parallel Parallel Parallel Intersected on Arbitrary Parallel Parallel Parallel
z x y one point x–y plane x–z plane y–z plane



Topological Representation and Operation 33

2.2 Augmented Adjacent Matrix
with Axis-Orientation-Relationship of Kinematic Chains

A n–link kinematic chain is assembled by the putting the corresponding elements
of Eq. (1) into the general adjacent matrix of n link kinematic chain with types of
joints, the general topological form of a n link metamorphic chain with types and
orientations of joints can be proposed in the following form.

A =

⎝

⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞⎞
⎠

1 J12 · · · J1i · · · J1 j · · · J1,n−1 J1n

a12 1 · · · · · · · · · · · · · · · · · · J2n
...

...
...

...
...

...
...

...
...

a1i · · · · · · 1 · · · Ji j · · · · · · Jin

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1 j · · · · · · ai j · · · 1 · · · · · · J jn
...

...
...

...
...

...
...

...
...

a1,n−1 · · · · · · · · · · · · · · · · · · 1 Jn−1,n
a1n a2,n · · · ain · · · a jn · · · an−1,n 1

⎜

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎦

(2)

where for i = 1, 2,..., n, j = 1, 2, ..., n, the element Ji j is the joint of connecting ith
and jth links of kinematic chains.

3 Motion Space Change Metamorphic Reconfiguration
and Matrix Operation

3.1 Joints Replacing Operation to form the Passive Mobility
of the Mechanism

To reconfigure a planar mechanism into a spatial mechanism, it is essential that
passive joints have the spatial mobility be added. The operation can be performed as
following: first deleting the elements of replaced joint Ji j which is equal to putting
the corresponding elements of a negative joint

−Ji j =
⎧

1 −Ji j

−ai j 1

⎪
( f or i = 1, 2, ...; j = 1, 2, ..., and Ji j i s deleted joint)

into Eq. (2) to delete the replaced joint/joints, and then adding the elements of

Jp
i j =

[
1 Jp

i j
ap

i j 1

]

( f or i = 1, 2, ...; j = 1, 2, ..., and Jp
i j is deleted joint)
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in the corresponding positions of the replaced joint/joints Ji j of the Eq. (4) to form
the topological characteristics matrix of kinematic chain with passive joints Ap as

Ap =

⎝

⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞
⎠

1 J12 · · · J1i · · · J1 j · · · · · · J1,n−1 J1n

a12 1 · · · · · · · · · · · · · · · · · · · · · J2n
...

...
...

...
...

...
...

...
...

...

a1i · · · · · · 1 · · · Jp
i j · · · · · · · · · Jin

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1 j · · · · · · ap

i j · · · 1 · · · · · · · · · J jn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...

a1,n−1 · · · · · · · · · · · · · · · · · · · · · 1 Jn−1,n
a1n a2,n · · · ain · · · a jn · · · · · · an−1,n 1

⎜

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎦

(3)

3.2 Motion Space Change Reconfiguration Operation

The process to change the orientation of ai j of Ap to form the metamorphic matrix
can be operated as deleting the joint elements of corresponding −ai j of orientation
changed joint in the Ap first which is equal to putting the corresponding elements of

−Jo
i j =

⎧
1 Ji j
−ai j 1

⎪
( f or i = 1, 2, ...; j = 1, 2, ..., and Jo

i j is orientation changed joint)

into Eq. (3) to delete the elements of changed orientations, and then changing the
orientation of the metamorphic joints, i.e. adding the elements of

Jc
i j =

⎧
1 Ji j

ac
i j 1

⎪
( f or i = 1, 2, ...; j = 1, 2, ..., and ac

i j is the new orientation of the joint)

in the corresponding positions of the orientation changed joint Jo
i j of the Eq. (3) to

form the matrix of spatial motion kinematic chain AS

As =

⎝

⎞⎞⎞
⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞
⎠

1 J12 · · · J1i · · · J1 j · · · · · · J1,n−1 J1n

a12 1 · · · · · · · · · · · · · · · · · · · · · J2n
...

...
...

...
...

...
...

...
...

...

a1i · · · · · · 1 · · · Ji j Jp · · · · · · Jin

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1 j · · · · · · ac

i j · · · 1 · · · · · · · · · J jn

· · · · · · · · · ap · · · · · · 1 · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...

a1,n−1 · · · · · · · · · · · · · · · · · · · · · 1 Jn−1,n
a1n a2,n · · · ain · · · a jn · · · · · · an−1,n 1

⎜

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎦

(4)
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Thus the metamorphic processes for mechanism reconfiguration from planar to
motion can be managed to operate only the corresponding metamorphic joint-axis
matrix by Eq. (4). It should be noticed that the passive joint Jp

i j are not to be chosen
as the orientation change joint Jc

i j in the metamorphic process generally.

4 Motion Space Change Reconfiguration Approaches

For a multi-loop planar 3-RRR parallel mechanism shown in Fig. 1a, the main recon-
figuration procedures are as follows.

To form the topological characteristic matrix A of planar 3-RRR parallel mech-
anism. The topological characteristic matrix A of 3-RRR planar parallel mechanism
can be formed as according to Eq. (3)

A =

⎝

⎞⎞⎞⎞⎞⎞
⎞⎞⎞⎞
⎠

1 J12 0 0 0 J16 0 J18
a12 1 J23 0 0 0 0 0
0 a23 1 J34 0 0 0 0
0 0 a34 1 J45 0 J47 0
0 0 0 a45 1 J56 0 0

a16 0 0 0 a56 1 0 0
0 0 0 a47 0 0 1 J78

a18 0 0 0 0 0 a78 1

⎜

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎦

=

⎝

⎞⎞⎞⎞⎞⎞
⎞⎞⎞⎞
⎠

1 R 0 0 0 R 0 R
1 1 R 0 0 0 0 0
0 1 1 R 0 0 0 0
0 0 1 1 R 0 R 0
0 0 0 1 1 R 0 0
1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 R
1 0 0 0 0 0 1 1

⎜

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎦

To form the topological characteristic matrix AP_3R RS of planar 3-RRS parallel
mechanism with passive mobility joints. If change the three R joints R34, R45, and
R47 which connected on the moving platform of link 4 into S joints, the mechanism
will become the planar 3-RRS mechanism with passive mobility joints. According
to Eq. (1), the replaced passive joints are

(a) (b)

Fig. 1 Planar 3-RRR parallel mechanism and 3-RRS parallel mechanism
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Jp
34 =

⎧
1 J p

34
a p

34 1

⎪
=

⎧
1 S
5 1

⎪
; Jp

45 =
⎧

1 J p
45

a p
45 1

⎪
=

⎧
1 S
5 1

⎪
; Jp

47 =
⎧

1 J p
47

a p
47 1

⎪
=

⎧
1 S
5 1

⎪

Adding the elements of the replaced passive joints into the corresponding positions
of Eq. (3), to form the topological matrix Ap of this mechanism with passive joints

Ap =

⎝

⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞
⎠

1 J12 0 0 0 J16 0 J18
a12 1 J23 0 0 0 0 0
0 a23 1 Jp

34 0 0 0 0
0 0 ap

34 1 Jp
45 0 Jp

47 0
0 0 0 ap

45 1 J56 0 0
a16 0 0 0 a56 1 0 0
0 0 0 ap

47 0 0 1 J78
a18 0 0 0 0 0 a78 1

⎜

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎦

=

⎝

⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞
⎠

1 R 0 0 0 R 0 R
1 1 R 0 0 0 0 0
0 1 1 S 0 0 0 0
0 0 5 1 S 0 S 0
0 0 0 5 1 R 0 0
1 0 0 0 1 1 0 0
0 0 0 5 0 0 1 R
1 0 0 0 0 0 1 1

⎜

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎦

The corresponding configuration of Ap can be formed as shown in Fig. 1b.
To form the orientation change metamorphic matrix AS of metamorphic mecha-

nism based on the Ap. According to Sect. 3, the orientation changing reconfiguration
processes of this mechanism are:

Firstly, turning the link 2 in z with appropriate position, and then changing the
orientation of the joint R12 90◦ to form the orientation change metamorphic matrix
AS(R12). By Eqs. (1) and (4), the orientation changed joint Jc

12 and the orientation
change metamorphic matrix AS(R12) of the mechanism can be formed as

Jc
12 =

⎧
1 J12

ac
12 1

⎪
=

⎧
1 R
6 1

⎪

AS(R12) =

⎝

⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞
⎠

1 J12 0 0 0 J16 0 J18
ac

12 1 J23 0 0 0 0 0
0 a23 1 Jp

34 0 0 0 0
0 0 ap

34 1 Jp
45 0 Jp

47 0
0 0 0 ap

45 1 J56 0 0
a16 0 0 0 a56 1 0 0
0 0 0 ap

47 0 0 1 J78
a18 0 0 0 0 0 a78 1

⎜

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎦

=

⎝

⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞
⎠

1 R 0 0 0 R 0 R
6 1 R 0 0 0 0 0
0 1 1 S 0 0 0 0
0 0 5 1 S 0 S 0
0 0 0 5 1 R 0 0
1 0 0 0 1 1 0 0
0 0 0 5 0 0 1 R
1 0 0 0 0 0 1 1

⎜

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎦

The corresponding configuration is shown as in Fig. 2a.
Secondly, turning the link 6 in z with appropriate position, and then changing the

orientation of the joint R16 90◦ to form the orientation change metamorphic matrix
AS(R12,R16). By Eqs. (1) and (4), the joint orientation change matrix Jc

16 and the
orientation change metamorphic matrix AS(R12,R16) can be formed as

Jc
16 =

⎧
1 J16

ac
16 1

⎪
=

⎧
1 R
6 1

⎪
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Fig. 2 Configuration of the
mechanism when the orienta-
tion of the joint R12 is to be
changed 90◦ and the orienta-
tion of the joint R12 and R16
are to be changed 90◦

(a) (b)

AS(R12, R16) =

⎝

⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎠

1 J12 0 0 0 J16 0 J18
ac

12 1 J23 0 0 0 0 0
0 a23 1 Jp

34 0 0 0 0
0 0 ap

34 1 Jp
45 0 Jp

47 0
0 0 0 ap

45 1 J56 0 0
ac

16 0 0 0 a56 1 0 0
0 0 0 ap

47 0 0 1 J78
a18 0 0 0 0 0 a78 1

⎜

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎦

=

⎝

⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎠

1 R 0 0 0 R 0 R
6 1 R 0 0 0 0 0
0 1 1 S 0 0 0 0
0 0 5 1 S 0 S 0
0 0 0 5 1 R 0 0
6 0 0 0 1 1 0 0
0 0 0 5 0 0 1 R
1 0 0 0 0 0 1 1

⎜

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎦

The corresponding configuration is shown as in Fig. 2b.
Then, turning the link 8 in z with appropriate position, and then changing the

orientation of the joint R18 90◦ to form the orientation change metamorphic matrix
AS(R12, R16, R18). By Eqs. (1) and (4), the joint orientation change matrix Jc

18
and the orientation change metamorphic matrix AS(R12,R16,R18), i.e. AS can be
formed as

Jc
18 =

⎧
1 J18

ac
18 1

⎪
=

⎧
1 R
6 1

⎪

AS(R12, R16, R18) = AS =

⎝

⎞⎞
⎞⎞
⎞⎞
⎞⎞
⎞⎞
⎠

1 J12 0 0 0 J16 0 J18

ac
12 1 J23 0 0 0 0 0
0 a23 1 Jp

34 0 0 0 0
0 0 ap

34 1 Jp
45 0 Jp

47 0
0 0 0 ap

45 1 J56 0 0
ac

16 0 0 0 a56 1 0 0
0 0 0 ap

47 0 0 1 J78

ac
18 0 0 0 0 0 a78 1

⎜

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎦

=

⎝

⎞⎞
⎞⎞
⎞⎞
⎞⎞
⎞⎞
⎠

1 R 0 0 0 R 0 R
6 1 R 0 0 0 0 0
0 1 1 S 0 0 0 0
0 0 5 1 S 0 S 0
0 0 0 5 1 R 0 0
6 0 0 0 1 1 0 0
0 0 0 5 0 0 1 R
6 0 0 0 0 0 1 1

⎜

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎦

Finally, turning the joints R12, R16, and R18 of Fig. 3 with some degrees to form
the spatial 3-RRS parallel mechanism as shown in Fig. 3 (z direction view), so that
the orientation change metamorphic mechanism is formed.
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Fig. 3 Configuration of the
orientation changed spatial
mechanism

5 Conclusions

Based on proposed joint-axis matrix and an augmented adjacent matrix of kinematic
chains, the axis orientation change metamorphic processes are presented. The matrix
operation metamorphic process can be performed both manually and be executed
by computer. The matrix can be used for the topological representation both for
metamorphic mechanism and general kinematic chains, and can be extended in the
study of structural synthesis of kinematic chains.
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Classification of Singularities in Kinematics
of Mechanisms

Samuli Piipponen, Teijo Arponen and Jukka Tuomela

Abstract In this short article we will discuss methods of finding and classifying
singularities of planar mechanisms. The key point is to observe that the configuration
spaces of the mechanisms can be understood as analytic and algebraic varieties.
The set of singular points of an algebraic variety is itself an algebraic variety and of
lower dimension than the original one. The singular variety can be computed using
the Jacobian criterion. Once the singular points are obtained their nature can be
investigated by investigating the localization of the constraint ideal at the local ring
at this point. This will tell us if the singularity is an intersection of several motion
modes or a singularity of a particular motion mode. The nature of the singularity can
be then analyzed further by computing the tangent cone at this point.

Keywords Kinematical singularities · Planar mechanisms · Algebraic geometry ·
Local rings · Tangent cone

1 Introduction

The equations of motion arising from Lagrangian mechanics for multibody systems
are usually DAE equations where algebraic equations in our case determine the holo-
nomic constraints. The constraint equations in Lagrangian mechanics in holonomic
case are generally of form g(u) = 0 and u : I ◦≤ g−1(0) ≡ R

k is the trajectory of
the system which is the solution of the particular DAE. The set g−1(0) is the analytic
or algebraic variety defining the kinematical properties of the system. In this article
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we will introduce methods of algebraic geometry to study the configuration spaces
as algebraic varieties and investigate the nature of the possible singularities. The
concept of a tangent cone has previously been used for singularity analysis in [1].
More classical methods to study singularities can be found from [2–4] and [5] where
also the concept of singularities is little bit wider. One of the earliest works to use
algebraic geometry in kinematical analysis was [6] and we have used it previously
for example in [7–9].

List of Abbreviations

A = K[x1, . . . , xk] denotes the ring of polynomials with coefficient field K.

I = ≈g1, . . . , gn⊥ ≡ A denotes the ideal generated by polynomials gi ∈ A.

⇒I denotes the radical of the ideal I.

K(V(I)) = {[ f ] | f ∈ A} is the coordinate ring defined by I.

V(I) ≡ K
k is the algebraic variety defined by I.

Op is the localization of A at p. Also called a local ring at p.

OV,p ≡ Op is the localization of V(I) at p.

Il(dg) is the Ψ:th Fitting ideal of matrix dg generated by its Ψ× Ψ minors.

Θ(V(I)) is the singular variety of V(I).

C p(V(I)) is the tangent cone of V(I) at p.

2 Preliminary Definitions

In our terminology the dimension of a constraint variety is simply the mobility of the
mechanism and the singular points are singular points of the corresponding variety.
Let us present shortly the relevant definition and theorems in order to compute our
examples. Remember that the embedding dimension of an algebraic variety is the
minimal number of generators of Mp and edim(OV,p) = dimK (Mp/M2

p). Particu-
larly important is that the Krull dimension of an ideal can be easily computed if the
elements of Gröbner basis of an ideal are known [10, 11].

Definition 2.1 (Singular and regular points of a variety) Let I ≡ A be a radical
ideal. The local ring OV,p is a regular local ring if

dimK (OV,p) = edim(OV,p) = dim(TpV(I)). (1)
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If the point p is not regular it is singular.

The last equation in definition 3 with Krull’s principal ideal theorem [10] gives
us actual means to compute the singular points [10, 11].

Theorem 2.1 (Jacobian Criterion) Let I = ≈g1, . . . gn⊥ ≡ K[x1, . . . , xk] be a

radical ideal let K be closed extension field of K and suppose that V(I) ≡ K
k

is
equidimensional and dim(V(I)) = k − Ψ. Then the singular variety of V(I) is

Θ(V(I)) = V
(I + Il(dg)

) = V
(I) ∩ V

(
Il(dg)

) ≡ K
k
. (2)

In other words if p ∈ S(V(I)) then OV,p is not a regular local ring. Moreover if
1 ∈ I + Il(dg) then the variety V(I) is naturally smooth since V(1) = ⊆.

Let us then introduce an other important object in our analysis the tangent cone
[12]. With Taylor’s formula we can expand any polynomial with respect to any point
p ∈ K

k and present f ∈ A by total degree d as a linear combination

f = f p,0 + . . .+ fm, j

f p,d =
∑

|s| = d

as(x − p)s,

where s = (s1, . . . , sk) and s1+ . . .+ sk = d. The polynomial f p,min is the smallest
part for which f p, j �= 0 in previous expansion.

Definition 2.2 (Tangent cone) Suppose that V(I) ≡ K
k is an affine variety and let

p ∈ V(I). The Tangent cone of V(I) at pi , denoted by C p(V(I)), is the variety

C p(V(I)) = V( f p,min | f ∈ I (V(I))), (3)

Note that if we make the coordinate transformation of p to origin C0(V(I)) is the best
approximation of V(I) at 0 with variety of an homogeneous ideal of same dimension
as V(I). The following theorem allows us also to distinguish between singular and
regular points [12].

Theorem 2.2 Assume that K is closed and p ∈ V. Then the following conditions
are equivalent

p ∈ V is regular point of V ⇔ dim(C p(V)) = dim(TpV) ⇔ C p(V) = TpV.
(4)

The next theorem allows us to recognize certain types of singularities [13].
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Theorem 2.3 Suppose that I ≡ K[x1, . . . , xk] is an ideal where K is algebraically
closed. Let p ∈ V(I) be a singular point of V(I) and Op be the local ring at p. If
the prime decomposition of the radical of OV,p in the local ring is

√OV,p = I1 ∩ . . . ∩ Ir ≡ Op (5)

then the corresponding irreducible varieties V(Ii ) of prime ideals Ii represent vari-
eties passing through the singular point p and they intersect at this point. However
if the prime decomposition is

√OV,p = OV,p, then OV,p is an integral domain and
the point p is a singularity of an irreducible variety V(I).

3 Examples

In this section we will apply previous theorems to two relatively easy examples. Let
us look at planar N -bar slider crank mechanism and planar closed one loop N -bar
mechanism.

In general case it is perhaps shorter to treat the configuration spaces first as analytic
varieties when proving necessary conditions for singularities1.

Theorem 3.1 Suppose that we have either Planar N-bar slider-crank mechanism or
planar closed one loop N-bar mechanism so that the lengths of the bars are l1, . . . , ln
as in Fig.1. Then the necessary condition for existence of kinematical singularities is

f (l1, . . . , ln) = l1 ± l2 ± . . .± ln = 0, li > 0 ∀ 1 ≤ i ≤ n. (6)

Proof In the case of the N -bar slider-crank mechanism the constraint map is
g:Rn ◦≤ R

Fig. 1 On the left: Planar N -bar slider-crank mechanism. On the right: Planar closed one-loop
N -bar mechanism

1 This could have been done by transforming the analytic variety to algebraic variety but let us do
that later.
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g(Π1, . . . , Πn) = l1 sin(Π1)+ l2 sin(Π2)+ . . .+ ln sin(Πn).

The Jacobian of g is then the gradient dg = ∇g = (l1 cos(Π1), . . . , ln cos(Πn)).Now
if Π∗ = (Π1, . . . , Πn) is singular point⇔ rank(dg(Π∗)) = 0 and cos(Πi ) = 0 ∀ 1 ≤
i ≤ n which implies Πi = δ(1/2+n), n ∈ Z. Substituting this to constraint equation
g(Π∗) = 0 implies directly

g(Π∗) = l1 ± l2 ± . . .± ln = 0.

In the case of N -bar planar single closed loop mechanism the constraint map is
ĝ := (g1, g2) : Rn ◦≤ R

2

{
g1(Π1, . . . , Πn) = l1 cos(Π1)+ . . .+ ln cos(Πn)

g2(Π1, . . . , Πn) = l1 sin(Π1)+ . . .+ ln sin(Πn).

Now the Jacobian of ĝ is the 2× n matrix

dĝ =
(−l1 sin(Π1) . . . −ln sin(Πn)

l1 cos(Π1) . . . ln cos(Πn)

)
.

If Π∗ = (Π1, . . . , Πn) is singular point⇔ rank(dĝ(Π∗)) < 2 which is equivalent to
the fact that all the 2× 2 minors of dĝ have to vanish

∣∣∣∣
−l j sin(Π j ) −li sin(Πi )

l j cos(Π j ) li cos(Πi )

∣∣∣∣ = li l j sin(Π j − Πi ) = 0 ∀ 1 ≤ i, j ≤ n, i �= j.

This is equivalent to Π j = Πi+nδ, n ∈ Z and like in Fig. 1 without loss of generality
in kinematical analysis we can choose Π1 = 0 so that Π j = nδ, n ∈ Z, ∀ 1 ≤ j ≤ n
and substituting this we get automatically g2(Π

∗) = 0 and the first equation reveals
the condition

g1(Π
∗) = l1 ± l2 ± . . .± ln = 0.

4 Local Analysis of Examples

Let us then investigate the singularities locally first in slider-crank mechanism when
n = 2 and n = 3. The configuration space was the analytic variety g−1(0). With
substitutions ci = cos(Πi ), si = sin(Πi ) the general constraint equations take form

p1 = l1s1 + . . .+ lnsn = 0, pi+1 = c2
i + s2

i − 1 = 0, 1 ≤ i ≤ n. (7)

The configuration space is transformed to algebraic variety V(≈p1, . . . , pn+1⊥) and
the constraint mapping to p : S1 × . . .× S1 ≡ R

2n ◦≤ R
n+1. In the case n = 2 we

set l1 = l2 = 1 and compute singular variety using theorem (2.1)
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Θ(V(I)) = V(I + I3(dp)
) = {(0, 1, 0,−1), (0,−1, 0, 1)} = q1 ∪ q2 ≡ (S1)2.

Let us investigate q2 = (0,−1, 0, 1). After transformation to origin the constraint
ideal defined by takes form

Î = ≈q1, q2, q3⊥ = ≈b1 + b2, a2
1 + (b1 − 1)2 − 1, a2

2 + (b2 + 1)2 − 1⊥.

Now we can compute the tangent cone and get

C0(V(Î)) = V(≈b1, b2, a2
1 − a2

2⊥).

Near origin the variety V(Î) looks like two lines s1 = t (1, 0, 1, 0), s2 = t (1, 0,
−1, 0), t ∈ R intersecting in the plane b1 = b2 = 0. Let us then compute the
prime decomposition of local ring OV,0. As expected we have OV,0 = H1 ∩ H2. By
theorem (2.3) two irreducible varieties/motion modes pass through q2. In fact it is
easy to find out that the configuration space breaks to irreducible components/motion
modes V(I) = V(I1) ∪ V(I2) and S(V(I)) = V(I1) ∩ V(I2).

Let us then do similar analysis for 3-bar slider crank mechanism. The constraint
variety defined by (9) is now V(I) = V(≈p1, . . . , p4⊥). First we set l1 = 2, l2 =
l3 = 1 and compute the singular variety again by theorem (2.1)

Θ(V(I)) = V(I + I4(dp)) = {(0, 1, 0,−1, 0,−1), (0,−1, 0, 1, 0, 1)} = q1 ∪ q2.

Next we investigate q2 locally and after transformation to origin we have

Î = ≈b1 + b2 + b3, a2
1 + (b1 − 1)2 − 1, a2

2 + (b2 + 1)2 − 1, a2
3 + (b3 + 1)2 − 1⊥.

When we compute the tangent cone at origin we find

C0(V(Î)) = V(≈b1, b2, b3, 2a2
1 − a2

2 − a2
3⊥).

so near the origin the variety appears to have a cone type singularity 2a2
1−a2

2−a2
3 = 0

at the hyper plane b1 = b2 = b3 = 0. Next we compute the prime decomposition
of localization OV,0 of V(I) at O0 and get

√OV,0 = OV,0. The theorem (2.3) tells
us that the singularity is not an intersection of different motion modes/irreducible
varieties which in this case agrees with the nature of the nature of the tangent cone.
When n = 2 the configuration space breaks to two parts and when n = 3 such sepa-
ration does not exist. The phenomena is clearly visible from the plots of configuration
spaces in Fig. 2.

Let us then investigate planar closed one loop 4-bar mechanism. Let us fix again
first bar to x-axis and without loss of generality choose l1 = 1. With substitutions
ci = cos(Πi ), si = sin(Πi ) the constraint equations take form
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Fig. 2 On the left: Configuration space of 2-bar slider crank on (Π1, Π2)-space. In the middle:
Configuration space of 3-bar slider crank on (Π1, Π2, Π3)-space. On the right: The nonlinear part
2a2

1 − a2
2 − a2

3 = 0 of the tangent cone C0(V(I)) in (a1, a2, a3)-space

p1 = l2c2 . . .+ lnsn + 1 = 0

p2 = l2c2 + . . .+ lncn = 0, pi+1 = c2
i+1 + s2

i+1 − 1 = 0, 1 ≤ i ≤ n. (8)

The configuration space is transformed to algebraic variety V(≈p1, . . . , pn+1⊥) and
the constraint mapping to p : S1 × . . . × S1 ≡ R

2n−2 ◦≤ R
n+1. In the case n = 4

we set l2 = l3 = l4 = 1 and compute again the singular variety

Θ(V(I)) = V(I + I5(dp)
) = {q1, q2, q3} ≡ (S1)3,

where {q1, q2, q3}={(1, 0,−1, 0,−1, 0), (−1, 0, 1, 0,−1, 0), (−1, 0,−1, 0, 1, 0)}.
Now it is also straightforward to check that V(I) is union of three irreducible

varieties/motion modes V(I) = V(I1) ∪ V(I2) ∪ V(I3). Let us still do the local
analysis for V(I) for example at q1. Let us then move q1 to origin and denote the
transformed constraint ideal as Î. The tangent cone C0(V(Î)) is

C0(V(Î)) = V(≈a2, a3, a4, b2 + b3 + b4, b3b4⊥)

The singularity looks now again as two lines s1 = b2(1, 0,−1), b2 ∈ R and s2 =
b2(1,−1, 0), b2 ∈ R intersecting at origin in the hyperplane a2 = a3 = a4 = 0.
The computation of prime decomposition ofOV,0 confirms our previous computation
OV,0 = H1 ∩ H2. Two irreducible varieties V(I1) and V(I3) intersect at point q1 as
the theorem (2.3) of suggests.

5 Conclusion

We applied computational algebraic geometry to three simple mechanism exam-
ples to find out the possible kinematical singularities using Jacobian criterion and
further investigate their nature using concept of localization, local ring and tangent
cone. Indeed we can conclude that the singularities in 2-bar slider crank and 4-bar



48 S. Piipponen et al.

mechanism are removable singularities in the sense that they are intersections of
smooth assembly modes. However with 3-bar slider crank this is not the case and
we can call these essential singularities. Although we investigated relatively sim-
ple examples the methods generalize to more complicated mechanisms as we will
show in the future. For actual computations we have used a well established program
Singular [14].
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Non-existence of Planar Projective Stewart
Gough Platforms with Elliptic Self-Motions

Georg Nawratil

Abstract In this paper, we close the study on the self-motional behavior of
non-architecturally singular parallel manipulators of Stewart Gough (SG) type, where
the planar platform and the planar base are related by a projectivity Ψ , by showing
that planar projective SG platforms with elliptic self-motions do not exist. The proof
of this result demonstrates the power of geometric and computational interaction,
but it also points out the limits of symbolic computation.

Keywords Self-motion · Stewart Gough platform · Borel Bricard problem

1 Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six base
anchor points Mi located in the fixed plane ΘM and by the six platform anchor points
mi of the moving planeΘm. If the geometry of the manipulator and the six leg lengths
are given, the SG platform is in general rigid, but under particular conditions, it can
perform an n-parametric motion (n > 0), which is called self-motion. Note that these
motions are also solutions of the famous Borel Bricard problem (cf. [1–3]).

It is well known, that planar SG platforms, which are singular in every possible
configuration, possess self-motions in each pose (over C). These so-called archi-
tecturally singular planar SG platforms were extensively studied in [4–7]. There-
fore, we are only interested in self-motions of planar SG platforms, which are not
architecturally singular. Moreover, within this paper, we focus on the case, where
the base anchor points Mi and the platform anchor points mi are related by a
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non-singular projectivity Ψ . For the remainder of this article, we call these manipu-
lators planar projective SG platforms.

2 Self-Motions of Planar Projective SG Platforms

It is well known (cf. [6, 8, 9]), that a planar projective SG platform is architecturally
singular, if and only if, one set of anchor points is located on a conic section, which
can also be reducible.

The author proved in Lemma 1 of [10] that one can attach a two-parametric set L
of additional legs to a planar projective SG platform without changing the forward
kinematics and singularity surface. The platform anchor points mi and the base
anchor points Mi of these additional legs are also related by Ψ , i.e. Ψ: mi ◦≤ Mi .

Moreover, it was also shown by the author in [10] that non-architecturally singular
planar projective SG platforms can either have pure translational self-motions or
elliptic self-motions. Under consideration that s denotes the line of intersection of
ΘM and Θm in the projective extension of the Euclidean 3-space, the latter type of
self-motions can be defined as follows (cf. Definition 1 of [10]):

Definition 2.1 A self-motion of a non-architecturally singular planar projective SG
platform is called elliptic, if in each pose of this motion s exists with s = sΨ and the
projectivity from s onto itself is elliptic.

Note, that an elliptic projectivity of a projectively extended line (line plus its ideal
point) onto itself, is a bijective linear mapping, which does not have real fixed points.
Therefore, Definition 2.1 implies that neither ΘM and Θm nor two related points of
the platform and the base coincide during an elliptic self-motion.

As the geometry of all manipulators with translational self-motions were already
determined in [10], we focused on the study of elliptic self-motions in a recent
publication [11], where the following results were obtained.

2.1 Results on Elliptic Self-Motions

Until now, it is an open question, whether planar projective SG platforms with elliptic
self-motions even exist (cf. later givenConjecture 2.1). In the case of existence, these
self-motions have to be one-parametric ones with instantaneously two degrees of
freedom in each pose of the self-motion (cf. Theorems 1 and 2 of [11]).

It was also shown in [11], that the angle Π enclosed by the unique pair of ideal
points (f,F) with fΨ = F has to remain constant during the self-motion of a planar
projective SG platform. By introducing the nomenclature orthogonal for elliptic
self-motions with Π = Θ/2, we can give Theorem 3 of [11]:
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Theorem 2.1 There do not exist non-architecturally singular planar projective SG
platforms with an orthogonal elliptic self-motion.

The proof of this theorem was done analytically, but not in the classical way
(cf. Section 5.1 of [11]), as this approach resulted in a highly non-linear system of
17 equations in the design parameters, which we were not able to solve explicitly.

Instead, we developed an alternative method (cf. Section 5.2 of [11]), which is
based on the algebraic formulation of two geometrically necessary conditions for
achieving an elliptic self-motion. These two conditions imply two homogeneous
polynomialsδ1 andδ2 of degree 12 in two Euler parameters e1 and e2, which remain
from the Study parameters, after a performed elimination process. Note, that each of
these two polynomials has 1960 terms. A necessary condition for the existence of an
orthogonal elliptic self-motion is, that δ1 and δ2 are fulfilled independently of the
Euler parameters e1 and e2. Therefore, the coefficients ofδ1 andδ2, with respect to
e1 and e2, imply a system of 26 equations in the design parameters, which was used
to prove Theorem 2.1.

Due to the above cited results, we had good reasons to close the paper [11] with
the following conjecture:

Conjecture 2.1 Non-architecturally singular planar projective SG platforms with
an elliptic self-motion do not exist.

Clearly, the first idea to prove this conjecture, is to do it similarly to Theorem 2.1.
Indeed, the problem under consideration has only one more unknown, namely the
angle Π , but exactly this additional variable effects enormously the computational
complexity: The two corresponding polynomialsδ1 andδ2 of the alternative method
can be computed with Maple on a high capacity computer (78GB RAM). Each
of these two expressions has 8259 terms and is again of degree 12 in e1 and e2
(cf. Remark 4 of [11]). We tried hard to solve the resulting system of 26 equations
explicitly, but we failed due to its high degree of non-linearity.

Therefore, we have to come up with another idea for proving this conjecture. This
new approach, presented in Sect. 4, is a purely geometric one, which is based on
some old geometric/kinematic results listed in Sect. 3. Note, that the given proof
also finishes the study of planar projective SG platforms with self-motions, whose
results are summed up within the conclusions (cf. Sect. 5).

3 Related Historical Work

Before we list related historical results, we repeat some elementary facts on regular
ruled quadrics, which are the one-sheeted hyperboloid and the hyperbolic paraboloid
(see Fig. 1): Both surfaces carry two sets of generators, which are called regulus R
and associated regulus R×, respectively. Moreover, it should be noted that all lines
within one set are skew to each other and that each line of one set is intersected by
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all lines of the other set. Therefore, a regular ruled quadric is uniquely determined
by three pairwise skew generators. For more details, we refer to [12].

In 1873 the following theorem was given by Henrici (cf. [13]):

Theorem 3.1 If the generators of a hyperboloid Φ of one sheet are constructed of
rods, jointed at the points of crossing in a way that at each intersection point one
rod is free movable about the other one, then the surface is not rigid, but permits a
deformation into a one-parametric set H of hyperboloids.

Moreover, Greenhill remarked in 1878 that H consists of confocal hyperboloids
and that the trajectory of a point of Φ is orthogonal to this system of confocal
hyperboloids. A proof of Greenhill’s statement was given in 1879 by Cayley [14]. In
1899 Schur [15] presented a very elegant proof for Henrici’s theorem and Greenhill’s
addendum, which also showed that these results remain valid if the one-sheeted
hyperboloid is replaced by a hyperbolic paraboloid.

Finally, it should be noted that Wiener, who made some very nice models of these
deformable one-sheeted hyperboloids and hyperbolic paraboloids (see Fig. 1), also
gave a detailed review of this topic in Section 9 of [16].

Beside the cited results on the deformation of regular ruled quadrics, the following
theorem is well known to the kinematic community (cf. page 222 of [17]):

Theorem 3.2 If three points m1,m2,m3 of a line g run on spheres, where the centers
M1,M2,M3 are also located on a line G, then every point m of g has a spherical
trajectory, where the center M of this sphere belongs to G and fulfills the relation:
C R(m1,m2,m3,m) = C R(M1,M2,M3,M), where C R denotes the cross-ratio.

Moreover, it is a well known fact of projective geometry, that the one-parametric
set of lines [m,M]with m and M of Theorem 3.2 span a regulus R of a regular ruled
quadric, if g and G are skew and m1,m2,m3 and M1,M2,M3 are pairwise distinct.

(a) (a)

Fig. 1 Wiener’s models of a deformable one-sheeted hyperboloid a and hyperbolic paraboloid b
of the collection of mathematical models at the Institute of Discrete Mathematics and Geometry,
Vienna University of Technology (see http://www.geometrie.tuwien.ac.at/modelle)

http://www.geometrie.tuwien.ac.at/modelle
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4 Proof of Conjecture 2.1

The proof of this conjecture is done by contradiction. We assume that a non-
architecturally singular planar projective SG platform with base anchor points
M1, . . . ,M6 and platform anchor points m1, . . . ,m6 exists, which possesses an ellip-
tic self-motion E . Without loss of generality, we can assume that the manipulator is
in a pose of E where Θm and ΘM are not parallel, as this would imply that Ψ is an
affinity. But this affine case was already discussed in Theorem 5 of [10].

4.1 Definition of a Special Planar Projective SG Platform

Due to Lemma 1 of [10] and the results of [18], we can replace the original six legs
mi Mi with i = 1, . . . , 6 by a new set of six legs ni Ni without changing the direct
kinematics and singularity surface, if niΨ = Ni holds and n1, . . . ,n6 are not located
on a conic section. Therefore, n1, . . . ,n6 can be selected as follows (cf. Fig. 2):

We chose three lines g1, g2, g3 ≡ Θm in a way that g1, g2, g3, s are pairwise
distinct and that no three of them belong to a pencil of lines. Then we can define ni

as the intersection point of gi and s = sΨ for i = 1, 2, 3. Moreover, the intersection
point of gi and g j is noted by nk+3 with pairwise distinct i, j, k ≡ {1, 2, 3}. By
applying Ψ to n1, . . . ,n6, we get the corresponding base anchor points N1, . . . ,N6.
It can easily be checked, that the resulting special planar projective SG platform is
not architecturally singular. Moreover, we denote giΨ by Gi for i = 1, 2, 3.

N1

N2

N3

N1

N2

N3
N5

N6

N4

n2
n3

n1

N5

N6 N4

s= sκ
n4

n5

n6

ε

G1

πM

G2

G3

g1
g2

g3
πm

G1

G2 G3

Fig. 2 Sketch and notation of the points, lines and planes used for the proof of Conjecture 2.1
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Now we consider the one-parametric set of legs nN with n ≡ g1, N ≡ G1 and
nΨ = N. Due to Lemma 1 of [10], all these legs nN can be added to the manipulator
without disturbing the elliptic self-motion E .1 Moreover, the two lines g1 and G1 are
skew (≈ n1 ⊥= N1), as the projectivity of s onto itself is elliptic. As a consequence,
the one-parametric set R1 of lines [n,N] is a regulus of a regular ruled quadric
Φ1. Due to the results of Henrici and Schur, we can even add arbitrary lines of the
associated regulus R×1 to the mechanism without restricting the elliptic self-motion
E . Note, that the lines g1 and G1 also belong to R×1 .

Clearly, analogous considerations for gi ,Gi yield the corresponding results for
the reguli Ri ,R×i of the regular ruled quadric Φi for i = 2, 3.

4.2 Planar Intersection of Φ1

In the general case the planar intersection ofΦ1 is a conic section. But, if we assume
that the plane Δ contains the line s = sΨ , which belongs to the regulus R1, then
the conic degenerates into two distinct lines, which are s = sΨ itself and a line Gξ

1
which belongs to the associated regulus R×1 . Note, that Δ is the tangent plane of Φ1
in the intersection point of s = sΨ and Gξ

1, which is denoted by Nξ1.
Clearly, analogous considerations hold for the surfaces Φ2 and Φ3, which also

yield the points Nξ2 and Nξ3, respectively. Moreover, we introduce the notation Nξk+3
for the intersection point of Gξ

i and Gξ
j with pairwise distinct i, j, k ≡ {1, 2, 3}. For

these three points Nξ4,N
ξ
5,N

ξ
6 the following statement holds:

Lemma 4.1 The points Nξ4,N
ξ
5,N

ξ
6 are pairwise distinct and do not belong to s =

sΨ . Moreover, Nξ4,N
ξ
5,N

ξ
6 are not collinear.

Proof The point Nξk+3 is located on the line [nk+3,Nk+3], which belongs to the
reguli Ri and R j for pairwise distinct i, j, k ≡ {1, 2, 3}. Therefore, these three lines
[n4,N4], [n5,N5], [n6,N6] are pairwise skew and not located within the platform
Θm. As a consequence, the points Nξ4,N

ξ
5,N

ξ
6 are pairwise distinct and not located

on s = sΨ .
Now, we prove the second part of this lemma by contradiction. We assume that

Nξ4,N
ξ
5,N

ξ
6 are located on a line L (cf. Fig. 3a). We denote the intersection point of

L and s = sΨ by o. It should be noted, that o = Nξ1 = Nξ2 = Nξ3 holds. Moreover,
L belongs to the associated regulus R×4 of the regular ruled quadric Φ4 defined by
the regulus R4, which is spanned by the pairwise skew lines [n4,N4], [n5,N5] and
[n6,N6]. Now, the unique line of R4 through o has to be s = sΨ , as otherwise this
point has to be a fixed point of the projectivity of s onto itself, which contradicts the
definition of an elliptic self-motion. Therefore, the intersection ofΦ4 with Θm has to
consist of s = sΨ and a second line containing the points n4,n5,n6, which already
contradicts our assumptions of Section 4.1. �

1 Note, that this can also be concluded as follows: As the cross ratio is invariant under projectivities
the relation C R(n1,n5,n6,n) = C R(N1,N5,N6,N) holds. Then Theorem3.2 yields the results.
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Fig. 3 a Sketch for the proof of the second part of Lemma 4.1. b Sketch of the construction for the
special choice of the plane Δ

4.3 Concluding the Proof

In order to verify Conjecture 2.1, we need one more lemma, which is given below:

Lemma 4.2 There exists a non-singular projectivity Ψξ with niΨ
ξ = Nξi for i =

1, . . . , 6. Therefore, the manipulator with platform anchor points n1, . . . ,n6 and
base anchor points Nξ1, . . . ,N

ξ
6 is also a planar projective SG platform with an

elliptic self-motion Eξ.
Proof Due to Lemma 4.1 the points Nξ1,N

ξ
2,N

ξ
4,N

ξ
5 always form a quadrangle.

Therefore, the mapping ni ◦≤ Nξi for i = 1, 2, 4, 5 uniquely defines a regular
projectivity Ψξ. It can easily be seen by the collinearity properties of the anchor
points, that also n3Ψ

ξ = Nξ3 and n6Ψ
ξ = Nξ6 hold.

Moreover, the elliptic self-motion E of the manipulator with platform anchor
points n1, . . . ,n6 and base anchor points N1, . . . ,N6 is transmitted by the motion of
the reguli R1,R2,R3 onto the manipulator with platform anchor points n1, . . . ,n6
and base anchor points Nξ1, . . . ,N

ξ
6. This resulting self-motion denoted by Eξ has to

be elliptic, as a fixed point of the restriction of Ψξ on s = sΨξ also has to be a fixed
point of the restriction of Ψ on s = sΨ . As this would contradict our assumption that
E is an elliptic self-motion, we are done. �

Now the proof of the conjecture can be closed by giving the construction for a
special choice of the plane Δ (cf. Fig. 3b):

We consider any finite point S ≡ s = sΨ . This point spans together with the ideal
points f ≡ Θm and F ≡ ΘM (cf. Section 2.1) the plane β.2 Now we intersect β with a
plane γ, which contains S and is orthogonal to the direction f. We denote the line of
intersection by t. Then we chose Δ as the plane spanned by s = sΨ and t.

Due to Lemma 4.2, the resulting planar projective SG platform with platform
anchor points n1, . . . ,n6 and base anchor points Nξ1, . . . ,N

ξ
6 possesses an elliptic

2 Note, that f ≡ s or F ≡ sΨ cannot hold as this yields f = F, a contradiction.
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self-motion Eξ. According to the given construction, fΨξ equals the ideal point of
t and therefore Eξ is orthogonal. As planar projective SG platforms with such a
self-motion do not exist (cf. Theorem 2.1), we end up with a contradiction. �

5 Conclusion

In this paper, we identified that the method based on the interaction of geometry and
symbolic computation, which was used to prove Theorem 2.1, fails for solving the
generalized problem formulated in Conjecture 2.1, due to the resulting computational
complexity. By pure geometric reasonings, based on some historical results, we were
able to verify Conjecture 2.1 by reducing the problem to the already solved one given
in Theorem 2.1. This is a prime example for the fact that geometry is essential for
solving advanced problems within the field of computational kinematics.

As the proof of Conjecture 2.1 also closes the study of planar projective SG plat-
forms with self-motions, we can give the following main theorem under consideration
of the results achieved in [10]:

Theorem 5.1 A planar projective SG platform, which is not architecturally singular,
can only have a self-motion if the projectivity is an affinity a+Ax, where the singular
values s1 and s2 of the 2 × 2 transformation matrix A with 0 < s1 ≤ s2 fulfill the
condition s1 ≤ 1 ≤ s2. All one-parametric self-motions of these manipulators are
circular translations. Moreover, the self-motion is a two-dimensional translation, if
and only if, the platform and the base are congruent and all legs have equal length.
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Direct Geometrico-Static Problem
of Underconstrained Cable-Driven Parallel
Robots with Five Cables

Ghasem Abbasnejad and Marco Carricato

Abstract The direct geometrico-static problem of cable-driven parallel robots with
five cables is presented. The study provides procedures for the identification of all
equilibrium poses of the end-effector when cable lengths are assigned. A least-degree
univariate polynomial in the ideal governing the problem is obtained, thus showing
that the latter has 140 solutions in the complex field. By a continuation technique,
an upper bound on the number of real solutions is estimated. An algorithm based on
parameter homotopy continuation is developed for the efficient computation of the
whole solution set, including equilibrium poses with slack cables.

Keywords Cable-driven robots · Underconstrained robots · Kinematics · Statics.

1 Introduction

Cable-driven parallel robots (CDPRs) use cables instead of rigid-body legs to control
the end-effector (EE) pose. CDPRs are underconstrained when the number of cables
in tension (namely, active) is smaller than the number of degrees of freedom that
the EE possesses with respect to the base. In this case, only some freedoms may be
controlled, and the EE configuration depends on the applied forces, e.g. gravity [13].
The displacement analysis of these robots requires the simultaneous solution of both
loop-closure and equilibrium equations. As a consequence, the direct geometrico-
static problem (DGP), which aims at finding all equilibrium poses of the EE when
cable lengths are assigned, is especially challenging [10, 12].

When the cable lengths of a CDPR with n cables, n ◦ 6, are assigned as inputs,
the number of active cables at the equilibrium is, a priori, unknown. Indeed, the EE
may reach an equilibrium pose with one or more cables being slack. Since multiple
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stable configurations may exist, possibly characterized by different numbers of taut
cables, the robot may switch between them because of inertia forces or external
disturbances. Accordingly, the computation of the whole solution set for a given
DGP is essential for robust trajectory planning.

The authors have solved so far the DGP of robots with two, three and four active
cables [3–5]. These problems were proven to admit 24, 156 and 216 solutions in the
complex field, respectively. The DGP of a CDPR suspended by 6 cables admits 40
solutions, since it is equivalent to the forward displacement analysis of the Gough
platform [11]. The present contribution shows that the DGP of a CDPR with 5 active
cables admits 140 solutions in the complex field, and it also estimates an upper
bound on the number of real configurations. Parameter homotopy continuation is
used to develop an efficient algorithm to determine the whole solution set. The
results reported in the paper complete the authors’ study concerning the DGP of
underconstrained CDPRs with generic geometry.

2 Geometrico-Static Model

The EE is connected to a fixed base by five cables, which are modeled as inextensible
and massless (Fig. 1). The i th cable, i = 1, . . . , 5, is assigned length ρi , it exits from
the base at point Ai , and it is connected to the EE at point Bi . A is a fixed Cartesian
coordinate frame with origin at A1, and B is a Cartesian frame attached to the EE
at point G. The EE pose is described by XT = [gT ;ΦT ], where gT = [x, y, z]T is
the position of G in A, and ΦT = [e1, e2, e3]T is the array grouping the Rodrigues
parameters parameterizing the EE orientation with respect to A. The EE is acted
upon by force QLe, where Q is a constant magnitude and Le is the normalized
Plücker vector of the force line of action, passing through G and parallel to direction
k, without loss of generality. The normalized Plücker vector of line Ai Bi is Li/ρi ,
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Fig. 1 A CDPR with four cables: geometric model (a) and static model (b)
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where LT
i =

⎧
(Ai − Bi )

T ; {(Ai − A1)× (Ai − Bi )}T
⎪
. If τi is the intensity of the

cable tensile force, the wrench exerted by the i th cable on the EE is (τi/ρi )Li , and
static equilibrium may be expressed as

5⎛

i=1

τi

ρi
Li + QLe =

⎧L1 L2 L3 L4 L5 Le
⎪

⎝ ⎞⎠ ⎜
M

⎟

⎦⎦⎦⎦⎦
⎦


(τ1/ρ1)

(τ2/ρ2)

(τ3/ρ3)

(τ4/ρ4)

(τ5/ρ5)

Q







= 0. (1)

If all cables are active, the following five geometrical constraints must be satisfied:

qi := ||Ai − Bi ||2 − ρ2
i = 0, i = 1, . . . , 5, (2)

Equations (1) and (2) amount to 11 scalar relations in 11 variables, namely X and
τi , i = 1, . . . , 5. Following Ref. [5], cable tensions may be eliminated from the set
of unknowns by observing that Eq. (1) holds only if

p := det M = 0, (3)

which is a purely geometrical condition, since M only depends on X. Equations (2)
and (3) amount to six relations in six pose coordinates. Polynomials q1, . . . , q5 in
Eq. (2) have degree 4 in X, whereas polynomial p in Eq. (3) has degree 9 in X. The
0-dimensional variety V of the ideal ≤J ≡ generated by the set J = {q1, . . . , q5, p}
yields the solutions of the DGP at hand.

3 Problem-Solving Algorithm

Like in the studies concerning the DGP of robots suspended by two, three and four
cables [3–5], a formal proof about the number of solutions contained in V is provided
by implementing an elimination procedure based on Groebner bases and Sylvester
dialytic method. Then, a numerical algorithm based on homotopy continuation is
presented to compute the solution set in an efficient way.

3.1 The Elimination Approach

In order to ease numeric computation via a computer algebra system, namely the
GroebnerPackage provided within the software Maple15, all geometric para-
meters of the robot are assigned generic rational values. Accordingly, ≤J ≡ ≈ Q[X],
where Q[X] is the set of all polynomials in X with coefficients in Q. All Groebner
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bases are computed with respect to graded reverse lexicographic monomial orders
(grevlex, in brief), which provide the most efficient calculations. In general, a Groeb-
ner basis G[J ] of ≤J ≡ with respect to grevlex(X), with variables ordered so that
z> y> x > e1> e2> e3, may be computed in a fairly expedited way. For instance,
for the robot reported in Table 1, Maple computes G[J ] in roughly 3.3 min, on a
PC with a 2.67 GHz Intel Xeon processor and 4 GB of RAM.

Once G[J ] is known, the normal set N[J ] of ≤J ≡, i.e. the set of all monomials that
are not multiples of any leading monomial in G[J ], may be easily computed. Since
N[J ] comprises 140 monomials, this is also the number of complex roots in V and,
thus, the order of the least-degree univariate polynomials of ≤J ≡ [14]. Any one of
these polynomials may be computed by the hybrid approach proposed in [3], based
on the cooperative use of the FGLM algorithm [9] and a dialytic procedure similar
to that presented in [7].

If Xl is a list of l variables in X and X\Xl is the relative complement of Xl in X,
a monomial order >l on Q[X] is of l-elimination type provided that any monomial
involving a variable in Xl is greater than any monomial in Q[X\Xl ]. If G>l [J ] is
a Groebner basis of ≤J ≡ with respect to >l , then G[Jl ] := G>l [J ] ⊥ Q[X\Xl ] is a
basis of the lth elimination ideal ≤Jl≡ := ≤J ≡ ⊥Q[X\Xl ] [6]. The FGLM algorithm
may be conveniently used to convert G[J ] from grevlex (X) to>l , so that G[Jl ]may
be readily isolated from G>l [J ]. In particular, the FGLM algorithm may be used to
compute the Groebner basis G[J3] of ≤J3≡, where the latter is the set of polynomials
of ≤J ≡ that contain monomials in e1, e2 and e3 only. Eliminating more unknowns by
the FGLM algorithm is not convenient, since memory usage and computation time
exponentially increase with l. A more efficient alternative emerges by computing a
Sylvester-type eliminant matrix from the polynomials of G[J3]. Since G[J3] com-
prises 31 polynomials and 31 monomials in e1 and e2, if e3 is assigned the role of
‘hidden’ variable, the generators of G[J3] may be set up as

T (e3)E = 0, (4)

where T(e3) is a 31× 31 matrix polynomial in e3, and E is a vector grouping the 31
monomials in G[J3] with variables in {e1, e2}. As expected, letting the determinant
of T(e3) vanish yields a spurious-root-free polynomial of degree 140 in e3.

Sylvester dialytic elimination may be applied to the Groebner basis of any elimi-
nation ideal ≤Jl≡ of ≤J ≡. However, the smaller l, the higher the order of the eliminant
matrix, and the more onerous the expansion of its determinant. Accordingly, the
fewer variables are eliminated by the FGLM algorithm, the smaller the computa-
tion burden of the FGLM step, but the more demanding the Sylvester elimination.
Numerical experimentation seems to indicate that the elimination of x , y and z by the
FGLM algorithm, and successively of e1 and e2 by a dialytic step, provides the best
compromise. The Maple implementation of the above procedure is able to com-
pute the univariate polynomial in e3 for the example reported in Table 1 in roughly
610 min, which is a substantial achievement for a polynomial of order 140.
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3.2 Numerical Computation of the Solution Set

The univariate polynomial obtained in Sect. 3.1 is important under a theoretical
viewpoint, but it has a too high degree for a practical use. For the numerical calculation
of the solution set, homotopy continuation provides a more robust and efficient
alternative. In this perspective, the complexity and degree of polynomial p in Eq. (3)
are a disadvantage, since they slow down computation and cause stability problems
(cf. [4]). For this reason, the formulation of static equilibrium via Eq. (1) and a new
parametrization of the EE pose are preferable.

Without loss of generality, unit vectors u, v and w of the coordinates axes of
B may be chosen so that u is directed from G to B1, v lies in plane G B1 B2, and
w = u × v. If [u]A = [u1, u2, u3] and [v]A = [v1, v2, v3] are the projections of u
and v in the fixed frame, the platform pose may be written as a function of the nine
variables x , y, z, u1, u2, u3, v1, v2, and v3, which must satisfy the conditions

q6 := uT u− 1 = 0, q7 := vT v − 1 = 0, q8 := uT v = 0. (5)

Equations (1), (2) and (5) form a system I of 14 scalar equations in 14 variables, i.e.

Y = [x, y, z, u1, u2, u3, v1, v2, v3, τ1, τ2, τ3, τ4, τ5]T . (6)

Though I involves more variables and more equations than J , it comprises sim-
pler lower-order polynomials, which are stabler when homotopy continuation is
implemented, thus leading to a faster computation. In particular, polynomials q1
and q2 in Eq. (2) and q6, q7 and q8 in Eq. (5) have degree 2 in Y; q3, q4 and q5
in Eq. (2) have degree 4 in Y; and all polynomials in Eq. (1) have degree 3 in Y.
On the basis of these degrees, the problem at hand may be cast into the larger fam-
ily of systems made up by five quadratic, six cubic and three quartic equations on
Y ∈ P

14. By counting solutions at infinity, a general member of this family has
a number of isolated roots equal to the minimal multi-homogeneous Bezout num-
ber [14]. This is also the number of paths tracked by the homotopy-continuation
software used in this paper, i.e. Bertini [2]. By searching all possible multi-
homogenizations, the minimal Bezout number emerges when Y is partitioned as
[{x, y, z, u1, u2, u3}, {v1, v2, v3}, {τ1, τ2, τ3, τ4, τ5}], and it is equal to 11, 520.

When the isolated roots of the DGP of a generic robot are known, parameter-
homotopy continuation [14] may be used to find the solutions for any other DGP of
the same kind, in an efficient way. Since the coefficients of the equations in I are
continuous functions of the geometric parameters P of the robot, a continuous path
through parameter space determines a continuous evolution of the coefficients and,
generally, continuous paths for the solutions as well. Accordingly, if the 140 isolated
roots of I are known for a generic P = P0, the solutions for any other P may be
found by tracking the homotopy

I (Y, (1− t)P0 + tP) = 0, (7)
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Table 1 Real equilibrium configurations with nonnegative cable tensions of a five-cable robot with:
a1 = [0, 0, 0], a2 = [1, 2,−0.75], a3 = [3.5, 1, 1], a4 = [3.25,−1, 1], a5 = [1,−2,−0.5],b1 =
[−1, 0,−1],b2 = [−0.5, 1,−1.25],b3 = [0.75, 0.75,−1.25],b4 = [0.5,−0.75,−1.25],b5 =
[−0.25,−0.8,−1.5], (ρ1, ρ2, ρ3, ρ4, ρ5) = (4.5, 5, 3, 3.75, 4.75), Q = 10 and k = [0, 0, 1]
No. (x, y, z) (e1, e2, e3) (τ1, τ2, τ3, τ4, τ5) Hr

1 1.4589,−1.2145, 2.4744 30.8167, 76.5978,−18.4146 1.73, 0.66, 0.62, 1.72, 6.44, <
2 1.4441,−1.3000, 2.4723 14.9565, 39.3587,−10.5282 2.85, 0, 0.03, 2.75, 5.75, <

3 1.4227,−1.2821, 2.4725 19.3442, 45.2411,−12.2058 2.87, 0.10, 0, 2.70, 5.72, <

4 1.2273,−0.1010, 1.8629 30.4252,−1.1058,−3.3465 0, 5.27, 0.99, 0, 6.37, <>

5 2.3443, 1.0649, 2.1627 4.5139, 5.2434, 1.4044 0, 6.95, 3.15, 1.97, 0, <>

6 1.4384,−1.2969, 2.4722 15.5535, 39.7125,−10.6817 2.91, 0, 0, 2.78, 5.71, <

7 2.4803, 0.5613, 1.8416 53.8079,−123.9777,−16.1938 5.78, 0, 7.44, 0, 1.20, <>

8 2.1463, 0.2983, 5.3178 −0.1057, 0.0133,−0.0550 3.18, 0, 5.48, 0, 1.65, >

9 2.2516, 0.3107, 4.0816 −0.0967,−0.5150, 15.2829 4.75, 0, 6.96, 0, 3.96, <>

10 2.6647, 1.2853, 2.0725 7.4388, 42.2955, 13.4023 0.61, 5.33, 5.77, 0, 0, <>

11 2.5662,−0.1206, 1.4236 35.9962,−26.9853, 3.5481 0, 0, 7.04, 0, 8.28, <>

12 1.0000,−0.0768, 1.8522 19.0651, 1.5022,−2.5059 0, 6.27, 0, 0, 6.21, <>

13 2.6694, 1.3323, 2.0672 5.7677, 19.8499, 6.4974 0, 5.94, 5.60, 0, 0, <>

14 2.4243, 0.6927, 1.8269 −19.0280, 57.3828, 10.2733 7.05, 0, 7.66, 0, 0, <>

with t varying from 0 to 1 or, more robustly, along the curve t = γ t ⇒/
⎧
1+ (γ − 1)t ⇒

⎪
,

with t ⇒ ∈ [0, 1] and γ ∈ C. In this case, only 140 paths need to be tracked, and
paths corresponding to solutions at infinity are avoided. By this approach, Bertini
converges to the solutions of the example reported in Table 1 in roughly 4.28 min
(with the default settings). Among these solutions, only two are real, and only one
has positive tension in all cables. The latter solution is listed in row 1 of Table 1.

3.3 Maximum Number of Real-Valued Solutions

The DGP of a CDPR suspended by five cables has 140 solutions in the complex field.
However, since some roots may remain complex no matter how robot parameters are
varied, the maximal number of real solutions may be smaller than 140. Determining
a tight bound for this count is a challenging task. By a continuation procedure orig-
inally proposed by Dietmaier [8], and recently adapted by the authors to the DGP
of underconstrained CDPRs [1], several sets of geometric parameters for which the
DGP provides at the most 74 real configurations have been found so far. An example
is as follows: a2 = [1.44417, 0, 1.20333], a3 = [0.302415, 1.26206, 0.55533], a4 =
[−0.711127, 0.808726, 0.810451], a5 = [0.749568, 0.761578,−0.469085], b1 =
[2.16169, 0, 0], b2 = [−0.125711, 0, 1.32615], b3 = [−0.412791, 0.0211425,
0.449869], b4 = [−0.16265,−0.468249,−0.399945], b5 = [1.59653, 1.31446,
0.96224], (ρ1, ρ2, ρ3, ρ4, ρ5) = (2.46449, 1.99586, 1.20622, 1.42395, 2.4302).
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4 Equilibrium Configurations with Unloaded Cables

When cable lengths are assigned as inputs, nothing ensures, a priori, that when the
EE reaches its stable equilibrium pose all cables are in tension, since configurations
may exist in which the EE is supported by only m cables, with m ◦ 5 and 5 − m
cables being slack. Accordingly, the overall solution set emerges by solving the DGP
for all possible constraint sets {∩ A j − B j ∩= ρ j , j ∈W}, with W ⊆ {1, 2, 3, 4, 5}
and card(W) ◦ 5. Clearly, when the kth cable is slack, the distance ∩ Ak − Bk ∩
cannot be greater than the assigned ρk . Hence, for any subset W , only the solutions
for which ∩ Ak − Bk ∩◦ ρk , for all k /∈W , must be retained. In general, for a robot
with five cables, 31 DGPs need to be solved, namely one DGP with five active cables,
five DGPs with four active cables, ten DGPs with three active cables, ten DGPs with
two active cables, and five DGPs with one active cable.

Table 1 shows the overall results for an exemplifying geometry. Due to space lim-
itations, only the real solutions with nonnegative tension in all cables are reported.
These comprise one configuration with five cables in tension (row 1), two config-
urations with four cables in tension (rows 2–3), seven configurations with three
cables in tension (rows 4–10), and four configurations with two cables in tension
(rows 11–14). Stability is assessed by means of a reduced Hessian matrix Hr , as
proposed in Ref. [5]. Symbols>,< and<> denote, respectively, a positive-definite,
a negative-definite and an indefinite matrix. A solution is stable when Hr is positive-
definite. For the case at hand, the robot has a single stable configuration, with three
cables in tension.

5 Conclusions

This paper studied the direct geometrico-static problem (DGP) of underconstrained
cable-driven parallel robot with five cables. The task consists in finding all equilib-
rium configurations that are compatible with the assigned cable lengths. Since the
equations governing the problem comprise both geometrical and static constraints,
the DGP is a challenging task.

A least-degree univariate polynomial was numerically obtained by an elimination
procedure, thus showing that 140 solutions exist in the complex field. A continuation
algorithm was then developed to identify a robot geometry leading to the highest
number of real equilibrium configurations. A bound of 74 real configurations was
estimated. After the solutions with nonnegative tension in all cables are sifted and
stability is considered, the number of feasible configurations decreases remarkably.

For the efficient computation of the whole solution set, including configurations
with slack cables, an algorithm based on parameter homotopy continuation was
developed. The algorithm is the foundation of the software DGP− Solver, which
is currently being developed by the authors to automatize the computation of all
equilibrium configurations of a CDPR with an arbitrary number of cables.
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Uniform and Efficient Exploration of State
Space Using Kinodynamic Sampling-Based
Planners

Rakhi Motwani, Mukesh Motwani and Frederick C. Harris Jr

Abstract Sampling based algorithms such as RRTs have laid down the foundation
for solving motion planning queries for systems with high number of degrees of
freedom and complex constraints. However, lack of balanced state-space exploration
of RRTs calls for further improvement of these algorithms. Factors such as drift,
underactuation, system dynamics and constraints, and the lack of an energy/time
based distance metric in state space can cause RRT propagation to be uneven. This
paper focuses on improving the coverage of the RRT algorithm for physical systems
that demonstrate a tendency to restrict the growth of RRT to certain regions of the
state space. A localized principal component analysis based approach is proposed to
learn the propagation bias of state-space points sampled on a grid during an offline
learning phase. To compensate for this bias, expansion of the RRT in real-time is
steered in the direction of the least principal component of the propagation of the
state-space sample selected for expansion. The algorithm is tested on various systems
with high degres of freedom and experimental results indicate improved and uniform
state-space coverage.
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1 Introduction

Motion planning algoirthms can be categorized as Exact planning methods, Analyti-
cal solutions, Numerical approaches, and Approximate methods [3]. Exact methods
[2, 13], Analytical solutions [11] and Approximate methods such as grid-based search
techniques [4] do not scale well beyond systems with few degrees of freedom while
Numerical approaches [1] converge to locally optimal solutions. Sampling-based
methods such as RRT [9], Expansive Spaces [6], and the PDST algorithm [8], also
fall under the category of approximate methods and are used for high dimensional
systems.

This paper presents a technique to improve one of the most widely used kinody-
namic sampling-based planners i.e. Rapidly exploring Random Trees (RRT) [9].RRT
is a popular planner for complex systems with geometric and differential contraints
due to its capability of quickly exploring high-dimensional state spaces through sam-
pling. The RRT algorithm makes use of an implicit Voronoi bias to evenly explore
the state space. However, this Voronoi bias is no longer available if there is no good
distance metric in the state space (that determines proximity of points in state-space
in terms of time, or energy) or if drift and other dynamic constraints introduce unde-
sired biases. For example, when using a Euclidean distance metric for systems such
as Acrobot and Lunar Lander, the RRT growth is restricted to certain regions of the
configuration-space, as illustrated by figures in Table 1. Uniform state space explo-
ration of RRT is desired as it reduces the time to find solution trajectories. Typically,
anRRT is grown for several thousand nodes for a system under consideration in order
to find a solution path. If balanced coverage can be obtained by a relatively smaller
sized tree, then we save computational cost and time.

The objective of the work presented here is to make improvements to the standard
RRT algorithm to result in a tree of similar or smaller size that spans the state-space
evenly. The focus of this paper is to address the issue of the lack of a good distance
metric for physical systems that incorporates the effects of system dynamics and
contraints when determining which states are closer. The contributions of this paper
are as follows. The proposed approach provides a uniform state-space coverage for
an RRT by computing the local exploration bias of the dynamic system at each point
in the discretized state-space, and using this information to guide the expansion of the
tree out of the biased region into least explored areas of the state-space. Experimental
results indicate improvement inRRT’s state-space exploration for systems that exhibit
a bias in coverage towards a specific direction in the state-space. However, it must
be noted that this technique is only effective in situations when RRTs fail to evenly
explore the state space. If RRT for systems grow uniformly in the state-space the
proposed approach does not contribute towards further improvement of the state-
space coverage. The contribution is unique in that no related work has employed
localized approaches to obtain balanced RRT exploration.
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2 Related Work

The research community has published a variery of algorithms [10] that enhance
the performance of standard RRT algorithm by proposing modifications to decrease
metric sensitivity, reduce the rate of failed expansion, control the sampling domain,
guide tree expansion using local reachability information, bias sampling distributions
to search in subspace of complete state space or goal region. There is limited literature
[5, 12] that addresses the exploration performance of sampling-based algorithms.
Li et al.’s [12] work focused on using principal component analysis(PCA) globally
to compensate for the undesirable biases introduced by a physical system’s dynamic
contraints on the exploration of an RRT algorithm. Their approach is composed of
two steps: (i) an offline learning procedure which constructs an RRT for the physical
system and executes a PCA on the entire tree to represent the principal directions
that the tree has expanded inside the task space; (ii) altering the propagation step
for RRT during the online operation by modifying the config-space coordinates of
the random state sample in each iteration towards directions in which the variance is
lower in the offline generated tree, and choosing the control which takes the system
closer to this modified version of the random state sample. As a result, growth of
the online tree is promoted towards the least explored direction in the task space.
This algorthm has only been tested on a Three-link Acrobot and Car-like systems,
and has motivated the authors of this paper to implement this technique on variety
of systems to compare it’s performance with the proposed algorithm.

Glassman and Tedrake’s [5] work is based on control theory to derive an approxi-
mation to the exact minimum-time distance pseudometric by adapting the minimum
time linear quadratic regulator (LQR) and it’s associated cost-to-go function for
affine systems. The proposed technique linearizes the system dynamics at the ran-
domly sampled state space point in the RRT framework and defines a cost function
based on time and effort which is used as the distance measure. The authors use a
finite horizon affine quadratic regulator to compute the optimal cost-to-go functions
of linearizations of the physical system for multiple time horizons to locally approx-
imate the optimal distance measure. The proposed affine quadratic regulator-based
(AQR) distance metric improves exploration of the state space of double integrator
and simple pendulum but proves to be ineffective as the systems’ nonlinearity and
complexity increases such as the cartpole and torque limited 2-link Acrobot. How-
ever, the local-PCA basedRRT approach presented in this paper focusses on complex
non-linear systems.

3 Approach

The proposed technique is comprised of two steps: (i) an offline step to learn the direc-
tion of propagation of state-space points sampled on a grid when system dynamics
are simulated at these points, and (ii) the alteration of the propagation step of basic
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RRT algorithm during the online construction of the tree. The offline step determines
the principal components of the direction of propagation of state-space points on a
grid of appropriate resolution, when numerous controls are applied to simulate the
system dynamics at that point. These principal components represent the different
propagation biases in different parts of the state-space. The online phase utilizes this
information during the propagation step of building an RRT to reposition the random
sample so as to compensate for the biases and even out the RRT’s overall exploration
of state-space. Henceforth, the proposed algorithm is referred to as LPCA-RRT.

Algorithm 1 Offline Step - Input: N, M, ◦t
for i = 1 to N do

x ≤ Sample_Grid_State();
u[] ≤ Sample_Random_Controls(M);
s[] ≤ Simulate_New_States(x, u[],◦t);
s≡[] ≤ Transform(x, s[]);
lpcax ≤ PCA(s≡

subset );
end for
Return lpca_grid

For the offline learning phase, state space points are sampled on a grid of appro-
priate resolution. Each sampled point represents a region, i.e. bin, in the state-space.
For each sampled state space point, the system dynamics are simulated for a specific
timestep for a certain amount of controls (i.e. between 50 and 250 depending on the
system) to derive a set of new states. The coordinates of the new states are trans-
formed such that the grid point serves as the new origin for these states. Principal
Component Analysis (PCA) [7] is executed on a subset of the state-space coordinates
of this set of new states. A subset of the state-space dimensions is considered for
computational feasibility and also due to the fact that coverage of configuration space
is desired as opposed to good coverage in state-space which comprises of derivates
of the configuration space parameters. This PCA is referred to as the local PCA and
is stored for each state-space point on the grid.

Algorithm 1 summarizes the offline step of the proposed approach, where N
represents the total number of states sampled on the grid. N is determined by the
grid bounds, grid resolution, and the dimension of state-space. M denotes the number
of controls. M varies from system to system and is experimented with values starting
from 50 going up to 50,000 at increments of 100 to determine at what value does
the local PCA converge. The algorithm returns local PCAs for points sampled on the
entire grid.

The pseudo-code for the online phase is provided in Algorithm 2. The basic
RRT algorithm is adapted from [9] where at each iteration a random state xrand

is sampled from the state space. For construction of the RRT, the node xnear on
the tree which is nearest to xrand is selected for expansion. A Euclidean distance
metric is used to determine the nearest neighbor along the tree. The coordinates of
xnear are evaluated to calculate the bin from the offline state-space grid that this node
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belongs to. The offline generated local PCA is then retrieved for the state xnear . Since
this local PCA is representative of a bin from the offline state-space grid therefore
it is only an approximate representation of the direction of propagation of the tree
from xnear . The configuration space coordinates of the randomly sampled state-space
point at the corresponding iteration of RRT are then modified to position the random
sample in the direction of the least significant components of this local PCA. The
controls that extend the tree from the selected node closer to the altered random
sample state are chosen for propagation of the tree thereby leading the RRT out of
the regions, where it would have originally been focussed, into unexplored areas of
the state space.

Algorithm 2 Online Step - Input: xinit , N , lpca_grid
T ree.init(xinit )
for i = 1 to N do

xrand ≤ Sample_Random_State();
xnear ≤ Determine_Nearest_Neighbor(xrand , T ree);
binxnear ≤ Evaluate_Bin(xnear , lpca_grid);
lpcaxnear ≤ Retrieve_PCA(binxnear , lpca_grid);
x ≡

rand ≤ Modify(inv(lpcaxnear ), xrand );
[xnew, xedge] ≤ Propagate(xnear , x ≡

rand );
T ree.V ertex_Add(xnew)
T ree.Edge_Add( xnear , xedge)

end for
Return T ree
Modify( inv(lpcaxnear ), xrand )
xad j ≤ inv(lpcaxnear ) ≈ xrand ;
for i = 1 to n do

x ≡(i)ad j ≤ l1
li

*x(i)ad j ;
end for
x ≡

rand ≤ lpcaxnear ≈ x ≡
ad j ;

Return x ≡
rand

The algorithm then propagates the selected node xnear by applying m random
controls to obtain new states. The closest new state to x ≡

rand , denoted by xnew, and
the corresponding control are selected for the expansion step of the algorithm.

4 Experiments

The algorithm was tested on various systems—Three-link Acrobot, Car-like system,
Cart Pole, Hovercraft, and Lunar Lander. The results were compared against the basic
RRT, and Li et al.’s algorithm henceforth referred to as GPCA-RRT. Performance
of these algorithms was measured in terms of the percentage of bins populated
by the generated tree on the discretized subset of state-space and execution time,
measured in seconds. Trees were grown for sizes spanning from 1000 to 20,000 nodes
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Table 1 Configuration-space coverage plots for trees grown for 20,000 nodes

and the performance results represent an average of ten test runs. The algorithms
were implemented in Octave 3.0.5 and executed on the UNR Research Grid. The
implementation stores RRT in an array and uses linear search for nearest neighbor
search, hence recorded processing times are higher. Therefore, the authors would like
to emphasize that this is just a proof-of-concept implementation. For GPCA-RRT,
the experiment used the global PCA of the standard RRT of the same size i.e. an RRT
was grown for N nodes, the global PCA was computed for this RRT and was used to
generate the GPCA-RRT of size N nodes. The figures in Table 1 display a projection
of the trees, plotted for various systems, in those configuration space parameters for
which the tree exploration was not uniform.

Three-Link Acrobot: The Acrobot was simulated in Passive-Active-Active mode
with torque applied at active joints. The angles θi are relative to the global reference
frame and do not correspond to the angles between consecutive links. As indicated by
Table 2,LPCA-RRToutperforms both algorithms by 15−20 % in terms of coverage at
the expense of spending an average of 2.5 % more in time. Moreover, it was observed

Table 2 Three-link Acrobot Results: (θ1, θ2, θ3) config-space is divided into 50 × 50 × 50 bins to
measure coverage

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 644 1691 2583 8536
time 28.61 203.41 510.59 28210

GPCA Populated bins 693 1893 2998 9800
time 28.70 202.97 510.98 28471

LPCA Populated bins 722 2015 3170 11285
time 32.82 209.44 519.30 29329
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that the tree generated by LPCA-RRT for 5000 nodes covered the config-space more
uniformly than RRT grown for 20,000 nodes.

Car-like System: LPCA-RRT causes the car to move straight with less turns as
in the case of RRT or GPCA-RRT. Results indicated that neither GPCA-RRT nor
LPCA-RRT provide an improvement in terms of coverage for this system. Results
for coverage have not been listed due to space contraints.

Cart Pole: Experiments on Cart Pole system showed that LPCA-RRT resulted
in an average improvement of 35 % in coverage with only 1 % increase in time to
grow the tree of same size. Space contraints prohibit the authors from sharing the
results. From the coverage plots in Table 2, it can be seen that the exploration of θ
space (plotted along y-axis) was improved for both LPCA-RRT and GPCA-RRT.

Hovercraft: LPCA-RRT demonstrated a uniform coverage of (x, y) space as
compared to RRT. GPCA-RRT tends to skew the growth of RRT towards the upward
left direction, which is the principal direction of variance represented by the global
PCA computed for the basic RRT algorithm. As per Table 3, coverage of LPCA-RRT
improved by an average of 25 % with an average of 1.5 % increase in time cost.

Lunar Lander: The system was simulated in Ascent mode. For RRT and
GPCA-RRT, the branches of the tree tend to grow downwards, however LPCA-RRT
promotes the growth of the tree sideways. Results from Table 4, show thatLPCA-RRT
provided an improvement in coverage by 25 % at the cost of 4 % increase in compu-
tational time.

Table 3 Hovercraft Results: (x, y, θ) config-space is divided into 50 × 50 × 50 bins to measure
coverage in terms of number of populated bins

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 530 1581 2588 9969
time 19.68 125.11 316.20 4001

GPCA Populated bins 477 1113 1772 9234
time 21.79 127.48 317.59 4261

LPCA Populated bins 568 1655 2704 9875
time 53.28 226.26 481.69 4944

Table 4 Lunar lander results: (x , y, θ) config-space is divided into 50 × 50 × 50 bins to measure
coverage

1000 nodes 3000 nodes 5000 nodes 20000 nodes

RRT Populated bins 361 1089.5 1483 5215
time 17.249 112.79 313.281 4231

GPCA Populated bins 323 1104 1773 6501
time 17.344 113.88 313.289 4247

LPCA Populated bins 555 1374 1800 6672
time 23.375 133.54 324.123 4398
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5 Conclusion

The proposed technique improves RRT exploration by learning the local effects of
constraints in a physical system during an offline phase and then counteracts these
effects that inhibit the uniform growth of the RRT during the online operation of RRT
by adapting the propagation step. This work executes PCA locally and enables better
approximation of the underlying non-linear bias by decomposing the state-space into
regions where the bias may be varying. The approach is tested on various systems and
experimental results demonstrate that this technique works on systems that exhibit
a consistent exploration bias regardless of the size of the tree, and that exploration
performance is improved by 15–35 % thereby reducing the cost of finding a solution
to specific motion planning queries. One key conclusion is that the algorithm is
only effective in scenarios where the standard RRT algorithm fails to uniformly and
quickly explore the state-space, as seen in the case of Car-like system. Overall, this
technique compensates for the lack of good distance metric in the state-space and
can be adopted by various sampling-based planning algorithms.

Acknowledgments The authors would like to thank their colleagues Yanbo Li and Kostas Bekris
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Shape Modeling of Continuous-Curvature
Continuum Robots

Shaoping Bai

Abstract An essential problem in developing concentric-tube continuum robots is
to determine the shape of the robot, which is dependent on robot structure and external
load. A comprehensive model that takes into considerations of influencing factors
is hence required. In this work, the shape modeling of a type of concentric-tube
continuum robot built with a collection of super-elastic NiTiNol tubes is studied.
The model, developed on the basis of differential geometry and curved beam theory,
is able to determine both the bending deflection and torsional deformation for a
continuum robot of continuous curvature. Simulation results for calculating the shape
of a continuum robot built with NiTiNol tubes are included.

Keywords Flexible manipulators ·Continuous-curvature continuum robots ·Shape
modeling · NiTiNol tubes

1 Introduction

Continuum robots encompass new principles of robot inspired by the nature. A
continuum robot is a robot that is able to deform continuously, similar to their coun-
terparts in nature such as snakes, elephant trunks or octopus arms. The continuum
robots are able to move in any direction, both laterally and axially, or even ‘turning
corner’. Contrary to traditional robots built with rigid links, a continuum robot is
constructed with a collection of flexible structures which allow them deform locally
to generate desired motion.

The continuum robots can be built with different principles, as seen in some
prototypes including multi-sectional pneumatic actuating robot Air-Octor [1], fluid-
driven Octpus Arm [2], tendon-driven robots [3], among others. Of these robots,
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robots with concentric tubes of NiTiNol (Nickel-Titanium) alloy are more promis-
ing for applications where a super mobility in a confined space is critical, such as
the robotic minimally invasive surgery, due to the relative simple structure, com-
pact size (diameters can be as small as a few millimeters), and bio compatibility to
human tissues. A number of modeling works on continuum robots were reported
[4–6]. The models were mainly developed on the basis of Cosserat rod with either
energy approach or variational methods [7, 8]. An approach of including torsion
was proposed by Dupont et al. in [9]. In most works, shape models were derived by
assuming piecewise-constant curvatures.

In this work, the problem of shape modeling for continuum robots built with
concentric tubes is addressed, focusing on the geometrically exact model of the robot
shape. In this modeling work, both the bending deflection and torsional deformation
are considered. As the shape model is derived on the basis of continuous curvatures,
a more comprehensive and accurate model for the continuum robot can be obtained,
compared with the piecewise constant curvature approach. Simulations were carried
out to demonstrate the application of the model.

The paper is organized as follows. Section 2 describes the geometry of a spatial
curve and a single tube, upon which the equilibrium condition of a two-tube assem-
bly is established. The shape modeling of continuum robots is presented in Sect. 3.
Simulation results are reported in Sect. 4. The work is concluded in Sect. 5.

2 Model of a Single Spatial Tube

A continuum robot can be built with multiple sessions of concentric tubes, as demon-
strated in Fig. 1, which can be considered as a combination of several sections serially
connected. In each session, two tubes of different diameters are assembled with vari-
able configuration and thus build the desired shape. The shape modeling of continuum
robots can thus be built on the shape calculation of a single tube.

Fig. 1 A continuum robot
built with multiple sessions of
concentric tubes
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Fig. 2 A spatial curve and
its associated Frenet-Serret
frame

2.1 Geometry of a Spatial Curve

A space curve C can be expressed as a function of arc length s, i.e., C : r = r(s), s ◦
R. At any point s, the derivative of the function r(s) with respect to s is equal to
the tangential vector of the curve, i.e. t = dr/ds, as shown in Fig. 2. Together with
the normal vector n at s, and a third vector b = t × n, the Frenet-Serret frame, or
F-S frame in short, is fully established. The shape function of a space curve can be
described by the Frenet-Serret equation [10] in matrix form

T≤ = T⎧κ; ⎧κ =
⎪

⎛
0 −τ κ
τ 0 0
−κ 0 0

⎝

⎞ (1)

where T = [n,b, t] and κ = [0, κ, τ ]T is a vector of curvatures. Here, and in
the balance of the paper, the prime symbol denotes the derivative with respect to arc
length s, and⎧κ is the cross-product matrix (a skew-symmetric matrix) of the vector κ .

The F-S frame is unique, which satisfies the Frenet-Serret equation and describes
entirely the curve shape. For a continuum tube, however, the material twist at a cross-
section has to be described in order to determine the tube’s torsional deformation.
In light of this, a frame along the center line has to describe the twist of the tube,
in addition to the shape of the curve. In another words, a frame attached to the tube
but different from the F-S frame is required. In this case, the vector of curvatures
will be transformed due the change of the reference (view) frame, as shown in the
following.

Let the F-S frame be noted as T corresponding to an orientation matrix T. Assume
there is another reference frame F of orientation matrix F. The transformation from
T to F is described by F = RT, where R is a rotation matrix. Let the vector of
curvatures be λwhen the curve is viewed from the reference frame F . The following
relationship between λ and κ can be found
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RT κ + ω = λ (2)

where ω is the relative ‘velocity’ of F frame with respect to the T frame. The
alternative reference frame in this case is called an adapted frame.

A simple case is the adapted frame is obtained by rotating the F-S frame about
t for an angle of α. Letting the new frame is noted by three orthogonal unit vectors
{x, y, z} and z is parallel to t, Eq. (2) becomes

Rz(α)
T κ + α≤ez = λ (3)

where Rz(α) is the matrix of rotation about z-axis. It can be known from Eq. (3) that
a curve of curvature of κ and torsional rate τ , when viewed in an adapted frame, has
a vector of curvature κ = [κ sin α, κ cosα, τ + α≤]T .

2.2 Equilibrium Equations

When a tube is subject to forces, an equilibrium condition is established after defor-
mation. Refer to Fig. 3 where a small piece of a spatial rod is shown, the equation of
moment equilibrium is derived as

dm+ ezds × f = 0 (4)

where ez = [0, 0, 1]T . Noting that m in this equation is expressed in a moving
adapted frame, care has to be given to both the variation of the vector and the frame
as well. That means

dm = m≤ds + κ ×mds (5)

Finally, we have
m≤ + κ ×m+ ez × f = 0 (6)

The second term in the left-hand side of Eq. (6) accounts for the effect of the tube’s
torsion. Likewise, the force equilibrium equation is found as

f ≤ + κ × f = 0 (7)

Assume the rod deflection is subject to the linear elasticity theory and the axial
extension can be ignored, we could concern about only the moment equilibrium
equation. In this regard, the constitutive equation for the space rod subject to bending
and torsional moments is

m(s) = K(κ(s)− κ̄), with K =
⎪

⎛
kx 0 0
0 ky 0
0 0 kz

⎝

⎞ =
⎪

⎛
E I 0 0
0 E I 0
0 0 G J

⎝

⎞ (8)
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α
θ

(a) (b)

Fig. 3 Equilibrium condition, a a small piece of single spatial curved rod, b an assembly of two
concentric tubes

where κ̄ = [κ̄x , κ̄y, τ̄ ]T is the vector of initial curvature of the tube. E and G are the
material’s elastic (Young) and shear modulus, while I and J are the area and polar
moment of inertia at a cross section, respectively.

3 Shape Modeling of Assembled Tubes

When two tubes are assembled, they build a constrained mechanical system. To
describe the deformation of each tube, local frames are established on each tube,
which are able to describe the shape of their centerline and also the tube twist.
The two local (adapted) frames are only different in twist angle, as demonstrated in
Fig. 3b.

For each segment of the tube assembly, the internal moments are balanced, i.e.,

m1(s)+ Rz(α)m2(s) = 0 (9)

with
mi = Ki (κ i − κ̄ i ), i = 1, 2 (10)

In this case, κ i = [κi x , κiy, τi ]T , κ̄ i = [κ̄i x , κ̄iy, τ̄i ]T for i = 1, 2. Moreover, the
mechanical constraint implies that two tubes’ center lines superpose on each other,
with only difference in torsional twist. In other words, Eq. (3) has to be satisfied:

Rz(α)
T κ1(s)+ α≤ez = κ2(s) (11)

where α is the relative twist angle, as demonstrated in Fig. 3b, which is defined as
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α(s) = θ2(s)− θ1(s) (12)

where θi , i = 1, 2 is the twist angle of the i-th adapted frame measured with respect
to the F-S frame. Both Eqs. (9) and (11) are derived in a local frame. We rewrite
Eq. (11) as

κ1(s) = Rz(α)(κ2(s)− α≤ez) (13)

Substituting Eqs. (10) and (13) into (9) yields

K1(Rz(α)κ2 − α≤Rz(α)ez − κ̄1)+ Rz(α)K2(κ2 − κ̄2) = 0 (14)

Noting that a special identity K1Rz(α) = Rz(α)K1 exists for the tubes, due to
the fact that the diagonal stiffness matrix K1 contains identical bending stiffness for
x– and y– directions, we finally obtain

κ2 = (K1 +K2)
−1(RT

z (α)K1κ̄1 +K2κ̄2 + α≤K1ez) (15)

Obviously, the shape of the tube assembly is fully determined if α and α≤ can be
solved. To this end, we first expand Eq. (15), which yields

κ2x = E1 I1κ̄1y sin α + E1 I1κ̄1x cosα + E2 I2κ̄2x

E1 I1 + E2 I2
(16)

κ2y = −E1 I1κ̄1x sin α + E1 I1κ̄1y cosα + E2 I2κ̄2y

E1 I1 + E2 I2
(17)

Recall that the third equation of Eq. (6) is about the twist of tubes, which can be
rewritten as

Gi Jiθ
≤≤
i + κi x Ei Ii (κiy − κ̄iy)− κiy Ei Ii (κi x − κ̄i x ) = 0, i = 1, 2 (18)

that is

θ ≤≤i =
Ei Ii

Gi Ji
(κi x κ̄iy − κiy κ̄i x ) (19)

Substituting Eqs. (16) and (17) into (19) and finally into equation

α≤≤(s) = θ ≤≤2 (s)− θ ≤≤1 (s) (20)

yields
α≤≤(s) = A cosα(s)+ B sin α(s) (21)

where
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Table 1 Physical and geometric parameters of tubes

Parameter Value Description

Physical E 5× 1010 Pa Young modulus
G 2.3× 1010 Pa Shear modulus

Geometric κ̄1, κ̄2 1/236, 1/294 [1/mm] Pre-curvatures of outer and inner tubes
l1, l2 200, 200 [mm] Tube length
d1(d2), t1(t2) 1.6(1.2), 0.2(0.2) [mm] Outer (inner) tube’s diameter and thickness

A = E1 I1 E2 I2(G1 J1 + G2 J2)

G1 J1G2 J2 (E1 I1 + E2 I2)
(κ̄1x κ̄2y − κ̄1y κ̄2x ) (22)

B = E1 I1 E2 I2(G1 J1 + G2 J2)

G1 J1G2 J2 (E1 I1 + E2 I2)
(κ̄1x κ̄2x + κ̄1y κ̄2y) (23)

Differential Eq. (21) can be solved with boundary conditions (BCs). For fixed-free
ends, the BCs are

α(0) = θ2(0)− θ1(0), α
≤(l) = 0 (24)

When a load is applied at the free end, the boundary conditions will change. The
loaded cases require further detailed formulation and will be discussed in a separate
paper.

The differential Eq. (21) is now ready to be solved with a numerical solver. With
the curvature and the changing rate of twist angle found, the tube-assembly’s shape
can be uniquely determined for any given initial configuration at the end s = 0.

4 Simulations

The continuum robot in this work is built with concentric tubes of NiTiNol (Nickel-
Titanium) alloys (NiTi SE 508). The outer tube has a diameter of 1.6 mm and thickness
of 0.2 mm, while the inner tube is 1.32 mm in diameter and 0.225 mm in thickness, as
listed in Table 1. The area and polar moments of inertia of the tubes can be calculated
with the tube geometric parameters.

The simulation result on torsional deformation was obtained, as shown in Fig. 4a.
The input angle refers to the relative twist angle α(s) at s = 0. If one tube is fixed
and the other is connected a motor, the input angle is equal to the motor’s rotation.
The measurement of torsional deformation reported in [11] is shown too in Fig. 4a
for comparison. It is seen that the two results are very close to each other.

The simulation results on the tube assembly’s shape were also obtained. One result
is displayed in Fig. 4b, where the pose of the tube-tip is shown together with a frame
at the tip to indicate the orientation. While the simulation was carried out for single
session of two-tube assembly, it could be extended to complicated configurations
where more sessions of tube assemblies connected serially to build a curve of desired
shape.
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(a) (b)

Fig. 4 Simulation results: a twist angle simulations (solid line) compared with measurements
(dots), b tube centerline changing with outer tube rotation. Red lines show the tube orientation

5 Conclusions

In this work, the shape modeling of a type of concentric-tube continuum robot was
developed for an assembly of super-elastic NiTiNol tubes. A new model was devel-
oped, in which both bending deformation and torsion are considered. The model
allows the calculation of the shape a tube assembly as a function of the parameters of
tubes and their relative angle. The model, developed for tubes of variable curvatures,
can be used in the continuum kinematic design and analysis.
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Dimensional Synthesis of a Spatial Orientation
3-DoF Parallel Manipulator by Characterizing
the Configuration Space

M. Urízar, V. Petuya, M. Diez and A. Hernández

Abstract In this paper the authors approach the dimensional synthesis of parallel
manipulators focusing on the evaluation of important entities belonging to the config-
uration space, such as workspace and joint space. In particular, 3-DoF manipulators
that can perform non-singular transitions are considered, illustrating the procedure
with a case study. The target is to search for designs that achieve the goals of adequate
size and shape of the workspace.

Keywords Parallel mechanisms · Configuration space · Dimensional synthesis

1 Introduction

In the design process of parallel manipulators several criteria have been presented in
the literature for evaluating which architecture is best. Designers often search for the
optimum design parameters such that certain important requirements are achieved.
From the kinematic point of view, optimal design methodologies are principally
focused on: workspace [2, 6, 8], kinematic performance indices [1, 3], task devel-
opment [7], etc. Features such as workspace and dexterity can be emphasized as two
significant considerations [1, 5], because parallel manipulators have relative smaller
workspaces and complex singularities compared to their serial counterparts.

The analysis of the singularity loci, together with the distribution of the Direct
Kinematic Problem (DKP) solutions over the workspace, has received a lot of atten-
tion during the last years. In this field, the phenomenon of assembly mode change,
also known as non-singular solution change, has been extensively studied [4, 10,
11]. It consists in analyzing how the transitions between different DKP solutions
can be made in a safety and controlled way. Manipulators presenting this ability can
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enlarge their range of motion, as they have access to all the regions associated with
the solutions involved in the transition. However, it must be emphasized that, usually,
not all the designs of the same manipulator own this ability.

In this paper, the dimensional synthesis of this type of manipulators is approached
by characterizing entities of the configuration space, such as workspace and joint
space. For three-degree-of-freedom parallel manipulators these entities that can be
represented in a three-dimensional space. So as to show the procedure the spatial
orientation 3-SPS-S parallel manipulator is used as an illustrative example. This
manipulator has a broad range of applications, such as: orienting a tool or a workpiece,
solar panels, space antennas, camera devices, human wrist prosthesis, haptic devices,
etc. The purpose is to analyze several designs, assessing the influence of the design
parameters on the resultant workspace and joint space. Then, the aim is to search for
the set of possible designs that best satisfy the requirements of size and shape of the
operational workspace.

2 Case Study: 3-SPS-S Parallel Manipulator

The spatial orientation 3-SPS-S parallel manipulator shown in Fig. 1a will be studied.
The 3-SPS-S manipulator is made up of a moving platform O B1 B2 B3, a base plat-
form O A1 A2 A3, and three extensible limbs denoted by li . Both platforms take the
form of a tetrahedron, connected one to each other by a fixed spherical joint at point
O . The robot has 3-DoF (ϕ, θ, ψ) defining the orientation of the moving platform.

With respect to the base platform, the fixed spherical joints Ai are located on
the principal axes of the fixed frame F {x, y, z} fulfilling |−−→O Ai | = R, for i =
1, 2, 3. Besides, the spherical joints Bi are located with respect to the moving frame

(a) (b)

Fig. 1 a Spatial 3-SPS-S parallel manipulator; b Design parameters of the moving platform
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M {u, v, w} (see Fig. 1b) such that:

Mb1 = L [0, 0, 1]T

Mb2 = L [b2u, 0, b2w]T

Mb3 = L [b3u, b3v, b3w]T (1)

where

b2u = cβ2; b2v = 0; b2w = sβ2 (2)

b3u = cβ3cγ3; b3v = cβ3sγ3; b3w = sβ3

The transformation from the moving frame M to the fixed frame F can be
achieved by a 3 × 3 rotation matrix F

MR defined by the three Euler angles. In this
case, the Euler angles (ϕ, θ, ψ) in their wvw version will be used.

The vector Fbi , or simply bi , expressed with respect to the fixed frame F is:

bi =
⎧
bix , biy, biz

⎪T =F
M RMbi (3)

On the other hand, the position vector of points Ai with respect to the fixed frame
F is ai =

⎧
aix , aiy, aiz

⎪T .
The loop-closure equation for each limb is li = bi − ai , which results in the

following system for i = 1, 2, 3:

l2
i = a2

i + b2
i − 2aT

i bi (4)

• Inverse Kinematic Problem: To solve the IKP, the Euler angles are established
(ϕ, θ, ψ) and the length of each limb li can be directly obtained from Eq. 4. Only
the positive solution yields a physical meaning.
• Direct Kinematic Problem: The DKP consists in solving the outputs (ϕ, θ, ψ)

once the three prismatic limb lengths are known. As demonstrated in [9] this
manipulator has a maximum of eight solutions to the DKP.

2.1 Velocity Problem

So as to solve the velocity problem the loop-closure equations are differentiated with
respect to time, obtaining:

ωp × bi = ωi × li + l̇i · si (5)

where si is defined as the unit vector directed from Ai to Bi . The moving platform
angular velocity is ωp, and ωi corresponds to the angular velocity of each limb li .
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Dot-premultiplying each term of the system (5) by li , the velocity equation expressed
in a matrix form is obtained as:

JDK P
⎛
ωp

⎝ = JI K P
⎛
l̇i
⎝

(6)

where

JDK P =
⎞

⎠
(b1 × l1)T

(b2 × l2)T

(b3 × l3)T

⎜

⎟ ; JI K P =
⎞

⎠
l1 0 0
0 l2 0
0 0 l3

⎜

⎟ (7)

The inverse Jacobian matrix, JI K P , is singular only whenever any of the prismatic
limbs has zero length, which cannot be achieved in practice. Besides, each limb has
only one associated working mode. Hence, we focus on the analysis of the DKP
singularity locus in the configuration space.

2.2 DKP Singularity Locus

The DKP singularity locus is obtained by computing the nullity of the determinant
of JDK P , which yields:

|JDK P | = −R3L3 · sθ · ξ (8)

where

ξ = c2ϕcθ(b2w(b3usψ + b3vcψ)− b3w(b2usψ))− c2ϕsθ(b3vb2u) (9)

+ c2ψsθ(b2ub3v)+ sθ(cψsψ(b2ub3u))− cθ(b2w(b3usψ + b3vcψ))

+ sϕcϕ(b2w(b3ucψ − b3vsψ)− b3wb2ucψ)

Expression |JDK P | factorizes into three terms:

• The constant R3L3 does not affect the shape of the DKP singularity locus. Para-
meters R and L define the size of the robot, and the minimum and maximum stroke
of the prismatic limbs. For the example under study, without loss of generality,
values R = 1 and L = 0.5 will be assigned.
• The second term corresponds to the function: sθ . So as to avoid the singularity

planes θ = 0 and θ = ±π , the interval θ ∈ (0, π) will be considered.
• Finally, from Eq. 9 yields the expression ξ . This function depends on the output

variables (ϕ, θ, ψ), and on the geometric parameters (β2, γ3, β3). Therefore, the
expression ξ will be assessed regarding the dimensional synthesis.



Dimensional Synthesis of a Spatial Orientation 3-DoF Parallel Manipulator 89

3 Dimensional Synthesis

Parameters (β2, γ3, β3) comprise the design parameters subject of study. Differ-
ent designs will be analyzed, representing and assessing workspace and joint space
entities.

• Case 1: Similar Platforms

The first case under study establishes a design of the moving platform such that it is
similar to the fixed base. For that, the geometric parameters are: β2 = β3 = 0 and
γ3 = 90◦. The expression of the DKP singularity locus, given by Eq. 9, yields:

ξ = sθ(cψ − cϕ)(cψ + cϕ) (10)

It is factorized into the function sθ , and the product of two planes. These planes
divide the workspace (ϕ, θ, ψ) into eight aspects, so Vcase1 = VT /8 being VT the
total volume. Each DKP solution lies inside each aspect, non-singular transitions
being not possible. This is corroborated with the non-existence of cusp points inside
any section of the joint space (see details in [9], Chap. 10).

• Case 2: Joints B2, B3 on uv-plane

The second case under study locates joints B2 and B3 on the uv-plane, such that
β2 = β3 = 0 and γ3 varies in the interval (0, 90◦). The DKP singularity locus
yields:

ξ = sθ [b3usψcψ + b3v(c
2ψ − c2ϕ)] (11)

Yet again, expression ξ factorizes into the function sθ , and a trigonometric expression
depending on outputs (ϕ,ψ) and coordinates b3u and b3v, function of the geometric
parameter γ3. Let us analyze a design included in Case 2, by assigning γ3 = 30◦.
The DKP singularity locus is represented in the workspace in Fig. 2a, the joint space
and its cross section for l1 = const being depicted in Fig. 2b. Contrary to Case 1,
only four aspects exist, so that the operational workspace is duplicated Vcase2 =
2Vcase1 = VT /4, because the robot can move between solutions located inside the
same aspect. This is in accordance with the existence of cusp points in joint space
sections, as shown in Fig. 2b.

Non-singular transitions can be performed between regions in the workspace
where different solutions lie, as for example regions 1 and 2 in the workspace section
of Fig. 2c. Though the size of the workspace is VT /4 for all designs in Case 2, its
shape varies. It is interesting to search for designs that yield a regular workspace, such
that the range of motion of the output variables maintains over the entire workspace.
As shown in Fig. 2c, the ratio H = h/r can be measured and serves as an indicator of
regularity. Its evolution depending on γ3 is represented in Fig. 2d. It can be observed
that small values of γ3 yield a more regular workspace (H ≈ 1). The extreme values
γ3 = 0 (planar moving platform) and γ3 = 90◦ constitute particular designs. On the
one hand, γ3 = 0 yields a degeneracy design for which the workspace is formed by
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(a) (b)

(c) (d)

Fig. 2 Case 2: DKP singularity locus in the a workspace, b joint space and c workspace section;
d Ratio of regularity H

planes (H = 1) and only 4 DKP solutions exist. Value γ3 = 90◦ coincides with Case
1, and verifies H = 0, no connection between different regions is possible.

• Case 3: General Design

The last case corresponds to a general design of the moving platform. For this case
the three dimensional parameters (β2, γ3, β3) can be assigned any value in the range
(0, 90◦). The singularity locus is given by expression ξ in Eq. (9), which is plotted in
the workspace and joint space in Fig. 3 for a specific design: β2 = 30◦, γ3 = 60◦ and
β3 = 30◦. Some sections of the joint space are also depicted in Fig. 3b, visualizing
the existence of cusp points.

These designs present two aspects, the holes of the singularity surface in the
workspace (Fig. 3a) allowing the connection between all solutions having the same
sign of |JDK P |. Consequently, the designs of Case 3 exhibit the maximum operational
workspace: Vcase3 = VT /2. Nevertheless, the shape that the singularity surface
acquires in the workspace, and in the joint space, is much more complex.

In this sense, similarly to Case 2, some indicators that characterize the shape of the
operational workspace can be implemented. Then, parameters (β2, γ3, β3) comprise
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(a) (b)

(d)(c)

Fig. 3 Case 3: DKP singularity locus in the a workspace and b joint space; Design parameter space
according to indicators (c) R1 and (d) R2

the design parameter space in which each point represents a possible design, and
has an associated value according to the indicator under evaluation. We propose two
indicators. The first, R1, evaluates the regularity, comparing the number of nodes
forming the DKP singularity curves among different sections of θi ∈ (0, π). The
second indicator, R2, assesses the quality of the curves in each θi section, penalizing
the designs for which the curves cover a larger region. The results are displayed in
Fig. 3c and d, the blue colored points indicate the geometric parameters corresponding
to optimum designs, and the red ones the worst (see details in [9]).

The optimum design parameter space can be computed by intersecting the opti-
mum values of both graphs in Fig. 3c and d. Then, any point belonging to the resultant
optimum space constitutes a valid design complying with the established require-
ments. For example, the following design: β2 = 15◦, γ3 = 10◦ and β3 = 20◦
is an optimum design with regular workspace, maintaining a similar pattern of the
singularity curves in different sections of the workspace.
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4 Conclusions

Dimensional synthesis of a spatial orientation manipulator has been approached,
focusing mainly on the configuration space entities. Analyzing different designs, it
has been shown that the ones capable of transitioning between solutions exhibit a
larger workspace. Not only the size of the operational workspace but the evaluation of
its shape has been also considered, representing the design parameter space according
to the different requirements. Then the designer can choose any point belonging to the
set of optimum values achieved. The proposed procedure is valid for 3-DoF planar
or spatial parallel manipulators that exhibit the transitioning ability.
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Self-Calibration of Redundantly Actuated PKM
Exploiting Kinematic Landmarks

Andreas Müller and Maurizio Ruggiu

Abstract A self-calibration method for redundantly actuated parallel manipulators
(RA-PKM) is proposed that uses motion reversal points (MRP) of actuators as kine-
matic calibration landmarks. The basic principle is to restrain a RA-PKM to 1 DOF
and detect the MRP of redundant actuators. The difference of measured MRP and
those deduced from a kinematic model embodies the calibration error. Therewith a
numerical adaptation scheme is introduced. Simulation results for a 3 DOF RA-PKM
confirm very high accuracy of the method.

Keywords Calibration · Parallel mechanisms · Redundant actuation · Singularities

1 Introduction

Kinematic calibrationaut]Müller, A. of robotic manipulators is commonly based on
theaut]Ruggiu, M. acquisition of redundant measurement data [4, 10, 13, 14]. Actu-
ator readings are compared with external end-effector (EE) measurements. The need
for external measurement devices makes the calibration expensive and prohibits sim-
ple repetition. Moreover, due to the external measurements, traditionally calibration
methods are inherently intrusive. In order to alleviate this intrusion several authors
[1, 5, 12, 15, 17] proposed to acquire redundant measurements by locking selected
joints of a parallel kinematics machine (PKM). Other schemes aiming at semiau-
tonomous calibration are reported in [16] and [20] where some passive joints are
equipped with sensors providing redundant sensor data without application of exter-
nal devices. A fully autonomous self-calibration method should not require additional
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sensors, externally or at passive joints. An import observation is that redundant actua-
tion implies sensor redundancy since it does not increase the DOF of a PKM but gives
rise to more encoder readings than necessary to position the PKM. It thus allows for
application of the traditional calibration methods as pursued in [18]. Other tailored
calibration methods were reported in [2, 19] exploiting the tracking error projected
to the null-space of the forward kinematics Jacobian. In this paper a calibration
method is proposed that follows a completely different approach. Instead of compar-
ing redundant sensor data the occurrence of kinematic landmarks is compared and
exploited for adaptation of the geometric machine parameters. These landmarks are
detected inherently by means of actuator measurements. The redundancy required
for calibration is thus achieved by the actuation redundancy. The simulations reveal a
high accuracy of the method. Throughout the paper configurations where the veloc-
ity of one actuator becomes zero, while the EE performs continuous motion, will be
called motion reversal points (MRP) of that actuator. δ denotes the manipulator’s
DOF. The vector summarizing the geometric model parameters is denoted π ◦ Π
where Π is a p-dimensional parameter space manifold.

2 Main Principle: Motion Reversal Points

Undoubtedly kinematic singularities are significant kinematic landmarks intrinsi-
cally related to the PKM geometry, and it shall be expected that this can be exploited
for the calibration purpose. A singularity-based calibration method was proposed for
a non-redundant planar 3-DOF PKM [6–8], and later applied [11] to the calibration
of a non-redundant spatial 3PRS PKM. The basic idea of that method is to detect
active input singularities [3] in the plant by measurements in the actuated joints as
well as in a parameterized kinematic model, and to adapt the geometric parame-
ters so that these singularities coincide. Active singularities are characterized by a
reversing motion, i.e. a zero velocity, of some actuator coordinates for a continuous
EE-motion. This allows to detect them without additional sensors.

The calibration scheme proposed in [6–8, 11] was originally developed for non-
redundantly actuated PKM. This poses the apparent problem that the PKM must be
steered into a critical configuration in which it is not fully restrained by means of the
actuators, and cannot be controlled safely. Moreover in these situations the actuator
may mutually interfere. To cope with this problem and ensure passage through the
singularity, in [6–8] the PKM was given an initial motion so to passively swing
through the input singularity, enabling detection of the reversing motion of one of
the actuators. In order to actually detect these singularities the PKM’s mobility must
be restrained, which is apparent observing that singularities form lower dimensional
subvarieties in the configuration space (c-space) that almost sure will not be hit
when the PKM can move freely in the c-space. To this end in [6–8] the mobility
was reduced to 1 DOF by deactivating the one (backdrivable) actuator for which a
MRP (i.e. a zero crossing of its velocity) is to be detected, and locking all remaining
δ − 1 actuators. Then only motions of the deactivated (backdrivable) actuator are
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locked

passive swing
motion

released

locked
MRP

32

1

Fig. 1 MRP detection of a 3RPR manipulator via a passive swing motion. Actuators 1 and 2 are
locked and 3 is free to move passively

possible, and the problem of detecting the input singularities of that particular actuator
reduces to a one-dimensional problem. Clearly then the non-redundantly actuated
PKM is not controllable anymore since the only one movable actuator is passive.
It was proposed to let the PKM passively swing through the anticipated singularity.
In Fig. 1 actuators 1 and 3 could be locked and the MRP of the released actuator
2 be observed when the PKM is set in motion. The locked actuators 1 and 3 (with
fixed lengths) together with the platform constitute a planar 4-bar linkage. The mount
point of actuator 2 moves on the coupler curve of that 4-bar, and a MRP occurs when
the point reaches the point on that curve that is closest to the mount point on the
base. This configuration is indicated in Fig. 1 by a dashed line. Such passive motion
requires external stimulus and precaution. Redundant actuation allows to exploit
this principle in a safe and reliable way. The crucial point is that MRP can also be
observed in RA-PKM but without meeting input singularities, i.e. without entering
critical poses. Input-singularities of a non-redundantly actuated PKM with DOF δ can
be eliminated by introducing m > δ actuators, of which ρ = m−δ are redundant that
can always control the PKM. Consequently, actuation redundancy allows controlling
the RA-PKM through points that are input-singularities of the non-redundant PKM,
i.e. when controlled by some δ out of the m actuators. Since MRP are significant
points, that are inherently related to the mechanism geometry, they can be considered
as kinematic calibration landmarks. This is the basis for a self-calibration method
introduced in [9] where the feasibility was demonstrated by application of an ad hoc
minimization algorithm. In this paper the method is completed by a computationally
efficient update algorithm. The redundantly actuated 4RPR in Fig. 2a (3RPR with
an added fourth actuated chain is used as example. The joints are mounted at the
corners of a rectangle. The RA-PKM still has δ = 3 DOF but is actuated by m = 4
prismatic actuators. Also for this RA-PKM joint 2 exhibits MRP, but now, due to the
actuation redundancy, the manipulator can safely be controlled through these MRP
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Fig. 2 a Planar 3-DOF 4RPR RA-PKM. b Detection of MRP of actuator 2. Actuators 1 and 4 are
locked, and 3 is actuated. The MRP occurs when point B is closest to point A, as indicated

as shown in Fig. 2a. After locking δ − 1 = 2 actuators there are still m − δ + 1 = 2
actuators left of which one is that for which MRP are sought and the other one can
be used to drive the (1-DOF) system. Actuators 1 and 4 can be locked and actuator 3
be used to move the manipulator while observing the MRP of actuator 2. A deviation
of the geometric parameters from the actual plant geometry is reflected by MRP
occurring at different locations. Minimizing this difference is a means for model
calibration. This was pursued in [9] where the calibration error was defined as the
squared difference of MRP analytically computed from the kinematic model and
MRP detected in the plant for N different measurements. For example in Fig. 2b
this error would be e := ⎧N

i=1

⎪
⎛θ2,i

0 − θ2,i
0

⎝2 where θ2,i
0 is the MRP of actuator

joint 2 deduced from the model, and ⎛θ2,i
0 is the corresponding MRP detected in the

plant for the i th measurement. The critical point when directly minimizing e is that
this is a non-linear problem and that it requires an analytic expression for the MRP.
Here a MRP-based calibration method is introduced that does not suffer from these
restrictions. For RA-PKM with actuation redundancy ρ = m − δ it consists of three
constituent parts: (1) the restriction of the RA-PKM mobility to 1 DOF by locking
δ − 1 actuators, (2) detection of MRP, and (3) model adaptation.

3 Selection of Locked Actuators

The RA-PKM is restrained to 1-DOF motions by locking δ−1 actuators. This leaves
a manipulator with m− δ+1 movable actuators. Out of these one actuator is used to
drive the restrained RA-PKM. The remainingρ = m−δ actuators are deactivated and
presumed to be backdrivable. Since actuators are equipped with encoders the MRP of
these ρ joints can be detected by controlling the 1-DOF motion. The choice of locked
actuators is not unique. In general there are Cm

δ−1 =
⎪ m
δ−1

⎝
different possibilities to
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lock δ−1 of the m actuators. Most RA-PKM reported in the literature possess simple
actuation redundancy, i.e. m = δ + 1, ρ = 1, and this assumed in the following.
Then δ − 1 = m − 2 actuators must be locked, for which there are Cm

m−2 = (m−1)m
2

different possibilities. Fixing δ− 1 actuators leaves two unlocked. One of these two
can be controlled so to detect the MRP of the other one. In this way, for each one
of the Cm

m−2 combinations, the MRP of one deactivated actuator can be detected.
For each combination of locked actuators there are two possible actuation schemes.
In total there are 2Cm

m−2 different actuation schemes for detecting MRP (generally
(ρ + 1)Cm

δ−1).
Denote θ = ⎪

θ1, . . . , θm
⎝

the vector of actuator coordinates. For each of the Cm
m−2

possibilities denote with θl , l = 1, . . . ,Cm
m−2 the vector of the δ− 1 locked actuator

coordinates. The remaining two free actuator coordinates are denoted with θ j and
θ i , where j refers to the controlled and i to the free passive actuator for which the
MRP is sought. The coordinate vector θ is thus partitioned into θl , θ j and θ i . In
Fig. 2b it is θl =

⎪
θ1, θ4

⎝
, θ j = θ3, and θ i = θ2.

4 Detection of MRP

For a specified set l of locked actuators, the detection of MRP of θ i in the model
requires an indicator function, denoted with Fl

i j , such that Fl
i j = 0 if and only if

θ̇ i = 0 for any θ̇ j . The condition Fl
i j = 0 allows inferring the joint coordinate θ j

0 of
the controlled actuator where MRP of the free passive actuator i occurs in the model
for given θl and geometry π . An obvious candidate for such an indicator function is
the velocity inverse kinematics solution for actuator i (Sect. 6). The MRP of actuator
joint i deduced from the model is denoted θ i

0. In Fig. 2b the indicator function F23
returns the velocity of joint 2 when the manipulator is driven by actuator 3 with
the remaining joints 1 and 4 locked. The MRP in the plant are detected monitoring
the sign of the velocity of the free passive actuator i while performing a smooth
1-DOF motion controlled by actuator j . The detected MRP are only exact up to the
measuring accuracy/encoder resolution, and denoted ⎛θ i

0.

5 Calibration Algorithm

The model adaptation exploits the difference of MRP predicted in the model and
those measured in the plant. By locking different sets of δ − 1 actuators the MRP
can be detected for all m actuators. For a particular set of locked actuators, indexed
with l, the remaining two actuator coordinates are interchangeably used to drive the
1-DOF system. This detection is repeated at N different points in the c-space, i.e.
for different values of θl giving rise to an input data set for the calibration.
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The strategy is to detect the MRP of actuator i for a set of locked actuators. Crucial
for the calibration algorithm is the indicator function. It is thus desirable to have an
indicator function that only depends on θ i and θl , which represent δ non-redundant
actuator coordinates. But, depending on the complexity of the kinematics, it may
not possible to analytically construct such an indicator function. These cases are
distinguished in the following. The PKM pose is locally uniquely determined by δ
actuator coordinates, and in particular by the actuator coordinates θ i and θl . Now
by definition this unique dependence ceases at the MRP of actuator i . In the 4RPR
example in Fig. 2b the motion is determined by θ1, θ4, and θ2 except at the MRP of
joint 2. Nevertheless, presumed that the closed loop constraints can be expressed in
terms of these δ actuator coordinates, it can be assumed that the indicator function
attains the form Fl

i j (θ
i , θl;π). That is, F does not depend on the controlled actuator

coordinate θ j nor on any coordinates of passive joints. Let ⎛θ i
0 = θ i

0 + Δθ i
0 be

the measured joint coordinate of the passive actuator i where its MRP occurs. Δθ i
0

represents the deviation from the joint coordinate θ0 where MRP occurs in the model.
Denote with

π = π0 +Δπ (1)

the (unknown) geometric parameters of the plant. Here π0 is the nominal geometry
used as initial value in the model,Δπ is the geometric imperfection to be estimated.

Evaluating the indicator function with the measured MRP values and the nominal
model parameters will yield Fl

i j (
⎛θ i

0, θl , π0) ≤= 0. That is, using the nominal model
parameters, the analytic indicator function would not detect the MRP. Moreover,
the value of Fl

i j does represent a calibration error. This error is minimized adapt-
ing π0.

Since the locked actuator coordinates θl are input to model and plant the only
information about model uncertainties are conveyed by ⎛θ i

0. Hence, treating Δθ i
0 and

Δπ as variables, and neglecting measurement errors, leads to the first-order condition

Fl
i j (

⎛θ i
0, θl , π0)−

∂Fl
i j

∂θ i
Δθ i

0 +
∂Fl

i j

∂π
Δπ = 0. (2)

The measurement is repeated at Nl different locations of MRP of θ i giving rise to
an overdetermined linear system

⎞

⎠⎠
⎠⎠⎠⎠
⎜

∂Fl
i j

∂θ i Δθ
i
0,1 − Fl

i j (
⎛θ i

0,1,
⎛θl,1, π0)

∂Fl
i j

∂θ i Δθ
i
0,2 − Fl

i j (
⎛θ i

0,2,
⎛θl,2, π0)

...
∂Fl

i j

∂θ i Δθ
i
0,Nl
− Fl

i j (
⎛θ i

0,Nl
,⎛θl,Nl , π0)

⎟

⎦⎦
⎦⎦⎦⎦


=

⎞

⎠⎠
⎠⎠⎠⎠
⎜

∂Fl
i j

∂π
∂Fl

i j
∂π
...

∂Fl
i j

∂π

⎟

⎦⎦
⎦⎦⎦⎦


Δπ (3)
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written as yl =MlΔπ , where the partial derivatives of Fl
i j are evaluated at⎛θ i

0,k, θ l,k
,

π0, k = 1, . . . ,Nl . The values of Δθ i
0,k = ⎛θ i

0,k − θ i
0,k are computed from the differ-

ence of measured values and those deduced from the model. For p parameters Ml is
a Nl× p matrix. This measurement procedure can be carried out for different choices
of locked actuators indicated by the subscript l, for which there are 2Cm

m−2 options. It
is usually not necessary to exhaust all these combinations, however. Denote with M
the N × p matrix comprising the Ml submatrices, and with y the corresponding left-
hand side vector of length N . The system (3) is solved via a pseudoinverse of M as

Δπ = ⎪
MT M

⎝−1
MT y. The final update for the parameter vector is π = π0 +Δπ .

The solution π of the linear approximation (2) may not lead to a vanishing Fl
i j .

Therefore the adaptation step is repeated. Denoting with πν the obtained parameter
values at step ν = 1, 2, . . . then an improved estimate πν+1 is found by application
of the above update step with πν as initial parameter. The calibration starts with π0.

6 Simulation Example

The planar 3 DOF 4RPR RA-PKM in Fig. 2a has m = 4 of actuators and actuation
redundancy ρ = 1. The moving platform forms an equilateral triangle with side
lengths k. The mount points on the ground are located at the corners of a rectangle with
side lengths L H and LV . The reference displacements of actuators 1 and 4 for θ1 =
θ4 = 0 is denoted with L1 and L4. The parameter vector isπ = (L1, L4, L H , LV , k).
The nominal parameter values are π0 = (0, 0, 0.5, 0.5, 0.15)m.

Numerical results are reported using MRP of actuators 2 and 3 when joints 1 and
4 are locked. That is, only one set of locked actuators is used, for which the MRP
of joint 2 is determined when controlled by actuator 3, and the MRP of joint 3 is
determined when controlled by actuator 2. The calibration performance is examined
for two sets of calibration points in Fig. 3. During calibration actuators θ1, θ4 are
positioned and locked so that actuator 2 of the model with nominal parameters π0
exhibits a MRP when point B of the platform coincides with the calibration point
(Fig. 3). The first set consists of 4 × 4 samples on an equidistant grid. The second
set comprises 20 points uniformly distributed on a circle. The plant parameters are
randomly set to π = π0 + (ΔL ,−ΔL ,−ΔL ,−ΔL ,+ΔL) with a deviation of
ΔL = 10−3 m and π0 = (0, 0, 0.5, 0.5, 0.15)m. Simulating encoder precision the
joint measurements in the plant are quantized with encoder resolution Δx . Fig. 4a
shows the evolution of calibration error for perfect measurement (no measurement
errors), and for quantizations Δx = 10−4 and Δx = 10−3, when 16 calibration
points on the grid in Fig. 2b are used. Shown is the mean value of the absolute devia-
tion of the model from the plant parameters after step i . After 3 steps the calibration
converges to the computation accuracy if joint angles are measured perfectly. Other-
wise the convergence is bounded by the quantizationΔx . For the chosen quantization
convergence is observed after one iteration. The final calibration error is below the
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Fig. 4 a Calibration error evolution for different measurement accuracies Δx (a) using 16 cal-
ibration points on a grid in Fig. 3, b 20 calibration points on the circle in Fig. 3 (ΔL = 10−3)

uncertainty Δx , which can be explained as an averaging effect. Similar results are
found for the 20 calibration points on the circle in Fig. 4b.

7 Conclusions and Outlook

A self-calibration method for RA-PKM has been proposed based on motion reversal
points. The method does not require any additional sensors. The only (but possibly
critical) condition on RA-PKM is that the drives for which MRP are detected must
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be backdrivable. The general concept is introduced and numerical results are shown
for a simple 3 DOF planar RA-PKM. For this example the method shows very good
performance and accuracy.
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Solving the Forward Kinematics
of Cable-Driven Parallel Robots with Neural
Networks and Interval Arithmetic

Valentin Schmidt, Bertram Müller and Andreas Pott

Abstract This paper investigates a new approach for solving the forward kinemat-
ics of cable-driven parallel robots. This approach combines an interval algorithm
with neural networks to provide a fast but accurate initial guess. The neural net-
works increase the computation speed by a factor of 200 or more, while the interval
algorithm provides guaranteed convergence and a definite solution to any chosen
degree of accuracy. Iterative techniques are faster still, but the proposed algorithm is
considered real-time feasible.

Keywords Cable-driven robots · Neural networks · Interval analysis · Kinematics

1 Introduction

Cable-driven parallel robots, from now on referred to as cable robots, are a class of
parallel robots actuated by flexible cables instead of rigid members.

We will differentiate between two types of cable robots. Completely/redundantly
restrained cable robots, where the number of cables m exceeds the degrees of freedom
n in order to achieve full control; and a second type of cable robot: the suspended
cable robots. Suspended cable robots rely on an external wrench to control the robot
position and are most often seen as hanging structures.

The forward kinematics—obtaining platform pose from cable lengths—of par-
allel machines is a difficult problem. However, for the operation and for advanced
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control techniques of cable robots, a numerically stable and fast computation of the
forward kinematics is needed. In practice, this is often achieved by using optimization
algorithms.

In this paper an algorithm for completely restrained cable robots, based on com-
bining neural networks with interval arithmetic, is introduced and tested. This com-
bined approach offers greater computational speed than algorithms purely based on
interval arithmetic, whilst maintaining strict confidence in the obtained solution.

2 Literature Review

Various methods to compute the forward kinematics of parallel manipulators already
exist. In some specific cases the problem can be simplified due to specific geomet-
rical traits, resulting in a set of algebraic descriptions which can easily be solved
symbolically [3, 12]. Algebraic formulations have also been made for the general
case, resulting in high-degree polynomials which are very difficult to solve [7].

Merlet introduced a numerically more stable approach for the general parallel
machine using Interval Arithmetic [9].

These approaches stand in contrast to the iterative optimization techniques, which
evaluate the inverse Kinematics repeatedly, to gain an increasingly accurate pose
with each step. The computation time of such techniques is acceptable and has been
successfully implemented for real-time execution on robot systems [10].

Suspended cable robots require additional considerations when evaluating the
kinematics. Since the external wrench applied by gravity is an integral part to the
robots structure, it needs to be taken into account when evaluating the robot’s pose.
Recent publications discuss this static and dynamic coupling and propose algebraic
solutions [2, 4]. Ghasemi has presented a successful implementation of neural net-
works to find the solution for a suspended cable robot [5].

2.1 Shortcomings of Existing Methods

Despite having a wide range of computational approaches to choose from, the eval-
uation of forward kinematics remains a challenge, especially when considering real
time constraints on modern machines. Simplifying the problem through the selection
of special geometries is not always a feasible step depending on the constraints of
the robot considered.

Mathematically exact methods, which are capable of finding all possible solutions
and using heuristics to select the right one, are not feasible for production machines
due to numerical instabilities or excessive computation time. Interval arithmetic on
the other hand yields certain guarantees due to its deterministic nature. Unfortunately,
interval arithmetic routines are based on exhaustive search algorithms and typically
do not perform in a real-time environment.
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Faster iterative optimization algorithms, however, demand a good initial guess
for the solution and do not guarantee convergence. This can have unexpected con-
sequences and requires additional sub-routines to manage non-convergence, or even
divergence from the solution.

Neural networks are computationally fast algorithms but also lack the capability
of providing a guaranteed solution or any indication of confidence. Further, these
networks need to be trained a-priori, consuming additional time and effort.

All approaches suffer under kinematic sensitivity [8]. This provides a measure
of how numerically sensitive the poses are to changes in the cable lengths and an
indication why some solutions are hard to find. Further discussion is out of scope for
this paper.

2.2 Benefits of the Combined Approach

Using neural networks to provide a fast initial estimate for the solution and then
applying an interval algorithm to the smaller search space, combines the strengths
of these two methods. Unlike optimization algorithms interval analysis can easily
differentiate between whether an exact solution can be found in the given bound,
to a predetermined level of accuracy, or whether a solution is indeterminable. Even
detecting singularities is plausible [9]. Neural Networks, once trained, provide a very
fast evaluation with minimal computational effort.

It is this combination approach which enables a robust, but still relatively fast
computational method.

3 Description of the Combination Approach

The cable-driven parallel robot IPAnema illustrated in Fig. 1, has eight cables and
six degrees of freedom, making it redundantly restrained. The geometry is described
using two coordinate systems, one for the platform KP and one global coordinate
system for the base KO. The vector notation describes the inverse kinematics for
cable i as:

◦ai − r − Rbi◦2 = li for i = 1, . . . ,m (1)

where ai ,bi , r are vectors describing attachment points and platform position, li is
the length of the cable and R the rotation matrix at a given pose.

The forward kinematics currently implemented in the IPAnema cable robot [10]
uses a Levenberg-Marquardt (LM) algorithm to optimize the function

Ψi (l, r,R) = (◦ai − r − Rbi◦2)2 − l2
i for i = 1, . . . ,m (2)

to finde the pose r,R for a set of cable lengths li .
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Fig. 1 IPAnema Robot with Geometrical Parameters: base vector ai and platform vector bi

For the interval algorithm a different parameterization, based on distance equa-
tions, is used. This parameterization focuses on finding the position of f linearly
independent reference points in the global coordinate frame and hence the pose of
the platform. These reference points on the platform were chosen to be cable attach-
ment points and are chosen so that all other attachment points j are linearly dependent
on these reference points k. This relation in the coordinate systemKP is described by

b j =
⎧

k

Cbk, (3)

where the conversion matrix C is calculated offline.
The equation sets describing the kinematics, which are solved by the interval

algorithm are then as follows. The cable length for each reference point (xk, yk, zk)

⎪
xk − Ax

k

⎛2 + ⎪
yk − Ay

k

⎛2 + ⎪
zk − Az

k

⎛2 = l2
k for k ≤ 1, 2, . . . , f , (4)

the remaining cable lengths

⎝

⎞
f⎧

k=1

Cxk − Ax
j

⎠

⎜

2

+
⎝

⎞
f⎧

k=1

Cxk − Ay
j

⎠

⎜

2

+
⎝

⎞
f⎧

k=1

Cxk − Az
j

⎠

⎜

2

= l2
j

for j ≤ f + 1, . . . , n (5)

and the distance between reference point pairs
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⎪
x p − xq

⎛2+⎪yp − yq
⎛2+⎪z p − zq

⎛2 = δ2
pq for p, q ≤ 1, 2, . . . , f , p ≡= q. (6)

This parameterization is better suited for interval methods as it avoids overestimation
of the interval bounds due to each variable being represented only once in each
equation. It was found that this formulation of the forward kinematics problem was
not beneficial for the iterative methods over an Euler Angle representation used to
generate rotation matrix R in Eqs. (1) and (2).

3.1 Neural Network

In the combination approach the pose of the platform is initially estimated by a set of
neural networks. This greatly reduces the search space for the more time consuming
interval algorithm. The neural network sets return a particular solution for the four
reference point positions, whose error/uncertainty bounds define the initial search
space of the interval algorithm.

The neural network was designed and implemented using the “Stuttgart Neural
Network Simulator” (RSNNS) in the R statistical programming language [1]. The
design is based on the multilayer perceptron (MLP), also used by Ghasemi [5]. In
this case one neural network was used to determine the position (x, y, z) of a given
reference point. Each neural network was built with four hidden layers containing
70 neurons each. Since the IPAnema cable robot has eight cables this results in a
8× 70× 70× 70× 70× 3 MLP architecture.

The neural network was trained in a supervised approach with standard back-
propagation, using default learning parameters of RSNNS. For a random pose the
reference point positions and cable lengths are evaluated through the inverse kine-
matics (1). Then the artificial neural network calculates the reference point positions.
The error residual sum of squares in the computed reference point positions is used
to determine the weight adjustments of the individual neurons. One epoch repeats
this process for every pose in a training set. A test set evaluates the performance of
the neural network whose error is minimized over 800 epochs.

The full set of poses consists of 1,00,000 random poses in a workspace of 6×5×
4 m in x, y, z and rotations in the range of±20≈ about each axis. 40,000 poses were
used as a training set and the remaining 60,000 as a test set. Feature normalization
was also applied for the cable lengths in the stated workspace.

Graphs in Fig. 2 show the results of a single network training. The histogram
shows the distribution of the final absolute error of the test set. The maximum error
determines the bounds of initial search space for the interval algorithm, ±0.02 m.
This speeds up the computation time. While interval analysis is a complex iterative
procedure, successive operations necessary for each neuron will only be evaluated
once.
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Fig. 2 Single neural network training results

3.2 Interval Algorithm

The interval algorithm based on [9] resembles a bisection method. The workspace is
divided into successively smaller boxes which are then evaluated against the para-
metric Eqs. (4–6) with interval arithmetic. A box is a 12 dimensional hyper-cube
of the (x, y, z) values of the four reference points. The starting box was based on
the maximum error produced by the neural network test set. Interval arithmetic then
determines whether a solution to the parametric equations exists within this box,
does not exist, or cannot be determined. This branch and bound algorithm discards
boxes containing no solution and continues to divide the rest, until a sufficiently
small (specified by the desired accuracy) box without a solution is reached.

This is a deterministic and time consuming method to obtain a solution to the for-
ward kinematics problem. Several techniques to speed up this process by reducing
box sizes are implemented. One technique is evaluating for hull (or 2B) consistency
as in constraint satisfaction problems as shown in [9]. Here the constraints of a single
variable in the parametric equations are shrunk by those defined for the other vari-
ables. This can be repeated indefinitely, but tests showed that once the improvement
was below 25 % it was more efficient to return to the branch and bound.

Another very effective method to reduce box size was the Interval-Gauss-Seidel
method [11], which not only reduces the hyper-volume of a box, but also mitigates
effects of solution clustering. Here the variable bounds are also shrunk individually
using an iterative technique by applying the formula of a classic linear equation
system to this variable.

These methods make the computation more efficient, but not to the same scale as
the initial guess by the neural network.
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Table 1 Computation time tested on IPAnema geometry

Interval algorithm Interval algorithm Levenberg-Marquardt
with neural network optimization [10]

Max. evaluation time [s] 0.764 0.016 N/A
Avg. evaluation time [s] 0.292 0.00121 0.000015
Max. no. of boxes/iterations 173356 303 5
Avg. no. of boxes/iterations 60690 77 4

4 Performance Evaluation

The algorithms for solving the forward kinematics are implemented in C++. This
enables the use of SIMD instruction sets on an x64 architecture to provide a significant
increase in speed for interval calculations and is discussed in detail by [6]. The
processor used for testing was an Intel i7–2600 K with 3.40 GHz.

Table 1 shows the results of a quick comparative benchmark of three algorithms
implemented under identical conditions. A random pose list of 1000 poses, with
corresponding cable lengths was generated using Eq. (1). Poses were in a 4×4×3 m
box in the workspace and described by a rotation of−10≈ to 10≈ for each Euler Angle.
Each algorithm calculated every pose to an accuracy of 0.00001 m.

The computational speed of the Interval Algorithm is greatly increased through
the use of neural networks. The average computation time decreased by more than
a factor of 200, the number of boxes even more. This makes the approach more
real-time feasible.

Maximum time to solution could not be evaluated for the LM optimization as it
was too fast for the timer resolution, so the average was taken from the total time
over 1,000 iterations. Keeping in mind that the initial pose estimate is tailored for
this cable robot geometry, the optimization algorithm computes extremely fast.

Neural networks do need to be retaught for significant geometry changes, but have
no limitations as to the type of geometry to solve. Further, the interval algorithm
still can provide certainty of the solution and guarantee convergence, which the
optimization cannot.

5 Conclusions

It was shown that combining neural networks with the standard implementation of
interval arithmetic to solve the forward kinematics of cable robots provides significant
decrease in computation time. This enables a more real-time feasible implementation,
while retaining strengths of the interval methods. While the speed does not surpass
that of highly optimized LM iterative solutions, it provides a method with guaranteed
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convergence, and the possibility of finding numerous poses. It is a viable alternative
for actual real-time controllers.

Improvements can still be made. The neural network training algorithm could
be optimized to provide a more accurate initial guess. Several steps in the interval
algorithm could be taken to optimize the switching between the branch and bound,
consistency checks, and the Interval-Gauss-Seidel method. This is difficult to opti-
mize for the general case.

The teaching of neural networks is still an issue, as it diminishes the ease of
changing geometric configuration. However, slight configuration changes still enable
the neural network to converge enough for the interval algorithm to run at acceptable
speeds. Further, the only requirement for teaching the networks is a working inverse
kinematic implementation. This process can be heavily automated.

Problems of kinematic sensitivity are not addressed by either of these algorithms,
but are still subject of ongoing research.
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Three Types of Parallel 6R Linkages

Zijia Li and Josef Schicho

Abstract In this paper, we consider a special kind of overconstrained 6R closed
linkages which we call parallel 6R linkages. These are linkages with the property
that they have three pairs of parallel joint-axes. We prove that there are three types
of parallel 6R linkage. The first type is new, the other two also appear in a recent
classification of linkages with angle equalities. We give constructions for each of the
three types.

Keywords Dual quaternions ·Overconstrained 6R linkages ·Translation property ·
Angle-symmetric 6R linkages

1 Introduction

Movable closed 6R linkages have been considered by many authors (see [1, 4, 5,
11–13]). In this paper, we study a certain class of such linkages, which we call
parallel 6R linkages. By definition, they have three pairs of parallel joint-axes for all
possible configurations, or at least for infinitely many configurations (it could be that
a certain linkage has two components, where only one of them produces three pairs
of parallel joint-axes). Two of the pairs of parallel joint-axes are adjacent, and the
third one is a pair of opposite joint-axes. We came across this type of linkages when
we investigated 6R linkages with coinciding angles being equal, so called angle-
symmetric 6R linkages [10]. Also there, there exist three types of angle-symmetric
linkages, and one of the three types consists of parallel linkages. But not all parallel
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linkages are angle-symmetric in the sense of [10]. A new type can be constructed by
taking three arbitrary lines as axes and applying an arbitrary translation to get the
other three rotation axes.1

This paper also contains the complete classification of parallel linkages. These
parallel linkages would fit into [2, Sect. 3.8], a general investigation of 6H linkages;
our case is labelled “get to be examined” there.

Our investigation uses Study’s description of Euclidean displacements by dual
quaternions (see [7, 8]).

The remaining part of the paper is set up as follows. In Sect. 2, we give the
theorems for classifying parallel 6R linkages, defining three types. In Sect. 3, we
give a construction for each type.

2 Classification

We recall some notations from [8]. The set of all possible motions of a closed 6R
linkage is determined by the position of the six rotation axes in some fixed initial con-
figuration. The choice of the initial configuration among all possible configurations
is arbitrary.

The algebra DH of dual quaternions is the 8-dimensional real vector space gen-
erated by 1, ε, i, j,k, εi, εj, εk (see [7, 8]). Following [7, 8], we can represent a
rotation by a dual quaternion of the form

(
cot

(
ϕ
2

)− h
)
, where ϕ is the rotation angle

and h is a dual quaternion such that h2 = −1 depending only on the rotation axis.
We use projective representations, which means that two dual quaternions represent
the same Euclidean displacement if only if one is a real scalar multiple of the other.

Let L be a 6R linkage given by 6 lines, represented by dual quaternions h1, . . . , h6
such that h2

i = −1 for i = 1, . . . , 6. A configuration (see [7, 8]) is a 6-tuple
(t1, . . . , t6), such that the closure condition

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4)(t5 − h5)(t6 − h6) ◦ R\{0} (1)

holds. The configuration parameters ti —the cotangents of the rotation angles—may
be real numbers or≤, and in the second case we evaluate the expression (ti − hi )

to 1, the rotation with angle 0. The set of all configurations of L is denoted by KL .
We say L is movable when KL is a one-dimensional set. Mostly, we will assume,
slightly stronger, that there exists an irreducible one-dimensional set for which none
of the ti is fixed. Such a component is called a non-degenerate component. We also
exclude the case dimC KL ≡ 2. Linkages with mobility ≡2 do exist, for instance
linkages with all axes parallel have mobility 3, but they are well understood.

1 Just in the last moment, we learned that a special case of this linkage was discovered in A. Gfrerrer
and P.J. Zsombor-Murray, Robotrac Mobile 6R Closed Chain, Proc. CSME Forum 2002, see also
www.geometrie.tugraz.at/lehre/KinematikRobotik/CrankAxlePerspektive.gif.

www.geometrie.tugraz.at/lehre/KinematikRobotik/CrankAxlePerspektive.gif
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If L = [h1, h2, h3, h4, h5, h6] is a 6R linkage with mobility 1, then we say that
L is a parallel linkage if the axes h1, h6 are parallel and the axes h3, h4 are parallel,
and the non-adjacent axes h2, h5 are parallel for infinitely many configurations in
KL . The parallelity conditions in the initial configuration can be expressed as:

h1 = p1 + εq1, h2 = p2 + εq2, h3 = p3 + εq3,

h6 = −p1 + εq6, h5 = −p2 + εq5, h4 = −p3 + εq4,
(2)

where pi are the primal part of hi and h7−i for i = 1, 2, 3, and q j are the dual part
of h j for j = 1, . . . , 6.

There is a subset of KL , denoted by Kqsym, defined by the additional restrictions
t1 = t6, t2 = t5, t3 = t4. For all configurations in τ ◦ Kqsym, the transformed lines
hτ2 and hτ5 are again parallel. Conversely, if K0 ≈ KL is an irreducible component
of dimension 1 that contains the initial configuration ≤6 and that preserves the
parallelity of the second and the fifth axis, then K0 ≈ Kqsym.

Remark 2.1 There exist a 6R linkage L with a one dimensional K0 ≈ Kqsym, but L
is not a parallel 6R linkage. A possible construction can be found in [7, 8].

Before the following lemma, we recall the definition of coupling space and its
dimension in [6, 9]. For a sequence hi , hi+1, . . . , h j of consecutive joints, we define
the coupling space Li,i+1,..., j as the linear subspace of R8 generated by all prod-
ucts hk1 · · · hks , i ⊥ k1 < · · · < ks ⊥ j . (Here, we view dual quaternions as
real vectors of dimension eight.) The empty product is allowed, its value is 1. The
coupling dimension li,i+1,..., j is the dimension of Li,i+1,..., j .

For a parallel 6R linkage L in (2), we make a special transformation as following:

h′1 := P1h1 P1, h′6 := P1h6 P1, h′3 := P2h3 P2, h′4 := P2h4 P2,

where Pi denote the conjugations of Pi for i = 1, 2, and P1 and P2 are translations
such that h′1, h′2, h′3 meet in a common point. This is equivalent to the statement that
the dimension of coupling space L ′123 is 4. Furthermore, we have (t1−h6)(t1−h1) =
(t1−h′6)(t1−h′1) and (t3−h3)(t3−h4) = (t3−h′3)(t3−h′4), and we get the following.

Lemma 2.1 Parallel 6R linkage L and its transformed linkage L ′ as above have the
same quasi-angle-symmetric configuration space Kqsym.

Three consecutive rotation axes through the same point can be replaced by a
spherical joint. The next lemma follows from the classification of S3R linkages.

Lemma 2.2 For the transformed parallel linkage L ′, we have l ′654 = 4 or 6.

If l ′654 = 4, then the lines h′4, h′5, and h′6 also meet in a common point. There is
an unique translation P that maps the common point of h′1, h2, h′3 to the common
point of h′4, h5, h′6. So, P maps h′1 to h′6, h2 to h5, and h′3 to h′4. But then, P also
maps h1 to h6 and h3 to h4.
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Conversely, assume that for six lines h1, . . . , h6, there exists a translation taking
h1 to h6, h2 to h5, and h3 to h6. Then the linkage L = [h1, . . . , h6] is mobile.

If l ′654 = 6, then two cases are possible: either L ′ is a composition of a spherical
linkage [h′1, h2, h′3, h7] and a Bennett linkage [h′6, h5, h′4, h7], with a suitable line h7,
or L ′ is a composition of a spherical linkage [h′1, h2, h′3, h7, h8] and a Goldberg 5R
linkage [h′6, h5, h′4, h7, h8], with suitable lines h7, h8 passing through the common
point of h′1, h2, h′3. In both cases, we get t1 = t3, so the linkage L ′—therefore also
L—is angle-symmetric in the sense of [10]. The first case coincides with the “rank 3”
case in [10], and the second case is subsumed by the “rank 4” case in [10].

We have sketched the proof of the following theorem.

Theorem 2.1 If L is a parallel linkage, then it either has the translation property,
or four of the rotation angles are equal.

3 Constructions

All constructions in this section are given in algebraic terms, using dual quaternions.
The examples have been produced by an implementation of the constructions in
Maple™.

3.1 Translation Property

Here is a construction of parallel 6R linkage with translation property.

Construction 1 (Parallel 6R Linkage with Translation Property)

I. Choose three rotation axes h1, h2, h3, i.e. dual quaternions such that h2
i = −1.

II. Choose a translation P = 1+ai+bj+ck, with a, b, c in the set of real numbers.
III. Set h4 = −Ph3 P, h5 = −Ph2 P and h6 = −Ph1 P.
IV. Our parallel 6R Linkage with translation property is L = [h1, h2, h3, h4, h5, h6].

�

Example 3.1 A random instance of the above construction is

h1 =
(

7

9
− 80

81
ε

)
i−

(
4

9
+ 34

81
ε

)
j+

(
4

9
+ 106

81
ε

)
k,

h2 =
(

3

5
+ 8

25
ε

)
i− 8

5
εj−

(
4

5
− 6

25
ε

)
k,

h3 = −
(

1

3
− 4

9
ε

)
i−

(
2

3
+ 4

9
ε

)
j−

(
2

3
− 2

9
ε

)
k,

P = 1− 16

27
εi− 20

27
εj+ 8

27
εk,
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h4 =
(

1

3
− 148

81
ε

)
i+

(
2

3
+ 116

81
ε

)
j+

(
2

3
− 14

27
ε

)
k,

h5 = −
(

3

5
+ 1016

675
ε

)
i+ 296

135
εj+

(
4

5
− 254

225
ε

)
k,

h6 = −
(

7

9
− 112

81
ε

)
i+

(
4

9
− 46

81
ε

)
j−

(
4

9
+ 242

81
ε

)
k.

Its configuration curve is irreducible of genus 1. Its equations are:

−21t2
1 + 9t2

1 t2 + 25t2
2 t1 + 6t1t2 − 9t1 + 6− 9t2 − 15t2

2 = 0,

−21+ 63t1 + 5t2 − 27t1t2 − 6t3 + 72t3t2 = 0.

Here are the Denavit-Hartenberg parameters [3] of the above linkage. These are
the orthogonal distance between two adjacent joint axes ai j , the distance di between
the two footpoints of the two neighboring axes on the i th axis, and the twist angle
between two adjacent joint axes αi j , for i = 1, . . . , 6 and j = i + 1 (modulo 6). For
any parallel linkage with translation property, the parameters fulfill the conditions

a12 = a56, a23 = a45,

d1 = d4 = 0, d2 = d5, d2
3 + a2

34 = d2
6 + a2

61,

α34 = α61 = 0, α23 = α45, α56 = α12.

In the example, the values are

a12 = a56 = 58
⇒

5

225
, a23 = a45 = 2

⇒
2

3
, a34 = 8

⇒
305

81
, a61 = 8

⇒
5

9
,

α34 = α61 = 0, α23 = α45 = arccos

(
1

3

)
, α56 = α12 = arccos

(
1

9

)
,

d1 = d4 = 0, d2 = d5 = 11

25
, d3 = 80

81
, d6 = 0.

3.2 Parallel 6R Linkage with Angle-Symmetric Property

There are two constructions, corresponding to the two sub cases of angle-symmetric
parallel linkages. The first appeared in [10] gives Parallel 6R Linkage with angle-
symmetric property (type 1). Here is the second construction.

Construction 2 (Parallel 6R Linkage with angle-symmetric property, type 2)
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I. Choose two rotation axes h1 and h2, i.e. dual quaternions such that h2
1 = h2

2 =−1.
II. Choose another rotation axis h6 parallel to h1; the primal part of h6 should be

the primal part of h1 times −1.
III. Compute two rotation axes m1 and m2 such that h1, h2,m1,m2 form a Bennett

4R linkage. One way to do this is to use the factorization algorithm for motion
polynomials [8].

IV. Compute two rotation axes m3 and h5 such that h6,m2,m3, h5 form a Bennett
4R linkage, and such that the configuration curve is equal to the one in step III.
Again, this can be done by factorizing a motion polynomial.

V. Choose a translation P = 1+ bi+ cj+ dk, where b, c, d are real numbers.
VI. Set h3 = −Pm1 P, h4 = −Pm3 P.

VII. Our parallel 6R Linkage is L = [h1, h2, h3, h4, h5, h6]. �

Example 3.2 A random instance of the above construction is

h1 =
(

1

3
− 4

9
ε

)
i−

(
2

3
− 2

9
ε

)
j+

(
2

3
+ 4

9
ε

)
k,

h2 = −
(

1

3
+ 8

9
ε

)
i−

(
2

3
− 8

9
ε

)
j+

(
2

3
+ 4

9
ε

)
k,

h6 = −1

3
i+ 2

3
j− 2

3
k,

a = 1

2
,

m1 =
(

119

411
+ 124340

168921
ε

)
i+

(
226

411
− 172130

168921
ε

)
j−

(
322

411
+ 74860

168921
ε

)
k,

m2 = −
(

119

411
− 100888

168921
ε

)
i+

(
322

411
− 15560

168921
ε

)
j−

(
226

411
+ 75292

168921
ε

)
k,

m3 =
(

11601824

8614971
ε − 119

411

)
i−

(
226

411
− 13771184

8614971
ε

)
j+

(
322

411
+ 4651040

2871657
ε

)
k,

h5 =
(

1

3
− 344

459
ε

)
i+

(
2

3
− 776

459
ε

)
j−

(
2

3
+ 316

153
ε

)
k,

P = 1− 2

3
εi− 1

2
εj+ εk,

h3 =
(

119

411
+ 177770

168921
ε

)
i+

(
226

411
− 10388

18769
ε

)
j−

(
322

411
− 79

168921
ε

)
k,

h4 = −
(

119

411
− 8876894

8614971
ε

)
i−

(
226

411
− 9760646

8614971
ε

)
j+

(
322

411
+ 3377077

2871657
ε

)
k.

Here we found that the configuration curve is reducible. It has one non-degenerate
component in Kqsym, with rational parametrization:
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Fig. 1 A parallel angle-symmetric linkage of type 2 (described in Example 3.2). The four colored
tetrahedra and the two colored parallelograms represent the six links, and the joints are the common
edges of connected tetrahedra/parallelograms. Possible collisions of the links are just shown as
overlapping links
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(t1, t2, t3) = (t, t + 1, t) .

In Fig. 1, we present twelve configuration positions of this linkage produced by
Maple. �

Here are the numeric values of the Denavit-Hartenberg parameters.

a61 = 2

3
, a12 =

⇒
2

3
, a23 = 4151

⇒
34

41922
, a34 = 274

⇒
17

459
, a45 = 6617

⇒
34

41992
, a56 = 86

⇒
2

153
,

α34 = α61 = 0, α23 = α45 = arccos

(
135

137

)
, α56 = α12 = arccos

(
7

9

)
,

d1 = d4 = 0, d2 = d5 = 923

1224
, d3 = 4795

1836
, d6 = 225

68
.

We do not know the general conditions of the Denavit-Hartenberg parameters of a
linkage obtained by the construction.
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Positioning Two Redundant Arms
for Cooperative Manipulation of Objects

Adrià Colomé and Carme Torras

Abstract Bimanual manipulation of objects is receiving a lot of attention nowa-
days, but there is few literature addressing the design of the arms configuration.
In this paper, we propose a way to analyze the relative positioning of two redun-
dant arms, both equipped with spherical wrists, in order to obtain the best common
workspace for grasping purposes. Considering the geometry of a robot with a spher-
ical wrist, the Cartesian workspace can be discretized, with an easy representation
of the feasible end-effector orientations at each point using bounding cones. After
having characterized the workspace for one robot arm, we can evaluate how good
each of the discretized poses relate with an identical arm in another position with a
quality function that considers orientations. In the end, we obtain a quality value for
each relative position of two arms, and we perform an optimization using genetic
algorithms to obtain the best workspace for a cooperative task.

Keywords Robot design ·Workspace · Bimanual manipulation

1 Introduction

Bimanual manipulationaut]Colomé, A. aut]Torras, C.allows robots to perform more
complex tasks than a single-limb robot [1]. However, while a lot of attention is
focused on how to manipulate or plan a task, less importance is given to the arms
configuration. Usually, a humanoid-like configuration is chosen, to make the robot
more human-friendly [2], but when deciding how to use two Barrett WAM (Whole
Arm Manipulator) robots, we questioned ourselves if a humanoid-like configuration
would be the best, for example, for folding clothes. A first step towards this aim
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is to analyze the robot’s workspace. In [3], a discretized workspace is used with
information about the probability of solving the Inverse Kinematics (IK) with random
orientations at each cartesian position, and also manipulability data, an indicator of
dexterity and distance to a singularity [4], in order to decide the grasping points for
bimanual manipulation. However, this work exploits an existing humanoid robot,
which may not have been specifically designed for the task being tackled. Zacharias
et al. [5–7] plot the 3D cartesian position workspace by initially drawing spheres,
whose color varies with the percentage of inverse kinematics solutions found for
each point. Moreover, they propose to use different shapes at each point to represent
orientations, depending on the feasible end-effector orientations at each position,
but their later work also focuses on optimizing manipulation with a given bimanual
robot, rather than deciding its arms configuration.

We think that the relative position of the arms may be improved in order to get
better grasps. In fact, the WAM robot’s workspace is much different from that of a
human arm, and so are those of many other commercial arms, thus we investigated
a way of deciding the arms relative position, depending on the task, by fully char-
acterizing the workspace of the Barrett WAM arm. Using the fact that the robot has
a spherical wrist, we propose to compute its feasible orientations for each cartesian
point and pack them in a bounding cone to obtain an easy characterization of robot
feasible poses. With these cones, we can evaluate how good two points relate when
grasping an object of a certain length. If both robots can reach the position, but their
valid end-effectors’ orientations for those points are not good enough, the object
may not be well manipulated. In Sect. 2 we will explain how we characterize the
workspace with information on all feasible orientations and how we store these data.
This is later used in Sect. 3 to evaluate a relative positioning of two identical arms.
Finally, in Sect. 4 we describe the implementation, and we use a genetic algorithm
to search for the best relative positioning of the two arms.

2 Workspace Representation

For a redundant robot, it is well known that the Forward Kinematics (FK) function
f is not one-to-one, and given its non-linearity, the workspace may be hard to rep-
resent. The Inverse Kinematics (IK), the inverse of the FK, may then be better to
characterize the workspace. Note that, for each point in the cartesian space, more
than one IK solution may exist [8]. We initially decided to characterize the workspace
numerically, as a subset of R3× SO(3), by discretizing it. To do so, a uniform mesh
is set for the cartesian position and/or orientation, and, for each point Pi on the mesh,
the existence of a joint solution θ Pi such that Pi = f (θ Pi ) is checked. This can be
done by sampling the joint space and using the FK function (forward sampling), or
by sampling the workspace and using the IK (inverse sampling). Nevertheless, while
the forward sampling results in a biased sampling of the workspace, the inverse is
able to exhaustively analyze the whole workspace, thus we recommend this option
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Fig. 1 Left: Spherical wrist. θ2 is the wrist angle. Right: Robot scheme showing the bounding cone
of all possible forearm axes. This cone is augmented by adding the wrist joint limit to obtain the
possible TCP z-axis bounding cone

if a good IK algorithm is available (for the case of the WAM robot, the IK can be
obtained either by iterative methods [8] or analytical methods [9, 10]).

To plot the reachable positions of the workspace, and store its data, we used a
similar method as in [7]. For each point of the 3D mesh representing the workspace,
M solutions of the IK of the robot, with different orientations, are obtained. To
ensure a good distribution of these orientations, we can use the proposal in [12],
where points are arranged in hexagonal patterns to fit on the sphere, or use randomly
generated quaternions. If there exists at least one solution, the position is reachable.
In addition, for each of these M IK attempts, we can extract additional information,
such as manipulability [4] at the obtained pose, percentage of orientations found for
a given 3D cartesian point, etc.

For the feasible orientations of a robot arm in a cartesian point, several geometrical
shapes to represent the valid orientations have been proposed in literature [7]. Among
these shapes, cones are probably the best choice, due to their simplicity and easy
characterization. In fact, for a robot with a spherical wrist (see Fig. 1a), the Tool
Center Point (TCP) stays within a cone whose axis is the rotation axis of the first
degree of freedom of the wrist (namely, the forearm axis).

Moreover, discarding the rotation around the TCP z-axis, we propose to collect
the set of valid forearm axes at a certain cartesian point P ◦ R

3, which will be
enclosed by a cone, and compute the Bounding Cone (BC) that contains them all
with the algoritm proposed in [11]. Also, if the wrist angle has symmetric limits,
its aperture can be added to the BC angle, yielding a cone that contains all the TCP
z-orientation axis that the robot can reach at the given position (see Fig. 1b).

With this approach, we obtain a mesh for the workspace, encoding all the infor-
mation gathered when computing the reachable positions such as manipulability,
percentage of solutions found, etc. plus the obtained bounding cone containing all
the possible z-axis of the TCP. We can see an IK solutions map over the workspace
of a WAM robot (see Table 1 in [10] for its dimensional parameters) in Fig. 2.
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Fig. 2 Solutions found over the workspace of a WAM robot

3 Bimanual Workspace

Multiple-arm cooperative tasks provide the capability of performing tasks that would
be impossible or, at least, much more difficult to accomplish with only one arm.
Although actuating the arms to simultaneously move an object may be a hard task,
the arms relative configuration must be given importance, since depending on the
intended use of bimanual robots, some configurations might be better suited than
others. Human arms configuration may be the best for the tasks performed by humans
along their evolution, with a large workspace in front, and a very reduced workspace
at our back, as our attention and visible space stays in front of us.

In [1], a review of bimanual manipulation is done, where the state-of-the-art
in cooperative tasks is analyzed. Some examples of existing bimanual robots are
shown, such as the Justin robot [6], where the arms are placed in a humanoid-like
configuration with a tilt of 60 degrees, the DARPA arm robot [13], with two Barrett
WAM robot arms with their bases placed perpendicular, or the ARMAR [14, 15]
robot, where both z base axes are placed in an aligned humanoid-like configuration.

However, the humanoid configuration may not be the best one for certain tasks.
In this section, we provide hints to determine how good is a relative positioning of
robot arms, in the form of a parametrized value function to be used with a numerically
characterized workspace as that in the previous section.

In this work, we intend to characterize a common workspace between two arms.
To this purpose, given two cartesian points P1 ◦ W1, P2 ◦ W2, we will compute
several factors that will lead to a quality function for each pair (P1, P2) defined as:.

F(P1, P2) = DF · SDF · O F · M F · C F,
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where DF is the Distance Factor, SDF the Solutions Density Factor, O F the Ori-
entation Factor, M F the Manipulability Factor and C F the Conditioning Factor.
Multiplication and not addition of factors has been chosen to strongly penalize those
positions with very low value on one factor.

Then, the global quality value of a relative position of two arms is:

F = V ·
∑

P1◦W1

∑

P2◦W2

F(P1, P2), (1)

V being the total volume of the combined workspace. Evaluating this quality mea-
sure (1) we get a mapping g : R3 × SO(3) ≤ R, which maps a relative position
plus orientation transformation (up to 6 variables) to a real value. This mapping can
be used by genetic algorithms to search for its maximum, which would correspond
to the best relative positioning.

For each pair of points (P1, P2), we have to decide whether to evaluate their
relation or not. In order to decide that, we may take a characteristic length L for the
object to be manipulated, and then one possible way to evaluate that relation is by
using the following Distance Factor (DF):

DF =
{

1 if L − δ < ≡P2 − P1≡ < L + δ, |a1| < α1, and |a2| < α2
0 otherwise

, (2)

where δ is a tolerance on the manipulated object length, and a1, a2, α1, α2 are defined
with the bounding cones in Fig. 3. If the segment joining P1 and P2 does not lie within
both orientation cones for P1 and P2, their relation may not be evaluated. However,
the orientation restriction can be made more permissive, depending on the kind of
graspings to perform.

As defined in some previous works [3, 7], the SDF is the ratio of the IK solutions
found over the attempted solutions. For each cartesian point of the workspace, we
retain the percentage of IK solutions found, given random orientations. The SDF is
then defined as the product of the ratios for the two points compared.

Imagine two arms manipulating an object of length L grasped at points P1 ◦ W1
and P2 ◦ W2. In this situation, a grasp in which the TCP z-axis of each arm is aligned
in the direction of the other grasping point is usually preferred. This can be checked
using the cones (Z1, α1), (Z2, α2) obtained for each workspace: we can calculate
the angles a1, a2 from the vector P1 − P2 and the cones axes Z1, Z2, as in Fig. 3.

Then, we define the Orientation Factor (O F) for the points to compare as

Fig. 3 Distance and
Orientation factor variables:
α1, α2 are the cones angles,
and a1, a2 the angles between
each cone’s axis and the line
P1 P2
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O F = max

(
O Fmin, 1+ 1

K
ln

(
α1 − |a1|
α1

· α2 − |a2|
α2

))
(3)

where K is a tuning parameter, and O Fmin is the minimum value accepted for the
orientation factor.

Thus defined, this factor verifies that O Fmin ≈ O F ≈ 1, ⊥a1, a2, α1, α2, when
satisfying the conditions in (2), it having a value of 1 when both cones’ axes are
parallel to the vector P2−P1 and pointing towards each other, and gradually reducing
its value to O Fmin when the axes point away from each other.

When performing cooperative tasks, or grasping an object with multiple arms,
there are approaches to obtain a combined manipulability [16, 17]. However, com-
bined manipulability computation for multiple arms holding an object relies on the
arms poses, which are unknown for our workspace representation, as we use the
average of many IK computations with different orientations and the redundancy of
the robot gives us infinite solutions. So we take the average manipulability of both
grasping points as a good approach to evaluate how manipulable is an object. In [3],
grasping point candidates are selected based on this manipulability, so the M F is
defined as:

M F(P1, P2) = m(P1)m(P2) , with m(Pi ) = 1

M

M∑

j=1

m(I K (Pi , o j )), (4)

m(I K (Pi , o j )) being the manipulability at the joint position obtained as an IK solu-
tion for the robot at position Pi with orientation o j .

In order to ensure a stable behaviour for the related points, we use the Jacobian
Condition Number (CN), which is defined as κ(J ) = σ1/σn , where σ1, σn are the
largest and the smallest singular values of the robot Jacobian matrix. The CN is a
measure of the error amplification induced by the Jacobian matrix. Thus, we define

C F = κ(P1) · κ(P2), (5)

where κ(Pi ) is the average CN for the solved IK of Pi .

4 Experimentation

As a first application, we searched for optimal relative positionings of two WAM
robots. To do so, we used genetic algorithms instead of performing an exhaustive
analysis in order to obtain the results faster, using 10 generations of 20 elements
each, and a probability of mutation on each variable slightly decreasing after each
generation.
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Fig. 4 Left: Two experimental settings. Right: Results with quality values from blue (low value)
to red (high value)

We considered valid objects for grasping those of a size between 0.3 m and 0.5 m
for the DF and a K = 2 for the OF. We collected the best half at each generation,
paired them, and created 20 new configurations for the next generation.

Several settings were considered for optimizing a two-dimensional relative posi-
tion between the arms. The first one is similar to that of the DARPA robot, with
both z axes perpendicular. We found (see Fig. 4 top) that, for our criterion, the best
configurations are those with positive dx and dz, while the DARPA robot has both
negative offsets, which yield a lower value of the quality function. The best solution
is for dx = 0.8 m, dz = 0.8 m in which both arms cooperate at a larger distance than
the DARPA robot. Other experimentation such as placing both arms with their z-axes
parallel and facing each other (see Fig. 4 bottom) also lead to good positionings which
might not have been considered when building bimanual robots.
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5 Conclusions

In this work, we have presented a novel way to store the workspace information
(including orientation, which is often not considered) of a robot with a spherical
wrist, in a very compact way, thanks to the efficient bounding cones representation
of the end-effector z-axis. This then allows us to evaluate the capability of a dual arm
robot to manipulate an object of a certain size, depending on the relative position of
both arms. We can compute a global quality measure for a given relative position, in
order to quantify how good a dual arm configuration is.

We used this quality measure to obtain better relative configurations with the help
of a genetic algorithm. And the results in Sect. 4 seem to indicate that, for the tasks
studied, the configuration of current bimanual robots may not be optimal.

The arm configurations of humanoid robots are designed to accomplish a wide
repertoire of tasks while obeying diverse design and operational constraints. How-
ever, in settings with two independent robot arms, it may be simple and advantageous
to tailor their relative configuration to the specificities of each particular task, as
shown in the current work. The proposed algorithm can be further used to optimize
relative positionings with more than two parameters in order to get more general
results.
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A Sufficient Condition for Parameter
Identifiability in Robotic Calibration

Thibault Gayral and David Daney

Abstract Calibration aims at identifying the model parameters of a robot through
experimental measures. In this paper, necessary mathematical conditions for cali-
bration are developed, considering the desired accuracy, the sensor inaccuracy of
the joint coordinates, and the measurement noise. They enable to define a physically
meaningful stop criterion for the identification algorithm and a numerical bound for
the observability index O3, the minimum singular value of the observability matrix.
With this bound, observability problems can be safely detected during calibration.
Those conditions for calibration are illustrated through a simple example.

Keywords Conditions for calibration · Observability · Least-squares

1 Introduction

Because of manufacturing and assembly errors, kinematic parameters of a robot are
only known with uncertainties. In order to reach the desired accuracy of the robot
over its workspace, a better knowledge of the model parameters is needed: this is the
goal of calibration. Calibration can be decomposed in four important parts: modeling,
measurements, identification and implementation [8, 11].

The required qualities of a robot model for calibration are well-known and can be
found in [3]. However, necessary conditions also exist for the measurement and the
identification steps. Indeed, some common assumptions have to be made: for exam-
ple that the identification function mostly depends on the variations of the model
parameters. Such hypotheses imply conditions both on the measurement device accu-
racy and on the measurement workspace. However, to the best of our knowledge,
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those conditions are not treated in the literature. Deriving those necessary conditions
will lead to the calculus of the necessary accuracy of the kinematic parameters and
the maximal allowed measurement inaccuracy for calibration. With these values, a
numerical scaling of the observability matrix [8] involved in the identification step
can be obtained. This enables to define a numerical bound for the observability index
O3 [9], the minimum singular value of the observability matrix. With this new bound,
observability problems can be detected during calibration.

2 Overview and Conditions of Calibration

Without loss of generality, we will focus only on the kinematic calibration. Let
consider a robot, with either a serial or parallel kinematic structure, with n◦ actuators
controlling n degrees of freedom. The exact pose p of the end-effector is described by
the n-vector x≤p, and ρ≤p stands for the n◦-vector of the exact joint coordinates at pose
p. The kinematic model of this robot relates the joint and end-effector coordinates
ρ≤p and x≤p through a function f≤ that depends upon the m irreducible exact kinematic
parameters [3] described by the vector ξ≤:

f≤(x≤p, ρ≤p, ξ≤) = 0 (1)

However, both the joint coordinates and the kinematic parameters are not known
with exactitude because of the accuracy of the actuator sensors, and manufacturing
and assembly errors. Let consider measurement errors δρ≤p and δξ≤ between the
nominal values ρ p and ξ and the exact values ρ≤p and ξ≤ such as ρ p = ρ≤p + δρ≤p
and ξ = ξ≤ + δξ≤. These errors lead to a position error δx≤p of the end-effector.
The position error can be estimated by differentiating f≤(xp, ρ p, ξ) with respect to
all its parameters with the assumption of no singularity in the robot workspace [6].
Moreover, it is often complicated to obtain the exact model of a robot f≤. Thus the
modeling contains also errors εm that can be considered in the position error of the
end-effector:

δx≤p = Jp
ρ (xp, ρ p, ξ)δρ

≤
p + Jp

ξ (xp, ρ p, ξ)δξ
≤ (+εm) (2)

where Jp
ρ is the kinematic Jacobian matrix, and Jp

ξ is the identification Jacobian

matrix of pose p [8]. Note that both Jp
ρ and Jp

ξ are functions of all the parameters.
For clarity reasons, this dependency will be omitted in the following equations. From
(2) can be derived condition (C1):

(C1) Necessary accuracy of the kinematic parameters: Assuming a given
desired accuracy Δx f and accuracy of the joint coordinate sensor Δρ, then the
necessary accuracy δξnec of the kinematic parameters can be derived from (2) under
the assumption Δx f ≡ εm :
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≈xp ⊥W, abs(Jp
ξ )δξ

nec ≤ Δx f − abs(Jp
ρ )Δρ (3)

where abs(•) stands for a matrix whose terms are the absolute values of the considered
matrix, and W refers to the robot workspace. Note that the assumption Δx f ≡ εm

means that the modeling errors can be neglected compared to the desired accuracy.
This can be done by considering a model that contains all anticipated sources of
error, before decreasing its complexity in the implementation step [1, 7]. �

Thus, (3) gives an estimation of δξnec in the worst case, which is when each
δρ = ±Δρ and each δξ = ±δξnec: in this case, abs(Jp

ρ δρ + Jp
ξ δξ) = abs(Jp

ρ )Δρ +
abs(Jp

ξ )δξ
nec. However, matrices Jp

ξ and Jp
ρ are calculated with the non-exact values

ξ : a better estimation of δξnec can be obtained using interval analysis [5]. Another
point is that Jp

ξ is an n ×m matrix, with most of the time m > n, which yields to an
under-determined system of equations. So, several sets of δξnec satisfying (3) can be
chosen.

The second step of calibration is the identification process. From the kinematic
model, measurements are taken on the robot and the kinematic parameters are esti-
mated so that an objective function depending on both the measurements and the
model parameters is minimized. Let consider that all the m kinematic parameters
can be identified and that d measurements are taken for Np different poses of the
end-effector. A trivial condition for being able to perform calibration is:

(C2) Sufficient number of measurements: d.Np > m �
Each d-vector of exact measurements y≤p, with p = 1..Np , is then compared to

an estimation resulting from the kinematic model through the identification function
gp of pose p, ε p being a residual considering the modeling errors:

gp(y≤p, ρ≤p, ξ≤) = ε p (4)

Considering the measurement noises δy≤p and δρ≤p, with yp = y≤p + δy≤p, and the
parameter errors δξ≤, differentiating (4) with respect to all its parameters yields to:

gp(yp, ρ p, ξ) = ε p +Gp
y δy≤p +Gp

ρ δρ
≤
p +Gp

ξ δξ
≤ (5)

where matrices Gp
y , Gp

ρ and Gp
ξ all depend on the robot pose p. However, since

the exact values of δy≤p and δρ≤p are not known, the identification process is always
performed under the hypothesis that gp mostly depends on the variation δξ≤ of the
kinematic parameters. This hypothesis can be written as in (6) and yields to (C3).

≈p = 1..Np, abs(Gp
y δy≤p +Gp

ρ δρ
≤
p)⇒ abs(Gp

ξ δξ
≤) (6)

(C3) Necessary condition on measurement inaccuracy: Considering the max-
imal inaccuracy Δρ of the joint coordinates and the necessary accuracy of the kine-
matic parameters δξnec, (6) can be rewritten as:
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≈p = 1..Np, abs(Gp
y )Δymax + abs(Gp

ρ )Δρ < abs(Gp
ξ δξ

nec) (7)

with Δymax the maximal measurement inaccuracy, which enables to choose the
appropriate measurement device. �

Condition (C3) leads to an estimation ofΔymax in the worst case. If the obtained
value of Δymax is too strong, first another set of δξnec can be chosen accordingly to
(C1). Then, (7) has to be valid for the Np measurement configurations only. Thus,
the inequality of (7) can also be verified through a proper choice of the observability
matrices Gp

ξ . This property is well-known and has already been studied through

observability indexes [2, 9]. From (7), we can remark that analyzing Gp
y and Gp

ρ can
also be of prime interest.

With (C3), we obtain gp(yp, ρ p, ξ+δξ) ∩ gp(yp, ρ p, ξ)+Gp
ξ δξ , with δξ ⊆= δξ≤

since δξ considers the measurement noise, sensor inaccuracies and modeling errors.
The objective of identification is to find the best set of parameter errors δξ that mini-

mizes functions gp for p = 1..Np . Setting h =⎧Np
p=1 gT

p gp = gT g as the objective

function of identification, with g = [gT
1 . . . g

T
Np
]T , yields to the following normal

Eq. (8) at iteration j :

GT
ξ Gξ δξ

j+1 = GT
ξ g

⎪

⎛yp, ρ p, ξ +
j⎝

i=1

δξ i

⎞

⎠, with Gξ = [G1
ξ

T
. . .G

Np
ξ

T ]T (8)

An estimation of the kinematic parameters is given by ξ est = ξ +
⎧ jmax

i=1 δξ
i , jmax

being the number of the last iteration. Most of the time, the optimization algorithm
is stopped when the residual of h is under a certain threshold. The measurement
errors have to be considered in this threshold. However, in practice, this threshold is
manually adjusted to obtain the algorithm convergence and has no physical mean-
ings. From the above conditions, the necessary accuracy δξnec was derived. This
value considers the desired accuracy and can be reached by the identification algo-
rithm considering the measurement noise due to (C3). Thus, the stop criterion of
the optimization algorithm can be set as abs(δξ jmax) ≤ δξnec which is physically
meaningful.

However, results of identification also depend on the scaling of the identification
function g [4]. Thus, the developed conditions are necessary but not sufficient because
of observability issues. They will however be useful to define a physical bound for
the observability index O3 [9].

3 Observability Issues

In practice, even if the previous conditions of calibration are fulfilled, only k model
parameters among m can be identified, with k ≤ m, because some model parameter
errors δξ cannot be observed during identification. Such observability problems



A Sufficient Condition for Parameter Identifiability 135

depend on properties of the observability matrix Gξ . Three types of identifiability
problems can occur [4]: unidentifiable, weakly identifiable or identifiable only in
linear combination.

Non-Observability: It occurs when a kinematic parameter is not involved in the
identification function g. In this case, its corresponding column of Gξ is zero. If the
rank of GT

ξ Gξ is r , then m − r kinematic parameter errors are non-observable. This
phenomenon appears when measurements are only partial or when measurement
configurations do not involve all the kinematic parameters, and can be observed
with a QR-decomposition. A parameter whose variation is non-observable is called
non-identifiable.

Low-Observability: A model parameter is said to be low-identifiable if its cor-
responding column of Gξ is close to zero: an important variation of its value only
has small consequences on the identification function g, compared to the influence
of measurement and modeling errors. The identification of such a parameter often
leads to an important variation of its initial value and degrades the robustness of
calibration [4].

Linked-Observability: The linked-observability occurs when two or more para-
meter errors δξ appear in the normal equations only as a linear combination whose
variation is less than the measurement noise. Their corresponding columns of Gξ are
linearly related and only the linear combination of those parameters can be observed.
The linked-observability often appears for robot having a small workspace, or when
measures are not generic enough (with constant orientation for example).

Non-observability is very easy to check. In order to tackle low- and linked-
observability problems, observability indexes were proposed [9]. Those indexes are
based on properties of the singular values of the observability matrix Gξ . How-
ever, a proper scaling of this matrix is compulsory for a comparison of its singular
values [4]. A proper scaling of Gξ can be obtained due to the above developed
conditions of calibration. Let consider the worst case of observability during iden-
tification. This occurs when the parameter variation is minimum, that is δξnec, and
when the identification function g is highly noisy, that is δgmin = [δgT

1 ...δg
T
Np
]T

with δgp = abs(Gp
y )Δymax + abs(Gp

ρ )Δρ. Let define the scaling vectors Δξ i =
diag(δξnec)−1.δξ i and Δg = diag(δgmin)−1.g, where diag(x) stands for a matrix
whose diagonal is the vector x. Thus, in the worst case,Δξ i andΔg become vectors
whose terms are approximately equal to 1. The normal Eq. (8) can be written as:

HξΔξ
j+1 = Δg with Hξ = diag(δgmin)−1.Gξ .diag(δξnec) (9)

In this case, if a singular value σL of Hξ is under 1, the measurement noise
considered inΔg will be amplified, which may lead to a wrong estimation ofΔξ j+1.
So, the condition σL(Hξ ) ≥ 1 is sufficient to prevent observability issues. This
condition is related to the observability index O3 [9]. However, it will be seen in the
following example that this condition is sufficient but not necessary for observability.
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Fig. 1 The serial planar 2-bar mechanism and its kinematic parameter definition

4 Application Example

The 2-bar serial planar mechanism, presented in Fig. 1, consists of two bars of lengths
l1 and l2, actuated by two motors at anglesρ1 andρ2 from their initial posesρ0

1 andρ0
2 ,

respectively. The objective is to calibrate this serial manipulator considering measure-
ments xC of its end-effector in the measurement frame (O, x, y). The nominal (initial
guess) and real values of the kinematic parameters ξ = [xA, yA, l1, l2, ρ0

1 , ρ
0
2 ]T are

given in Fig. 1.
With vectors of the actuator positions ρ p = [ρ p

1 , ρ
p
2 ]T and end-effector locations

xp = [x p
C , y p

C ]T of pose p ⊥ W , the exact kinematic model f≤ can be written, with
α

p
1 = ρ p

1 + ρ0
1 , α p

2 = α p
1 + ρ p

2 + ρ0
2 , sα = sin(α), and cα = cos(α):

f≤(xp, ρ p, ξ) =
⎜

xA + l1cα p
1
+ l2cα p

2
− x p

C

yA + l1sα p
1
+ l2sα p

2
− y p

C

⎟

, which yields to: (10)

Jp
ρ =

⎜−l1sα p
1
− l2sα p

2
−l2sα p

2

l1cα p
1
+ l2cα p

2
l2cα p

2

⎟

, Jp
ξ =

⎜
1 0 cα p

1
cα p

2
−l1sα p

1
− l2sα p

2
−l2sα p

2

0 1 sα p
1

sα p
2

l1cα p
1
+ l2cα p

2
l2cα p

2

⎟

Considering the desired accuracy Δx f = [0.01m, 0.01m]T , the accuracy of
the actuator sensors Δρ = [0.01⇔, 0.01⇔]T , the allowed motor positions ρ1 and
ρ2 = ±90⇔, and setting that all the distance parameters (respectively the orientation
parameters) must have the same necessary accuracy δxnec (respectively δθnec), we
obtain from (C1): δxnec = 1mm and δθnec = 0.1⇔. These values allow to reachΔx f

over the entire robot workspace. The detailed calculus can be found in the Maple®

or Mathematica® worksheets of [10].
As for the number of measurements, (C2) gives Np ≥ 6. However, this is a lower

bound and the required number of measurements allowing good calibration results
is still an open issue. This number can be minimized through a proper choice of
the measurement configurations [2]. The number of measurements is not limited for
simulation. Thus, two cases will be studied: Np = 250 and Np = 20 configurations
randomly chosen in the measurement workspace.

Since measurements are directly the output xC of the mechanism, the identification
function gp of pose p can be chosen as the first row of the kinematic model f≤ of (10).
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Fig. 2 Choice of the necessary measurement accuracy as a function of the measurement workspace
and results of calibration for the 4 cases

This enables the matrices Gp
ρ and Gp

ξ to be equal to the first row of Jp
ρ and Jp

ξ respec-

tively, and Gp
y = [−1]. With those matrices, the last condition of calibration (C3) can

be derived. Thus, the accuracy of the measurement device can be chosen accordingly
to the measurement workspace as shown in Fig. 2. In this figure are plotted the curves
for ρ1 and ρ2 ⊥ [−π2 ; 0] for which (7) is exactly satisfied considering different val-
ues of the measurement device accuracy δy. Setting a measurement workspace such
as ρ1 and ρ2 ⊥ [−75⇔; 0], represented as a light-gray square in Fig. 2, a necessary
accuracy δynec of 3mm can be chosen from (C3).

Finally, calibration is performed using a least-square algorithm with normal equa-
tions of (9). Obviously, yA is non-identifiable since it does not appear in the iden-
tification function gp, and is removed from the set of identifiable parameters. For
4 different cases presented in Fig. 2, Np random poses are taken in the measure-
ment workspace. Considering the actuator sensor inaccuracies, the pose x p

C is calcu-
lated and a uniformly distributed measurement noise of ±δy is added. Calibration
is repeated 10 000 times and results are presented in Fig. 2 as the maximal obtained
inaccuracies ΔxC and ΔyC on the 100 verification poses, randomly taken in the
manipulator workspace W .

Case 1 is the ideal case: all conditions are fulfilled and the accuracyΔx f is reached
overW . Case 2 shows that (C3), the maximal measurement inaccuracy, is a necessary
condition to reachΔx f . Case 3 confirms the necessity to optimize the configurations
of measurement when decreasing their number Np. Finally, the linked-identifiability
issues are addressed in case 4: because of the small measurement workspace and
the measurement noise, xA, l1 and l2 appear in gp only as a linear combination and
cannot be properly identified. The average of the minimum singular values σL(Hξ )

of the last iteration is also given. Since identifiability is possible for cases 1 and
2, the physically meaningful bound for O3, σL(Hξ ) ≥ 1, seems to be a too strong
condition.
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5 Conclusion and Discussions

Necessary mathematical conditions were developed to ensure the quality of cali-
bration with respect to the final accuracy. According to those conditions, a physi-
cally meaningful stop criterion for the optimization algorithm can be derived. Those
conditions were illustrated on a simple serial example but also stand for parallel
manipulators.

The developed conditions also enable the calculus of a lower bound for the min-
imum singular value of the observability matrix, after a proper scaling. This bound
leads to a sufficient condition for observability but seems overestimated since it con-
siders the worst case. More studies are needed to derive the most appropriate formula
for this threshold. However, the developed scaled observability matrix must be of
prime interest for a proper choice of the configurations of measurement. In the same
field, (C3) shows that considering the sensitivity of the identification function to
measurement noise and sensor inaccuracy through matrices Gp

y and Gp
ρ must also

be of prime interest.
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An Improved Force Distribution Algorithm
for Over-Constrained Cable-Driven Parallel
Robots

Andreas Pott

Abstract In this paper we present an improved method to compute force distribu-
tions for cable-driven parallel robots. We modify the closed-from solution such that
the region where a solution is found is extended almost to the theoretical maximum,
i.e. the wrench-feasible workspace. At the same time continuity along trajectories
as well as real-time efficiency are maintained. The algorithm’s complexity and thus
the computational burden scales linearly in the number of redundant cables. There-
fore, the algorithm can also be used for highly redundant cable robots. The proposed
algorithm is compared to known methods and computational results are presented
based on the IPAnema prototype.

Keywords Cable-driven robots · Force distribution · Closed-form · Real-time

1 Introduction

Cable-driven parallel robots are a special kind of parallel manipulators where the
rigid struts are replaced by flexible elements. Many cable robots facilitate more cables
m than degrees-of-freedom n in order to withstand applied wrenches w in arbitrary
directions. Therefore, these robots are redundantly actuated and static or dynamic
balancing of the robots requires a distribution of actuator forces amongst the cables.
The force and torque equilibrium for cable robots is usually written in matrix form
as follows [13]
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ATf + w = 0 with 0 < fmin ◦ fi ◦ fmax, i ≤ [1,m], (1)

where the matrix AT is the pose dependent structure matrix or sometimes also called
wrench matrix, f are the forces in the cables, and fmin, fmax represent the minimum
and maximum feasible cable forces, respectively. The presented structure equations
also covers the dynamic case when using d’Alembert’s principle to add the inertial
forces to the applied wrench w. Computing force distributions for the cables e.g.
for control requires finding solutions to the structure equations above, where the
linear system is under-determined for the cable forces f . Therefore, infinitely many
solutions are consistent with the structure equations but these solutions are not neces-
sarily in the feasible region given by the bounds fmin, fmax. Given that such solution
exists the problem addressed in this paper is to efficently compute one solution that
is continuous along a trajectory of the robot’s mobile platform.

Different approaches were proposed in the literature to calculate force distribu-
tions, and each approach delivers force distributions with different characteristics
while requiring varying computational efforts:

• Gradient-based optimization using a p-norm for r > 1 (Verhoeven’s method) [13]
• Specialized optimization for p-norm with p = 4 [5]
• Constrainted l1-norm optimization [12]
• Minimizing p-norm with Dykstra method [6]
• Closed-form solution for p = 2 [11]
• Linear programming [1, 10]
• Quadratic programming for r = 2 [4] and for r = 0 [8]1

• Nonlinear programming [3]
• Barycentric approach [9] and improved implementations [7]
• Kernel method [13, p. 58] for r = 1
• Weighted sum of solution space vertices [3]
• Available wrench set [2]

A comparison of some force distribution methods and their properties is given in
Table 1. We briefly explain the properties listed in the head of the table. An algo-
rithm is said to be real-time capable if the computation time is reasonably short, the
worst-case computation time can be strictly bounded, and a real-time implementa-
tion was reported in the literature. Some iterative methods were successfully used
for computation in real-time although their worst-case computational time was not
determined. The force niveau may be choosen, e.g. the algorithm may aim at finding
minimal (lo), maximal (hi), average (mi), or any solution (any). Furthermore, there
might be a parameter (param) that allows to smoothly adjust the niveau of tension
between low and high. A couple of authors [11, 13] reported approaches that may fail
to find force distributions for special poses of the wrench-feasible workspace. Full
workspace coverage indicates that for every pose of the wrench-feasible workspace
a solution can be found. For some methods it is not known (n.a.) if they cover the
full workspace. An algorithm is said to provide continuity, if continuous trajectories

1 Li [8] only deals with the non redundant case r = 0, i.e. six cables and six degrees-of-freedom.
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Table 1 Comparison of the different methods to compute force distributions

Method Real-time
capable

Force niveau Workspace
coverage

Continuity Max.
redun-
dancy

Compu-
tational
speed

Linear
programming

no any yes no any fast

Quadratic
programming

yes hi,lo n.a. yes any medium

Gradient-based
optimization

no param no yes any medium

Dykstra no any yes no any slow
Closed-form yes any no yes any fast
Barycentric yes mi yes yes r = 2 fast
Weighted sum yes mi yes mostly any medium
Kernel method yes hi, mi, lo yes yes r = 1 fast
Available wrench

set
no hi, mi, lo yes no any slow

in the pose r,R as well as in the applied wrench w produce continuous trajectories
in the cable forces f , except for crossing a singularity. Some methods are limited
to a certain degree-of-redundancy r ◦ 0 either because they are specific or because
their implementation can hardly be generalized to arbitrary r . The evaluation of the
computational speed is problematic because it requires comparable implementations
which are not available for all methods reported in the literature. Anyway, it was tried
to set up a basic ranking taking into account how complex the underlying numerical
method is. For example, linear system solving is considered to be faster than invert-
ing a matrix, which in turn is faster than computing a singular value decomposition.
Designing a real-time system might become involved if an advanced numerical algo-
rithm such as advanced optimization or singular value decomposition shall be used.
This is due to lack of appropriate real-time capable implementations of the algorithm
although the algorithm is part of every state-of-the-art numerical toolbox. The com-
putational speed depends on the degree-of-redundancy in addition to the algorithm’s
complexity. For this assessment, a low degree-of-redundancy was assumed.

From the table it can be seen that no method is known that is real-time capable,
covers the full workspace, delivers continuous solution for control, and works for
robot with arbitrary degree-of-redundancy. In this paper, we propose an improved
variant of the closed-form method to overcome its shortcomings with respect to
workspace coverage while maintaining an acceptable computation time for usage in
a real-time controller.
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2 Improved Closed-Form Method

Lately, we developed a formula to compute a solution for the force distribution
problem in closed-form [11]. The basic idea of the method is to perform a coordinate
transformation to the medium feasible cable force fm = 1

2 (fmin + fmax). This also
changes parts of the optimization problem from constrained optimization to pure
minimization. The cable forces f can be computed as [11]

f = fm + fv = fm − A+T(w + ATfm), (2)

where AT and A+T are the structure matrix and its pseudo-inverse, respectively, and
w is the applied wrench. As discussed in [11] this formula might fail to provide a
feasible solution although such a solution exists, if the magnitude of the variable part
fv of the force distribution is in the range

1

2
fm ◦ |fv|2 ◦ 1

2

≡
m fm . (3)

If |fv|2 violate the upper limit no solution exists and if it is below the lower limit
the distribution is feasible. This undefined case occurs amongst others close to the
boarder of the wrench-feasible workspace, for robots with many redundant cables,
and for redundant robots in suspended configuration.

In the following, we propose to extend the method such that feasible force distrib-
utions are found in almost all cases where the original method fails.2 The closed-form
solution is guaranteed to fulfill the force equilibrium but may violate the force limits.
Thus, the following approach is proposed:

1. Equation (2) is used to compute an estimate for the force distribution. If this initial
guess already fulfills the cable force conditions we have the sought solution and
stop the algorithm.

2. Otherwise, let i be the cable with the largest force over (under) the maximum
(minimum) feasible cable force. If one moves from this distribution along the
spanning base of the structure matrix kernel one must cross the value where fi

reaches its maximum (minimum) feasible value.
3. Therefore, it is assumed3 that a feasible force distribution minimizing the 2-norm

can only be found if this cable force is fixed to its maximum (minimum) value fmax
( fmin). Using a constant value for cable force fi simplifies the force distribution
problem as follows

A≈Tf ≈ + w≈ = 0 with w≈ = fmax

[
AT

]

i
+ w,

(
w≈ = fmin

[
AT

]

i
+ w

)
,

(4)

2 In numerical studies some poses were found on the very boarder of the workspace where the
presented methods fails to find a solution.
3 Unfortunately, we have no formal proof that this holds true in general.
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where A≈T and f ≈ is the structure matrix and the cable forces vector with the i-
th column/element dropped, respectively. [AT]i denotes the i-th column of the
matrix AT. Thus, we have reduced the actuator redundancy r by one.

4. Now we compute the solution by recursively reducing the order and computing
the closed-form solution by going to step 1 until:

a. we find a feasible distribution,
b. the remaining degree-of-redundancy is negative r < 0, then no solution

exists,
c. Equation (3) proofs that no feasible solution exists because because the com-

puted force violates the right part of Eq. (3)

Therefore, we find the desired cable force distribution (if it exists) with at most r
evaluations of the closed-form formula (2).

3 Simulation Results and Computation Time

For the numerical examples we use the geometrical parameters of the cable robot
IPAnema 1 given in Table 2. To compare different algorithms for force distribution a
sample trajectory is used which is depicted in Fig. 1. The waypoints of the trajectory
are indicated by number 0 to 8 and the following plots with cable forces against time
have additional marks above the x-axis indicating the waypoints for better reference.
Position was linearly interpolated between the waypoints and the trajectory was
choosen such that the robot moves in different regions of the workspace and finally
crosses the boarder of the wrench-feasible workspace between waypoint 7 and 8.
The force limits were fmin = 1 and fmax = 10 N. Inertia effects of the platform were
neglected.

Figure 2a illustrates the proposed improved algorithms based on closed-form esti-
mation and correction for the remaining cables. From the diagram one can see that
the force distribution is continuous along the trajectory and the magnitude of the
forces are on a medium level. When approaching the boarder of the workspace (e.g.
between t = 10.0 s and t = 17.0 s) one or two cable forces reach the minimum cable
force and remain constant at the limit. It can be seen from the shape of the diagram

Table 2 IPAnema 1 nominal geometric parameters: platform vectors b and base vectors a

Cable i Base vector ai Platform vector bi

1 [−2.0, 1.5, 2.0]T [−0.06, 0.06, 0.0]T
2 [2.0, 1.5, 2.0]T [0.06, 0.06, 0.0]T
3 [2.0,−1.5, 2.0]T [0.06,−0.06, 0.0]T
4 [−2.0,−1.5, 2.0]T [−0.06,−0.06, 0.0]T
5 [−2.0, 1.5, 0.0]T [−0.06, 0.06, 0.0]T
6 [2.0, 1.5, 0.0]T [0.06, 0.06, 0.0]T
7 [2.0,−1.5, 0.0]T [0.06,−0.06, 0.0]T
8 [−2.0,−1.5, 0.0]T [−0.06,−0.06, 0.0]T
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Fig. 1 Test trajectory used for the evaluation

0 1 2 3 4 5 6 7 8

weighted sum

Dykstra

advanced closed-form

closed-form

(a) (b)

(c) (d)

Fig. 2 Comparison of different methods to compute the force distribution. a Improved closed-form,
b Closed-form solution, c Dykstra method, d Comparison of different methods

that the cable forces quickly increase after leaving the workspace. Anyway, the force
distributions remain continuous after crossing the boarder of the workspace.

In Fig. 2b the force distribution is shown for the original closed-form method
for comparison. When the platform remains in the inner region of the workspace
the results match the force distributions computed with the correction technique.
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Table 3 Comparison of computation time on an Intel Core i5-3320M 2.6 GHz,Visual C++ 2010

Algorithm Calculation time (ms) Relative time (%) Evaluations per ms

Closed-form 1,173 100 293
Advanced closed-form 3,359 286 102
Dykstra 71,612 6,103 5
Weighted sum 48,512 4,134 7

Close to the boarder of the workspace the closed-form formula fail to compute force
distributions although such distributions exist as it can be seen between waypoint 2
and 5 and also between 7 and 8, where the closed-form solution is not able to prevent
some cables from violating the lower force limits.

Cable forces computed with the Dykstra methods are presented in Fig. 2c. It
can be observed for the Dykstra method that some cable forces get limited to the
minimal values when the boarder of the workspace is approached. After crossing
the workspace board between waypoint 7 and 8 force distributions computed with
Dykstra show a different behaviour compared to the proposed scheme.

In Fig. 2d the computed forces for the first cable f1 is compared for different
methods. Some methods like the uncorrected weighted sum method do not even
provide continuous shapes for the forces which becomes evident between waypoint
0 and 2. Other methods show discrete steps at certain points on the trajectory.

A comparison of the computation time is difficult because the computation time is
influenced by the maturity of the implementation as well as the underlying numerical
algorithms, the used compiler, the CPU of the real-time system, and the operating sys-
tem. In the performance test presented here, four algorithms were used for workspace
computation with around 344,000 evaluations on an Intel Core i5-3320M. As an esti-
mate some numbers are given in Table 3. The table lists both absolute and relative
computation time to allow for comparison amongst the algorithms as well as to
present an estimate on the usability in a real-time controller. As expected the closed-
form solution works faster than its improved version but the difference is comparibly
small. The performance advantages of the presented method over the iterative Dyk-
stra method and over the exhausive search of weighted-sum method can be explained
by the more efficient search strategy. Each iteration step of the advanved close-form
method is used to fix at least one component in force vector. Both closed-form meth-
ods allow for many evaluations based on a controller cycle time of 1 ms and their
implementations only requires matrix multiplication and solving of a linear system.

4 Conclusions

In this paper we proposed an improved algorithm to compute force distributions
for over-constrained cable-driven parallel robot under real-time requirements. The
improved version overcomes a major drawback of the closed-form solution, i.e. that
the algorithm failed to find force distributions especially close to the boarder of the
workspace. The improved algorithm is still applicable for robots with a large number
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of cables. Although the computational time of the presented algorithm is now linear
in the number of redundant cables it still provides a solution for highly redundant
cable robots in reasonable time.
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Abstract Many situations in Robotics require an effective analysis of the motions of
a closed-chain mechanism. Despite appearing very often in practice (e.g. in parallel
manipulators, reconfigurable robots, or molecular compounds), there is a lack of
general tools to effectively analyze the complex configuration spaces of such systems.
This paper describes the CUIK suite, an open-source toolbox for motion analysis of
general closed-chain mechanisms. The package can determine the motion range of
the whole mechanism or of some of its parts, detect singular configurations leading to
control or dexterity issues, or find collision- and singularity-free paths between given
configurations. The toolbox is the result of several years of research and development
within the Kinematics and Robot Design group at IRI, Barcelona, and is available
under GPLv3 license from http://www.iri.upc.edu/cuik.
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1 Introduction

The notion of configuration space (C-space) is fundamental in Robotics. It allows
designing motion planning algorithms for broadly-defined classes of robots or mech-
anisms, without worrying about their particular geometry or multibody structure. In
most Robotics textbooks, this notion is introduced for open-chain mechanisms, where
the C-space has an explicit global parametrization. In this way, C-spaces are readily
understood and algorithms operating on them can be readily defined. In many cases,
however, the C-space can have a more intricate structure, and its analysis is by no
means trivial. This is the case of parallel manipulators, reconfigurable mechanisms,
or robots working under geometric or contact constraints, but similar problems arise
when exploring the motions of a protein, or when assembling parts using spatial
constraints. Common to these problems is the fact that the feasible configurations
are implicitly defined by a nonlinear system of equations

F(x) = 0, (1)

and the goal is to understand the motion capabilities of the mechanism by analyzing
the solution set C of this system.

In an extreme case, C is composed of isolated points only. This is what happens
when solving forward or inverse kinematics problems in robot manipulators. Histor-
ically, the preferred approach has been to tackle these problems by reducing Eq. (1)
to a resultant polynomial, and then solving this polynomial using well-established
methods for the univariate case. However, this approach may introduce extraneous
roots, and the degree of the resultant grows rapidly with the size and complexity of
the mechanism. The CUIK suite circumvents these issues by adopting an opposite
approach. Instead of reducing Eq. (1) to a univariate polynomial, we formulate it as
a larger system involving linear and quadratic equations. This allows the application
of an efficient branch-and-prune technique to fully isolate C at the desired accuracy.
In comparison to general toolboxes for polynomial constraint solving [12, 24], the
CUIK suite sacrifices generality to gain simplicity and efficiency in the implemen-
tation. Opposite to [24], moreover, it directly isolates the real roots instead of the
complex ones, even if they form positive-dimensional sets.

Branch-and-prune methods are exhaustive, which broadens their range of applica-
bility, but in problems such as path planning, it may be sufficient to explore only
those configurations that are path-connected to a given point. To this end, the CUIK
suite implements higher-dimensional continuation tools allowing to trace arbitrary,
implicitly-defined manifolds [6]. Note that while several packages provide state-of-
the-art path planning methods, they are oriented to open-chain robots [11, 21–23],
or to particular classes of closed-chain devices [10]. The CUIK suite complements
these packages by providing new methods to deal with the general closed-chain case.

The rest of the paper describes the numerical methods implemented in the toolbox,
and the several higher-level algorithms relying on them.
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Fig. 1 Assembly constraints for planar pairs. In the equations, r j is the position of F j relative to
F1, R j is the rotation matrix of angle θ j , j pi is the position of Pi in F j , and k di provides di in the
basis of Fk . R j = R · Rk in the prismatic joint, where R is a constant rotation matrix

2 Branch-and-Prune Methods

Branch-and-prune methods solve Eq. (1) by refining successive box approximations
of C. We outline them for planar mechanisms, but general spatial mechanisms can
also be treated with the proper extensions [16].

Initially, the kinematic equations must be formulated in a form allowing simple
pruning operations. In our case we depart from the formulation in Fig. 1, which leads
to polynomial equations of a simple form with little manipulation. If Ji is a revolute
joint connecting links L j and Lk , the assembly constraint is equivalent to imposing
the coincidence of two points on the axis of the joint, Pi and Qi , respectively fixed
to L j and Lk . If Ji is prismatic, we further define a unit vector aligned with the joint,
di , and force Pi to lie on the line of Lk defined by Qi and di , fixing the orientation
of L j relative to Lk . By assigning a reference frame F j to every link L j , and taking
F1 to be the absolute frame, these conditions can then be written as shown in the
bottom of the figure.

The resulting equations can be algebraized by performing the term substitutions
s j = sin θ j and c j = cos θ j , and introducing the equations s2

j + c2
j = 1, which leads

to a formulation of Eq. (1) in which the scalar equations are either linear in x, or take
one of the forms xk = xi x j or xk = x2

i . It is easy to see that the variables in x can
only take values within prescribed intervals, so that one can define an initial box B
bounding the location of all solutions of Eq. (1) from the Cartesian product of such
intervals.

The algorithm for solving Eq. (1) iteratively removes portions of B that contain
no solution. To this end, we use the linear equations in Eq. (1), and linearly-relaxed
versions of the equations xk = xi x j and xk = x2

i (Fig. 2a), in order to define a
polytopeP bounding the solution set withinB. This box is then reduced by computing
the smallest axis-aligned orthotope circumscribing P , using the Simplex method.
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(a) (b)
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Fig. 2 a A linear relaxation is a collection of half-spaces bounding the graph of a given equation
within the box B of interest. The figure shows a relaxation of xk = x2

i involving three half-spaces.
b Progression of the branch-and-prune method on a one-dimensional C-space

The process is repeated until (1) the box is either reduced to an empty set, in which
case it contains no solution, or (2) it is sufficiently small, in which case it is returned
as a solution box, or (3) it cannot be further reduced, in which case it is bisected into
two sub-boxes. The whole process is recursively applied to the new sub-boxes, until
a fine-enough box approximation of the solution set is finally obtained (Fig. 2b).

The tools of the CUIK suite automate the previous process. They obtain the equa-
tions from a high-level file describing the mechanism, compute the solutions in single-
or multiple-CPU machines, and allow the visualization of the results by producing
2- or 3-dimensional plots. The operations involving ranges are implemented using
interval arithmetic, and the Simplex program outputs are adjusted in order not to lose
solutions. The example in Fig. 3 is simple, but the tools have proved successful in
analysing the C-spaces of general 6R robots and Stewart platforms [16], multiloop
molecules [17], robot hands with contact constraints [20], or complex multi-loop
linkages like the one in Fig. 3. To compare, resultant methods in the plane are finding
their limit in mechanisms of much smaller size [18].

C-spaces of robotic systems typically exhibit singularity subsets. These are loci of
critical configurations where control or dexterity losses arise, leading to malfunction
or a breakage of the structure [25]. These loci provide the boundaries of the task and
joint workspaces too, and all possible motion barriers within them [3]. By adequately
defining the equations passed to the solver, the CUIK suite can isolate any of such loci
[2, 3, 5], becoming the first general tool able to do so, up to the authors’ knowledge.

3 Continuation Methods

Continuation methods generate atlases of the C-space region that is path connected
to a given point. To see how such atlases are constructed, let xi be an initial point in
C. The tangent space of C at xi , Ti , can be parametrized by

xi
j = xi +�i u, (2)
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Fig. 3 Top The rigid wheel linkage on the left involves 10 loops. For the shown bar lengths, the tools
of the CUIK suite determine that it can be assembled into 19 different configurations, including
the four ones shown herein. Bottom The C-space of the wheel linkage with one bar removed, as
computed by the mentioned tools. The C-space involves one isolated point and 15 one-dimensional
components, which are here projected onto the sines of two link angles. A resultant polynomial
describing such curve is expected to be of a very high degree

xi
xi

j

u

x j

(a) (b)
i

Fig. 4 a A chart is used to obtain new C-space points by projecting points from the tangent space.
b Progress of the atlas construction method on a manifold. Red polygons represent the charts to be
extended in subsequent iterations

where �i is a matrix providing an orthonormal basis of Ti , and u is a parameter
vector with the same dimension as C. By choosing a value for u in Eq. (2) we obtain
a point xi

j ◦ Ti , which can be projected down to C by solving the system formed

by F(x j ) = 0 and �≤i (x j − xi
j ) = 0, which provides the point x j ◦ C lying in

the normal line through xi
j (Fig. 4a). The point x j is then used to define a new chart

that is coordinated with the previous chart, and the process is iterated until the whole
component of C reachable from xi gets fully covered (Fig. 4b). The construction of a



152 J. M. Porta et al.

0 50 100 150

500

550

600

Steps

kc
al

/m
ol

Fig. 5 A low-cost path (in blue) computed in the conformational space of a loop of the FTSJ
protein of Escherichia Coli (in ribbon diagram on the right). The cost is the potential energy of each
conformation. The insets show the initial conformation, the transition state (i.e., the conformation
with the highest potential energy along the path), and the final conformation. Only the atoms in the
loop are shown in such conformations. The plot shows the energy profile along the transition path

whole atlas is typically fast in 1- or 2-dimensional C-spaces, which allows tackling
difficult optimization problems involving large multibody systems [19].

To solve path planning problems, the CUIK suite exploits the fact that an atlas
defines a roadmap in configuration space, whose nodes are located at the chart cen-
ters, and whose edges are given by the collision-free transitions between neighboring
charts. The roadmap can be used to resolve multiple planning queries between dif-
ferent configurations. However, for cases where only one query needs to be resolved,
the suite provides a method to construct only the charts required to define a short path
between the given configurations [15]. Based on this tool, singularity-free, resolution-
complete path planners for general closed-chain [1] and cable-driven manipulators
[4] have been developed, solving problems with no prior satisfactory solution.

Resolution-complete strategies can be inefficient in cluttered environments, and
they do not scale gracefully to higher dimensions. To avoid these weaknesses, the
CUIK suite implements a sampling method where a partial atlas is used to extend a
rapidly-exploring random tree (RRT), which in turn is exploited to decide extension
directions for the atlas [9]. Using this technique it is possible to solve problems in
pretty high dimensions in a few seconds. Although the paths generated with RRT-
like algorithms are typically jerky, the CUIK suite provides procedures to smooth
them, and to generate near-optimal paths when there is a cost function defined over
the C-space. If the cost is defined for each configuration, the suite implements an
extended version of the T-RRT algorithm in [7]. For instance, Fig. 5 shows a low cost
path computed by this method in the case of a short loop of a protein [14]. If the cost
is associated with the length of the path, the suite adapts the RRT* asymptotically-
optimal path planner to the case of implicitly-defined C-spaces [8].
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4 Conclusions

This paper has described the CUIK suite, a comprehensive set of tools to analyze
configuration spaces implicitly defined by systems of kinematic equations. We pro-
vided a brief account of the implemented techniques and their possible applications.
Since problems involving kinematic constraints are ubiquitous in Robotics, the suite
may potentially be used to address many other problems beyond those described in
the paper, in contexts like robot positioning and mapping [13], motion analysis and
synthesis of robot formations, tensegrity or deployable structures, or programmable
surfaces, to name a few. The suite is an open source package under continuous devel-
opment, and we invite the community to use it, and to help us improve it by sending
feedback and suggestions.
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Spherical Parallel Mechanism with Variable
Target Point

Yukio Takeda, Tsuyoshi Ikeda and Daisuke Matsuura

Abstract This paper proposes a position-orientation decoupled parallel mechanism
with five degrees of freedom, in which rotational motion of the output link around
two axes is controlled by two inputs while translational motion of the target point,
the center of rotation of the output link, is controlled by the other three inputs. This
mechanism is composed of three connecting chains; one for controlling the position
of the target point and two for generating rotational output motion. Conditions of
kinematic structures of these chains are discussed and a concrete mechanism is
shown. Inverse displacement analysis and Jacobian analysis of this mechanism are
carried out to confirm its decoupled feature without encountering the singular point.

Keywords Kinematics · Spherical parallel mechanism · Structural synthesis ·
Position-orientation decoupled mechanism · Displacement analysis · Singularities

1 Introduction

There are a lot of operations that require precise rotational output motion around
two or three axes while the position of the rotation center being changed in a three
dimensional space. As such examples, minimum invasive surgery under laparoscope
and manufacturing of femoral head of prostheses done by robots are illustrated in
Fig. 1. We consider a robot mechanism for such applications. In both cases, the
actuators should be remotely located from the operation area in order that they
would be protected from the working environment. From the safety point of view, the
moving part of the mechanism should be as light as possible. Parallel mechanism is
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F. Thomas and A. Pérez Gracia (eds.), Computational Kinematics, 155
Mechanisms and Machine Science 15, DOI: 10.1007/978-94-007-7214-4_18,
© Springer Science+Business Media Dordrecht 2014



156 Y. Takeda et al.

(a) (b)

a b

Fig. 1 Target applications. a Minimum invasive surgery. b Manufacturing of prostheses

considered to be one of the most appropriate candidates for such robot mechanisms,
because all the actuators can be located on or close to the base and accurate motion
can be achieved even under heavy load condition.

There are a lot of articles regarding kinematic analysis and synthesis of pure-
rotational/spherical parallel mechanisms [1, 3, 12, 15]. However, there are a few arti-
cles [11, 20] in which design method or proposition of kinematic structure enabling
variable position of the center of output rotation in such mechanisms have been
discussed. Taking into consideration the simplicity of the control system, position-
orientation decoupled parallel mechanism is considered to be one of the optimal
choices. In literature, several position-orientation decoupled parallel mechanisms
with six degrees of freedom (DOF) having symmetrical structure have been pro-
posed [4, 5, 10, 13, 16, 18]. However, there are a few articles in which mechanisms
with asymmetrical structure have been considered [2, 19]. Asymmetrical three-DOF
rotational-translational parallel mechanisms [14] and parallel mechanisms generat-
ing three-DOF finite translation and two-DOF infinite rotation [9] have been figured
out. In the present paper, we propose an asymmetrical position-orientation decoupled
parallel mechanism with five DOF. In our previous work, an asymmetrical rotational
parallel mechanism has been developed that can perform rotational output motion
around two axes and fine translational motion to compensate for position error of
the target point, the center of rotation of the output link. However, the actuators for
changing the target point’s position were located on the output link [11].

The present paper is organized as follows. In Sect. 2, a basic structure of SPMVTP
(Spherical Parallel Mechanism with Variable Target Point), one of the asymmetrical
position-orientation decoupled parallel mechanisms, is proposed. In Sect. 3, a kine-
matic structure of SPMVTP is clarified in which translational and rotational output
motions are fully decoupled, and its inverse displacement analysis is discussed. In
Sect. 4, a numerical example is shown and the effectiveness of the mechanism is
discussed.
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2 Basic Structure of SPMVTP

2.1 Mechanism Configuration

Figure 2 shows the basic structure of SPMVTP which is composed of a target point
controlling chain (TPC) and two rotational motion generating chains (RMC). In
the figure, quadrangular prism and cylinder represent prismatic and revolute joints,
respectively. A circle represents a joint with a single DOF of arbitrary type. Types of
these joints represented by circles and their axis directions determine the kinematic
structure of SPMVTP. The unit vector w j,i gives the direction either of the rotational
motion if J j,i is a revolute joint or of the translational motion if J j,i is a prismatic
joint, where J j,i denotes the j-th joint of the i-th chain.

TPC is composed of two passive revolute joints and a translational mechanism with
three DOF. In the figure, a serial chain with three active prismatic joints (J1,1 ∼ J3,1)
is shown as the translational mechanism. The two revolute joints meet at a point P,
which is the center of the rotation of the output link, called hereafter “target point”.
The translational mechanism determines the position of the target point.

RMC is a serial chain with five passive joints (J2,i ∼ J6,i ; i = 2, 3) and an active
joint (J1,i ). Rotational motion around an axis and full translational motion of the
output link is constrained by fixing all active joints in TPC. To completely constrain
the motion of the output link when all active joints of RMC as well as TPC are
fixed, a rotational motion around an axis should be constrained by fixing the active
joint of each RMC. In addition to this, the total three constraints with respect to the
rotational motion should be linearly independent in order to avoid singularity. Kine-
matic structures satisfying these conditions are candidates for SPMVTP, in which an
output motion composed of three-DOF translational motion and two-DOF rotational
motion can be controlled by the five active joints.

Fig. 2 Basic composition of
SPMVTP TPC

RMC-1

RMC-2

w1,1

w2,1

w4,1

w5,1

w3,1

P

Base

Output Link
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2.2 Velocity Relationship

For SPMVTP which satisfies with the conditions mentioned in the previous subsec-
tion, relationship between the input velocity and output velocity is derived. Input

velocity is denoted as [θ̇T
q̇T ] (θ̇ = [θ̇1,2 θ̇1,3 0]T , q̇ = [q̇1,1 q̇2,1 q̇3,1]T )

where the velocity of J j,i is denoted by θ̇ j,i (revolute joint) or by q̇ j,i (prismatic
joint) of RMCs (i = 2, 3) and of TPC (i = 1), respectively. Output velocity is
denoted as [ωT

PvT
P ]T where ωP and vP represent the angular velocity and the velocity

at P of the output link, respectively. Relationship between the input velocity and
output velocity is written as

JT

⎧
ωP

vP

⎪
=

⎧
JA JB

0 JC

⎪ ⎧
ωP

vP

⎪
=

⎧
θ̇

q̇

⎪
(1)

where

JA =

⎛

⎝⎝⎝
⎞

m̂T
2

m̂T
2 ω̂1,2+f̂T

2 v̂1,2
m̂T

3

m̂T
3 ω̂1,3+f̂T

3 v̂1,3

(w4,1 × w5,1)
T

⎠

⎜⎜⎜
⎟

, JB =

⎛

⎝⎝⎝
⎞

f̂T
2

m̂T
2 ω̂1,2+f̂T

2 v̂1,2

f̂T
3

m̂T
3 ω̂1,3+f̂T

3 v̂1,3

03

⎠

⎜⎜⎜
⎟

, JC =
⎛

⎞
wT

1,1
wT

2,1
wT

3,1

⎠

⎟ , (2)

respectively. S1,i = [ω̂T
1,i v̂

T
1,i ]T(i = 2, 3) and SRA,i = [f̂T

i m̂T
i ]T(i = 2, 3) represent

the joint screw of the active joint and the constraint wrench imposed by fixing the
active joint of RMC, respectively.

Equations for forward velocity calculation is obtained as

ωP = J−1
A (θ̇ − JB J−1

C q̇)

vP = J−1
C q̇

⎦
. (3)

It is known from the equation that input motion of RMC generates pure rotational
motion while input motion of TPC generates rotational motion coupled with transla-
tional motion of the output link. This means that rotational output motion is decoupled
from translational motion in SPMVTP regardless of the kinematic structure of RMC.

3 Structure of Fully Decoupled SPMVTP

3.1 Kinematic Structure of RMC

Let us consider a case of JB = 0 in Eq. (1). In such a case, the velocity equation
becomes
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Fig. 3 An example of fully decoupled SPMVTP

ωP = J−1
A θ̇

vP = J−1
C q̇

⎦
. (4)

Mechanisms satisfying this condition are called fully decoupled SPMVTP. In
this section, its kinematic structure is investigated. Singularity of fully decoupled
SPMVTP can be investigated by the determinants of sub-matrices JA and JC. If the
kinematic structure of TPC shown in Fig. 2 is employed, det JC is always one. In
what follows, the singularity defined as det JA = 0 will be considered.

From Eq. (1), constraint screw of RMC with its active joint fixed for fully decou-
pled SPMVTP should be in the form of SRA,i = [0T m̂T

i ]T(i = 2, 3). This means
that thanks to the constraint imposed by the two RMCs with their inputs being fixed,
the orientation of the output link does not change by the input motion of TPC for
changing the position of target point.

Starting from the kinematic structures for translational parallel mechanism (TPM)
with three serial connecting chains, we figured out kinematic structures of RMC for
fully decoupled SPMVTP. The structural conditions for the connecting chain of TPM
are summarized in [7, 8, 17]. Kinematic structures of RMC for fully decoupled
SPMVTP can be obtained by adding a revolute joint at the base to the kinematic
chains for TPM so that the conditions for connecting chain of TPM are satisfied even
when the added revolute joint is arbitrarily positioned.

An example of fully decoupled SPMVTP is shown in Fig. 3 in which six revolute
joints are used as RMC. Kinematic structure and dimensions of RMC should be
determined so that the following conditions are satisfied.

1. The axes of the revolute joints w2,i to w4,i should be parallel.
2. The axes of the revolute joints w5,i and w6,i should be parallel while the axes of

joints w4,i and w5,i should not be parallel.
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Fig. 4 Definition of kinematic constants. a Location of joints on base. b Location of joints on
output link. c Location of revolute joints of TPC. d Location of revolute joints of RMC

3. The axes of the revolute joints w1,i and w2,i should not be parallel to avoid
architectural singularity of RMC [6]

4. Rank of the Jacobian matrix with respect to RMC as a serial chain should be 6.
5. Rank of the sub-matrix JA should be 3.

The orientation angles (θy, θz, ψ) shown in Fig. 3 are used to represent the ori-
entation of the output link. The kinematic constants are defined as shown in Fig. 4.
Other kinematic constants are defined using DH parameters (a, d, α and θ are link
length, offset length, twist angle, and rotation angle, respectively).

3.2 Inverse Displacement Analysis of SPMVTP

Pose (position of P and orientation) of the output link is represented by a 4 × 4
transformation matrix TP as

TP =
⎧

1 0 0 0
p R

⎪
(5)

where p and R = [ex ey ez]T are the position vector of P and the 3 × 3 rotation
matrix representing the orientation, respectively. Transformation matrix can be writ-
ten as a function of kinematic constants and joint variables of each chain. Those
with respect to TPC and RMCs are denoted as TP,TPC and TP,RMC,i , respectively.
Inverse displacement analysis of SPMVTP is defined as a problem to solve the fol-
lowing equation with respect to θ1,i and q j,1(i = 2, 3; j = 1, 2, 3) for a given pose
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(XP, YP, ZP, θy, θz).

TP = TP,TPC = TP,RMC,i (i = 2, 3) (6)

However, since SPMVTP is a mechanism with five DOF, TP is not fully defined by
the given output pose. Then, the following procedure for the inverse displace-ment
analysis of SPMVTP has been developed.

1. Since ez is a function of θy and θz , passive joint displacements of TPC θ4,1 and
θ5,1 can be obtained by solving ez = ez,TPC. There are two solutions.

2. Input displacements q j,1( j = 1, 2, 3) can be uniquely obtained from

p =
3∑

j=1

q j,1w j,1. (7)

3. TP can be fully determined by TP,TPC → TP using the results of steps 1 and 2.
4. Solutions of θ1,i (i = 2, 3) can be obtained by solving TP = TP,RMC,i . There are

eight real solutions at maximum for each RMC.

4 Numerical Example

For a mechanism with kinematic constants shown in Table 1, inverse displacement
analysis has been done following the procedure described in the previous section.
Results for the following two cases of the output motion are shown in Fig. 5.

1. (XP, YP, ZP) = (0, 0, 130)[mm], θy = 30◦, θz = [0 : 360]◦

2. XP = [−20 : 20][mm], (YP, ZP) = (0, 130)[mm], θy = 30◦, θz = 0

Table 1 Kinematic constants of mechanism

Symbols Values Symbols Values Symbols Values

lP 6.84 mm βB,3 135◦ d1,i 50 mm
b1 60 mm βP,2 45◦ a2,i 50 mm
α3,1 90◦ βP,3 225◦ a3,i 60 mm
d4,1 60 mm bi 110 mm a4,i 10 mm
α4,1 90◦ α0,i 45◦ a5,i 40 mm
γ1 20◦ θ0,i 270◦ γi 30◦
βB,2 135◦ a1,i 0 mm ri 35 mm
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(a) (b)

Fig. 5 Input displacement of RMC and det JA a case-I, b case-II

In these figures, determinant of the sub-matrix JA is also shown. From the figures, it
is known that the proposed mechanism can achieve a fully-decoupled output motion
without encountering singularity.

5 Conclusions

In the present paper, an asymmetrical five-DOF fully-decoupled parallel mechanism
has been proposed and its kinematic study has been carried out. Our conclusions are
summarized as follows.

1. A kinematic structure of spherical parallel mechanism with variable target point,
which is composed of a target point controlling chain and two rotational motion
generating chains, has been figured out.

2. A procedure for inverse displacement analysis of the mechanism has been clari-
fied.

3. Effectiveness of the mechanism has been confirmed through a numerical example
of inverse displacement analysis with a check of singularity.
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A Blend of Delassus Four-Bar Linkages

Chung-Ching Lee and Jacques M. Hervé

Abstract In 1922, Delassus found out three four-bar linkages with four parallel heli-
cal H pairs whose one-degree-of-freedom mobility is conditioned by equalities of bar
lengths. Our paper establishes that these linkages are not independent. Two isosceles
triangle HHHPs are hybridized to obtain the Delassus 4H rhomboid (kite) linkage.
Using an auxiliary chain whose mobility is explained by a group of Schoenflies
motions and a Delassus 4H parallelogram, the Delassus 4H crossed parallelogram
is newly derived from this rhomboid. It is further verified that the isosceles triangle
and the Delassus parallelogram are two basic linkages and that the rhomboid and the
crossed parallelogram stem from them. Finally, a blend of Delassus 4-bar linkages is
proposed and can be used as a basic building block (BBK) for deployable structures.
Two examples of deployable linkages with four and six BBKs are introduced.

Keywords Delassus linkage · Isosceles triangle · Rhomboid · Parallelogram ·
Schoenflies motion · Deployable linkage.

1 Introduction

Seeking after all the four-bar linkages implementing lower pairs, Delassus [1] dis-
criminated two main categories of mobility, namely ordinary (ordinaire in French)
and singular mobility. In four-bar linkages, the Degree of Freedom (DoF) may be
not modified if a link is cut in two parts which are welded after a relative motion of
the parts. When any cut-and-weld operation does not alter the mobility, all the rela-
tive motions are subsets of only one subgroup of the rigid-body displacement group
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and the linkages are “trivial” (or banal) chains in the classification by displacement
subgroups [2]. In exceptional chains, the effect of a cut-and-weld operation depends
on the choice of the link. In “singular” linkages of Delassus, the mobility is affected
by a cut-and-welding of any one of its four links. The singular chains of Delassus are
qualified as paradoxical. The paradoxical mobility is subject to geometric conditions
that require the use of the Euclidean metric [3]. In trivial and exceptional chains, only
concepts of 3D affine geometry are sufficient to stipulate the geometric constraints
so the Euclidean metric is not necessarily employed.

Page 304 in Delassus’ paper [1] summarizes the findings that there exist only five
singular four-bar chains with one-DoF finite mobility. They are

1. The rhomboid (deltoid or kite) with parallel screw pairs at its four vertices; the
pitches of the screws located on the diagonal axis are equal to each other and are
equal to the arithmetic mean of the remaining two. If hi (i = 1, 2, 3, 4) denote
the pitches, we have: h1 = h3 = (h2 + h4)/2.

2. The parallelogram with four parallel screws; the sums of pitches of diagonally
opposite screws are equal: h1 + h3 = h2 + h4.

3. The crossed parallelogram with four parallel screws; the pitches of alternate
screws are equal: h1 = h3 and h2 = h4.

4. Two parallel screws with equal pitches and two rectilinear sliding pairs bilaterally
symmetric with respect to the plane containing the screw axes.

5. The Bennett linkage.

The first four Delassus linkages implement helical H pairs (or screws) with parallel
axes. Hereinafter, they are called Delassus four-bar linkages. The relative motions
between the links are 1-DoF motions included in the 4-D subgroup of Schoenflies
motions whose axis direction is parallel to the screw axes. The 1-DoF mobility is
subject to geometric conditions that imply scalar equation tying the link lengths and
the pitches of screw pairs. The last one is the only movable four-revolute chain with
non-parallel and non-intersecting revolute (R) joint axes. It was first discovered by
G. T. Bennett in 1903 [4] and E. Borel [5] also found it independently only one year
later. This linkage and the fourth one are beyond the scope of our article and we
focus just on the first three chains.

It is worth mentioning that recently a new paradoxical four-bar linkage was dis-
closed in [6]. It is an isosceles triangle of structural type HHHP. The H pairs have
parallel axes; the two HH links have equal lengths and the prismatic P pair is parallel
to the triangle side with a variable length. The three H pitches satisfy the equality
h1 + h3 = 2h2. In this HHHP chain, a relative motion is a helical Cardan motion as
explained in [7].

We notice that the 1-DoF mobility in the 4H rhomboid and the 4H crossed paral-
lelogram is conditioned by two equalities of H pitches whereas the 4H parallelogram
and the HHHP isosceles triangle have to satisfy only one pitch equality. In what fol-
lows, we will show that the two 4H linkages with two pitch equalities can be derived
from the isosceles triangle and the parallelogram with one pitch equality.

Firstly, we hybridize two isosceles triangle HHHP linkages to obtain the rhomboid
(kite) 4H linkage. Secondly, in the rhomboid 4H loop, we add two links to form a
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second loop, which is a special Delassus parallelogram. The third loop appearing in
the combination is the general crossed parallelogram of Delassus. In a similar way,
we can construct a second crossed parallelogram. Finally, we obtain a blend of four-
bars linkages with paradoxical 1-DoF mobility. Actually, the blend of two rhomboids
produces a basic building block, which can be used as a module to construct complex
deployable structures.

2 Isosceles Triangle HHHP Linkage and Its Helical Cardan
Motion

In an isosceles triangle HHHP linkage, the three pitches are tied by one scalar equality,
namely h1+h3 = 2h2. Hence, each of the three pitches is a function of two indepen-
dent numbers. It is convenient to adopt the numbers p and q to verify h1 = q + p,
h2 = q+ p/2 and h3 = q◦ h1 = q+ p, h1−h3 = p and 2h2 = 2q+ p. Using the
numbers p and q provides a concise classification of the types of isosceles triangles.
When p = 0, the three H pitches are equal and the 1-DoF mobility of the HHHP
linkage is not conditioned by the equality of the two HH link lengths; in other words,
the triangle is not necessarily isosceles. Therefore, the paradoxical mobility which
is assumed in the paper implies p ≤= 0 and q can have any value.

When p = q = 0, the H pairs are revolute R pairs and the corresponding isosceles
triangle RRRP linkage is planar. As it is well known, if one body of the P pair is
assumed to be fixed, then one RR link rotates around a fixed axis and the motion
of the other RR link is Cardanic. When p ≤= 0,≡q, the isosceles triangle generates
a noteworthy kind of motion named helical Cardan motion, which is presented for
the first time in [6, 7]. This new helical Cardan motion can be regarded as a spatial
generalization of the Cardanic movement on a plane, shown in Fig. 1.

Fig. 1 Isosceles triangle HHHp linkage and 1-DoF helical Cardan motion
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(a) (b)

Fig. 2 Two HHHP chains with the same pitches a with length a, b with length c

3 Formation of Delassus Rhomboid 4H Linkage

From two HHHP chains of the helical Cardan motion, we geometrically derive the
rhomboid (deltoid or kite) 4H Delassus chain. The two isosceles triangles are not
generally congruent but the homologous H pairs have equal pitches. Using self-
explanatory figures, we can identify two distinct HHHP chains in Fig. 2. The two
chains have the same screw pitch q + p in the H pair of links 1 and 2 and the same
screw pitch q in the H pair of links 3 and 4. The pitch of the screw pair between
links 2 and 3 is assumed to be q + p/2. In one chain, the bars 2 and 3 have the
same length a; in the other chain, each length of bars 2 and 3 is c. These two distinct
HHHP linkages can be merged in such a way that the resulting mechanism is the
rhombus HHHH linkage. In the first step of the synthesis, two HHHP chains share
a common P pair, as shown in Fig. 3. Moreover, the two axes of the Hs with the
pitch q + p coincide and the other two H pairs with the pitch q are also coaxial. In
Fig. 3, actually, two coaxial Hs with the same pitch are equivalent to one H once we
ignore the internal helical self-motion of the intermediate body. Consequently, the
links 2 and 2 as well as the links 3 and 3 can be connected by only one helical pair
with the same pitch. Furthermore, removing the P pair leads to a rhomboid HHHH
chain, as shown in Fig. 4. When p is equal to zero, all pitches are equal to q and the
HHHH chain is movable whatsoever bar lengths are; the mobility of the chain can be
derived using only the closure of the product in the pseudoplanar motion group [8].
When p is not zero, the movability is subject to metric conditions and is qualified
as paradoxical. The special case with q = 0 and p ≤= 0 gives an HHHR paradoxical
chain.

4 New Derivation of Crossed Parallelogram and a Blend
of Delassus 4-Bar Linkages

In a Delassus 4H rhomboid, we add two bars, which are jointed by a cylindrical C
pair whose axis is parallel to H axes. Each of the two H pairs with the same pitch
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Fig. 3 Two HHHP chains

Fig. 4 Rhomboid HHHH
chains

q + p/2 in the rhomboid forms a double H of pitch q + p/2 with each of the two
added bars. With the added bars, as shown in Fig. 5, the resulting chain includes
three closed loops. One loop is the original rhomboid and the other two have an
HHHC structural type. Any HHHC chain with four parallel axes is a 1-DoF trivial
chain for the Schoenflies motion group [9] whose axis direction is parallel to those
of H axes. Consequently, the whole chain is movable with one DoF. Moreover, we
assume also that, in one of the HHHC subchains, the two CH bars are parallel to two
adjacent bars of the rhomboid. That way, an HHHC subchain forms a parallelogram.
Then, the C pair can be replaced by an H pair with the pitch of the coinciding
Delassus 4H parallelogram [10]. That pitch is computed by using the pitch equality
of a Delassus parallelogram. In fact, we have two choices for constructing an HHHC
parallelogram. In one choice, the H pitches of the HHHC parallelogram are q+ p/2,
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(a) (b)

Fig. 5 Forming HHHC subchain. a Multiloop chain and b derived crossed parallelogram

(a) (b)

Fig. 6 Second crossed parallelograms. a Multiloop chain and b derived crossed parallelogram

q + p and q + p/2 and the C pair in Fig. 5a can be replaced by an H with the
pitch q. A 4H crossed parallelogram appears as being a subchain of the whole chain
and consequently moves also with one DoF. In two opposite Hs, the H pitches are
equal, which is expressed by two independent equalities, namely h2 = h4 ◦ q = q
and h1 = h3 ◦ q + p/2 = q + p/2 with the notations of Fig. 5b. In the other
choice, as shown in Fig. 6a, the H pitches of the HHHC parallelogram are q + p/2,
q and q + p/2 and the C pair can be replaced by an H with the pitch q + p. A
crossed parallelogram appears as being a subchain which moves also with one DoF.
In two opposite Hs, the H pitches are equal, which is expressed by two independent
equalities, namely h1 = h3 ◦ q + p = q+ p and h2 = h4 ◦ q+ p/2 = q+ p/2,
Fig. 6b. The crossed parallelogram of Delassus is derived from two 1-DoF chains,
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(a) (b)

Fig. 7 A blend of Delassus 4-bar linkages and its deployable structure. a A blend of linkages and
b the four-cell deployment

(a) (b) (c)

(f)(e)(d)

Fig. 8 Different configurations of four-cell deployment

the Delassus 4H kite and the Delassus 4H parallelogram. Hence, it is a combination
of two HHHP isosceles triangles together with a Delassus parallelogram. In other
words, the HHHP isosceles triangle and the Delassus 4H parallelogram imply the
existence of the 4H kite and the 4H crossed parallelogram. Furthermore, we have
synthesized a blend of four-bar linkages, in which each loop has a paradoxical 1-
DoF mobility as shown in Fig. 7a (isosceles triangles HHHP loops are not depicted).
This multiloop linkage can be regarded as a basic building-block (BBK) to construct
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Fig. 9 A deployable ring structure

complex deployable structures. Figure 7b shows this kind of deployment by utilizing
four BBKs and its distinct postures are displayed in Fig. 8. Figure 9 illustrates the
deployable ring structure composed of six BBKs.

5 Conclusions

The HHHP isosceles triangle and the Delassus 4H parallelogram are basic linkages.
Both linkages imply the existence of the 4H kite and the 4H crossed parallelogram.
It also shows that two Delassus four-bar linkages and the HHHP triangle are closely
related. A blend of Delassus 4-bar linkages can further serve as a module in the
construction of different-shaped deployable structures with screw joints. In these
deployable structures, the pitches of all screw pairs can be reduced to being zeros. In
practical application, deployment devices with revolute pairs are easier to manufac-
ture than the ones with screw pairs but the former are suffering from the singularity
when three revolute axes are coplanar. The latter can avoid the singular poses by the
choice of their pitches. Hence, deployable devices with screw pairs may be more
attractive for potential application.
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Abstract A molecular linkage consists of a set of rigid bodies pairwise connected by
revolute hinges where all hinge lines of each body are concurrent. It is an important
problem in biochemistry, as well as in robotics, to efficiently analyze the motions
of such linkages. The theory of generic rigidity of body-bar frameworks addresses
this problem via fast combinatorial algorithms. However, recent work has shown that
symmetry (a common feature of many molecular and mechanical structures) can lead
to additional motions. These motions typically maintain the original symmetry of the
structure throughout the path, and they can often be detected via simple combinatorial
counts. In this paper, we outline how these symmetry-based mathematical counts
and methods can be used to efficiently predict the motions of symmetric molecular
linkages, and we numerically analyze configuration spaces supporting the symmetric
Molecular Conjectures formulated herein.
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1 Introduction

Accurate measurements of flexibility and dynamics of proteins and other molecules
can help us interpret the relationship between structure and function, which has
significant implications in medicine and drug design [3, 7]. This is an important area
of research in computational biology, material science and bioinformatics, and has
lately attracted a lot of interest in the robotics community [12].

Over the last 15 years, rigidity-based methods like FIRST, ProFlex, or Kinari [7, 8]
have been used to give fast computational predictions of the flexibility of molecular
structures, such as DNA, RNA, and proteins. These methods detect rigidity or flexi-
bility in generic molecular linkages using combinatorial (counting) characterizations
of rigidity, which can be verified via fast pebble game algorithms [10, 16]. They are
based on the mathematical theory of generic rigidity of molecular linkages (Sect. 2),
which are built of rigid bodies (atoms) linked in pairs via revolute hinges (rotatable
bonds between the atoms) [7, 21].

However, recent work by Schulze et al. [13–15] shows that symmetry can lead
to additional flexibility that is not detected by the more general characterizations.
The point is crucial because many molecular rings, proteins, or viral capsids are
symmetric and symmetry plays a central role in macromolecular stability, assembly,
ligand recognition and drug docking, and in phenomena such as allostery [4, 16].

In this paper, we demonstrate how this increased flexibility can still be detected
through simple symmetry-adapted counts, and then we formulate the symmetric
molecular conjectures of rigidity theory (Sect. 3). To test the power of the counts,
and to provide evidence supporting the conjectures, we use the higher-dimensional
continuation tools of the CUIK suite [6, 11] on illustrative examples (Sect. 4).

2 Detecting Flexibility in Body-Bar and Molecular Linkages

A 3-dimensional body-bar framework consists of a set of rigid bodies in R
3 which

are connected by rigid bars (see Fig. 1, left). Each body is free to move continuously
inR3, subject to the constraints that the distance between any pair of points which are
connected by a bar remains fixed. A body-bar framework is called rigid if every such
motion also preserves the distance between all pairs of points belonging to different
bodies. Otherwise the framework is called flexible [20, 21].

Fig. 1 A body-bar framework
and its corresponding body-
hinge framework
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The underlying combinatorial structure for a body-bar framework is a multigraph
G = (B, E), where the vertices in B represent the bodies of the framework and the
edges in E represent the rigid bars of the framework [20, 21]. To determine whether
a given body-bar framework with underlying multigraph G = (B, E) is rigid is
in general a very difficult problem, as it requires solving a system of quadratic
equations. It is therefore common to linearize this problem by differentiating the
length constraints given by the rigid bars. This leads to a homogeneous system of
|E | linear equations in 6|B| unknowns, and the corresponding coefficient matrix of
this linear system is called the rigidity matrix of the framework. The elements in
the kernel of this matrix are called the infinitesimal motions of the framework, and
it is well known that the space of trivial infinitesimal motions of a 3-dimensional
body-bar framework (i.e. the space of infinitesimal motions of the framework which
correspond to congruent motions of Euclidean 3-space) is of dimension 6. Thus, a
body-bar framework possesses a non-trivial infinitesimal motion if and only if the
dimension of the kernel of the rigidity matrix is strictly larger than 6.

It is a well known fact that if a body-bar framework is infinitesimally rigid (i.e.
it has only has trivial infinitesimal motions), then it is also rigid. The converse is
not true in general. However, if the framework is regular, that is, if the rigidity
matrix of the framework with underlying multigraph G has maximal rank among
all realizations of G as a body-bar framework, then the existence of a non-trivial
infinitesimal motion also guarantees the existence of a non-trivial continuous motion
of the framework [1]. The set of regular realizations of a multigraph G forms a dense
open subset of all possible realizations of G as a body-bar framework, and hence
‘almost all’ realizations of G as a body-bar framework are regular.

Tay showed that for a regular body-bar framework, the rigidity is captured by the
following simple combinatorial counts [18]:

Theorem 2.1 (Tay, 1984) A regular 3-dimensional body-bar framework with under-
lying multigraph G = (B, E) is rigid if and only if there exists a subset E◦ of E
which satisfies the conditions:

(1) |E◦| = 6|B| − 6;
(2) |E ≤| ≡ 6|B ≤| − 6 for all subgraphs induced by subsets of E◦.

Tay’s counts are related to general Grübler–Kutzbach counting rules, however
they are more precise as they can detect topological redundancies. While algorith-
mically Tay’s condition looks like we need to check all possible subsets of bars of
the framework (an exponential process!), these counts on a multigraph define inde-
pendent sets in a matroid, leading to a fast greedy algorithm called the pebble game,
with running time of O(|B||E |) [10, 16].

A 3-dimensional body-hinge framework consists of a set of rigid bodies which
are connected, in pairs, along revolute hinges (i.e., lines in 3-space), and each of
the bodies is free to move continuously, subject to the constraints that the contacts
along the hinges are preserved (see Fig. 1, right). Since a hinge removes 5 of the 6
relative degrees of freedom between a pair of rigid bodies in 3-space, a body-hinge
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framework can be modeled as a special case of a body-bar framework by replacing
each hinge with 5 independent bars, each intersecting the hinge line.

The counts in Theorem 2.1 (and the corresponding pebble game algorithms) also
characterize regular rigid body-hinge frameworks in 3-space [19, 20], where a body-
hinge framework with multigraph G is called regular if its rigidity matrix has max-
imal rank among all body-hinge realizations of G. Moreover, the recent Molecular
Theorem [9] confirmed that Tay’s counts also characterize regular rigid molecular
linkages, where a molecular linkage is a body-hinge framework with the special
geometry that all hinges of each body are concurrent in a single point. This result
solved the more than 20 year old Molecular Conjecture [19].

3 Detecting Symmetry-Preserving Motions in Symmetric
Linkages

We say that a structure is symmetric if it possesses a non-trivial point group, i.e., a
non-trivial group of symmetry operations (isometries in Euclidean 3-space) which
leave the structure unchanged. Many natural structures such us proteins, as well as
many human-built structures such as linkages and other mechanical machines are
symmetric [4]. As a consequence, there has been a growing interest in the impact of
symmetry on the rigidity and flexibility of these structures. In particular, a symmetric
analog of the rigidity matrix, called the orbit rigidity matrix, has been constructed in
[15] to detect hidden symmetry-preserving motions in symmetric frameworks.

For simplicity, we will only consider body-bar frameworks whose symmetry group
acts freely on the bodies of the framework (that is, no body of a symmetric framework
is unshifted by any non-trivial symmetry operation of the framework). Note that for
a framework with a purely rotational point group, this means that no body is centered
on a rotational axis. For such frameworks, the symmetry-adapted rigidity analysis
leads to some very simple Tay-type counts (see Theorem 3.1).

If we focus only on motions which preserve the full symmetry group S of the
original framework, the motion of a single body b uniquely determines the motions
of all bodies that lie in the same orbit as b under the group action of S (i.e., all bodies
s(b), s ≈ S) as well. So we have 6 degrees of freedom for each orbit of bodies.
Similarly, each orbit of bars (i.e., each bar together with all of its symmetric copies)
restricts the motion of the combined structure by one. Therefore, the orbit rigidity
matrix has |Eo| rows and 6|Bo| columns, where |Eo| and |Bo| denote the number of
bar orbits and body orbits of the framework, respectively.

The key property of the orbit rigidity matrix is that its kernel is the space of
S-symmetric infinitesimal motions of the framework (see [15] for details). In the
following, we denote the dimension of the space of trivial S-symmetric infinitesimal
motions of the framework by vS . Note that for any symmetry group S in dimension 3,
vS can be read off from the character tables in [2], for example.
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Analogously to the non-symmetric situation, a body-bar (or molecular) framework
with symmetry group S and underlying multigraph G is said to be S-regular, if its
orbit rigidity matrix has maximal rank among all S-symmetric realizations of G as
a body-bar (or molecular) framework. From the results in [14] it follows that if an
S-regular body-bar framework has an S-symmetric non-trivial infinitesimal motion,
then it also has a non-trivial continuous motion which preserves the symmetry group
S throughout the path. This fundamental result leads to the following necessary
conditions for an S-regular body-bar (or molecular) framework to be rigid:

Theorem 3.1 (Schulze, Whiteley, 2010 [14, 15]) If an S-regular body-bar (or mole-
cular) framework inR3 (with S acting freely on the bodies) has only trivial symmetry-
preserving continuous motions, then there exists a subset of representatives for the
bar orbits, E◦0 , such that:

(1) |E◦0 | = 6|B0| − vS;
(2) |E ≤0| ≡ 6|B ≤0| − vS for all subgraphs induced by subsets E ≤0 of E◦0 .

It is shown in [17] that there are some further necessary conditions for rigidity, and
that this larger set of conditions is also sufficient for an S-regular body-bar framework
to have no symmetry-preserving motion.

Very recently, some initial symmetry-extended versions of the pebble game
algorithm—based on the orbit counts in Theorem 3.1 and on Tay’s original counts—
have been developed for the group C2 in order to test frameworks for (possibly
symmetry breaking) flexibility [13]. While these algorithms clearly provide suffi-
cient conditions for the flexibility of a C2-symmetric structure, an area of ongoing
research is whether they also provide necessary conditions for flexibility.

Note that Theorem 3.1 applies to both body-bar and molecular frameworks,
because (1) and (2) are necessary, but not sufficient conditions for an S-regular
body-bar framework to be rigid, and the rank of the orbit rigidity matrix of an
S-regular realization of a multigraph G as a body-bar framework is at least as big as
the rank of the orbit rigidity matrix of an S-regular realization of G as a molecular
framework. We offer the following two conjectures

Conjecture 3.1 (Symmetric Molecular Conjecture I) The orbit rigidity matrix of
an S-regular body-bar realization of a multigraph G has the same rank as the orbit
rigidity matrix of an S-regular molecular realization of G.

In other words, we conjecture that under S-regular conditions, body-bar realiza-
tions of G and molecular realizations of G have the same number of S-preserving
degrees of freedom.

Conjecture 3.2 (Symmetric Molecular Conjecture II). The rank of the entire rigid-
ity matrix—and not just the orbit matrix—of an S-generic body-bar realization of a
multigraph G is the same as the rank of the rigidity matrix of an S-generic molecular
realization of G, where a structure is called S-generic if the rank of the entire rigidity
matrix is maximal, among all S-symmetric realizations.
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It would follow from this conjecture that under S-generic conditions, body-bar
realizations and molecular realizations of G have exactly the same number of (not
necessarily S-preserving) infinitesimal motions.

4 Evidence for the Symmetric Molecular Conjectures

To collect evidence supporting the previous conjectures, we have applied the higher-
dimensional continuation methods implemented in the CUIK suite [6, 11] to a variety
of symmetric molecular linkages. These methods allow an exhaustive tracing of the
C-space component of the linkage that is path-connected to a given configuration.
The exploration marches from such configuration in all directions systematically
by constructing local charts on the tangent bundle. Neighboring charts are mutually
coordinated to keep track of the C-space region explored up to a given point, and
branch-switching methods are applied at bifurcation points in order not to leave
areas unexplored [5]. In the end, the component topology can be inferred from the
neighborhood relationships between charts.

Table 1 provides a selection of the molecular linkages analyzed so far. For each
linkage, we show the initial configuration used for continuation, its symmetry group,
the number of predicted motions according to the Tay and orbit counts, and the
C-space topology inferred from the numerical analysis. We focus on linkages exhibit-
ing the half-turn symmetry group C2 and the dihedral group D2 of order 4 (which
is generated by two perpendicular half-turn axes), as these are the most common
groups for molecular structures such as proteins [4, 13].

Note that each of the linkages in Table 1 is predicted to be rigid with Tay’s non-
symmetric counts. (In fact, the third linkage even counts to be over-constrained by
two.) However, in each case we have 6|B0|−vS−|E0| = 1, so that we may conclude
from Theorem 3.1 that for S-regular realizations, each of these molecular linkages
has a symmetry-preserving non-trivial motion (Note that vC2 = 2 in Table 1 since
the space of C2-symmetric trivial motions is generated by a translation along the C2
axis and a rotation about the C2 axis.)

From the topology of the configuration space of the first and the third linkage it
follows that there are no additional (symmetry-preserving or symmetry-breaking)
non-trivial motions for these linkages, which provides evidence for both symmetric
Molecular Conjectures.

Similarly, the configuration space of the second linkage also supports the first
symmetric Molecular Conjecture, since it shows that the linkage has only one D2-
preserving degree of freedom at every D2-regular point, and only one C2-preserving
degree of freedom at every C2-regular point. (At the bifurcation points, the linkage
is still D2-regular, and the additional motion only preserves one of the half-turn axes
of D2 so it is not C2-regular at those points.) This example is also consistent with
the Symmetric Molecular Conjecture II, since the bifurcation points are neither C2-
nor D2-generic, as the rank of the entire rigidity matrix at the bifurcation points is
clearly not maximal among the C2- or D2-symmetric realizations of the structure.
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Finally, while the orbit counts predict the fourth linkage in Table 1 to have one
non-trivial C2-preserving motion, a more detailed symmetry-based analysis of the
subgraphs of the two 6-revolute rings shows that there is in fact an additional
symmetry-breaking motion as well. Our computations of the configuration space
again confirm that there is indeed a two-dimensional C-space for this molecular link-
age. In addition, our computations show that each of the two 6-revolute rings of the
structure maintains its half-turn symmetry at all times, which supports our expecta-
tion that stressed (over-constrained under symmetry) components of a structure (such
as the symmetric 6-rings in the linkage) are more likely to maintain their symmetry
than unstressed ones (such as the connecting links between the 6-rings) [13].

5 Conclusions

This paper has described the symmetric molecular conjectures of rigidity theory,
giving their context, formulation, and a selection of examples providing supporting
evidence for them. The associated combinatorial methods allow to predict hidden
motions in symmetric molecules that otherwise seem apparently over-constrained
and rigid. The ultimate aim of this work is to move from the theoretical analysis
and to apply the symmetry-based methods and pebble game algorithms to actual
proteins, to better understand their functions and possible drug targets.
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Abstract The paper focuses on the stiffness modeling of robotic manipulators with
gravity compensators. The main attention is paid to the development of the stiffness
model of a spring-based compensator located between sequential links of a serial
structure. The derived model allows us to describe the compensator as an equivalent
non-linear virtual spring integrated in the corresponding actuated joint. The obtained
results have been efficiently applied to the stiffness modeling of a heavy industrial
robot of the Kuka family.
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1 Introduction

Recently, in aerospace industry much attention is paid to the high-precision and
high-speed machining of large dimensional aircraft components. To satisfy these
requirements, industrial robots are more and more used to replace conventional CNC-
machines, which are limited with their performances and are suitable for a rather
limited workspace. However, some new problems arise here because of essential
machining forces caused by processing of modern aeronautic materials that may
reduce the quality of technological process. To overcome this difficulty, the robot
manufactories attempt to make the manipulators stiffer but quite heavy. The prob-
lem of link weights is often solved by using the gravity compensator, which, in its
turn, influences on the position accuracy and stiffness properties. The latter moti-
vates enhancement of the manipulator stiffness modeling techniques that are in the
focus of this paper. The problem of stiffness modeling for serial manipulators has
been studied in the robotic community from different aspects [1–3]. In particular,
special attention has been paid to heavy industrial and medical robots with essential
deflections of the end-effector [4–6]. Among a number of existing stiffness model-
ing approaches, the Virtual Joint Modeling (VJM) method looks the most attractive
for the robotic applications. Its main idea is to take into account the elastostatic
properties of flexible components by presenting them as equivalent virtual springs
localized in the actuated or passive joints [7]. Because of its simplicity and efficiency,
this approach has been applied to numerous case-studies and progressively enhanced
to take into account specific features of robotic manipulators, such as internal and
external loadings, closed-loops, etc. [8, 9]. Besides, some authors have extended the
VJM approach by using advanced 6 d.o.f. virtual springs describing stiffness proper-
ties of the manipulator elements [10]. However, the problem of the stiffness modeling
of the manipulators with gravity compensators has not been studied yet sufficiently;
there are only limited number of works that addressed this issue. Besides, in previous
works, the main attention has been paid to the compensator design [11] and modi-
fication of the inverse kinematics algorithms integrated in the robot controller [12].
In contrast to previous works, this paper deals with the stiffness modeling of serial
robotic manipulators equipped with a spring-based compensator located between
sequential links. It proposes an extension of the VJM-based approach allowing to
integrate the elastostatic properties of the gravity compensator (that creates a closed
loop) into the conventional stiffness model of the manipulator.

2 Stiffness Model of Gravity Compensator

Let us consider the general type of gravity compensator that incorporates a pas-
sive spring attached between two sequential links of the manipulator (Fig. 1). In a
such architecture, there is a closed loop that generates an additional torque in the
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(a) (b)

Fig. 1 Mechanics of gravity compensator. a Case A: configuration q < π − α. b Case B: config-
uration q > π − α

manipulator joint. So, the specificity of such design allows us to limit modifications
of the robot stiffness model by adjusting the virtual joint stiffness parameters.

The geometrical model of considered compensator includes three main node
points P0, P1, P2. Let us denote corresponding distances as L = |P1, P2| , a =
|P0, P2| , s = |P0, P1|. In addition, let us introduce the angles α, ϕ and the distances
ax and ay , whose geometrical meaning is clear from Fig. 1. Using these notations,
the compensator spring deflection s can be computed as

s =
√

a2 + L2 + 2 · a · L · cos(α + q) (1)

and evidently depends on the joint angle q. The considered mechanical design allows
us to balance the manipulator weight for any given configuration by adjusting the
compensator spring preloading. It can be taken into account by introducing the zero-
value of the compensator length s0 corresponding to the unloaded spring. Under
this assumption, the compensator force applied to the node P1 can be expressed as
Fs = Kc · (s − s0), where Kc is the compensator spring stiffness. Further, the angle
ϕ between the compensator links P0P1 and P1P2 (see Fig. 1) can be found from the
expression sin ϕ = a/s · sin(α + q), which allows us to compute the compensator
torque Mc applied to the second joint as

Mc = Kc · (1 − s0/s) · a · L · sin(α + q) (2)

After differentiation of the latter expression with respect to q, the equivalent stiffness
of the second joint (comprising both the manipulator and compensator stiffnesses)
can be expressed as:

Kθ = K 0
θ + Kc · a L · ηq (3)

where the coefficient

ηq = cos(α + q)− s0

s
·
(

a L

s2 sin2(α + q)+ cos(α + q)

)
(4)
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highly depends on the value of joint variable q and the initial preloading in the
compensator spring described by s0. Hence, using expression (3), it is possible to
extend the classical stiffness model of the serial manipulator by modifying the virtual
spring parameters in accordance with the compensator properties. While in the paper
this approach has been used for the particular compensator type, similar idea can
be evidently applied to other compensators. It is also worth mentioning that the
geometrical and elastostatic parameters of gravity compensators (α, a, L and Kc, s0
for the presented case) usually are not included in datasheets. For this reason, these
parameters should be identified from the calibration experiments (see Sect. 4).

3 Extension of the VJM-Based Approach

Stiffness of a serial robot highly depends on its configuration and is defined by the
Cartesian stiffness matrix. Using the VJM-based approach adopted in this paper, the
manipulator can be presented as the sequence of rigid links separated by the actuators
and virtual flexible joints incorporating all elastostatic properties of flexible elements
[6]. In accordance with these assumptions, the elastostatic model of the serial robot
can be presented as shown in Fig. 2.

For this serial robot, the end-effector location t can be defined by the vector
function g (q, θ), where q, θ denote the vectors of the actuator and virtual joint
coordinates respectively. It can be proved that the static equilibrium equations can be
written as JT

θ ·F = Kθ ·θ , where Jθ = ∂g (q, θ)/∂θ is the Jacobian matrix, the matrix
Kθ = diag

(
Kθ1 , . . . ,Kθn

)
aggregates stiffnesses of all virtual springs and F is the

external loading applied to the robot end-effector. In order to find the desired stiffness
matrix KC, the force-deflection relation should be linearized in the neighborhood of
the current configuration q and presented in the form F = KC ·Δt, where Δt is the
end-effector deflection caused by the external loading F. After relevant transforma-
tions, one can get the following expression for the desired stiffness matrix [4]

KC =
(

Jθ · K−1
θ · JT

θ

)−1
(5)

(a) (b)

Fig. 2 Serial industrial robot (a) and its VJM-based stiffness model (b)
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which depends on the manipulator geometry and its elastostatic properties. This clas-
sical expression has been originally derived for the case of manipulators with-out
gravity compensators, where the matrix Kθ is constant. To integrate into this model
the gravity compensator, it is proposed to replace the classical joint stiffness matrix
K0
θ (that takes into account elastostatic properties of serial manipulator without grav-

ity compensator) by the sum of two matrices

Kθ = K0
θ + KGC

θ (q) (6)

where the second term KGC
θ (q) is configuration-dependent and takes into account

the elastostatic properties of the gravity compensator (by transforming them in the
virtual joint space). In practice, the matrix KGC

θ (q)may include either one or several
non-zero elements (depending on the number of compensators). These elements ale
located on the matrix diagonal and are computed using (3). Hence, by modification
of the manipulator joint stiffness matrix in accordance with expression (6), it is pos-
sible to integrate the compensator parameters into the classical VJM-based model of
the serial manipulator. It should be mentioned that this idea can be also applied for
other types of compensators.

4 Application Example

Let us illustrate the efficiency of the developed stiffness modeling technique by
applying it to the compliance error compensation in the robotic-based machining
performed by the industrial robot KUKA KR-270. This robot is equipped with the
spring-based gravity compensator located between the first and second links (which
leads to the influence on the second actuated joint). In accordance with the considered
specifications, the technological process should be performed in the square area of
the size 2,000 mm located at the height 500 mm over the floor level (see Fig. 3 for
more details). For comparison purpose, it is assumed that machining force is constant
throughout the working area and it is equal to F = (0, 360N , 560N , 0, 0, 0)T , which
corresponds to a typical milling process.

To obtain the desired stiffness model, special calibration experiments have been
conducted and dedicated identification procedures have been applied. These yield the
desired geometrical and elastostatic parameters of the robot with gravity compensator
presented in Table 1. From these data, the classical joint stiffness matrix K0

θ has been
constructed straightforwardly (from parameters k1, . . . k6). To integrate the gravity
compensator properties, the matrix KGC

θ (q) has been computed using expression
(3) and values kc, L , ax and ay for any robot configuration q. Relevant computa-
tions have been done throughout the required working area, where the end-effector
deflections has been evaluated for given machining force F. The computational results
are summarized in Fig. 4, where the end-effector compliance errors are presented.
These results show that the compliance errors are not negligible here and vary from
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Fig. 3 Industrial robot Kuka KR270 with required machining area

Table 1 Elastostatic and
geometrical parameters of
robot with gravity
compensator

Parameters Units Values CIs

k1 [rad × m/N ] 3.774 × 10−6 –
k2 [rad × m/N ] 0.302 × 10−6 0.004 × 10−6

k3 [rad × m/N ] 0.406 × 10−6 0.008 × 10−6

k4 [rad × m/N ] 3.002 × 10−6 0.115 × 10−6

k5 [rad × m/N ] 3.303 × 10−6 0.162 × 10−6

k6 [rad × m/N ] 2.365 × 10−6 0.095 × 10−6

kc [rad × m/N ] 0.144 × 10−6 0.031 × 10−6

s0 [mm] 458.00 27.0
L [mm] 184.72 0.06
ax [mm] 685.93 0.70
ay [mm] 120.30 0.69

0.34 to 3.5 mm. So, to achieve the desired precision, it is reasonable to apply the
error compensation technique, which is based on the reliable stiffness model.

For comparison purposes, two alternative stiffness models have been examined.
The first one is based on the classical assumptions and takes into account the stiff-
ness properties of the actuated joints only (without gravity compensator). The second
model integrates the gravity compensator in accordance with the approach proposed
in this paper. Both the models have been used for the compliance error compensation
for the described above manufacturing task. Relevant results are presented in Fig. 5,
which shows the difference in the compliance error compensation while applying
the classical and the proposed approaches. As follows from the figure, ignoring the
gravity compensator influence may lead to the position error over/under compensa-
tion of the order of 0.07 mm, which is not admissible for the manufacturing processes



Stiffness Modeling of Robotic Manipulator with Gravity Compensator 191

Fig. 4 The end-effector deflections caused by machining forces throughout working area

Fig. 5 Difference in stiffness error compensation between two strategies

employed in the aerospace applications studied here. Hence, to ensure the high preci-
sion for the robotic-based machining, the compliance error compensation technique
must rely on the stiffness model, which takes into account the impact of the gravity
compensator, in accordance with the approach developed in this paper.

5 Conclusions

The paper presents a new approach for the stiffness modeling of robots with the
spring-based gravity compensators, which are located between the manipulator
sequential links. Using this approach, the compensator has been replaced by an
equivalent non-linear virtual spring integrated in the corresponding actuated joint.
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This methodology allowed us to extend the VJM-based modeling technique for the
case of manipulators with closed-loops induced by the gravity compensators via using
configuration-dependent joint stiffness matrix. Efficiency of the developed approach
and its industrial value have been confirmed by an application ex-ample, which deals
with robotic-based milling of large-dimensional parts for aerospace industry. Feature
work will deal with integration of this modeling approach into the robotic software
CAD system.
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Computational Algorithm for Determining
the Generic Mobility of Floating Planar
and Spherical Linkages

Offer Shai and Andreas Müller

Abstract It is well-known that structural mobility criteria, such as the
Chebychev-Kutzbach–Grbler (CKG) formula, fail to correctly determine the mobil-
ity of mechanisms with special geometries. Even more, any known structural mobility
criteria also fail to determine the generic (i.e. topological) mobility since they are
prone to topological redundancies. A computational algorithm is proposed in this
paper, which always finds the correct generic mobility of any planar and spherical
mechanism. Its foundation is a novel representation of constraints by means of a
constraint graph. The algorithm builds on the ‘pebble game’, originally developed
within combinatorial rigidity theory for checking the rigidity of graphs. An exten-
sion of Laman’s theorem is introduced that enables application of the algorithm to
any planar or spherical mechanism with higher and lower holonomic kinematic pairs
and multiple joints. The novel algorithm further yields the redundantly constrained
sub-linkages of a mechanism. In addition this algorithm naturally leads to a decom-
position of a mechanism into Assur graphs, however this is beyond the scope of this
paper.

Keywords Mobility · Topological redundancy · Pebble game · Assur graphs

1 Introduction

The mobility being the essential property of a mechanism has been a major matter of
interest in mechanism theory. The approaches can be broadly classified as those that
deal with the mobility of a given mechanism, with a particular geometry, and those
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that aim on the generic mobility of a class of mechanisms with certain topology [1].
Methods of the first class attempt an explicit solution of the constraint equations or the
approximation of the solution variety [13–15], possibly using tools from numerical
algebraic geometry [16, 17]. Instead of considering a particular geometry, the second
class approaches the problem from a structural point of view. These attempts have a
long tradition and only need topological information about the existence of links and
joints. The CKG formula is a well-known topological mobility criterion. It is assumed
that they generally yield the generic mobility [6], i.e. the mobility of almost all
realizations of a particular topology. Although they are independent of any geometric
data all such methods are sensitive to topological redundancy since these criteria only
take into account the existence of joints and links but not their particular arrangement.

The identification of topological redundancies requires graph-theoretic consider-
ations of the constraints and appropriate algorithms. Such an algorithm is presented
in this paper. The basis for this algorithm is a graph representation of the constraints
inherited from rigidity theory. This differs from the topological graph [3] often
used in that it does not merely represent the arrangement of links and joints, but
rather the system of constraints imposed to the links. This is presented in Sect. 2,
where the two established types (body-bar, bar-joint) are recalled and are mentioned
briefly in the paper, and a novel type of constraint graph is introduced. The mathemat-
ical theorem underlying the proposed computational algorithm is given in Sect. 3, and
the actual computational algorithm is introduced in Sect. 4. The algorithm is proved
to converge to the unique generic mobility [9]. In order to motivate the application of
this algorithm, an engineering interpretation of the steps and output of the algorithm
is given. The application of the method is shown in Sect. 5 for a simple example, and
further interpretations of the output are discussed. The paper concludes with a brief
outline of future work in Sect. 6.

The algorithm used in this paper, called pebble game, was developed in 1997 [2]
for checking whether a set of points subject to geometric constraints form a rigid
structure. The use of this algorithm was also extended to check whether a graph
consisting of rigid bodies is rigid or mobile as reported in [10]. In engineering,
pebble game was applied to check the mobility of planar mechanisms consisting
of only binary links and limited to lower kinematic pairs [8]. It was proved that
pebble game can decompose any mechanism with only binary links to Assur graphs
in 2d and 3d [7]. The algorithm reported in this paper overcomes this limitation and
is applicable to any type of planar mechanisms with holonomic higher and lower
kinematic pairs and multiple joints.

2 Constraint Graphs

The kinematic functionality of a mechanism is dictated by the geometric and topolog-
ical constraints imposed on its bodies. The topological graph already relates bodies
and joints but it does not explicitly represent the imposed constraints. To this end a
constraint graph G is introduced. In the following δ denotes the generic mobility,
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G(E, V ) the constraint graph (undirected or directed), e(G) = | E | the number,
and v(G) = | V | the number of vertices of G.

The idea behind constraint graphs is to represent a mechanism as an abstract
relation of objects representing certain degrees of freedom (DOFs). These objects
constitute vertices of the constraint graph, and are chosen so as to uniquely represent
the mechanisms configuration. They can stand for rigid bodies or points. The con-
straints between them are represented by edges. In this sense the graph represents a
system of abstract constraint relations that possibly have different physical meanings
(e.g. rotation or translation constraints).

There are several types of constraint graphs, such as Bar-Joint graph and Body-
Bar graph, but the most general constraint graph, developed by the authors, applies
to any type of planar mechanism is the mixed constraint graph below.

In this paper we introduce a new type of graph, termed mixed constraint graph
G = (VB ◦ vJ , E). In this graph a vertex v can represent a rigid body, v ≤ VB , as
well as points, v ≤ VJ . That is, for a planar mechanism, each vertex of the mixed
constraint graph embodies an object that can move in the plane, and its physical
meaning follows from that of the body-bar and bar joint-graph. If a vertex represents
a body then it possesses three DOFs. If it represents a point (i.e. the location of a
joint) then it has two DOFs. Note, this type of constraint graph can also deal with
multiple joints, a revolute joint connecting m bodies thus stands for m − 1 revolute
joints with collinear axes. For example, in Fig. 1 a, joint J1 is a multiple revolute
joint while the other two joints, J2 and J3, are binary joints, i.e., connect between
two bodies/links.

3 Rigidity and Mobility of Mixed Graphs

One of the main problems in checking the correct generic mobility of a mechani-
cal system is to identify whether there is no sub-system having over-determinacy,
redundant elements. A mathematical criterion for checking such non-existence of

J1

B1

B2

B3

J1

J2

J3

(a) (b)

B3

J2

J3

B1

B2

Fig. 1 A linkage a whose mixed constraint graph b does not satisfy the mixed Laman’s theorem
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over-determinacy was established and proved in 1970 [4] for bar-joint graph, while
in 1991 a mathematical criterion for body-bar graphs was reported [12]. These the-
orems give rise to the following theorem for mixed constraint graphs:

Planar Mixed Laman’s theorem (Shai and Müller, 2013): A floating planar
mixed constraint graph G = (vB ◦ vJ , E) with e(G) = 3vB(G) + 2vJ (G) − 3 is
determined if and only if e(G ≡) ≈ 3vB(G ≡) + 2vJ (G ≡) − 3 for every subgraph G ≡
of G, where vB(G) and vJ (G) = | VJ | is the number of vertices corresponding to
bodies and points/joints, respectively.

Corollary: A floating planar mixed constraint graph G = (VB ◦ VJ , E) is non-
redundant if and only if e(G ≡) ≈ 3vB(G ≡) + 2vJ (G ≡) − 3 for every subgraph G ≡.
If this condition is satisfied, the linkage has generic mobility δ(G) = 3vB(G) +
2vJ (G)− e(G) ⊥ 3.

For example, the floating system in Fig. 1a is not determined since the correspond-
ing mixed graph in Fig. 1b does not satisfy the Mixed Laman’s theorem. To prove
that, let us choose the sub-graph spanned by the vertices: V = {B1, B2, B3, J1} hav-
ing 9 edges which is greater than 3 · 3+ 2 · 13 = 8, thus mixed Lamans theorem is
not satisfied.

4 Pebble Game: A Computational Algorithm

Pebble game is a very efficient algorithm to check if a graph satisfies the mixed
Laman’s theorem and thus to check if there exists an overdetermined sub-graph. The
pebble game is of polynomial order in the number of vertices, O(| V |)2 and the
required memory also grows quadratically, i.e. with O(| V |)2 [5].

The main concept of the algorithm is to assign ‘pebbles’ to any physical object
in the kinematic model (bodies, points) representing certain DOFs, and to remove
them in course of the algorithm. The number of pebbles remaining after running the
pebble game is equal to the generic mobility of the linkage. Aiming on the generic, i.e.
topological, mobility the method operates exclusively upon the constraint graph, i.e.
the topology, and a generic rather than a specific geometry is assumed. Redundancies
due to special geometries are thus excluded.

The pebble game starts with an unconstrained system, in the sense that the number
of pebbles assigned to a vertex is equal to the DOF as if its members were not subject
to any constraint. Denote with k(v) the DOF of the object represented by vertex v.
For planar constraints graphs k(v) = 2 represents a point and k(v) = 3 a body. The
algorithm is initialized by assigning k(v) = 2,3 pebbles to each vertex v. That is,
initially there are no constraints between the elements of a linkage, i.e. each element
has k(v) DOFs to move in the plane.

Each edge of G represents one constraint. Initially all constraints are inactive,
i.e. all objects/vertices are unconstrained. An inactive constraint is represented by an
undirected edge (constraint graph G is initially undirected). During the pebble game
the constraints are successively activated by directing the edges. This indicates that
the DOFs of one vertex are depending on the DOFs of other vertices. In the algorithm
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this is achieved by removing a pebble from one of its end-vertices. An undirected
edge is termed admissible if the total of free pebbles next to its end vertices is at least
four. Only admissible edges can be directed and can thus become active constraints.

Input to the Pebble Game algorithm: The algorithm starts from the topological
graph, i.e. an undirected graph as described in Sect. 2. Each vertex v represents a
physical object that has k(v) DOF.

The Pebble Game algorithm:

1. INITIALIZATION: Assign k(v) pebbles to each vertex v of the undirected graph,
thus all edges are admissible. This is equivalent to regarding all mechanical
objects, corresponding to the vertices, as unconstrained, i.e. each having k(v)
DOFs.

2. WHILE there exist admissible edges DO the following Orientation Move
(Vertex—Edge move):
Let (u, v) be an admissible edge, i.e., the total sum of pebbles next to the two end
vertices is at least 4. Remove one pebble from one of its end vertices, let it be
vertex u, and replace the edge by a directed edge 〈u, v⇒, i.e., u becomes the tail
and v the head vertex of 〈u, v⇒.
END WHILE
After this loop there are no admissible edges left. This move corresponds to
activating the constraint corresponding to the pebble removed from the tail vertex.
The direction of the edge introduces a causality in the sense that one DOF of the
tail vertex u is assumed to be dependent on one DOF of the head vertex v. Note
that this is an abstract assignment, i.e. it is not said that a certain DOF of u is
made dependent on a certain DOF of v.

3. WHILE there are free pebbles left DO the following Reorientation move
(Vertex—Vertex Move):
Choose an undirected edge (u, v) and make it admissible by bringing free pebbles
to its end vertices by applying the following steps (peb(v) denotes the number of
pebbles at vertex v):
Suppose peb(v) < 2, if v stands for a point, or peb(v) < 3, if v stands for a body.
Then search for a vertex, say z, with free pebbles, i.e., peb(z) > 0, for which
there is a non-directed path from v to z. Then redirect all edges within the path
from v to z so to form a directed path, and move one pebble from vertex z to v.
Finally set peb(z) := peb(z)− 1 and peb(v) := peb(v)+ 1.
END WHILE

5 Example of Applying Mixed Pebble Game

In Fig. 2 we apply the mixed pebble game to the mixed graph representing the linkage
in Fig. 1a. Initially, all the bodies and joints have three and two pebbles, respectively,
as shown in Fig. 2a. The orientation move is first applied and all the admissible edges
are directed. For example, the two edges (B1, B3) and (B1, J1) are admissible, thus
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Fig. 2 Example of applying mixed Pebble game on mixed constraint graph

can be oriented, since there are 6 and 5 pebbles respectively next to the two end
vertices. Fig. 2b shows all edges that could be directed by applying the orientation
move. Since there are no more admissible edges the reorientation move is being
applied next. For example, in Fig. 2c edge (J2, B1) becomes admissible by moving
one pebble from vertex B3 and one from B2 thus it can be oriented as shown in
Fig. 2d.

Applying reorientation move on edge 〈B2, J3⇒ brings a free pebble to vertex B2
thus edge 〈B2, B1⇒ is now directed as shown in Fig. 2e.

Now we are left with four free pebbles and one edge, (J1, B3) unoriented. It is
possible to move 3 pebbles next to any two end vertices, thus we move them to the
end vertices of edge (J1, B3). For the sake of consistency, we move them to vertex
B3 as shown in Fig. 2f.

In Fig. 2f there are no edges that can be made admissible by applying the reori-
entation move and the algorithm terminates. The output of the algorithm allows for
the following interpretations:

Result 1: The most obvious result is the generic mobility of the associated linkage.
Since the algorithm terminates with 4 free pebbles the planar linkage generically
possesses 4 DOFs.

Result 2: Besides the generic mobility the particular location of the pebbles indi-
cates which links can be moved independently, hence can be used as control inputs.
As we deal with floating planar linkages there are always 3 DOFs that correspond
to the relocation of the linkage as a whole. In this example there are 4 free peb-
bles. Each of the pebbles represents one DOF that can be independently controlled.
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The specific allocation of pebbles in Fig. 2f, together with the original mechanism in
Fig. 1a, allows for an apparent interpretation: the 3 DOFs of B3 describe the location
and orientation of the linkage in the plane, and the one pebble at J2 is a translation
DOF of the location point of J2 that controls the internal shape.

Notice that

1. The pebble at J2 is not the joint angle but one component of the location vector.
2. There is no specific assignment of coordinates to the DOFs so that ANY gen-

eralized coordinate can be used to represent the DOF of J2. The pebble game
algorithm operates on an abstract level and does not need specific selection of
coordinates.

3. The particular allocation of pebbles is not unique and can be controlled in course
of the algorithm. Also the algorithm’s result can be changed by application of
the reorientation move (which does not change the number of free pebbles). For
instance, in Fig. 2f a free pebble is now assigned to vertex J2. With a reorientation
of 〈J2, J3⇒, this pebble can be moved to J3. Now the one independent DOF is
assigned to J3.

6 Conclusions and Outlook

The paper introduces an efficient computational algorithm for determining the cor-
rect generic/topological mobility for any planar or spherical mechanism with higher
and lower kinematic pairs, including multiple joints. The paper introduces a mixed
constraint graph, which is a more general constraint graph than other graphs intro-
duced in the literature, such as body-bar and bar-joint graphs. One of the salient
conclusions of this paper is that, by using the mixed constraint graph, it is possible
to represent any planar mechanism, and consequently to invoke the correspond-
ing mixed pebble game algorithm. The latter is the main contribution of the paper:
it determines the correct generic mobility of the mechanism modeled by a mixed
constraint graph. The planar mixed Laman’s theorem, which is an extension of the
well-known Laman’s theorem for bar-joint graphs, is given as a mathematical foun-
dation of the algorithm. As mentioned in the paper, the novel mixed pebble game
always converges to the correct generic mobility. Moreover it is discussed that this
computational algorithm allows for decomposing any mechanism into its building
blocks, namely Assur graphs. The reported algorithm applies to floating linkages,
i.e. linkages that are not fixed to a ground. In a forthcoming publication, the mixed
pebble game will be amended to include mechanisms (grounded mixed constraint
graphs), which requires another type of constraint graphs. To this end the algorithm
needs to be qualified so as to be able to treat immobile ground vertices.
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Determination of the Safe Working Zone
of a Parallel Manipulator

Rangaprasad Arun Srivatsan and Sandipan Bandyopadhyay

Abstract This paper formalises the concept of safe working zone (SWZ) of a parallel
manipulator, which is a subspace of the workspace that is free of singularities as well
as issues of joint limits and link interference. It presents further a generic scheme
to identify such a space, and specialises the same for the case of a convex SWZ
around a chosen point of interest. The theoretical developments are illustrated via
an application on a three-degree-of-freedom spatial parallel manipulator, namely,
MaPaMan-I.

Keywords Parallel mechanisms · Workspace · Singularities · Link interference ·
Joint limits

1 Introduction

Parallel manipulators (PMs) offer better load-carrying capacity and accuracy than
their serial counterparts. Still, they are not as popular as the latter in the industries.
This may be attributed mainly to the complicated kinematics of PMs, which in turn
lead to small workspace volumes, rendered even smaller by the existence of gain-
type singularities inside the workspace. In addition, joint limits and link interference
further reduce the usable workspace.

Researchers have attempted to alleviate these problems in different ways. Some
have attempted to design the robot such that the singularities are excluded [9, 13].
Others have tried to find regions inside the workspace that are free of singularities
[3, 8]. The latter approach requires algebraic operations on the analytical description
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of the singular manifold, which is very difficult in general, and may not be possible
for all manipulators. This has motivated the development of some numerical schemes
to find singularity-free zones inside the workspace [2, 6]. In [4, 5, 11], additional
kinematic constraints, i.e., joint limits and link interference, have been considered.

The ultimate objective of all of these, and similar works, is to identify a subset of
the workspace, in which the manipulator can move freely. This would render the task
of path planning trivial, so long as the manipulator stayed inside the said space—
which is very attractive from the point of view of applications. In this paper, such a
space has been defined as the safe working zone (SWZ) of a PM. The criteria for the
determination of the same, while considering the singularities, kinematic constraints
etc., have been laid down clearly, which in turn have been used to develop a computa-
tional framework to compute the SWZ. The theoretical development is then illustrated
by means of application to a newly introduced PM, namely, MaPaMan-I [12]. The
scheme can be applied to any other PM, or even a serial manipulator.

The rest of the paper is organised in the following manner: in Sect. 2, the concept of
SWZ is formalised. Various boundary functions specific to MaPaMan-1 are presented
in Sect. 3, followed by the numerical results in Sect. 4. Finally the conclusions are
presented in Sect. 5.

2 Definition and Structure of the SWZ

Various terms, such as practical/desired/specific workspace have been used in liter-
ature to designate subsets of the workspace, which are either free of singularities,
kinematic constraints, or both (see, e.g., [4, 10]). Such confusion necessitates the
formalisation of the definition of the SWZ.

Definition 2.1 The SWZ of a manipulator (denoted by W) is defined as the subset
of the workspace of the manipulator satisfying the following criteria:

1. W is contained inside the workspace, i.e., it is free of loss-type singularities.
2. W does not contain or touch the singular manifold, i.e., W is free of gain-type

singularities as well.
3. At no point of W there is an interference between the links, even when the actual

physical dimensions of the links are considered.
4. At no point of W does any joint violate a physical limit on its range of motion.

Once again, the actual physical dimensions are to be considered.
5. W is a connected set, containing a given point of interest, ‘o’.

The requirements 1–4 each define a subset of the workspace, which is bounded
by the zero level-set of a corresponding function:

• The workspace (denoted byW1), is bounded by the loss-type singularity condition,
given by S1 = 0.
• The region W2 containing o and free of gain-type singularities, is bounded by the

set of points defining the singular manifold which satisfy S2 = 0.
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Fig. 1 Definition and structure of W and Wc. Left: definition of W , Wc. Right: structural hierarchy
of Wi

• The region that includes o and is free of link interference is denoted by W3, and
is bounded by the set satisfying S3 = 0.
• The set of points satisfying S4 = 0 bounds W4, the space containing o that is free

of joint-limit violations.

As seen in Fig. 1-left, W = ⋃4
i=1 Wi .1 Note that in Fig. 1-right, Wk could be

W3 or W4, or both. Physical considerations impose the following hierarchy: W ◦
W3

⋃W4 ◦W2 ◦W1. Moreover, it is generally preferred to identify a convex set
Wc ◦ W . These observations motivate a scheme for the computation of the final
result, namely, Wc. The steps are described below.

1. Compute W1. Find its largest convex subset, Wc1 , centred at o. The region can
be in the form of convex polyhedra, super-ellipsoids, ellipsoids, etc. Without any
loss of generality, and for the ease of computation, in this work circles have been
used in the 2-dimensional subsets of the workspace (see Sect. 4). As shown in
Fig. 1-right, the circle C1 bounds Wc1 .

2. In a similar manner, find C2, which bounds Wc2 . Obviously, Wc2 ◦Wc1 .
3. Compute the corresponding entities, namely, Wc3 , C3,Wc4 , C4 accordingly.

Finally, find Wc =Wc3

⋃Wc4 ◦Wc2 .

The above steps are obvious, as it is useless to consider points outside Wc1 while
computing Wc2 , and so on. However, the implication of the hierarchy is very sig-
nificant in the actual implementation of the scheme. Due to the lack/complexity
of analytical results, most often, the set boundaries mentioned above need to be
computed through numerical searches (see, e.g., [2, 4, 7, 10, 11]), and hence the
progressively diminishing domain for the search algorithm helps reducing the com-
putational requirements for a given desired level of resolution of the results obtained.

1 Note that not all manipulators have all the four requirements. In all serial manipulators,W1 =W2,
and as explained in Sect. 3, for MaPaMan-I, W3 =W4.
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Fig. 2 Prototype (left) and kinematic details of a leg (right) of MaPaMan-I

3 Formulation of the SWZ of MaPaMan-I

The generic theoretical framework described in Sect. 2 is illustrated in this section by
an application to the newly developed MaPaMan-I. It so happens that for the physical
dimensions of the present prototype described in [12], the joints have limits on their
motions, but there is no other form of link interference. Thus, the computation of
W3 (or, Wc3 ) is not required.

MaPaMan-Ihas 3-degrees-of-freedom similar to 3-RPSand its task-space can be
parametrised in terms of of roll (α), pitch (β) and heave (zc) [12]. The coordinates
of the end-effector pi (i = 1, 2, 3) are obtained from the task-space coordinates
x = (α, β, zc)

T . The input joint angles are: θ = (θ1, θ2, θ3)
T , and the passive joint

angles are: ϕ, ψ and γ (see Fig. 2).

3.1 Condition for Loss-Type Singularity (S1)

Following [14], kinematic constraints are first framed to relate the task-space coor-
dinates to the input coordinates. The length of the strut, ls , is fixed, hence the loop-

closure constraints can be cast as: fi (θi , ψi , x)
≤= ≡bi − pi≡ = ls , i = 1, 2, 3.

Likewise, the loop-closure equations for the four-bars (see Fig. 2), upon elimination
of the passive variable ϕi , become [12]:

gi (θi , ψi ) = l2
0 + l2

cr + l2
cp − l2

r + 2l0lcr cos θi + 2l0lcp cos ψi

+ 2lcr lcp cos θi cos ψi + 2lcr lcp sin θi sin ψi .

From each pair of fi and gi , the passive variable ψi is eliminated to obtain hi (θi , x) =
0, i = 1, 2, 3. The condition for loss type singularity is given by S1 = 0, where

S1 = det
(

∂h
∂θ

)
, and h = (h1(θ1, x), h2(θ2, x), h3(θ3, x))T .
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Fig. 3 Joint limits imposed by the physical dimensions of MaPaMan-I. Left: joint limit at the crank.
Center: joint limit at strut-coupler joint. Right: motion limit at the spherical joint

3.2 Condition for Gain-Type Singularity (S2)

Following [12], the loop-closure constraints are cast in the form η(θ ,ψ, γ ) = 0,
which upon time-differentiation yield η̇(q) = Jηθ θ̇ + Jηψψ̇ + Jηγ γ̇ , where
Jηθ = ∂η

∂θ
, Jηψ = ∂η

∂ψ
, and Jηγ = ∂η

∂γ
. Considering the four-bar alone, ψ̇ = Jψθ θ̇ ,

where Jψθ is always well-defined, since by design, the said four-bars satisfy Grashoff’s
condition. Therefore, (Jηθ + Jηψ Jψθ )θ̇ + Jηγ γ̇ = 0. The gain-type singularity
occurs when the passive velocity, γ̇ , cannot be found uniquely for a given θ̇ [1]. This
leads S2 = 0, where S2 = det(Jηγ ).

3.3 Condition for the Violation of Joint Limits (S4)

The issue of the joints reaching their limits in the range of motion is observed at
the cranks, the strut-coupler rotary joints, and the spherical joints attached to the
end-effector. The following are various limiting conditions for the same:

• The crank is designed such that it is always above the base of the manipulator.
From practical considerations, a restriction is imposed upon the maximum and the
minimum angle of rotation of the crank denoted by θmin, and θmax , respectively
(see Fig. 3-left). Thus, 0 < θi < θmax , i = 1, 2, 3. Hence the conditions defining
the boundary of unacceptable points are s1i = 0 and s2i = 0, where s1i =
θi − θmin, s2i = θmax − θi .
• The angle made by the strut relative to the coupler is limited by the physical

joint limits as shown in Fig. 3-center, denoted by γmin and γmax , where γmin <

(π+γi−ψi ) < γmax , i = 1, 2, 3. Thus the conditions defining the boundary of the
unacceptable sets are: s3i = 0, and s4i = 0; where s3i = (π+γi−ψi )−γmin, s4i =
γmax − (π + γi − ψi ).
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Fig. 4 Zero level-sets of Si , and Ci in the α–β slice of the workspace at zc = 135 mm

• The spherical joints have restricted motions due to the physical dimensions of their
constituent mechanical components. This can be modelled as a limit imposed on
the angle δi , such as 0 < δi < δmax (see Fig. 3-right). The angle δi is computed
by first finding a vector along the direction of strut (v1) and then measuring the
angle between it and the normal (n) to the end-effector: v1 = (b1 − p1)/ ls, n =
( p1 − p2) × ( p3 − p1)/

≈
3d2

t
2 and δ1 = arccos (n · v1). Similarly, δ2 and δ3 are

computed. Therefore the functions defining the boundary of the desirable set are
given by s5i = 0, where s5i = δmax − δi . The function S4 is obtained from the
product of individual functions: S4 =∏

si j , where i = 1, . . . , 5, and j = 1, 2, 3.

4 Numerical Results

This section describes the results of the application of the above formulation to the
MaPaMan-Iprototype, whose dimensions are given in Table 1 of [12]. The joint limits
used are: θmin = 25⊥, θmax = 90⊥, γmin = 0⊥, γmax = 120⊥, δmax = 60⊥. The task-
space of MaPaMan-Iis parametrised by (α, β, zc). The functions Si are not available
solely in terms of these variables. Therefore instead of direct computation of the
zero level-sets, these are found by using a numerical scheme similar to those used in
[2, 4]. Since it is computationally demanding to search for solutions of Si = 0 in a
3-dimensional space, 2-dimensional slices in roll and pitch are considered instead,
and the solutions are evaluated in these slices for a sequence of heave values.2 Figure 4
shows the zero level-sets of S1, S2 in the α–β plane obtained by slicing the workspace
at zc = 135 mm. Note that the points satisfying S2 = 0 fall outsideWc1 , and therefore
in this particular case, C2 = C1.

2 Zero level-sets of S1, S2, S4 have been computed using ContourPlot in Mathematica.
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Fig. 5 Left: stack of C1, C2, C4 in MaPaMan-I, Middle:Wc as a cylinder for zc ∈ (98.4, 166.5)mm,
Right: Wc as a cylinder for zc ∈ (111.3, 145.2)mm

The zero level-set of S4 = 0 is shown in the entire scan range in Fig. 4. However,
only the parts of it appearing inside Wc2 (marked by thicker lines in Fig. 4) are
considered for the computation of Wc4 . As noted earlier, in this case, Wc = Wc4 .
Naturally, the stack of C4 obtained for all the slices when put together yields a subset
of W , that is convex in each slice. This does not necessarily imply that the stack
delimits a convex region as a whole. However, one can easily fit a desired convex
shape to obtain Wc in the (α−β−zc) space. Due to the nature of the degree-of-
freedomof the manipulator, a cylinder is chosen as the convex shape to be fit inside
W . Figure 5 shows the stack of C1, C2 and C4 together for the manipulator under
consideration. Note how they follow the hierarchy described in Sect. 2. As the stack
of C4 has been obtained for the entire range of heave, Wc can be obtained by fitting
a convex shape to the stack for any desired subset of the complete range of heave.
Note that the radius of the cylinder in the former case is 6.59⊥ while it is 15.62⊥ in
the latter (see Fig. 5). Thus, based on the intended application, a convex shape of
interest can be fit into W to obtain Wc desired.

5 Conclusion

In this paper, the concept of a safe working zone of a parallel manipulator has been
formalised, and a generic framework has been presented for its computation. It has
been shown that considering a convex subset of the same can lead to a hierarchy
in the subsets leading to the final result, reducing the computational requirements
significantly in the process. The formulation has been demonstrated by means of an
application on a newly developed parallel manipulator, namely MaPaMan-I, whose
workspace and singularities were not reported previously. A single computational
tool, namely a contour-plotter in a 2-dimensional space, has been used to compute the
SWZ and its convex subsets. The generic and simple nature of the scheme presented
in this paper can help in identifying the SWZ in similar manipulators, as well as be
used in the design of manipulators for a desired SWZ.
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Certified Calibration of a Cable-Driven Robot
Using Interval Contractor Programming

Julien Alexandre dit Sandretto, Gilles Trombettoni, David Daney
and Gilles Chabert

Abstract In this paper, an interval based approach is proposed to rigorously iden-
tify the model parameters of a parallel cable-driven robot. The studied manipulator
follows a parallel architecture having 8 cables to control the 6 DOFs of its mobile
platform. This robot is complex to model, mainly due to the cable behavior. To sim-
plify it, some hypotheses on cable properties (no mass and no elasticity) are done.An
interval approach can take into account the maximal error between this model and
the real one. This allows us to work with a simplified although guaranteed interval
model. In addition, a specific interval operator makes it possible to manage outliers.
A complete experiment validates our method for robot parameter certified identifi-
cation and leads to interesting observations.

Keywords Cable-driven robots · Calibration · Interval analysis

1 Introduction

Due to tolerances in manufacturing or assembly, the geometry of the actual manipu-
lator does not correspond to the desired design and its theoretical kinematic model.
Consequently, the performances of the manipulator, such as its accuracy, decrease.
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This problem could be bypassed by improving the kinematic model, i.e., by finding
the actual values of its parameters. These parameters, defining the geometry of the
robot (frame and platform) and actuator parts, are provided by a kinematic calibration
procedure. Calibration consists in identifying model parameters through redundant
information on the state of the robot provided by measurements or constraints [13].
Cable-driven robots have several interesting properties like reduced mass of moving
parts (i.e., the cables), ease of reconfiguration and, more importantly, a potentially
very large workspace. Nevertheless, the cost of these advantages is a complex kine-
matic and dynamic behavior due to the flexibility, mass and elasticity of the cables.
This kind of complex numerical model, can (and often needs to) be simplified to be
used in a command process or a calibration for instance. For example, a kinematic
calibration with joint sensors has been reported in [3], whereas a self-calibration
procedure for a planar robot is introduced in [2]. Several studies have been car-
ried on cable-driven robot kinematics. Many of them use an approximate model for
cables which considers them without mass and elasticity. The error added by this
approximation has been bounded for a whole workspace and a range of usual forces
in [12]. In robotics, interval analysis is used to manipulate bounded uncertainties
[9, 10], or to consider the whole workspace of a robot. A recent approach called con-
tractor programming was proposed by Chabert and Jaulin to solve different interval
problems [4]. A contractor is a procedure that reduces the search space, considering
generally a set of constraints to satisfy. In the face of outliers, i.e., measures that are
completely wrong, a solution which satisfies all the constraints may not exist. An
original interval approach for calibration was proposed by one the authors in [5].
However, outliers (along with model errors) led their method to an empty solution.
This paper proposes an innovative calibration approach based on certified interval
methods. The approach allows the calibration process to manage uncertainties in
cable model and in measures, even in presence of outliers thanks to a recent interval
operator called q-intersection. This intersection can relax some constraints to escape
from outliers.

2 Cable-Driven Robot

This study is part of the CoGiRo (Conception of Giant Robot) project. The goal of
this national project is to create a traveling crane with a large workspace and n = 6
DOFs. A crane or cable-driven robot is a mechanism that controls m = 8 cables
whose length or tension provides a movement of the mobile with 6 DOFs w.r.t. a
reference.
Cable-driven robot architecture:
In the sketch presented in Fig. 1, the mobile (linked to the frameΩC ) is connected to
the base (linked to the frameΩO ) by m = 8 cables (m > n to be fully controllable).
The i th cable connects the point Ai in the base (coordinate ai inΩO ) to the point Bi

on the mobile (coordinate bi inΩC ). The pose of the mobile (defined by the position
P and the orientation R ofΩC expressed inΩO ) is directly controlled by the length
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Fig. 1 A cable-driven robot sketch and a ReelAx8 picture

and the tension of each cable. The prototype, named ReelAx8 and shown in Fig. 1,
was built by the TECNALIA company (www.tecnalia.com) in collaboration
with the LIRMM laboratory (www.lirmm.fr). Eight cables, wound on winches,
are attached by spherical joints to the eight corners of a cube shaped platform of about
40 centimeters large. Four pairs of winches are fixed on posts up to three meters high
arranged at the four corners of a 3 m by 4 m rectangle.
Interval based kinematic model:
Cable-driven robots take advantage of the use of cables, allowing large workspace,
light actuators compared to the possible load mass, and low cost. However, cable-
driven robots suffer from the complex kinematics and dynamics of cables. A well-
known realistic model often used for the kinematics of cables is proposed by Irvine
in [7]. In Irvine’s model, the length of a cable depends on its tension and is described
by a non linear system of equations. In order to use this realistic model, we need
more sensors to measure the tension in cables, but the force sensors are not accurate
enough. The hypothesis considering non-elastic and mass-less cables is very useful
to simplify control, modeling, calibration, etc. Moreover, it is often realistic and
adds a negligible error to the robot accuracy. The majority of papers about cable-
driven robots uses this hypothesis and replaces the distances between points Ai and
Bi , noted d(Ai , Bi ), by the length Li , i = 1 . . .m, of unwound cables. The error
between the real length of cable and the distance d(Ai , Bi ) has been quantified (and
bounded with certification) in [12].

This method evaluates the interval cable length error [ΔL] = [ΔLmin,ΔLmax ]
between the realistic Irvine model Lirvine (which depends on the tension in cables
and considers mass and elasticity of cables) and the strongly simplified model L =
d(A, B) over the whole robot workspace and for the whole range of possible tensions
in cables. An interval [x] = [x, x] defines the set of reals x s.t. x ≤ x ≤ x . For a
given pose we can write: ΔLmin < L − Lirvine < ΔLmax
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We can thus define an interval based kinematic model which deals with this
modeling error:

||P + Rbi − ai ||2 − (Li + [ΔL]) ⊃ 0, i = [1...m] (1)

The simplified model approximates the realistic cable by adding the error [ΔL].
Thus we can also write Lirvine ∈ L +[ΔL]. This model is therefore correct because
it contains the real one. In other terms, our interval model overestimates the real
model in a guaranteed way. It is relevant for calibration because the intersection
principle can reduce this overestimation.
Calibration of a Cable-driven Robot:
The goal of calibration is to enhance the robot performances by the model knowl-
edge improvement. This improvement consists in identifying the model parameters
through redundant information on the state of the robot provided by measurement.
In case of calibration, NC measurements of P and R are achieved, for example,
with a laser tracker, and are given with tolerances. Therefore [P] and [R] include
these tolerances, i.e., the intervals [P] and [R] contain all the possible values for the
position and orientation. The coordinate of the point Bi expressed in ΩO at the kth
pose is then: [bk

i ] = [Pk] + [Rk][bi ]. The coordinates bi which define the geometry
of the platform are also given with manufacturing or measuring tolerances. In this
paper, we focus on the Ai coordinate identification. In practice, in the case of big
cable-driven robots, the parameters bi , which describe the platform geometry, are
well known, are easy to measure and do not change, contrarily to the ai which change
at each new reconfiguration and are not easy to be measured without a laser due to the
large dimension of the robot (4 m in our case). [ai ] denote the coordinates of points
Ai . These points are unknown, but we can bound them, even not accurately. The
aim of the calibration process described in this paper is to reduce these uncertainties.
The identification scheme consists of handling m independent and over-constrained
systems of NC equations:

0 ∈ ||[bk
i ] − [ai ]||2 − ([Lk

i ] + [ΔL]), k = [1...NC ], i = [1...m] (2)

Due to the independence of these m systems, each ai can be identified separately.
The nature of these calibration equations, where the only variable is ai , leads to an
analogy with a thick sphere intersection problem (NC thick spheres of center Bk

i , of
diameter [Lk

i ]+[ΔL] intersected in Ai ). In the sake of clarity of pictures that follow,
the problem will be illustrated by a circle (ring) intersection in a plane.

This calibration model takes into account all the bounded uncertainties on model-
ing, measurements and parameters. Nevertheless it could happen that a measurement
is completely wrong, i.e., beyond the estimated tolerances. Several circumstances can
lead to a mismeasurement, such as a sensor break down or bad environmental con-
ditions. Such a measure is called an outlier. If it is the cth measure, for example, it
means that:

0 /∈ ||[bc
i ] − [ai ]||2 − ([Lc

i ] + [ΔL]), i = [1...m] (3)
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In the presence of outliers, a classic constraint solver will fail to find a solution. In
this paper, we propose to use a recent interval operator called q-intersection which
can manage these outliers.

3 Contractor Programming and q-Intersection Contractor

The calibration process suffers from two problems: the acquisition of measures
and the model used for identification. The interval approach offers a rigorous repre-
sentation of the uncertainties on measurements and a powerful ability to rigorously
enclose the solutions. Significant theoretical and algorithmic progress have been
brought to interval methods that are now mature for application [6, 9]. A good
introduction to the interval arithmetic can be found in these last two references. An
interval solver is based on a branch & bound. A simple solver evaluates all the func-
tions involved in the system of constraints handled and checks if their images contain
0. To improve this approach, contractors are used.

A contraction procedure or contractor accepts as input a box, i.e., a vector of
intervals, and outputs a contracted box (while respecting certain properties detailed
in [4]). A given contractor can accept any other parameter to specify it behavior, such
as a system of constraints. A contractor program includes calls to several contractors
applied to different boxes. The contractor program used in our calibration applies
the following scheme to the system of equations modeling our measures:

[Fix P(Q I nter(q = 75%, hc4r(F1, box), ..., hc4r(FNC , box))

where hc4r [1], Q I nter [8] and Fix P are three contractors.

• hc4r can contract a box w.r.t. a single constraint such that no solution of the con-
straint is lost in the box. Using a tree representation of the constraint for accelerat-
ing the contraction, this contractor isolates every occurrence xi in the expression
and performs a natural evaluation of the corresponding function to contract [xi ].
Applied to our ring intersection problem, hc4r intersects the studied box with a
ring corresponding to a measure.
• Q I nter can forget bad measures (outliers), provided that the number of good

measures exceeds q. This contractor returns the smallest box including all the
points that belong to at least q of the boxes in argument. Applied to our ring
intersection problem, Q I nter returns the box enclosing all the points in the studied
box satisfying at least q imprecise measures.
• Fix P (FixPoint) calls the contractor in argument (here Q I nter ) until the box

reaches a quasi fixed point in terms of size.1

1 In our tool, the process stops if the maximal reduction on every dimension does not exceed 1%.
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(a) (b) (c)

Fig. 2 a A pose contracting the box around A1, b A circle intersection, c An empty circle inter-
section due to an outlier

4 Interval Calibration Approach

Our tool is dedicated to calibration and uses contractor programming to find the m
boxes that are guaranteed to contain the points Ai , [i = 1 . . .m]. The method is
explained in details in the following.
Contractor for each pose:
For each pose k (measure of position, orientation and cable length), the hc4r contrac-
tor reduces the size of the box including the point Ai using the calibration constraints
Fi,k = ||[bk

i ] − [ai ]||2 − [Lk
i ] + [ΔL]. The resulting box of this contraction process

is smaller than the initial box, but it is always an overestimation of the coordinate ak
i

(obtained with the kth pose). This is illustrated in the plane (for the sake of clarity)
in Fig. 2a.
Calibration with q-intersection:
Our calibration procedure is based on the intersection principle. The interval para-
digm ensures that every pose ak

i contains the point Ai , depending on the correspond-
ing measurement. Therefore the different boxes resulting from the different poses
ak

i are intersected, thus offering a better estimation of the point Ai . In Fig. 2b, we
present the intersection of 3 rings corresponding to poses (Bk

i represents the point Bi

in the kth pose). Each rectangle in grey represents a contracted box corresponding to
one pose, and the final box results from the intersection of all the individual boxes.

A problem can appear in this intersection process. In practice, due to the measure
acquisition process, a value may be completely wrong (e.g., B4

1 in Fig. 2c), even if one
considered the maximal possible error allowed by the measurement device. These
outliers generally lead to an empty solution for a classical intersection method, as
shown in Fig. 2c. In order to avoid this phenomenon (trap), our calibration approach
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Table 1 Parameters bi (in meter) estimated with ±1 mm tolerance

bi x y z

b1 [−0.112,−0.110] [0.345,0.347] [−0.017,−0.015]
b2 [0.241,0.243] [0.337,0.339] [−0.028,−0.026]
b3 [−0.171,−0.169] [0.339,0.341] [−0.431,−0.429]
b4 [0.298,0.300] [0.329,0.331] [−0.446,−0.444]
b5 [−0.179,−0.177] [−0.031,−0.029] [−0.429,−0.427]
b6 [0.288,0.290] [−0.041,−0.039] [−0.437,−0.435]
b7 [−0.118,−0.116] [−0.027,−0.025] [−0.004,−0.002]
b8 [0.233,0.235] [−0.034,−0.032] [−0.015,−0.013]

uses a q-intersection contractor. This method, presented in Sect. 3, can reject some
poses considered as outliers (e.g., B4

1 ), even if we do not know in advance which ones
are outliers. This works in the calibration of our robot provided that the parameter
q has been set to more than 75%. If the q-intersection result is nevertheless empty,
additional measurements have to be achieved to obtain a correct calibration result.
In a very unsettled environment, or with non accurate tools, it is also possible to
choose a smaller value q, although the calibration process has no sense when q falls
below 50%.
Method experimentally applied:
After a complete simulation which validated the approach, we have performed a
validation with measures coming from experiment. The cable model error computed
with the method presented in [12] is [ΔL] = [−0.6, 3.7]millimeters. The calibration
is performed with 42 measures obtained with a laser tracker. The tolerances of this
tool is ±1 mm for the position (on x , y and z) and ±10 mRad for rotation (around
each axis). An estimation on ai is given with a tolerance of ±1 cm. The calibration
results are reported in Tables 1, 2. The solution given by a least square method
(described in [11]) falls outside the certified interval solution obtained with our
method. For example, a classical method computes a1 = (2.2046, 0.5964,−2.7184).
This means that the least square solution does not satisfy the calibration equations.

Table 2 Parameters ai (in meter) identified with interval method and cable model error

ai x y z

a1 [2.214,2.214] [0.604,0.606] [−2.728,−2.727]
a2 [2.199,2.219] [0.516,0.536] [−0.367,−0.347]
a3 [0.512,0.532] [2.135,2.155] [−2.711,−2.691]
a4 [0.536,0.556] [2.193,2.205] [−0.425,−0.405]
a5 [−1.955,−1.955] [−0.418,−0.415] [−2.726,−2.725]
a6 [−2.063,−2.043] [−0.375,−0.355] [−0.438,−0.418]
a7 [−0.310,−0.309] [−2.020,−2.020] [−2.727,−2.727]
a8 [−0.392,−0.375] [−2.045,−2.043] [−0.403,−0.398]
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Using a standard interval approach, the solution of the calibration is empty due to the
presence of outliers. We can also observe that [a3,6] are not contracted by our method.
This means that the measures are not well chosen for calibrating these parameters
(identifiability problem). The measures are numerous but they do not cover all the
robot workspace. Remember that in this approach, the more different correct poses
we have, the smaller the final box will be. The stopping criterion is given by the time
spent to make the measures, but the choice of the poses is very important [5].

5 Discussion and Conclusion

This paper presents the first attempt to achieve a certified calibration of a cable-driven
robot using an innovative contractor programming approach. Our interval method
is robust to measurement error and outliers. Also, it permits to capture an error
due to the modeling. We can use a highly simplified model for the calibration that is
guaranteed to contain the realistic one (even if the latter cannot be characterized). We
have employed a q-intersection contractor to obtain an outlier-resistant calibration.
The obtained solution is not a point Ai , like with the least square method, but a
box. This box is an overestimated enclosure of the point to be identified. We could
verify that this solution is close to the one obtained by the (non certified) least square
method. To summarize, this contractor programming approach holds the potential to
become a key feature in certified calibration.
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Framework Comparison Between
a Multifingered Hand and a Parallel
Manipulator

Júlia Borràs and Aaron M. Dollar

Abstract In this paper we apply the kineto-static mathematical models com-
monly used for robotic hands and for parallel manipulators to an example of hand-
plus-object (parallel manipulator) with three fingers (legs), each with two phalanges
(links). The obtained analytical matrix expressions that define the velocity and static
equations in both frameworks are shown to be equivalent. This equivalence clari-
fies the role of the grasp matrix versus the parallel manipulator Jacobian. Potential
knowledge transfer between both fields is discussed in the last section.

Keywords Parallel mechanisms ·Multifingered robotic hands · Screw theory.

1 Introduction

A hand manipulating an object held in the fingertips has the same kinematic structure
as a parallel manipulator where the platform is the object and the legs are the fingers.
Despite this fact has been acknowledged by many authors [6, 10], few works discuss
connections between the mathematical frameworks of both systems [4]. A hand-
plus-object system is a highly redundant hybrid parallel manipulator, where the only
passive joints are the contact attachments. However, the hand-plus-object system has
to hold an extra condition: the fingertip force has to be directed towards the object
and inside the friction cone [12]. This condition does not modify the kineto-static
mathematical model, because it is treated as a constraint when solving the static
equations.
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This paper reviews the mathematical frameworks involved for modeling the hand-
plus-object system of a hand with three fingers and two phalanges per finger, and
its kinematically equivalent parallel manipulator. As expected, we show how the
derived static equations match. We believe that our comparison helps to clarify the
role of the grasp matrix versus the role of the parallel manipulator Jacobian matrix.
As far as the authors know, there has not been any publication proving that both
frameworks are analytically equivalent. The results obtained in this paper are for a
particular example. A general complete proof of such equivalence is left as future
work.

Section 2 introduces the studied example and its notation. Section 2.1 details the
steps to obtain the matrices for hands and Sect. 2.2 for parallel robots. The obtained
matrices are compared in Sect. 2.3. Finally, Sect. 3 discusses advantages of the proven
equivalence, and proposes future work based on transfer of knowledge between both
fields.

2 The 3-UR Hand and Its Equivalent Parallel Manipulator

This paper analyzes the three-fingered hand depicted in Fig. 1. Its architecture is
similar to other robotic hands such as the Barrett hand [16] or the JPL hand [13]. The
hand consists of three equal fingers with two phalanges each and three rotational joints
each (2 in finger flexion, and one base rotation). For each finger i , zi1 = (0, 0, 1)T and
zi2 = zi3 = (sin (θi1) ,−cos (θi1) , 0)T are the axis of rotation of the first, second
and third joints, respectively, with rotation angles θi1, θi2 and θi3, respectively (see
Fig. 1).

To complete the hand-plus-object system, we need to define the contact model.
The two most common contact models are called hard and soft fingers. The first one
assumes a point contact with friction with a small contact patch. Kinematically, it
is equivalent to a spherical joint. The second model assumes a larger contact patch
and thus, the finger can also transmit a moment about the contact normal. This is
equivalent to a universal joint. Therefore, the system hand-plus-object using the hard-
finger (soft-finger) model is kinematically equivalent to a 3-URS (3-URU) parallel
manipulator (where U stands for universal joint, R revolute, and S spherical). In this
work, we use the hard-finger model. Then, the mobility of the manipulator, computed
using the Grübler-Kutzbach criterion, is 6, that means the object (platform) can be
moved in 6 degrees of freedom (DoF). Other more complex models, such as the
rolling contact, are left as future work [15].

Hands need to actuate all the joints to keep the fingers rigid when they work
without contact, and thus, the resulting manipulator will have the 9 finger joints

Θ = (θ11, θ12, θ13, θ21, θ22, θ23, θ31, θ32, θ33) (1)

actuated. The rest of the joints are left free to move (passive). They are defined
considering the spherical joints as the intersection of three revolute joints. We define
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Fig. 1 A three-fingered hand with its corresponding notation. The center points of the palm joints
are equally distributed around a circumference of radius rp , and the contact points on the object
around a circumference of radius ro. By geometric construction, the coordinates of the fingertip
can be described using the magnitudes ni = li sin (θi2) + di sin (θi2 + θi3) and mi = li cos (θi2) +
di cos (θi2 + θ i3) , where li and di are the lengths of the proximal and distal links of the i th finger,
respectively

their axis of rotation as zi4 = (1, 0, 0), zi5 = (0, 1, 0) and zi6 = (0, 0, 1), with
angles θi4, θi5 and θi6, respectively. Then, we can state that the manipulator has three
degrees of actuation redundancy (9 actuated joints versus 6 DoF of mobility). As the
output twist that defines the velocity and angular velocity of the object (platform)
is also 6 dimensional, we can say that the manipulator does not have kinematic
redundancy [19].

The position and orientation of the object (platform) with respect to the palm
(base) reference frame are given by a position vector p ∈ R

3 located at the center of
mass of the platform (object) and a rotation matrix R ∈ SO(3). If⎧ai and⎧ci are the
local coordinates of the palm (base) and object (platform) attachments in their local
reference frames, their coordinates with respect to the palm (base) fixed reference
frame are ai =⎧ai and ci = p+R⎧ci . Assuming contact, the coordinates of the contact
points must be the same as the coordinates of the fingertips, which can be obtained
by geometric construction as

ci = ai + ni (0, 0, 1)T + mi (cos (θi1), sin (θ1), 0)T ,

(where ni and mi are defined in Fig. 1-(right)). The loop equations are obtained
equating the two obtained coordinates of the contact points ci . Solving them for Θ
or for {p,R} gives the the inverse and forward kinematic solutions, respectively.

The next two sections describe how to obtain the velocity equations using
the grasping framework [12] and the parallel manipulators frameworks [9, 17].
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The equations are listed in Table 1, for the described hand (first column of the table)
and the equivalent parallel manipulator (second column of the table).

The velocity of the object (platform) is described using screw theory in both
frameworks. We define a screw as $ = (u,q×u) for a given vector u and a position
vector q. Two screws are reciprocal when its reciprocal product is zero, i.e.,

(u1,q1 × u1) ◦ (u2,q2 × u2) = (q1 × u1,u1) · (u2,q2 × u2) = 0,

where · stands for the usual dot product and ◦ the reciprocal product [3, 18]. The
twist T = (v,Ω) defines the linear and angular velocity of the object (platform).

2.1 The Grasp Matrix and the Hand Jacobian

The total grasp and hand Jacobian matrices are defined stacking together the matrices
of each finger as shown in Table 1-row f. To define each finger matrix, first we need
to define a set of reference frames, {Ci } = {ci ,Ri }, located at each of the contact
points and with rotation matrix Ri = (ni ti oi ), with ni normal to the plane tangent
to the object at the contact point, and directed toward the object. The remaining two
vectors are chosen orthonormal to the first one (Table 1-row a). For our case, we
define these vectors as

ni =(nix , niy, niz) = p− ci

ro
,

ti =
⎪

niy⎛
n2

i x+n2
iy

,− ni x⎛
n2

i x+n2
iy

, 0

⎝

, (2)

oi =ni × ti

The grasp matrix for the finger i is a change of coordinates of the twist of the object
T, from the fixed reference frame to {Ci }. Let T f i be the twist at the fingertip i with
respect to the reference {Ci }. Then, T f i = GT

i T where GT
i = Hi Ri Pi (see explicit

expression in Table 1-row d). The matrix Pi translates the twist from p to ci . The
matrix Ri rotates the twist to match {Ci } and Hi is the contact model matrix, that
sets to zero the three coordinates corresponding to the angular velocity (see [12] for
detailed definition of this matrix).

The hand Jacobian matrix JH is defined by the joint twists, whose expressions
for each finger i are

$i1 =((ai − ci )× zi1, zi1)
T

$i2 =((ai − ci )× zi2, zi2)
T (3)

$i3 =((bi − ci )× zi3, zi3)
T .
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Table 1 Summary of static and velocity equations. τ and Θ̇ are the vector of joint torques and
velocities, respectively. W and T are the external wrench and twist acting on the object (platform).
λ f is a 1× 9 vector containing the three fingertip forces, and F represents the friction cone

Grasping Parallel manipulators

a

ni

ti

oiRi = (ni ti oi)

bi

ai

ci

zi2

b GT T = JH Θ̇ JpT = JΘΘ̇

c
JT

Hλ f = τ
−Gλ f =W
λ f ∈ F

W = −JT
p J−T

Θ τ

d
GT

i = Hi

⎞
Ri 0
0 Ri

⎠⎞
I3 0

(ci − p)× I3

⎠

where v× is the cross-product matrix
Jpi =

⎜

⎟
zT

i2 (ci × zi2)
T

(ci − bi )
T (ci × (ci − bi ))

T

(ci − ai )
T (ci × (ci − ai ))

T

⎦



e
JHi = Hi Ri ($i1$i2$i3)

with $i j defined in (3)
JΘi =

⎜

⎟
−mi 0 0

0 li di Sin (θi3) 0
0 0 −li di Sin (θi3)

⎦



with mi defined in Fig. 1

f GT =
⎜

⎟
GT

1
GT

2
GT

3

⎦

, JH =
⎜

⎟
JH1 0 0

0 JH2 0
0 0 JH3

⎦

 Jp =
⎜

⎟
Jp1

Jp2

Jp3

⎦

, JΘ =
⎜

⎟
JΘ1 0 0

0 JΘ2 0
0 0 JΘ3

⎦



Note that the angular components are computed about the center of the reference
{Ci }. Then, the i th fingertip twist is expressed as T f i = JHi Θ̇ , where JHi is detailed
in Table 1-row e. As before, the matrix Ri is used to write the twist with respect to
{Ci } and Hi to select only the transmitted components.

Finally, rows b and c show the velocity and the static equilibrium equations using
the complete matrices.

2.2 The Jacobian Matrix of the Parallel Manipulator

Here we follow the steps proposed in [9] or Chapter 5.6 in [17] to obtain the Jacobian
matrix for the parallel manipulator shown in Table 1, row a, second column.
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Let T be the twist of the platform, as in the previous section. The theorem in [9]
states that it can be written as the sum of the joint twists of each leg, that is,

T =
6∑

j=1

θ̇i j $i j , for i = 1, 2, 3. (4)

Here, the joint twists angular components are computed about the center of the base
fixed reference frame, namely, $i j = (r × zi j , zi j ), for j = 1, . . . , 6, where r takes
the value of the corresponding joint center. The first three joint twists are equivalent
to the twists defined in (3). The remaining three correspond to the passive joints.

The passive joint twists $i j , for j = 4, 5, 6, can be eliminated from the system
(4) computing their reciprocal screws, named as r $ik , for k = 1, 2, 3. It is important
to note that any set of three linearly independent screws through the contact point
are reciprocal to the spherical joint system {$i4, $i5, $i6} [3, 18]. After multiplying
the reciprocal system at both sides of each equation in (4), we can rewrite the system
as JpT = JΘΘ̇ , where the rows of the matrix Jp are the reciprocal screws and the
matrix JΘ only depends on the active joint angles, JΘ = (r $ik ◦$i j ), for j = 1, . . . , 3
and k = 1, . . . , 3. That is, it is formed by all the products of the reciprocal screws
with the actuated joint screws.

The most convenient choice of the reciprocal screws is to define each one to be
reciprocal to all the passive joint twists plus two of the active. This leads to a diagonal
matrix JΘi (Table 1-row e). The explicit expressions of the reciprocal screws for each
leg i are the rows of the matrix Jpi in Table 1-row d.

We can obtain the i th fingertip wrench, written with respect to the fixed reference
frame, by multiplying each set of three columns in Jp

T J−T
Θ by the corresponding

three joint torques τ . When the matrix JΘ is not square, we can use the pseudo-
inverse.

2.3 Comparison of Frameworks

We computed all the equations using Wolfram Mathematica 9. We can see that the
matrices in the rows d, e and f between the two columns of Table 1 are obviously
different. However, the analytical expression of the products J−1

Θ Jp and J−1
H GT are

the same, except for the angular components. In the grasping framework, the angular
velocities (moments) components of the twists (wrenches) are computed with respect
to the center of the object (platform), while in the parallel manipulators framework
they are computed with respect to the fixed reference frame center. Thus, we can say
that they are equivalent J−1

Θ Jp ≡ J−1
H GT .

In Sect. 2.2 we state that the reciprocal screws can be chosen arbitrarily, provided
that they are independent and through the contact point ci . Then, let us define them
using the vectors of the fingertip frame (see Eq. (2) and figure in Table 1, row a,
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column 1). In other words, we use ni , ti and oi to define the screws in the matrix Jpi .
Then, all the matrices in both frameworks coincide, that is, JH = JΘ and Jp ≡ GT ,
where the second equivalence is not analytically identical only because the moments
and angular velocities are computed with respect to different centers.

Note that the particular choice of the reciprocal screws will shape the final form
of the matrices in Table 1. Analogously, in the grasping framework, this choice is
made when defining the vectors of the rotation matrix of the reference frames {Ci }.

In the grasping context, the choice of the vectors {ni , ti , oi } is convenient to obtain
the expression of the fingertip forces λ f directly projected to the axes of the friction
cones. This facilitates the evaluation of the friction cone conditions. In the parallel
manipulator context, the choice is done so that the resulting matrix JΘ is as diagonal as
possible. This allows the interpretation of the rows of the complete Jacobian J−1

Θ Jp in
terms of line Plücker coordinates [7]. This is useful to find geometrical interpretation
of singularities. Recently, in [2] they have used this technique to hand fingers, and
the reciprocal system is chosen to facilitate the single value decomposition of the
resulting finger Jacobian matrix.

We can also observe that the steps shown in Sects. 2.1 and 2.2 can be generalized
to any type of hand (manipulator), but the resulting matrices will be tall, wide or
square depending on the relationship between the mobility, the number of actuated
and passive joints and the dimension of the output twist [19]. It remains to proof that
the results are always equivalent.

3 Discussion and Future Work

The grasping literature commonly uses the manipulability index to state the quality
of the grasp, and it is either based only on the hand Jacobian [13] or on the multipli-
cation of both matrices J−1

H GT [14]. While this can detect singularities, the literature
of parallel robots has extensively studied and classified them in much more detail
[5, 19, 20].

Among parallel robot designers, it is well known that a smart design has to take
into account the singularities inside the workspace [1, 8]. As far as the authors know,
this is not done when designing hands. In part, this may be because the actuation
redundancy reduces the dimensionality of the singularity locus. However, simplified
hands that use underactuated fingers can reduce the degree of actuation redundancy
down to 0 or even lower. In particular, we are studying how underactuation with
pulling cables can be modeled with similar Jacobian matrices where these kind of
singularities need to be taken into account. This type of hands are becoming very
popular not only for effective grasps, but also to perform dexterous manipulation
[11]. For these hands, singularities may be an issue that researchers will have to take
into account in the process of hand design.
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We believe that the study of convenient choices of the reciprocal system can
lead to useful tools to design hands with increased workspaces. For instance, it can
be useful to compute an analytical expression of the hyper-surface of singularities
using only task space variables. Analyzing such surface can help to plot independent
components inside a workspace, that cannot be crossed without loosing control.

This work has shown how the grasp matrix plays the same role as the Jacobian
of reciprocal screws for the analyzed example. Such equivalence allows for transfer
of knowledge from parallel manipulators to robotic hands. Extending this work to
more general cases is part of a future work that will help to fully understand the
parallelisms between these two types of manipulators.

Acknowledgments This work was supported in part by National Science Foundation grant IIS-
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A Novel Mechanism with Redundant Elastic
Constraints for an Actual Revolute Joint

Delun Wang, Zhi Wang, Huimin Dong and Shudong Yu

Abstract A novel spatial mechanism with redundant elastic constraints is presented
in this paper to establish a comprehensive model for simulating kinematic charac-
teristics of an actual revolute joint with flexibility and geometric errors. The rigid
cam profiles are specified to represent the geometrical errors. Elastic springs are
used to simulate the deformations of joint components and their surfaces for the
actual machine parts. The proposed RE mechanism, consisting of suspended cams
and multiple followers with springs, yields a total of 32 basic equations for displace-
ment analysis. The numerical results obtained using the proposed approach were
compared with the experimental data for an example revolute joint; good agreement
was achieved for joint kinematic characteristics. The proposed approach provides a
new application of the theory of mechanism in comprehensive performance analysis
of a complex mechanical system having many components with machining errors.

Keywords Elastic constraint · Error ·Mechanism · Revolute joint

1 Introduction

In a kinematical analysis of mechanism, the links are often assumed to be rigid,
the joints are assumed to have ideal geometries and maintain rigid under loads.
Take a revolute joint as an example. The shaft in the revolute joint is a rigid and
perfect cylinder, which can rotate only about its ideal axis of rotation regardless
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Fig. 1 A typical construction of actual revolute joint

of the applied loads. In reality, all components deform under loads, the shapes of
these components have geometrical errors due to machining. Therefore, the shaft
in an actual revolute joint has one dominating rotational DOF and five additional
DOF’s due to joint machining errors and component flexibility. We believe that the
kinematic characteristics of a joint in machine design can be obtained by studying
the kinematics of a corresponding spatial mechanism with appropriate constraints
when considering machining errors and joint flexibility [1, 2].

In this paper, our scope is focused on the analysis of the complex movement of
the shaft in a revolute joint with an aim to addressing the effects of machining errors
and flexibility (or simply revolute precision) on performance of an actual revolute
joint. The revolute precision is a key noteworthy performance of machine tools and
various precision instruments. The kinematical analysis and synthesis of an actual
revolute joint lays a solid theoretical basis for machine precision design [3–5].

2 An Actual Revolute Joint with Elastic Constraint and Error

An actual revolute joint consists of a rotating shaft, two or more bearings, and a
housing unit. The shaft can rotate freely about its axis, as shown in Fig. 1.

Geometrical errors: Every component is manufactured with geometrical errors.
Because of the presence of geometrical errors, the shaft no longer has a perfectly
cylindrical surface. Similarly, the actual bearing components such as the outer and
inner races also deviate from their ideal nominal surfaces. These components with
various types of geometrical errors are assembled together to form an actual revolute
joint to accommodate the rotational motion of the shaft.

Elasticity and deformations: Every component in an actual revolute joint
is made of isotropic or anisotropic materials with finite elasticity. Under loads,
these components deform. The load-induced component deformations magnify the
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Fig. 2 The RE mecha-
nism with redundant elastic
constraints for an actual
revolute joint

machining-induced geometrical errors. The actual geometrical shapes of the shaft
and bearings also vary with loads.

Constraints and motion: The shaft in an actual revolute joint, supported and
constrained by bearings, rotates about the Z-axis freely. The additional five elastic
DOF’s, two rotations about the X-axis and the Y-axis, and three translations along the
X, Y, and Z directions, are always present when geometrical errors and component
flexibility are taken into consideration. As a result, a geometrical element of the shaft
in an actual revolute joint has six DOF’s.

3 The RE Mechanism for an Actual Revolute Joint

Geometry and motion equivalence: Each component has its own geometrical
errors, which affects the positions and kinematical characteristics of the shaft. In the
motionless conjunction planes (MLCP), the components are fixed together. The com-
ponents deform with assembled loads, their shapes and positions will also change.
While in the motional conjunction surfaces (MCS), the components can only move
relatively. The kinematic characteristics (positions and loci) of the motional com-
ponents will change due to the geometrical errors. This means that the geometrical
errors of one component may be transferred into those of another component by the
MLCP or the MCS. The shaft in an actual revolute joint is regarded as cams with
specified rigid profiles and suspended by the translating followers as shown in Fig. 2.
The shaft motion is equivalent to that of the cam having a profile equivalent to the
geometrical dimensions and their error characteristics.

Elasticity equivalence: The surfaces of components for an actual revolute joint
experience deform under loads. In general, the displacements of the components due
to elastic deformations may be transferred to the surface of the shaft by the MLCP or
the MCS. As a result, the shaft will have additional elastic displacements, which are
determined by the component flexibility and loads. The elasticity of the constraint is
equivalent to several springs attached to the followers of the mechanism [6].

RE mechanism: A mechanism, with redundant degree of freedom and elastic
constraints, can be defined as an RE mechanism, where R stands for the redundant
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degree of freedom and E denotes elastic constraints. In an RE mechanism, both rigid
links and elastic components (springs) are simultaneously present; the geometrical
characteristics and physical characteristics can be extensively described. Particularly,
the redundant DOF’s coexist with elastic constraints.

In Fig. 2, the RE mechanism has a total of 12 links, a shaft with double cams, 10
translational followers and a base frame. Each follower forms a 1-DOF prismatic
pair with the base frame, and a 5-DOF pair with the cam. The number of degrees of
freedom can be calculated by the Grueblers equation [7]

F = 6(n − g − 1)+
g∑

i=1

fi (1)

where n(= 12) is the number of links; g(= 20) is the total number of kinematic
pairs; f1(= 1 × 10); f2 (= 5 × 10). The number of DOF’s is F = 6. These 6
DOF’s are the rotation of the cam about its axis and the five elastic DOF’s mentioned
above. In addition, the RE mechanism has another 10 DOF’s associated with the 10
translational followers, in which five of them correspond to the elastic constraint of
the cam, and the other five are the elastic motion of the cam with redundant DOF’s.
It is enough for a rigid cam mechanism to be constrained with 5-DOF motion. We
can see the significance of the elastic motions with redundant DOF’s.

The RE mechanism in Fig. 2 is a simplest mechanism with redundant DOF’s and
elastic constraints for the actual revolute joint with the two bearings. It will keep
the same DOF’s if an additional follower is introduced since it is accompanied by a
1-DOF pair and a 5-DOF pair, which counterbalances the six DOF’s of the introduced
follower. This performance provides convenience for displacement analysis of the
actual revolute joint with construction error and over-constraint constructions.

Discussion: In mechanism, the constraints and DOF’s are closely related. The
DOF is the number of independent parameters required to define configurations of
the mechanism, with respect to the base frame. For an actual revolute joint, a point of
the base link (component) experiences elastic displacements under loads. Contrary
to the rigid mechanisms, the constraining link or the follower in an RE mechanism
has the elastic motion of springs. Therefore, the DOF in an RE mechanism has a
different meaning from that in mechanism with rigid links only.

4 The Basic Equations of an RE Mechanism

For displacement analysis, the basic equations of an RE mechanism have to be
determined, including the geometrical equations, the equations of equilibrium, and
the equations of physical properties. The geometrical equations can be given as
following according to the construction of the RE mechanism, shown in Fig. 3.



A Novel Mechanism with Redundant Elastic Constraints 233

Fig. 3 The displacements of the RE mechanism

|ri + rV
ij + (LV

ij − δV
ij )| = L Di/2 i, j = 1, 2; V = X,Y (2)

|ri + rZ
ij + (LZ

ij − δZ
ij )| = L Bi i = 1, j = 2 or i = 2, j = 1 (3)

The equations of equilibrium for an RE mechanism may firstly be written as,
according to the notation in Fig. 4,

2∑

i=1

2∑

j=1

(FX
ij + FY

ij + FZ
ij)+ FI + FO = 0 (4)

2∑

i=1

2∑

j=1

(FX
ij PXf

ij + FY
ij PYf

ij + FZ
ijP

Zf
ij )+ FIrI + FOrO +MI +MO = 0 (5)

The equations of equilibrium for the followers are |FVK
ij | = |FV

ij | cosαV
i j .

The equations of physical properties in an RE mechanism can be written from the
elasticity of the follower springs as equation (6). And the physical equations of shaft
connected to two cams as equation (7)

FVK
ij = kV

i j δ
V
ij i, j = 1, 2; V = X,Y, Z (6)

KS[ΔX
12,Δ

Y
12,Δ

Z
12, θ

X
12, θ

Y
12, θ

Z
12]T = P (7)

There are six parameters to be determined in Equation (7), which describes the
displacements of the shaft (ΔX

12,Δ
Y
12,Δ

Z
12, θ

X
12, θ

Y
12, θ

Z
12), or the relative differences

between the two cams.
Equations (2) to (7), totaling 32 equations with 32 variables, are called the basic

equations of an RE mechanism. From the basic equations, the positions and postures
of two cams with rotation angle θz can now be located at any instant. As a result, any
point of the shaft will produce a spatial curve in the based frame, which is the actual
non-circular trajectory. The precision of an revolute joint, just the error between the
actual trajectory and the ideal curve, can be evaluated. The variations of precision
with the working conditions of an actual revolute joint can also be exposed.
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Fig. 4 The forces and moments in the RE mechanism

Table 1 The construction parameters of the actual revolute joint

Bore (d) 60.0 mm Ball diameter (Db) 22.22 mm
Outside diameter (D) 130.0 mm Distance between O1 and OO 130.0 mm
Inner ring width (B) 31.0 mm Distance between O1 and OI 105.0 mm
Outer ring width (C) 31.0 mm Distance between O1 and O2 160.0 mm

5 Case Study

An RE mechanism can be constructed for the actual revolute joint shown in Fig. 1.
The basic parameters of the revolute joint are given in Table 1.

Parameters of elastic constraints: In this mechanism, there are 10 follower
springs. The deformations of the springs are intended to be equivalent to the elas-
tic displacement of the shaft in the revolute joint, which are caused by the com-
bined elastic deformation of the bearings, bearing blocks, flanges and the shaft. For
convenience, we calculate the stiffness of the bearing and the supporting structure
individually as the rolling bearing is a standard part.

The stiffness of bearings can be calculated by the approximate formula [8]. The
stiffness in the radial direction is k BV

i j = 1190282δ1/2
r (i, j = 1, 2;V = X,Y), and

in the axial direction, the stiffness is k BV
i j = 46568δ1/2

r (i, j = 1, 2; V = Z).
The stiffness of the supporting structures, including the bearing block, flange and

shaft, is calculated by using the finite element method (FEM) in this paper. The
results are given in Table 2. The stiffness of the shaft connected to the two cams is
calculated by FEM according to equation (7).

Table 2 Stiffness of the supporting structures (×105N/mm)

kSX
11 kSX

12 kSY
11 kSY

12 kSZ
11 kSZ

12
8.50 8.50 6.06 10.1 unconstrained 2.33

kSX
21 kSX

22 kSY
21 kSY

22 kSZ
21 kSZ

22
5.64 5.64 4.45 7.27 1.19 unconstrained
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Geometrical feature and cam profiles: The geometric features and the kinematic
characteristics of the cams are similar to those of the bearing inner rings. Ideally,
the cam profile is the ideal profile of the inner race (r0(θ, z)). In fact, the geometric
features and kinematic characteristics of the bearing inner rings are related to the
geometric errors and loads.

Each cam follower of the RE mechanism corresponds to a specified cam profile.
With the MLCP and the MCS, the geometrical errors are transferred into positional
errors (δ(θ, z)) of the moving component. The ideal profile of the inner race (r0(θ, z))
is designated as the initial profile of the cams, and then, the positional errors (δ(θ, z))
and the elastic coefficient (ε(θ, z)) are taken into account. The profiles equation of
the cams can be written as

r = S(θ, z) = r0(θ, z)+ δ(θ, z)+ ε(θ, z) (8)

The actual profiles of the bearing components are measured respectively. Based on
the elastic deformation, the geometrical errors may change the geometrical shape of
the outer and inner races by the interference fitting between the shaft and inner ring,
which can be calculated by using a contact model and converted into the positional
errors (δ(θ, z))of the kinematic model in the RE mechanism.

Experiment: To compare the results of displacement analysis of the RE mech-
anism with that of experiments, the test equipment is set up for the actual revolute
joint, shown in Fig. 5a. The displacements of the reference point of the shaft, which
is located at the cross-section of the outer section, are measured in the X-direction.

(a)

(c) (d)

(b)

Fig. 5 Experiment of an actual revolute joint
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The curve b1 is the numerical results computed by the model of RE mechanism, the
curve b2 is the measuring results of the experiment and the curve b3 is the fitting
curve of the curve b2, which are shown as followings.

(1) Fig. 5b shows the variations of the displacements with the driving force from 0
to 3000 N for a fixed rotation angle of 320◦.

(2) Fig. 5c shows the variations of the displacements with the rotation angle in a
revolution for an input load F = 1100 N.

(3) Fig. 5d shows the variations of the displacements with the rotation angle in a
revolution while the loads vary sinusoidally as 1100 + 400× sin(θ )(N).

From the simulation results obtained using the model of the RE mechanism and
the experimental data, it can be seen that the precision of an actual revolute joint
depends on geometric errors, elasticity of components and loads. Through the RE
mechanism, a generic relationship among various measurable properties and loads
for an actual revolute joint is established, The precision of an actual revolute joint
and its load-dependent properties can be seen as the solution of the basic equations
of a corresponding RE mechanism, this opens up a new application of the theory of
mechanism in design of machine components.

6 Conclusions

A novel concept of an equivalent RE mechanism consisting of two spatial cams
and 10 followers with springs is presented in the paper to simulate the effects of
geometrical errors and elasticity of components in an actual revolute joint. The pro-
posed mechanism is a new spatial mechanism with redundant degrees of freedom
and elastic constraints.

The displacement of the RE mechanism can easily simulate precision and proper-
ties of an actual revolute joint by taking into account of component geometric errors
and their flexibility. The numerical results for the example revolute joint correlate
well with the measurements.
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Obtaining the Maximal Singularity-Free
Workspace of 6-UPS Parallel Mechanisms
via Convex Optimization

Amirhossein Karimi, Mehdi Tale Masouleh and Philippe Cardou

Abstract This paper explores the maximal volume inscribed ellipsoid in the
singularity free constant-orientation workspace of two classes of 6-UPS parallel
mechanisms, namely, quadratic and quasi-quadratic Gough-Stewart platforms. It is
of paramount importance to obtain the optimum singularity-free ellipsoid by taking
into account the stroke of actuators. Convex optimization is applied as the funda-
mental optimization tool of this paper. For this purpose, a matrix modeling for the
kinematic properties of Gough-Stewart platform is proposed. The main contribution
of this paper consists in improving an existing method in a such a way that it leads to
a global optimum rather than a suboptimal solution. The proposed algorithm could
be regarded as one of the most reliable, in terms of obtaining the global extremum,
and propitious approaches, in terms of computational time in comparison with other
approaches proposed in the literature for obtaining the singularity-free workspace
which make it suitable for real-time applications.

Keywords Parallel mechanisms · Stewart Gough platform · Singularity-free
workspace · Convex optimization.

1 Introduction

Despite many controversial deterrents, parallel mechanisms (PMs) [1] are now
widely used in different industrial contexts, such as parallel kinematic machines
and pick-and-place applications. The workspace and singularities of PMs have been
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extensively studied in precious literature, due to their importance in the kinetostatic
performance of the mechanism [2, 3]. To the best knowledge of the authors, few of
these studies focused on analyzing the singularity-free workspace of Gough-Stewart
platform, which is a definite asset in practice for path planning and control [4–6].

This paper aims at obtaining the singularity-free ellipsoid of a class of 6-DOF
PMs, known as Gough-Stewart platforms, for which the singularity loci expression,
for a prescribed orientation, is a second degree algebraic polynomial. These mech-
anisms are referred to as quadratic Gough-Stewart PMs. By the same token, the
quasi-quadratic Gough-Stewart PM is defined as a mechanism for which the singu-
larity loci expression, for a prescribed orientation, is of degree two upon fixing one
translational DOF.

Convex optimization, the framework of this paper, can be regarded as a robust and
reliable approach which is becoming the state-of-the-art in different disciplines due
to its remarkable performance in terms of (1) computational time, (2) guaranteeing
the optimality of the obtained solution and (3) providing analytical formulation of
the problem.

The remainder of the paper is organized as follows. First the mechanism under
study in this paper, the 6-UPS PM, is broadly reviewed. We then touch briefly upon
some preliminary definitions about convex optimization. Two classes of 6-UPS PMs
are introduced, namely, quadratic and quasi-quadratic PMs. For each case, a gen-
eralized algorithm is proposed in which the optimal ellipsoid is found within the
singularity-free workspace. As case studies, the singularity-free workspaces of two
given architectures of 6-UPS PMs are obtained. Finally, the paper concludes by
providing some remarks and describing related ongoing work.

2 Architecture Review and Kinematic Modeling

As depicted in Fig. 1(left) Gough-Stewart platform is composed of six identical limbs
of the UPS type, which connect the base to the moving platform. Here and throughout
this paper, R, P and S stand respectively for a revolute, a prismatic and a spherical
joint while the underlined joint is the actuated. The platform generates 6-DOFs by
adjusting the lengths ρi , i = 1, . . . , 6 of its prismatic joints. The pose (position
and orientation) of the mobile platform is described by the two coordinate systems
shown in Fig. 1(left), namely, Oxyz and Ox ◦y◦z◦ for the fixed and the mobile platforms,
respectively. Point Ai and Pi , i = 1, . . . , 6, stand respectively for the coordinate of
the U and S joints with respect to the fixed frame, Oxyz .

The position vector of the operation point of the mobile platform with respect to
the fixed frame is represented by p = [x, y, z]T . This operation point is chosen to be
point P1. The position vectors of point Pi in the fixed and mobile frames are denoted
by pi and p◦i , respectively. The position vector of point Ai attached to the base is ai

with respect to the fixed frame. The rotation of the mobile platform is represented by
the proper orthogonal matrix Q obtained from [φ, θ, ψ], i.e., Roll-Pitch-Yaw angles
respectively.
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Fig. 1 Left: A 6-DOF Gough-Stewart PM. Right: a MSSM (top view)

2.1 Workspace Analysis

In this paper, the constant-orientation workspace is considered and the procedure to
obtain the workspace of the Gough-Stewart platform is according to that proposed
in [2]. The constant-orientation workspace is the set of possible Cartesian positions
of the end-effector operation point for a prescribed orientation [6]. The kinematic
equations corresponding to the i th limb can be expressed as:

ρ2
i = (pi − ai )

T (pi − ai ) (1)

where pi = p+Qp◦i is the position vector of each point Pi in the fixed frame. The
stroke of the actuator is represent by the interval [ρmin, ρmax]. Substituting ρmin and
ρmax in Eq. (1) leads to the vertex spaces of the corresponding leg, i.e., the workspace
of a limb for a given orientation, with respect to the fixed frame [2]. By assuming

ci = ai −Qp◦i (2)

as the coordinates of the center point of each sphere given in Eq. (1), one can represent
the workspace, or more precisely the spheres, in a matrix formulation as follows:

xTAi x + 2bT
i x + ci = 0, for i = 1, ..., 12 (3)

Ai = I3×3, bi = −ci , ci = cT
i ci − ρ2

i

where I3×3 stands for the 3× 3 identity matrix.
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2.2 Singularity Analysis

Singularity usually refers to configurations in which the mechanism fails to preserve
its innate rigidity and consequently the mobile platform gains or loses some DOFs.
The first-order kinematic equation of a general PM can be expressed as:

Bθ̇ = Ax (4)

where x and θ̇ are the infinitesimal motion of the output and the input vector, respec-
tively. Matrices A and B denote the so-called Jacobian matrices, the regularity of
which is related to the singularity configurations of the mechanism. From the classi-
fication proposed in [3], each singularity configuration falls into one of three types. In
this paper, we consider only Type II, which is known as the direct kinematic singular-
ities, but which we refer to as singularity for the sake of brevity. Thus, the mechanism
undergoes a singularity when A becomes rank deficient, i.e., when det(A) = 0.

The study carried out in [5] reveals that the quadratic Gough-Stewart platform
corresponds to a design with similar base and platform. In this case, the moving
platform and the base differ only by a scale factor while a quasi-quadratic Gough-
Stewart platform is the one with planar base. In this architecture, all points Ai lie
on a plane and the singularity equation in this case is a polynomial of degree three
[5]. Furthermore, by inspection, a Gough-Stewart PM with a planar base is quadratic
upon fixing z, the axis perpendicular to the fixed base. Hence we say that it is quasi-
quadratic.

3 Review on Convex Optimization and General
Mathematical Framework

A convex optimization problem can be expressed as the minimization of a convex
objective function subject to inequality constraints which are all convex functions.
The main feature of convex programming is that any locally optimal point is also
globally optimal [7, 8]. In what follows, a preamble class of convex optimization
problems is briefly introduced, which corresponds to the problem at hand in this
paper.

3.1 Maximum Volume Ellipsoid Inscribed in the Intersection
of Second Order Surfaces

In this case, the problem consists in obtaining E

E = {x | xTPx + 2qTx + r ≤ 1} (5)
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as the maximum volume ellipsoid which satisfies all the constraints Ci defined as

Ci = {x | xT Ai x + 2bT
i x + ci < 0}, i = 1, . . . , m (6)

where Ai is a n × n matrix, P ≡ Sn++ (Sn++ represents the set of n × n symmetric
positive definite matrices) and q is a n-dimensional vector. Since the algorithm pro-
posed in [9] to solve such a problem leads to a suboptimal solution, we introduce
here an extension to the latter approach. We propose a judicious iterative procedure
in order to converge to the optimal solution. The results obtained in [9] reveal that
this problem can be formulated as the following convex optimization problem:

max 1− tr(SP)− 2qTx − r (7)

s.t. λ1, ..., λm ≈ 0,
[

P − λi Ai q− λi bi

(q− λi bi )
T r − 1− λi ci

]
⊥ 0, i = 1, ..., m,

[
P q
qT r

]
⊥ 0

which is convex in variables P, q, r , and λ1, ..., λm . The objective function in Eq. (7)
is the greatest lower bound on Prob(X ≡⋂m

1 Ci ), where X is a random variable on Rn ,
and prob(·) is the probability function. There is no information about the distribution
of X except that the first and second moments x = E(X) and S = E(XXT). Therefore,
Eq. (7) is referred to as a lower bound SDP (SemiDefinite Programming) [9]. The
obtained ellipsoid is the locally maximum volume ellipsoid tangent to the boundaries
of Ci at some points, which contains point x. Notice that it should be regarded as a
suboptimal solution since it is generated by an initial guess.

In what follows, an improved approach referred to as improved lower bound SDP
is proposed in order to circumvent the latter problem. The main part of this algorithm
consists in defining the initial information of the probability distribution, i.e., vector
x0 and the matrix S0, the so-called initial guess. The challenge consists in defining
the first guess in order to launch properly the improved approach to find the optimal
ellipsoid, i.e., to find Popt, qopt and ropt. To do so, first, an arbitrary point satisfying all
the constraints of the problem should be defined for x0 and S0. To ease the selection
of the first guess, the second moment matrix can be computed as follows from the
first moment vector:

S0 = x0 xT
0 + wI3×3 (8)

For a small w, upon applying the above equation into Eq. (7), one can compute the
optimal ellipsoid around the mean vector x0, but this is not the final and optimal
solution to the problem. In order to find the optimal ellipsoid, an improved algorithm
should be considered in which for each iteration the center of the expanded ellipsoid
is computed as mean vector xi and the second moment matrix is computed from
Eq. (8) for the new mean vector xi . This means that after the first guess x0, for the
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rest of the algorithm, the results obtained for P, q and r are considered as the initial
guess for pursuing the iteration.

This iterative procedure stops and returns Popt, qopt and ropt as optimal solutions
when the distance between the centers of two consecutive expanded ellipsoids is
smaller than a given value, ε, which means that there is not a significant change
in the center of the obtained ellipsoid by pursuing the procedure and the optimum
ellipsoid is attained:

||xi − xi−1||2 ≤ ε (9)

4 Convex Modeling of Singularity-Free Workspace

In this section, the aforementioned improved lower bound SDP algorithm is applied in
order to investigate the singularity-free workspaces of two Gough-Stewart platforms.
The optimization problem presented in Eq. (7) can be solved by resorting to the CVX
package, a convex optimization package implemented in MATLAB by Grant and
Boyd (2011) [10].

4.1 Case Study I: Similar Base and Platform

As the first case study, the Gough-Stewart PM with geometric parameters given in
Table 1 is considered. Its base and moving platform being similar, thus this Gough-
Stewart PM is quadratic.

Table 1 Geometric parameters of the PMs under study

i 1 2 3 4 5 6

xai 0 1 2 1 −1 −1
yai 0 0 1 2 2 1
zai 0 0 0 2 1 0
x ◦pi

0 0.5 1 0.5 −0.5 −0.5
y◦pi

0 0 0.5 1 1 0.5
z◦pi

0 0 0 1 0.5 0
(ρmin)i 1 1 1 1 1 1
(ρmax)i 4 4 4 4 4 4
xai 0 0 1

4√3
1

4√3
− 1

4√3
− 1

4√3
yai 0 0 4

√
3 4

√
3 4

√
3 4

√
3

zai 0 0 0 0 0 0

x ◦pi
− 4√27

5

4√27
5

4√27
5 0 0 − 4√27

5

y◦pi
0 0 0 3 4√3

5
3 4√3

5 0
z◦pi

0 0 0 0 0 0
(ρmin)i 1 1 1 1 1 1
(ρmax)i 4 4 4 4 4 4
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The problem can be formulated as follows. The matrix formulation of the 12
spheres, Ci , six inner and six outer spheres, is obtained from Eq. (3). The singularity
equation can be reformulated readily as Eq. (6). The optimization problem given
in Eq. (7) is then solved to obtain Popt, qopt and ropt. Finally, we implement the
improved lower bound SDP method introduced in Sect. 3, in order to obtain the
maximal singularity-free ellipsoid.

It should be noted that the optimal solution obtained from the improved lower
bound SDP can be changed according to the choice of the initial guess x0. Thus,
selection of different initial guesses in each feasible subregion of the singularity-
free workspace results in the same optimal solution. However, the optimal solution
varies based on the selection of x0 within other feasible subregions of singularity-
free workspace. Figure 2 depicts the results obtained for ϕ = θ = ψ = π

4 . Two
initial guesses are considered, x0 = [2, 2, 0]T and ω = 0.1, and x0 = [−1,−1, 1]T
and ω = 0.1, which lead to two distinct optimal solutions as depicted in Fig. 2.
Figure 2(right) represents the result for z = 0.3 including the iterative procedure,
i.e., the dashed ellipses, to find the optimal solution, the solid ellipse. For this case, the
computational time obtained by a PC equipped with an Intel(R) Core(TM) i5-2430M
CPU @ 2.40 GHz, and 4 GB RAM is 0.6 s.

4.2 Case Study II: MSSM

As represented in Fig. 1(right), the Minimal Simplified Symmetric Manipulator
(MSSM) is an architecture for which the base and the moving platform are isosceles
triangles. In this case, a MSSM with an equilateral triangle base of unit area is con-
sidered. The moving platform is also an equilateral triangle with area of 9

25 . Table 1
represents the geometric parameters of this mechanism. Since in this architecture,

Fig. 2 The maximum-volume singularity-free ellipsoid in the workspace of 6-UPS for ϕ = θ =
ψ = π

4 . Left: the 3D view. Right: the cross-section for z = 0.3
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Fig. 3 The maximum-area singularity-free ellipses in the workspace of MSSM for ϕ = π
6 , θ =

π
4 , ψ = 0. Left: the isometric view for 0 ≤ z ≤ 2. Right: the cross-section for z = 0.5

the base of the mechanism is coplanar, the singularity equation is of quasi-quadratic
type, i.e., the singularity equation becomes quadratic upon fixing z. Following the
same reasoning explained for the previous case, the maximum area ellipse for each
section, i.e., z ≡ [0, 2] in this case, can be obtained via the improved lower bound SDP
approach. By starting from x0 = [1, 0]T and ω = 0.1, after a computational time of
7.1 s, the optimal ellipse found as depicted in Fig. 3 for ϕ = π

6 , θ = π
4 , and ψ = 0.

Figure 3(left) represents the general result with Δz = 0.1 as the increment value
for each cross section while Fig. 3(right) depicts the result for a given cross section,
z = 0.5.

5 Conclusion

This paper investigates the singularity-free workspace of two classes of 6-DOF par-
allel mechanisms referred to as quadratic and quasi-quadratic Gough-Stewart plat-
forms. An extension to an existing approach was presented in order to converge to the
optimal solution from an initial guess. In terms of computational time, the proposed
algorithms provides some outstanding results with respect to others reported in the
literature. Ongoing work include obtaining the appropriate design parameters for a
prescribed singularity-free ellipsoid, namely, performing the dimensional synthesis
of Gough-Stewart platforms.
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Type Synthesis of Two DOF Hybrid
Translational Manipulators

Latifah Nurahmi, Stéphane Caro and Sébastien Briot

Abstract This paper introduces a new methodology for the type synthesis of two
degrees of freedom hybrid translational manipulators with identical legs. The type
synthesis method is based upon screw theory. Three types of two degrees of freedom
hybrid translational manipulators with two identical legs are identified based upon
their wrench decomposition. Each leg of the manipulators is composed of a proxi-
mal module and a distal module mounted in series. The assembly conditions and the
validity of the actuation scheme are also defined. Finally, some novel two degrees
of freedom hybrid translational manipulators are synthesized with the proposed
procedure.

Keywords Type synthesis · Parallel mechanisms · Hybrid legs · Screw theory

1 Introduction

At the conceptual design stage of manipulator architectures, the idea is to con-
struct several design alternatives by following a systematic approach. However, the
information at this stage is usually qualitative and not quantitative, which makes the
design process quite difficult and challenging.

A manipulator is a mechanical system that aims at manipulating objects. For sim-
ple task such as pick-and-place operations, the two degrees of freedom (dof ) parallel
manipulators may be sufficient. Several two-dof translational parallel manipulators
(TPM) are composed of a planar architecture that yields their stiffness quite low along
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the normal to the plane of motion [3]. Moreover, those manipulators are usually not
composed of identical legs.

In order to increase the stiffness properties of the two-dof TPM, some researchers
have proposed a new manipulator architecture named the Par2 [2]. This architecture
has the particularity to be spatial instead of planar and thus is stiffer along the normal
to the plane of motion. Two legs amongst the four legs of the manipulator are linked to
each other with a rigid belt in order to constrain the rotation of the moving platform.
As a consequence, it leads to a robot with a poor accuracy. To avoid the design
problems of the Par2, a new robot with spatial architecture and two legs has been
proposed: the IRSBot-2 [4]. Each leg of the IRSBot-2 is hybrid, i.e. it is composed of
a proximal module (PM) and a distal module (DM) mounted in series, each module
containing two kinematic chains. This mechanism has exhibited interesting stiffness
properties. Therefore, it is of interest to focus on the type synthesis of two-dof TPM
by considering architectures with hybrid legs.

The subject of the paper is about the type synthesis of of two-dof hybrid transla-
tional manipulators with identical legs. Each leg is composed of a proximal module
and a distal module mounted in series. Those modules contain one kinematic chain
or two kinematic chains mounted in parallel. These kinematic chains are called sub
legs. This research work has been carried out in the framework of the French National
Project1 that aims to develop some fast and accurate robots with a large operational
workspace.

In this paper, the general approach for the type synthesis of manipulators is devel-
oped based on [5]. The screw systems used in this paper are adopted from [5]. The
approach is decomposed into five steps: (i) Classification of the leg-constraint wrench
system; (i i) Decomposition of the constraint wrench system of a proximal and distal
module; (i i i) Type synthesis of the sub legs; (iv) Assembly of the sub legs and legs;
(v) Selection of the actuated joints.

2 Two DOF Hybrid Translational Manipulators
with Two Identical Legs

The general approach for the type synthesis of two dof hybrid translational manip-
ulators with two identical legs are presented using the following procedure.

2.1 Step 1: Classification of the Leg-Constraint Wrench System

The moving platform of two-dof hybrid translational manipulators is intended to per-
form a two translational motion in plane (xOz). In general configuration, the twist

1 This work has been partially funded by the French French National Project ANR 2011-BS3-006-
01-ARROW (http://arrow.irccyn.ec-nantes.fr/)

http://arrow.irccyn.ec-nantes.fr/
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system of the moving-platform amounts to a 2Ψ∞−system.2 Therefore, the overall
constraint wrench system Wc is a 1Θ0 − 3Θ∞−system,3 containing one zero-pitch
wrench along y-axis and three independent infinite-pitch wrenches. Such manip-
ulators can be obtained by a combination of any leg-constraint wrench system of
order ci (1 ≤ ci ≤ 4), decomposed as follows:

• ci = 4→ 1Θ0 − 3Θ∞−system
• ci = 3→ 1Θ0 − 2Θ∞−system, 3Θ∞−system
• ci = 2→ 1Θ0 − 1Θ∞−system, 2Θ∞−system
• ci = 1→ 1Θ0−system, 1Θ∞−system

However, only three types of two-dof hybrid translational manipulators can be
properly assembled with two identical legs, namely:

• Type 1: ci = 4→ 1Θ0 − 3Θ∞−system
• Type 2: ci = 3→ 1Θ0 − 2Θ∞−system
• Type 3: ci = 2→ 1Θ0 − 1Θ∞−system

Type 3 is included in this paper, since the combination of two parallel legs with
1Θ0−1Θ∞−system can generate a manipulator with overall constraint wrench system
1Θ0 − 3Θ∞−system from [1].

The overall constraint wrench system of one leg is determined by the intersection
of constraint wrench systems associated with the proximal and distal modules as they
are mounted in series. Therefore, the constraint wrench systems associated with the
proximal and distal modules are decomposed thereafter. Note that these constraint
wrench decompositions are interchangeable between proximal and distal modules.

2.1.1 Type 1: ci = 4 → 1ζ0 − 3ζ∞−System

The overall constraint wrench system of one leg for Type 1, is ci = 4, 1Θ0 −
3Θ∞−system. Thus, the feasible constraint wrenches are: Proximal module:

1. 2Θ0 − 3Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2, Θ∞3)
2. 1Θ0 − 3Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2, Θ∞3)

Distal module:

1. 2Θ0 − 3Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2, Θ∞3)
2. 1Θ0 − 3Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2, Θ∞3)

At least one Θ0 from the constraint wrench systems described above is along
y-axis.

2 Ψ∞ denotes an infinite-pitch twist, namely, a pure translation.
3 Θ0 and Θ∞ denote a zero-pitch wrench (a pure force) and an infinite-pitch wrench (a pure moment),
respectively.
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2.1.2 Type 2: ci = 3 → 1ζ0 − 2ζ∞−System

The overall constraint wrench system of one leg for Type 2, is ci = 3, 1Θ0 −
2Θ∞−system. Hence, the possible constraint wrenches are:
Proximal module:

1. 2Θ0 − 3Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2, Θ∞3)
2. 1Θ0 − 3Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2, Θ∞3)
3. 2Θ0 − 2Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2)
4. 1Θ0 − 2Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2)

Distal module:

1. 2Θ0 − 2Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2)
2. 1Θ0 − 2Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2)

At least one Θ0 from the constraint wrench systems described above is along
y-axis.

2.1.3 Type 3: ci = 2 → 1ζ0 − 1ζ∞−System

The overall constraint wrench system of one leg for Type 3, is ci = 2, 1Θ0 −
1Θ∞−system. Hence, the possible constraint wrenches are:
Proximal module:

1. 2Θ0 − 3Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2, Θ∞3)
2. 1Θ0 − 3Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2, Θ∞3)
3. 2Θ0 − 2Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2)
4. 1Θ0 − 2Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2)
5. 2Θ0 − 1Θ∞−system, W = span(Θ01, Θ01, Θ∞)
6. 1Θ0 − 1Θ∞−system, W = span(Θ0, Θ∞)

Distal module:

1. 2Θ0 − 1Θ∞−system, W = span(Θ01, Θ01, Θ∞)
2. 1Θ0 − 1Θ∞−system, W = span(Θ0, Θ∞)

At least one Θ0 from the constraint wrench systems described above is along
y-axis.

2.2 Step 2: Decomposition of the Constraint Wrench for Proximal
and Distal Modules

The next step for type synthesis of two dof hybrid translational manipulators is
the decomposition of the constraint wrench for proximal and distal modules. It is
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noteworthy that Types 1, 2 and 3 have the following constraint wrench systems for
proximal and distal modules:

1. 2Θ0 − 3Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2, Θ∞3)
2. 1Θ0 − 3Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2, Θ∞3)
3. 2Θ0 − 2Θ∞−system, W = span(Θ01, Θ02, Θ∞1, Θ∞2)
4. 1Θ0 − 2Θ∞−system, W = span(Θ0, Θ∞1, Θ∞2)
5. 2Θ0 − 1Θ∞−system, W = span(Θ01, Θ01, Θ∞)
6. 1Θ0 − 1Θ∞−system, W = span(Θ0, Θ∞)

Such module constraint wrench systems emerge from the vector sum of the subleg-
constraint wrench systems, due to the in-parallel arrangement of two identical sub-
legs. All potential identical subleg combinations are presented in Table 1.

2.3 Step 3: Type Synthesis of Sublegs

Once the different combinations of subleg-constraint wrench systems have been
achieved (Table 1), the kinematic chains that instantiate proximal and distal modules
can be determined. The concept of virtual chain [5] is used to generate subleg types.
A virtual chain is a serial kinematic chain associated with the motion pattern of the
proximal and distal modules. The number of joints in the subleg is defined based on
the following mobility criterion [5]:

f = F + (6− c) (1)

where f is the number of 1-dof joints, F is the mobility of a single-loop kinematic
chain, and c is the order of the wrench system.

2.3.1 Step 3a: Type Synthesis of Single-Loop Kinematic Chains
that Involve a Virtual Chain and have a Specified Subleg-Constraint
Wrench System

Type synthesis of single-loop kinematic chains is illustrated for modules with 2Θ0−
3Θ∞−system and 1Θ0 − 3Θ∞−system only due to space limitation.

Module with 2ζ0 − 3ζ∞−System

This module has 1-dof and can be represented by a P4-virtual chain. Let us consider
a subleg whose constraint wrench system is 2Θ0 − 3Θ∞−system (from Table 1).

4 P stands for a prismatic joint and R stands for a revolute joint.
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Fig. 1 P subleg with a P-virtual chain

The number of joints that involves a P-virtual chain and has a 2Θ0 − 3Θ∞−system is
defined as follows:

ci = 5, f = F + (6− c) = 1+ (6− 5) = 2 joints (2)

This single-loop kinematic chain can only be formed by one P joint, whose direc-
tion is perpendicular to the axes of 2Θ0 as depicted in Fig. 1.

Module with 1ζ0 − 3ζ∞−System

This module has 2-dof and can be represented by a PP-virtual chain. Let us consider
a subleg whose constraint wrench system is 1Θ0 − 2Θ∞−system (from Table 1). The
number of joints that involves a PP-virtual chain and has a 1Θ0 − 2Θ∞−system is:

ci = 3, f = F + (6− c) = 2+ (6− 3) = 5 joints (3)

Such a single-loop kinematic chain contains two cases: perpendicular case and
general case. For perpendicular case, all R joint axes are parallel to the axis of Θ0 and
all directions of P joints are perpendicular to the axis of Θ0. In the general case, all
R joint axes are perpendicular to the directions of Θ∞ and coplanar with the axis of
Θ0. One example of RRR subleg is given in Fig. 2 for perpendicular case.

2.3.2 Step 3b: Generation of Types of Sublegs

The types of sublegs are derived by removing the P-virtual chain and PP-virtual chain
from Figs. 1 and 2. Those types of sub legs are given in Table 1. Nonetheless, several
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Fig. 2 RRR subleg with PP-virtual chain

types of sub legs that contain a non-invariant sub leg-wrench system (kinematic
chains with varying wrench system) [5] are still kept as they can produce two-dof
translational motions. All these types of sub legs can be assembled to generate either
proximal modules or distal modules.

2.4 Step 4: Assembly of Sublegs and Legs

The assembly process of two-dof hybrid translational manipulators is performed
for Types 1, 2 and 3. Each leg of manipulator is realized by mounting a proximal
module and a distal module in series. Then, each leg becomes a hybrid manipulator
and is attached to the base at one end and to the moving-platform at the other end.
Therefore, the assembly process consists of two steps as explained thereafter.

2.4.1 Step 4a: Assembly of Sublegs → Proximal and a Distal Modules

The proximal and distal modules can be obtained by assembling some sublegs from
Table 1. Nevertheless, the following conditions should be respected:

1. The overall wrench system of a module should constitute the desired wrench
system, as explained in Step 1.

2. At least one translational twist generated by the module should lie in plane (xOz).
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Table 1 Type of sublegs for proximal and distal modules free of inactive joint

c Wrench system of PM and DM Subleg wrench system Type Note

5 2Θ0 − 3Θ∞ 2Θ0 − 3Θ∞ Permutation P
2Θ0 − 2Θ∞ Permutation RR Non-invariant
1Θ0 − 2Θ∞ Permutation RRR

Permutation PRR
4 1Θ0 − 3Θ∞ 1Θ0 − 3Θ∞ Permutation PP

1Θ0 − 2Θ∞ Permutation RRR
1Θ0 − 1Θ∞ Permutation PRR

Permutation RRŔŔ Non-invariant
2Θ0 − 2Θ∞ 2Θ0 − 2Θ∞ Permutation PR

Permutation RR Non-invariant
1Θ0 − 2Θ∞ Permutation RRR

Permutation PRR
2Θ0 − 1Θ∞ Permutation RRŔ Non-invariant

Permutation RŔŔ Non-invariant
1Θ0 − 1Θ∞ Permutation RRŔŔ Non-invariant
2Θ0 Permutation RRŔŘ Non-invariant

Permutation PRŔŘ
3 1Θ0 − 2Θ∞ 1Θ0 − 2Θ∞ Permutation RRR

Permutation PRR
Permutation PPR

1Θ0 − 1Θ∞ Permutation RRŔŔ Non-invariant
2Θ0 − 1Θ∞ 2Θ0 − 1Θ∞ Permutation PRŔ

1Θ0 − 1Θ∞ Permutation RRRŔ
Permutation PRRŔ
Permutation PRŔŔ

2Θ0 Permutation RRŔŘ
Permutation PRŔŘ

2 1Θ0 − 1Θ∞ 1Θ0 − 1Θ∞ Permutation RRRŔ
Permutation PRRŔ
Permutation PRŔŔ
Permutation PPRŔ

1Θ0 Permutation RRRŔŘ
Permutation RRŔŔŘ
Permutation RŔŔŘŘ
Permutation RRŔŘŘ
Permutation PRRŔŘ
Permutation PRŔŔŘ
Permutation PRŔŘŘ
Permutation PPRŔŘ
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2.4.2 Step 4b: Assembly of Legs → Two-dof Hybrid Manipulator

The legs of the two-dof hybrid translational manipulators are synthesized by mount-
ing in series the proximal and distal modules derived in Step. 4a. However, the
following conditions should be fulfilled:

1. The wrench system of the leg should of Type 1, Type 2, or Type 3 namely, it
should be a 1Θ0 − 3Θ∞−system, a 1Θ0 − 2Θ∞−system, or a1Θ0 − 1Θ∞−system.

2. The linear combination of the wrench systems associated with the legs should
be a 1Θ0 − 3Θ∞−system.

Figure 3 illustrates a novel two-dof hybrid translational manipulators with iden-
tical legs. This is a Type 1 mechanism that has been synthesized with the proposed
approach. Each leg has a 1Θ0 − 3Θ∞−wrench system. Both proximal and distal
modules have a 2Θ0 − 3Θ∞−wrench system and are composed of two RRR legs,
known as Sarrus Linkage. This novel mechanism is named Q-Sarrus, Q standing for
Quadruple.

Figure 4 depicts another mechanism synthesized with the proposed type-synthesis
approach. This mechanism is named IRSBot-2 [4] and is of Type 2. Its proximal
modules have a 2Θ0 − 3Θ∞−system and are made up of aΠ joint. Its distal modules
have a 2Θ0 − 2Θ∞−system and are composed of 2-UU kinematic chains.

Fig. 3 Q-Sarrus
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Fig. 4 IRSBot-2

2.5 Step 5: Selection of the Actuated Joints

Let assume that the condition of constraint wrench system is satisfied, namely, the
assembly of legs applies a 1Θ0 − 3Θ∞−system on the moving-platfom. In a general
configuration, a set of constraint wrench system, Wc, together with an actuation
wrench system, Wa , constitute a 6-system. Ultimately, the selection of actuated
joints for two-dof hybrid translational manipulators can be made in such a way that
a basis of the actuation wrench system Wa contains at least two actuation forces.

3 Conclusion

A general approach has been introduced in this paper for the type synthesis of two-
dof hybrid translational manipulators with identical legs. The proposed approach is
based on the screw theory and the method described in [5]. Two types of two-dof
hybrid translational manipulators have been highlighted with regard to the wrench
system associated with their legs. Moreover, many novel two-dof hybrid translational
manipulators have been obtained and two of them have been illustrated, namely, the
Q-Sarrus and the IRSBot-2. The comparison of the synthesized manipulators with
regard to their complexity and intrinsic stiffness is part of the future work.
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Robust Dynamic Control of an Arm
of a Humanoid Using Super Twisting
Algorithm and Conformal Geometric Algebra

O. Carbajal-Espinosa, L. González-Jiménez, A. Loukianov
and E. Bayro-Corrochano

Abstract The pose tracking problem for the 5 DOF (degrees of freedom) arm of a
humanoid robot is studied. The kinematic and dynamic models of the manipulator are
obtained using the conformal geometric algebra framework. Then, using the obtained
models, the well known super-twisting algorithm, is used to design a controller in
terms of the conformal geometric algebra for the pose tracking problem. Simulation
shows the performance of the proposed controller with the conformal models for the
tracking an object.

Keywords Kinematics modeling ·Dynamic modeling · Super twisting algorithm ·
Conformal geometric algebra · Humanoid manipulator

1 Introduction

The geometrical relationships between the kinematical chains of a humanoid and an
object of interest in the environment, determine the reference for their position and
orientation. To follow a target on the task space, a controller must be designed in order
to assure a proper torque values on each joint of the manipulator. First, models of the
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kinematics and dynamics of the robot must be obtained, for this end, the conformal
geometric algebra (CGA) framework allows the representation of rigid transforma-
tions (rotations, translations, screw motions) and geometric entities (points, lines,
spheres, etc), these entities will serve to model the structure of the robot, for exam-
ple, lines can be considered as links of the manipulator. Moreover, the composition
of several rigid transformations acting over a geometric entity can be computed as
a sequence of geometric products of consecutive motors (the conformal entity that
represents a 3D rigid transformation) [1, 4]. In this work, the conformal geometric
algebra (CGA) framework is used to obtain the direct, differential kinematical and
forward dynamic models of the arm of a humanoid. The rest of the work is orga-
nized as follows. Section 2 presents an introduction to Conformal Geometric Algebra
framework, introducing some geometric primitives and rigid transformations in CGA
used in this work. Section 3 presents the kinematic and dynamic modeling of serial
manipulator. In Sects. 4 and 5 present the control strategy and the simulation results
of the proposed method. Finally, some conclusions are given in Sect. 6.

2 Geometric Algebra

We will use Gn to denote the geometric algebra of n-dimensions, which is a graded-
linear space. As well as vector-addition and scalar multiplication, we have a non
commutative product which is associative and distributive over addition. This is the
geometric or Clifford product. The inner product of two vectors is the standard scalar
or dot product, which produces a scalar. The outer or wedge product of two vectors
is a new quantity which we call a bivector.

In this paper we will specify the geometric algebra Gn by G p,q,r , where p, q and
r stand for the number of basis vectors which square to 1,−1 and 0 respectively and
fulfill n = p + q + r . The entire basis of Gn is defined as the ordered set:

{1}, {ei }, {ei ◦ e j }, {ei ◦ e j ◦ ek}, . . . , {e1 ◦ e2 ◦ . . . ◦ en} (1)

where ei denote the basis vector i , and has the following properties:

ei e j =

⎧
⎪⎪⎛

⎪⎪⎝

1 f or i = j ≤ 1, · · · , p
−1 f or i = j ≤ p + 1, · · · , p + q

0 f or i = j ≤ p + q + 1, · · · , p + q + r.
ei ◦ e j f or i ≡= j

The Conformal Geometric Algebra, G4,1 = G4,1,0, can be used to treat conformal
geometry in a very elegant way, representing the Euclidean vector space R

3 in R
4,1,

for a more complete treatment, the reader is referred to the texts by [1, 4]. This space
has an orthonormal vector basis given by {ei } and ei j = ei ◦ e j are bivectorial bases.
The unit Euclidean pseudo-scalar Ie := e1◦e2◦e3, a pseudo-scalar I = Ie E , andthe
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bivector E := e4◦e5 = e4e5 are used for computing Euclidean and conformal duals
of multivectors. A null can be defined as

e≈ = e4 + e5, e0 = 1

2
(e4 − e5) (2)

where e≈ is the point at infinity and e0 is the origin point. These two null vector
satisfies

e2≈ = e2
0 = 0, e≈ · e0 = 1

The point is written as

xc = xe + 1

2
x2

e e≈ + e0

Given two conformal points xc and yc, it can be defined xc − yc = (yc ◦ xc) · e≈
and, consequently, the following equality is fulfilled as well:

(xc ◦ yc + yc ◦ zc) · e≈ = (xc ◦ zc) · e≈ (3)

The point will be use to define the position of each joint and the center of mass
of each link on a manipulator.

The Lines will be used to define the rotation axes and orientation of the manip-
ulator, and can be defined in CGA as a circle passing through the point at infinity.
The Outer Product Null Space (OPNS) form of a line is represented as

L⊥ = xc1 ◦ xc2 ◦ e≈ (4)

The standard Inner Product Null Space (IPNS) form of the line can be
expressed as

L = nIe − e≈mIe (5)

where n and m stand for the line orientation and moment respectively. Given two
lines La and Lb we can define a third error line Le as

LΨ = La − Lb (6)

Rigid transformations can be expressed in conformal geometric algebra by car-
rying out successive plane reflections.

The translation to a vector a ≤ R
3, of conformal geometric entities can be done

by carrying out two reflections in parallel planes Θ1 and Θ2. That is Ta Q⎞Ta , where

Ta = (n + de≈)n = 1+ 1

2
ae≈ = e

a
2 e≈ (7)

The rotation is the product of two reflections at nonparallel planes which pass
through the origin. That is RΠ Q⎠RΠ , where
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RΠ = cos

⎜
Π

2

⎟
− sin

⎜
Π

2

⎟
l = e−

Π
2 l (8)

with l = n2 ◦ n1, and Π twice the angle between the planes Θ2 and Θ1.
The screw motion called motor related to an arbitrary axis L is M = T R⎞T and

it is applied in the same way than a rotor, MΠ Q ⎠MΠ , where

MΠ = T R⎞T = cos

⎜
Π

2

⎟
− sin

⎜
Π

2

⎟
L = e−

Π
2 L (9)

3 Kinematic and Dynamic Modeling of Manipulators

The direct kinematics of a manipulator consists in calculating the position and ori-
entation of the end-effector of a serial robot using the values of the joint variables.
If the joint variable is a translation, Mi = Ti = exp−dne≈ for a prismatic joint and a

rotation Mi = Ri = exp
−ΠLr

2 for a revolutive joint. The direct kinematics for a serial
robot is a successive multiplication of motors given by

Q′ = M(q)1 . . .M(q)n QM̃(q)n . . . M̃(q)1 =
⎦

n∏

i=1

M(q)i Q
n∏

i=1

M̃(q)i=n−i+1

)

(10)
for a given angular or translation position vector q = [q1 . . . qn]T .

The differential kinematics of the system results from the differentiation of (10)
for points and lines, and is given by

ẋ ′p = Jx q̇, L̇ ′p = JL q̇ (11)

with q̇ = [q̇1 . . . q̇n], and the Jacobian matrices defined as Jx = [x ′p · L ′1 . . . x ′p ·
L ′n], JL = [δ1 . . . δn], where

L ′j =



j−1∏

i=1

Mi



 L j




j−1∏

i=1

⎞M j−i



 , δ j = 1

2

(
L ′p L ′j − L ′j L ′p

)
(12)

and Li is the axis for the ith joint in the initial position. Please refer to [9] for a more
detailed explanation about the differentiation process.

On the other hand, we can write the dynamic equations of the system using the
Euler-Lagrange equation [6] as

M(q)q̈ + C(q, q̇)q̇ + g(q) = Φ (13)
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It is possible rewrite this equation in the geometric algebra framework [10], defin-
ing the matrix M(q) = Mv+MI , where Mv and MI are defined as follow. The matrix
MI can be written as the product of two matrix Δ and I if we define them as

MI = Δ I =






1 1 · · · 1
0 1 · · · 1
...
...
. . .

...

0 0 · · · 1











I1 0 · · · 0
I2 I2 · · · 0
...
...
. . .

...

In In · · · In





. (14)

where In are the inertial value of each link. The matrix Mv also can be expressed as
the product of two matrices Mv = V T mV , where the matrices V and m are

m :=







m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn






, V :=







x ′cm1 · L ′1 0 · · · 0
x ′cm2 · L ′1 x ′cm2 · L ′2 · · · 0

...
...

. . .
...

x ′cmn · L ′1 x ′cmn · L ′2 · · · x ′cmn · L ′n






. (15)

where the values mi are the mass of each link and x ′cmi and L ′i are the center of mass
and the rotation axes of each link obtained by the direct kinematic defined in (10)
and (12) respectively. Based in the properties of the matrices M and C , it can be
written the matrix C without derivatives as C = V T mV̇ , where the matrix V̇ can be
obtained following the next mathematical procedure. Defining V = X L yields

V =






x ′cm1 0 · · · 0
0 x ′cm2 · · · 0
...

...
. . .

...

0 0 · · · x ′cmn











L ′1 0 · · · 0
L ′1 L ′2 · · · 0
...

...
. . .

...

L ′1 L ′2 · · · L ′n





, (16)

then V̇ = Ẋ L + X L̇ . With Ẋ = diag[ẋ ′cm1, · · · , ẋ ′cmn] an diagonal matrix, where
the ẋ ′cmi is computed using the differential kinematic (11).

On the other hand

L̇ ′ =







L̇ ′1 0 · · · 0
L̇ ′1 L̇ ′2 · · · 0
...

...
. . .

...

L̇ ′1 L̇ ′2 · · · L̇ ′n






. (17)

where L̇ ′i is computed using (12) and can be expressed in a matrix form as:






L̇ ′1
L̇ ′2
...

L̇ ′n





= 1

2











L ′1L ′1 0 · · · 0
L ′2L ′1 L ′2L ′2 · · · 0
...

...
. . .

...

L ′n L ′1 L ′n L ′2 · · · L ′n L ′n





−






L ′1L ′1 0 · · · 0
L ′1L ′2 L ′2L ′2 · · · 0
...

...
. . .

...

L ′1L ′n L ′2L ′n · · · L ′n L ′n











q̇. (18)
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Finally the vector g is expressed as the product of the three matrices as G = V T ma,
where V have been defined and the vector F = ma is a force component, where
m = diag[m1,m2, · · · ,mn] is a n × n matrix of masses and a = [ge2, ge2, · · · ]T
is a n × 1 vector.

4 Dynamic Control

Now using (11) and (13) we will define the output tracking problem for the position
x ′p1 and the orientation L ′p1 of the manipulator of the humanoid robot. A state-
space model can be obtained using the next state variables: x1 = Pose of the
manipulator , x2 = q and x3 = q̇ . Using the state variables, (11) and (13) the
state-space model for the pose of the manipulator can be defined as:

ẋ1 = J x3 (19)

ẋ2 = x3

ẋ3 = −M−1Cx3 − M−1G + M−1Φ

where J is the Jacobian matrix,−M−1Cx3−M−1G will be expressed by f (x2, x3)

and y = x1 is the output of the system.
Now, we define a reference signal xre f 1 (t) for the arm and we will define an

error signal. Omitting the parenthesis of the reference, the tracking error is given
by Ψ1 = x1 − xre f 1. Assuming that we know the derivative ẋre f 1 and the second
derivative ẍre f 1, the derivative of the error gives

Ψ̇1 = J x3 − ẋre f 1 (20)

From (20) we will define a virtual control variable, which ensure that the variable
Ψ1 will tends to zero. This new variable is obtained as in block control like

xre f 3 = J−1 (−k1Ψ1 + ẋre f 1
)

(21)

Now we will define an error variable for the second block as Ψ2 = x3 − xre f 3.
Immediately, the error signal Ψ2 is differentiated and gives

Ψ̇2 = f (x2, x3)+ M−1Φ − ẋre f 3 (22)

the signal ẋre f 3 its divided in two terms, one known part (ΔJ )

ΔJ = J−1(−k1(J x3 − ẋre f 1)+ ẍre f 1) (23)

and an unknown part ξJ . On this way the derivative of Ψs can be rewritten as

Ψ̇2 = f (x2, x3)+ M−1Φ − ΔJ −ξJ (24)
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Now using (24), we are able to design a control law for Φ , to tackle the pose
tracking problem. For this end we will use a Super-Twisting Algorithm applied to
the robotic manipulator. We will design our control law Φ as

Φ = M(u0 + u1) (25)

where the term u0 is used to reject the nominal part of the Eq. (24) and the known
signals, and is defined as u0 = − f (x2, x3)+ ΔJ , this term ensure the sliding mode
occurrence from initial instance [7]. Now we use the sliding surface s = Ψ2. The
derivative of s using u and the control term u0 yields ṡ = u1 −ξJ .

To induce an sliding mode in ṡ we design the second part u1 of the control law
using the super-twisting [2, 5] algorithm as

u1 =− βNsign(s)+ μ (26)

μ̇ =γsign(s)

where N = |s|ρ and β , ρ, γ are design parameters. The stability proof and the
system convergence, is demonstrated in [2], for more detail please refer to the cited
reference.

5 Simulation Results

The initial values of the rotation axes, the values of xi and the center of mass xcmi ,
for i = 1 . . . 5, in centimeters, used in the simulation are

L1 = e23 + e≈ (x1 · e23) , x1 = 25e2, xcm1 = −8.91e1 + 24.92e2 (27)
L2 = e31 + e≈ (x2 · e31) , x2 = −15.3e1 + 25e2, xcm2 = −15.23e1 + 25e2 + 0.1e3

L3 = e23 + e≈ (x3 · e23) , x3 = −15.3e1 + 25e2, xcm3 = −21.8e1 + 25.1e2

L4 = e31 + e≈ (x4 · e31) , x4 = −30.5e1 + 25e2, xcm4 = −31.08e1 + 25.23e2 + 0.79e3

L5 = e32 + e≈ (x5 · e32) , x5 = −30.5e1 + 25e2, xcm5 = −41.89e1 + 25.22e2

The euclidean component of the references signals are given by Lre f = [0, 1,
−1]T and xre f = [7cos (2t) , 24, 14+ 5sin (2t)]T , where xre f and Lre f are the
references for the position and orientation, respectively. The mass of the links was
m1 = 0.45 kg, m2 = 0.05 kg, m3 = 0.34 kg, m4 = 0.1 kg, m5 = 0.11 kg. The
values of the controller was k1 = [7, 7, 5, 21, 22, 24]T , β = 80, ρ = 0.5 and
γ = 6.

The Fig. 1a,b shows the tracking response of the arm, the Fig. 1c depicts the error
signals for the pose of the arm. Finally the Fig. 2 shows a sequence of the humanoid
torso using the angular values of the joints obtained with the proposed method in a
virtual model developed in CLUCalc [3] and Matlab [8].
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(a) (b) (c)

Fig. 1 a Position of the end-effector. b Orientation of the end-effector. c Error signal

Fig. 2 Image sequence of the simulation results

6 Conclusions

The conformal geometric algebra was used to define, in a simple and compact man-
ner, the kinematic and dynamic models of the arm of a humanoid. Furthermore,
a super-twisting controller was designed in this framework which allows to define
error variables between complex geometric entities. The proposed control scheme is
robust against external disturbances, parameter variations and model uncertainties.
Moreover, using a super twisting controller results in chattering-free control signals
and finite time convergence of the closed loop system. This work pursues the inclu-
sion of geometric restrictions expressed in CGA into the model of robotic systems,
and in the controller design procedure.
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Singularity Locus for the Endpoint Map
of Serial Manipulators with Revolute Joints

Ciprian S. Borcea and Ileana Streinu

Abstract We present a theoretical and algorithmic method for describing the singu-
larity locus for the endpoint map of any serial manipulator with revolute joints. As a
surface of revolution around the first joint, the singularity locus is determined by its
intersection with a fixed plane through the first joint. The resulting plane curve is part
of an algebraic curve called the singularity curve. Its degree can be computed from
the specialized case of all pairs of consecutive joints coplanar, when the singularity
curve is a union of circles, counted with multiplicity two. Knowledge of the degree
and a simple iterative procedure for obtaining sample points on the singularity curve
lead to the precise equation of the curve.

Keywords Serial manipulator · Revolute joints · Endpoint map singularity

1 Introduction

We consider a serial manipulator with an arbitrary number n ≥ 2 of revolute joints.
The end-effector or hand is abstracted to a single point T on the last link. The n joints,
also called joint axes or hinges, are envisaged as full lines and labeled in order A1, ...,
An . For theoretical purposes, we assume full rotational capability around each joint
and allow all geometrical configurations, without regard for possible self-collisions.
Thus, the configuration space is parametrized by the n-dimensional torus (S1)n . The
endpoint map e : (S1)n → R3 takes a configuration θ = (θ1, ..., θn) ∈ (S1)n to the
corresponding position of the endpoint T (θ) ∈ R3. When the differential De(θ) has
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rank strictly less than three, we have a singular configuration. The locus of T for all
singular configurations is called the singularity locus for the endpoint map.

It is fairly well known that the singularity locus is a surface of revolution, with
the first joint as symmetry axis. When sectioned with a plane passing through this
axis, the singularity locus yields a plane curve which is part of an algebraic curve,
called here the singularity curve. In this paper we describe a complete and rigorous
procedure for obtaining the equation of the singularity curve.

The singularity locus is of fundamental importance not only for path planning and
avoidance of singular configurations, but also for positional workspace determina-
tion. The workspace boundary is necessarily included in the singularity locus [4, 20].

Previous attempts for describing either the singularity locus or the workspace
boundary have usually addressed cases with a very small number of joints often
relying on numerical procedures of uncertain accuracy [1–3, 14–16, 18, 19, 21].
The general recursion proposed in [11] seems difficult to work out for larger n and
has been explicitly used only in a few instances [12, 17].

The main elements of novelty of the solution presented here reside in the method
itself, centered on obtaining an explicit degree formula for the singularity curve,
the recognition of the algebraic and geometric advantage of using for this purpose the
specialized case of manipulators with any two consecutive joints coplanar and the
possibility of producing the necessary amount of sample points in the general case,
based on the geometric characterization of singular configurations.

More precisely, our determination of the singularity curve is based on the fol-
lowing principles: (i) the degree of the curve does not change when the manipulator
is continuously altered until any two consecutive joints become coplanar, (ii) for a
manipulator with any two consecutive joints coplanar, the singularity curve is made of
circles, counted with multiplicity two, (iii) recursion on n yields the general degree
formula, (iv) sample points on the singularity curve can be produced in arbitrary
numbers, (v) with known degree and sufficiently many sample points computed, the
equation of the curve is obtained from solving a linear system.

This summary leaves aside some technical details. It will be seen in due course
that, for full mathematical rigor, one has to work over the algebraically closed field
of complex numbers. The ‘continuity principle’ used in (i), while intuitively persua-
sive, is actually justified through a more elaborate argument [13]. However, when
assuming a certain background in algebraic geometry, these aspects take lesser roles.
Thus, the key elements of our approach rely on (a) the fact that manipulators with
coplanar pairs of consecutive joints allow the computation of the degree formula, in
combination with (b) the possibility of producing sample points based on a simple
geometrical characterization of singular configurations.

Part (a) follows from our work on extremal reaches and workspace determination
for manipulators with coplanar pairs of consecutive joints, also called panel-and-
hinge chains: [6, 7]. This special class of manipulators is adequate for computing
the degree δn of the singularity curve since the latter decomposes into irreducible
components of degree two and multiplicity two. The degree formula is obtained in
Sect. 3 from a linear recurrence relation which gives:
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δn = 1√
3
[(1+√3)n+1 − (1−√3)n+1] − 2n+1

with δ2 = 4, δ3 = 16, δ4 = 56, δ5 = 176, δ6 = 528 ....
The exponential complexity of the workspace boundary described in [8] is aptly

reflected in this degree formula.
The geometric characterization of singular configurations used in (b) is the fol-

lowing singularity criterion: the nR manipulator is in a singular configuration θ
i.e. rank(De(θ)) ≤ 2 when there is a line through T projectively incident with all
joint axes [5, 9, 10]. A line of this type will be called a T -transversal. This criterion
and its sibling for the end-to-end (squared) distance from a marked start point S on
the first link are already implicated in (a), leading to the important notions of fold
point and pivoting [7, 8]. For (b) the criterion serves in the following way.

We choose an arbitrary line through the terminus point T and the last hinge An and
then find the two solutions given by the intersection of this line with the hyperboloid
generated by rotating An−1 around An . Then, with any one of these two solutions in
place, we look for the two solutions given by intersecting the line with the hyperboloid
generated by rotating An−2 around An−1 and so on. This procedure produces 2n−1

singular configurations i.e. 2n−1 points of the singularity curve. With sufficiently
many sample points determined in this manner all coefficients of the curve can
be determined (up to proportionality) by solving the resulting homogeneous linear
system. Actually,

(
δn+2

2

)− 1 points imposing independent conditions suffice.

2 Fold Points and Pivoting

In this section we review the argument showing that a manipulator with all pairs of
consecutive joints coplanar has a singularity curve made of irreducible components
of degree two, which have to be counted with multiplicity two. The key notions are
those of fold point and pivoting at a first fold point introduced in [6–8].

Let pi,i+1 = Ai ∩ Ai+1 denote the intersection of a pair of consecutive joint axes.
The plane containing this pair of joint axes is called a panel. Our n R manipulator can
thereby be conceived as a panel-and-hinge chain since one panel is joint to the next
by their common joint axis or hinge. The fist panel is taken as a fixed plane through
A1 and the last panel is the plane given by An and T . As recalled in the introduction,
a singular configuration must allow a T -transversal for all hinges. As long as the
T -transversal avoids intersection points pi,i+1, consecutive panels must remain in
one and the same plane. Thus, singular configurations are either flat, with all panels
in the same plane, or non-flat, with at least one point p f, f+1 on the T -transversal
such that the three consecutive panels incident to p f, f+1 are not coplanar. Such a
point p f, f+1 is called a fold point of the singular configuration.

For the notion of pivoting it is useful to review first the case of a 2R manipulator
with incident joints, illustrated in Fig. 1. Note that, by definition, all configurations
are singular, since n = 2 and the rank of De(θ) cannot be 3. Thus, as a set, the
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Fig. 1 The locus of T for a
manipulator with two inter-
secting hinges is a ring-shaped
spherical region (covered
twice). In the reference plane
through A1 given by the red
grand circle it traces two arcs
along this circle

A1A2

P12

singularity locus is given by all possible positions of T . These positions cover a ring-
shaped region of a sphere centered at p1,2 = A1 ∩ A2. Algebraically, one should
remain alert to several aspects: the actual singularity locus is only part of an algebraic
surface, but this ‘inconvenience’ is removed when reformulating the problem over
the field of complex numbers. Then, ‘complex configurations’ would map to the
complex quadric whose real points are seen as the sphere, and in fact cover it twice.
This double covering can be seen on the real scenario over the ring-shaped region
and becomes intuitive also when imagining the manipulator with incident joint axes
as a limit of manipulators with two skew joint axes. In the latter case, the locus of
T is a torus and when the joint axes intersect, the torus degenerates to a ‘doubled’
spherical region.

In short, all matters algebraic become simpler over the complex field C and this
must be the adopted setting in general for properly speaking about irreducible com-
ponents and degree for the singularity curve.

Returning now to arbitrary n and a given configuration, we define pivoting at
pk,k+1 to mean ‘locking’ all joints except Ak and Ak+1 and using only these two
degrees of freedom. Thus, the n R manipulator becomes a 2R manipulator. When
we have a singular configuration with first fold point at p f, f+1, we take as refer-
ence plane the common plane of the first f panels and pivoting at p f, f+1, together
with the singularity criterion, show that all configurations with T in this reference
plane are singular configurations for the n R manipulator. When we start with a flat
configuration, pivoting at any pk,k+1 immediately provides a degree two irreducible
component of the complex singularity curve passing through the corresponding T .

Thus, over C , any point of the singularity curve belongs to some degree two irre-
ducible component. In other words: the complex singularity curve of a manipulator
with all pairs of consecutive joints coplanar decomposes into irreducible components
of degree two (which must be counted with multiplicity two).
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Before engaging the degree computation, we recall the analogous case of the end-
to-end squared distance function for a panel-and-hinge chain [6]. The first panel is
fixed and has a marked point S (start). The end-to-end function f : (S1)n → R gives
the squared distance f (θ) between S and the endpoint T (θ) = e(θ). When the dif-
ferential d f (θ) = 0, we have a critical configuration. The geometrical criterion for
critical configurations says that the end-to-end line ST must intersect (projectively)
all hinges. Thus, all critical configurations of an end-to-end function are singular
configurations for the endpoint map.

3 Counting Circles and the Degree Formula

We consider critical configurations for a panel and hinge chain with k hinges and
marked S (start) and T (terminus) points. The first panel is fixed. We denote by ck

the number of (real or complex) configurations with line ST intersecting all hinges
(i.e. critical configurations).

There are 2k flat configurations.
For non-flat configurations we look at the first fold point p f, f+1.
From this point to T we have a chain with k − ( f + 1) hinges (and k − f

panels). There are ck−( f+1) critical configurations (with line p f, f+1T intersecting
all k − ( f + 1) hinges.

The first f panels have 2 f−1 flat configurations.
By pivoting at p f, f+1 there are two (real or complex) alignments of Sp f, f+1 with

p f, f+1T , hence:

ck = 2k + 2
k−1∑

f=1

2 f−1ck−( f+1) (1)

with c0 = 1. If we put c−1 = 1, we have:

ck =
k∑

f=1

2 f ck−( f+1), c−1 = c0 = 1 (2)

This gives the linear recurrence relation:

ck+1 = 2(ck + ck−1), c0 = c1 = 1, k ≥ 1 (3)

For the number of (complex) circles νn traced in the plane of the first panel by
the (complex) singularity locus of the endpoint map, we look again at the first fold
point pk,k+1. (Note that the circle is traced by pivoting at this point.) We have:
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νn =
n−1∑

k=1

2k−1cn−(k+1), n ≥ 2 (4)

It follows that:
νn+1 = 2νn + cn−1, n ≥ 2 (5)

which yields by (3) the linear recurrence relation:

νn+3 = 2(2νn+2 − νn+1 − 2νn), n ≥ 2 (6)

with ν2 = 1, ν3 = 4, ν4 = 14.
Remark: When passing from counting circles to degrees, the circles have degree

two and have to be counted twice since each ‘sphere’ is covered doubly. Two skew
hinges give a torus (for the real picture) i.e. a degree four surface.

From (2) and (4) we obtain:

cn = 2νn + 2n, n ≥ 2 (7)

hence

νn = 2νn−1 + cn−2 = cn−1 + cn−2 − 2n−1 = 1

2
cn − 2n−1 (8)

The degree δn of the curve made of νn double circles is 4νn and we have therefore:

δn = 2cn − 2n+1 = 1√
3
[(1+√3)n+1 − (1−√3)n+1] − 2n+1 (9)

where the last part of the formula follows from solving the linear recurrence (3). The
first few terms of the degree sequence are:

δ2 = 4, δ3 = 16, δ4 = 56, δ5 = 176, δ6 = 528 ...

4 Generating Sample Points

With the degree δn determined from n R manipulators with all pairs of consecutive
joints coplanar, we return to the general case when consecutive joints would be
skew lines in space. In order to determine the equation of the singularity curve,
we need

(
δn+2

2

) − 1 points of the curve which impose independent conditions. As
already described in the introduction, we may produce any number of sample points
on the curve since we may execute the procedure with arbitrary positions of the
T -transversal in the last link. In fact, the needed number of independent sample
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Fig. 2 The main iterative step for generating sample points. The green line is the intended
T -transversal, with T marked larger in green

Fig. 3 The singularity curve for a 2R manipulator, obtained after computing all coefficients of the
degree four equation from sample points illustrated nearby

points is roughly halved by virtue of the reflection symmetry of the singularity curve
in the A1 point axis.

We illustrate in Fig. 2 the main step of the iterative procedure which starts with a
chosen line through T and some point on An , our ‘designated’ T -transversal.

After successively placing An−1, ..., An−k in contact with this line, we have the
situation depicted in the figure, with the designated T -transversal in green, the joint
axis An−k in red and An−k−1 in blue. When all the remaining part of the manipulator is
rotated around An−k , the blue line sweeps the shown hyperboloid and the two specific
rotations which position An−k−1 in contact with the designated T -transversal are
determined from simple quadratic conditions. Thus, using one or the other rotation
we have one more joint on the designated T -transversal. At the final step, A1 is
positioned in contact with the green line, making it a genuine T -transversal.
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Figure 3 shows sample points for a 2R manipulator next to a full plot of the (real
points of the) singularity curve. The degree is δ2 = 4 in this case and one needs(6

2

) − 1 = 14 independent points for the determination (up to a proportionality
factor) of the 15 coefficients implicated in the general equation of a plane curve of
degree four.

5 Conclusions

We addressed and solved the fundamental problem of obtaining the equation of the
singularity curve of a serial manipulator with an arbitrary number n of revolute
joints. The key elements of our solution are the degree formula (9) , derived from the
specialized case of manipulators with any two consecutive joints coplanar and the
general possibility of obtaining sample points on the curve by an iterative procedure.
The full singularity surface for the endpoint map of the manipulator is generated by
rotating the singularity curve around the fixed first joint axis. Computational designs
for effective implementations of this solution will be detailed in separate publications.
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1 Introduction

Several studies dealt with the 3-RRR spherical parallel manipulators (SPM)
[2, 4, 5]. The platform of the mechanism is moving over a spherical surface around
a fixed center of motion. In the bibliography, several studies covered a wide range of
characteristics such as workspace [3], kinematic analysis [5] and design parameters
(DP) optimization [2]. This characteristic is suitable for our application of minimally
invasive surgery since the surgeon is operating with tools through small incisions in
the body patient. Indeed, this work is part of a project to design and fabricate a
teleoperation system for minimally invasive surgery. An experimental study of this
technique based on motion capture was held in previous work [4] to characterize the
task workspace. Figure 1 (left) illustrates the expert surgeon operating with tools on a
training station (Pelvis Trainer). Figure 1 (right) represents the workspace of the used
tools (a clamp and a needle holder) identified by motion capture. Each tool operates
in a conical space with a maximum half vertex angle of 26◦. However, despite being
an over constrained mechanism; few studies were interested in the effect of manufac-
turing errors on the SPM. A1-Widyan et al. [1] evaluated through a stochastic method
the translational displacement of each cylindrical joint in the 3-RCC architecture. In
a previous work [4], we were interested in finding the optimal dimensions of a SPM
with a given workspace. The effect of the manufacturing errors (ME) on the platform
position and dexterity, was also studied. In this paper, the effect of these errors on the
dexterity of the mechanism is reviewed and a robust design strategy is proposed. The
dexterity of the manipulator resulting from the deterministic optimization showed
a high sensitivity to ME, which led us to adopt a new strategy combining genetic
algorithms (GA) and a Monte Carlo Simulation (MCS) [7] to synthesize a spherical
manipulator with a low-sensitive dexterity to ME. The results of this approach are
then presented and the performances of the obtained manipulator are discussed.

Fig. 1 Experimental study of surgical task. Left: reconstruction of the surgeon operating. Right:
experimental workspace
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2 Kinematics of the SPM

Figure 2 (left) presents the 3-RRR architecture of the proposed SPM. Three identical
legs A, B and C relate the base to the platform. Each leg of the SPM is made out of
two links and three revolute joints. The three actuated revolute joints with the base
have orthogonal axes Z1k (k = A, B and C). All the axes of the joints are intersecting
in a single point, the center of motion of the platform.

Figure 2 (right) shows the geometric parameters of one leg. The angles α, β, γ

are, respectively, between the first two joint axes, the second and the third one, and
between the third axis and the platform axis.

The three legs of the SPM are identical and the actuated joint axes are located
along the base frame axes X, Yand Z, respectively. The workspace of the platform is
given by the intersection of the three workspaces of three legs, which are considered
each as a spherical serial kinematic chain.

The motion of the SPM is generated by only revolute joints. The kinematics of
the mechanism can be described by the following relation:

Z2k · Z3k = cos(β) (1)

where Z2k and Z3k are respectively the axes of the second and the third joint of each
leg and detailed as:

Z2k = Rot(Z1k, θ1k).Rot(X2k, α).Z1k (2)

Z3k = Rot(Z1k, ψ).Rot(X, θ).Rot(ZE , ϕ).Rot−1(X3k,−γ ).Z1k (3)

The ZE platform axis is described by the three ZXZ-Euler angles, ψ , θ and ϕ. θ1k , θ2k

and θ3k are, respectively, the revolute joint variables of the leg k (k = A, B and C). The
axes X2k and X3k are given, respectively, by X2k = Z1k×Z2k and X3k = Z2k×Z3k .

Fig. 2 Architecture and parameters of the SPM. Left: SPM architecture. Right: one leg parameters
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The set of three equations resulting from applying Eq. (1) for the three legs of the
mechanism combines the joints parameters [θ1A, θ1B, θ1C ] and the platform orienta-
tion parameters [ψ, θ, φ]. Thus, it can be used to detail and solve both the forward and
the inverse displacement problems. The inverse kinematics model can be described
by the following three equations:

Ai cos(θ1k)+ Bi sin(θ1k)+ Ci = 0 (4)

With k ∈ (A, B, C) and i ∈ (1, 2, 3)

3 Deterministic Optimization

Chaker et al. [4] presented a detailed approach for the synthesis of an SPM for a
surgery application based on GA. Two criteria were minimized. The first one is
the workspace that still contains a prescribed workspace. The second one is the the
dexterity. The design vector contains the geometric parameters of the mechanism
V = [α, β, γ ] and the optimization problem is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎛

⎪⎪⎪⎪⎪⎪⎪⎪⎝

Minimize F1 + F2 + F3

F2 =
n⎞

i=0

3⎞

i=0

C2
i (p j )

(A2
i (p j )+B2

i (p j ))

F3 =
n⎞

i=0

3⎞

i=0
K (Pj )

Subject to
C2

i (p j )

(A2
i (p j )+B2

i (p j ))
≤ 1

(5)

n the number of chosen ‘points’ on the cone Pj . F1 is a penalty function that handles
the constraints. F1 = 0 means that all the points, defining the desired volume,
are contained within the workspace of the SPM. K is the condition number of the
Jacobean matrix, which represents the dexterity of the SPM. F2 represents the sum
of the distances of all the points of the manipulator workspace to the cone boundary
and F3 is the sum of the dexterity of the manipulator over its workspace. The desired
workspace is represented by a set of orientations Pj within a cone (Fig. 3 (left)).
Each point Pj has to be included in the manipulator workspace.

The design vector resulting from this procedure is V = [39.4◦, 34.1◦, 18.2◦].
Figure 3 presents, respectively, the workspace (center) and the dexterity distribution
in (ψ, θ) frame (right) of the resulting manipulator. The self-rotation is fixed to 18◦
and a security angle of 4◦ was adopted to guarantee that the prescribed workspace
can be reached by the end-effector of the mechanism.
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Fig. 3 Architecture and parameters of the SPM. Left: prescribed Workspace Model. Center:
workspace of resulting mechanism. Right: dexterity of the resulting mechanism

4 Effects of Manufacturing Errors on the Workspace
and the Dexterity

In order to investigate the results of the deterministic optimization, we studied the
behavior of the SPM subject to manufacturing errors. For this purpose, we generated
a normal distribution with a mean value equal to the nominal design vector resulting
from the deterministic optimization. A standard deviation of 5% is imposed. Figure 4a
represents the variation of the workspace of the mechanism due to the possible
manufacturing errors applied to the design parameters. Three cases are shown: the
workspace corresponding to nominal values of the DP, the smallest workspace and the
biggest one generated when applying errors on the DP corresponding to the minimal
and maximal values of the DP, respectively. We note that the smallest workspace still
contains the prescribed workspace. The choice of a security angle is then justified.
However, considering the dexterity, the performances of the manipulator are highly
variable and it drops to very low values. Figure 4 represents the dexterity of the
manipulators with minimal (b), nominal (c) and maximal (d) DP, respectively.

5 Robust Synthesis: Combined GA-MCS

As mentioned before, dexterity showed a high sensitivity toward manufacturing
errors. Thus, adopting the results of the deterministic optimization can lead to erro-
neous results. This issue is treated by the proposed approach for the synthesis of
the SPM that combines GA and MCS method [6]. The idea is to take advantages of
the GA particularly the wide range of research intervals for DP and multjobiective
problem resolution. On the same time, a local evaluation of the behavior of every
manipulator toward uncertainty and manufacturing errors is led by the MCS. The
optimization problem is then formulated as follows:
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(a) (b)

(c) (d)

Fig. 4 Manipulator sensitivity to manufacturing error. a Workspace variation. b Dexterity of manip-
ulator with minimal design parameters. c Dexterity of manipulator with nominal design parameters.
d Dexterity of manipulator with maximal design parameters

⎧
⎪⎪⎪⎛

⎪⎪⎪⎝

Minimize F2

Minimize F̄3
Minimize σF3

Subject to
C2

i (p j )

(A2
i (p j )+B2

i (p j ))
≤ 1

(6)

Where F̄3 and σF3 are respectively the mean and the standard deviation of the objec-
tive function of the dexterity.

Figure 5 depicts the flow chart of the algorithm. For each iteration of non-
dominated solutions, during the evaluation stage, the GA sends a generation of
solutions to the MCS [7]. The MCS generates a normal distribution and performs
N random simulations for every solution. The first objective function value F2 is
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Fig. 5 The GA-MCS flow chart

calculated only for the nominal values of the DP. The output of the MCS is then the
value of F2, the mean value F̄3 and the standard deviation σF3 . The nondominated
solutions undergo the selection, crossover, mutation and reinsertion operations. The
MCS number of simulations is N = 103.

P O P0 is the initial population of the initial design vector (population) to be
evaluated and P O P par is the Paretian (non-dominated) population.

6 Results and Discussion

The implementation of the Robust algorithm for the synthesis of an SPM led to the
following design vector: V = [35.2◦, 32.9◦, 22◦]. Figure 6 shows that the workspace
presented in Fig. 6a satisfies the experimental workspace of 26◦ and the values of the
dexterity are kept relatively high with a minimum value of 0.5.
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(a) (b)

(c) (d)

Fig. 6 Performances of mechanism generated by the Robust Synthesis. a Workspace variation.
b Dexterity of manipulator with minimal design parameters. c Dexterity of manipulator with nominal
design parameters. d Dexterity of manipulator with maximal design parameters

7 Conclusion

A multiobjective robust Synthesis strategy for the design of the SPM for dexterous
surgery application was presented in this paper. The kinematics of the mechanism
was revisited and the effects of manufacturing errors on its workspace and dexterity
were studied. This study was based on the results of deterministic optimization
elaborated in a previous work. We noted that the dexterity is very sensitive to these
errors. Thus, an approach, based on a combined GA-MCS, is proposed to take into
account the manufacturing errors in the optimization of the SPM. We are led then to
minimize the mean value and the standard deviation of the dexterity. An SPM with
low-sensitive dexterity to manufacturing errors is finally presented as a result of this
robust algorithm.
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Self Dual Topology of Parallel Mechanisms
with Configurable Platforms

Patrice Lambert and Just L. Herder

Abstract This paper presents first an analysis of the topology of mechanisms via
Graph Theory and Screw Theory and next the principle of dual mechanisms in terms
of their mobility and overconstraints. Using dual graphs, the graph representations
of the mechanisms that are dual to hybrid and Delta mechanisms are revealed. The
concept of parallel mechanisms with configurable platforms (PMCPs) is introduced
and it is shown that the graph reduction of PMCPs always results in a wheel graph,
which has the interesting property of being self-dual. In case of self dual topology, it is
then possible to directly convert any method developed for their mobilty analysis into
an overconstraint analysis method and vice versa. This self dual topology property
can also be exploited to create new PMCPs and is an important aspect in the future
development of a type synthesis method that includes PMCPs.

Keywords Parallel mechanisms · Configurable platform · Topology · Mobility ·
Overconstraints · Duality

1 Introduction

A pure parallel mechanism is formed by two rigid links, called the base and
the end-effector, connected in parallel by independent serial chains, called legs.
The concept behind parallel mechanisms with configurable platforms (PMCPs) is
that the rigid (non-configurable) end-effector is replaced by a closed-loop chain (the
configurable platform), see for example Fig. 1. Some of the links of this closed-
loop chain are attached to the legs so its configuration can be fully controlled from
the motors located near the base. The use of a closed-loop chain instead of a rigid
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Fig. 1 The 5 DOF
PentaG robot with
configurable platform. The
configurable platform can
translate in 3 directions and
has 2 internal DOF, provid-
ing additional rotation and
grasping capabilities. This
architecture was used to
develop both a haptic device
and a pick-and-place robot

platform creates multiple end-effectors that can be used for example to add grasping
capabilities. In this case the robot can combine motions and grasping into a structure
that provides an inherent high structural stiffness, since no motors are needed at the
end-effector location to provide the grasping and all motors can be grounded on the
base. Very few PMCPs have been presented in the literature [5, 7]. Mohamed and
Gosselin [6] proposed a first generalization of the concept of both planar and spatial
PMCPs. In their article, all the mechanisms they proposed were not overconstrained
and the case of overconstrained PMCPs was not addressed. PMCPs are ignored in
type synthesis methods of mechanisms such as in [2, 3]. In order to describe a topo-
logical relation between mobility and overconstraints, Davies [1] introduced the idea
of dual mechanisms with the use of dual graphs. In his article, he presents the dual
mechanism of a four-bar linkage and a self-dual truss structure.

This article presents a topology analysis of PMCPs via Graph Theory and Screw
Theory and shows that unlike pure parallel mechanisms, the topology of PMCPs is
represented by a wheel graph, which has the remarkable property of being self-dual.
The self dual topology of PMCPs is then exploited to extend the mobility analysis
method presented in [4] directly into an overconstraint analysis method and is also
used to create new overconstrained PMCPs.

2 Duality Between Parallel Mechanisms and Single Closed-Loops

Closing the mechanical loops of a parallel mechanism introduces dependencies
between the joint velocities of the chains and can also produce internal stresses
due to overconstraints of the assembly. The mobility and constraints of a serial chain
are here expressed via Screw Theory. For each n-twist system S representing the
mobility of a serial chain, it is possible to obtain a reciprocal (6–n)-wrench system
S⊥ representing its constraints. For a parallel mechanism with k legs, in which the
mobility of each leg i is represented by the twist system Ti , the twist system TM
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representing the instantaneous mobility between the base and the end-effector is
given by the intersection of the mobility of all legs:

TM =
k⎧

i=1

Ti (1)

Internal stresses in parallel mechanisms are due to redundant constraints between
the base and the end-effector. For a parallel mechanism with i = 1 . . . k legs, in
which the constraint system of each leg is represented by the wrench system Wi , a
set of (k − 1) wrench systems WR j representing the independent overconstraints is
obtained by calculating the intersection of the wrench system W j of leg j with the
summation of the constraints of the legs previously connected to the end-effector.

WR j = W j
⎪⎛⎝ j

i=1 Wi

⎞
for j = 2 . . . k (2)

For any mechanism, the solution for the mobility must respect the condition that
the sum of the finite twists (describing the joint velocities) of all joints that belong
to the same closed loop is zero. In a dual way, the solution for the overconstraints
must respect the condition that the sum of the finite wrenches (describing the internal
stresses) of all chains that are connected to the same rigid link is zero. The particular
way to obtain those solutions depends on the topology of the mechanism, i.e. the
particular arrangement of the closed loops that form the mechanism. Graph Theory
is the study of pairwise relations between objects and since each joint or each serial
chain of joints in a mechanism connects strictly two links, it can be used to analyse the
topology of mechanisms. Any mechanism can be represented with a corresponding
graph in which a vertex represents a rigid link and an edge represents a joint or a
serial chain of joints. The duality between the mobility and overconstraint conditions,
which both require that the sum of a set of finite screws is zero, will be investigated
more deeply with the use of dual graphs.

The dual graph B of an original graph A is a graph in which each vertex of B
corresponds to a loop of A and vice-versa. Edges that are incident to a vertex in the
original graph are in the same direction as the corresponding loop of the dual graph
and vice versa. If the twist systems of the dual edges are defined as the reciprocal of the
twist systems of the original edges, the mechanism corresponding to the dual graph
is dual to the original mechanism. The dual mechanism of a pure parallel mechanism
is always a single closed-loop and vice versa. Figure 2 shows an example of the graph
representation of a pure parallel mechanism with four legs. In [1], Davies used the
concept of dual graphs to show that the dual mechanism of a planar four-bar linkage
is a parallel mechanism with four parallel SU legs. The principle of dual mechanisms
is here extended to some mechanisms that have a topology that is not purely parallel.
Following this principle, the dual graphs of a hybrid and a Delta mechanism are
shown for the first time in Fig. 3.
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Fig. 2 Graph representation of a parallel mechanism with four legs and its dual single closed-
loop. The screw system over the big arrow represents the mobility of the parallel mechanism and
the overconstraints of the single closed-loop. The screw systems below the arrow represent the
overconstraints of the parallel mechanism and the mobility of the single closed-loop

(a) (b)

Fig. 3 Graph representation of a a hybrid mechanism and b a Delta mechanism and their corre-
sponding dual mechanisms. In both cases, the mobility of the dual mechanism corresponds to the
overconstraints of the original mechanism and vice versa

3 Self Dual Topology of Parallel Mechanisms with Configurable
Platforms

The novel concept behind parallel mechanisms with congurable platforms is that the
rigid (non-configurable) end-effector is replaced by a closed-loop chain (the config-
urable platform). The use of a closed-loop chain instead of a rigid platform allows
robots based on such an architecture to have multiple end-effectors on the platform
while all the motor are located on the base. The graph reduction of a PMCP is always
a wheel graph, in which the center of the wheel represents the base, the spokes of
the wheel represent the legs and the rim represents the configurable platform. Wheel
graphs have the interesting property of being self-dual. Figure 4 shows the wheel
graph of a PMCP with 4 legs and its dual graph. It follows that each PMCP has a dual
PMCP for which the mobility of the dual PMCP corresponds to the overconstraints
of the original PMCP and vice versa. In particular, the method presented in [4] to
calculate the distribution of the mobility of overconstrained PMCPs can be directly
used to calculate the distribution of the overconstraints using the dual graph as input.
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Fig. 4 Self dual wheel graphs of a parallel mechanism with configurable platform and 4 legs

It should be noted that in the dual graph representation of Fig. 4, the edges that orig-
inaly represented the platform are now representing the legs and vice versa, and that
the reciprocal screw system is used to describe the mobility of each dual edge.

4 Example

This section shows an example of two PMCPs that are dual to each other. The original
mechanism M1 is shown in Fig. 5a. It has four legs L1, L2, L3 and L4 and each leg
consists of three parallel joints. The configurable platform is a single closed loop
with 12 parallel joints. Two adjacent end-effector links ni are connected by platform
limbs P1, P2, P3 or P4. In order to create the dual mechanism, we first need to express
the twist system of each leg and each platform limb. Using a reference frame located
in the center of the base, the twist systems are

TL1 = TL3 =
⎠⎜

0
x

⎟
,

⎜
0
z

⎟
,

⎜
y
0

⎟⎦
and TL2 = TL4 =

⎠⎜
0
y

⎟
,

⎜
0
z

⎟
,

⎜
x
0

⎟⎦
(3)

TPi =
⎠⎜

0
x

⎟
,

⎜
0
y

⎟
,

⎜
z
0

⎟⎦
for i = 1 . . . 4 (4)

Unlike pure parallel mechanisms, PMCPs have multiple end-effectors, repre-
sented by the leg attach points ni . Since the graph representation of such a mecha-
nism is not a series-parallel graph, their global mobility can not be calculated using
the traditional rules of addition of twist systems for joints in series and intersection
of twist systems for legs in parallel. In [4], a method was proposed to calculate the
mobility of mechanisms that have a non-series-parallel graph that is particularly suit-
able for PMCPs. The solution given by the method forms a matrix in which row i
represents the mobility of an end-effector ni relatively to the base and each column
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(a) (b)

Fig. 5 Dual mobility and overconstraints of two PMCPs. GL represents the mobility of M1 and
the overconstraints of M2. HP represents the mobility of M2 and the overconstraints of M1. Each
line of a matrix of mobility uses twist screws to represent the mobility of a leg end-effector ni or ci
relatively to the base. Each line of a matrix of overconstraints uses wrench screws to represent the
internal stresses in a platform limb between two end-effectors

represents a global mobility of the mechanism. The final leg mobility matrix G of
mechanism M1 obtained from this method is

G =








⎜
0
z

⎟ ⎜
0
x

⎟
0 0 0

⎜
0
z

⎟
0

⎜
0
y

⎟
0 0

⎜
0
z

⎟
0 0

⎜
0
x

⎟
0

⎜
0
z

⎟
0 0 0

⎜
0
y

⎟








(5)

The fact that the matrix G has five columns indicates that the mechanism has
5 DOF. The first column represents a motion where all legs move in the vertical
direction. The remaining columns show that each leg can also move independently
in the horizontal direction of the plane of their parallel joints. Since all PMCPs have a
self dual topology, the overconstraints of mechanism M1 can be obtained by appling
the same mobility analysis method to the dual PMCP. The original and dual graphs
are shown in Fig. 4. The dual graph gives the information about the way the dual
chains must be connected in the dual mechanism. The reciprocal screw system of
each serial chain must be calculated in order to obtain the dual serial chains. In this
particular mechanism, each leg and each platform chain is formed by three parallel
joints. Those chains are known to be self reciprocal and therefore the screw system
representing their constraints is the same as the screw system representing their
mobility.

S⊥Li = SLi and S⊥Pi = SPi for i = 1 . . . 4 (6)
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We can now assemble the dual mechanism by connecting the dual chains according
to the edges of the dual graph. The resulting mechanism M2 is shown in Fig. 5b. The
mobility of M2 is calculated using the same method that was used to calculate the
mobility for M1. The resulting leg matrix of mobility H obtained is

H =
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0
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⎟ ⎜
0
y

⎟ ⎜
z
0
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0
x
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y
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x
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y
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0
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y
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0
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(7)

This mechanism also has 5 DOF. The first three columns show that the configurable
platform can move in the XY plane and rotate around the Z direction. The fourth
column shows that legs P1 and P2 can move relatively to leg P3 and P4 in the X
direction and the fifth column shows that legs P1 and P4 can move in the Y direction
relatively to legs P2 and P3. Since these two mechanisms are dual, the mobility of
M1 corresponds to the overconstraints of M2 and vice-versa. The matrix H is the
platform matrix of overconstraints of M1. In a platform matrix of overconstraints,
each line represents the internal forces transmited by a platform chain and each
column represents an independent overconstraint.

The overconstraints of both mechanisms are interpreted as follows: The first three
columns of H represent the 3 planar overconstraints of the configurable platform
of M1. Column 4 represents internal stresses that occur in the platform limbs when
leg L1 and leg L3 of M1 are not perfectly oriented about the axis X. Column 5
represents the internal stresses that occur in the platform limbs when leg L2 and leg
L4 are not perfectly oriented around the axis Y. The overconstraints of mechanism
M2 are represented by the platform matrix of overconstraints G. The first column
represents internal stresses around the Z axis that occur in all the platform limbs if
the sum of the angle between the platform limbs is not 360◦ d. The second column
of G shows that the platform limb L1 of M2 must be perfectly oriented around the
X axis in order to be connected between leg P4 and leg P1. Columns 3, 4 and 5
of G shows similar overconstraint conditions for platform limbs L2, L3 and L4 of
mechanism M2.

5 Conclusion

This paper presented first the principle of dual mechanisms in terms of mobility and
overconstraints for some mechanisms that have a topology that is not purely parallel.
The graph and screw representations of the mechanisms that are dual to hybrid
and Delta mechanisms were revealed. It was explained that the graph reduction of
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PMCPs always result in a wheel graph, which has the interesting property of being
self-dual. Unlike most other classes of mechanism, it is possible to directly apply
any method developed for the mobilty analysis of PMCPs to their overconstraint
analysis and vice versa, thanks to their self-dual topology. This self-dual topology
property can also be used to generate new PMCPs using the dual mechanism of
original PMCPs. PMCPs are promising solutions for robot architecture since they can
operate multiple end-effectors while all motors are located at the base. Applications
include interaction with humans or environment, in haptic devices and grasping
applications, respectively. They are currently ignored by type synthesis methods. A
better understanding of the fundamentals of their mobility and overconstraints will
help robot designers to consider them as a valid option in their choice of a robot
architecture and is an important aspect in the future development of a broader type
synthesis method that includes mechanisms with this topology.
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Four-Dimensional Persistent Screw Systems
of the General Type

Marco Carricato

Abstract When a mechanism moves, the twist system S of the end-effector generally
varies. In significant special cases, S is a subalgebra of the Lie algebra of the special
Euclidean group, and it remains constant. In more general cases, S remains invariant
up to a proper isometry, thus preserving its class. A mechanism of this kind is
said to generate a persistent screw system (PSS) of the end-effector. PSSs play an
important role in mobility analysis and mechanism design. This paper presents the
serial generators of 4-dimensional PSSs with a constant class of the general type.

Keywords Screw theory ·Mechanism synthesis ·Mobility analysis

1 Introduction

Screw systems are the subspaces of the Lie algebra se(3) of the Euclidean group
SE(3). Two screw systems are equivalent if one may be moved onto the other by
a rigid-body displacement [4]. This equivalence relation divides the space of screw
systems into infinitely many classes. The latter may be grouped into a finite number
of general or special types [7, Chap. 12], within which the constituent classes are
identified by the values of a small number of parameters. Screw systems belonging
to the same class have the same dimension, type and shape, thus differing only in
their pose in space.

For a mechanism in a configurationΘ , the possible instantaneous motions of the
end-effector are given by a screw system S(Θ) ◦ se(3). In general, whenΘ changes,
so does S(Θ). An important special case occurs when the mechanism constrains the
body to trace out (at least locally) a subgroup of SE(3). Then, for any nonsingularΘ ,
S(Θ) = A, where A is the algebra of the subgroup. The mechanism is said to generate
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(a) (b)

Fig. 1 Relative pose between two screws (a); a chain of four 1-dof lower pairs (b)

an invariant screw system (ISS) of the end-effector [4–7]. Herein, a more general case
is considered, namely a mechanism where S(Θ), although not necessarily constant,
has a constant class . In other terms, S(Θ) retains its shape while it changes its pose,
in effect moving like a rigid body in space. If that is so, and dim S(Θ) = n, the
mechanism is said to generate an n-dimensional persistent screw system of the end-
effector, or briefly an n-PSS. PSSs were presented by Carricato and Rico Martínez,
who showed that PSS generators may be obtained by serially composing generators
of ISSs [1–3]. The exhaustive classification of PSS generators is in progress. This
paper complements the results in [1], where the generators of 4-PSSs with constant
classes of special types were described. Here, the serial generators of 4-PSSs with
constant classes of the general type are presented.

In the following, the locutions ‘nG system’ and ‘n R system’, with R being a
Roman numeral, denote n-dimensional screw systems, respectively, of the general
type and of the Rth special type, according to [7]. A normalized screw representing
a relative twist between two bodies is designated by S. The axis (when it exists),
the pitch and the direction of S are denoted by Ψ, h and s, respectively. When it is
useful, Ψ and h accompany S within parentheses, i.e. S(Ψ, h) (if h = ≤, Ψ is replaced
by s). Given two screws Si (Ψi , hi ) and S j (Ψ j , h j ) (Fig. 1a), ni j is the common normal
between Ψi and Ψ j ; Pi j,i and Pi j, j are the feet of ni j on Ψi and Ψ j ; ni j is a unit vector
parallel to ni j and directed from Pi j,i to Pi j, j ; pi j and Θi j are the shortest distance
and the relative angle between Ψi and Ψ j , with Θi j being measured about ni j in the
interval (−Π/2, Π/2]; finally, pi j = Pi j, j − Pi j,i = pi j ni j .

2 Generators of 4-Dimensional PSSs of the General Type

Any subgroup of SE(3)may be generated (at least locally) by a serial chain composed
by 1-dof lower pairs. Hence, any 4-PSS generator emerging by the serial composition
of ISSs may be considered ‘equivalent’ to a serial linkage S composed by (at least)
four 1-dof joints (Fig. 1b). Since joint motions affect neither the pitches nor the
relative pose of adjacent joints, the geometry of the chain is completely defined
by the joint screws at an arbitrarily-chosen nonsingular reference configuration, i.e.
Si = Si (Θ)|Θ=0 = Si (0), i = 1 . . . 4. Accordingly, S may be identified with the
array ≡S1, . . . ,S4≈. Link 0 of S is the predecessor of S1; link i , with i = 1 . . . 3, is
the body laid between Si and Si+1; and link 4 is the successor of S4.
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After a displacement Θ = (δ1, . . . , δ4), the i th joint screw, i > 1, is moved to
Si (Θ) = ∏i−1

j=1 D j
(
δ j

)
Si , where D j is the adjoint action of the j th joint displace-

ment. Generally, in the new configuration S(Θ) = span [S1(Θ), . . . ,S4(Θ)] ⊥=
S(0). S generates a PSS if, for every nonsingular Θ , S(Θ) = G(Θ)S(0), where
G(Θ) is the adjoint action of a proper isometry. A simpler formulation of this con-
dition emerges by observing that joint motions δ1 and δ4 cannot alter the shape of
S(Θ), since they do not affect the relative pose of S’s joint screws. Accordingly,
when studying the persistent properties of S(Θ), δ1 and δ4 may be kept constant,
e.g. δ1 = δ4 = 0, and link 2 may be conveniently chosen as the reference frame
[2]. As a consequence, S generates a 4-PSS if and only if, for every nonsingular pair
(δ2, δ3), there is an adjoint action G(δ2, δ3) such that S(δ2, δ3) = G(δ2, δ3)S(0, 0),

where S(δ2, δ3) = span
[
D−1

2 (δ2)S1,S2,S3,D3(δ3)S4

]
.

S(Θ) has a constant class of the general type if the principal screws
Sr1(Ψp1,−h p1) and Sr2(Ψp2,−h p2) of the cylindroid S⊥ reciprocal to S have con-
stant finite pitches, and h p1 ⊥= h p2 [7] (Fig. 2). If that is so, the principal screw
Spi (Ψpi , h pi ) of S, with i = 1, 2, is collinear with Sri and has pitch h pi , whereas the
principal screws Sp3 and Sp4 span a cylindrical ISS C(Ψp3) along the nodal line of S⊥
(the latter is the line perpendicular to Ψp1 and Ψp2, passing through their intersection
point O). C(Ψp3) and the≤-pitch screw therein are, respectively, the only available
ISS with dimension greater than 1 and the only≤-pitch screw in S.

A generator S = ≡S1, . . . ,S4≈ of a 4G-PSS may be constructed by composing the
ISSs available in S. Since C(Ψp3) has dimension 2 and S has dimension 4, no less than
three ISSs need to be composed. A ternary generator is constructed by composing
C(Ψp3) with two 1-dimensional ISSs, i.e. with two single screws. A quaternary
generator emerges by composing four distinct screws in S. Since the 4G system
comprises a single≤-pitch screw, S cannot include: more than one≤-pitch screw;
more than a pair of adjacent parallel finite-pitch screws; a pair of adjacent parallel
finite-pitch screws plus an ≤-pitch screw. Otherwise, configurations in which ≤-
pitch screws along more than one direction would appear.

S may be synthesized by expanding the 3-PSS generators disclosed in [3]. Since
the only 3-systems contained in a 4G system are the 3G, 3I , 3I I I , 3V I I and 3V I I I
systems, the only 3-PSSs that may appear within a 4G system are the 3I - and the
3V I I I -PSS (cf. [3]). For this reason, these two will be the ‘building blocks’ of the
generators described hereafter.

2.1 The Ternary Generator

Let B = ≡S2(Ψ2, h2),S3(Ψ3, h3),S4(Ψ4, h4)≈ and let B form a 3I -PSS B. For the
properties of the 3I systems, all screws of B have finite pitch and, if SB

pi (Ψ
B
pi , hB

pi ),

i = 1 . . . 3, is the i th principal screw of B, then hB
p1 = hB

p2 [7]. Since B is persistent,
the following conditions also apply [3]:
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Fig. 2 Principal screws of a 4-system of the general type: h p1 ⊥= ≤ ⊥= h p2, and h p1 ⊥= h p2

Fig. 3 3I systems within a 4G system

h3 = h B
p3 = 0, S3(Ψ3, 0) = SB

p3(Ψ
B
p3, 0), h B

p1 = h B
p2 ⊥= 0, P32,3 ⇒ P34,3 ⇒ O B ,

(1)
where O B is the point where SB

p1, SB
p2 and SB

p3 intersect. Furthermore, for j = 2, 4,

Θ3 j ⊥= 0, h j = hB
p1sin2Θ3 j ⊥= 0, p3 j = hB

p1 sin Θ3 j cosΘ3 j . (2)

It may be proven that any 3I system lying within a 4G system must meet the
following requirements (where hB

p3 = 0 is enforced, Fig. 3):

(1) SB
p1 = Sp1, i.e. ΨB

p1 ⇒ Ψp1 and hB
p1 = hB

p2 = h p1, with Sp1 being the principal
screw normal to Ψp3 with the highest pitch in absolute value, i.e. |h p1| ∩ |h p2|;

(2) the center O B of B must lie on Ψp1, namely O B − O = r Bsp1, with r B ⊆ R;
(3) cos2 ΘB = (h p2 − hB

p3)/(h p1 − hB
p3) = h p2/h p1, with ΘB being the angle that

ΨB
p3 forms with Ψp3, evaluated according to the right-hand rule about sp1 and

such that −Π/2 < ΘB ≤ Π/2;
(4) r B = (h p1 − hB

p3) sin ΘB cosΘB = h p1 sin ΘB cosΘB ;
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Fig. 4 Ternary generator of a 4-PSS with a constant class of the general type

(5) h p1 and h p2 must have the same sign (when they are different from zero), i.e.
h p1 ∩ h p2 ∩ hB

p3 = 0 or h p1 ≤ h p2 ≤ hB
p3 = 0.

For the sake of brevity, the proof of the above statements is not reported. It emerges
from statements (1)–(5) that a 4G system may comprise only two 3I systems, i.e. B
and B ⇔, such that hB

p3 = 0 (Fig. 3). B and B ⇔ are symmetric under reflection in Ψp3,

and they coalesce when h p2 = 0 (in which case, ΘB = Π/2 and r B = 0).
If S(Θ) has to be a 4G-PSS, h p1 and h p2 must remain constant as Θ varies.

Hence, ΘB must remain constant too. Two cases need to be distinguished, depending
on whether S1 has infinite or finite pitch. If h1 = ≤, S1 must be parallel to Ψp3, as
the only≤-pitch screw of S lies in C(Ψp3). Since ΨB

p3 ⇒ Ψ3, ΘB must thus coincide
with the angle Θ31 between s1 and s3. Since cosΘ31 = s1 · s3 = cosΘ32 cosΘ21 −
sin Θ32 sin Θ21 cos δ2 and sin Θ32 ⊥= 0, ΘB may be constant only if Θ21 = 0, in which
case ΘB = Θ31 = Θ32. Hence, S1 and S2 are parallel, and they span C(Ψp3) (Fig. 4).
This condition must be enforced also if h1 is finite. In fact, S1 must be reciprocal, for
arbitrary values of δ2, to a screw Sr1 of pitch −h p1 passing through O B and lying
on a plane perpendicular to Ψ3. It is not difficult to verify, by direct computation,
that this may happen only if S1 and S2 are collinear, i.e. if they span C(Ψp3).1 The 4-
system illustrated in Fig. 4 is, thus, persistent. O coincides with P32,2, Sp1 lies along
the common normal between S2 and S3, Sp2 is orthogonal to Ψp1 and Ψp3, and the
following conditions (deriving from Eqs. (1) and (2) and statements (1)–(3) apply:

h3 = 0, h4 = h p1 sin2 Θ34, p34 = h p1 sin Θ34 cosΘ34, (3a)

p32 = h p1 cosΘ32 sin Θ32, h p2 = h p1cos2Θ23, (3b)

with h p1 ∩ h p2 ∩ 0 or h p1 ≤ h p2 ≤ 0. In particular, when h p2 = 0 and h p1 ⊥= 0,
Eq. (3b) implies Θ32 = Π/2 and p32 = 0. When h p1 = 0, Eq. (3a, b) require

1 Indeed, S1 may be reciprocal, for arbitrary values of δ2, to a screw of pitch −h p1 intersecting Ψ3
at right-angle, even if p32 = 0, Θ32 = Π/2 and h2 = h p1, with Sr1 being, in this case, aligned with
S2. However, requiring S1 to be also reciprocal to Sr2, i.e. a screw both perpendicular to Sr1 and
intersecting it, straightforwardly leads to the condition that S1 and S2 must be collinear. Explicit
calculations are not reported for the sake of brevity.
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Fig. 5 Ternary generator of a 4G-PSS obtained from a 3V I I I -PSS

h p2 = h4 = p32 = p34 = 0, and a ternary generator of a 4I -PSS is indeed obtained
(cf. Fig. 2c in [1]).

The 4G-PSS in Fig. 4 may also be derived from the 3V I I I -PSS generator shown
in Fig. 7a of [3]. Let A = ≡S1(s1,≤),S2(Ψ2, h2),S3(Ψ3, h3)≈, where S1(s1,≤)
and S2(Ψ2, h2) form a cylindrical ISS C(Ψ2), and S3(Ψ3, h3) is a finite-pitch screw
nonparallel to Ψ2. According to [3], A generates a 3V I I I -PSS A such that

h A
p2 = h3 + p32 cot Θ32, (4)

where SA
p2(Ψ

A
p2, h A

p2) is the principal screw of A perpendicular to Ψ2 and n32. Since
A contains one≤-pitch screw and S = ≡A,S4(Ψ4, h4)≈ has to generate a 4G-PSS,
S4 must have finite pitch, and it cannot be parallel to Ψ3.

If δ3 is the angle between n32 and n34, whenever δ3 = kΠ , k ⊆ N, Ψ2, Ψ3 and Ψ4 are
perpendicular to the same direction, i.e. n32 = ±n34 (Fig. 5). In such configurations
C(Ψ2), S3 and D3(kΠ)S4 cannot be linearly independent, otherwise they would form
a 4-system reciprocal to an ≤-pitch screw parallel to n32 (and this could not be
a 4G system). Thus, these configurations must be singular and, therein, D3(kΠ)S4
must belong, for any k, to A. This implies P32,3 = P34,3 and h3 = 0. Moreover,
since D3(0)S4 and D3(Π)S4 are symmetric under reflection in Ψ3, they must form a
cylindroid C having one of its principal screws, say SC

p2, on Ψ3 [7, Chap. 3]. Since C

belongs to A and no line in A other than Ψ2 may contain more than one screw, SC
p2

must necessarily coincide with S3, so that hC
p2 = h3 = 0. By letting SC

p1(Ψ
C
p1, hC

p1)

be the other principal screw of C , it must be [7, Chap. 3]

h4 = hC
p2 + (hC

p1 − hC
p2) sin2 Θ34 = hC

p1 sin2 Θ34, (5a)

p34 = (hC
p1 − hC

p2) sin Θ34 cosΘ34 = hC
p1 sin Θ34 cosΘ34. (5b)

By requiring SC
p1 to belong to A, one also obtains that

h A
p2 = hC

p1 + p32 cot(Θ32 + Π/2) = hC
p1 − p32 tan Θ32 (6)
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Fig. 6 Quaternary generator of a 4-PSS with a constant class of the general type

and, thus, recalling Eq. (4) and rearranging terms,

p32 = hC
p1 sin Θ32 cosΘ32, h A

p2 = hC
p1cos2Θ32. (7)

By varying δ3, S3 and D3(δ3)S4 generate a pencil of cylindroids all congruent to
C , i.e. a 3I -PSS with principal pitches equal to 0 and hC

p1. By letting hC
p1 = h p1

and h A
p2 = h p2, Eqs. (5) and (7) coincide with Eq. (3a, b). The generator in Fig. 4 is

evidently re-obtained.

2.2 The Quaternary Generator

The arguments developed in Sect. 2.1 provide a clue for obtaining a quaternary gen-
erator of 4G-PSS. It has been seen, in fact, that a 4G system such that h p1 > h p2 ∩ 0
or h p1 < h p2 ≤ 0 comprises only two 3I systems with a 0-pitch central principal
screw, i.e. B and B ⇔ (Fig. 3). According to statements (2)–(4), the poses of the central
axes ΨB

p3 and ΨB
p3
⇔

of B and B ⇔ are unambiguously determined by the value of the
principal pitches of S, i.e. h p1 and h p2. In Fig. 4, the screws S3 and D3(δ3)S4 span (as
δ3 varies) one of these 3I systems, say B, with the entire 4-system being generated
by composing B with the cylindrical ISS C(Ψp3). If C(Ψp3) is replaced by two screws,
i.e. S2(Ψ2, 0) and D−1

2 (δ2)S1(Ψ1, h1), which span (as δ2 varies) the other 3I system,
i.e. B ⇔, the same vector subspace is obviously obtained (Fig. 6). The joint screws of
the described generator satisfy the conditions

h2 = h3 = 0, Θp3,2 = Θp3,3, (8a)

h p2 = h p1 cos2 Θp3,2, pp3,2 = pp3,3 = h p1 cosΘp3,2 sin Θp3,2, (8b)

h1 = h p1 sin2 Θ21, p21 = h p1 sin Θ21 cosΘ21, (8c)

h4 = h p1 sin2 Θ34, p34 = h p1 sin Θ34 cosΘ34, (8d)
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where pp3,i and Θp3,i are, respectively, the shortest distance and the relative angle
between Ψi and Ψp3, i = 2, 3. The quaternary generator in Fig. 6 does not allow h p2 =
0 and h p1 ⊥= 0, since in this case Θp3,2 = Θp3,3 = Π/2 and pp3,2 = pp3,3 = 0, and
S2 and S3 would coincide. Also, this generator may not degenerate into a 4I -PSS,
as for h p1 = 0 all screws would have zero pitch and pass through O .

3 Conclusions

Two generators of 4-dimensional screw systems with a constant class of the general
type (i.e. 4G-PSSs) were disclosed. It may be proven that no other 4G-PSS generators
exist. Due to space limitations, the proof is omitted, but it will be reported in a future
extended version of the contribution.
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Determination of Maximal Singularity-Free
Workspace of Parallel Mechanisms Using
Constructive Geometric Approach
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and Behnam Mashhadi Gholamali

Abstract This paper proposes a novel approach to obtain the maximal singularity-
free regions of planar parallel mechanisms which is based on a constructive geometric
reasoning. The proposed approach consists of two algorithms. First, the borders of the
singularity-free region corresponding to an arbitrary start point of the moving plat-
form is obtained. Then, the second algorithm aims to find the center of the maximal
singularity-free circle which is obtained using the so-called offset curve algorithm.
As a case study, the procedure is applied to a 3-PRR planar parallel mechanism and
results are given in order to graphically illustrate the effectiveness of the proposed
algorithm. The proposed approach can be directly applied to obtain the maximal
singularity-free circle of similar parallel mechanisms, which is not the case for other
approaches proposed in the literature which is limited to a given parallel mecha-
nism, namely, 3-RPR. Moreover, as the main feature of the proposed approach, it
can be implemented both in a CAD system or in a computer algebra system where
non-convex and re-entrant curves can be considered.
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1 Introduction

Parallel Mechanisms (PMs) are a type of robotic mechanical systems composed of
one moving platform and one base connected by at least two serial kinematic chains
in parallel [8]. PMs are often erroneously said to be recent developments, have a
pedigree far more ancient than that of serial manipulators, which are usually called
anthropomorphic [3]. However, the last two decades have witnessed a noticeable rise
in the number of publications regarding the kinematic and dynamic analyses of PMs
to the end of proposing the most promising design. As it will be seen later on, PMs
have their own drawbacks and even a simple one can lead to complicated kinematics
analysis. In general, when a PM tends towards structural generality, its geometry and
kinematic analysis get more complicated. The latter is the case of this paper where
upon applying a simple modification into the kinematic arrangement of a planar 3-
Degree-Of-Freedom (DOF) planar PM, the so-called 3-RPR PM, and turning it to a
3-PRR PM, then the problem of singularity-free workspace becomes a cumbersome
task and would be elusive to classical approaches, proposed for the former 3-RPR
PM [6, 7, 10]. Here and throughout this paper, P stands for an actuated prismatic
joint and R stands for a passive revolute joint.

Designing a PM with a singularity-free workspace is a vital condition for further
analysis, such as path planning and control problem. In the literature, most of the
study propounded on this topic, i.e., singularity-free workspace, are based on either
primitive numerical approach or some complicated mathematical approaches where
both entail some limits. In [2], Bonev et al. conducted an exhaustive study on the
singularity locus of planar 3-DOF PMs by resorting to screw theory. In [10], a method
based on geometric parameters of the mechanism under study is represented for which
a singularity-free circle in the workspace of a 3-RPR PM is obtained. In [7], Li et al.
redefined the problem as an optimization problem accompanied with a constraint and
resorted to Lagrangian multipliers and obtained the maximal singularity-free circle
of a 3-RPR PM for a prescribed center point. In [6], Jiang and Gosselin proposed
some numerical recipes in order to find the singularity-free workspace of planar
3-DOF PMs.

This paper aims at obtaining the Maximal Singularity-Free Circle (MSFC) of
3-DOF planar PMs for a given orientation of the mobile platform. Obtaining the
MSFC has eminent effect on reliability and endurance of the workspace of the robot.
The circle is chosen because it has the most regular shape and comes in handy in
practice. To the best knowledge of authors, in the literature, results of the MSFC
were obtained only for a prescribed center point and this assumption bounds the
radius of the circle and results into a local optimum solution. In this study, the center
point of the MSFC is not prescribed from the outset and subject to be found using
the geometrical reasoning proposed in this paper. It should be noted that the MSFC
can be readily computed once the center is obtained. The proposed approach for
obtaining the center point of the MSFC is based on a novel constructive geometric
procedure which is the unique aspect of this work and distinct it with the others
reported in the literature [7, 10].



Determination of Maximal Singularity-Free Workspace of Parallel Mechanisms 309

In this paper, a novel geometric algorithm is proposed, called Alg. I, in order to
obtain the singularity-free region of PMs which could be applied to non-convex sin-
gularity locus. Moreover, offset curve algorithm, Alg. II, is adapted for the geometric
purpose of this work. Offset curve algorithm [1, 4] is a geometric constructive tool
which has diverse engineering applications and has consequently motivated extensive
researches concerning various offset techniques. It plays an important role in numer-
ical controls and CAD/CAM applications [4]. To the best knowledge of the authors,
the problem of MSFC has never been investigated upon a geometric standpoint. The
proposed algorithm, which is inspired from geometric properties associated to the
MSFC, could be implemented either in a computer algebra system or using a CAD
system. Almost all the CAD systems have the possibility to make an offset of com-
plex curves. in this paper, due to the simplicity, the details are skipped. Thus, more
emphasis is placed on the numerical approach proposed in this paper to make such
an offset to a given curve, specifically the singularity-locus curve.

Through this paper, in order to illustrate the proposed approach, as a case study,
the procedure of obtaining the MSFC is applied to a 3-PRR planar PM. However, it
can be extended to all planar 3-DOF PMs presented in [2]. To the best knowledge
of authors, 3-RPR and 6-UPS (SPS) PMs have been widely treated in the literature
since they lead respectively to quadratic and cubic polynomial expressions for their
singularity locus which simplifies considerably the mathematical challenge. A minor
modification in the kinematic arrangement, for instance having a 3-PRR PM, leads
to the complexity of the procedure for which methods reported in [7] are no more
applicable and fail to provide satisfactory results. One of the problems in such an
investigation is the presence of the square roots in the singularity loci expressions.
The proposed algorithm is split into two sub-algorithms: (1) a first algorithm to
obtain the subregion of interest for the MSFC, called Alg. I, and (2) a second one for
obtaining the center point of the MSFC for the foregoing subregion, called Alg. II.

The remainder of this paper is organized as follows. First, the kinematic properties
of the PM under study, i.e., the 3-PRR PM, is broadly reviewed. Then, Alg. I toward
obtaining the singularity-free region is fully described, by having in mind that, as a
case study, it will be applied to the 3-PRR PM. Finally, the offset curve algorithm
is introduced to the sake of proposing Alg. II, which is applied into the singularity
region obtained from Alg. I.

2 Kinematic Review of 3-PRR Planar Parallel Mechanism

A 3-PRR planar PM consists of three kinematically identical limbs actuated by a
prismatic joint fixed at the base and followed by two passive R joints, as depicted
in Fig. 1 (left). As it can be observed from Fig. 1 (left), Oxyz , with î, ĵ and k̂ as unit
vectors, represents the fixed frame and Oxyz stands for the moving frame. The pose
(position and orientation) of the mechanism is defined by (x, y, ϕ)where p = [x, y]T

and ϕ represent respectively the Cartesian position and the orientation of the moving
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frame with respect to the fixed frame. Upon resorting to screw theory [2], the Jacobian
matrix of the mechanism can be formulated as follows:

J =
[

l1 l2 l3 0 0 k̂
r1 × l1 r2 × l2 r3 × l3 î ĵ 0

]T

, (1)

in which li , i = 1, 2, 3, is the unit vector along the line connecting point Bi to point
Ci and ri is the vector connecting the origin of the moving platform to point Ci .
Singular configurations of the mechanism occurs when the Jacobian matrix becomes
rank deficient [5], i.e., the determinant of the foregoing matrix vanishes, det(J) = 0.
The latter leads to have a polynomial of degree 20 (20 in y and 16 in x) for a
constant-orientation of the moving platform [2]. It is worth to be noticed that the latter
polynomial corresponds to all the eight working modes of the mechanism and, as
reported in [2], it is not possible to find a polynomial expression for a single working
mode among the eight one. It should be noted that obtaining such a polynomial is
an extremely delicate task and is beyond the scope of this paper. Skipping the latter
mathematical manipulations, Fig. 1 (right) depicts the singularity locus of the 3-PRR
planar PM for ϕ = π/36.

3 Algorithm to Obtain the Subregion of the Singularity-Free
Workspace, Alg. I

As it can be inferred directly from Fig. 1 (right), the singularity locus is such that
splits the workspace of the mechanism into different regions which, in this paper,
are referred to as subregion and called Hi , i = 1, · · · , n. It should be noted that
some subregions are not mentioned in Fig. 1 (right) to not overload the figure. This
section is devoted to present a new method to the end of obtaining the boundaries of
the singularity-free subregion, Hi . It is worth noting that the proposed method could
be applied to any kind of complex curve and it does not depend on the convexity of
the subregions. Moreover, the main challenge in finding a subregion is the intersec-
tion points among different branches of the singularity curve, which are known as
bifurcation points, called B as indicated in Fig. 2.
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Fig. 1 Left: 3-PRR planar PM [2]. Right: Singularity locus of 3-PRR planar PM for ϕ = π/36 and
subregions Hi

Fig. 2 Result of applying the proposed algorithm to the end of obtaining the singularity-free region
of H1. P0 is the starting point and the red polygon represents the singularity-free of H1

Algorithm 1 represents the concept of Alg. I which the reasoning is fully described
in what follows. The first step to obtain the boundaries of a subregion is to specify
which subregion among Hi , i = 1, · · · , n, is of concern. This can be done by
specifying an arbitrary point, P0, lying inside the desired subregion. In practice, this
point is the position of the moving platform in the reference configuration of the
mechanism. Therefore, the workspace of the moving platform should be bounded
within the subregion of the start point, i.e., P0.

The algorithm starts by finding a point on the singularity locus which lies on the
boundary of the desired subregion, called point P1. The latter can be done readily
by using an unconstrained optimization approach for | det(J)| = 0, as the objective
function, i.e., using direct pattern search, namely Nelder-Mead (simplex) method
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with ε as simplex parameter [9]. From P1, the algorithm starts to search through the
boundary of the subregion other points constituting the subregion. To do so, a line is
passed from P0 to P1 and creates a trigonometry circle, K1, with P1 and ε as center
point and radius, respectively. The value of ε stands for the computation accuracy. The
trigonometric circle covers angle between ϕ = [0, 2π) and can be either clockwise
or counter-clockwise. The line corresponds to ϕ = 0. By changing the angle t from 0
to 2π , the first intersection point of K1 and singularity locus will be saved and called
P2, as depicted in Fig. 2. In practice, this can be done by considering the discrete
circle. By the same token, a trigonometric circle, called K2, will be created with P2
and ε as center point and radius, respectively, with the same direction as the previous
circle. The same procedure pursues for new points Pi , i = 1, . . . n, and at each step
the first intersection point will be added to a list of points, called C0. The stopping
criterion of the algorithm is that, the last obtained point, Pn , be close enough to the
first member of C0, i.e., P1. In other words, ◦Pn − P1◦ < ε. Finally, C0 is a closed
polygon which represents the singularity-free region corresponding to the reference
configuration of the mechanism.

The main feature of this algorithm is its ability to deal properly with the multi-
sectional areas caused by intersection among the singularity curve. This type of
areas are represented in Fig. 2, and, as it can be observed, due to the reasoning of the
algorithm, these multi-sectional areas have no significant effect on the procedure and
will be automatically circumvented. More precisely, Alg. I is able to detect the correct
region when approaching a bifurcation point, B. In Fig. 2, Alg. I is applied in order to
findC0 as the singularity-free region. Point P0 is the position of the moving platform in
its reference configuration. By resorting to Nelder-Mead (simplex) method, ε = 0.5,
a point close to the singularity locus is obtained, P1. Pursuing Alg. I, more points
Pi , i = 1, · · · , n, are obtained. It took 3 s to compute C0, with a 2 GHz processor.
In fact, C0 will be used in the next section as the singularity-free region in order to
obtain the MSFC. As it will be more apparent in the upcoming section, errors due to
the iterative approximation of singularity-free region C0 tend to zero upon applying
offset curve algorithm.

4 Obtaining the MSFC Using Offset Curve Algorithm, Alg. II

The whole concept of the offset curve algorithm, is based on two geometric properties
of MSFC for which it should be (a) tangent to the intersection points between the
MSFC and the boundaries of the polygon C0 and (b) its center point should be
equidistant to all the intersection points. For a closed-planar polygon C j (t), its offset
polygons can be written mathematically as follows [4]:

C j+1(t) ≤− C j (t)± d n(t), j = 1, 2, . . .m (2)

where d is the offset distance and n(t) is the normal vector at point t on the polygon
C j (t). In the problem addressed in this paper, “−" is considered as ±, because it is
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Fig. 3 Using Alg. I, singularity-free region H1 is obtained, called C0. Then, by applying four times
Alg. II (offset concept) into C0, the area of the last polygon, C4, is less than ε. Therefore, it can be
estimated by a point, C f as the center of MSFC with radius as r = 4 d

desired to decrease the area of Ci to a point. Having in mind the two latter properties of
the MSFC, the algorithm is organized as follows. The first step consists in obtaining
the tangent of each point t on the perimeter of the polygon C0. Then each point
on the perimeter is moved forward by a given value, d, in the direction of the line
perpendicular to its tangent which yields a new polygon, C1. By the same token, one
can obtain C2, C3, . . . and Cm . The latter procedure should be persuaded in such a
way that for a given m, the area of Cm reduces to approximately a point for which
the algorithm stops. The latter point, C f , represents the center of the MSFC. The
radius of the circle is simply computed as r = m d, where m stands for the number
of applied offset and can be chosen arbitrarily.

It should be noted that a special situations may arise, which consists in the cases for
which the curve contains some necks. In such cases, upon pursuing the offset curve
algorithm the curve will be separated and split into different curves and the algorithm
should apply the offset approach for each subregion and obtain the corresponding
MSFC [1, 4]. The MSFC is the biggest one for all the subregions.

The offset curve algorithm is available in Matlab by using the commandbufferm
and almost all CAD software have the capability of executing such a curve offset.
Figure 3 represents the result of the MSFC for a 3-PRR PM for a constant-orientation
of the moving platform singularity locus. Using Alg. I, the singularity-free subregion
of the mechanism for a prescribed orientation is obtained, C0. Then by applying
Alg. II, the corresponding MSFC is obtained. In Fig. 3, Ci , i = 1, · · · , 4, are new
offset polygons in which, each of them is generated by offsetting its preceding one by
d as the normal distance. The latter is continued until converging to a point, C f , being
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the center of the MSFC. Finally, by having the center of MSFC the corresponding
radius can be readily obtained.

5 Conclusion

This paper proposed a new geometric constructive approach to the end of obtaining
the singularity-free region and the maximal singularity-free circle of 3-DOF planar
parallel mechanisms. The procedure consisted of two algorithms, which are mainly
based on geometrical reasoning of the problem. First, using a new method the bound-
aries of the singularity-free region corresponding to the starting point of the moving
platform was obtained. Then using the so-called offset curve algorithm, the center of
the maximal singularity-free circle in the corresponding region was computed. Spe-
cial conditions were taken into account and proved the robustness of the algorithm. As
a case study, the 3-PRR planar parallel mechanism was considered. Ongoing works
consist in extending the algorithm to higher DOF PMs and taking into account the
workspace boundaries as additional constraints to the problem, which is a definite
asset in practice.

References

1. Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.:
Divide-and-conquer for voronoi diagrams revisited. Comput. Geom. 43(8), 688–699 (2010)

2. Bonev, I.A.: Geometric analysis of parallel mechanisms. Ph.D. thesis, Laval University, Quebec,
QC, Canada (2002)

3. Davidson, J., Hunt, K., Pennock, G.: Robots and Screw Theory: Applications of Kinematics
and Statics to Robotics. Oxford University Press, New York (2004)

4. Elber, G., Lee, I., Kim, M.: Comparing offset curve approximation methods. IEEE Comput.
Graphics Appl. 17(3), 62–71 (1997)

5. Gosselin, C.: Determination of the workspace of 6-DOF parallel manipulators. ASME J. Mech.
Des. 112(3), 331–336 (1990)

6. Jiang, L.: Singularity-free workspace analysis and geometric optimization of parallel mecha-
nisms. Ph.D. thesis, Laval University, Quebec (2008)

7. Li, H., Gosselin, C., Richard, M.: Determination of maximal singularity-free zones in the
workspace of planar three-degree-of-freedom parallel mechanisms. Mech. mach. theory 41(10),
1157–1167 (2006)

8. Merlet, J.P.: Parallel Robots. Springer, Dordrecht (2006)
9. Rao, S.: Engineering optimization: theory and practice. Wiley, New York (2009)

10. Yang, Y., O’Brien, J.: A case study of planar 3-RPR parallel robot singularity free workspace
design. In: International Conference on Mechatronics and Automation (ICMA), pp. 1834–1838.
IEEE (2007)



Kinematic Design of Two Elementary 3DOF
Parallel Manipulators with Configurable
Platforms

Antonius G.L. Hoevenaars, Patrice Lambert and Just L. Herder

Abstract Parallel Manipulators with Configurable Platforms (PMCPs) have plat-
forms with internal degrees of freedom and form a class of manipulators that is not
covered by existing type synthesis methods. Because the minimum number of legs
for a PMCP is three, fully parallel 3DOF PMCPs may be considered an elementary
subset of PMCPs. To support the extension of type synthesis methods to PMCPs,
this paper presents the first kinematic designs of manipulators from this subset. A
structured design method has led to the kinematic design of two spatial manipulators
that are both capable of independently performing one translation, one rotation and
one internal platform motion.

Keywords Parallel mechanisms ·Configurable platform ·3DOF ·Grasping motion ·
Spatial

1 Introduction

Robotic manipulation sometimes requires additional degrees of freedom (DOF) such
as grasping on top of the rigid end-effector motion. Multiple solutions have been
proposed to achieve this additional motion. One example is to combine two separate
mechanisms [4] and another is to attach a gripper mechanism in series to the end-
effector, as is the case in the commercial omega.7 by Force Dimension. The first
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Fig. 1 a Using graph theory
a PMCP mechanism with two
legs can be represented as
a series-parallel mechanism
with a base n0 and two link
nodes n1 and n2, b A PMCP
with three legs cannot be
represented as a series-parallel
mechanism, but yields a
so-called wheel grap

(a) (b)
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n1

n2

n0
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n3n2

solution increases the complexity of the system while the latter adds the inertia of an
additional motor to the end-effector. Because low inertia at the end-effector is one
of the distinguishing features of parallel manipulators, additional inertia especially
affects the performance of parallel manipulators.

In the past decade it has been recognised that additional DOF can also be added
to the end-effector of a parallel manipulator without compromising its parallel struc-
ture. This is achieved by replacing the rigid end-effector with an additional closed
loop. Following the 4DOF planar manipulator with grasping motion by Yi et al. [10],
Mohamed and Gosselin generalised the analysis of this new class of manipulators
called Parallel Manipulators with Configurable Platforms (PMCP) [8]. Other exam-
ples of such PMCPs are the Par4 by Nabat et al. [9] and a 5DOF design by Lambert
et al. [6].

An illustrative method to discuss kinematic structures is graph theory [1], which
represents every mechanism as a series of joints (lines) and rigid bodies (nodes).
Figure 1 illustrates how in graph theory a PMCP with two legs is kinematically
equivalent to a series-parallel architecture, while a PMCP with three legs is not;
in fact it belongs to a different category labelled non-series-parallel architectures
[5]. PMCPs with three legs (serial chains) may therefore be regarderd as the most
basic subset of PMCP designs. In this paper only fully parallel manipulators are
considered, for which the number of legs is strictly equal to the number of DOF of
the end-effector [7]. Thus, if only the joints located at the base are actuated, three
legs allow 3DOF. Consequently, it is argued in this paper that fully parallel 3DOF
PMCPs represent an elementary subset of PMCP designs.

Interestingly, PMCPs discussed in the literature all have a minimum of 4DOF.
They have not been developed using a type synthesis method such as the one intro-
duced by Kong and Gosselin [3] or Gogu [2], since existing methods do not cover
PMCPs. Because fully parallel 3DOF PMCPs are argued to form an elementary sub-
set of PMCP designs, examples from this subset may provide interesting input for
the future development of a type synthesis method that does cover PMCPs.

The goal of this paper is to verify the existence of fully parallel 3DOF PMCPs and
present the first architectures from this elementary subset. The structure of the paper
is as follows. First the design method is discussed that leads to the two kinematic
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architectures presented in this paper. Next, the inverse Jacobian is derived for one of
the two kinematic designs and four singular configurations are identified.

2 Design Method

Because no type synthesis method exists for PMCPs, the method in this paper relies
on the structured combination of a four-bar mechanism (the platform) with a set of
pre-defined legs. Furthermore, two restricting conditions are posed on the designs.
The first condition is that the resulting 3DOF PMCPs shall be fully parallel. The
number of legs is therefore strictly limited to three. Secondly, the axis associated
with each DOF shall coincide with an axis of either the inertial reference frame XY Z
or the platform reference frame X∗Y ∗Z∗. This condition facilitates a straightforward
description of the resulting mobilities.

The design method applied in this paper consists of four steps. First, the building
blocks are defined: a planar four-bar mechanism and three identical legs. A four-
bar mechanism with links of equal length is used, which is known to have three
overconstraints and one internal DOF. Thus, the total number of platform DOF is
seven. The internal DOF is expressed as the distance Pg between one of the joints
and the platform reference frame origin. On the premise that a fully parallel 3DOF
PMCP requires each of the three legs to have a minimum of three DOF, a minimal
leg consists of two links and three joints and describes planar motion. One of the
end joints is connected to an actuator at the base. In this paper the choice was made
to use rotating actuators but this choice does not impact the DOF of the individual
legs. The described building blocks are shown in Fig. 2a.

The second step is to constrain the motion of the platform reference frame origin
to a plane, which is achieved through the connection of two legs to opposite joints
of the four-bar mechanism. These legs are connected such that the resulting plane of
motion of the platform reference frame origin is perpendicular to either X∗ or Y ∗.
This is to ensure that the remaining DOF are all alligned with an axis of either the
inertial reference frame or the platform reference frame. The plane of motion of the
platform reference frame origin is here defined as the X Z -plane, as shown in Fig. 2b.
The mechanism now has four DOF.

In the third step an additional DOF is constrained using the third leg. To con-
strain the platform in another DOF, the third leg is oriented in either of the planes
perpendicular to the first two legs. Connecting the third leg in this orientation to
one of the two remaining platform joints adds two additional constraints (and one
overconstraint) to the platform. The state of the two kinematic designs after this step
is shown in Fig. 2c and d.

By constraining five of the original seven DOF, both mechanisms shown in Fig. 2c
and d have two DOF remaining. The final step is therefore to relieve one of the
constrained DOF by introducing an additional joint. For the mechanism shown in
Fig. 2d this also requires a change in the orientation of the joint connecting the third
leg to the platform. The two resulting kinematic designs are shown in Fig. 2e and f.
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Fig. 2 a The minimum building blocks for a fully parallel 3DOF PMCP, b the mechanism after
connection of the first two legs, c, d the two possibilities for connecting the third leg, e, f the two
resulting fully parallel 3DOF PMCPs
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Fig. 3 Representation of the mechanisms shown in Fig. 2e and f using graph theory where lil stands
for the lth link of the leg i and $i j for the screw associated with joint j of leg i , while in the reduced
graph after serial reduction ni and Si are respectively the i th link node and screw system

This section has described the kinematic design of two fully parallel 3DOF
PMCPs, both of which have four overconstraints. In graph theory notation, both
architectures are represented by the graph in Fig. 3 which is equivalent to the one
shown in Fig. 1b after serial reductions [5].

3 Derivation of Inverse Jacobian

In this section the inverse Jacobian is derived for the manipulator introduced in
Fig. 2e, which is also shown in Fig. 4 including the notations that are used in this
section. For the purpose of easy analysis, the end-effector forces acting in the direction
of the manipulator DOF are here expressed as forces acting on two specific end-
effector points (see Fig. 4). However, in practice the complete configurable platform
may act as end-effector, for example when grasping a deformable object.

Before the inverse Jacobian is derived, it is first confirmed that the mobility M
and overconstraints RC presented in Fig. 2e are consistent with the Chebychev–
Grübler–Kutzbach criterion. It was observed that both resulting designs have four
overconstraints, RC = 4. The links and joints can be counted easily using the graph
theory representation in Fig. 3, which counts n = 15 links li j (of which link l33 has
zero length) and m = 17 joints with an associated screw $i j . All joints have one DOF,
so fm = 1 for all m joints. Because in the original Chebychev–Grübler–Kutzbach
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Fig. 4 3DOF PMCP that can independently translate in Z , rotate around Y ∗ and perform grasping
by means of the local platform DOF Pg

criterion any overconstraints are included in the resulting mobility, the criterion is
often rewritten to

M = 6(n − m − 1)+
m⎧

i = 1

( fm)+ RC (1)

which equals M = 3 if the above numbers are used. This is consistent with the
expected mobility. The remainder of this section deals with the inverse Jacobian
derivation for the mechanism shown in Fig. 4. More precisely, the transpose of the
inverse Jacobian (J−T ) is derived, mapping the actuator torques on the end-effector
forces according to

F∗ = J−T τ̄ (2)

Although linear motors can also be used, the situation is here considered for rotary
actuators located at the base. The torques τi applied by these actuators are transferred
to the platform via forces Fi directed along links li2. Because all three legs are equal,
l11 = l21 = l31 = l1 and Fi can expressed using

Fi = Fi⎪rli2 =
τi

l1 sin(θi2)
⎪rli2 (3)

These forces are transferred to the platform and can be expressed in terms of forces
acting in the direction of the platform DOF. In this paper the internal platform DOF
is considered a grasping motion with variable Pg [m], which is acted on by a force
F∗g . The other forces are M∗Y around Y ∗ and F∗Z in the Z -direction as indicated in



Kinematic Design of Two Elementary 3DOF Parallel Manipulators 321

Fig. 4. With l p2 = l p3 = l p5 = l p7 = l p, the expression of these forces in terms of
forces Fi is

⎛

⎝
F∗g

F∗Z

M∗Y

⎞

⎠ =
⎛

⎝
− cos(θY ) 0 sin(θY )

0 0 1
−Pg sin(θY ) 0 −Pg cos(θY )

⎞

⎠F1

+
⎛

⎝
cos(θY ) 0 − sin(θY )

0 0 1
Pg sin(θY ) 0 Pg cos(θY )

⎞

⎠F2 (4)

+
⎛

⎜
⎝

0 −Pg

⎟⎦
l p

2 − Pg
2
)

0

0 0 1
0 0 0

⎞


⎠F3

By combining Eqs. 3 and 4 the platform forces can be directly expressed as a function
of the actuator torques. For the manipulator shown in Fig. 4 this results in

⎛

⎝
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M∗Y

⎞

⎠ = 1
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⎛
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⎞


⎠
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τ3

⎞

⎠

(5)
which is the expression of Eq. 2 for the manipulator shown in Fig. 4. Because of the
power conservation principle the matrix J−T in Eq. 5 can also be used in the velocity
relation q̇ = J−1ẋ between the actuator velocities q̇ and the platform velocities ẋ.
Finally, the matrix J−T can be analysed to reveal some of the characteristics of the
developed manipulator, because in singular configurations the rank of J−T reduces.
For the manipulator presented in Fig. 4 singularities occur if

• the distance between the end-effectors is zero, Pg = 0
• the distance between the end-effectors is maximal, Pg = l p

• one of the legs is completely extended or folded, θi2 = {0, π, ..}
• for both leg one and leg two, link li2 is in line with the platform,
θY − θi1 − θi2 = {0, π, ..} for i = {1, 2}

4 Conclusion

This paper has presented the first kinematic designs of fully parallel 3DOF PMCPs,
which were identified as an elementary subset of PMCP designs. The resulting mech-
anisms are spatial manipulators that can be independently controlled in one rotation,
one translation and one internal platform motion. For one of the introduced 3DOF
PMCPs the inverse Jacobian was derived, which has also allowed the identification
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of four singular configurations. Since existing type synthesis methods do not cover
PMCPs, this paper has applied a structured, but not yet formalised, design method.
Because the presented manipulators are considered to be part of an elementary subset
of PMCP designs, they may prove to be useful input for the development of a type
synthesis method that does cover PMCPs.
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Single Exponential Motion and Its Kinematic
Generators

Guanfeng Liu, Yuanqin Wu and Xin Chen

Abstract Both constant velocity (CV) joints and zero-torsion parallel kinematic
machines (PKMs) possess special geometries in their subchains. They are studied as
two different subjects in the past literature. In this paper we provide an alternative
analysis method based on the symmetric product on SE(3) (the Special Euclidean
group). Under this theoretical framework CV joints and zero-torsion mechanisms
are unified into single exponential motion generators (SEMG). The properties of
single exponential motion are studied and sufficient conditions are derived for the
arrangement of joint screws of a serial chain so that the motion pattern of the resulting
mechanism is indeed a single exponential motion generator.

Keywords Constant velocity transmission · Zero torsion · Symmetric product ·
Single exponential motion generator

1 Introduction

Constant velocity (CV) joints have found applications in a variety of domains, ranging
from car drive chains to rotation transmissions in DELTA parallel robot. They have
received great research interests from the robotics and mechanism community since
1970s. Hunt [7] developed a general theory for analysis and synthesis of CV joints
using screw theory . He found that CV couplings could be realized by kinematic
chains with special geometry that their joint axes form a symmetric arrangement with
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respect to a plane. Carricato [4] examined the computational detail of three different
types of CV couplings: (i) U −U ; (ii) R−S −R where R stands for revolute joint,
and S for spherical or ball joint; (iii) R−PL−R where PL denotes planar gliding
joint. He also showed the important roles of CV couplings in the construction of
close-chain orientational manipulators with simple and diagonal velocity Jacobian,
for which he coined the term decoupled and homokinemtic transmission.

Recently, not only the spatial structure of the CV joints but also their motion
pattern,1 usually described by the set of motions of the output shaft with respect to
the input shaft, received the attention of robotics researchers. Bonev [3] proposed
a modified Euler angle parametrization, the tilt and torsion angle, for studying a
class of CV joints with PKM structures. He noticed that the torsion angles for these
mechanisms are always zero (hence the name zero-torsion mechanisms), and showed
that their forward kinematics map as well as their singularity loci have closed form [1,
3]. Zero-torsion property seems a more general concept than CV coupling although
the latter necessarily implies the former. Besides the CV joints, there are different
examples exhibiting zero-torsionness. The first example comes from the study of
humuan eye movement. Donders (1848) first noticed that human eyes only have 2
DoFs because its orientation is uniquely determined by the line of sight [6]. This 2-
DoF motion is zero-torsion because its instantaneous velocity satisfies the Listing’s
law,2 [6]. Another example is human shoulder, whose motion pattern is not simply
a ball-in-socket joint. Rosheim [9] noticed that human should should be modeled,
instead of a ball-in-socket joint, as an omni-wrist, which employs a parallel kinematic
structure with four identical U − U subchains, where U stands for universal joints.
This omni-wrist uses CV couplings, and are therefore zero-torsion.

The goal of this paper is to extend the theory about CV joints and zero-torsion
PKMs with the purpose to put them in a unified theoretical framework, and develop
tools for analyzing high-dimensional counterparts. First we found that the symmetric
arrangement of joint screws of a serial chain implies a symmetric product of screw
motions in its forward kinematics. Then we show that except at singularities sym-
metric products of screw motions for twists in some special classes of subspaces of
the Lie algebra se(3) could be turned into a single exponential on SE(3). Finally we
show the sufficient conditions for a serial chain being a single exponential motion
generator.

2 Exponential Map, POE, and Zero-Torsion Mechanisms

It is well known that the Special Euclidean group SE(3) is a 6-dimensional Lie group.
It could be used to describe the relative position and orientation of the end-effector of
a robot with respective to a fixed world frame. The tangent space Te SE(3) of SE(3)
at the identity element e consists of the set of feasible twists of the end-effector.

1 Sometimes motion pattern is also called motion type.
2 The Listing’s law about human eye movement, also called the half-angle law, states that the
instantaneous velocity plane tilts exactly one half of that of the line of sight.
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Te SE(3) satisfies the conditions of being a Lie algebra, and is often denoted as
se(3). The exponential map:

exp : se(3) ◦≤ SE(3) : ξ̂ ◦≤ eξ̂ (1)

is a surjective map and gives a screw motion on SE(3) [8]. The forward kinematics
map of a serial articulated chain of lower pairs is given by the product of exponentials
(POE) formula [8]

gwt = eξ̂1θ1 · eξ̂2θ2 · · · eξ̂kθk (2)

where ξ̂i ≡ se(3) is the twist for joint i , and θi the corresponding joint angle. In
other words the kinematic map (2) is a cascaded composition of screw motions. The
definition for a zero-torsion mechanism is originally based on the formulation of the
tilt-and-torsion parametrization of robot orientation R [2],

R = eω̂θ · en̂α. (3)

where eω̂θ denotes a rotation of θ about the axis ω ≡ R
3, again in terms of the

exponential on the rotation group SO(3). ω lies in a plane with the normal vector n.
θ and α are referred to as the tilt and torsion angles respectively. The set of rotations is
zero-torsion if α ≈ 0, i.e., the orientation set is described by a single exponential. For
a 2-DoF orientational serial manipulator with two perpendicular joint axes, its torsion
angle is obviously not always zero, but θ2 as seen from its forward kinematic map

Rwt = eω̂1θ1 · eω̂2θ2 . (4)

In fact we could make the same conclusion as long as the two axes ω1 and ω2
are not parallel.3 Although zero-torsionness is a concept originally defined for 2-
DoF orientational mechanisms, the idea of using single exponential formulation (3)
could be generalized and applied to manipulators with combined translational and
rotational motion.

3 Single Exponential Motion and Its Kinematic Generators

Consider the set of motions defined by

eΩ ⊥ SE(3) (5)

3 According to the Baker-Cambell-Hausdoff formula, we have

eω̂1θ1 eω̂2θ2 = eω̂1θ1+ω̂2θ2+ 1
2 [ω̂1,ω̂2]θ1θ2+O(θ2

1 ,θ
2
2 ),

which is not a single exponential of a twist in the plane {ω̂1, ω̂2}, but a twist in the three-dimensional
Lie algebra {ω̂1, ω̂2,

[
ω̂1, ω̂2

]}, which is the Lie algebra so(3) of the rotation group SO(3).
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where Ω is a linear subspace of se(3). It is trivial when Ω is a Lie subalgebra of
se(3) as eΩ will be simply a Lie subgroup in this case. In other cases eΩ may or may
not be a submanifold depending on whether Ω satisfies some conditions.

3.1 Lie Triple System

Definition 3.1 A linear vector subspace Ω of se(3) (not necessarily a Lie subalge-
bra) is said to be a Lie triple system (LTS) if it is closed under the double Lie bracket
[, [, ]]:4

∀û, v̂, ŵ ≡ Ω, [û, [v̂, ŵ]] ≡ Ω (6)

The Lie subalgebras of se(3) are trivial examples of LTS. But there are nontrivial
examples. Let {ê1, · · · , ê6} be the canonical basis of se(3).

Example 3.1 (The Instantaneous 2R Motion Type) The subspace Ω2R := {ê4, ê5}
is a linear combination of the instantaneous rotations about the x and y axis. This
subspace is a LTS, but not a Lie subalgebra of se(3).

Example 3.2 (The Instantaneous 1T2R Motion Type) Consider adding an instanta-
neous translational DoF ê3 into Ω2R so a new subspace Ω1T 2R forms

Ω1T 2R := {ê3, ê4, ê5}.

Ω1T 2R is a LTS by verifying that its basis indeed satisfies (6)

[ê3, [ê4, ê5]] = 0, [ê4, [ê3, ê4]] = ê3

[ê4, [ê3, ê5]] = 0, [ê5, [ê3, ê4]] = 0

[ê5, [ê3, ê5]] = ê3

We have the following main theorem5 regarding the manifold property of the motion
set (5).

Theorem 3.1 If Ω ⊥ se(3) is a Lie triple system, eΩ is a differential submanifold
of SE(3), and is referred to as a single exponential submanifold (SES).

Example 3.3 (The 2R and 1T2R Motion Pattern). Since Ω2R and Ω1T 2R are LTS
as proved in the previous examples, both eΩ2R and eΩ1T 2R are SES. The former is
exactly the set of motions generated by a 2-DoF orientational manipulator with zero
torsion angles [3].

4 [, [, ]] could be replaced by [[, ], ] based on the Jacobian identity on any Lie algebra.
5 Its proof can be found in [5] (Theorem 7.2, Chap. 4)
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3.2 Symmetric Products

Consider a SES eΩ for some LTS Ω ⊥ se(3) of dimension k < 6. We have the
following main result about SES

Proposition 3.1 (symmetric product) Let û1, û2 be two vectors in a LTS Ω , then

eû1θ1 eû2θ2 eû1θ1 ≡ eΩ, ∀θ1, θ2 ≡ R. (7)

eû1θ1 eû2θ2 eû1θ1 is called a symmetric product of eû2θ2 by eû1θ1 .

Readers are referred to [5] (Chap. 4 and its exercises) for the proof. Proposition
3.1 only states that symmetric products of screw motions in a SES remain on it.
It is not known if the resulting composition of screw motions indeed generates the
desired SES.

Proposition 3.2 (Single Exponential Motion Generator) Let û1, · · · , ûk be the
basis of the LTS Ω , then the k-layer symmetric products

eû1θ1 · · · eûk−1θk−1eûkθk eûk−1θk−1 · · · eû1θ1 ≡ eΩ, ∀θ1, · · · , θk ≡ R. (8)

generates the SES eΩ if the Jacobian of (8) is non-singular.

The proof of this proposition could be deduced using the implicit function theorem.
Eq. (8) is a k-layer symmetric product. In fact symmetric products with more than k
layers also generate the same SES as long as the set of independent twists forms a
basis of Ω and the Jacobian is non-singular.

3.3 Single Exponential Motion Generators

SES are special subsets of SE(3) which, to the best of our knowledge, have not
been sufficiently studied by robotics researchers. It is of natural interest to find their
kinematic generators, i.e., mechanisms whose task space matches the given SES.
Hence the name single exponential motion generator (SEMG) follows. The 2-DoF
orientational PKM with zero torsion angles in [3] and the omni-wrist [9] are example
SEMG of eΩ2R . Both of them employ CV couplings in their kinematic structure. Here
we use the method of symmetric products to derive the sufficient conditions for a
serial chain being a SEMG.

Now consider a serial chain with a generic forward kinematic map (2). According
to Proposition 3.2, this chain generates some SES of dimension k if it has the form of
multi-layer symmetric products and moreover its Jacobian is non-singular and has
rank k. The twist coordinate ξi describes the spatial location of the joint axis i at a
given configuration. It is given by a rigid displacement (a cascading of rigid motions
generated by all previous joints) of the corresponding initial twist ζi .
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ξ1 = Adg0ζ1

ξ2 = Adg0g1ζ2

... = ...

ξk = Adg0g1···gk−1ζk

where gi = eζ̂iαi , αi ≡ R, i = 1, · · · , k, and Adg denotes the adjoint map of an
element g ≡ SE(3). Without loss of generality g0 could be chosen to be the identity
e ≡ SE(3). Substituting them into (2) yields

gwt = g0eζ̂1θ1 g1 · · · gk−2eζ̂k−1θk−1 gk−1eζ̂kθk g−1
k−1 · · · g−1

0 .

Lemma 3.1 Equation (2) is a symmetric product if and only if

g0 = g−1
k−1g−1

k−2 · · · g−1
0 (9)

ζi = ζk+1−i , i = 1, · · · , k (10)

θi = θk+1−i (11)

gi = gk−i , i = 1, · · · , k, �. (12)

Employing Eq. (9)–(12), the twists in (2) are calculated as

ξ1 = Adg0ζ1 (13)

ξ2 = Adg0g1ζ2 (14)

... = ... (15)

ξm = Adg0g1···gm−1ζm (16)

ξm+1 = Adg0g1···gm ζm+1 (17)

ξm+2 = Adg−1
0 g−1

1 ···g−1
k−m−2

ζk−m−1 (18)

... = ... (19)

ξk−1 = Adg−1
0 g−1

1
ζ2 (20)

ξk = Adg−1
0
ζ1 (21)

where m = ⇒k/2∩ denotes the greatest integer less than or equal to k/2. The set
of consecutive twists {ξ1, · · · , ξk} forms a special arrangement because there is a
kind of symmetry between pairs of twists, (ξi , ξk+1−i ) (i = 1, · · · , k). Moreover
the instantaneous velocity space of the chain is calculated as W := {W1,W2, · · · },
where
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W1 = ξ1 + ξk = (Adg0 + Adg−1
0
)ζ1

W2 = ξ2 + ξk−1 = (Adg0g1 + Adg−1
0 g−1

1
)ζ2

... = ...

The dimension of W is either m (if k is even) or m + 1 (if k is odd). ξi and ξk+1−i

(i = 1, · · · ,m) are symmetric with respect to the hyperplane W ⊥ se(3), and ξm+1 ≡
W in case that m is odd. This result could be considered as a generalization of Hunt’s
theory about CV couplings where the joint axes are required to be symmetric about
a plane in R

3, while here the symmetry is with respect to a hyperplane in se(3). In
this paper we call the latter symmetry as mirror symmetry.

Example 3.4 (Mirror symmetry of eΩ1T 2R generators) According to Lemma 3.1, a
serial-chain generator of eΩ1T 2R = {e3, e4, e5} may consist of five joints given by:

ξ1 = Adg0ζ1,

ξ2 = Adg0g1ζ2,

ξ3 = ζ3,

ξ4 = Adg−1
0 g−1

1
ζ2,

ξ5 = Adg−1
0
ζ1

g0 = eη̂0α0 , g1 = eη̂1α1 , ηi , ζ j ≡ Ω1T 2R .

Fig. 1 Mirror symmetry of a eΩ1T 2R subchain: ξ ⊆2 = Adg1ζ2; ξ ⊆4 = Adg−1
1
ζ2; ξ2 = Adg0ξ

⊆
2 =

Adg0g1ζ2; ξ4 = Adg−1
0
ξ ⊆4 = Adg−1

0 g−1
1
ζ2; ξ1 = Adg0ζ1; ξ5 = Adg−1

0
ζ1; ξ3 = ζ3 (g0 = eη̂0α0 ;

g1 = eη̂1α1 )
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Notice that we could simply let the initial set of twists be ζ1 = e4, ζ2 = e5, and
ζ3 = e3, and then applying rigid displacements g0 and g1 yields a new set of mirror
symmetric twists {ξi }, as shown in Fig. 1.

Finally we have the following theorem for SEMG

Theorem 3.2 Let eΩ be an m-dimensional SES. A serial chain consisting of k = 2m
or 2m+1 joints is a SEMG of eΩ if there exists a configuration (θ1, · · · , θk) at which
the set of screws {ξ1, · · · , ξk} is mirror symmetric aboutΩ ⊥ se(3) and the space W
spanned by {ξ1, · · · , ξk} satisfies W = Ω , and moreover θi = θk+1−i , i = 1, · · · ,m
is kept valid by imposing suitable constraints (usually by forming closed-loops).

4 Conclusion

In this paper we generalize the previous results about CV coupling and zero-torsion
mechanisms and unify them into single exponential motion generators. We develop
the tool of symmetric product and Lie Triple System for analyzing the properties
of single exponential submanifolds, and use them to derive the sufficient conditions
for single exponential motion generators. Examples are worked out to verify the
developed theories.
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Foundations for the Approximate Synthesis
of RCCC Motion Generators

Jorge Angeles

Abstract The approximate synthesis of RCCC linkages for motion generation, a.k.a.
rigid-body guidance, is the subject of this paper. A formulation is proposed here
based on dual algebra, thereby leading to a dual, constrained, nonlinear least-square
problem. The dual normality conditions necessary to obtain a feasible least-square
approximation are established, following which an algorithm for the solution of the
problem is proposed.

Keywords Spatial Burmester problem · Approximate rigid-body guidance · Dual
normality conditions · Dual · Constrained · Nonlinear least squares

1 Introduction

The general problem of linkage synthesis consists in finding the dimensions of a
linkage of a given topology—number of links, number of joints, types of joints, and
number of kinematic loops—for a designated task. In this paper the task of interest is
rigid-body guidance,as defined by Ludwig Burmester (1840–1927) [1] for the planar
case, for which reason the problem is also named after Burmester. It is known that the
planar and spherical Burmester problems allow for the synthesis of a four-bar linkage
to guide their coupler link through up to five prescribed poses. For the spatial case,
the four-bar linkage becomes of the RCCC type, where R stands for revolute, C for
cylindrical joint. The linkage is usually synthesized via its two defining dyads, RC
and CC; then, of the multiple solutions obtained for each dyad, one RCCC linkage is
assembled upon coupling the dyads by means of the coupler link. Now, the number of
parameters that determine a dyad as well as the number of constraints that each dyad
type must satisfy are different for each of the two foregoing dyads. The maximum
number of coupler poses that each dyad can visit exactly is five for the CC dyad, three
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for the RC (or CR) dyad [2]. Apparently, the maximum number of poses that a RCCC
linkage can visit exactly is three, which is rather limited. However, if a condition is
imposed that leads to a coupling of the two dyads, e.g., robustness to variations in
the selection of the intermediate poses, as reported in [3], then a maximum of four
poses can be visited with the RCCC linkage. The number of poses that can be met
exactly is thus still limited, whence the motivation behind this paper.

In practice it is seldom required that intermediate poses be visited exactly. For
example, if the linkage under design is to be used to deploy and retract an aircraft
landing gear, only the deployed and the retracted poses of the wheel are to be met
exactly, the intermediate ones being free to deviate from a prescribed trajectory, in
pose space, as long as the deviations are within reasonable, prescribed limits and
the various moving links do not collide with the fuselage or between themselves. It
is thus apparent that the intermediate poses can be visited approximately, thereby
allowing for approximate synthesis, the subject of the paper.

Approximate linkage synthesis is a classical subject, treated in some books [4–6],
that has been approached as a problem of least squares.

2 Problem Formulation

The linkage under synthesis bears the generic geometry depicted in Fig. 1, where
link 1 is fixed, link 3 is the coupler, to which a frame F {X, Y, Z} has been attached
with origin at point R, while links 2 and 4 are coupled to link 1 by means of a R

Fig. 1 A generic RCCC linkage
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and a C joint, respectively, to link 3 by means of C joints. Moreover, links 2 and
4 are the RC and the CC dyads, respectively. Thus, axes Z1 and Z2 play the role
of the center points, while axes Z3 and Z4 those of the circle points of the planar
motion generator [7]. Apparently, axes Z1 and Z2 are grounded, and hence, remain
stationary during the linkage motion, their counterparts Z3 and Z4 becoming lines
of corresponding hyperboloids of revolution of axes Z1 and Z2, respectively. As a
matter of fact, axes Z3 and Z4 become generators of the hyperboloids, which, in the
general case, of arbitrary—not axially symmetric—single-sheet hyperboloids, are
reguli of these surfaces. For these reasons, Z1 and Z2 will be termed the axis lines,
or A-lines, Z3 and Z4 the regulus lines, or R-lines of the dyads under synthesis.
For simplicity of notation, axes Z1, . . . , Z4 will be denoted henceforth B,A, C,D,
respectively. Moreover, A0 and C0 denote axes A and C at the reference pose of F ,
with A j and C j denoting the location of A and C when F finds itself at its j th pose,
for j = 1, . . . ,m.

Moreover, the motion under study is described by a set of poses P = { r j , Q j }m1 ,
where r j is the position vector of R j and Q j is the orthogonal matrix that rotates
frame F from its reference pose with origin at R0 and orientation Q0 ◦ 1 to its j th
pose. The purpose of linkage synthesis for motion generation in the case at hand
consists in finding lines A0, B, C0 and D that define completely the RCCC linkage,
so that F will visit the set P with a minimum error. A word of caution is in order:
vectors r j having units of length and matrix Q j being nondimensional, the error in
missing a prescribed pose cannot be defined. In planar-linkage synthesis, the error is
measured indirectly, in terms of the deviations of the various locations of the circle
points from lying in a circle with center at one center point. In the same vein, the
error in this case is measured as the distance of one R-line from its corresponding
axially symmetric hyperboloid. The error will be measured by mimicking exactly
what is done in planar linkage synthesis: first find the circle that best fits a set of
m center-point locations in the least-square sense; then, find the minimum distance
of the putative center point in question to the circle, which is measured along the
line that joins the putative circle point with the “center” point. In the spatial case
under study, the distance from the R-line to its corresponding A-line consists of two
items, the length of the segment of the common normal between A and R and the
angle between the two lines, which can best be described by means of dual algebra
[8]: Let a, . . . ,d denote the unit vectors parallel to axes A, . . . ,D, respectively, the
moments1 of axes A, . . . ,D being denoted by ao, . . . ,do.

The problem can now be stated as: Given the setP of m > 4 poses that the coupler
link of a RCCC linkage is to visit, find lines A0, B, C0 and D that define the RCCC
linkage that carries its coupler link through the set P with a minimum error in the
least-square sense.

In order to formulate the problem, dual algebra [9, 10] is invoked. A dual unit
vector l̂ = l + ε lo represents a line L of direction given by the unit vector l and of

1 The moment of a line in a given coordinate frame is defined as the cross product of the position
vector of any point of the line times the unit vector parallel to the line. The mechanical interpretation
of this concept is the moment of a unit force whose line of action is the line at stake.
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moment lo with respect to the origin. In this vein, the lines defining the RCCC linkage
of Fig. 1 are represented by the dual unit vectors â, b̂, ĉ and d̂. Correspondingly, â0
and ĉ0 represent lines A0 and C0, respectively, i.e., the reference locations of A and
C, with a similar notation for A j and C j , for j = 1, . . . ,m > 4. Therefore,

â j = Q̂ j â0, ĉ j = Q̂ j ĉ0, j = 1, . . . ,m (1)

with Q̂ j = Q j + εQoj denoting the dual orthogonal matrix that carries F from its
reference pose to its j th pose. In this notation, Q j denotes a rotation matrix, while
Qoj ◦ D j Q j , and D j denotes the cross-product matrix (CPM) of vector d j that
represents the translation of point R. The cross product matrix of a 3-dimensional
vector u is defined as U = CPM(u) ◦ ∂(u× v)/∂v, for any 3-dimensional vector v.

The angle between two dual unit vectors û and v̂, representing lines U and V ,
respectively, is denoted as θ̂ . This angle occurs in the dot and the cross products of
the two given vectors, in the form:

ûT v̂ = cos θ̂ , û× v̂ = ŵ sin θ̂ (2)

where ŵ is the dual unit vector normal to both û and v̂, i.e., a line that is normal to
the two lines represented by û and v̂ and intersecting the two lines. Moreover,

cos θ̂ = cos θ − ε d sin θ, sin θ̂ = sin θ + ε d cos θ (3)

with d denoting the distance between U and V . The dual angle θ̂ thus represents the
dual distance between the two given lines. Representing the rigid-body condition
that links 2 and 4 must obey at every prescribed pose is now straightforward: the
dual distance between lines A j and B as well as that between C j and D must remain
equal to that between their reference counterparts A0 and B and, correspondingly,
C0 and D, i.e., in light of Eq. (1),

b̂T Q̂ j â j = b̂T â0, d̂T Q̂ j ĉ j = d̂T ĉ0, j = 1, . . . ,m

or, in homogeneous form,

ϕ̂ j ◦ b̂T (Q̂ j − 1)â0 = 0, ϕ̂ j+m ◦ d̂T (Q̂ j − 1)ĉ0 = 0, j = 1, . . . ,m (4)

which represent 2m dual synthesis equations in the four dual unknown vectors â0,
b̂, ĉ0 and d̂. As each equation involves two real equations, one for its primal, one for
its dual part, the total number of real equations is 4m. Likewise, each dual unknown
vector entails two 3-dimensional dual vectors, the total number of unknowns is 24.
However, each dual unit vector must obey the unit-vector constraints:

ĥ1 ◦ ≤â0≤2−1 = 0, ĥ2 ◦ ≤b̂≤2−1 = 0, ĥ3 ◦ ≤ĉ0≤2−1 = 0, ĥ4 ◦ ≤d̂≤2−1 = 0
(5)
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Again, each of the foregoing equations represents two real equations, one for its
primal, one for its dual parts, thereby obtaining a total of eight real constraints.
Moreover, the primal part refers to the normality of the primal unit vector, the dual
part to the Klein condition.2 The foregoing conditions apply to dyads of the CC
type. The RC dyad must obey one more condition: the sliding of the joint coupling
link 2 with link 1 must vanish, which can be enforced by stating that all common
normals N j to A j and B must intersect N0, the counterpart normal to A0 and B. Let
n̂0 represent N0, n̂ j representing N j . The intersection condition can be expressed
via the dual unit vectors representing the lines of interest. Indeed, from the expan-
sion of cos θ̂ in Eq. (3), it is apparent that the intersection condition is that the dual
part of n̂T

j n̂0, represented as du(n̂T
j n̂0), vanish, whence m additional constraints are

obtained, namely,
h4+ j ◦ du(n̂T

j n̂0) = 0, j = 1, . . . ,m (6)

Further, the 12-dimensional dual vector of unknowns x̂ is introduced:

x̂ = [
âT

0 b̂T ĉT
0 d̂T

]T
(7)

together with the 2m-dimensional dual vector ϕ̂(x̂) of synthesis equations, whose
components are ϕ̂ j and ϕ̂ j+m , as defined in Eq. (4), and the (4+m)-dimensional dual
vector of constraints ĥ(x̂), whose components are defined in Eqs. (5) and (6). Notice
that, contrary to the exact synthesis case, here the synthesis equations need not be
exactly satisfied; a reasonable approximation to those equations suffices. However,
the 4 + m constraints must be met exactly—up to roundoff error, of course. The
optimization problem is now stated as one of constrained nonlinear least squares:

f̂ (x̂) ◦ 1

2
ϕ̂(x̂)T Wϕ̂(x̂) ≡ min

x̂
(8a)

subject to
ĥ(x̂) = 04+m (8b)

In the problem statement (8a), W is a symmetric, positive-definite weighting
matrix that is introduced to allow for assigning different relevance to different poses.
For example, the mth pose may be given much higher relevance than its intermediate
counterparts. A better approach would be to raise the mth pose to the category of
constraints, so that it would be met exactly. However, the total number of constraints
should be smaller than 12, the number of unknowns; else, the problem would be
overconstrained and no solution would be possible, i.e., m < 8.

2 This condition states that the primal and the dual parts of a dual unit vector must be mutually
orthogonal.
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3 The Dual Normality Conditions

The first-order normality conditions (FONC) for a constrained nonlinear program-
ming problem, the class to which problem (8a and 8b) belongs, are well known in the
case of problems defined by vectors over the real field [11]. In our case, all vectors
are defined over the ring of dual numbers.3 Paraphrasing those normality conditions,
we have, for the case at hand:

≈ f̂ + ĴT λ̂ = 02m (9)

where λ̂ is the (4 + m)-dimensional vector of dual Lagrange multipliers that are
needed to take the constraints into account, and Ĵ is the 2m × (4 + m) Jacobian
matrix of the constraints, i.e., the gradient of ĥ. Moreover, by virtue of the form of
the objective function f̂ , ≈ f̂ takes the form

≈ f̂ = Φ̂T Wϕ̂ (10)

with Φ̂ defined as ≈ϕ̂. Now, if the expression for the derivative of a dual function
f̂ (x̂)with respect to its dual argument is recalled, with f̂ and x̂ given by f̂ = f +ε fo

and x̂ = x + ε xo, namely [12],

d f̂

dx̂
= d f

dx
+ εd fo

dx
= d f̂

dx
(11)

then Φ̂ and Ĵ become Φ̂ = ∂ϕ̂/∂x and Ĵ = ≈ĥ = ∂ĥ/∂x, i.e., only the derivatives
w.r.t. the primal part of the dual argument come into play in the foregoing gradients.

What condition (9) states is that, at a stationary point of problem (8a), ≈ f̂ need
not vanish, but must lie in the range of ĴT , i.e., the overdetermined system (9) of
2m linear equations in the 4 + m (<12) unknowns, the number of dual Lagrange
multipliers in λ̂, must admit an exact solution. The FONC can be stated in two
alternative forms:

[1− ĴT (ĴĴT )−1Ĵ]Φ̂Wϕ̂ = 04+m, L̂T Φ̂T Wϕ̂ = 04+m (12)

with 04+m denoting the (4+ m)-dimensional zero vector.
The matrix inside the brackets in the first of the foregoing equations can be readily

identified as a projector that maps n-dimensional vectors onto the null space of Ĵ.
Matrix L̂ in the second equation is a 12× (n− 4−m) orthogonal complement of Ĵ,
i.e, ĴL̂ = O, with O denoting the (4+ m)× (n − 4− m) zero matrix.

3 While vector spaces must be defined over a field, in our context we need to define them over the
set of dual numbers, that do not form a field, but rather a ring. This difference does not pose any
technical problem to the developments in the balance of the paper.
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These conditions are necessary for a value of x̂ to be a stationary point of the
problem under study. For this point to be a minimum, the second-order normality
condition must be satisfied. In nonlinear-programming problems, this condition is
that the reduced Hessian of the problem under study be positive-definite at a sta-
tionary feasible point, i.e., at a point that satisfies both the FONC, Eq. (12), and the
constraints, Eq. (8b). In our case, such a point, designated by x̂⊥, is assumed to have
been found, vector ϕ̂(x̂⊥) being represented by ϕ̂⊥. The reduced Hessian matrix takes
the form

Ĥr = L̂T

[

Φ̂T WΦ̂ + ∂(Φ̂
T Wϕ̂⊥)
∂ x̂

+ ∂(Ĵ
T λ̂)

∂ x̂

]

L̂ (13)

In our case, the second-order normality condition for a minimum is that the primal
part of Ĥr be positive-definite.

4 The Dual Orthogonal-Decomposition Algorithm

The orthogonal-decomposition algorithm (ODA) was developed by the author and
his team to solve equality-constrained problems in mathematical programming [13].
When applied to the RCCC approximate-synthesis problem, the algorithm takes the
form described below: it is assumed that a feasible approximation to the optimum
has been obtained at the kth iteration, x̂k , an increment Δx̂k being sought that will
yield an improved approximation x̂k+1. The strategy consists in decomposing the
increment in two parts, namely,

Δx̂k = Δv̂k + L̂kΔûk (14)

with L̂k denoting the orthogonal complement L̂ evaluated at x̂k . Moreover, Δv̂k is
the minimum-norm solution of the underdetermined linear system of dual equations

ĴkΔv̂k = −ĥk (15)

in which Ĵk and ĥk denote the Jacobian Ĵ and vector ĥ evaluated at x̂k . The minimum-
norm solution of Eq. (15) can be expressed in terms of the dual right Moore-Penrose
generalized inverse [14], namely,

Δv̂k = −Ĵ†
k ĥk, Ĵ†

k ◦ ĴT
k (Ĵk ĴT

k )
−1 (16)

where Ĵ†
k is to be calculated with the dual QR-decomposition of ĴT

k . The QR-
decomposition for real matrices is well documented in the literature on numerical
analysis [15]. WithΔv̂k computed,Δûk is computed as the least-square approxima-
tion of an overdetermined system of linear equations:

VΦ̂kL̂kΔûk = −V(ϕ̂k + Φ̂kΔV̂k), W ◦ VT V (17)
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whence the solution Δûk is computed with the left Moore-Penrose generalized
inverse of the product VΦ̂kL̂k :

Δûk = −(VΦ̂kL̂k)
I (ϕ̂k + Φ̂kΔv̂k), (VΦ̂kL̂k)

I ◦ (L̂T Φ̂T WΦ̂L̂)−1L̂T Φ̂T V
(18)

thereby completing the (k + 1)st iteration. The procedure stops when the FONC,
Eq. (12), are verified to a prescribed tolerance.

5 Conclusions

The foundations for the approximate synthesis of RCCC linkages for motion genera-
tion were laid down. It was shown that, by virtue of the normality conditions that the
dual unit vectors that represent the linkage four joint axes must observe, the number
of prescribed poses of the coupler link is limited to being smaller than eight.
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The 3-RPS Manipulator Can Have Non-Singular
Assembly-Mode Changes

Manfred Husty, Josef Schadlbauer, Stéphane Caro and Philippe Wenger

Abstract Recently a complete kinematic description of the 3-RPS parallel manip-
ulator was obtained using algebraic constraint equations. It turned out that the
workspace decomposes into two components describing two kinematically differ-
ent operation modes and that self-motions of this manipulator in both operation are
possible. In this paper for the first time it is shown that this manipulator has the
property of non singular assembly mode change.

Keywords 3-RPS-manipulator · Singularities · Assembly mode change

1 Introduction

Non-singular assembly mode change has been discussed a lot for parallel manipu-
lators since Innocenti and Parenti-Castelli [1] showed examples of such a behavior.
Especially planar 3-RPR parallel manipulators were extensively investigated with
respect to non-singular assembly mode change (see e.g. [2] and [3]). In [4] it was
shown, that every generic planar 3-RPR has two aspects, meaning that the singularity
surface divides the workspace into two parts and therefore non-singular assembly
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mode change is always possible. To the best of the knowledge of the authors singu-
larity free assembly mode change has never been shown explicitly for spatial lower
mobility parallel manipulators. It is the motivation to demonstrate this behavior for
such a manipulator. One of the best investigated designs of lower mobility parallel
manipulators is the 3-RPS manipulator introduced by Hunt [5]. This manipulator is
simple enough to make this task feasible.

A 3-RPS manipulator is a three degree of freedom (DOF) parallel manipulator.
It consists of an equilateral triangular fixed platform and a similar moving platform
connected by three identical RPS legs. The first joint (R-joint) is connected to the base
and the last joint (S-joint) is connected to the moving platform (see Fig. 1). The legs
are extensible, changing lengths via prismatic joints (P-joints), thereby moving the
platform with three highly coupled DOFs. In the past few years the 3-RPS obtained
a lot of attention in the kinematics community, see e.g. [6].

In [7] an overview of existing results up to the year 2008 can be found. Local
analysis, mostly using screw theory was performed in most of the existing investiga-
tions especially in [8] and [9]. More recently in [10], using an algebraic description
of the manipulator, together with Study’s kinematic mapping, a complete character-
ization of the forward kinematics, the operation modes, the singular poses and the
transitions between the operation modes was given. It turned out that the manipulator
has two kinematically different operation modes. The first one is characterized by
finite π -screws. Axes of these screws are tilted with respect to the base and the trans-
lation distance depends on the chosen axis. The second mode has horizontal screw
axes with rotation angle and translation distance depending on the chosen axis. Note,
that this characterization refers to finite screws and not instantaneous screws. The
singularities in both operation modes were derived in the kinematic image space as
well as in the joint space. In joint space the singularity surfaces are of degree 24 and
it was shown that for input joint combinations fulfilling an eight order polynomial
transition from one operation mode to the other is possible. In [11] it was shown,
that the manipulator can perform a spherical and “butterfly” self-motion for special
leg lengths.

In this paper an example of singularity free assembly mode change will be given.
To prove this property a singularity free path will be constructed that moves the
manipulator around a cusp in a slice of its workspace.

The paper is organized as follows: In Sect. 2 a description of the architecture of the
3-RPS is given and the set of constraint equations is recalled. Section 3 introduces a
method to construct a nonsingular assembly mode change path for this manipulator.

2 Robot Design

With respect to Fig. 1 we consider the 3-RPS parallel manipulator with the following
architecture: The base of the 3-RPS consists of an equilateral triangle with vertices
A1, A2 and A3 and circumradius h1. The origin of the fixed frame Σ0 coincides
with the circumcenter of the triangle A1, A2 and A3. The yz-plane of Σ0 is defined
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Fig. 1 Design of the 3-RPS
parallel robot

by the plane A1, A2, A3. Finally, A1 lies on the z-axis of Σ0. In the platform there
is another equilateral triangle with vertices B1, B2 and B3 and circumradius h2.
The circumcenter of the triangle B1, B2 and B3 lies in the origin of Σ1, which is
the moving frame. Again, the plane defined by B1, B2 and B3 coincides with the
yz-plane of Σ1 and B1 lies on the z-axis of Σ1.

The two design parameters h1 and h2 are taken to be strictly positive numbers.
Now each pair of vertices Ai , Bi (i = 1, . . . , 3) is connected by a limb, with a
rotational joint at Ai and a spherical joint at Bi . The length of each limb is denoted
by ri and is adjusted via an actuated prismatic joint. The axes αi of the rotational
joints at Ai are tangent to the circumcircle and therefore lie within the yz-plane
of Σ0. Overall we have five parameters, namely h1, h2, r1, r2 and r3. While h1
and h2 determine the design of the manipulator, the parameters r1, r2 and r3 are
joint parameters, which determine the motion of the robot. We can consider the
joint parameters to be like design parameters when they are assigned with specific
leg lengths ri . In some computations the leg lengths ri will be replaced with their
squares which then will be denoted by Ri . Deriving the constraint equations is one
essential step in solving the kinematics of a manipulator. To compute these equations
which describe the motion capability, the direct kinematics and also the singularities
of the manipulator, we use the Study-parameterization of the motion group SE(3).
The vertices of the base triangle and the platform triangle in Σ0 resp. Σ1 are

A1 = (1, 0, 0, h1), A2 = (1, 0,
◦

3h1/2,−h1/2), A3 = (1, 0,−◦3h1/2,−h1/2)

b1 = (1, 0, 0, h2), b2 = (1, 0,
◦

3h2/2,−h2/2), b3 = (1, 0,−◦3h2/2,−h2/2)

thereby using projective coordinates with the homogenizing coordinate in first place.
To avoid confusion coordinates with respect to Σ0 are written in capital letters and
those with respect to Σ1 are in lower case. To obtain the coordinates B1, B2 and B3



342 M. Husty et al.

of b1, b2 and b3with respect to Σ0 a coordinate transformation has to be applied.
To describe this coordinate transformation we use Study’s parameterization of a
spatial Euclidean transformation matrix M ≤ SE(3) (for detailed information on
this approach see [12]).

M =
⎧

x2
0 + x2

1 + x2
2 + x2

3 0≡
MT MR

⎪
, MT =

⎛

⎝
2(−x0 y1 + x1 y0 − x2 y3 + x3 y2)

2(−x0 y2 + x1 y3 + x2 y0 − x3 y1)

2(−x0 y3 − x1 y2 + x2 y1 + x3 y0)

⎞

⎠

MR =
⎛

⎝
x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

⎞

⎠

The vector MT represents the translational part and MR represents the rotational
part of the transformation M. The parameters x0, x1, x2, x3, y0, y1, y2, y3 which
appear in the matrix M are called Study-parameters of the transformation M. The
mapping

κ : SE(3)≈ P ≤ P
7 (1)

M(xi , yi ) ⊥≈ (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T �= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

is called kinematic mapping and maps each Euclidean displacement of SE(3) to a
point P on a quadric S2

6 ⇒ P
7. In this way, every projective point (x0 : x1 : x2 :

x3 : y0 : y1 : y2 : y3) ≤ P
7 represents a spatial Euclidean transformation, if it

fulfills the following equation S2
6 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0 and inequality:

x2
0 + x2

1 + x2
2 + x2

3 �= 0 (see [12]).
The coordinates of bi with respect to Σ0 are obtained by:

Bi =M · bi , i = 1, . . . , 3.

Now, as the coordinates of all vertices are given in terms of the transformation
parameters x0, x1, x2, x3, y0, y1, y2, y3 and the design constants, we obtain constraint
equations by examining the geometry of the manipulator more closely. First of all the
limb connecting Ai and Bi has to be orthogonal to the corresponding rotational axis
αi . That means, the scalar product of the vector connecting Ai Bi and the direction
of αi vanishes. After computing this product, removing the common denominator
(x2

0 + x2
1 + x2

2 + x2
3 ) and performing some elementary simplifications the following

equations are obtained:

g1 : x0x1 = 0

g2 : h2x2
2 − h2x2

3 − 2x0 y3 − 2x1 y2 + 2x2 y1 + 2x3 y0 = 0 (2)

g3 : 2h2x0x1 + h2x2x3 − x0 y2 + x1 y3 + x2 y0 − x3 y1 = 0.
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This set of equations is augmented by three leg length conditions:

g4 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h1 + h2)
2x2

2 + (h1 − h2)
2x2

3 + 4(h1 − h2)x0 y3 + 4(h1 + h2)x1 y2

− 4(h1 + h2)x2 y1 − 4(h1 − h2)x3 y0 + 4(y2
0 + y2

1 + y2
2 + y2

3 )− (x2
0 + x2

1 + x2
2 + x2

3 )R1 = 0

g5 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h2
1 + h2

2 − h1h2)x
2
2 + (h2

1 + h2
2 + h1h2)x

2
3 − 2(h1

− h2)x0 y3 − 2(h1 + h2)x1 y2 + 2(h1 + h2)x2 y1 + 2(h1 − h2)x3 y0 − 2
◦

3(h1

− h2)x0 y2 + 2
◦

3(h1 + h2)x1 y3 + 2
◦

3(h1 − h2)x2 y0 − 2
◦

3(h1 + h2)x3 y1

− 2
◦

3h1h2x2x3 + 4(y2
0 + y2

1 + y2
2 + y2

3 )− (x2
0 + x2

1 + x2
2 + x2

3 )R2 = 0

g6 : (h1 − h2)
2x2

0 + (h1 + h2)
2x2

1 + (h2
1 + h2

2 − h1h2)x
2
2 + (h2

1 + h2
2 + h1h2)x

2
3 − 2(h1

− h2)x0 y3 − 2(h1 + h2)x1 y2 + 2(h1 + h2)x2 y1 + 2(h1 − h2)x3 y0 + 2
◦

3(h1

− h2)x0 y2 − 2
◦

3(h1 + h2)x1 y3 − 2
◦

3(h1 − h2)x2 y0 + 2
◦

3(h1 + h2)x3 y1

+ 2
◦

3h1h2x2x3 + 4(y2
0 + y2

1 + y2
2 + y2

3 )− (x2
0 + x2

1 + x2
2 + x2

3 )R3 = 0.

A detailed explanation of how this set of equations is derived is left out for sake of
lack of space but can be found in [10]. To complete the system, we add the Study-
equation (g7), because all the solutions have to be within the Study-Quadric and a
normalizing condition (g8).

g7 : x0 y0 + x1 y1 + x2 y2 + x3 y3 = 0, g8 : x2
0 + x2

1 + x2
2 + x2

3 = 1 (3)

It is emphasized that Ri in equations g4, g5, g6 denote the squares of the input
parameters (leg lengths). The set of equations describing a general 3-RPS manipulator
forms the ideal

I = ∩g1, g2, g3, g4, g5, g6, g7, g8⊆ (4)

From the first equation in this set it is obvious, that this ideal consists of two compo-
nents K1 = ∩x0, g2, g3, g4, g5, g6, g7, g8⊆ and K2 = ∩x1, g2, g3, g4, g5, g6, g7, g8⊆.
It was shown in [10] that these two components can be treated separately to compute
the direct kinematics and all singularities of this manipulator. Therefore the same
can be done for computing non singular assembly mode change of this manipulator
type.

3 Non-Singular Assembly Mode Change

The main idea in [4] to prove the non-singular assembly mode change behavior
is the representation of the singularity surface in the three dimensional kinematic
image space, where the two aspects of the singularity surface can be visualized and
singularity free assembly mode changing paths can be constructed easily. A similar
method was used in [13] and [14] to prove the assembly mode changing property for
spherical 3-RPR parallel manipulators.
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Fig. 2 Singularity surface S in joint space h1 = 1, h2 = 2 Slice through S at R3 = 100

The same method as in planar and spherical cases cannot be used for a 3-dof spatial
manipulator. It is not possible to derive the singularity surface in a 3-dim kinematic
image space and construct singularity free paths, because the singularity surface is
contained in the 7-dim kinematic image space of spatial displacements and therefore
difficult to handle. In the following a new method is presented to overcome these
difficulties and to prove that non-singular assembly mode change is also possible in
case of a 3-RPS parallel manipulator.

The two governing idealsK1 andK2 which describe the motion capabilities of the
manipulator, are treated separately. It was already shown in [10] that the singularity
surface for each component can be computed in the kinematic image space and in
the joint space.

The singularity surface in the joint space, by using the leg lengths ri , i = 1 . . . 3
as coordinates, has degree 24. A closer inspection shows that the variables of the
singularity surface in joint space have only even powers. Therefore it makes sense to
use the squares of the leg lengths as new coordinates. After the substitution Ri = r2

i
the resulting singularity surface S has only degree 12. A part of S for the parameters
h1 = 1, h2 = 2 is displayed in (Fig. 2).

Next the univariate polynomial of one ideal Ki in one of the Study parameters is
computed. This can be done without specifying the leg length parameters Ri . For this
purpose an ordered Groebner basis of the ideal e.g. K1 is computed and this yields
a univariate polynomial F of degree eight in one variable (e.g. x2) having only even
powers

F : a0x8
2 + b0x6

2 + c0x4
2 + d0x2

2 + f0 = 0, (5)

where a0, b0, c0, d0, f0 are polynomials in the input parameters R1, R2, R3 and the
design parameter h2 (without loss of generality h1 = 1 has been set). In the follow-
ing we will take x2 as paradigmatic example for the used Study parameter. Note that
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x2 could be replaced by any other Study parameter if the univariate polynomial had
been computed in this other parameter.

Then a slice through the singularity surface is taken by setting one joint parameter
constant Ri = c. Figure 2 shows an example of such a slice; the intersection curve
is denoted k (the chosen joint parameters in the example are R1 = R2 = 120, R3 =
100). The constant value c is also substituted into F . The result is a polynomial Fp

in two joint parameters and one Study parameter. This polynomial can be viewed as
level-set in the Study parameter x2. The graph of this level-set is a surface

Fp(R j , Rk, v) = 0, j, k ≤ {1, 2, 3}, j, k �= i

of degree 4 in the square of the Study parameter v := x2
2 . We display it in the same

coordinate system as the slice and extend the intersection curve k also to a level
set. This level-set is trivial, because it is only the cylinder SL above the intersection
curve. It is interesting to note, that SL is tangent to Fp. The curve of tangency is
exactly the set of singularities of the manipulator, which belong to values of x2 on
Fp. The cusps on the inner part of k indicate that the surface FP folds back and a
singularity free assembly mode changing path can be constructed. The interior of the
inner most part of the curve k is a four solutions region of the direct kinematics and
outside of this region and inside of the outermost part of k there are two solutions.
Now the methodology used in [3] can be applied. We construct in the plane Ri = c a
path around the cusp starting at the point S in the interior of the three cusp curve and
ending at the point E which is coincident with S but belonging to another solution
of the direct kinematics (Fig. 3, lower picture). This path is projected orthogonally
in the direction of the v coordinate onto the surface Fp. And in this projection one
can see that the level set folds such that S and E are the same points in the slicing
plane but belong to different solutions of the direct kinematics. This projection is the
computationally most complicated part, because the path, which consists of three
line segments in the plane Ri = const., parameterized by a parameter t must be
substituted into the polynomial F . The result is a polynomial of degree four in v and
degree 8 in t , which must be solved for v. This yields four v coordinate functions,
corresponding to four curves which project onto the given three line segment curve in
the plane Ri = c. Not all four curves will be real in the considered interval. Figure 4
shows that this algorithm is computationally feasible. One can see how the projected
curve b runs on the surface Fp. The red wireframe surface is SL .

In a last step one has to prove that the curve b does not intersect the singularity
curve on F . This can be done numerically and is visualized in a classical two view
orthogonal projection. The top view is the plane Ri = c (Fig. 3 lower picture). For the
front view we take R j , v as coordinates (Fig. 3 upper picture). The singularity curve
on Fp in the top view is the curve k′. The three segment curve was designed such
that it runs around the cusp of k′. We have to show that the two apparent intersection
points P ′1, P ′2 in the top view are no intersection points of the curves k and b in space.
It can be computed easily that the two apparent intersection points P ′1, P ′2 are not
on the curve k′′ in the front view. Graphically this is also shown in Fig. 3. Note that
the top view of the singularity curve is computed as the resultant of SL and Fp with
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Fig. 3 Singularity curve on F in front view and top view

respect to the coordinate which is missing in the top view. The same arguments were
used to show that the apparent intersection point between the two curves in the front
view is no intersection point of the two curves. This proves that the constructed curve
connects the two solutions of the direct kinematics without crossing a singularity.
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Fig. 4 3-D view of the level-set F singularity levelset SL and constructed assembly changing curve

4 Conclusion

By constructing a complete example it was shown for the first time that a 3-RPS
parallel mechanism allows non-singular assembly mode change. To prove this feature
a level set was used and an assembly-mode changing path on the graph of this level
set was constructed.
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Exact Workspace Synthesis for RCCR Linkages

Batchimeg Batbold, Yimesker Yihun, James S. Wolper
and Alba Pérez-Gracia

Abstract A tool for the exact kinematic synthesis of a given workspace may be
of interest when designing closed linkages. In these cases, finite-position synthesis
cannot ensure smoothness of motion between task positions. In order to keep the
simplicity of the finite-position synthesis approach, the workspace of relative dis-
placements is described as a set of finite screws forming a screw surface. The screw
surface is characterized by a number of screws which are used to generate the whole
surface, and in turn to perform the dimensional synthesis. The methodology is here
applied to the overconstrained RCCR closed linkage, for which the workspace of
finite displacements yields a point-path synthesis problem.

Keywords Workspace synthesis · RCCR linkage

1 Introduction

The dimensional synthesis of parallel robots has focused mainly on optimizing per-
formance indices [8, 12] and reachable workspace sizing [1, 3, 13]; see also [14] for
a comprehensive approach.

The use of a prescribed set of positions for the design of parallel robots by synthe-
sizing all supporting legs has been applied in [20] for n-RRS parallel manipulators;
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also [11] and [16] perform partial kinematic synthesis of a 3-RPS parallel manip-
ulator. In general, the finite-position method does not allow the control of the final
trajectory of the parallel system and issues such as circuit defect may appear; in
the most extreme cases, it may yield a system with negative mobility, that can be
assembled at each task positions but cannot be driven from task position to task
position.

The kinematic mapping is used for the synthesis of planar and spherical linkages
in order to state design equations and to provide a tool for visualizing the workspace
and trajectories of the linkage. See [17] and more recent applications [6, 18] and [21].
For spatial motion, Study’s kinematic mapping is used to obtain simplified equations
for analysis and synthesis, see [10] and [2].

Considering the workspace of the linkage as a set of finite screws corresponding to
finite displacements of the end-effector, and using Parkin’s definition for pitch [15],
the workspace takes a simple expression in some cases, see [7]. If the expression
for the workspace is known, a finite set of positions can define the workspace and
synthesize the corresponding linkage [5].

In this paper we apply the technique to the closed, movable RCCR linkage, studied
by Waldron [19]. Its finite-screw workspace [4] has a constant orientation, hence the
relative motion consists of translations only. The relative translations of the RC
chain form a quadric surface, which is related to the finite set of translations used
for the synthesis in order to perform exact workspace synthesis. The method yields
a maximum of six different solutions; intersecting pairs of real solutions, several
RCCR workspaces are generated.

2 The Workspace of Finite Screws

The workspace of relative displacements of an articulated chain can be expressed
as a set of screws with a magnitude and a pitch; Parkin’s definition of pitch [15]
is used. Parkin’s pitch appears naturally in the forward kinematics equations when
using the Cifford algebra of dual quaternions [4]. When using this pitch, the screws
corresponding to finite displacements of some linkages form screw systems; however,
the relative workspaces of many linkages are nonlinear screw surfaces.

Given a finite-displacement screw J = (1 + με)S, where μ is the pitch and
S = (s, c × s) are the Plucker coordinates of the screw axis, the exponential of the
screw θ

2 J can be computed using the Clifford algebra product, to yield

e
θ
2 J =

⎧
cos

θ

2
− d

2
sin

θ

2
ε

⎪
+

⎧
sin

θ

2
+ d

2
cos

θ

2
ε

⎪
S = cos

θ̂

2
+ sin

θ̂

2
S. (1)

The exponential of the screw defines a unit dual quaternion, corresponding to a
relative displacement from an initial position to a final position in terms of a rotation
around and a slide along axis S.
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For a serial chain with n joints, with joint parametersΔΘ̂ = (Θ−Θ0+(d−d0)ε)
around and along the axis Si , i = 1, . . . , k, the product of exponentials defines the
relative workspace from a reference configuration,

D̂(ΔΘ̂) = cos
ψ̂

2
+ sin

ψ̂

2
S = e

Δθ̂1
2 S1 e

Δθ̂2
2 S2 · · · eΔθ̂k

2 Sk . (2)

It is immediate to find the screw axis S, magnitude and pitch from this expression,

sin
ψ̂

2
S =

⎧
sin

ψ

2
+ ε

t

2
cos

ψ

2

⎪
S = sin

ψ

2

⎛

1+ ε
t
2

tan ψ
2

⎝

S, (3)

so that the finite-screw relative workspace is a set of screw axes with magnitude sin ψ
2

and Parkin’s pitch t/2

tan ψ
2

. The value of the magnitude is unique and can be calculated

using the scalar part of the forward kinematics, see [9].

3 The Closed RCCR Linkage

The closed RC-CR linkage is overconstrained and able to move with one degree
of freedom [19] when the cylindrical (C) and revolute (R) joints of each pair are
parallel, while both pairs are skew one to each other, see Fig. 1.

For arbitrarly-positioned axes, the mobility of this spatial four-bar linkage is,
using CKG formula, equal to zero. However it is possible to obtain a one-dof linkage
for some special geometry.

The geometric features and the joint variable functions can be derived, for instance,
by equating the forward kinematics of both RC serial chains at their end-effector [19].
According to the coordinate frame shown in Fig. 1, and applying the needed condition

Fig. 1 RCCR linkage
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of parallel axes, that is, α1 = α3 = 0, the forward kinematics of both RC chains 1–2
and 4–3 are,

[DRC1] =

⎞

⎠⎠
⎜

c(θ1 + θ2) −s(θ1 + θ2)cα2 s(θ1 + θ2)sα2 a2c(θ1 + θ2)+ a1cθ1
s(θ1 + θ2) c(θ1 + θ2)cα2 −c(θ1 + θ2)sα2 a2s(θ1 + θ2)+ a1sθ1

0 sα2 cα2 r2
0 0 0 1

⎟

⎦⎦
, (4)

[DRC2] =

⎞

⎠⎠
⎜

c(θ3 + θ4) s(θ3 + θ4) 0 −a3cθ4 − a4
−s(θ3 + θ4)cα4 c(θ3 + θ4)cα4 sα4 −r3sα4 + a3sθ4cα4
s(θ3 + θ4)sα4 −c(θ3 + θ4)sα4 cα4 −r3cα4 − a3sθ4sα4

0 0 0 1

⎟

⎦⎦
, (5)

where s and c stand for the sin and cos functions respectively.
Some geometrical constraints and angular relations are obtained from equating

these two transformations,

cos α2 = cos α4 =⇒ α4 = ±α2,

cos(θ1 + θ2) = ±1, sin(θ1 + θ2) = 0 =⇒ θ2 = n ∗ π − θ1,

cos(θ3 + θ4) = ±1, sin(θ3 + θ4) = 0 =⇒ θ3 = n ∗ π − θ4, (6)

in which the directions of the fixed joints are parallel to the directions of the moving
joints, with coupled rotation angles. We can also derive the following joint variable
relations:

θ4 = ± arccos

⎧±a2 − a4 − a1 cos θ1

a3

⎪

r3 = a1 sin θ1 − a3 cos α4 sin θ4

sin α4
, r2 = a1 cos α4 sin θ1 − a3 sin θ4

sin α4
(7)

4 The Workspace of Finite Displacements of the RC-CR Linkage

We denote the RC chain with parallel axes and angles θ2 = −θ1 a parallel RC
chain. For solving the design problem, it is advantageous to compute the workspace
of relative displacements with respect to a reference configuration. The reference
configuration can be arbitrarily selected, with Δr2 = r2 − r20 and Δθi = θi − θi0.
The workspace of relative displacements a parallel RC chain is

D̂ = R̂(Δθ1)Ĉ(Δθ2,Δr2)

= 1+ ε
1

2

(
Δr2s1 + (cosΔθ1 − 1)(c2 − c1)− sinΔθ1(c2 − c1)× s1

)
, (8)
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Fig. 2 Workspace of relative displacements for the parallel RC chain, left; for the RC-CR linkage,
right

where R̂(Δθ1) is a rotation about an axis with Plucker coordinates S1, and Ĉ(Δθ2,

Δr2) is a rotation and a translation about and along an axis with Plucker coordinates
S2. Both axes share the same direction s1 and their rotations are Δθ1 and Δθ2 =
−Δθ1; the points c1 and c2 are any points on the axes along a common normal line.
Notice that the relative displacements have no change in orientation, so that the chain
has a constant-orientation workspace.

The workspace of relative translations for the RCCR linkage is given by the inter-
section of the workspaces of two parallel RC chains. Figure 2 shows the workspace
of a parallel RC chain and the intersection workspace for two chains.

In order to characterize the workspace of the parallel RC chain, we perform
implicitization in Eq. (8) to eliminate the joint variables θ1 and r2. The elimination
yields a quadratic surface of expression

Q(x, y, z) :(s2
1y + s2

1z)x
2 + (s2

1x + s2
1z)y

2 + (s2
1x + s2

1y)z
2

− 2s1x s1y xy − 2s1x s1z xz − 2s1ys1z yz + c21x x + c21y y + c21z z = 0,
(9)

where (x, y, z) is a point of the R3 space of relative translations, s1 = (s1x , s1y, s1z)

is the direction for both joints, and c21 = c2 − c1 = (c21x , c21y, c21z) is the vector
along the common normal between both joints.

This surface is classified as a circular cylinder, with radius R = √c21 · c21 and
passing through the origin, which corresponds to the zero relative displacement.
The intersection of two such circular cylinders yields a quartic curve which is the
workspace of the RCCR linkage.
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5 Dimensional Synthesis for the RCCR Linkage

The workspace of the RCCR linkage is a constant-orientation curve, and hence the
synthesis problem can be reduced to a point-path synthesis problem. The point-path
synthesis problem is stated as follows: given an initial point P1 (which we will use
as reference configuration), relative displacements of the RC-CR chain will move
this point to the rest of task points P2, P3, . . . ,Pn .

The action of the chain on this point can be calculated using one of the conjugations
in the Clifford algebra. If the forward kinematics of relative displacements of Eq. (8)
is denoted by D̂ = 1+ εd, then

Pi = D̂ P̂1 D̂∗, i = 2, . . . , n, (10)

where P̂1 = (1 + εP1) is the dual quaternion expression of the point P1, and the
conjugation yields

⎧
1+ ε

1

2
d
⎪
(1+ εP1)

⎧
1+ ε

1

2
d
⎪
= 1+ ε (P1 + d) (11)

Notice that this is equivalent to equating the relative translations, d = Pi −P1 for
i = 2, . . . , n.

Let us consider the case of the parallel RC chain, in which the values of θ1 and
r2 are independent. This results in 3(n − 1) design equations, with the structural
variables s1 and c21 = c2 − c1 and the joint variables r2 and θ1 for each point, for a
total of 4+ 2(n− 1) unknowns. Up to n = 5 point-positions can be defined in order
to do exact point-path synthesis.

The standard finite-position synthesis technique equates the parameterized expres-
sion of the translation workspace to the task relative translations. However in this
case, the implicit equation for the workspace has a simpler expression as a function
of the chain structural parameters.

The four relative translations Pi , i = 2, . . . , 5, are used to shape the circular
cylinder, and define the parallel RC chain that creates the motion. The system of
design equations consists of six quadratic equations in six unknowns,

Q(Pi ) = 0, i = 2, 3, 4, 5;
s1 · s1 = 1, s1 · c21 = 0, (12)

which are easy enough to be solved using algebraic techniques. There are at most 6
different solutions.
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Table 1 Goal points and
solution RC chains

Point Coordinates

P1 (2.31, 3.84,−1.08)
P2 (0.34,−2.81, 0.89)
P3 (2.21,−3.47, 0.63)
P4 (2.18, 3.77,−2.66)
P5 (−1.22,−1.42,−2.22)

Solution s1 c2 − c1

1 (−0.09,−0.04,−0.99) (0.03, 7.38,−0.30)
2 (−0.54, 0.42,−0.73) (3.86, 5.19, 0.15)
3 (−0.10, 0.99,−0.08) (4.11, 0.51, 1.22)
4 (0.54, 0.84,−0.03) (−4.32, 2.85, 1.82)

Fig. 3 Three of the six RCCR workspaces with the task points

Fig. 4 RCCR linkage created with chains 2 and 3, passing through points on one of its two circuits

6 Example

The task points used in this example are presented in Table 1. The system of Eq. (12)
yields four real solutions, presented in Table 1, which can be assembled in pairs in
order to create RCCR linkages. The number of different workspaces obtained is six.

The solution workspaces for the parallel RC chains can also be intersected pairwise
in order to create workspaces for the RCCR chains. The workspace equations can
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be used to visually assess the trajectory of the linkage and also to check for circuit
defect. Figure 3 shows three of the six possible combinations for this example, and
Fig. 4 shows one of the possible RCCR chains.

7 Conclusions

This paper presents an exact-workspace synthesis method for the RCCR linkage, an
overconstrained mechanism with mobility one. The implicitization of the algebraic
equations of the workspace of relative displacements yields a circular cylinder that
can be shaped using a set of finite positions. This simple case, in which the workspace
has a constant orientation, is a building block towards a more general methodology
for the exact workspace synthesis of spatial linkages.
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A Closed-Form Solution of Spatial Sliders
for Rigid-Body Guidance

Chintien Huang, Weiche Huang and Gökhan Kiper

Abstract This paper presents a closed-form solution to the four-position synthesis
problem by using a spatial slider, which is a spatial dyad of two perpendicularly
intersected cylindrical joints. We utilize the dialytic elimination method to simplify
the synthesis equations and to obtain a univariate ninth degree polynomial equation.
Among the nine sets of solutions, two of them are infinite, and one is the displacement
screw from the first position to the second position. Therefore, we have at most six
real solutions that can be used to design spatial sliders for the four-position synthesis
problem. A numerical example is provided in to demonstrate the validity of the
solution procedure.

Keywords Spatial slider · Cylindrical joint · Rigid-body guidance · Dialytic
elimination

1 Introduction

The rigid-body guidance problem is the central problem in kinematic synthesis of
linkages. In planar kinematics, given several positions of a body, one can design a
crank or a slider to guide the body through the prescribed positions [1, 2]. Spatial
counterpart of the planar synthesis problem has been extensively studied too; various
spatial dyads have been investigated for rigid-body guidance [5, 7, 8]. This paper
focuses on the spatial generalization of the planar slider, and we investigate the
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solution to the synthesis equations of the special cylindrical-cylindrical dyad, with
the joint axes perpendicularly intersected, for rigid body guidance.

By using screw geometry, the spatial generalization of the synthesis of the planar
crank has led to elegant geometric and algebraic results in computational kinemat-
ics [3, 4, 7]. Built upon these results, this paper utilizes a special screw triangle
[5] to derive synthesis equations of the spatial slider and seeks to find all possible
solutions to the design equations. However, due to the complexity of the equations,
analytical solutions cannot be obtained. Instead, we utilize the dialytic elimination
method [6] to find a closed-form solution, in which a univariate polynomial equation
is obtained. The degree of the polynomial equation is the number of all possible
solutions; however, we may need to exclude some extraneous roots.

This paper is organized as follows: first, we derive the synthesis equations and
show that the maximum number of design positions is four. Second, we divide the
equations into two uncoupled groups and use one of them to solve for the direction
vectors of the joints. To further simplify the solution procedure, we superimpose two
three-position problems instead of solving a four-position problem. Third, based
on the obtained solutions of the direction vectors, we utilize the second group of
equations to obtain the position vectors of points on the joint axes. Finally, a numerical
example is provided to verify the solution procedure.

2 Design Equations for the Synthesis of Spatial Sliders

Figure 1 shows a spatial slider guiding a rigid body from one position to another.
The spatial slider consists of two perpendicularly intersected cylindrical joints. The
ground (fixed) and moving joints are denoted by F and M1, respectively. Let the dis-
placement screw for displacing the body from positionΨ1 to positionΨ2 be denoted
by $12, and the rotation and translation parameters be Θ12 and d12, respectively. The
direction vector of $12 is denoted by ŝ12, and the position vector of a point on $12
is denoted by A12. The geometry of the relation among F , M1, and $12 is a special
screw triangle illustrated in Fig. 2. The following equations can be obtained based
on the geometric relation of the screw triangle [3]:

F̂ · M̂1 = 0 (1)

F̂ · (ŝ12 × M̂1)+ tan
Θ12

2
(F̂× ŝ12) · (ŝ12 × M̂1) = 0 (2)

F̂ · (Q1 × M̂1)+ M̂1 · (G× F̂) = 0 (3)
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Fig. 1 A rigid body guided
by a spatial slider

[1− (ŝ12 · F̂)2] · {[ŝ12 − (ŝ12 · M̂1)M̂1] · (Q1 − A12)} − [1− (ŝ12 · M̂1)
2] · {[ŝ12

−(ŝ12 · F̂)F̂] · (G− A12)} + d12

2
[1− (ŝ12 · F̂)2] · [1− (ŝ12 · M̂1)

2] = 0

(4)

M̂2
1 = m2

1x + m2
1y + m2

1z = 1 (5)

F̂2 = f 2
x + f 2

y + f 2
z = 1 (6)

M̂1 ·Q1 = m1x · q1x + m1y · q1y + m1z · q1z = 0 (7)

F̂ ·G = fx · gx + fy · gy + fz · gz = 0 (8)

Note that we use the symbol ˆ to denote unit vectors or unit screws. The unknowns in
the above equations are the direction vector of the moving joint M̂1(m1x ,m1y,m1z),
the position vector of a point on the moving axis Q1(q1x , q1y, q1z), the direction
vector of the fixed joint F̂( fx , fy, fz), and the position vector of a point on the fixed
axis G(gx , gy, gz). Equations (1) and (3) indicate that the joint axes are intersected
perpendicularly. Equations (7) and (8) constrain the points on the axes in such a way
that the position vectors of the points must be perpendicular to the joint direction
vectors.

There are 12 unknowns but only eight equations; therefore, we can specify two
more positions by displacement screws $13 (with rotation Θ13 and translation d13)
and $14 (with rotation Θ14 and translation d14). As a result, we have four more design
equations as follows:

F̂ · (ŝ13 × M̂1)+ tan
Θ13

2
(F̂× ŝ13) · (ŝ13 × M̂1) = 0 (9)

F̂ · (ŝ14 × M̂1)+ tan
Θ14

2
(F̂× ŝ14) · (ŝ14 × M̂1) = 0 (10)
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Fig. 2 Screw geometry of the
spatial slider

[1− (ŝ13 · F̂)2] · {[ŝ13 − (ŝ13 · M̂1)M̂1] · (Q1 − A13)} − [1− (ŝ13 · M̂1)
2] · {[ŝ13

−(ŝ13 · F̂)F̂] · (G− A13)} + d13

2
[1− (ŝ13 · F̂)2] · [1− (ŝ13 · M̂1)

2] = 0

(11)

[1− (ŝ14 · F̂)2] · {[ŝ14 − (ŝ14 · M̂1)M̂1] · (Q1 − A14)} − [1− (ŝ14 · M̂1)
2] · {[ŝ14

−(ŝ14 · F̂)F̂] · (G− A14)} + d14

2
[1− (ŝ14 · F̂)2] · [1− (ŝ14 · M̂1)

2] = 0

(12)

3 Solutions of Direction Vectors of the Joint Axes

The 12 design equations are too complicated to be solved simultaneously. However,
we can deal with only three positions at a time and superimpose two three-position
problems. For example, we can first design the spatial slider to guide the body
through positions 1, 2, and 3 and then design the spatial slider to guide the body
through positions 1, 2, and 4. Notice that the 12 equations can be decoupled by first
solving Eqs. (1, 2, 5, 6, 9), and (10) for the direction vectors. We can then utilize the
remaining equations to solve for the position vectors.

For positions 1, 2, and 3, substituting Eq. (1) into Eqs. (2) and (9) and rearranging
the equations gives:

[ŝ12 × M̂1 + tan
Θ12

2
(ŝ12 · M̂1)ŝ12] · F̂ = 0 (13)

[ŝ13 × M̂1 + tan
Θ13

2
(ŝ13 · M̂1)ŝ13] · F̂ = 0 (14)
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We can rearrange Eqs. (1, 13), and (14) in a matrix form as follows:

⎧
Km

⎪
⎛

⎝
fx

fy

fz

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (15)

Note that the unit direction vectors of the specified screws ŝ12(s12x , s12y, s12z)

and ŝ13(s13x , s13y, s13z) are known parameters. For the linear system, Eq. (15), to
have non-trivial solutions, the determinant of Km must be zero:

det(Km)123 = M̂1 · {[ŝ12 × M̂1 + tan
Θ12

2
(ŝ12 · M̂1)ŝ12]

× [ŝ13 × M̂1 + tan
Θ13

2
(ŝ13 · M̂1)ŝ13]}

= 0

(16)

Expanding the determinant gives:

a1m1x m2
1y + a2m2

1x m1y + a3m3
1x + a4m3

1y + a5m2
1x m1z + a6m2

1ym1z

+ a7m1x m1ym1z + a8m1x m2
1z + a9m1ym2

1z + a10m3
1z = 0 (17)

where the coefficients ai , i = 1, 2, . . .,10, are functions of known parameters.
Similarly, for positions 1, 2, and 4, we obtain the following equation by solving

Eqs. (1, 2), and (10):

det(Km)124 = M̂1 · {[ŝ12 × M̂1 + tan
Θ12

2
(ŝ12 · M̂1)ŝ12]

× [ŝ14 × M̂1 + tan
Θ14

2
(ŝ14 · M̂1)ŝ14]}

= 0

(18)

Expanding the above equation gives

b1m1x m2
1y + b2m2

1x m1y + b3m3
1x + b4m3

1y + b5m2
1x m1z + b6m2

1ym1z

+ b7m1x m1ym1z + b8m1x m2
1z + b9m1ym2

1z + b10m3
1z = 0 (19)

where the coefficients bi , i = 1, 2, . . .,10, are functions of known parameters.
Next, we employ the dialytic elimination method [5] to seek a closed-form solu-

tion of M̂1(m1x ,m1y,m1z). For the purpose of employing the dialytic elimination
method, we denote Eqs. (17) and (19) with f1 and f2. In addition, to simplify the
notations for the dialytic elimination process, let m1x = x , m1y = y, m1z = z.
We have
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f1 : a1xy2 + a2x2 y + a3x3 + a4 y3 + a5x2z + a6 y2z

+ a7xyz + a8xz2 + a9 yz2 + a10z3 = 0 (20)

f2 : b1xy2 + b2x2 y + b3x3 + b4 y3 + b5x2z + b6 y2z

+ b7xyz + b8xz2 + b9 yz2 + b10z3 = 0 (21)

Note that f1 and f2 are homogeneous equations. Letting y = px and z = qx and
substituting them into f1 and f2 gives:

f1 : a1 p2 + a2 p + a3 + a4 p3 + a5q + a6 p2q

+ a7 pq + a8q2 + a9 pq2 + a10q3 = 0 (22)

f2 : b1 p2 + b2 p + b3 + b4 p3 + b5q + b6 p2q

+ b7 pq + b8q2 + b9 pq2 + b10q3 = 0 (23)

Suppressing the variable p into the coefficients gives:

f1 : A0q3 + A1q2 + A2q + A3 = 0 (24)

f2 : B0q3 + B1q2 + B2q + B3 = 0 (25)

Manipulating f1 and f2 in the following manners yields three equations:

f1×B0− f2×A0 : (A1B0−B1A0)q
2+(A2B0−B2A0)q+(A3B0−B3A0) = 0 (26)

f1×B3− f2×A3 : (A0B3−B0A3)q
2+(A1B3−B1A3)q+(A2B3−B2A3) = 0 (27)

f1 × (B0 · q + B1)− f2 × (A0 · q + A1) : (A2B0 − A0B2)q
2

+ (A2B1 − A1B2

+A3B0 − A0B3)q + (A3B1 − A1B3) = 0 (28)

Rearranging Eqs. (26–28) in a matrix form gives:

⎛

⎝
(A1B0 − B1A0) (A2B0 − B2A0) (A3B0 − B3A0)

(A0B3 − B0A3) (A1B3 − B1A3) (A2B3 − B2A3)

(A2B0 − A0B2) (A2B1 − A1B2 + A3B0 − A0B3) (A3B1 − A1B3)

⎞

⎠

⎛

⎝
q2

q
1

⎞

⎠ = 0

(29)
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Again, to have non-trivial solutions of q, the determinant of the coefficient matrix
must be zero, which gives a ninth degree polynomial equation in p. Upon substituting
the solution of p into Eq. (29), we obtain a corresponding q. Substituting the values
of p and q into Eq. (5) gives:

x = m1x =
⎜

1/(1+ p2 + q2) (30)

which leads to the direction vector M̂1=(m1x ,m1y,m1z) = (x, y, z) = (x, px, qx).
Among the nine sets of solution of p and q, there are two complex-number

solutions satisfying the following constraint:

p2 + q2 = −1 (31)

which leads to two infinite solutions of M̂1(m1x ,m1y,m1z). One of the remaining
seven sets of solution is ŝ12(s12x , s12y, s12z), which cannot be used for the mov-
ing joint. Therefore, we have a total of six finite solutions of M̂1(m1x ,m1y,m1z).
Substituting each solution of M̂1(m1x ,m1y,m1z) into Eqs. (1, 2), and (6) gives a
corresponding F̂( fx , fy, fz).

4 Solutions of Position Vectors and Numerical Example

Once the solutions of direction vectors are obtained, we can substitute them into
Eqs. (3, 4, 7, 8, 11), and (12) to solve for the position vectors Q1(q1x , q1y, q1z) and
G(gx , gy, gz). First, we rearrange Eqs. (3, 4, 8), and (11) in to a matrix form as
follows:

⎧
Kq

⎪

⎛

⎟
⎟
⎝

gx

gy

gz

1

⎞

⎦
⎦
⎠ =

⎛

⎟
⎟
⎝

0
0
0
0

⎞

⎦
⎦
⎠ (32)

where Kq is of the following form

Kq =

⎛

⎟⎟
⎝

fx fy fz 0
kq21 kq22 kq23 kq24
kq31 kq32 kq33 kq34
kq41 kq42 kq43 kq44

⎞

⎦⎦
⎠ (33)

In order for Eq. (32) to have non-trivial solutions, the determinant of Kq must be
zero, which gives the following linear equation in (q1x , q1y, q1z):

k1q1x + k2q1y + k3q1z + k4 = 0 (34)
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Table 1 Displacement screws for the four specified positions

Screw Direction vector Position vector of a point Translation Rotation

12 (0.103, 0.737, −0.668) (0.941, 0.521, −0.419) 1.384 183.616◦
13 (−0.208, −0.838, −0.505) (−0.610, 0.837, 0.123) 1.899 178.431◦
14 (−0.832, 0.261, 0.490) (0.733, 0.689, −0.164) −1.117 234.494◦

where the coefficients ki , i = 1, 2, 3, 4, contain the specified parameters and the
direction vectors previously solved. Similarly, we obtain another linear equation by
using Eqs. (3, 4, 8), and (12):

k5q1x + k6q1y + k7q1z + k8 = 0 (35)

where the coefficients ki , i = 5, 6, 7, 8, contain the specified parameters and the
direction vectors previously solved. Now we have three linear equations, Eqs. (7),
(34), and (35), allowing us to obtain a unique solution of (q1x , q1y, q1z). Finally, we
can use Eq. (32) to obtain the corresponding solution of (gx , gy, gz).

In what follows, we provide a numerical example to verify the solution procedure
discussed above. Table 1 gives three displacement screws denoting four positions
of a body. Following the discussed solution procedure, we obtain six real solutions,
as listed in Table 2. Note that in this case, we have six real solutions, while other
specifications may yield only four, two, or zero real solutions.

Table 2 Solution to the synthesis equations

Solution # F̂( fx , fy, fz) G(gx , gy, gz)

1 (−0.6917, 0.5429, 0.4762) (0.2110, 0.1513, 0.1341)
2 (0.3975, 0.5431, 0.7396) (1.9873, 0.4768, −1.4183)
3 (−0.3927, 0.7106, 0.5838) (−0.8295, 0.7632, −1.4870)
4 (−0.1186, −0.5320, 0.8384) (−6.4081, −1.8656, −2.0903)
5 (−0.9773, 0.1780, 0.1149) (0.2275, 0.9293, 0.4961)
6 (−0.0933, −0.6980, 0.7100) (7.5762, −1.0020, 0.0105)

M̂1(m1x ,m1y,m1z) Q1(q1x , q1y, q1z)

1 (−0.1323, 0.5529, −0.8227) (−1.6848, 1.6638, 1.3892)
2 (−0.8434, −0.1013, 0.5277) (−0.1331, 0.1786, −0.1784)
3 (−0.1029, −0.7372, 0.6678) (−1.8024, 0.9896, 0.8147)
4 (0.9900, 0.0011, 0.1407) (−0.9567, −6.8947, 6.7816)
5 (0.2009, 0.9508, 0.2358) (−1.3157, 0.1772, 0.4061)
6 (0.9863, −0.1622, −0.0298) (0.6223, 4.5468, −4.1465)
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5 Conclusion

This paper presents the solution of the spatial slider for guiding a rigid body to pass
through four positions. By using screw triangle geometry, we obtained 12 equations
to solve for 12 unknowns that determine a perpendicularly intersected cylindrical-
cylindrical dyad. In order to seek a closed-form solution, we decoupled the equations
into two groups and solved the direction vectors using one of the groups. The position
vectors of points on the cylindrical joint axes were obtained by solving the second
group of design equations.

By using the dialytic elimination method, we obtained a ninth degree polynomial
equation that led to nine possible solutions. Among the nine sets of solutions, two
of them are infinite, and one is the displacement screw from the first position to the
second position. Therefore, we have at most six real solutions that can be used to
design spatial sliders for four-position problems. Notice that the solution procedure
and result given in this paper are comparable to those in the synthesis of a planar
slider.
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A Cartesian Cable-Suspended Robot for Aiding
Mobility

Gianni Castelli and Erika Ottaviano

Abstract In this chapter we propose the analysis and simulation of a cable system
developed to be used in large-scale handling for applications in urban, civil and
naval environments. For the proposed system, which belongs to the Cartesian Cable-
Suspended Robots (CCSR), the main issue is that it can provide translational motion
of the end-effector being suspended, thus it may be considered well suited for a
number of applications including the proposed one. In this chapter we focus our
attention on a spatial version of the cable system designed to improve the mobility of
end-users in urban environment. Kinetostatics and dynamic simulation are proposed
and discussed.

Keywords Cable-suspended robot ·Modelling · Simulation.

1 Introduction

Cable driven robots have been developed and tested for several years, but their practi-
cal implementation in industrial and naval environments and in civil work sites is still
an open issue. Many fully-constrained manipulators were proposed for a number of
possible applications, but feasible tasks are often limited due to the increasing num-
ber of cables, [1]. Probably, the most interesting solution for the above-mentioned
areas of application regards cable-suspended robots, i.e. in a crane-like configuration,
but there are still several open issues related to the design and control of these cable
robots that limit their practical use. Under-constrained robots rely on gravity force,
indeed in a crane-like configuration the moving platform is suspended and operated
by cables that are connected to the base. Some reported research on cable-suspended
robots are: the 3D cable robot ROBOCRANE [2]; the Sky-Cam [3], a Cargo Transfer
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System [4]. Other aspects on design and control can be found in [5]. Applications of
cable suspended robots were proposed in [6] for rescue operations, and [7] for indus-
trial applications. In this chapter a cable-based system named as CaSIMo (Cable
System for Improving Mobility) is proposed to improve the mobility of end-users
in urban environment. The design and implementation of safe and reliable devices
that are able to help end-users to provide a better quality of life is becoming of
great inter-est in the scientific community. Lot of efforts have been devoted to the
development of the concept of Home & Building Automation, but little has been
done for the city concept. In fact, there are still several architectural barriers such
as stairs, rivers, roads, canals, not only in old European cities but even in modern
towns that limit the mobility of people with motor impairment. Thus, in this context
we have considered the development of technical solutions able to overcome such
architectural barriers, when classical solutions such as bridges cannot be adopted.
The manipulator can provide translational motion being suspended [8], thus it can be
proposed for a number of applications such as industrial pick and place operations.
But, if large-scale applications are involved, a correct modelling of the system is
necessary to obtain accurate positioning of the end-effector, as shown in [9, 10]. In
addition, cable characteristics should be taken into account since the robot has to lift
and transport people in a safe and robust way. The developed models and simulations
take into account issues such as cable mass, elasticity and the effect of uncertainties
in cable connections, according to previous works proposed by the authors in [9, 10].

2 A Cartesian Cable Suspended Robot (CCSR)

The robot understudy belongs to the class of Cartesian Cable- Suspended Robot
(CCSR) [8]. Cable-robots that belong to this class are the C4 [11], the crane in [12]
and DeltaBot in [13]. The proposed Cartesian Cable Suspended Robot has eight
cables arranged in-parallel by pairs, each pair having the same length. The proposed
CCSR has 3 translational DOFs by keeping a constant orientation. Therefore, the
position workspace will be considered in this context. In particular, the geometry
and force closure allow the robot to maintain a constant orientation. Four pairs of
parallel cables are attached to the end-effector and collected by eight spools mounted
on the upper base after passing through guide holes on the spools’ frames. According
to the scheme of Fig. 1, for each pair of cables, a close-chain can be identified, as
for example A11 A21 B11 B21. Since segments A11 A21 = B11 B21 = h, and cables
l11 = l21, hence each pair of segments of this close-chain will be parallel too, if the
cables are all in tension. Therefore, if it is true for the four pairs of cables, rotations
about X and Y are not allowed. Furthermore, if the top of the frame A11 A12 A13 A14
and top of end-effector B11 B12 B13 B14 are similar, that is bx/by = Lx L y in Fig. 1,
the end-effector cannot perform rotation about Z axis. A proof for the translational-
motion is reported in [8, 14] for the CCSR structure.
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Fig. 1 Scheme for a kinetostatic analysis of a cartesian cable-suspended robot [15]

The general Inverse Kinematics equation can be written as

li j = ◦X+ Rbi j − ai j◦ (1)

in which li j is the length of each cable, X is the position vector of the reference point
O’ on the end-effector, R is the rotation (identity matrix), Bi j (for i, j = 1, . . . , n)
is the position vector of the bij point attached to the moving platform expressed in
the moving reference frame, and ai j is the position of the exit point of each cable on
the fixed frame. For force equilibrium it holds

4∑

i=1

2∑

j=1

Fi j = −
4∑

i=1

2∑

j=1

Fi ĵ Ii j = P;
4∑

i=1

2∑

j=1

tk = −
4∑

i=1

2∑

j=1

Fi ĵ Ii j × Rbi j =M

(2)
Fi j in Eq. 2 is the cable tension that is applied to cable. Moreover, P and M are the
resultant vector force and torque (wrench W) that are exerted on or by the environ-
ment. Substituting the above-mentioned terms into 2 yields to

JtF =W (3)

in which F represents the vector of cable forces, J is the Jacobian matrix. It has been
assumed that there are no external wrenches other than gravity. Equation 3 can be used
to evaluate the vector F for a given trajectory. By using the Moore-Penrose Matrix
Inverse we obtain a solution that is the minimum Euclidean norm corresponding to the
lowest energetic value for the set of scalar cable forces. In most of reported works,
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it is assumed that the connection point to the mobile platform coincides with the
centre of the pin. In particular in the following this assumption is considered correct
for the mobile attachment points, but for the base attachments suitable pulleys are
modelled, according to [10, 16]. Cables are represented as lumped mass systems.
Elasticity is included by considering that a mass less cable behaves as linear spring
and its elasticity coefficient can be evaluated as function of the cable section area A,
the Young Modulus E, and the cable length l. The complete model is then obtained by
discretizing the cable into a chain of several mass-spring elements. Therefore, each
cable will be composed by N lumped masses mi , and N+1 linear springs connecting
the adjacent masses with elasticity coefficient ki . In [9] it has been assumed that all
the mi masses are equal, as well as the ki coefficients. The sum of the mi masses
equals the total cable mass, and ki is equal to (N + 1) k, in which k is the overall
cable elasticity. It is important to point out that, given the position and trajectory
of the end-effector, cable lengths and forces can vary considerably according to the
developed model. Therefore, if accurate simulation is required those aspects must
be considered.

3 CaSIMo: Cable System for Improving Mobility

CaSIMo is a robotic system that can be used to improve end-users mobility in urban
environment allowing the person on a wheelchair (and eventually companions) to
overcome rivers, roads and any other large obstacle in cities with safety and a remark-
able simplicity of use. Figure 2 shows an urban installation of the CaSIMo to overpass
a canal. The proposed system is based on an innovative design of the CCSR manip-
ulator described in Sect. 2. It is composed by a cage to accommodate passengers
and suitable actuation to drive steel cables. The cage is equipped with a push-button
panel like lifts. The cage is also equipped with an automated system for opening
and closing the doors. The particular arrangement of cables’ connection allows to
reduce the oscillations along the movement directions and prevents the fall of the
cage even if an accidental cable breaking occurs. Current rules used for the design
of lifts have been considered for the general definition of the system. The geome-
try of the CCSR provides two characteristics to the CaSIMo system: 1) safety: if a
cable breaking occurs the redundant number of cables prevents accidental falls of
the cage; 2) stability: the geometry helps to prevent oscillations in the direction of
the movement.The CaSIMo can be built by using commercial type components and
therefore the total cost of the device is similar than other cable systems.

Furthermore, thanks to the absence of evident large sized supporting structure, it
greatly reduces the environmental and architectural impact. In Fig. 2 main dimension
for designing the CaSIMo system are: dimension of the canal to overpass 12.5 m;
cage dimension 2.8 m × 1.5 m× 1.5 m, it can hold 3 or 4 people with total mass of
1,000 kg. Steel cables have been chosen with a diameter of 10 mm, breaking load of
83 kN and linear density of 0.49 kg/m.
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Fig. 2 An example of the CaSIMo in an urban installation to overpass a canal

Table 1 Position of the centers’ of rotation for pulleys in the model of Fig. 2

A11 A21 A12 A22 A13 A23 A14 A24

X(m) 0 0 32 32 32 32 0 0
Y(m) 0 0 0 0 3.5 3.5 3.5 3.5
Z(m) 8 7.2 8 7.2 8 7.2 8 7.2

(a) (b)

Fig. 3 Cable tension distribution in a workspace cross-section: a F11; b F21

According to the chosen cables, pulleys with a diameter of 500 mm have been
selected. Pulleys centers’ of rotations are given in Table 1. We have developed a
model for the cable release point (referred as the anchor position or anchor point)
that varies as the position and orientation (pose) of the mobile platform is changed.
Therefore, for the developed simulations the anchor positions have been calculated
for each pose of the cage according to the pulleys’ diameter. According to these
design data a workspace analysis has been performed. Figure 3 shows cable tension
distribution for cables 11 and 21 respectively (see the scheme in Fig. 1) in a cross-
section area taken in the plane of motion of the cage Center of Mass (CM).

The cross-section area is 9 m × 26.1 m = 230 m2, the safe area of the CaSIMo
that we can obtain maintaining a constant orientation of the cage is 195 m2, which
represents the 84 % of the working area.

A suitable safety factor is chosen being 15 kN the maximum allowed value for
the cable tension. If we consider this force limit the cage can be lifted of about 3 m,
which is a value more than satisfactory for the application. In particular, cable tension
determination takes into account this maximum force value.
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Fig. 4 A sequence of the cage transfer phases with CaSIMo

(a) (b)

Fig. 5 Simulation numerical results: a cables’ tensions b required power

(a) (b)

Fig. 6 Simulation numerical results: a cage CM position; b cage angular orientation

4 Simulation Results

A simulation of the cage transfer is reported in the sequence of Fig. 4. The proposed
simulation takes 40 s: 5 s at the beginning and the end are used to reach the static
equilibrium of the system. During the first phase the cage is lifted up by 3 m. During
the 2nd phase the cage is moved along X direction by 15 m, finally, during the 3rd
phase the cages is lifted down. For simulation purposes, only people are not displayed
during the simulation given in Fig. 4, but their effect is considered as an additional
mass in the cage.
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(a) (b)

Fig. 7 Simulation numerical results: a cage velocity; b Cage acceleration

Results are shown in Figs. 5, 6, 7 for the dynamic simulation run under ADAMS
environment. In particular, the cables’ tensions and required power, velocity and
acceleration of the Center of Mass (CM) for the cage are shown. It is worth not-
ing that, although the suspended nature of the cable system, the simulation shows
negligible rotations of the cage (the 3rd angle only has a maximum rotation of 2≤).
Since the system has to transport people, accelerations effects of the cage can be
almost neglected, although the simulation time can be considered short according to
the task.

5 Conclusion

In this chapter a large dimension cable system has been proposed to be used for
mobility and handling applications with high level of safety and stability. In addition,
since the cable based manipulator is proposed here to transfer people, cable mass and
elasticity, and transmission system are considered. The proposed cable robot belongs
to the class of CCSR, its particular design allows translational motion only and then
it is well suited for the application. Nevertheless, the proposed model makes this
design well suited for large-scale handling applications, such as in naval and civil
environments.
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Evaluating the Spatial Compliance of Circularly
Curved-Beam Flexures

Farid Parvari Rad, Giovanni Berselli, Rocco Vertechy
and Vincenzo Parenti Castelli

Abstract In this chapter, the closed-form compliance equations for Circularly
Curved-Beam Flexures are derived. Following a general modeling procedure pre-
viously described in the literature, each element of the spatial compliance matrix is
analytically computed as a function of both hinge dimensions and employed mate-
rial. The theoretical model is then validated by comparing analytical data with the
results obtained through Finite Element Analysis. Finally, a case study is presented
concerning the potential application of these types of flexures in the optimal design
of compliant robotic fingers.

Keywords Circularly curved-beam flexures ·Compliance matrix ·Robotic fingers ·
Finite element analysis

1 Introduction

A flexure hinge is a flexible connector that can provide a limited rotational motion
between two parts by means of material deformation. According to [2], these con-
nectors can be used to substitute traditional kinematic pairs (like bearing couplings)
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in rigid-body mechanisms, thus obtaining the so-called Lumped Compliant Mecha-
nisms (LCMs), in which compliance is concentrated in relatively small regions con-
nected through rigid links.When compared to their rigid-body counterpart, LCMs
are characterized by reduced weight, absence of backlash and friction, part-count
reduction, but restricted range of motion.

From a design perspective, the introduction of flexure hinges in serial articu-
lated chains, like anthropomorphic hands and prosthesis, seems promising as it can
allow the generation of very slender and light mechanisms that better reproduce bio-
logical structures. For instance, Figs. 1 and 2 depict two compliant robotic fingers,
previously proposed by Lotti and Vassura [8], that employ either Straight-Beam Flex-
ures (SBF) or Circularly Curved-Beam Flexures (CCBF) as possible substitutes for
traditional revolute joints (the corresponding hinge rotation being defined as princi-
pal rotation [3]). In this case, regardless of the flexure topology, the use of flexible
joints allows one-piece manufacturing and enhanced performance in terms of robust-
ness and safety when interacting with unknown environments or humans (e.g., [4]).
Despite the aforementioned advantages, LCMs also introduce new engineering chal-
lenges mainly due to possible fatigue failures and undesired spatial motions, which
may occur under the action of out-of-plane forces also in LMCs initially conceived
as planar mechanisms.

In this scenario, relatively simple models, such as the well-known pseudo-
rigid-body model described in [5], can turn very useful for model-based control
of robotic systems [1], and for designing LCMs with prescribed load-displacement
profiles at one point on their structure [9]. In parallel, the knowledge of the hinge
compliance behavior in the 3D space, even in the small displacement range where
a 6x6 spatial compliance matrix can be defined, may become extremely valuable
for both first attempt sizing the hinge dimensions and for comparison purposes. For
instance, a method for comparing the selective compliance of elastic joints with
generic morphology has been proposed in [3]. Empirical equations based on Finite
Element Analysis (FEA) for various hinge profiles have been reported in e.g., [12],
whereas the stiffness matrices concerning several hinge geometries (e.g., circular and
elliptical) can be found in [7]. Furthermore, several studies concerned the stiffness
analysis of curved beams by means of the Castigliano second theorem [10] or the
so-called direct methods [6].

Following a similar approach, the contributions of this chapter are: (a) to report
the closed-form compliance equations for CCBF (i.e., a particular case of generic
curved beams); (b) to compare CCBF and SBF in terms of selective compliance and
maximum achievable principal rotation. In particular, the CCBF and SBF employed
for the fabrication of the robotic fingers depicted in Figs. 1 and 2 are considered as
a case study, whereas the theoretical CCBF model is derived following the general
procedure outlined in [6] and subsequently validated via FEA.
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Fig. 1 Mono-piece robotic finger employing straight-beam flexures [8]

Fig. 2 Mono-piece robotic finger employing circularly curved-beam flexures [8]

2 Closed-Form Compliance Equations

As previously said, the direct analytical method proposed in [6] is used for defining
the CCBF flexural behavior. With reference to Fig. 3, let us consider a cantilever
curved beam with a uniform cross section and generically loaded on the free end.
Node 1 and node 2 are two points located on the beam fixed and free end respectively.
The external load, P, and the corresponding deformation, Q, might be expressed in
a predefined global coordinate system via the following column vectors:

P = ⎧
fx fy fz mx my mz

⎪T; Q = ⎧
u v w α ϕ ψ

⎪T (1)

where u, v, w and α, ϕ, ψ are, respectively, the three displacements of node 2
and the three rotations of the corresponding beam cross section along the x , y and z
directions. With reference to Fig. 4, a local coordinate system centered on the centroid
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Fig. 3 Cantilever curved
beam loaded at the free end
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Fig. 4 Cross section of the
beam and the local coordinates
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of a generic beam cross section can be defined. In particular, these local coordinates
are denoted as l, m and n, namely the tangent vector and the principal vectors of the
cross section [6]. The relation between local and global coordinates can be written
as follows:

⎛

⎝
l

m
n

⎞

⎠ =
⎛

⎝
lx (s) ly(s) lz(s)
mx (s) my(s) mz(s)
nx (s) ny(s) nz(s)

⎞

⎠ .

⎛

⎝
i
j
k

⎞

⎠ = R(s) ·
⎛

⎝
i
j
k

⎞

⎠ (2)

where s refers to the coordinate variable along the curve and R(s) is the rotation
matrix that relates global and local coordinate frames. The curve defining the centroid
of the beam cross sections, curve C , in the global coordinates can be expressed by:

r(s) = x(s)i+ y(s)j+ z(s)k (3)

The load P acting on the free end is balanced by a load P◦ acting on the element
ds of the curve C . This load P◦ produces a deformation, E, on the same element.
The matrices P◦ and E, together with the corresponding analytical relation can be
expresses as:

P◦ = ⎧
fl fm fn ml mm mn

⎪T ; E = ⎧
εll γlm γln κll κlm κln

⎪T ; P◦ = K · E
(4)

The matrix K in Eq. (4) is the stiffness matrix of the element ds that can be
written as:
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K =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

E A 0 0 0 0 0
0 βm G A 0 0 0 0
0 0 βnG A 0 0 0
0 0 0 G J 0 0
0 0 0 0 E Im 0
0 0 0 0 0 E In

⎞

⎟⎟⎟⎟⎟
⎟
⎠

(5)

where A, βm , βn , Im , In , J , E and G are, respectively, cross section area, shear
coefficients, principal moments of inertia and polar moment of inertia of the beam’s
cross section, Young’s modulus and shear modulus of the employed material. The
deformation, dQ◦, of the element ds, due to the load P◦, is defined by:

dQ◦ = ⎧
du◦ dv◦ dw◦ dα◦ dϕ◦ dψ ◦

⎪T = E · ds (6)

where u◦, v◦, w◦ and α◦, ϕ◦, ψ ◦ are respectively displacements and rotations of the
element ds in the l, m and n directions. The load P◦, acting on ds and due to the
presence of a load P on the free end, can be computed via the adjoint transformation
matrix T ≤ R

6× 6 between the global and local coordinates. The following relation
holds:

P◦ = T · P (7)

The adjoint matrix T is a function of s and can be computed from Eqs. (2) and
(3), as:

T =
⎦

RT 0
(̃rs · R)T RT

]
(8)

where rs = r − r2 is the position vector connecting node 2 to the centroid of the
section, 0 ≤ R

3× 3 is a null matrix, and r̃s denotes the cross product matrix of rs ,
i.e., the matrix such that r̃u = r×u for any vector u. In addition, the deformation of
the element ds, dQ◦, causes a deformation at the free end, dQ, that can be calculated
using the following equation:

dQ = TT · dQ◦ (9)

By merging Eqs. (4, 6, 7) and (9), one obtains:

dQ = TT ·K−1 · T · P · ds (10)

By integrating Eq. (10), one can find the relation between the load, P, and the
deformation, Q, of the free node, as follows:

Q = C · P (11)

where:
C =

∫

C

TT ·K−1 · T · ds (12)
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Fig. 5 Cross section
properties and geometric
parameters of the hinge
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Matrix C is the compliance matrix for a general cantilever curved beam and it gives
the relation between the loads at the free end and the corresponding deformations.

This method is applied to a CCBF as the one depicted in Fig. 5, in order to estimate
its compliant behavior under a generalized loading condition. Henceforth, the CCBF
compliance matrix is derived in its analytical form and explicitly presented hereafter:

C =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy Cy, fz Cy,mx 0 0
0 Cz, fy Cz, fz Cz,mx 0 0
0 Cθx , fy Cθx , fz Cθx ,mx 0 0

Cθy , fx 0 0 0 Cθy ,my Cθy ,mz

Cθz , fx 0 0 0 Cθz ,my Cθz ,mz

⎞

⎟⎟
⎟⎟⎟⎟
⎠

(13)

where:

Cx, fx = R
(

θ
βn G A + R2(3/2 θ−2 sin(θ)+1/2 cos(θ) sin(θ))

G J + R2(−1/2 cos(θ) sin(θ)+1/2 θ)
E Im

)

Cx,my = Cθy , fx = R
(

R(sin(θ)−1/2 cos(θ) sin(θ)−1/2 θ)
G J − R(−1/2 cos(θ) sin(θ)+1/2 θ)

E Im

)

Cx,mz = Cθz , fx = R

(
− R

(
1/2 (cos(θ))2−cos(θ)

)

G J + 1/2 R(cos(θ))2

E Im

)

Cy, fy = R
(

1/2 cos(θ) sin(θ)+1/2 θ
E A + −1/2 cos(θ) sin(θ)+1/2 θ

βm G A + R2(3/2 θ−2 sin(θ)+1/2 cos(θ) sin(θ))
E In

)

Cy, fz = Cz, fy = R

(
1/2 (cos(θ))2

E A − 1/2 (cos(θ))2

βm G A +
R2

(
1/2 (cos(θ))2−cos(θ)

)

E In

)

Cy,mx = Cθx , fy = R2(θ−sin(θ))
E In

Cz, fz = R
(−1/2 cos(θ) sin(θ)+1/2 θ

E A + 1/2 cos(θ) sin(θ)+1/2 θ
βm G A + R2(−1/2 cos(θ) sin(θ)+1/2 θ)

E In

)

Cz,mx = Cθx , fz = − R2 cos(θ)
Ein

Cθx ,mx = Rθ
E In

Cθy ,my = R
(

1/2 cos(θ) sin(θ)+1/2 θ
G J + −1/2 cos(θ) sin(θ)+1/2 θ

E Im

)
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Fig. 6 FEA of the circularly
curved-beam flexure hinge

Cθy ,mz = Cθz ,my = R
(

1/2 (cos(θ))2

G J − 1/2 (cos(θ))2

E Im

)

Cθz ,mz = R
(−1/2 cos(θ) sin(θ)+1/2 θ

G J + 1/2 cos(θ) sin(θ)+1/2 θ
E Im

)

A = wt, Im = 1/12 tw3, In = 1/12 wt3, J = Im + In = 1/12 wt
(
t2 + w2

)

In particular, with reference to Fig. 5, R, θ, w, t represent the radius of the hinge
centroid with respect to the global coordinates, the angle of the centroid from the
free to the fixed end, the hinge width and thickness respectively.

3 Numerical Example and Model Validation

As a case study, the compliant behavior of the CCBF and of the SBF depicted in Figs. 1
and 2 are numerically evaluated. As for the CCBF, the following geometric para-
meters are considered, namely R = 30 mm, t = 1.2 mm, w = 6 mm and θ = π/4.
The flexure hinge connects two rigid links located at a distance l = 2R sin(θ/2)

and is made of Acrylic Plastic with Young’s modulus E = 3,000 Mpa, Poisson’s
ratio ν = 0.33, shear modulus G = 1,130 Mpa and the shear deformations being
neglected. The principal hinge compliance [3] for the considered application is
Cθx ,mx = 12Rθ

/
Ewt3 = 9 rad/Nm. The method described in Sect. 2 is used for

computing the overall CCBF compliance matrix, whereas Finite Element Analysis
(FEA) is performed in order to validate the theoretical model. Figure 6 depicts, as
an example, the CCBF undeformed and deformed shapes when subject to a flexural
moment applied on the hinge free end. Similar FEA simulations are carried out by
individually loading the CCBF at the free end for each component of the load P (that
is individual forces and moments are applied) and obtaining the corresponding defor-
mations (displacements and rotations). The ratio between each load and deformation
component simply represents the compliance factors along different axes. The over-
all numerical results are shown in Table 1, which also depicts the percentage error
between analytical and FEA methods. A maximum percentage error of less than 3 %
confirms the validity of the proposed modeling technique.

The same procedure is then applied to compute the SBF compliance matrix whose
analytical solution is known from the literature [11]. As said, the SBF is designed so
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Table 1 Compliance factors for the CCBF flexure hinge and comparison between analytical and
FEA results

Compliance
factors

Cx, fx Cx,my = Cθy , fx Cx,mz = Cθz , fx Cy, fy Cy, fz = Cz, fy Cθx ,mx

Analytic 8.001e-5 3.016e-4 −5e-3 1.466e-4 4.483e-4 9.0903
FEA 7.746e-5 3.015e-4 −4.99e-3 1.457e-4 4.457e-4 9.0897
Percentage

error
3.3 4.7e-2 6e-2 5.9e-1 5.8e-1 4.9e-4

Compliance
factors

Cz, fz Cz,mx = Cθx , fz Cy,mx = Cθx , fy Cθy ,my Cθy ,mz = Cθz ,my Cθz ,mz

Analytic 1.5e-3 1.017e-1 2.72e-2 8.256e-1 −1.797e-1 4.662e-1
FEA 1.486e-3 1.017e-1 2.72e-2 8.271e-1 −1.803e-1 4.664e-1
Percentage

error
3.4e-1 0 0 1.8e-1 3.2e-1 4.5e-2

Fig. 7 3D bar representation for the compliance matrix of the CCBF

as to connect the same rigid links of the previous example and to provide the same
principal compliance as the CCBF previously modeled. Henceforth, the SBF length is
l = 2R sin(θ/2), the SBF principal compliance is Cθx ,mx = 12l

/
Ewt3 = 9 rad/Nm,

whereas the SBF thickness, t , is chosen accordingly as t = t
(
2 sin(θ/2)

/
θ
)1/3.

The numerical values of the compliance matrix entries are depicted in Figs. 7 and
8 respectively. Similarly to [3], this 3D bar graph representation allows a qualitative
comparison of the hinge behavior in terms of selective compliance. It can be noticed
that, in this particular case, the two solutions behave similarly. However, CCBF
outperforms SBF in terms of maximum achievable principal rotation. In fact, these
maximum rotations might be respectively computed as αCC B F = max(α1, α2) and
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Fig. 8 3D bar representation for the compliance matrix of the SBF

αSB F = 2l SY
/

t E , the term SY being the material yield strength [11] and the terms
α1 and α2 being defined in Eqs. (14) and (15), such that αCC B F/αSB F > 1.

α1 = 6R(t + R)Syθ
(−2t + (t + 2R)Log

⎧ t+R
R

⎪)

t2 E
(−t + (t + R)Log

⎧ t+R
R

⎪) ; (14)

α2 = 6E−1 RSyθ

(
t + 2R

t2 + 1

−t + RLog
⎧ t+R

R

⎪

)

(15)

4 Conclusions

The closed-form compliance equations for CCBF have been presented and validated
via FEA. A comparison has been carried out between CCBF and SBF for possible
application in serial articulated chains, like robotic fingers. For this particular case,
it is observed that the hinge compliance matrices are very similar, when comparing
solutions having the same value of the principal compliance and connecting rigid
links located at the same relative distance. Nonetheless, CCBF outperforms SBF in
terms of maximum achievable principal rotation. Future work includes a detailed
analysis of the CCBF properties as a function of the hinge geometrical parame-
ters and an in-depth investigation of the hinge behavior in the large displacement
range.
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Kinematic Analysis of Slider-Cranks Derived
from the λ-Mechanism

Erika Ottaviano, Pierluigi Rea and Marco Conte

Abstract In this paper a kinematic analysis is presented for slider-cranks derived
from the λ-mechanism. In particular, for this linkage the coupler curves traced by
a reference point are Berard curves. By properly choosing the design parameters
of the mechanism the coupler curves are represented by quartics, which have been
identified and classified.

Keywords Kinematics · Slider-crank · Coupler curve · Singularities

1 Introduction

Planar mechanisms are widely used in industrial environment for automatic machin-
ery in order to give prescribed law of motions. They can be referred as Function Gen-
erators from the input to the output links, Rigid Body Guidance through the study
of the rigid coupler motion and Path Generators by referring to the coupler curve,
as extensively reported in [1–4]. This paper deals with the analysis of slider-cranks
derived from the λ-mechanism, which can be used to give suitable coupler curves for
application in automatic machinery, providing some constraints, such as the region
in which the curve should be contained, or geometrical characteristics of the curve.
Given a set of tasks constituting functional requirements, the design process consists
in producing a mechanism that will meet all the specifications. Sometimes, for indus-
trial applications, a first requirement deals with the definition of a suitable working
area in which the mechanism should produce a given trajectory. This can be due

E. Ottaviano (B) · P. Rea ·M. Conte
Department of Civil and Mechanical Engineering,
University of Cassino and Southern Lazio,
03043 Cassino, Italy
e-mail: ottaviano@unicas.it

P. Rea
e-mail: Rea@unicas.it
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to physical limits, or actuation constraints. Then a designer should select a shape
of the path and other constraints, which can be linked to design parameters of the
mechanism and constitute the design problem dealing with precision points, or given
trajectory, or rigid body motion. Following this idea we propose design guidelines
focusing on a slider-crank derived from the λ-mechanism [5]. In particular, it has
been shown that this slider-crank has a practical engineering interest since it can
better approximate a straight line than the corresponding four-bar λ-mechanism [5].

2 Position Analysis of the Slider-Crank and Coupler Curves
Expression

The first analytical investigation for a coupler curve of a four-bar linkage was under-
taken by Prony [6], who analyzed Watt’s straight-line motion (1796). Samuel Roberts
showed in 1876 that the “three-bar curve” (coupler curve) of the four-bar linkage is
an algebraic curve of the sixth order [7]. Cayley gave further properties of the curve.
His interest was directed to linkages hypothetically able to generate specific algebraic
curves of any order [8]. In general, the more links, the higher is the degree of curve
generated. Since a curve can have up to as many intersections with a straight line as
the degree of its polynomial expression, it is hypothetically possible to generate (or
approximate) any trajectory designing a suitable mechanism. In this contest we focus
our attention on slider-cranks that in general have fourth order coupler curves. The
equation of the coupler point curve for any slider-crank mechanism may be obtained
by analytic geometry being the loci of any point P that belongs to a segment for
which a point B is constrained to lie on a circle and another point C is constrained
to have a linear trajectory. In the following we restrain the attention on a particular
slider-crank for which point P lies on the same line of the coupler link, as shown
in the scheme of Fig. 1. It is known as a λ-mechanism [5]. The derivation presented
here follows that of Samuel Roberts proposed for a four-bar linkage [8]. The equation
can be written in Cartesian coordinates, when the X axis is chosen along the line
parallel to the slider, without loss of generality. Let (x, y) (s, e) be, respectively, the
coordinates of coupler point P and point C , then

[
s
e

]
=

[
x + (a3 + w)cos(θ3)

y + (a3 + w)sin(θ3)

]
(1)

Since B describes a circle (or arc of a circle) centered in O with ◦O B◦2 = a2
2

◦O B◦2 = (x + wcosθ3)
2 + (y + wsinθ3)

2 (2)

Let us take the second equation from 1 and 2. The coupler curve can be obtained
by eliminating θ3 from Eqs. 3 and 4.
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Fig. 1 A kinematic scheme
of a slider-crank derived from
λ-mechanism with design
parameters

y − e + (w+ a3)sinθ3 = 0 (3)

x2 + y2+w− a2
2 + (2xw)cosθ3 + (2yw)sinθ3 = 0 (4)

Let us consider the half-tangent substitution in 3 and 4 as

cos
θ3

2
= 1− u2

1+ u2 , sin
θ3

2
= 2u

1+ u2 , (5)

The coupler curve f of the slider-crank can be described by the algebraic equation
of fourth-order in the form

f = (a3 − w)2 y4 + (a3 + w)2x4 + 2(a2
3 + w2)x2 y2 + 4we(a3 − w)y3

+ 4we(a3 − w)x2 y + [−2(a3 + w)2(a2
3 + w2)+ 4w2e2]x2

+ [−2(a2
3 − w2)(a2

2 − w2)+ 4w2e2]y2 − 4we(a2
2 − w2)(a3 + w)

+ (a3 + w)2(a2 − w)2(a2 + w)2 (6)

f is symmetric with respect to the Y axis. This can be proved since Eq. 6 contains
only even powers of x .

3 Characterization of the Coupler Curve

In general, a singularity is a point at which an equation, curve, or surface, becomes
degenerate. Singularities are often called singular points or geometric singularities
[9]. Real geometric singularities of the coupler curve of a slider-crank can be found
considering f together with its partial derivatives fx and fy with respect to x , and y
respectively. The zeros of the set of equations: f = 0, fx = 0 and fy = 0 gives the
geometric singularities of the coupler curve. They can be identified as

xs = 0; ys =
−ew±

√
w4 + (e2 − a2

3 − a2
2)w

2 + a2
2a2

3

a3 − w
(7)
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Equation 7 can be used to identify geometric singularities of the coupler curve and
can be further used to derive kinematic considerations. It is evident from Eq.7 that
singularities for this slider-crank may arise on the Y -axis only. Points belonging to
these zeros are denoted by Ci , Di , and Ai , when Ci indicates cusps, Di double points
and Ai acnodes. They can be classified by considering the second partial derivatives
of f in the form 9

g = f 2
xy − fxx − fyy (8)

Functions g, fx and fy , can be used to fully characterize real geometric singularities
of the coupler curve. They can be related to a classical problem in linkages design
known as a “branch defect”. In particular, the presence of singularities gives infor-
mation on the number of branches of the coupler curve, furthermore it allows the
determination if two task positions lie on the same branch, as described in [10].

Equations 6–8 lead to a further investigation on the coupler curves characteristics
by giving an enumeration of quartic equations representing the trajectory traced by
the P reference point. In particular, we focus our attention on quartics studied by
Berard in 1820 and then by Ruiz-Castizo in 1889. The coupler curve of a slider-crank
derived from a λ-mechanism can be represented by Berard curves [11]. In particular
they become “egg shaped” curves if the eccentricity is equal to zero. Furthermore, by
properly choosing design parameters, these curves can be identified as well known
quartics. In the following we investigate the properties of the coupler curves and their
special cases.
–Quartics of Bernoulli (1687):
the curve traced by a coupler reference point P of a λ-slider-crank can be represented
by Bernoulli quartics if the following conditions are met: w = a3 and e = 0. The
coupler curves in 6 then become

x4 + x2 y2 − 2(a2
2 + a2

3)x
2 + (a2 + a3)

2(a2 − a3)
2 = 0 (9)

Quartics in 9 can be always represented by two affinely finite branches, as it can be
proven they are free of geometric singularities. Examples of coupler curves repre-
senting Bernoulli quartics are shown in Fig. 2a. Furthermore if, additionally, a3 = a2
Eq. 9 degenerates into a circle centered in the (0,0) with radius equal to 2a2, as it is
shown in 2a.
–Quartics of Ruiz-Castizo:
the curve traced by a coupler reference point P of a λ-slider-crank can be represented
by Ruiz Castizo quartics if the following conditions are met: a3 = a2 + e and
w = a3. The coupler curves in 6 can be expressed as 10. Quartics in 10 can be always
represented by one connected component, as the existence of geometric singularities
can be proven.

x4 + x2 y2 − (4a2
2 + a2e + e2)x2 + e2 y2 + (4a2e2 + 2e3)y

+ e2(4a2
2 + a2e + e2) = 0 (10)
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Examples of coupler curves representing Ruiz-Castizo quartics are shown in Fig. 2b.
In particular, geometric singularities are given by

xs = 0; ys = −(2a2 + e) (11)

Singular point given in Eq. 11 and Fig. 2b is a cusp, since g in Eq. 8 is equal to zero. In
addition, the curve in 10 degenerates if e = −a2. If e = 0 Eq. 10 is a circle centered
in the origin with radius equal to 2a2, as shown in Fig. 2b.
–Lemniscate:
the curve traced by a coupler reference point P of a λ-slider-crank can be represented
by lemniscate if the following condition is met: e ≤ a3 − a2. It can be always
represented by one connected component, as the existence of geometric singularities
can be proven. Examples of coupler curves represented by lemniscates are shown in
Fig. 3a. Geometric singularities are given by

xs = 0; ys = −(2a2 + w); ys = a2w+ a2a3 − w2 − a3w

a3 − w
(12)

If a2 = a3 = e = w, then the curve in 6 then become

x4 + y2w2 + x2 y2 − 3w2x2 = 0 (13)

–Cardano motion:
the curve traced by a coupler reference point P of a λ-slider-crank can be represented
by Cardano motion if the following condition is met: a2 = a3 and e = 0.

[x2 + y2 − (a2 + w)2][(a2 + w)2x2 + (a2 − w)2 y2 + (a2
2 − w2)2] = 0 (14)

In this case the coupler curves are obtained by the union of a circle and an ellipse,
as shown in Fig. 3b. Major semi-axis of the ellipse is on Y axis (X axis) if w is
greater (less) than a2. If additionally w = a2 then the coupler curve represented by
the ellipse degenerates into a circle. Geometric singularities of the curve are given
by ys = ±(a3 + w), xs = 0. They are cusps.

4 Design Guidelines

The boundary curve of a family can be obtained by considering the equation of the
family together with the derivative of the family with respect to the parameter. In
particular, in the following coupler curves equation in 6 is considered, taking as a
parameter of the family the eccentricity and coupler length, respectively, as shown
in the numerical examples shown in Figs. 4 and 5. If one considers eccentricity as
the family parameter, then the equation of the boundary curve becomes, (when a3 is
different from −w,w different from 0)
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(a) (b)

Fig. 2 Examples of Bernoulli quartics in (a) and Ruiz-Castizo quartics in (b)

(a) (b)

Fig. 3 Examples of lemniscates in (a) and Cardano motion curves in (b)

(w2 + 2a2w+ a2
2 − x2 − y2)(w2 − 2a2w+ a2

2 − x2 − y2) = 0 (15)

If one considers a3 as the family-parameter, then the equation of the boundary curve
becomes, (when w is different from 0)

(w2 + 2a2w+ a2
2 − x2 − y2)(w2 − 2a2w+ a2

2 − x2 − y2) = 0 (16)

According to the above-mentioned considerations, design guidelines of a slider-
crank can be given in terms of shape and characteristics of the coupler curves as
follows:

1. define limits for y and x in the plane of motion, say xmax , xmin , ymax , ymin ;
2. evaluate design parameters in Eqs. 15 and 16;
3. the family parameter can be chosen according to other design specifications.

In particular, in this context we can generate any symmetrical egg shaped path giving
overall size of the curve in the plane of motion O XY , being characterized for example
to have a coupler point with stationary curvature, when a suitable reference point P
is chosen along the coupler link BC , as belonging to the cubic of stationary curvature
C. In fact, for the crank angle θ2 = 0, the cubic of stationary curvature degenerates
in a ϕ-curve, as reported in [12]. Moreover, when P is chosen as coincident with the
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(a) (b)

Fig. 4 Boundary curve and family curve of e parameter when a2 = 100, a3 = 400,w = 200 in
(a) and an example of designed slider-crank with e = −100 in (b)

(a) (b)

Fig. 5 Boundary curve and family curve of a3 parameter when a2 = 120, e = 150, w = 270 in
(a) and an example of a designed slider-crank with a3 = 520 in (b)

inflection pole J , or in general on the inflection circle, an approximate straight line
can be also obtained, as reported in [11].

5 Conclusion

By studyng the kinematics of slider-cranks derived from λ-mechanism giving the
coupler curve described by a fourth-order polynomial, this paper provides interesting
characteristics processed by the classical slider-crank linkage when parameters of
the mechanism are properly chosen. In particular, the coupler curve traced by a
reference point of the coupler can be represented by quartics of Bernoulli, quartics
of Ruiz-Castizo, lemniscate and producing Cardano motion. Furthermore, in this
paper singularities of the coupler curve are investigated.
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Improved Muscle Wrapping Algorithms
Using Explicit Path-Error Jacobians

Andreas Scholz, Ian Stavness, Michael Sherman, Scott Delp
and Andrés Kecskeméthy

Abstract Muscle wrapping computations are an important feature in musculoskele-
tal simulations. In this paper we present a novel Jacobian-based method for line-
based muscle-path computations over multiple general smooth surfaces allowing
for second-order Newton-Raphson iterations. The method is based on the analytical
determination of infinitesimal displacements along geodesics using Jacobi fields. It
does not share the disadvantages of discretized methods in terms of non-smoothness
when using surface discretizations, and high computational costs when using dis-
cretized spring-mass approaches. The paper focusses on the technical details of the
proposed method, while specific biomechanical applications are left for future con-
tributions. An example with three surfaces involving a surface with a general distri-
bution of curvature shows the general applicability of the method.
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1 Introduction

A key task of musculoskeletal simulations is the computation of the transmission of
tensional muscle force to joint moments and/or reaction forces. Muscles are com-
monly modeled as thin strings which take the locally shortest path between their
origin and insertion points while wrapping frictionlessly around multiple wrapping
surfaces that represent neighboring bones, tissue, and the neglected dimensions of the
muscle. State-of-the-art approaches to line-based muscle wrapping can be divided
into two main groups: (1) approaches using surface or path discretizations and (2)
approaches using explicit smooth surfaces. Discretizing approaches such as [1, 2]
yield fast approximate solutions and allow for using realistic bone geometry obtained
from MRI or CT. However, they cause nonsmooth path motion at surface edges and
hence only C1 continuous behavior of the path length, which slows down variable-
step-size integrators in dynamic simulations driven by muscle forces. Explicit smooth
wrapping-surface approaches such as [3–5] provide continuous wrapping, but are
limited to simple objects such as single spheres, single cylinders, or a compound of
both, which are not always sufficient to represent general bone and surrounding soft
tissue surfaces. Elastic approaches such as [4] circumvent this problem, but intro-
duce new difficulties such as an oscillatory behavior of the muscle path. Recently,
Stavness et al. 2012 [6] proposed a root-finding approach in which the total path is
regarded as a concatenation of straight-line segments between geodesics on the sur-
faces, allowing to tackle general smooth surfaces while avoiding oscillatory behavior.
The path is computed by iterating the positions of the boundary points of the geo-
desics until all transitions between adjacent segments are collinear. To this end, the
Jacobian mapping variations of geodesic boundary points to variations of the path
error is required. While this Jacobian can be determined by finite differences, such
discretizations are expensive and also do not render smooth transitions between time
steps. In this paper, we derive, based on the formulation [6], explicit formulas for the
path-error Jacobian using differential-geometric properties of infinitesimal displace-
ments along geodesics based on Jacobi fields. The approach is easy to implement,
yields fast convergence and is thus well-suited for muscle wrapping applications.

2 Conditions for a Geodesic over Several Surfaces

We regard a string that is spanned between an origin point O and an insertion point I .
The string wraps frictionlessly across a set of n wrapping surfaces S i (i = 1, . . . , n)
and minimizes the length with respect to all other neighboring trajectories connecting
O and I . The total muscle path results as a concatenation of n − 1 straight-line
segments between the surfaces, two straight lines to points O and I , and n geodesics
on the surfaces. Each geodesic γ i is uniquely defined by its start point Pi and end
point Qi , and each straight-line segment is defined by the unit direction vector ei
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Fig. 1 Global path error components

and its respective boundary points Qi−1 and Pi for 1 < i < n + 1, O and P1 for
i = 1 and Qn and I for i = n + 1.

Assume that the section of interest of surface Si ◦ R
3 can be parameterized by a

nonsingular differentiable function xi (ui , vi ) : R2 ≤≡ R
3 with respect to a surface

base frame Ki
S in terms of two surface coordinates (ui , vi ) ◦ R

2 such that for the
outwards normal it holds (Fig. 1)

N i := xi
u × xi

v

≈ xi
u × xi

v ≈
, x (.) :=

∂x

∂(.)
. (1)

Moreover, let t i be the geodesic’s tangent and let Bi = t i × N i be its binormal.
At the solution configuration, all transitions between adjacent segments are

collinear (see Fig. 1). If they are not, for each geodesic γ i , four possible local path
errors arise from the orthogonality conditions

εi (qi ,Ki
S) :=

⎧

⎪⎪
⎛

ei · N i
P

ei · Bi
P

ei+1 · N i
Q

ei+1 · Bi
Q

⎝

⎞⎞
⎠ , qi =

⎧

⎪⎪
⎛

ui
P

vi
P

ui
Q

vi
Q

⎝

⎞⎞
⎠ . (2)

The local path errors can be assembled into the global path-error vector

ε(q,K) =

⎧

⎪⎪⎪
⎛

ε1

ε2

...

εn

⎝

⎞⎞⎞
⎠
◦ R

4n×1, q =

⎧

⎪⎪⎪
⎛

q1

q2

...

qn

⎝

⎞⎞⎞
⎠
◦ R

4n×1, K =

⎧

⎪⎪⎪
⎛

K1
S

K2
S
...

Kn
S

⎝

⎞⎞⎞
⎠
. (3)



398 A. Scholz et al.

yielding the nonlinear root condition for the muscle path

ε(q,K) = 0 . (4)

For each time step, the set of reference frames contained in K is fixed, and Eq.
(4) can be solved for the unknown geodesic boundary-point coordinates q using a
Newton-Raphson method. This requires knowledge of the Jacobian Jq := ∂ε/∂q ◦
R

4n×4n containing the partial derivatives

Jq =

⎧

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎛

∂ε1

∂q1
P

∂ε1

∂q1
Q

∂ε1

∂q2
P

∂ε2

∂q1
Q

∂ε2

∂q2
P

∂ε2

∂q2
Q

∂ε2

∂q3
P

. . .
. . .

. . .
. . .

∂εi

∂qi−1
Q

∂εi

∂qi
P

∂εi

∂qi
Q

∂εi

∂qi+1
P

. . .
. . .

. . .
. . .

∂εn−1

∂qn−2
Q

∂εn−1

∂qn−1
P

∂εn−1

∂qn−1
Q

∂εn−1

∂qn
P

∂εn

∂qn−1
Q

∂εn

∂qn
P

∂εn

∂qn
Q

⎝

⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞
⎞⎞⎞⎞⎞⎞
⎞⎞
⎠

.

(5)
A general block-row Jq (i, :) in Eq. (5) comprises four submatrices

Jq (i, :) =
⎜

∂εi

∂qi−1
Q

∂εi

∂qi
P

∂εi

∂qi
Q

∂εi

∂qi+1
P

⎟

(6)

which represent two coupling terms ∂εi/∂qi−1
Q

if i > 1, and ∂εi/∂qi+1
P

if i < n, as

well as the local path-error Jacobians Ji
q := ∂εi/∂qi

Ji
q =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎛

∂

∂ui
P

⎦
ei · Ni

P

) ∂

∂vi
P

⎦
ei · Ni

P

) ∂

∂ui
Q

⎦
ei · Ni

P

) ∂

∂vi
Q

⎦
ei · Ni

P

)

∂

∂ui
P

⎦
ei · Bi

P

) ∂

∂vi
P

⎦
ei · Bi

P

) ∂

∂ui
Q

⎦
ei · Bi

P

) ∂

∂vi
Q

⎦
ei · Bi

P

)

∂

∂ui
P

(
ei+1 · Ni

Q

) ∂

∂vi
P

(
ei+1 · Ni

Q

) ∂

∂ui
Q

(
ei+1 · Ni

Q

) ∂

∂vi
Q

(
ei+1 · Ni

Q

)

∂

∂ui
P

(
ei+1 · Bi

Q

) ∂

∂vi
P

(
ei+1 · Bi

Q

) ∂

∂ui
Q

(
ei+1 · Bi

Q

) ∂

∂vi
Q

(
ei+1 · Bi

Q

)

⎝

⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞
⎠

.

(7)
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In this Jacobian, the derivatives of the normal vectors N i
P , N i

Q as well as of the unit

vectors ei , ei+1 with respect to the coordinates ui
P , vi

P and ui
Q, vi

Q can be determined
directly from local surface geometry. These derivations are left out here due to lack
of space. On the other hand, the partial derivatives of the geodesic’s binormals Bi

P
and Bi

Q require through their definition Bi = t i × N i the partial derivatives of the

tangent vectors t i
P and t i

Q with respect to the coordinates of both geodesic boundary
points. These derivatives involve cross-over differential mappings over geodesics
which can be computed using Jacobi fields, as discussed next.

3 Coupled End-Point Derivatives Across Geodesics

In this section, we review some fundamental concepts of differential geometry (see
[7, 8]) and apply them to the given problem. Let the geodesic γ be given in polar
form, i.e. assume that the start point P is fixed. Let s be the arc length of γ and let
θ be an angular coordinate defining the initial direction of γ (Fig. 2). By the Lemma
of Gauss it holds Fpolar = xθ · xs = 0 ⊥ s �= 0.

When the angle θ is varied, a point Q at some constant distance from the pole
P will travel an arc length βQ along a geodesic circle. We define the positive arc
direction of such a circle to be oriented along the binormal vector B Q at Q. The
partial derivative a = ∂β/∂θ of the arc length β at any point of the geodesic fulfills
the scalar Jacobi equation (see [7, 9])

a⇒⇒ + K a = 0 , a(s = 0) = 0 , a⇒(s = 0) = 1 , (.)⇒ := ∂(.)/∂s , (8)

where K is the Gaussian curvature. The scalar Jacobi Eq. (8) can be integrated
together with the differential equations of the geodesic.

For the computation of the partial derivatives of the tangent vectors with respect
to the boundary-point coordinates, a local coordinate-transformation is carried out
first. Let dsQ and dβQ be infinitesimal increments along the geodesic γ and the
geodesic circle at point Q for the fixed pole P (Fig. 2). Likewise, let dsP and dβP

Fig. 2 Geodesic polar
coordinates (θ, s) for a fixed
pole P
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be the infinitesimal increments along the geodesic and the geodesic circle at point
P when Q is taken as the fixed pole. Here, dsP is oriented along t P , i.e. in direction
of length shortening, while dβP is oriented along B P . Locally, the transformation of
the differentials of β, s and u, v is given by

∂s

∂u
= xu · t ,

∂s

∂v
= xv · t ,

∂β

∂u
= xu · B ,

∂β

∂v
= xv · B . (9)

The derivatives of t P and t Q with respect to sP and sQ can be obtained from the
Frenet-Serret formulas (see, e.g. [8])

∂t P

∂sP
= κP n P ,

∂t P

∂sQ
= 0 ,

∂t Q

∂sP
= 0 ,

∂t Q

∂sQ
= κQ nQ , (10)

where n P := x ⇒⇒P/κP and nQ := x ⇒⇒Q/κQ are the unit normals of the geodesic and κP

and κQ are the curvatures of the geodesic at P and Q.
The concept of the Jacobi field along the geodesic γ allows for the computation of

the derivatives of t P and t Q with respect to βP and βQ . For an infinitesimal motion
dβQ of the geodesic’s end point Q, the tangent vector t P at the start point P rotates
about the surface normal N P with an angle dθP . This relation is given by the scalar
Jacobi field at Q, yielding

∂t P

∂βQ
= ∂t P

∂θP

∂θP

∂βQ
= B P a−1

Q . (11)

Here ∂t P/∂θP is a local derivative, while ∂θP/∂βQ depends on the geodesic. Note
that the latter term becomes singular at conjugate points of P , which are defined by
a vanishing Jacobi field a = 0. Analogously, symmetry yields

∂t Q

∂βP
= ∂t Q

∂θQ

∂θQ

∂βP
= −B Q â−1

P , (12)

where â denotes the “backwards” Jacobi field obtained by integrating Eq. (8) from
Q to P .

The other derivatives are obtained similarly using the definition t = ∂x/∂s

∂t P

∂βP
= ∂t P

∂θQ

∂θQ

∂βP
= ∂

∂θQ

(
∂x P

∂sP

)
â−1

P (13)

and the theorem of Schwarz, yielding

∂t P

∂βP
= ∂

∂sP

(
∂x P

∂θQ

)
â−1

P =
∂

∂sP

⎦
B P âP

)
â−1

P = −τP N P − B P â⇒P â−1
P , (14)

where τ is the geodesic’s torsion. Likewise, it holds by symmetry
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∂t Q

∂βQ
= −τQ N Q + B Q a⇒Q a−1

Q . (15)

4 Results

The formulas described above can be assembled into a modular program for muscle-
path computations. Here we show the results of our implementation in Matlab. In
this implementation, the muscle path can be spanned over several general surfaces
(Fig. 3a), and both the end points as well as all surfaces can perform arbitrary spatial
motions. Each time frame comprises two types of iterations: an inner loop and an
outer loop. The inner loop carries out geodesic shooting from point P such that point
Q is reached. Each iteration step consists of numerically integrating the geodesic
equations and Eq. (8) with given initial direction θ . Corrections of the geodesic length
and the initial direction are obtained by projecting the difference Δx E = x Q − x E
from the current trial end point E to the target point Q onto the two polar directions
at E

ΔsE = Δx E · t E (16)

ΔθP = Δx E · B E a−1
E . (17)

(a)

(b)
(c)

Fig. 3 a Sample application. b Inner-loop iterations using Eqs. (16, 17). c Smooth muscle length
and rate of length change
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The outer loop carries out the Newton-Raphson iteration for path error ε(k)

q(k+1) = q(k) −
[
J(k)q

]−1
ε(k) . (18)

Figure 3a shows a sample motion with three surfaces, where S3 represents the
case of a general distribution of curvature and where the nonsymmetric ellipsoid
S2 is rotating about a skew axis. Due to the closedness of subsequent time frames,
both loops converge in 2-3 iterations per frame. Figure 3b shows one inner loop for
S2. Figure 3c contains the time histories of total muscle length and its rate of length
change, showing that both curves are smooth.

5 Conclusions

The presented approach is suitable for efficient smooth muscle-wrapping based on
second-order Newton iterations. The path-error Jacobian can be determined explic-
itly by solving the Jacobi field Eq. (8). Second-order convergence can be achieved for
inner loop geodesic shooting iterations using geodesic polar coordinates. The algo-
rithms are operational for an arbitrary number of surfaces which can be parameterized
explicitly. Future publications will provide a comparison to existing approaches and
the application to specific biomechanics examples, and may involve the generaliza-
tion of the formulation to multiple-patch as well as to implicit surface parametriza-
tions.
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Erratum to: Computational Kinematics
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Gonźalez-Jiḿenez, L., 261

H
Harris Jr., F. C., 68
Herder, J. L., 291
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