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Abstract In adaptive nonlinear control Lyapunov’s 2nd or “Direct” method became
a fundamental tool in control design due to the typical practical difficulties viz. a)
most of the control problems do not have closed analytical solutions; b) from nu-
merical calculations “well behaving within a finite period” the stability cannot be
taken for granted. According to Lyapunov, guaranteeing negative time-derivative of
the Lyapunov function by relatively simple estimations the stability of the solution
can theoretically be guaranteed. However, finding an appropriate Lyapunov function
to a given problem is rather an “art” that cannot algorithmically be automated. Adap-
tivity normally requires slow tuning of numerous model parameters. This process
is sensitive to unknown external disturbances, and the tuning rule is determined by
numerous other, more or less arbitrary “adaptive control parameters”. Furthermore,
making the necessary estimations is a laborious, tedious work that normally results
in “very strange conditions” to be met for guaranteeing stability of the solution. In
the present paper the application of “Robust Fixed Point Transformations” is pro-
posed instead of the Lyapunov technique. It can find the proper solution without
any parameter tuning and depends on the setting only of three “adaptive control
parameters”. As application example direct control of a “Single Input—Single Out-
put (SISO)” system, and a novel version of the “Model Reference Adaptive Control
(MRAC)” of a “Multiple Input—Multiple Output (MIMO)” system is presented.
Since this method cannot automatically guarantee global stability, as a novelty, a
possible adaptive tuning of one of the adaptive control parameters is proposed for
SISO systems to keep the control within the local basin of attraction of the proper
convergence. Its operation is presented via simulations at first time in this paper.
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1 Introduction

Lyapunov’s 2nd Method is a widely used technique in the analysis of the stability
of the motion of the non-autonomous dynamic systems of equation of motion as
ẋ = f (x, t). The typical stability proofs provided by Lyapunov’s original method
published in 1892 [5] (and later on in e.g. [6]) have the great advantage that they
do not require to analytically solve the equations of motion. Instead of that the
uniformly continuous nature and non-positive time-derivative of a positive definite
Lyapunov-function V constructed of quadratic terms of the tracking and modeling
errors of the system’s parameters are assumed in the t ∈ [0,∞) domain. From
that the convergence V̇ → 0 can be concluded according to Barbalat’s lemma [4]
utilizing the uniform continuity of V̇ . It used to be guaranteed by showing that V̈
is bounded. Due to the positive definite nature of V from that it normally follows
that the tracking errors have to remain bounded, or in certain special cases, has to
converge to 0. To illustrate the difficulties related to the “orthodox use of Lyapunov’s
direct method”, on the basis of [4, 11, 14], and [13] a brief summary will be given
in the next subsection.

1.1 Example for Orthodox Use of Lyapunov Functions

The most “historical” adaptive controllers used in robotics are the methods of “Adap-
tive Inverse Dynamics” and the “Adaptive Slotine–Li” controllers [4]. Since similar
observations can be done for both of them, in the present considerations we recapit-
ulate only the latter one. It utilizes subtle details of the Euler–Lagrange equations
of motion, viz. that the terms quadratic in the generalized velocity components can
specially be symmetrized. In this approach the exerted generalized torque/force com-
ponents are constructed by the use of the actual model marked by the symbol ˆ and
causes q̈ according to the exact model values:

Q = Ĥ (q)v̇ + Ĉ(q, q̇)v + ĝ +KDr = H (q)q̈ + C(q, q̇)q̇ + g

e := qN − q, v := q̇N +�e, r := ė +�e, p̃ := p̂ − p

Cij = 1
2

∑

z q̇z

(

− ∂Ĥzj

∂qi
+ ∂Ĥij

∂qz
+ ∂Ĥiz

∂qj

)

, Q = Y (q, q̇, v, v̇)p̂ +KDr

(1)

in which qN and q denote the generalized co–ordinates of the nominal and the actual
motion, KD and � are symmetric positive definite matrices, matrices H, C, and g

denote the system’s inertia matrix, the Coriolis, and the gravitational terms. The
possession of the exact form of the dynamical model makes it possible to linearly
separate the system’s dynamic parameters p in the expression of the physically inter-
preted generalized forces Q by the use of matrix Y that exclusively consists of known
kinematical data. The Lyapunov function of this method is V = rT Hr + p̃T �p̃,
with positive definite symmetric matrix �. For guaranteeing negative derivative of
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the Lyapunov function the skew symmetry of the Cij matrix and the parameter tuning
rule ˙̂p = �−1YT r are utilized. The above results well exemplify the difficulties with
the application of the Lyapunov function: (a) no unknown external perturbations can
be present; (b) for a complex Classical Mechanical System p̂ may have many (say
m) independent components; besides the elements of the positive definite matrices
�, KD we have further m+ (m2−m)/2 independent elements in the positive definite
matrix � (the main diagonals plus the parameters of the arbitrary orthogonal ma-
trix O that can transform a positive definite diagonal matrix D into a more general
non-diagonal form � = OTDO); (c) the tuning process is too slow, since it happens
according to the matrix � in spite of the fact that more explicit information can be
obtained for the parameter errors if we subtract Ĥ q̈, Ĉq̇, and ĝ from both sides of
(1) [13]: Ĥ ṙ + Ĉr +KDr = (H − Ĥ )q̈ + (C − Ĉ)q̇ + g − ĝ = ϒ(q, q̇, q̈)(p− p̂).
Since both the LHS of this equation and ϒ are known, an SVD-based generalized
inverse of ϒ can provide direct information for optimal parameter tuning. Regarding
the variation of the “error metrics” from both sides of the 1st line of (1) H v̇, Cv̇,
KDr , and g can be subtracted so again some information can be obtained on the
modeling errors: Y p̃ = −KDr −Hṙ −Cr . The fragment of the Lyapunov function
rT Hr itself can serve as a metrics for r . It has the time-derivative d(rT Hr)/dt =
2rT H ṙ+ rT Ḣ r = rT (Ḣ −2 C)r−2rT KDr−2rT Y p̃ = −2rT KDr−2rT Y p̃. That
is this metrics is kept at bay during the new tuning process by the negative quadratic
term and it is perturbed only by a linear one with a coefficient p̃ that converges to zero
as the tuning proceeds. That is asymptotic stability can be also maintained without
using the original Lyapunov function.

1.2 Adaptive Control Based on Robust Fixed Point
Transformations

Certain control tasks can be formulated by using the concept of the appropriate
“excitation” U of the controlled system to which it is expected to respond by some
“desired response” rd . The appropriate excitation can be computed by the use of
the inverse dynamic model of the system as U = ϕ(rd ). Since normally this inverse
model is neither complete nor exact, the actual response determined by the system’s
dynamics, ψ , results in a realized response rr that differs from the desired one:
rr ≡ ψ(ϕ(rd )) ≡ f (rd ) 
= rd . The controller normally can manipulate or “deform”
the input value from rd to rd� so that rd ≡ ψ(rd� ). Such a situation can be maintained
by the use of some local deformation that can properly “drag” the system’s state
in time while it meanders along some trajectory. To realize this idea a fixed point
transformation was introduced in [12] that is quite “robust” as far as the dependence
of the resulting function on the behavior of f (•) is concerned. This robustness can
approximately be investigated by the use of an affine approximation of f (x) in the
vicinity of rd� and it is the consequence of the strong nonlinear saturation of the
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sigmoid function tanh (x):

G(r|rd ) := (r +K)
[

1 + B tanh (A[f (r) − rd ])
]−K

G(rd� |xd ) = rd� , if f (rd� ) = rd then G( −K|rd ) = −K ,

G(r|rd )′ = (r+K)ABf ′(r)
cosh (A[f (r)−rd ])2 + 1 + B tanh (A[f (r) − rd ]),

G(rd� |rd )′ = (rd� +K)ABf ′(rd� ) + 1.

(2)

It is evident that the transformation defined in (2) has a proper (rd� ) and a false
(−K) fixed point, but by properly manipulating the control parameters A, B, and
K the good fixed point can be located within the basin of attraction of the iteration
obtained by the repetitive use of function rn+1 := G(rn|rd ) if the requirement of
|G′(r|rd )| < 1 can be guaranteed in the vicinity of rd� : if |G′| ≤ H [0 ≤ H < 1] can
be maintained then a Cauchy sequence is obtained via the iteration that is convergent
in the real numbers and it converges to the solution of the Fixed Point Problem
rn → rd� = G(rd� ) [12]. Instead of the function tanh any sigmoid function, i.e. any
bounded, monotone increasing, smooth function σ (x) with the property of σ (0) = 0
can naturally be used (e.g. σ (x) := x/(1 + |x|)), too. A possibility for applying
the same idea outlined in (2) of adaptivity is the application of a sigmoid function
projected to the direction of the response-error defined in the nth control cycle as
�h := �f (�rn)− �rd , �e := �h/||�h||, B̃ = Bσ (A||�h||), so that �rn+1 = (1+ B̃)�rn+ B̃K�e. If
||�h|| is very small, instead of normalizing with it the approximation �rn+1 = �rn can be
applied since then the system already is in the very close vicinity of the fixed point.

This idea can be used in the following manner for SISO systems: on the basis
of the available rough system model a simple PID controller can be simulated that
reveals the order of magnitude of the occurring responses. Parameter K can be so
chosen for which the r+K values are considerable negative numbers. Depending on
sign(f ′) let B±1 and let A > 0 be a small number for which |∂G(r|rd )/∂r| ≈ 1−ε

for a small ε > 0. For rd varying in time the following estimation can be done in
the vicinity of the fixed point when |rn − rn−1| is small: rn+1 − rn = G(rn|rdn ) −
G(rn−1|rdn−1) ≈ ∂G(rn−1|rdn−1)

∂r
(rn − rn−1) + ∂G(rn−1|rdn−1)

∂rd
(rdn − rdn−1). Since from the

analytical form of σ (x)
∂G(rn−1|rdn−1)

∂rd
is known, and the past “desired” inputs as well

as the arguments of function G are also known, this equation can be used for realtime

estimation of
∂G(rn−1|rdn−1)

∂r
. ε can be tried to be fixed around −0.25 by a slow tuning

of parameter A as Ȧ = α(εest +0.25)A (α > 0) to keep the system in the local basin
of attraction. The simulations revealed that increasing A resulted in smooth control,
decreasing A caused small fluctuations. To avoid the occurrence of such fluctuations
instead of a single α different values were chosen for “slow increase” (αincr ) and
“very fast decrease” was prescribed by αdecr = 20αincr . In the sequel a simple
possible application is outlined for a strongly nonlinear system, the Electrostatic
Microactuator (EμA). In connection with this problem in [10] the possibility of
tuning A was not considered.
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2 A Potential Example for Tuning the Adaptive Control
Parameter

Paper [10] was inspired by the work by Vagia, Nikolakopoulos and Tzes who sug-
gested the application of a robust switching PID controller coupled to a feed-forward
compensator for controlling an electrostatic micro-actuator (EμA) in [15]. In their
approach the precise non-linear model of a given EμA was linearized in certain
set-points as typical operating points and the LMI technique was used in the design
phase to stabilize separate PID controllers that were determined in the vicinity of
these set points. Such kinds of controllers have to switch at the boundaries within
which static PID parameters are set. The design typically was made by minimization
of quadratic cost functions. The EμA corresponds to a micro-capacitor whose one
plate is attached to the ground while its other moving plate is floating in the air. In the
present paper the model considered was taken from [15]. Accordingly, the equation
of motion of the system is given as follows

q̈ = −bq̇ − kq + εAPlU
2/(2(ηmax − q)2) +Qd

m
(3)

in which b = 1.4×10−5 kg · · · is the viscous damping of the motion of the EμA in air,
k = 0.816 N/m is a spring constant, APl = (400× 10−6 m)2 denotes the area of the
plate, m = 7.096× 10−10 kg is its mass, ηmax = 4× 10−6 m is the distance between
the plates when the spring is relaxed, q is the displacement of the plates from the
relaxed position, ε = 9×10−12 C2/(N · m2) is the dielectric constant, Qd denotes the
external disturbance forces, and U denotes the control voltage e.g. the physical agent
by the help of which the plate’s displacement can be controlled. It can be seen that
(3) is singular near q = ηmax , therefore for controllability allowable displacements
of the micro-capacitor’s plate in the vertical axis were q ∈ [0.1, 1.3] × 10−6 m that
was deemed necessary in order to guarantee the stability of the linearized open-loop
system in [15]. In that paper only responses to step-like inputs were considered.

In the present simulations continuous variation of the nominal motion was pre-
scribed by 3rd order spline functions in which the 2nd derivatives linearly vary with
the time within neighboring intervals. A the boundaries of these intervals the accel-
erations are continuous functions. To study the effect of the modeling errors in the
simulations the controller assumed the approximate model parameters as follows:
ÂP l = 0.8APl, m̂ = 1.2 m, b̂ = 1.2b, k̂ = 1.2k, η̂max = 0.8ηmax, and ε̂ = 0.8ε.
Their effects can well be traced in the first row of Fig. 1 that reveals erroneous tra-
jectory and acceleration (response) tracking in the case of a common PID controller
defining the prescribed relaxation as q̈Des = q̈N + 3�2(qN − q) + 3�(q̇N − q̇) +
�3
∫ t

t0
(qN (ξ ) − q(ξ ))dξ with � = 8500/s in which qN (t) denotes the nominal tra-

jectory. The adaptive controller used the following parameters: K = −500m/s2,
B = 1, and as an initial estimation Aini = 3 × 10−3 s2/m, and αincr = 103/s. As it
can be seen from the 2nd and 3rd rows of Fig. 1, the tracking errors quickly relaxed,
and in the non-transient phase of the motion fine tracking and acceleration tracking
were realized. It is also clear that the initial Aini parameter was “overestimated”, it
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Fig. 1 The operation of the non–adaptive controller (1st row), and that of the adaptive one: the
trajectory and acceleration tracking (2nd row), the tracking error and the tuned adaptive control
parameter A (3rd row)

was quickly decreased in the initial phase of the motion and later was finely tuned
to keep the control near the center of the local basin of attraction by decreasing
and increasing sessions. The simulations well exemplify the expected behavior of the
simple adaptive controller.

3 The Traditional and the Novel MRAC Approaches

The MRAC technique is a popular and efficient approach in the adaptive control of
nonlinear systems e.g. in robotics. A great manifold of appropriate papers can be
found for the application of MRAC from the early nineties (e.g. [4]) to our days
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(e.g. [2]). One of its early applications was a breakthrough in adaptive control. In [7]
C. Nguyen presented the implementation of a joint-space adaptive control scheme
that was used for the control of a non-compliant motion of a Stewart platform-
based manipulator that was used in the Hardware Real-Time Emulator developed
at Goddard Space Flight Center to emulate space operations. The mainstream of
the adaptive control literature at that time used some parametric models and applied
Lyapunov’s “direct method” for parameter tuning (e.g. [4, 3]). The essence of the
idea of the MRAC is the transformation of the actual system under control into a
well behaving reference system (reference model) for which simple controllers can
be designed. In the practice the reference model used to be stable linear system
of constant coefficients. To achieve this simple behavior normally special adaptive
loops have to be developed.

In our particular case the reference model can be the nonlinear analytical model
of the system built up of its nominal parameters. Assume that on purely kinematical
basis we prescribe a trajectory tracking policy that needs a desired acceleration of
the mechanical system as q̈D . From the behavior of the reference model for that
acceleration we can calculate the physical agent that could result in the response q̈D

for the reference model (in our case the generalized force components UD). The
direct application of this UD for the actual system could result in different response
since its physical behavior differs from that of the reference model. Therefore it
can be “deformed” into a “required” UReq value that directly can be applied to the
actual system. Via substituting the realized response of the actual system q̈ into the
reference model the “realized control action” UR can be obtained instead of the
“desired one” UD . Our aim is to find the proper deformation by the application of
whichUR well approachesUD , that is at which the controlled system seems to behave
as the reference system. The proper deformation may be found by the application
of an iteration as follows. Consider the iteration generated by some function G as
U

Req

n+1 = G(UReq
n ,UR

n ,UD
n+1) in which n is the index of the control cycle. For slowly

varying desired value UD can be considered to be constant. In this case the iteration
is reduced to U

Req

n+1 = G(UReq
n ,UR

n |UD) that must be made convergent to U
Req
� . It is

evident that the same function G and the same considerations can be applied in this
case as that detailed in Sect. 1.2. In the sequel an possible application is outlined via
simulation.

3.1 Novel MRAC Control of a 3 DOF System

The sketch of the system considered is given in Fig. 2. In the dynamical model it
was assumed that the hamper is assembled to the end of the beam at its mass center
point. The Euler-Lagrange equations of motion also given in Fig. 2 are valid in this
case.

The dynamic parameters of the actual system were assumed to be M = 30 kg
(the mass of the cart moving in the horizontal direction), m = 10 kg (the mass of the
hamper), L = 2 m (the length of the beam), � = 20 kg · m2 (the inertia momentum
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Fig. 3 The paradigm considered: the cart + beam + hamper system

of the hamper), and g = 10 m/s2 the gravitational acceleration. For the simplicity
the mass and the inertial momentum of the beam was neglected. The appropriate
“nominal parameters of the reference model” quite considerably differed from the
actual one as follows: M̂ = 60 kg, m̂ = 20 kg, L̂ = 2.5 m (only within the dynamic
model, the kinematic model that is responsible for trajectory tracking used the exact
value), �̂ = 50 kg · m2, and ĝ = 8 m/s2. The appropriate results for the non-adaptive
and adaptive approaches for the PID type prescribed tracking error relaxation as
q̈D = q̈N +3�2(qN −q)+3�(q̇N − q̇)+�3

∫ t

t0
(qN (ξ )−q(ξ ))dξ with a small � =

1/s resulting in lose tracking [qN (t) denotes the nominal trajectory that was generated
by 3rd order spline functions to produce linearly varying nominal acceleration within
well defined intervals with continuous connection at their boundaries]. The fixed
adaptive parameters were: K = 7000, B = −1, and A = 10−5. Representative
results are given in Fig. 3. The improvement due to the adaptivity is quite illustrative:
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Fig. 4 The operation of the non–adaptive controller (1st row), and that of the adaptive one
(2nd and 3rd rows) (color coding for the trajectories: qN

1 = black, qN
2 = blue, qN

3 = green,
q1 = bright blue, q2 = red, q3 = magenta); for the accelerations: q̈N
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kinematically corrected “desired” values, and q̈1 = yellow, q̈2 = dark blue, q̈3 = light blue
for the realized values)]; generalized forces: exerted: Q1 = black, Q2 = blue, Q3 = green;
calculated from the reference model: Q1 = bright blue, Q2 = red, Q3 = magenta, recal-
culated from the realized acceleration and the parameters of the reference model: Q1 = yellow,
Q2 = dark blue, Q3 = light blue)

the nominal trajectories are well approximated by the “realized” (simulated) ones
while the QD forces calculated from the reference model are well approximated
by the recalculated QR values and both considerably differ from the really exerted
forcesQReq that is needed for properly manipulating the actual physical system under
control. This altogether proves that the MRAC controller works, and the “deformed
part” in the RHS of Fig. 4 really behaves like the reference model.
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4 Concluding Remarks

In this paper possible substitution of Lyapunov’s “Direct Method” by the application
of “Robust Fixed Point Transformations (RFPT)” in the adaptive control of nonlin-
ear dynamic systems was suggested. For this purpose two typical frameworks, the
“Model Based Computed Force Control” using approximate model and the “Model
Reference Adaptive Controllers” were considered for a SISO and a MIMO system
to be controlled. It was shown that this latter method is far less complicated and
works with far less “arbitrary” parameters than the Lyapunov function based tuning
approaches. Illustrative examples obtained by simulation have shown that in spite
of the fact that this latter method cannot guarantee global asymptotic stability, it
can work for a wide set of physical systems to be controlled. For compensating this
deficiency for the case of SISO systems additional tuning of one of the altogether
three control parameters proposed to keep the control near the center of the local
basin of attraction of the RFPT transformation. Its operation was illustrated via sim-
ulations. In the next phase of the research this tuning is expected to be extended for
the adaptive control of MIMO systems.
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