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Abstract The paper addresses new perspective of the PSO including a fractional
block. The local gain is replaced by one of fractional order considering several pre-
vious positions of the PSO particles. The algorithm is evaluated for several well
known test functions and the relationship between the fractional order and the con-
vergence of the algorithm is observed. The fractional order influences directly the
algorithm convergence rate demonstrating a large potential for developments.

Keywords Fractional calculus · Particle swarm optimization

1 Introduction

In the last decade particle swarming optimization (PSO) has been applied in a plethora
of fields such as social modeling, computer graphics, simulation and animation of
natural flocks or swarms, pattern recognition, color image quantization and com-
putational biology [1]. PSO has motivated considerable interest from the natural
computing research, where important work has been enforced in the study of its
convergence.

Fractional Calculus (FC) is a natural extension of the classical mathematics. Since
the beginning of theory of differential and integral calculus, several mathematicians
investigated the calculation of noninteger order derivatives and integrals. Neverthe-
less, the application of FC has been scarce until recently, but the recent scientific
advances motivated a renewed interest in this field.
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Bearing these ideas in mind, this work uses a fractional derivative to control
the convergence rate of the PSO. The article is organized as follows. Section 2
introduces the FC. Section 3 presents the PSO and its working principles. Based
on this formulation, Sect. 4 generalizes the PSO to a fractional order. Section 5
presents the results for the PSO with fractional velocity. Finally, Sect. 6 outlines the
main conclusions.

2 Introduction to Fractional Calculus

FC goes back to the beginning of the theory of differential calculus. Nevertheless, the
application of FC just emerged in the last two decades, due to the progresses in the
area of nonlinear and complex systems that revealed subtle relationships with the FC
concepts. In the field of dynamics systems theory some work has been carried out, but
the proposed models and algorithms are still in a preliminary stage of establishment.

The fundamentals aspects of FC theory are addressed in [2–5]. Concerning
FC applications research efforts can be mentioned in the area of viscoelasticity,
chaos, fractals, biology, electronics, signal processing, diffusion, wave propagation,
modeling, control and irreversibility [6–10].

FC is a branch of mathematical analysis that extends to real, or even complex,
numbers the order of the differential and integral operators. Since its foundation,
the generalization of the concept of derivative and integral to a non-integer order α
has been the subject of distinct approaches. A formulation based on the concept of
fractional differential, is the Grünwald–Letnikov definition given by the equation:

Dα [x(t)] = lim
h→0

[

1

hα

+∞
∑

k=0

( − 1)k�(α + 1)x(t − kh)

�(k + 1)�(α − k + 1)

]

(1)

where �() is the Euler function.
An important property revealed by expression (1) is that while an integer-order

derivative just implies a finite series, the fractional-order derivative requires an infi-
nite number of terms. Therefore, integer derivatives are ‘local’operators in opposition
with fractional derivatives which have, implicitly, a ‘memory’ of all past events.

Often, in discrete time implementations expression (1) is approximated by:

Dα [x(t)] = 1

T α

r
∑

k=0

( − 1)k�(α + 1)x(t − kT )

�(k + 1)�(α − k + 1)
(2)

where T is the sampling period and r is the truncation order.
The Z −transform formulation of a derivative of fractional order α ∈ C of the

signal x(t), Dα[x(t)], is a ‘direct’generalization of the classical integer-order scheme
yielding, for zero initial conditions:

Z {Dα[x(t)]} =
(

1 − z−1

T

)α

X(z) (3)
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where z is the Z −transform variable.
The characteristics revealed by fractional-order models make this mathematical

tool well suited to describe phenomena such as irreversibility and chaos because
of its inherent memory property. In this line of thought, the propagation of pertur-
bations and the appearance of long-term dynamic phenomena in a population of
individuals subjected to an evolutionary process configure a case where FC tools fit
adequately [11].

3 Particle Swarm Optimization Algorithm

Evolutionary algorithms have been successfully adopted to solve many complex
optimization engineering applications. Together with genetic algorithms, the PSO al-
gorithm, proposed by Kennedy and Eberhart [12], has achieved considerable success
in solving optimization problems.

The PSO algorithm was proposed originally in [12]. This optimization technique
is inspired in the way swarms behave and its elements move in a synchronized way,
both as a defensive tactic and for searching food. An analogy is established between a
particle and a swarm element. The particle movement is characterized by two vectors,
representing its current position x and velocity v. Since 1995, many techniques were
proposed to refine and/or complement the original canonical PSO algorithm, namely
by analyzing the tuning parameters [13] and by considering hybridization with other
evolutionary techniques [14].

In literature, some work embedding FC and PSO algorithms can be found. Pires
et al. [15] studies the fractional dynamics during the evolution of a PSO. Reis
et al. [16] propose a PSO, for logic and circuit design, where is implemented a
proportional-derivative fitness function to guide the optimization. Pires et al. [17]
study the convergence of a PSO with a fractional order velocity.

Algorithm 1 illustrates a standard PSO algorithm. The basic algorithm begins
by initializing the swarm randomly in the search space. As it can be seen in the
pseudo-code, were t and t + 1 represent two consecutive iterations, the position x of
each particle is updated during the iterations by adding a new velocity v term. This
velocity is evaluated by summing an increment to the previous velocity value. The
increment is a function of two components representing the cognitive and the social
knowledge.

The cognitive knowledge of each particle is included by evaluating the difference
between its best position found so far b and the current position x. On the other
hand, the social knowledge, of each particle, is incorporated through the difference
between the best swarm global position achieved so far g and its current position x.
The cognitive and the social knowledge factors are multiplied by random uniformly
generated terms φ1 and φ2, respectively.

Algorithm 1: Particle swarm optimization
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Initialize Swarm;
repeat

forall particles do
calculate fitness f

end
forall particles do

vt+1 = vt + φ1.(b − x) + φ2.(g − x);
xt+1 = xt + vt+1;

end
t = t + 1

until stopping criteria ;

PSO is a optimization algorithm that proves to be efficient, robust and simple.
However, if no care is taken the velocities may attain large values, particularly when
particles are far away from local and global bests. Some approaches were carried
out in order to eliminate this drawback. Eberhat et al. [18] proposed a clamping
function (4) to limit the velocity, through the expression:

vij (t + 1) =
{

v′ij (t + 1) if v′ij (t + 1) < Vmax j

Vmax j if v′ij (t + 1) ≥ Vmax j
(4)

where v′ij (t + 1) is given by v′ij (t + 1) = vij (t) + φ1.(b − x) + φ2.(g − x) for the
parameter j of particle i at iteration t + 1.

Later, a constant, the inertia weight, was introduced [13] to control the velocity
from exploding (5). The inertia weight ω is very important to ensure convergence
behavior over evolution by adopting the equation:

vt+1 = ω.vt + φ1.(b − x) + φ2.(g − x) (5)

Some empirical and theoretical studies were made to determine the best inertia value
[19] in order to obtain better PSO behavior.

Oliveira et al. [20] represent the PSO as a feedback control loop and establishing
an analogy between the particle dynamics with a feedback control loop. They present
a proportional and integral controller based on particle swarm algorithm, which does
not require any parameter to regulate the swarm convergence over time.

4 Fractional PSO

In this section the PSO is modeled through Z block diagram. Additionally, the local
unit feedback of xt signal is replaced by a fractional one, represented by the pink
block in Fig. 1.

The position term b− x is substituted by a fractional version given in expression
(5). In fact, considering the first r = 4 terms of the fractional derivative series, the
b − x term is replaced by:
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Fig. 1 PSO Diagram Block, el—local error, eg—global error

b − xt+1 = b −
[

αxt + α

2
(1 − α)xt−1 + α

6
(1 − α)(2 − α)xt−2 (6)

+ α

24
(1 − α)(2 − α)(3 − α)xt−3

]

Therefore, the expression (5) can be rewritten as:

vt+1 = vt + φ1.
[

b − αxt − α

2
(1 − α)xt−1 − α

6
(1 − α)(2 − α)xt−2

− α

24
(1 − α)(2 − α)(3 − α)xt−3

]

+ φ2.(g − xt ) (7)

In the next section, several distinct values of r are tested.

5 Test Functions

This section introduces the optimization functions that are adopted during the tests of
PSO with fractional velocity update (7). The objective consists in minimizing several
well known functions [19]. These functions have n parameters, i = {1, . . ., n} and
their global optimum value is f ∗. The algorithm adopts a real encoding scheme. In
this line of thought are considered: (1) Rosenbrock’s valley (also known as Banana
function), (2) Drop wave, (3) Easom and (4) Michalewicz’s, represented in the
following expressions:
(1) Rosenbrock’s valley function:

f1(x) =
n−1
∑

j=1

100
(

xi+1 − x2
i

)2
(8)

with xi ∈ [ − 2.048, 2.048], i = {1, . . ., 4} and f ∗(x) = 0.0.
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Fig. 2 Rosenbrock’s function, evolution of the median of best PSO solution versus iteration for
α = {0, 0.1, . . . , 2.0}

(2) Drop wave function:

f2(x) = −
1 + cos

(

12
√

x2
1 + x2

2

)

0.5
(

x2
1 + x2

2

)+ 2
(9)

with xi ∈ [ − 10, 10], i = {1, 2} and f ∗(x) = −1.0.
(3) Easom function:

f3(x) = − cos (x1) cos (x2)e−(x1−π )2−(x2−π )2
(10)

with x1, x2 ∈ [ − 100, 100] and f ∗(x) = −1.0.
(4) Michalewicz’s function:

f4(x) =
n
∑

j=1

− sin (xj )

[

sin
(j + 1)x2

j

π

]2 m

(11)

with n = 2, m = 1, xi ∈ [0,π ], i = {1, 2} and f ∗(x) = −1.84.
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Fig. 3 Drop wave, evolution of the median of best PSO solution versus iteration for
α = {0, 0.1, . . . , 2.0}

6 Simulation Results

To study the influence of the fractional feedback effect in the algorithm, several tests
are now developed. A 10–population size PSO is executed during a period of 200
iterations with {φ1,φ2} ∼ U [0, 1], where U represents the function that generates
numbers with a uniform distribution in the specified range. The fitness evolution of
the best global particle is taken as the system output.

Since PSO is a stochastic algorithm, every time it is executed it leads to a different
trajectory convergence. Therefore, a test group of 201 simulation was considered,
and the median is taken as the final output, for each value in the set of fractional order
α = {0, 0.1, . . ., 2.0}. In Figs. 2, 3, 4, and 5 are depicted results for the optimization
functions fj , j = {1, . . ., 4}.

It can be verified that the convergence of the algorithm depends directly upon the
fractional order α. Normally, values of α = 1.8 reaches faster convergence results.
One the other hand, for low values of α the algorithm reveals convergence problems.
This is due to the local error, el = φ1[b− αxt − 0.5α(1− α)xt−1 − . . .] � φ1b, that
does not weights adequately the error between the particle actual position and the best
position found so far by the particle. Therefore, the algorithm becomes inefficient
and the algorithms takes more time to find the optimum.
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Fig. 4 Easom function, evolution of the median of best PSO solution versus iteration for
α = {0, . . . , 1}
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Fig. 5 Michalewicz’s function, evolution of the median of best PSO solution versus iteration for
α = {0, . . . , 1}
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7 Conclusions

Block diagram and Z −transform are engineering tools that lead the designer to a
better understanding of the PSO in a control perspective. On the other hand, FC is a
mathematical tool that enables an efficient generalization of the PSO algorithm. Bear-
ing these facts in mind, the fractional order position error was analyzed showing that
it influences directly the algorithm convergence. Moreover, the results are consistent
representing an important step towards understanding the relationship between the
system position and the convergence behavior. In conclusion, the FC concepts open
new perspectives towards the development of more efficient evolutionary algorithms.
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