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    Abstract     According to 2008 World Health Organization (WHO) Classifi cation of 
Tumors of Hematopoietic and Lymphoid Tissue, lymphoid neoplasms are divided 
into two, mature and immature (precursors), forms including mature B and T/NK 
cell leukemia/lymphomas and B and T-lymphoblastic leukemia/lymphomas 
(B-ALL/LBL, T-ALL/LBL). Nowadays a variety of molecular methods are intro-
duced for the modern classifi cation of lymphoid neoplasm system. Although mor-
phological characteristics remain the cornerstone of the evaluation of lymphoid 
neoplasm, ancillary studies e.g. immunophenotyping and PCR study for T- and 
B-cell gene rearrangements are routinely implicated in daily service. Different from 
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myeloid neoplasms, the application of molecular/genetic diagnosis and subclassifi cation 
of lymphoid neoplasm are mainly limited in B-ALL. There are few known pro-
tooncogenes or cytogenetic abnormalities in the certain T/NK or B lymphoid 
malignancies. The chapter focuses on common molecular diagnostic approaches 
and molecules that implicated in therapeutic strategies, predicting prognosis and 
monitoring minimal residual disease.  

  Keywords     Lymphoid malignancy   •   Cytogenetics   •   Molecular   •   Gene rearrange-
ment   •   Diagnostic and prognostic implications   •   Novel molecular techniques  

  Abbreviations 

   ABC    Activated B cell-like type   
  ALK    Anaplastic large cell kinase   
  ALL    Acute lymphoblastic leukemias   
  ALTCL    Anaplastic large T cell lymphoma   
  ATM    Ataxia telangiectasia mutated gene   
  B-ALL    B-lymphoblastic leukemia/lymphoma   
  BL    Burkitt lymphoma   
  B-PLL    B-cell prolymphocytic leukemia   
  CDK6    Cyclin dependent kinase 6 gene   
  CLL/SLL    Chronic lymphocytic leukemia/small lymphocytic lymphoma   
  CNS    Central nervous system   
  CRA    Common region of amplifi cation   
  DAPK1    Death-associated protein kinase 1   
  DLBCL    Diffuse large B-cell lymphoma   
  FFPE    Formalin-fi xed and paraffi n-embedded   
  FISH    Fluorescence in situ hybridization   
  FNA    Fine needle aspirate   
  GCB    Germinal center B-cell like   
  iAMP21    Intrachromosomal amplifi cation of chromosome 21   
  LPL    Lymphoplasmacytic lymphoma   
  M-bcr    Major breakpoint cluster region   
  m-bcr    “minor” breakpoint cluster region   
  MF    Mycosis fungoides   
  MLPA    Multiplex ligation-dependent probe amplifi cation   
  MRD    Minimal residual disease   
  NK    Natural killer   
  Non-GCB    Non-germinal center B-cell like   
  NPM    Nucleophosmin gene   
  PCR    Polymerase Chain Reaction   
  PTCL, NOS    Peripheral T cell lymphoma, not otherwise specifi ed   
  RT-PCR    Reverse Polymerase Chain Reaction   
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  SHM    Somatic hypermutation   
  SMZL    Splenic marginal zone lymphoma   
  SNP    Single Nucleotide Polymorphism Array   
  T-ALL    T-lymphoblastic leukemia/lymphoma   
  TCR    T cell gene rearrangement   
  TKI    Tyrosine kinase inhibitor   
  UDP    Uniparental disomy   
  WHO    World Health Organization   

17.1           Introduction 

 Lymphoid neoplasms are clonal proliferation of mature or immature B cells, T cells 
and natural killer (NK) cells. According to 2008 World Health Organization (WHO) 
classifi cation of hematopoietic and lymphoid neoplasms precursor T and B lymphoid 
neoplasms, mature B-cell neoplasms, mature T-cell and NK-cell neoplasms, Hodgkin 
lymphomas and immunodefi ciency-associated lymphoproliferative  disorders are 
defi ned in this group [ 1 ]. The classical diagnostic methods including histomorphology 
and immunophenotypic analysis have been widely used in diagnosis of lymphoid 
malignancies. In recent years, the advances in molecular techniques lead a better 
understanding of the role of genetic defects in the pathogenesis of neoplastic pro-
cesses as a result of which molecular testing has become an important part of routine 
diagnostics including many leukemias and lymphomas. This chapter will address the 
key molecular tests used in diagnosis of lymphoid neoplasms as well as promising 
future diagnostic approaches.  

17.2     Diagnostic Algorithms 

 A complete morphologic examination of involved tissues or body sites is the crucial 
fi rst step of histopathologic evaluation of lymphoid neoplasms. A collection of sub-
stantial sample from fi ne needle aspirate (FNA), fi ne needle core biopsy or small 
resection biopsy is necessary in help of a diagnosis of lymphoid neoplasms. 
However, excisional biopsy of lymph node or extranodal tissue is recommended to 
more accurately assess the disease evolution or progression, to further subclassify 
lymphoid neoplasms as well as to identify composite neoplasms. A good quality of 
histology and staining technique prevents from misinterpretation, while a careful 
cytomorphologic examination of any single provided slide would avoid “tunnel- 
vision” or misdiagnosis. 

 Immunophenotyping refers to the technique of identifying the surface or cyto-
plasmic molecules or antigen that present in lymphoid cells. The three methods are 
commonly used for immunophenotyping including immunofl uorescence, fl ow 
cytometry and immunohistochemistry. Using immunophenotyping strategy is able to 
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identify the majority of lymphoma/leukemias, so as to subclassify them. Nevertheless, 
it might generally not useful in distinguishing some low grade lymphomas from high 
grade ones, predicting clinical course or prognostic outcome. In addition to morpho-
logic and immunophenotypic evaluation, molecular analysis of lymphoid neoplasms 
has become more important in classifi cation of certain T/NK or B-cell lymphomas/
leukemias with implication of therapeutic strategies, predicting disease prognosis 
and monitoring minimal residual disease (MRD). The most common use of 
molecular techniques in lymphoid malignancies can be divided into three categories: 
(1) detection of karyotypic abnormalities including gain or loss of chromosome(s), 
chromosomal translocations, deletions, and insertions some of which have shown to 
be recurrent in certain neoplasms; (2) detection of individual mutations associated 
with the malignancy; and (3) defi ning clonality in lymphomas and leukemias based 
on gene rearrangements on T and B cells. 2008 WHO classifi cation and the most 
recent studies indicate that the molecular and genetic diagnostic tools seem more 
applicable as a diagnostic tool in precursor B-cell lymphoid neoplasms, particularly 
with regard to defi ned recurrent cytogenetic abnormalities [ 1 – 6 ]. 

 B-lymphoblastic leukemia/lymphoma (B-ALL) commonly involves peripheral 
blood and bone marrow while T- lymphoblastic leukemia/lymphoma (T-ALL) is 
usually tissue-based, most common in the mediastinum. For the majority of cases, 
morphologic and phenotypic evaluation is often suffi cient for diagnosis of ALL and 
making the distinction between B-ALL and T-ALL. However, further cytogenetic and/
or molecular testing is required for further subclassifi cation of B-ALL. Furthermore, 
some certain cytogenetic abnormalities are of importance in terms of prognosis and 
rational therapy. Mature lymphoid neoplasms often involve the lymphoid tissue as well 
as other body sites including visceral organs, skin and brain. Although for many 
lymphomas, morphologic and phenotypic assessment is usually suffi cient to render a 
diagnosis and molecular testing might not be demanded, clonality studies has been 
widely used especially to differentiate a neoplasm from a reactive process. It is clear 
that molecular techniques facilitate the diagnosis of diffi cult cases [ 7 – 11 ]. Molecular 
studies also allow further categorization of some lymphomas regarding the prognosis 
and tracking subsequent minimal residual disease (MRD) [ 12 ]. 

 Nowadays molecular and genetic diagnosis has been, without a doubt, integrated 
into daily pathologic practice and play an important role in diagnostic algorithm to 
differentiate lymphoma/leukemia from the other reactive processes (Fig.  17.1 ).

17.2.1       Molecular Methods Commonly Used 
in Lymphoid Malignancies 

17.2.1.1     Standard Chromosomal Analysis 

 Conventional karyotyping is one of standard chromosomal analyses that have been 
widely used in diagnosis of myeloid leukemias as well as lymphoid neoplasms. 
Discovery of the recurrent cytogenetic abnormality in Burkitt lymphoma with t(8; 
14) and chronic myelogenous leukemia with t(9;22) in early 1960s. [ 13 ,  14 ], is 
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followed by many chromosomal abnormalities described in lymphomas and 
leukemias. Up to date, certain precursor B lymphoid neoplasms, vast majority of 
the Burkitt lymphoma, mantle cell lymphoma, follicular lymphoma and a subset of 
marginal zone lymphomas are associated with recurrent translocations (Table  17.1 ) 
[ 1 – 3 ,  15 ,  16 ]. Diffuse large B cell lymphomas (DLBCL), can associate with single 
or multiple breakpoints and translocations, namely BCL6 at 3q and BCl-2 at 18q, 
“double or triple” hit lymphomas commonly involving  MYC  and  BCL2  and less 
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     Fig. 17.1    The diagnostic algorithm for lymphoid malignancies commonly accepted in daily 
practice       
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frequently  BCL6  genes [ 17 – 20 ]. Nevertheless, only a minority of T cell lymphomas 
exhibit recurrent chromosomal translocations. Anaplastic large T cell lymphoma is 
a good example, often associated with t(2;5) involving  NPM1-ALK  gene fusion 
[ 21 ], though the other ALK partner genes also encountered. 

 Most cytogenetic abnormalities seen in lymphomas and leukemias are often 
detectable by conventional karyotyping by G-banding. Although it is considered to 
be the “gold standard” technique, some limitations prevent a wide use of this test, 
including the need to obtain a large volume of fresh tissue and rapid processing. 
Another problem encountered in cytogenetic testing is that the analysis requires 
high level of technical skills in culturing tissue, preparing the metaphase cells and 
analyzing complex karyograms which makes the method labor-intensive, expensive 
and time consuming [ 15 ].  

17.2.1.2     Fluorescence In Situ Hybridization (FISH) 

 Fluorescence in situ hybridization (FISH) is widely used as an ancillary method in 
diagnosis of lymphomas and leukemias. It is applicable to cytospin preparations 
from fresh harvested tissue as well as formalin-fi xed and paraffi n-embedded 
(FFPE) tissue without requiring tissue culturing. Thus, FISH is a less complex and 
rapid molecular technique with shorter turnaround time. The main limitation of 
FISH is the probe specifi c testing only for specifi c abnormalities with no genome-
wide analysis.  

17.2.1.3     Polymerase Chain Reaction (PCR), Reverse 
Transcription-PCR (RT-PCR) 

 PCR tests are widely used in lymphomas and lymphoblastic leukemias for  clonality 
analysis of the immunoglobulin genes and T cell receptors (TCR). The testing can 
be performed on either fresh tissues or FFPE materials. DNA or RNA materials 
are extracted from submitted specimen according to the study design. Quantitative 

    Table 17.1    The WHO classifi cation of precursor lymphoid neoplasms

 I. Precursor lymphoid neoplasms 

 B lymphoblastic leukemia/lymphoma, not otherwise specifi ed (NOS) 
 B lymphoblastic leukemia/lymphoma, with recurrent genetic abnormalities 
  B lymphoblastic leukemia/lymphoma with t(9;22)(q34;q11.2);  BCR-ABL  
  B lymphoblastic leukemia/lymphoma with t(v;11q23);  MLL  rearranged 
  B lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22);  TEL-AML-1 (ETV6-RUNX1)  
  B lymphoblastic leukemia/lymphoma with hyperdiploidy 
  B lymphoblastic leukemia/lymphoma with hypodiploidy (Hypodiploid ALL) 
  B lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32);  IL3-IGH  
  B lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3);  E2A-PBX1(TCF3-PBX1)  
 T lymphoblastic leukemia/lymphoma 
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RT-PCR is also very useful in detecting of the chromosomal translocations that lead to 
the production of fusion mRNA transcripts. A good example of this fusion transcript 
and protein generation is cyclin D1-IgH resulting in mantle cell lymphoma [ 22 ]. An 
advantage of PCR in lymphoma and leukemias is that it enables to amplify the fusion 
transcript; therefore it is superior in detection of minimal residual disease (MRD). PCR 
analysis for clonality is particularly advantageous in certain circumstances; (1) if the 
tissue is limited (e.g. small needle biopsies or fi ne needle aspirations) for immuno-
histochemical analysis and/or fl ow cytometry  cannot be performed (e.g. FFPE tissue); 
(2) some B cell lymphoma cells may lack surface light chain antigens so that clonality 
may be equivalent by fl ow cytometry. (3) Phenotypic clonality evaluation has not 
been established for T cell neoplasms, therefore, gene rearrangement studies are help-
ful determining T cell clonality; (4) differentiation of reactive hematogone response vs. 
residual/recurrent precursor lymphoid neoplasms with increased immature lympho-
blasts [ 23 – 26 ]. On the other hand, there are some limitations when using PCR for 
diagnostic purposes. False positive gene rearrangement results can be observed espe-
cially when testing a small biopsy with small number of lymphocytes as well as various 
reactive and infl ammatory conditions [ 27 ,  28 ]. Furthermore, some T cell lymphomas 
may have false immunoglobulin ( IG)  gene re-arrangement [ 28 ]. False negative results 
can also be seen mostly due to technical or biologic factors [ 29 ].  

17.2.1.4     Single Nucleotide Polymorphism (SNP) Array 

 SNP array is the most recently introduced molecular method that can analyze the 
whole genome with higher resolution than the other techniques. An important 
advantage of SNP array is the ability to detect not only copy number changes but 
also the regions with loss of heterozygosity without DNA loss or gain. This indi-
cates that the both alleles are homozygous and derived from one parent, “uniparen-
tal disomy” (UDP), which is important in certain lymphomas [ 30 – 32 ]. Regions of 
UDP may harbor one or more genes with inactivating mutations (classical tumor 
suppressor genes) and since both alleles will have the mutation, the Knudson two- 
hit rule is fulfi lled [ 15 ]. The main problem with SNP array is the diffi culty in distin-
guishing acquired abnormalities from polymorphism which may be resolved by 
comparing to the germline DNA from the same patient [ 33 ]. SNP is so far not the 
replacement of cytogenetics and FISH laboratory, however, it is usually ordered for 
those patients with normal karyotyping or FISH results when seeking a possible 
disease related genetic fi ndings.    

17.3     Precursor Lymphoid Neoplasms 

 Precursor lymphoid neoplasms, also termed acute lymphoblastic leukemias (ALL), 
are one of the most common hematopoietic malignancies affecting pediatric popu-
lation and a major cause of co-morbidity in adult. The current WHO classifi cation 
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of ALL contains three main subgroups: (1) B-lymphoblastic leukemia/lymphoma 
(B-ALL), not otherwise specifi ed, (2) B-ALL with recurrent cytogenetic abnor-
malities, and (3) T-lymphoblastic leukemia/lymphoma (T-ALL) [ 1 ] (Table  17.1 ). 
ALL is a greatly heterogeneous group of disorders with variety of associated 
genetic defects that have been defi ned recently or still unknown. The classical 
algorithm used in diagnosis of ALL includes a careful morphological examination 
of peripheral smear and/or bone marrow samples as well as involved tissue with 
appropriate phenotypic studies supported by relevant testing for karyotype analysis 
and molecular genetics. Cytogenetic abnormalities are seen in 60–80 % of ALL 
including recurrent genetic abnormalities.

17.3.1       B Lymphoblastic Leukemia/Lymphoma with Recurrent 
Genetic Abnormalities 

 This is a group of disease characterized by recurrent genetic abnormalities includ-
ing chromosomal abnormalities and balanced translocations. The distinction of this 
B-ALL from other types is especially important as they have specifi c clinical and 
phenotypic features leading to important prognostic implications. 

17.3.1.1     B Lymphoblastic Leukemia/Lymphoma 
with t(9;22)(q34;q11.2);BCR-ABL1 

 The Philadelphia (Ph) chromosome is the most common associated genetic anomaly 
in adult B-ALL, accounting for about 20–30 %. Only about 2–4 % of childhood 
leukemias harbor Ph chromosome. The lympho blasts have the translocation 
between the  BCR  gene on chromosome 22 and the  ABL  oncogene on chromosome 
9 that creates the Ph chromosome. While the  ABL  breakpoint occurs in the same 
region (between exons a1 and a2) on chromosome 9, the  BCR  breakpoints on chro-
mosome 22 can occur in two different regions. The m-bcr creates a fusion protein of 
190 kDa (p190) and M-bcr results in a fusion protein of 210 kDa (p210) [ 34 ,  35 ]. 
The “minor” breakpoint cluster region (m-bcr) between exons 1 and 2 is present in 
vast majority of childhood Ph + ALL while a “major” breakpoint cluster region 
(M-bcr) spanning exons 12 to 16 is more common in adult Ph + ALL. The m-bcr 
creates a fusion protein of 190 kDa (p190) and M-bcr results in a fusion protein of 
210 kDa (p210) [ 34 ,  35 ]. Phenotypically, Ph + B-ALL is typically CD10+, CD19+ 
and TdT+. The expression of myeloid antigens CD13 and CD33 is frequent. CD25 
is highly associated with adult Ph + ALL [ 36 ]. 

 Cytogenetics is still commonly used in detection of Ph chromosome. In cases of 
failed or normal cytogenetic results, FISH can be used as an alternative method. 
Quantitative RT-PCR is a rapid, accurate and sensitive method for the detection of 
 BCR/ABL  fusion transcripts. The advantage of test is to quantitatively track the copy 
number change of transcript before and after therapy. One major disadvantage is 
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that this approach is highly specifi c and cooperating abnormalities cannot be 
simultaneously identifi ed [ 37 ]. The presence of t(9;22) is a poorer prognostic factor 
in both children and adults. Combination of tyrosine kinase inhibitor (TKI) with 
established antileukemic agents is promising in management of these patients.  

17.3.1.2     B Lymphoblastic Leukemia/Lymphoma 
with t(v;11q23); MLL Rearranged 

 This is a group of acute leukemias harboring translocation between  MLL  gene at 
band 11q23 and any of the fusion partners. MLL translocations generate a new 
chimeric gene, in which the NH2-terminal portion of MLL is fused to the COOH- 
terminal sequence from multiple different partners [ 38 ]. The common result of 
many of these rearrangements is the expression of a DNA-binding protein that 
recruits additional histone methyltransferases such as DOT1L and leads to ectopic 
histone H3 lysine 79-dimethylation [ 39 ,  40 ]. 

 These lymphomas exhibit unique clinical and biologic feature.  MLL  transloca-
tion occurs up to 70 % of infant B-ALL and less frequently in older patients. 
Typically patients present with very high white blood cell counts and often central 
nervous system (CNS) involvement at diagnosis. A characteristic feature of ALL 
with  MLL  translocations, mostly t(4;11) ALL, is the absence of CD10 in pro-B 
blasts often expressing myeloid antigen CD15. The expression of chondroitin sul-
fate proteo- glycan neural-glial antigen 2 (NG2) is also typical in these leukemias. 
Many fusion genes have been described in ALL with  MLL  translocation. t(4;11)
(q21;q23)/ MLL- AFF1 ( previously known as  MLL-AF4 ) comprise the largest group 
in ALL with  MLL . Other common partner genes include  ENL  (19p13) and  AF9  
(9p22).  FLT3  overexpression is also found in the presence of  MLL  translocations 
[ 41 ].  MLL- AFF1   fusion is easily detectable by RT-PCR or cytogenetics. However, 
a more complex molecular analysis may be advantageous in detecting other com-
mon fusion partners. A dual color break-apart probe may provide detection of all 
chromosomal abnormalities involved in ALL with  MLL  translocations by FISH. 
Leukemias with  MLL  gene rearrangements usually have poor prognosis. The spe-
cifi c type B-ALL is also associated with adverse outcome, particularly when it 
occurred in infant <6 months.  

17.3.1.3     B Lymphoblastic Leukemia/Lymphoma with t(12;21)(p13;q22); 
TEL-AML1 (ETV6-RUNX1) 

 This is the most common leukemia in childhood, accounting 25 % of all B-ALLs 
with a very favorable prognosis. It is not identifi ed in infants and barely found in 
adults. It has similar clinical and phenotypic features to other types of ALL. CD13 
myeloid antigen expression is common with no indication of mixed phenotype 
acute leukemia. t(12;21) results in the production of  TEL-AML1(ETV6-RUNX1) , a 
fusion protein with important role in leukomogenesis [ 42 ]. The product protein 
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acts in a dominant negative fashion to interfere with normal function of the tran-
scription factor  RUNX1 . It has been shown that the translocation occurs early in 
life, prenatally, as “preleukemic clone” but leukemia develops many years later 
[ 43 ]. There is evidence that secondary changes are needed for overt leukemia 
including frequent additional changes include losses of the  EBF1, ETV6  and  PAX5  
genes and gains of chromosome 21 and chromosome arm Xq [ 44 ]. The fusion 
protein can be detected by RT-PCR. As t(12;21)(p13;q22) is invisible at cytoge-
netic level, FISH is usually used to detect the translocation applying an extra signal 
or dual color fusion probe. Furthermore, detecting deletion of second  ETV6  allele 
and additional fusion signals is also important in this type of B-ALL, possibly 
leading a longer survival [ 45 ]. FISH provides information on the status of second 
 ETV6  homologue.  

17.3.1.4     B Lymphoblastic Leukemia/Lymphoma 
with Hyperdiploidy 

 Hyperdiploid B-ALL is characterized by blasts containing 51–65 chromosomes, 
in the absence of translocations or other structural alterations. This subtype 
accounts for 25 % of B-ALL. It is common in children and has a good prognosis 
with a survival rate up to 80 % at 5 years. Hyperdiploid B-ALL has no unique 
features to distinguish it from other subtypes. Hyperdiploid is characterized by 
gain of chromosomes, typically + X, +4, +6, +10, +14,+17, +18, and +21. The best 
method for the detection of chromosomal gain in hyperdiploid B-ALL is the stan-
dard karyotyping. Cytogenetics may fail in a portion of cases [ 46 ,  47 ]. FISH with 
centromeric probes specifi c for the trisomies of chromosomes 4, 10, 17, and 18 
may be helpful to identify hidden hyperdiploidy [ 48 ,  49 ]. Identifi ed trisomy 4, 10, 
and 17 link to a good prognosis. Flow cytometry to measure DNA index analysis 
can also be used.  

17.3.1.5     B Lymphoblastic Leukemia/Lymphoma with Hypodiploidy 
(Hypodiploid ALL) 

 Hypodiploid B-ALL is characterized by blasts containing < 44–45 chromosomes 
including near-haploid ones (23–29 chromosomes). It is seen in both children and 
adults, although near-haploid ones are more common in children. This subgroup is 
associated with a worse prognosis. The overall clinical, morphologic and pheno-
typic features are not distinguishable from other B-ALL. By defi nition, there is loss 
of from single or more chromosomes to near haploid with or without structural 
abnormalities in the remaining chromosomes. The structural anomalies including 
translocations are more common in the cases with chromosome number between 30 
and 40. Detection of hypodiploidy in this group could be problematic. One character-
istic feature is the gain of some specifi c chromosomes onto the haploid chromo-
somes and the presence of a population of cells with an exact doubling of this 
chromosome number [ 50 ]. This may result in a near diploid or even hyperdiploid 
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karyotype. In such cases, standard karyotyping may dismiss the hypodiploid line. 
Flow cytometry can be used to detect hypodiploidy in these cases with the advan-
tage of more rapid processing. Flow cytometry is also not affected by mitotic index 
of the cell population. However, fl ow cytometry does not identify the specifi c chro-
mosomes with numeric changes, nor does show the additional structural anomalies 
which may have potential clinical and biologic importance [ 51 ]. Therefore, it is 
useful to use both techniques in tandem. FISH may also detect certain chromosomes 
with hypodiploidy; however, FISH detection may be diffi cult when near- haploid or 
doubled populations present. 

 In summary, hypodiploidy and near-haploidy in B-ALL carries a prognostic 
 signifi cance and molecular testing should be carefully applied in detecting chromo-
somal loss when this subgroup is clinically suspected.  

17.3.1.6     B Lymphoblastic Leukemia/Lymphoma with t(5;14)
(q31;q32);IL3-IGH 

 This subgroup is very rare and accounts for < 1 % of all ALL. It has been reported in 
all age groups. The eosinophilia is reactive and not part of the neoplastic process. The 
features and prognosis are otherwise similar to other B-ALL. The blast count has not 
shown to be a prognostic factor in this type of ALL. Patients typically have variable 
circulating eosinophilia due to overexpression of the  IL3  gene following the func-
tional rearrangement between  IL3  gene and  IGH@  gene. The translocation may be 
detected using standard karyotyping, RT-PCR and/or less commonly FISH.  

17.3.1.7     B Lymphoblastic Leukemia/Lymphoma with t(1;19)
(q23;p13.3);E2A-PBX1 (TCF3-PBX1) 

 ALL with t(1;19) is fairly common in children, accounting for 6 % of all ALL. 
Clinical features are similar to those of other ALL patients. Although they used to 
be classifi ed in the poor prognosis group, with therapeutic advances, they are 
regarded as standard risk [ 52 ,  53 ]. Although they do not differ morphologically 
from other types, blasts in this group are pre-B type and typically express CD19, 
CD10 and cytoplasmic μ (cμ) with less or no CD34. Strong CD9 expression is also 
characteristic.  TCF3  gene encodes two transcriptional proteins E12 and E47 which 
play a critical role in B-cell maturation while  PBX1  is a homeobox gene not 
expressed in B or T-cells [ 54 ]. Translocation between  TCF3  (previously  E2A ) gene, 
on chromosome 19, and  PBX1  gene, on chromosome 1, results in production of a 
fusion protein that has an oncogenic role. Recently, a variant subtype harboring 
translocation between  TCF3  and  HLF  genes related to a worse prognosis. 
Cytogenetics and FISH as well as RT-PCR are useful to detect the associated trans-
locations in majority of the cases. The diagnosis of this subtype warrants the careful 
evaluation by both phenotypic features and translocation status, as an identical 
t(1;19) can be seen in a portion of B-ALL not necessarily associated with  TCF3- 
PBX1   translocation.  
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17.3.1.8    Other Cytogenetic Abnormalities Detected in B-ALL 

 Up to 50 % of all B-ALL show abnormalities involving genes associated with B 
cell development including  PAX5, TCF3,EBF1, LEF1, IKZF1  and  IKZF3  and cell 
cycle controlling genes such as  CDKN2A, CDKN1B  and  RB1  [ 55 – 59 ]. A cryptic 
translocation involving sex chromosomes, t(X;14)(p22;q32) or t(Y;14)(p11;q32), 
involving  IGH@  and  CRLF2  genes, and deletion within  PAR1,  resulting in  P2RY8-
CRLF2  fusion has been reported [ 60 – 62 ]; possibly activating JAK-STAT signaling 
pathway and associated with a worse prognosis [ 63 – 65 ]. Intrachromosomal ampli-
fi cation of chromosome 21 (iAMP21) is a distinct chromosomal abnormality in 
B-ALL and associated with adverse prognosis and poor response to therapy [ 66 ]. 
Despite the variability between patients in the morphology of the abnormal chromo-
some 21, they consistently show multiple, extra copies of the  RUNX1 (AML1)  gene, 
tandemly repeated along the length of the abnormal chromosome [ 67 ]. Genomic 
and expression analysis has further characterized this abnormality, demonstrating 
a common region of amplifi cation (CRA) between 33.192 and 39.796 Mb on 
chromosome 21 (which includes  RUNX1 ) [ 68 ]. FISH can also be used to detect this 
abnormality.  

17.3.1.9    B Lymphoblastic Leukemia/Lymphoma, NOS 

 Diagnosis of B-lymphoblastic leukemia/lymphoma (B-ALL), NOS is based on 
clinical, morphological and phenotypic fi ndings when the aforementioned cytoge-
netic abnormalities are not indentifi ed. Gene re-arrangement by PCR is a commonly 
used as a supportive diagnostic tool and also is also helpful in determining the mini-
mal residual disease in some settings. Studies have showed that nearly all cases have 
clonal DJ rearrangements of the  IGH@  gene along with T cell gene rearrangement 
(TCR) in a majority of the cases (up to 70 %) [ 30 ,  69 ]. The B cell clonality in B-ALL 
can be detected by PCR amplifi cation of the IG and/or TCR VDJ region. The 
secondary change of TCR gene in B-ALL is considered reactive with uncertainty in 
pathophysiology, being worthy of further investigation. SNP might be an alterna-
tive way to detect any underlying genetic aberration if it is applicable in clinical 
laboratory.   

17.3.2     T Lymphoblastic Leukemia/Lymphoma 

 T lymphoblastic leukemia/lymphoma is a neoplasm of precursor T cells which are 
typically medium to large sized blasts with dispersed chromatin, inconspicuous 
nucleoli and scant cytoplasm. It involves bone marrow and blood (T-ALL) or lym-
phoid organs or extranodal sites (T-LBL). Both forms are more common in children 
than adults. The blasts usually express TdT with often T cell antigens CD2, cyto-
plasmic CD3, CD4, CD5, CD7, and CD8 and CD1a. Aberrant expression of myeloid 
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markers (CD13 and CD33) can be seen in up to 30 % of the cases [ 70 ]. Coexpression 
of CD117 occurs less frequently but often associated with  FLT3  mutation [ 71 ]. 
Multiple genetic aberrations encounter in T-ALL, but none of them is T-ALL 
specifi c. Translocations involving  TCR  loci are the most common cytogenetic 
anomalies observed in T-ALL/LBL. t(7;10)(q34;q24) and t(10;14)(q24;q11) are 
most common in adults involving  HOX11(TLX1)  gene whereas t(5;14)(q35;q32) 
involving  HOX11L2 (TLX3)  gene is commonly found in children [ 6 ]. As reported, 
dysregulation of HOX-type transcription factors is found in 30–40 % of cases of 
T-ALL [ 72 ]. Characteristically,  HOX -type T-ALLs often accompany with activating 
 NOTCH 1 mutations and  CDKN2A  loss of function,  NUP214-ABL  amplifi cations, 
 C-MYB  tandem duplications,  PHF6  mutations,  PTPN2  deletions, and  WT1  muta-
tions [ 6 ,  72 – 78 ], which are not present in non-HOX-type T-ALL. However, the role 
of these genetic changes in leukemogenesis is not well understood. The unique 
genetic features are not only helpful in view of diagnosis but also guide future clini-
cal therapy. An in vitro study has demonstrated that a blockade of both TLX1/HOX 
and NOTCH could inhibit cell cycle progression in TLX1 T-ALL cell line 9,490 
cells (Lesley A. 2011). Mutations that may occur in T-ALL/LBL are important. 
Mutation of  NOTCH  oncogene is the most common mutation and is seen about 60 % 
of cases. NOTCH proteins are transmembrane receptors and are important regula-
tors of T cell differentiation and activation. Recent studies showed that  MYC  is 
upregulated by activated  NOTCH1  in T-ALL which stimulates the growth of T-ALL 
cells [ 46 ,  79 ].  N-RAS  and  FLT3  are other mutation seen in T-ALL [ 80 ,  81 ]. Another 
common rearrangement is the formation of fusion genes, mostly in children.  SIL/
TAL1  fusion gene results from a cryptic deletion of chromosome 1 and is seen in up 
to 30 % of childhood T-ALL. Important translocations resulting in fusion gene for-
mation includes t(10;11) involving  CALM/AF10  genes in 10 % of all cases and less 
frequently t(11;19) involving  MLL  gene. Other  MLL  gene translocations {t(6;11), 
t(10;11), t(X;11) and t(4;11)} seen in some T-ALL cases [ 6 ]. Philadelphia chromo-
some has also been reported in rare cases [ 82 ]. Deletions may be detected in as 
many as 30 % cases. 9p21 involving  p16  gene and del(6q) are the important ones. 
Almost all cases show clonality in T cell receptors with up to 20 % accompanying 
 IGH@  gene rearrangement [ 83 ].   

17.4     Mature Lymphoid Neoplasms 

 Lymphoid neoplasms are clonal tumors with malignant transformation of normal 
lymphoid cells at various stages of differentiation and comprise the sixth most common 
group of malignancies worldwide in men and women. Although certain infectious 
agents, autoimmune disorders and immunosuppression-related conditions have been 
linked to some lymphomas, the etiology in the majority of lymphomas remains 
unclear. Morphology and immunophenotype are generally suffi cient to make the 
diagnosis of most lymphomas. Genetic features have begun to play an important 
role in classifi cation and diagnosis of mature lymphomas. The recent advances in 
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molecular genetics have enlightened lymphoma biology and provide useful testing 
that can be integrated with the conventional diagnostic methods widely used in 
hematopathology. Although isolated use of molecular tests is not of any help in 
lymphoma diagnosis, the use of these tests has clear utility to facilitate the diagnosis, 
in particularly morphologically and phenotypically challenging cases. Also some 
molecular markers have prognostic implications in certain lymphomas. Mature B and 
T/NK cell lymphomas with recurrent cytogenetic abnormalities are discussed below. 

17.4.1     Mature B Cell Neoplasms 

 Mature B cell lymphomas comprise over 90 % of lymphoid neoplasms worldwide. 
They are common in Western world and account for 4 % of new cancers each year 
[ 1 ]. The most common types are diffuse large B cell lymphoma and follicular lym-
phoma. The majority of the B cell lymphomas recapitulate the stages of normal B 
cell proliferation, except for some types, e.g. hairy cell leukemia, that do not 
 correspond to any maturation stage (Table     17.2 ). Diagnosis of B cell lymphomas, 
like other mature lymphoid neoplasms, is usually based on histomorphologic and 
phenotypic features in conjunction with genetic and molecular profi les.

17.4.1.1      Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma 

 Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) is a 
neoplasm of monomorphic small B cells with a fairly unique phenotype. CLL is 
the most common leukemia in the Western world affecting mainly the elderly 
population. The neoplastic cells often coexpress CD5 and CD23 along with char-
acteristically dim CD20, CD79b and dim surface immunoglobulin expression. 
CLL is the term used when long standing lymphocytosis (≥ 5 × 10 9 /L monoclonal 
lymphocytes for at least 3 months) is present in peripheral blood (PB) with or 
without bone marrow (BM) involvement [ 1 ]. The term SLL refers to the less fre-
quent form with same phenotype to CLL but non-leukemic with the tissue 
 morphology. The diagnosis of SLL requires lymphadenopathy, no cytopenias due 
to BM involvement by CLL/SLL and <5 × 10 9 /L peripheral blood B cells [ 1 ]. 

 CLL is a heterogenous disease with variable clinical outcome in the light of 
 variety of genetic abnormalities. Importantly, CLL has the highest familial genetic 
predisposition in all hematologic malignancies. A polymorphism in the death-
associated protein kinase 1 (DAPK1) gene was associated with familial CLL in a 
single family, but this allele has not been found again in a larger number of cases 
[ 84 ]. The involved genes in genetically predisposed CLL are still yet to be defi ned. 
Approximately 80 % of cases have cytogenetic abnormalities. Although some of 
these abnormalities can be detected in about 40 % of cases by standard karyotyp-
ing, FISH is essential in evaluation [ 85 ]. The FISH CLL panel including probe 
CCND1 study is used to exclude mantle cell lymphoma and predict the prognosis of 
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   Table 17.2    The WHO classifi cation of mature B cell neoplasms

 II. Mature B cell neoplasms 

 Chronic lymphocytic leukemia/small lymphocytic lymphoma 
 B-cell prolymphocytic leukemia 
 Splenic marginal zone lymphoma 
 Hairy cell leukemia 
 Splenic B-cell lymphoma/leukemia, unclassifi able 
  Splenic diffuse red pulp small B-cell lymphoma 
  Hairy cell leukemia-variant 
 Lymphoplasmacytic lymphoma 
 Heavy chain disease 
  Gamma heavy chain disease 
  Mμ heavy chain disease 
  Alpha heavy chain disease 
 Plasma cell neoplasms 
  Monoclonal gammopathy of undetermined signifi cance (MGUS) 
  Plasma cell myeloma 
  Solitary plasmacytoma of bone 
  Extraosseous plasmacytoma 
  Monoclonal immunoglobulin deposition diseases 
 Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) 
 Nodal marginal zone lymphoma 
 Follicular lymphoma 
 Primary cutaneous follicle center lymphoma 
 Mantle cell lymphoma 
 Diffuse large B-cell lymphoma (DLBCL), NOS 
  T cell/histiocyte-rich large B-cell lymphoma 
  Primary DLBCL of the CNS 
  Primary cutaneous DLBCL, leg type 
  EBV positive DLBCL of the elderly 
 DLBCL associated with chronic infl ammation 
 Lymphomatoid granulomatosis 
 Primary mediastinal (thymic) large B-cell lymphoma 
 Intravascular large B-cell lymphoma 
 ALK positive large B-cell lymphoma 
 Plasmablastic lymphoma 
 Large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease 
 Primary effusion lymphoma 
 Burkitt lymphoma 
 B-cell lymphoma, unclassifi able, with features intermediate between DLBCL and Burkitt 

lymphoma 
 B-cell lymphoma, unclassifi able, with features intermediate between DLBCL and Hodgkin 

lymphoma 

CLL. The most common recurrent abnormality seen in CLL is deletion of 13q14, 
approximately 55 % of cases, which is also associated with the best prognosis 
[ 86 ]. Twenty percentage of cases have deletion of 11q22-23which corresponds to 
loss of  ataxia telangiectasia      mutated (ATM) gene . This abnormality is associated 
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with bulky lymphadenopathy and poor clinical outcome [ 87 ]. Deletion of 17p13 
is seen in ~7 % of cases majority of which is related to loss or mutation of  TP53  
tumor suppressor gene. Deletion 17p13 is often leads a poor prognosis with 
chemotherapy, particularly Fludarabine resistance in these patients [ 88 – 90 ].  TP53  
mutation with or without del(17p13) is associated with a worse prognosis [ 91 ,  92 ] 
CLL with trisomy 12 often has an atypical morphology and bright aberrant 
expression of CD11c on the neoplastic B-cells. FISH is suffi cient in detecting the 
chromosomal anomalies but not gene mutations A novel molecular technique, 
Multiplex Ligation-dependent Probe Amplifi cation (MLPA), can be used to 
complement FISH [ 16 ]. 

 Status of immunoglobulin variable domain genes, Ig VH gene, in remains the 
“gold standard” prognostic feature in CLL patients. Presence of  IGH  variable 
domain gene somatic hypermutation (SHM) is seen 50–60 % of cases; whereas 
unmutated cases comprise 40–50 % with a worse prognosis [ 93 ]. Despite the 
prognostic importance, the test cannot be performed widely due to its complexity. 
In this case, the mutation status can be analyzed through a surrogate marker, such as 
ZAP- 70 expression using fl ow cytometry or infrequently immunohistochemistry. 
The expression of ZAP-70 corresponds to the absence of  IGH  SHM in the vast 
majority of the cases [ 94 ,  95 ]. Recent studies also demonstrated  NOTCH1  activating 
mutations associated with worse prognosis in CLL [ 96 ].  

17.4.1.2    B Cell Prolymphocytic Leukemia 

 B cell prolymphocytic leukemia (B-PLL) is the neoplasm of prolymphocytes 
involving peripheral blood, bone marrow and often spleen. Diagnosis requires pro-
lymphocytes exceeding 55 % of the lymphocytes in the blood. It can be transformed 
from CLL. The typical morphology of prolymphocytes includes medium size with 
round nuclei and a prominent central nucleolus. Neoplastic cells strongly express 
surface immunoglobin, along with B cell antigens (CD19 and CD20). B-cells show 
often loss of CD23. B-cells with CD5 and CD23 co-expression are seen about 20 % 
of cases. Variable FMC-7 expression is noted. ZAP-70 and CD38 are expressed in 
half of the cases with no correspondence to  IGH  mutation status [ 97 ]. 

 Immunoglobulin genes are clonally rearranged in half of the cases. Deletion of 
17p and related  TP53  mutation has been demonstrated in 50 % of cases associated 
with poor prognosis and therapy resistant disease [ 98 ,  99 ]. Some case may also have 
13q14 by FISH [ 97 ]. 

 Initially, t(11;14)(q13;q32) had been demonstrated in “B-PLL”; however these 
cases are now considered leukemic forms of mantle cell lymphoma [ 100 ].  

17.4.1.3    Splenic Marginal Zone Lymphoma 

 According to the WHO classifi cation, splenic marginal zone lymphoma (SMZL) is 
neoplasm of small B lymphocytes which expansion of splenic white pulp, efface the 
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follicle mantle zone and emerge with marginal zone of larger cells; both small and 
large cells invade the red pulp [ 1 ]. Splenic hilar lymph nodes and bone marrow are 
usually involved as well as peripheral blood by circulating lymphoma cells with 
villous projections, usually with polar orientation. Lymphoma cells express surface 
IgM and often IgD along with B cell markers. Annexin A1 and cyclin D1 are nega-
tive with rare CD103 expression. Immunoglobulin heavy and light chains are often 
re-arranged with somatic hypermutation (SHM). Allelic loss of chromosome 7q31-
32 has been reported in up to half of the cases [ 101 ]. Overexpression of cyclin 
dependent kinase 6 ( CDK6)  genes through chromosome 7q21 has been reported in 
few cases with possible role in lymphomagenesis [ 102 ].  BCL2  and t(14;18) are 
absent. The presence of 7q deletion and unmutated IgVH in SMZL are possibly 
associated with adverse clinical outcome    [ 103 ,  104 ].  

17.4.1.4    Lymphoplasmacytic Lymphoma 

 Lymphoplasmacytic lymphoma (LPL) is characterized by clonal small B cells, plas-
macytoid and plasma cells involving bone marrow and less frequently nodes and 
spleen. The neoplastic cells are typically IgM-secreting and clinically associated 
with hyperviscosity, autoimmune disorder, and cryoglobulinerimia. Phenotypically, 
LPL express both B-cell and plasma cell (subset) markers.  Immunoglobulin  genes 
are usually clonally arranged with hypermutation. No specifi c recurrent cytogenetic 
abnormality has been described in LPL. Deletion of chromosome 6q may be seen 
but not consistently and minority of patients showed trisomy 3 or 18 [ 105 ,  106 ]. 
Recently, Treson et al. reported that MYD88 L265P somatic mutation is detected in 
LPL/Waldenström’s macroglobulinemia, which can be useful in distinguishing LPL 
from the other B-cell lymphoma with similar morphologic and immunophenotypic 
features [ 107 ]  

17.4.1.5    Plasma Cell Myeloma 

 Plasma cell myeloma is the neoplasm of mature and clonal plasma cells involving 
bone marrow with widespread symptoms and fi ndings from asymptomatic to 
prominent end-organ damage. Clinical, histomorphologic and phenotypic fi ndings 
are often suffi cient for a defi nitive diagnosis. Genetic evaluation is particularly 
important as for the prognosis and therapy effectiveness. Immunoglobin heavy and 
light chains are clonally arranged in myeloma patients. Plasma cell myeloma arises 
from  post- germinal center B cells resulting in  IGH  SHM. 

 Standard karyotyping may reveal cytogenetic abnormalities in about one third of 
myelomas [ 108 ,  109 ]. The main diffi culty in karyotype analysis of myeloma is the 
low-yield metaphases generated from myeloma cells due to low proliferation rate. 
Therefore; FISH is more commonly used in detecting myeloma related cytogenetics 
and reveals more than 90 % of the abnormalities [ 110 – 112 ]. When able to analyze 
suffi cient sample, the karyotype in these patients is usually complex, mostly 
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hyperdiploidy. Hyperdiploidy has been defi ned in 40–65 % of myelomas [ 109 , 
 113 ]. These gains in the chromosomes are random and often involve chromosomes 
with odd numbers including 3, 5, 7, 9, 11, 15, 19 and 21 [ 114 ]. Other less common 
type of karyotype abnormality includes structural re-arrangements in the absence of 
hyperdiploidy. Most of these cases include specifi c rearrangements involving the 
 IGH  gene located at 14q32 and comprise 55–70 % of all cases [ 115 – 118 ]. These 
rearrangements are typical reciprocal translocations with various chromosomal 
partners leading to upregulation of the target genes. The most frequent 14q32 part-
ners are 11q13 (involving  CCND1 (CyclinD1) ; 20 % of patients) [ 119 ,  120 ], 4p16 
(involving both  FGFR3  and  MMSET ; 15 % of patients) [ 121 ,  122 ], as well as 16q23 
and 20q11 (targeting  MAF  genes; 2–5 % of patients each) [ 123 – 125 ]. Both  IGH@  
translocations and hyperdiploidy appear to be early events in the oncogenesis in 
plasma cell neoplasms, unifi ed by upregulation of various  cyclin D  genes (D1, D2, 
and/or D3) [ 126 ,  127 ]. 

 Other chromosomal changes seen in myeloma include monosomy 13 which may 
be seen in about half of the cases considered an early event in the pathogenesis [ 110 , 
 117 ,  128 ]. Additional two secondary events are also recurrent: gains of the long arm 
of chromosome 1 (1q21), in one third of patients, and del 17p, observed in approxi-
mately 10 % of patients which are related to disease progression from MGUS to 
myeloma as well as disease relapse [ 129 ,  130 ]. 

 Activating mutations of  KRAS-  or  N-RAS  may be present in up to 40 % of cases 
and are likely associated with disease progression [ 117 ,  131 ]. Translocations 
involving  MYC  gene and activation of NF-kappa B pathway have also been shown 
in myeloma patients [ 132 ,  133 ]. Chapman et al. recently showed 4 %  BRAF  
 mutation in myeloma patients, a novel discovery in myeloma suggesting thera-
peutic implication [ 134 ]. Recent studies also emphasized the signifi cance of 
Phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB) pathway, also 
known as the Akt pathway, in myeloma [ 135 ]. The PKB/Akt kinase family includes 
3 isoforms (PKBα/Akt1, PKBβ/Akt2, and PKBγ/Akt3) that are encoded by sepa-
rate genes and that are involved in the regulation of apoptosis, proliferation, motil-
ity, and energy metabolism. In many tumors including myeloma, activation of Akt 
is usually indicative of poor prognosis [ 136 ].  

17.4.1.6     Extranodal Marginal Zone Lymphoma of Mucosa-Associated 
Lymphoid Tissue (MALT Lymphoma) 

 This is an often indolent extranodal lymphoma composed of heterogenous small B 
cells associated with various precursor lesions described, e.g. Helicobacter pylori 
gastritis and autoimmune diseases. Neoplastic lymphoid cells infi ltrate the epithe-
lium causing destruction of normal architecture and are characterized as “lympho-
epithelial lesion”. There is several recurrent cytogenetic changes described in 
MALT lymphoma. The t(11;18)(q21;q21) resulting in fusion of  API2  and  MALT1  
genes is detected in approximately one third of cases by standard karyotyping. 
RT-PCR or FISH studies are helpful in detecting this defect and can be performed 
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on either fresh cells or PEFF tissue [ 46 ]. Importantly, the cases with t(11;18) are 
resistant to therapy targeting  H. pylori  [ 137 ]. Other described translocations associ-
ated with MALT lymphoma include t(1;14)(p22;q32), t(14;18)(q32;q21), (3;14)
(p14.1;q32) and t(1;14) (p22;q32), showing fusion of the N-terminus of the API2 
gene to the C-terminus of the MALT1 gene or trancriptional gene deregulation in 
BCL10, MALT1 or FOXP1 [ 138 ,  139 , and  140 ]. t(1;14) (p22;q32), involving 
 BCL10  gene is usually seen in MALT lymphoma of lung and stomach [ 139 ,  140 ]. 
Immunohistochemical evaluation of BCL10 protein nuclear staining can be corre-
lated with the presence of translocation [ 141 ]. t(14;18)(q32;q21), resulting fusion of 
IGH/MALT1, is associated with transcriptional dysregulation of  MALT1  and accu-
mulation of cytoplasmic BCL10 [ 138 ]. This translocation is most common in 
parotid, liver and ocular MALT lymphoma [ 139 ,  140 ]. The translocation by karyo-
typing seems indistinguishable from that seen in follicular lymphoma and an atten-
tion should be paid when diagnosing MALT lymphoma. MALT lymphoma arising 
in thyroid, ocular adnexa and skin can be associated with t(3;14) (p14.1;q32) involv-
ing  FOXP1  and  IGH@  [ 140 ,  142 ]. Trisomy 3, 18, and less commonly other chro-
mosomes may be seen less frequently in MALT lymphomas.  BCL6  translocation 
can also rarely be seen resulting in fusion to the  IGH@  gene [ 143 ].  

17.4.1.7    Follicular Lymphoma 

 Follicular lymphoma (FL) is a clonal neoplasm of germinal center B cells including 
both small centrocytes and large centroblasts with a variable morphology and grad-
ing at the diagnosis. Approximately 90 % of the cases harbor the characteristic 
translocation, t(14;18), involving  BCL2  and  IGH@  genes. That can be detected by 
cytogenetic analysis or FISH as a more sensitive tool.  BCL2  overexpression results 
in decreased apoptosis in the lymphoma cells. Importantly, a subportion of cases, 
mostly high grade FL, may lack  BCL2  rearrangement [ 144 ]. A special attention 
needs to be paid in the situation in order to avoid a misinterpretation of “reactive 
germinal center cells”. Morphologic features by devoiding of “tangible body mac-
rophage”, loss of normal polarity and signifi cantly increased centroblasts are diag-
nostic clues when lack of the specifi c gene/protein expression. Furthermore, some 
FL, usually seen in elderly population, may lack  BCL2  but harbor  BCL6  
 re- arrangement. These cases have a different phenotype than typical FL; CD10-, 
BCL2- and BCL6+ as well as MUM1+ [ 145 ,  146 ]. The  BCL2  re-arrangement status 
may vary depending on the localization of primary FL. For instance, primary cuta-
neous FL is frequently BCL2 negative and often lack IgH-BCL2 fusion 
product/t(14;18) when analyzed by FISH [ 147 ]. Pediatric FL also lacks BCL2 and 
the translocation. 

 Other common cytogenetic abnormalities seen in 90 % of FL include 1p-, 6q-, 
17p-, +7, +8, +12 and + X [ 148 ,  149 ]. Deletions of 6q25-q27 and 9p21 are associ-
ated with poor prognosis [ 150 ]. 

 Transformation to a more aggressive lymphoma from FL has been described. 
Translocations resulting in inactivation of  TP53  and  p16  and activation of  MYC  are 
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associated with transformation to a higher grade disease [ 151 – 154 ]. Per literature, 
the majority of FL transforms into diffuse large B-cell lymphoma (DLBCL). 
Transformation to Burkitt-type lymphomas or precursor B-cell lymphoblastic lym-
phoma is also reported in a small subset of FL [ 155 ,  156 ].  

17.4.1.8    Mantle Cell lymphoma 

 Mantle cell lymphoma (MCL) is a neoplasm of small to medium sized B cells with 
typical CD5 co-expression and  (CCND1)  translocation. Translocation between 
 CCND1  on chromosome 11 and  IGH@  on chromosome 14 leading to overexpres-
sion of  CCND1  is characteristic and seen in almost all cases.  CCND1  gene encodes 
a cell cycle protein, dysregulation of which by  IGH@  gene enhancer region results 
in possibly overcoming the cell cycle suppressors leading to MCL development 
[ 157 ,  158 ]. FISH analysis of  CCND1  is the preferred and commonly used method 
in diagnosis of MCL. Rare cases of MCL do not overexpress cyclin D, in which a 
higher expression of cyclin D2 and cyclin D3 is present and these cases have identi-
cal clinical and morphologic features and same genomic profi le [ 159 ]. A subset of 
these cases harbor t(2;12)(p12;p13) or t(12;14)(p13;q32) fusing cyclin D2 to kappa 
light chain ( IGK@) or  IGH@, respectively. RT-PCR is superior in assessing cyclin 
D2 translocations. Several other recurrent genetic abnormalities have been demon-
strated in MCL, including losses of 9p21.3, 11q22-q23, and 22q11.22, and gains of 
10p11.23 and 13q31.3 [ 160 ,  161 ]. Specifi c mutations and deletions in  TP53 ( 17p13), 
 p16 (CDKN2A), ATM,  and  CHEK2  have also been frequently noted in MCL [ 162 , 
 163 ]. The cases with  TP53  are rather in blastoid morphology compared to conven-
tional MCL and associated with poor prognosis. Deletion of 13q14 and trisomy 12 
also can be seen in MCL [ 164 ]. MCL is often encountered as an aggressive lym-
phoma by nature. Recent studies demonstrated an indolent variant sharing a com-
mon genomic profi le with conventional MCL.  SOX11  gene, which has a role in cell 
differentiation, is found to be associated with indolent variant MCL [ 165 ,  166 ]. 
Immunohistochemical testing is available to evaluate  SOX11  protein.  

17.4.1.9    Diffuse Large B Cell Lymphoma 

 Diffuse large B cell lymphoma, not otherwise specifi ed (DLBCL, NOS) is a very 
heterogenous neoplasm of large B cells with variable localization, morphology and 
clinical behavior. DLBCL, NOS accounts for 25–30 % of adult non-Hodgkin 
 lymphomas and common in elderly population. It can arise as the primary or as 
transformation or progression from a lower grade lymphoma and clinically presents 
a rapidly enlarging mass. A subset of cases may be associated with EBV infection 
in the absence of immunodefi ciency. DLBCL may arise in the nodal or extranodal 
sites, with gastrointestinal tract being the most common extranodal site. Common 
morphological variants include centroblastic, immunoblastic, and anaplastic as well 
as rare variants, e.g. with spindle morphology [ 1 ]. By immunohistochemical features, 
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DLBCL, NOS is divided into three groups; (1) CD5-positive DLBCL; (2) germinal 
center B-cell-like (GCB) and (3) non-germinal center B-cell-like (non- GCB). 
Molecular subgroups include germinal center B-cell-like (GCB) type and activated 
B cell-like (ABC) type [ 1 ]. 

 Certainly, karyotyping and/or FISH study is useful in molecular subgrouping of 
DLBCL, differentiating between DLBCL and Burkitt lymphoma or hybrized 
variants. For example, detection of t(14;18) or BCL-2 gene rearrangement in 
DLBCL suggests follicular center origin (GCB type) while ABC type DLBCL often 
acquires gains of 3q, 18q21-q22 and losses of 6q21-q22 [ 167 – 169 ]. 

 However, beyond aforementioned functions, cytogenetics study also helps to 
identify a subset of them with more aggressive clinical features. Abnormalities of 
 BCL6  gene on chromosome 3q27 is the most common cytogenetic change in 
DLBCL and is seen in approximately 40–45 % of cases [ 170 ].  BCL6  is a tran-
scription factor required for germinal center formation in B cells. Translocation of 
 BCL6  occurs in approximately 30 % while 10 % of cases have BCL6 targeted by 
somatic hypermutation [ 171 – 173 ].  BCL6  related translocations involve multiple 
partner genes and prognosis is usually worse in non- IG/BCL6  gene fusion [ 174 , 
 175 ]. Translocations of  BCL2  and  BCL10  genes are the other common changes, 
seen in 30 % and 15 % of DLBCL, respectively [ 171 ,  176 ]. Translocation involv-
ing  MYC  gene also occurs up to 15 % of cases [ 171 ,  177 ,  178 ]. It has been shown 
that  MYC  translocation can be seen in  de novo  DLBCL, transformed DLBCL 
from an underlying low grade lymphoma or in the recently characterized B cell 
lymphoma unclassifi able, with features intermediate between diffuse large B cell 
lymphoma and Burkitt lymphoma (formerly atypical Burkitt lymphoma or 
Burkitt-like lymphoma) associated with poor prognosis [ 171 ,  179 – 181 ]. FISH 
testing is a valuable tool in detecting  MYC  amplifi cation/translocation in large B 
cell lymphomas. Recent studies have been focusing on the implication of measur-
ing Myc protein by immunohistochemical methods. Although some authors sug-
gest that Myc protein may predict the  MYC  gene translocation status [ 182 ], it is 
still unclear if Myc protein is enough to evaluate the gene status requiring further 
studies.  MYC  translocation has also been found in HIV associated diffuse large B 
cell lymphomas with plasmablastic features [ 183 ]. Recently, “double hit” and 
“triple hit” lymphomas have been introduced to defi ne DLBCL with often com-
plex cytogenetics involving combinations of  MYC  gene rearrangement with  BCL2 
and/or BCL6  gene detected by FISH [ 17 – 20 ]. These are considered high grade or 
aggressive lymphomas often associated with high proliferation fraction. They 
require intensive chemotherapy.  

17.4.1.10    Other Large B Cell Lymphomas 

 Primary mediastinal (thymic) large B cell lymphoma (PMBL) is a subgroup 
of DLBCL that is usually seen in younger age females and associated with a 
favorable prognosis. Since the lymphoma is putative thymic B-cell origin, it differs 
from the other  de novo  DLBCL by its own pathohistologic and genetic features. 
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The genes involved in PMBL include  MAL, FIG 1, PDL1, PDL2, JAK2,  and 
 BCL11A  [ 184 – 187 ] but rarely BCL2, BCL-6, and c-MYC gene rearrangements are 
detected. Interestingly, PMBL overlaps with classical Hodgkin lymphoma (CHL) 
by morphology and sometimes it is diffi cult to distinguish between these two lym-
phomas. Recent studies investigated the gene profi le of PMBL and CHL and found 
out PMBL showed the molecular gene-expression signature reminiscent of nodular 
sclerosis subtype of CHL; both lymphomas were shown to harbor 2p  (REL)  and 9p 
 (JAK-2)  amplifi cation [ 188 ]. ALK-positive DLBCL is another rare subgroup of 
DLBCL. In contrast to its T cell counterpart ALK-positive anaplastic large T cell 
lymphoma which characteristically harbors t(2;5) with fusion between  ALK  and 
often  NMP1 , ALK-positive DLBCL shows fusion between  ALK  gene and  CLTC  
(Clathrin) gene associated with t(2;17)(p23:q23) [ 189 ]. There are less than 1 % of 
ALK-positive anaplastic large T cell lymphoma having the same translocation [ 1 ]. 
As known, some cell markers (CD4, CD43 and MUM1) can also be aberrantly 
expressed in ALK-positive DLBCL, which could result in diagnostic challenging. 
Since karyotyping might not be requested on the submitted tissue sample, FISH 
positive for ALK gene rearrangement by using ALK break-apart probe could 
mislead to a diagnosis of anaplastic large T-cell lymphoma.  

17.4.1.11    Burkitt Lymphoma 

 Burkitt lymphoma (BL) is a very high grade B cell lymphoma characteristically 
associated with t(8;14)(q24;q32) involving  MYC  gene.  MYC  translocation located at 
8q24 region often involves immunoglobulin heavy chain at 14q32 region. Less fre-
quently translocations between  MYC  and immunoglobulin light chains can be 
observed; at 22q11 region for kappa, t(8;22) or 2p12 region for lambda, t(2;8). FISH 
is the most valuable test to detect  MYC  gene translocations, however a small portion 
of cases, up to 10 %, may be negative by FISH [ 190 ,  191 ]. As a result of this fi nding, 
the recent studies have focused on alternative mechanisms resulting  MYC  deregula-
tion. E2F1 is a transcription factor loss of which impairs  MYC -mediated proliferation 
and lymphomagenesis [ 192 ]. Another mechanism that has been recently investi-
gated is miRNA-related dysregulation of  MYC  without translocation [ 193 ]. Leucci 
et al. showed that down-regulation of hsa-miR-34b is associated with  MYC  negativ-
ity in BL [ 193 ]. Clinically, it is critical to distinguish between Burkitt’s  lymphoma 
and diffuse large-B-cell lymphoma in MYC negative cases by FISH since these two 
lymphomas require different treatments. In this setting, miRNA expression profi l-
ing appears to be promising diagnostic tool in highly suspected but  MYC  transloca-
tion negative BL cases. 

 A subset of Burkitt lymphoma demonstrates more than one gene aberration, also 
called complex abnormalities besides  MYC  [ 1 ]. Other genetic abnormalities involv-
ing Burkitt lymphoma include  p16   INK4a   , TP53, p53, BAX, p130/RB2  and  BCL6  and 
chromosome 1q abnormalities [ 46 ], Despite the additional genetic changes do not 
alter the original diagnosis as Burkitt lymphoma when the other diagnostic criteria 
meet, the clinical signifi cance of these additional cytogenetic abnormalities is still 
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of further exploration. Under certain circumstances, a careful distinction between 
“double-hit” lymphoma and Burkitt lymphoma with complex cytogenetics is clini-
cally warranted since these two different entities can greatly overlap by morphol-
ogy, phenotype and genetically.   

17.4.2     Mature T/NK Cell Neoplasms 

 T/Natural killer (NK) cell lymphomas are relatively uncommon with a signifi cant 
variation in incidence in different geographical regions and racial populations [ 1 ]. 
The diagnosis of mature T/NK cell neoplasms, as in mature B cell neoplasms, is 
often based on histomorphologic and phenotypic features. In contrast to B cell 
counterpart, only anaplastic large T cell lymphoma has been associated with recur-
rent cytogenetic abnormalities with diagnostic implication up to date [ 12 ]. 
However, a variety of mostly random genetic abnormalities have been described in 
various mature T cell neoplasms. This section mainly focuses on the frequent 
genetic abnormalities in some T/NK cell lymphomas (Table     17.3 ).

   Table 17.3    The WHO classifi cation of mature T/NK cell neoplasms

 Mature T- and NK-cell neoplasms 

 T-cell prolymphocytic leukemia 
 T-cell large granular lymphocytic leukemia 
 Chronic lymphoproliferative disorder of NK cells 
 Aggressive NK cell leukemia 
 Epstein-Barr virus (EBV) positive T-cell lymphoproliferative diseases of childhood 
  Systemic EBV + T-cell lymphoproliferative disease of childhood 
  Hydroa vacciniforme-like lymphoma 
 Adult T-cell leukemia/lymphoma 
 Extranodal NK-T-cell lymphoma, nasal type 
 Enteropathy associated T-cell lymphoma 
 Hepatosplenic T-cell lymphoma 
 Subcutaneous panniculitis-like T-cell lymphoma 
 Mycosis fungoides 
 Sezary syndrome 
 Primary cutaneous CD30 positive T-cell lymphoproliferative disorders 
 Primary cutaneous peripheral T cell lymphomas, rare subtypes 
  Primary cutaneous gamma-delta T-cell lymphoma 
  Primary cutaneous CD8 positive aggressive epidermotropic cytotoxic T-cell lymphoma 
  Primary cutaneous CD4 positive small/medium T-cell lymphoma 
 Peripheral T-cell lymphoma, NOS 
 Angioimmunoblastic T-cell lymphoma 
 Anaplastic large T-cell lymphoma, ALK positive 
 Anaplastic large T-cell lymphoma, ALK negative 
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17.4.2.1      Anaplastic Large T Cell Lymphoma (ALTCL) 

 Anaplastic large T cell lymphoma (ALTCL) is characterized by CD30 expressing 
mostly large atypical T-cells, often displaying pleomorphic morphology and 
“C-shaped” or “horseshoe- shaped nuclei”. Based on the genetic background, 
ALTCL can be divided into two subcategories by presence or absence of  ALK  
(anaplastic large cell kinase) gene abnormality [ 21 ]. 

 Anaplastic large T cell lymphoma (ALTCL), ALK positive, is a T cell lym-
phoma with defi ned recurrent cytogenetic abnormality. The most frequent translo-
cation seen is t(2;5)(p23;q35) between  ALK  gene and often nucleophosmin ( NPM ) 
genes, found nearly 84 % of ALTCL [ 1 ]. This translocation can be detected by 
FISH using ALK break apart probe or karyotyping. There are also many other less 
frequent partners to  ALK  genes located on various chromosomes including  TPM3, 
TPM4, TFG, ATIC, CLTC, MOESIN, MYH9  and  ALO17  [ 1 ,  194 – 200 ] (Fig.  17.2 ). 
 ALK  gene rearrangement, with different translocations beyond t(2;5)(p23;q35), 
can also be found in the other hematopoietic or non-hematopoietic neoplasms 

Anaplastic large cell lymphoma

ALK-positive  ALCL ALK-negative ALCL

t(2;5) NPM/ALK
Variant ALK

fusion proteins

• t(1;2)(q25;q35) TPM3/ALK (13%)
• t(2;19)(p23;p13.1)TPM4/ALK (<1%)
• t(2;3)((p23;q12) TFG/ALK (<1%)
• Inv(2)(p23q35) ATIC/ALK (<1%)
• t(2;17)(p23;q23) CLTC/ALK (<1%)
• t(X;2)(q11-12;p23) MSN/ALK (<1%)
• t(2;22)(p23;q11.2) MYH9/ALK (<1%)
• t(2;17)(p23;q25) ALO17/ALK (<1%)

85% 15%

  Fig. 17.2    The commonly detected partner genes to  ALK  gene in anaplastic large T-cell lymphoma       
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   e.g. ALK + DLBCL involving t(2;17), non-small cell lymphoma, involving ALK 
fused to EML4 in an inv(2)(p21p23), and infl ammatory myofi broblastic tumors 
involving t(1;2)(q25;p23).

   A molecular diagnosis of ALK-negative ALTCL is challenging due to lack of 
recurrent primary cytogenetic aberration [ 1 ]. Careful examination of morphohistol-
ogy and immunphenotyping are essentially needed to diagnose ALK-negative 
ALTCL. Notable efforts should be made in characterizing ALK-negative ALCL 
with gene profi le.  

17.4.2.2    T-Prolymphocytic Leukemia 

 T cell prolymphocytic leukemia (T-PLL) is an aggressive T cell neoplasm often 
associated with inversion of chromosome 14. The incidence of inv(14q) in T-PLL is 
high, approximately 80 % of cases, while 10 % of cases show a reciprocal transloca-
tion of chromosome 14 (t(14;14)(q11;q32) [ 179 ]. t(X;14) can rarely be seen [ 201 ]. 
As the results of inversion or translocation of 14q11, TCL1A and TCL1B oncogenes 
at the break region are activated [ 202 ]. Because of TCL1 is not present in mature 
T-cells and has a -high frequency found in T-PLL (70–80 % of patients) [ 202 ], iden-
tifi cation of TCL1 activation by genetic or molecular tools helps a diagnosis of a 
T-PLL. In addition, a study showed that increased TCL1 is not only useful in 
diagnosis of T-PLL but also indicates a high proliferation in a subset of T-PLL in 
conjunction with intact T-cell receptor signaling [ 203 ]. Abnormalities of chromo-
some 8 and deletions of 11q23 are other rare genetic inactivation of  CDKN2A  as 
well as  PTEN  is described with possible association with disease progression 
[ 46 ,  204 – 206 ]. In addition, deletions or point mutations of  ATM  gene alleles have 
been demonstrated in some T-PLL cases suggesting that the dysfunction of this 
tumor suppressor gene play a role in the pathogenesis of this tumor [ 207 ].  

17.4.2.3    The Other T Cell Lymphomas 

 There are sporadic cytogenetic changes noted in the other T-cell lymphomas, which 
have no known implications in diagnosis or prognosis of these T-cell lymphomas. 
As discussed in above, clonal T-cell gene rearrangement remains the sole molecular 
approach, though with low specifi city. 

 Peripheral T cell lymphoma, not otherwise specifi ed (PTCL, NOS) is usually 
associated with a complex karyotypes with recurrent chromosomal gains in chro-
mosomes 7q, 8q, 17q, and 22q as well as recurrent losses in chromosomes 4q, 5q, 
6q, 9p, 10q, 12q and 13q [ 1 ]. 

 Mycosis fungoides (MF) is another T cell lymphoma of cutaneous origin. MF 
is often associated with complex karyotype, such as structural and numerical 
changes of chromosomes. Activation of  STAT3 and  inactivation of  CDKN2A  as 
well as  PTEN  are described with possible association with disease progression [ 46 , 
 204 – 206 ].       
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