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Preface

This book addresses, in a single volume, some of the contributions that are carefully
selected according to the reports of referees, presented at the International Sympo-
sium, MME10 Mathematical Methods in Engineering, held in Polytechnic Institute
of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21–24,
2010.

The Symposium provided a setting for discussing recent developments issues
about theoretical and applied areas of mathematics and engineering. The conference
was intended to be an international forum where an effective exchange of knowledge
and experience amongst researchers active could take place.

The members of the organizing committee were Micael Couceiro and Nuno
Ferreira.

We would like to thank all the referees and other colleagues who helped in prepar-
ing this book for publication. Our thanks are also due to all participants for their
contributions to the symposium and to this book.

Our special thanks are due to Nathalie Jacobs and Cynthia Feenstra from Springer,
for their continuous help and work in connection with this book.
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Mathematical Modeling for
Software-in-the-Loop Prototyping of Automated
Manufacturing Systems

Claudio Bonivento, Matteo Cacciari, Andrea Paoli and Matteo Sartini

Abstract Nowadays automated manufacturing systems are designed as the complex
interconnection of components belonging to different engineering domains. Actually
high performances are required in order to satisfy market needs and standards. In
this framework the validation via simulation plays a crucial role as it allows to verify
the system during the design phase. Software-in-the-loop architectures represent a
good practice to take into account also technological side-effects that represent a
classical cause of long time-to-market or, in the worst case, to project failure. In this
paper we present a mathematical simulator to be used within a software-in-the-loop
prototyping system.

Keywords Multi-domain simulator · Mechatronics · Rapid prototyping ·Validation
by simulation

1 Introduction

Recently in most of industrial processes an ever increasing degree of automation has
been observed. This is motivated by new request of systems with high performances
in terms of quality of products and services, productivity, efficiency and low costs in
the design, realization and maintenance. This trend in the growth of complex automa-
tion systems is rapidly spreading over Automated Manufacturing Systems (AMS).
Nowadays automation is based on the integration between different areas: automatica
and mathematical control theory, mechanics, electrical devices and electronics and
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computer engineering (see [1–3]), and this makes automation a tough task. Time-
to-market is a crucial issue in developing any industrial product and, consequently,
the request of reducing development time in realizing automated industrial plants is
getting more and more tight. Toward this purpose, many tools have been developed
to speed-up the testing phase of control logic in the development life-cycle. One
way to improve development time is to develop hardware and software in parallel.
Usually, this approach involves separate hardware and software professional teams
development that perform their work simultaneously and independently. As soon
as an hardware prototype and a substantial portion of the embedded code become
available, such hardware and software are combined in a system integration phase
and the testing task begins. Too frequently, serious problems arise during this system
integration process and this typically causes significant hardware reconfiguration or
software workarounds which worst the time to market. To develop software indepen-
dently from hardware while avoiding integration problems an important key factor
is the availability of simulation tools. In fact integration problems are due to side
effects deriving from technological aspects which cannot be considered if software
is developed independently from hardware. Besides this, the simulation is not only
important to reduce software development time, but also to analyze system properties
such as, fault diagnosis, fault reconfiguration and safety that cannot be tested on the
field (see [4, 5]). From this brief discussion it turns out that a good simulation tool
is such if is based on a properly detailed mathematical model of the system, and it
is capable to capture all technological aspects linked to the field device (mechanical
implementation, communications etc.).

Several software tools exist to model and simulate separately all different aspects.
In particular we refer to physical domain simulator of the system dynamics, logic con-
trol CACSD tools, electronic and mechanics CAD. So, the integration problem still
remain open. An approach to test the control software algorithm while considering
technological aspects is the Software-In-the-Loop (SIL) simulation. In this approach
the control unit interacts with a mathematical simulator of the plant evaluating both
logic correctness and the side effects coming from the implementation (see [6–8]).

The aim of this work is to present a SIL technological architecture for rapid
prototyping that embeds a multi-domain mathematical simulator implemented on a
PC, a logic control running on a PLC and a communication infrastructure between
the simulator and the controller.

This paper is organized as follows. In Sect. 2 we present a description of our
proposed architecture and, in Sect. 3, the mathematical model of the system. In
Sect. 4 we show the application to a micro FMS.

2 A SIL Technological Architecture for Rapid Prototyping

In order to present the needs and requirements for the proposed SIL architecture, we
present a simple FMS that has motivated in this work. This system will be used as a
testbed along the the work.



Mathematical Modeling for Software-in-the-Loop . . . 3

Fig. 1 Testbed hardware. a Flexible manufacturing system. b Control hardware

The testbed is a miniaturized flexible manufacturing system (FMS) produced
by FESTO-DIDACTIC (see Fig. 1a); the plant is devote to produce short-stroke
cylinders each of them composed by a basic body, a piston, a spring and a cap. In
particular the system starts from raw pieces which are worked to realize the bodies
and assemblies them with the other parts to obtain the desired cylinder. Thanks to the
use of different basic bodies it is possible to realize different diameter cylinders. In
the following cylinders’bodies will be referred as workpieces. The FMS is composed
by four stations (see Fig. 1a): the first station is the distribution station, where the
workpiece is picked from the raw materials warehouse and moved to the second
station, the testing station. In testing station the workpiece is measured and its color
and height is identified. According to this measurements the workpiece is discarded
or moved to the processing station; in this station the workpiece is tested to verify if
it can be worked or not. If the workpiece positively passes the test, it is drilled and
then moved to the last station, the assembly station, where workpieces are assembled
by a robotic manipulator to realize the cylinder. For a complete description of the
system the reader is referred to [9]. The control of the FMS is implemented on a
ABB PLC belonging to AC500 family equipped with CPU PM581-ETH with four
input/output modules DC523 (see Fig. 1b)

The FESTO-FMS is equipped with sensors and actuators related with pneumatic
and electric technology and is driven by control logic (event-driven) implemented on
the real time computational architecture (PLC). The interaction of all these different
fields makes the simulation of the system a complex task.

An important remark should be done on the communication between the control
logic and the field; The state of the plant is read by the set of sensors and communi-
cated to the PLC. On the basis of “picture” that freeze the state of the plant, the control
logic compute the actual control action that is communicated to the set of actuators.
This scenario must be reproduced also in the SIL architecture: the mathematical
model should also simulate the logic sensor readings that will be send to the PLC in
the form of a data vector. In the same way, the control action computed by the control
logic (all boolean values) is sent back to the simulator that must accept it as input of
the drivers of the simulated physical components. The communication is performed
via ethernet using OPC communication. The main advantage of OPC is that is realize
data exchange between different hardware nodes guaranteeing interoperability and
flexibility (see [10–12]). In our architecture both the simulator and the control logic
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interface with an OPC client (the first is installed on the PC, the latter on the PLC),
while an OPc server (installed in the PC) realize the communication between the two
clients. More in details the OPC server manage symbolic files containing variables
from time to time read or written by PC or PLC. At the same time is guarantied
the data synchronization using time-stamps of data. it is important to stress at this
stage the OPC do not realize a real time communication. This extension belongs to
our ongoing research and can be realized physically (using a real time network) or
virtually (managing time at both simulator and controller sides).

The task of the simulator implemented on the PC is to simulated components
dynamics and prepare input data vector for PLC. We implemented the mathematical
model of the components with Matlab/Simulink. Matlab/Simulink supports different
toolboxes to help the designer to model systems, using a multi-domain approach.
Using Matlab/Simulink we have an easy integration between different components
and it is possible to build open model, changing in easy way the level of accuracy of
the mathematical model. Moreover Matlab/Simulink embeds the OPC client that is
used for communicated. The control logic has been developed with Codesys, a logic
CACSD tool, the same that also run in the PLC. Codesys can also be used to design
a logic simulator when all components are modeled as discrete integrators. Having
Codesys also installed in the PC where the simulator runs (besides Matlab), it is
possible, from time to time to decide which simulator should be used, changing the
level of details of the simulator see (Fig. 2). Finally, since Codesys embed an OPC
client, also the communication can be performed without the needs of any other tool.
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3 Mathematical Modeling of Automation Systems Components

In this section we are going to show the mathematical models and within the simula-
tor. For the sake of brevity here we present only the model of a pneumatic component.
The intrinsic difficulty of modeling a system of this type is the strong interaction
between mechanical and pneumatic physical domains. In a pneumatic system the
potential energy generated by compressed fluid is converted to mechanical energy
using valves and actuators. For this reason we can speak of multi-domain modeling.

Before seeing our implementation it is usefull to introduce some pneumatic ba-
sics. It is well known that, like others physical domains, a pneumatic circuit can be
associated to an equivalent electric circuit (see [13]). The pressure (p) can be assim-
ilated to a voltage and the mass flow rate (G), different from the volume flow rate
because of air compressibility to the electric current. As in electrical circuits, also in
pneumatic domain can be introduced the concepts of resistance (R), inductance (Lp)
and capacitance (Cp) of a component.

Resistance is defined as the pressure derivative respect to mass flow. Analytically
deducing this value is very difficult because is variable with the mass flow rate.
Instead of using a complex formula like G = f (�p)/R(�p), it is preferable to use
two experimentally deducible constant parameters (sonic conductance C and critical
pressure ratio b) that are characteristic of each pneumatic resistive component.

Exploiting these constants and assuming polytropic transformations, the value of
G can be found as:

G = ρa ·Q = ρa · C · p1 ·
√
√
√
√1 −

(
p2
p1
− b

1 − b

)2

·
√

293

T
subsonic case (1)

G = ρa ·Q = ρa · C · p1 ·
√

293

T
sonic case (2)

where p1 and p2 are respectively the upstream and downstream pressure of any
components, ρa is the air density and Q is the volume flow rate. According to the
rate between downstream and upstream pressure (b = p2/p1) we can be in subsonic
case (b < θ ) or in sonic case (b ≥ θ ) where θ is a constant function of the gas
specific heat ratio. In few words, due to the Venturi effect, when upstream pressure is
larger than θ times the downstream pressure (b = 0.5283), the flow is independent
from the downstream pressure (in this case we say that the flow is chocked or that
the flow has sonic velocity).

Pneumatic capacitance is typical of components with non negligible volume and,
assuming a perfect gas, it is linked with the pressure by the equation:

dp

dt
= Gin −Gout

Cp

(3)
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Finally the pneumatic inductance is linked with the pressure by the equation:

p1 − p2 = Lp · dQ
dt

Every pneumatic component has a resistance, a capacitance and an inductance. We
consider a pneumatic component as resistive if the resistive effect is dominant respect
to the others. Besides it is important to notice that usually pneumatic circuits are
represented as simple RC circuits, in fact inertial phenomena are usually negligible
with respect to resistive and capacitive ones. In rough words the dynamical behavior
of a pneumatic circuit is equivalent to filling/emptying capacitive elements (volumes)
through resistive elements at the inputs and outputs.

In the following we will study the mathematical model of the system depicted in
Fig. 3. The model can be split in two parts: a resistive part composed by a set of
resistive elements and a capacitive part including the pneumatic cylinder.

The pressure source p0 feeds the first part composed by distribution valves, uni-
directional flow control valves, pneumatic fits and pipes. All these components are
resistive elements characterized by a sonic conductanceC and a critical pressure ratio
b constant. As in an electric circuits, the resistive element in series can be substituted
with an equivalent resistive element with an equivalent Ceq and an equivalent beq .
The relations are:

Ceq = 3

√
√
√
√

1
∑ 1

C3
j

beq = 1 − C2
eq ·

(

∑ 1 − bj

C2
j

)

Concerning the second part of the scheme, the pneumatic cylinder can be seen as two
chambers element with a sliding common wall determining the piston movements.
The dynamical behavior of the piston in a double effect cylinder can be described by:

pL · AL − pR · AR − (F + R) = M · ẍ (4)

where pL and pR are the chambers pressures, AL and AR are the areas of the piston
face subject to the pressure, M is the piston equivalent mass (the mass of the moving
parts) and F and R are respectively the force due to the friction and to the payload.
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Since the volume of the chambers is variable, the pneumatic capacitances of the
pneumatic cylinder are variable and can be computed as:

CpL = (AL · x + V0s) · ρi

n · patm

·
(

pL

patm

) 1−n
n

+ ρi ·
(

pL

patm

) 1
n

· AL · ẋ (5)

CpR = (AL · [L− x] + V0d ) · ρi

n · patm

·
(

pR

patm

) 1−n
n

− ρi ·
(

pR

patm

) 1
n

· AR · ẋ
(6)

where CpL and CpR are respectively the left and right chamber capacitances, L is
the length of the cylinder, patm is the atmospheric pressure, n is the polytropic index
(n = 1) and ρi is the air density at the initial condition.

Knowing Ceq , beq and the pressure at the extremities of the duct (pinL or pinR and
pL or pR), remembering Eqs. (1) and (2), we can find the mass flow rate entering or
outgoing the chambers:

Gin = ρa · Ce · pL ·
√
√
√
√1 −

(
pL

pinL
− b

1 − b

)2

·
√

293

T
Subsonic entering f low (7)

Gin = ρa · C · pinL ·
√

293

T
Sonic entering f low (8)

For the outgoing flow the equations are the same. The only difference is that, since
pL > pinL, the two pressures must be swapped.

Using Eqs. (1), (2), (5) and (6), and exploiting the relation (3), we can find the
pL and pR evolution.

Having pL, pR , the piston areas (AL and AR), the payload and the friction force,
it is possible to find the piston position (x in Fig. 3). This model has been imple-
mented using Matlab/Simulink (see Fig. 4) to simulate a controlled device of the
FMS described in Sect. 2.

4 Application to the Experimental Setup

In order to show the application of the SIL architecture to the FESTO-FMS (see
Fig. 5), we present here the model of the cylinder warehouse whose aim is to
distributed workpieces to testing station using a singular pneumatic cylinder. The
Cylinder is fed by PLC using digital signal to force the movement and a different
digital signal to enable the air supply. The device is equipped with two sensor that
read the two limit of its stroke. These two digital signal are send to the PLC.

It is possible to define the parameters C and b of the resistive elements and the
characteristics of the pneumatic cylinder like: piston diameter, rod diameter (right
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and left), the friction parameters, the extraction delay, the payload during the entering
and the outgoing of the piston and the equivalent mass of the piston (calculated using
CAD) etc.

The presented Simulink block is directly connected to the PLC and to the 3D
visualization. The Cylinder Warehouse receives as inputs from the PLC the signals
that enable the supply pressure and that command the distribution valves (hence the
direction of the piston move). On the other hand the PLC receives from Simulink the
value of the limit switch sensors. These are virtual sensors created inside the block
that give 1 if the piston reach the stroke limit or 0 otherwise. The 3D visualization has
been realized importing a CAD model of the system into the Matlab toolbox Virtual
Reality Toolbox. This toolbox allows the interaction with the 3D object using signals
coming from Simulink. In this case the signal of interest is the piston position x.

To tune the model we have used producer (where possible) data sheet, but data like
piston seal friction coefficient or the regulation of the flow valves are unknown. Ob-
taining these data requires experimental identification of parameters with expensive
and not easy to find instruments. Due to this problem and due to the high number of
parameters using a grey box identification approach, we preferred tuning the param-
eters to have a comparable response with the response obtained with Festo ProPneu
simulator. Since the parameters are linked each other, the tuning is not easy. For ex-
ample the mass of the components has been calculated using CAD tools, the friction
has been achieved multiplying the weight of the moving components for the friction
coefficient of the material and the resistance associated to the flow valves depends on
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Distribution valve signal

Chambers pressures

Position

Left limit switch sensor

Right limit switch sensor

Fig. 5 Application to testbed: user front-end (above) and simulation results (below)

the mechanical resistance due to the friction. The tested control logic is very simple
and roughly realize a cyclic run of the device along its stroke.

In Fig. 6 the comparison of position, velocity and chambers pressure are presented.
The position and the velocity are very similar to the results obtained with ProPneu,
although the mass and the loads are very little (0.06 Kg and 0.2/0.3 N).
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Fig. 6 Response comparison: Simulink response on the left and ProPneu response on the right

The chamber pressures have a similar behavior in the initial part but the piston
starts moving before the pressure reach the 6 bar. This behavior is due to friction
parameters difficult to estimate.

5 Conclusions

In this paper we have presented a software-in-the-loop prototyping architecture for
automated manufacturing system based on a mathematical simulator. This architec-
ture embeds a multi-domain mathematical simulator implemented on a PC, a logic
controller running on a PLC, and a communication infrastructure properly linking
together simulator and controller. Both the key roles of mathematical modeling and
governor architecture are emphasized as key component of an integrated solution nec-
essary for engineering application such as the FESTO-FMS presented and discussed.
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A New Parallel Matrix Multiplication Algorithm
for Wormhole-Routed All-Port 2D/3D Torus
Networks

Cesur Baransel, Kayhan Imre and Harun Artuner

Abstract A new matrix multiplication algorithm is proposed for massively parallel
supercomputers with 2D/3D, all-port torus interconnection networks. The proposed
algorithm is based on the traditional row-by-column multiplication matrix product
model and employs a special routing pattern for better scalability. It compares fa-
vorably to the variants of Cannon’s and DNS algorithms since it allows matrices of
the same size to be multiplied on a higher number of processors due to lower data
communications overhead.

Keywords Fast matrix multiplication · Parallel processing · Torus interconnection
networks · 2D Torus · 3D Torus

1 Introduction

Matrix multiplication is one of the most prevalent operations in scientific computing
and its effective parallelization is of utmost importance for being able to harness the
processing power offered by massively parallel supercomputers. Matrix multiplica-
tion can be formulated according to two general classes of computational models. In
the first class, the matrix product can be defined as a row-by-column multiplication
and for C=AB, C(i, j) is the dot product of the ith row vector of A and jth column
vector of B. It is also possible to define the matrix product as sum of a series of
column-row products. Assuming that A and B are of order n × n, both definitions
require the same number of multiplications, namely n3. The second class is com-
prised of the algorithms1 aimed to reduce the number of multiplications such as the
algorithms proposed by Strassen [6] and Winogard [7]. In this paper, we propose a
new matrix multiplication algorithm for 2D/3D torus topology where matrix product

1 A review of these methods can be found in Chap. 47, Handbook of Linear Algebra [1].
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is defined as a row-by-column multiplication. A special routing pattern for 2D/3D
tori is integrated into the proposed multiplication algorithm for efficiently exploiting
the available bandwidth to provide higher scalability. Torus has proved to be the
most popular topology in industry over the years and modern massively parallel
supercomputers such as IBM Blue Gene®/L and CRAY XT3 employ 2D/3D torus
interconnection networks to accommodate tens of thousands of processing elements
(PE).

This paper is structured as follows. A short review of the previous work is provided
in the next section. We will give the details of the proposed algorithm in Sect. 3.
Section 4 provides the performance results. Paper ends with conclusions.

2 Previous Work

Assume two matrices A and B, both of size n × n, are mapped2 onto a 2D array of
p processing elements (PEs), arranged as a

√
p × √

p torus with (p< n2). Conse-
quently, each PE stores a separate block of (n2/p) entries from matrices A, B and
C, where C=AB. Since, computing C(i, j) requires the ith row vector of A and jth

column vector of B, a simple parallel matrix multiplication algorithm can be defined
as follows;

1. perform an all-to-all broadcast within each row,
2. perform an all-to-all broadcast within each column,
3. perform required multiply-and-add operations.

Under all-port model, column and row broadcasts can be executed in parallel. Broad-
casting a block within a row or column takes (log3

√
p) steps to complete and there

are
√
p blocks to broadcast within each row or column. After the broadcasting

phase is completed, each PE will have (n2/
√
p) matrix entries and will perform

(n3/p) multiply-and-add operations. Assuming a multiply-and-add operation takes
unit time, the parallel cost Tpar of the algorithm is given in Eq. (1),

Tpar = √
p log3

√
p

(

ts + n2

p
tw

)

+ n3

p
(1)

where ts and tw represent the message startup time and the time to transmit a single
matrix entry, respectively. Note that it is possible to drop the (n3/p) term from the
above cost by properly interleaving and overlapping broadcast and multiply-and-add
operations. However, the above algorithm is not memory efficient since it consumes√
p times more space compared to the serial implementation.
Cannon proposed a memory-efficient matrix algorithm which takes 2

√
p steps to

complete, including the initial and final alignment steps in [2]. Since this algorithm

2 Throughout the paper, we assume that the matrix multiplication operation is to be performed such
that this initial mapping is preserved at the end of the operation.
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is explained elsewhere [3], its details will not be repeated here. Cannon’s algorithm
has the following phases on 2D torus.

1. the initial alignment; requires at most circular (
√
p-1)-shifts which can be com-

pleted in at most
√
p/2 steps, since a circular q-shift on a p node ring takes

min {q, p-q} steps.
2.

√
p steps of two direct-neighbor shifts followed by a multiply-and-add operation,

3. the final alignment which also can be completed in at most
√
p/2 steps.

The parallel cost Tpar of Cannon’s algorithm is given in Eq. (2).

Tpar = 2
√
p

(

ts + n2

p
tw

)

+ n3

p
(2)

Here, it is also possible to drop the (n3/p) term from the cost by properly overlapping
transmission and multiply-and-add operations, assuming that the multiplication of
two blocks can be completed by the time the next two blocks are received by the PE.
In the next section, we will show that it is possible to complete matrix multiplication
in O (log5

√
p) time rather than O(

√
p), at the expense of longer messages.

DNS algorithm, proposed by Dekel, Nassimi and Sahni can be employed both in
hypercube and 3D torus architectures. This algorithm can use up to n3 processors to
complete the matrix multiplication operation in O(log n) time. DNS algorithm has
four phases on 3D torus assuming p processors are arranged into a 3

√
p× 3

√
p× 3

√
p

cube.

1. Assume that the matrices to be multiplied (i.e., A and B) and the result matrix C
is to be stored on the bottom face of the cube. There are 3

√
p planes of 3

√
p× 3

√
p

processors in the cube. Copy column i of the matrix A into the column i of the ith

plane and row i of the matrix B into the row i of the ith plane. Regardless of the
number of processors, this phase is completed in a single step.

2. row-wise and column-wise propagation within each plane. This phase is com-
pleted in (log3

3
√
p) steps under all-port model since row-wise and column-wise

propagation can be executed in parallel.
3. multiply,
4. reduce the result onto the bottom face of the cube in (log3

3
√
p) steps by adding

relevant terms.

The parallel cost Tpar of DNS algorithm is given in Eq. (3).

Tpar = 2log3
3
√
p

(

ts + n2

p2/3
tw

)

+ n3

p
(3)

Note that, it is not possible to drop the (n3/p) term from the cost since multiply and
add operations are not to be interleaved and therefore it is not possible to overlap
communication, multiply and add operations.
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Fig. 1 Broadcast pattern

3 The Proposed Algorithms

In this section, we propose two algorithms for performing matrix multiplication on
2D torus architecture with up to n2 processors and on 3D torus architecture with up
to n3 processors. The time complexities of both algorithms are logarithmic.

3.1 Matrix Multiplication on 3D Torus with up to n2 Processors

Our 2D parallel matrix multiplication requires no alignment steps and completes in
five phases. We introduce the algorithm assuming single matrix element per processor
assignment; its extension to matrix blocks is trivial. For a

√
p × √

p processor
array, we define

√
p concentration processors (CP) with no two CP are being in the

same row or column. First, the CP(i, j) gathers the elements of the ith row of A and
broadcasts it to the processors on the ith row in two consecutive phases. Then, CP(i, j)
gathers the elements of the jth column of B and broadcasts it to the processors on
the jth column, also in two consecutive phases. Since, computing C(i, j) requires the
ith row vector of A and jth column vector of B, all processors acquire the required
data in four phases. The last phase is the multiply-and-add phase after which no data
alignment is required.

The proposed algorithm differs from other proposals mainly in how row-wise
and column-wise gathers and broadcasts are performed. Using the communication
pattern given in Fig. 1, it is possible to complete each gather or broadcast in (log5

√
p)

steps on a wormhole-routed, all-port torus3.
Although the proposed communication may seem somewhat complicated, the

basic rule is quite simple On a 5 × 5 torus, CP(i, j) has two neighbors located two
hops away and two immediate neighbors on row i. To communicate with the CP, the
nodes located 2-hops away use the links within the row while immediate neighbors
take a detour via row (i-1) and row (i+ 1). Since detour links are arranged to lay on the
opposite direction to the within-row links, the communication pattern is contention
free. Column-wise communication is arranged similarly and consequently all CPs

3 For a good intro to routing in general and wormhole routing in particular, see [5].
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Fig. 2 Matrix multiplication on 5 × 5 torus, (a) Row-wise Gather (b) Row-wise Broadcast
(c) Column-wise Gather (d) Column-wise Broadcast. Local multiply-and-add phase is not shown

Fig. 3 Communication pattern for 25 × 25 torus

can perform row or column gathers or broadcasts in parallel. Matrix Multiplication
on 5 × 5 torus, using this broadcast pattern is illustrated in Fig. 2.

The parallel cost Tpar of the proposed algorithm is given in Eq. (4).

Tpar = 4log5
√
p ts +

(
5(1+log5

√
p) − 1

2

)
n2

p
tw + n3

p
(4)

Here, it is not possible to drop the (n3/p) term from the cost since multiply and
add operations are not to be interleaved and therefore it is not possible to overlap
communication, multiply and add operations. Also note that message lengths are
different for gather and broadcast phases.

The given seed broadcast pattern can be recursively extended to the powers of 5 by
replacing each node by a 5 × 5 torus. Figure 3 shows the communication pattern for
a 25 × 25 torus. Other seeds are also be defined for 2 × 2, 3 × 3, 4 × 4 and 5 × 5
tori (Fig. 4). These seed patterns can be used in combination to support virtually all
practical matrix sizes [4].
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Fig. 4 Seed communication patterns for 2 × 2, 3 × 3, 4 × 4 and 5 × 5 tori

3.2 Matrix Multiplication on 3D Torus with up to n3 Processors

The proposed 3D multiplication algorithm is basically an extension of our 2D multi-
plication algorithm onto the third dimension. On 3D torus, each processing element
has six links compared to those four on 2D torus, and proper use of these extra two
links allow the broadcast of elements of matrices A and B on the third dimension to
be completed in the same phase and in O (log5

3
√
p) steps on a 3

√
p× 3

√
p× 3

√
p torus.

Figure 5 shows the communication patterns on a 5 × 5 × 5 torus for DNS algo-
rithm and the proposed algorithm. In the figure, the elements of matrix A and matrix
B are indicated with upper-case and lower-case letters, respectively. The elements
of matrix A are broadcasted along the horizontal planes and the elements of matrix
B along the vertical planes. The broadcast pattern of the proposed algorithm is more
efficient compared to the broadcast pattern DNS algorithm since its time complexity
is O (log5

3
√
p) steps, rather than (log3

3
√
p) of DNS on a 3

√
p× 3

√
p× 3

√
p torus. The

parallel cost Tpar of the proposed algorithm is given in Eq. (5).

Tpar = 2
(

1 + log5
3
√
p
)
(

ts + n2

p2/3
tw

)

+ n3

p
(5)

4 Performance Analysis

Performance results are provided in Tables 1 and 2. In computing speedups,
Strassen’s algorithm with the cost of n2.807 is taken as the best available serial imple-
mentation. The proposed 2D algorithm yields a speedup similar to Cannon’s when
the matrix block size is large (e.g., 753,76 vs. 726,31 when block size is 125 for
625 × 625 matrices). The proposed algorithm performs better as the block size gets
smaller (e.g., 373,38 vs. 15.364,08 when block size is 1 for 625 × 625 matrices).
The difference between the DNS and the proposed 3D algorithms is not as great com-
pared to 2D case. However, the proposed algorithm is never slower than DNS and
can provide up to 30 % more speedups in some cases. The results also indicate that
as the ts /tw ratio of the systems gets smaller, the difference between the algorithms
also gets somewhat smaller both in 2D and 3D cases, but not significantly.
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Fig. 5 Communication patterns on a 5 × 5 × 5 torus for (a) DNS algorithm (b) the proposed
algorithm

5 Conclusions

In the last two decades, the number of processors in massively parallel supercomput-
ers have been increased from tens of processors to tens of thousands of processors
and, as progressively larger number of processors became available, the size of the
matrix sub-blocks in matrix multiplication grew to be smaller for a given problem
size. Consequently, new algorithms which can work efficiently with smaller blocks
are required to exploit the processing power offered by the modern massively parallel
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Table 1 Performance results for 2D algorithm

Matrix size p Block size
(n2/p)

ts/tw = 150/1 ts/tw = 450/1

Speed up
for cannon

Speed up
for 2D
proposed

Speed up
for cannon

Speed up
for 2D
proposed

25× 25 25 25 4,80 5,50 1,77 3,08
125 5 2,42 7,22 0,83 2,83
625 1 1,11 6,52 0,37 2,28

125 × 125 25 625 9,38 8,92 9,21 8,80
125 125 41,13 38,54 34,88 35,35
625 25 87,91 130,92 32,39 92,95

3125 5 44,39 272,63 15,12 132,13
15625 1 20,38 343,84 6,82 131,78

625 × 625 25 15625 7,16 7,08 7,16 7,08
125 3125 35,42 34,55 35,36 34,52
625 625 171,89 163,68 168,80 162,77

3125 125 753,76 726,31 639,12 704,53
15625 25 1.610,86 2.793,86 593,47 2.444,93
78125 5 813,35 8.085,38 277,08 5.456,26

390625 1 373,38 15.364,08 125,01 7.507,73
3125 × 3125 25 390625 5,28 5,27 5,28 5,27

125 78125 26,35 26,22 26,35 26,22
625 15625 131,18 129,67 131,16 129,66

3125 3125 649,05 632,92 647,96 632,73
15625 625 3.149,85 3.003,45 3.093,27 2.998,43
78125 125 13.812,49 13.452,24 11.711,77 13.335,56

390625 25 29.518,61 54.001,23 10.875,28 51.917,16
1953125 5 14.904,50 180.410,04 5.077,36 156.759,35
9765625 1 6.842,06 463.313,24 2.290,80 323.880,05

Table 2 Performance results for 3D algorithm

Matrix size p Block size
(n2/p2/3)

ts/tw = 150/1 ts/tw = 450/1

Speed up
for DNS

Speed up
for 3D
proposed

Speed up
for DNS

Speed up
for 3D
proposed

25 × 25 125 25 10,33 10,18 4,21 4,15
15625 1 8,10 9,26 2,71 3,10

125 × 125 125 625 41,20 41,08 38,75 38,60
15625 25 580,30 654,62 227,34 258,55

1953125 1 519,97 636,21 174,17 213,13
625 × 625 125 15625 34,97 34,95 34,95 34,93

15625 625 3365,34 3475,96 3064,21 3192,53
1953125 25 38338,68 46213,13 14758,63 17955,42

244140625 1 36673,50 46641,31 12282,96 15622,93
3125 × 3125 125 390625 26,28 26,28 26,28 26,28

15625 15625 3132,52 3153,27 3129,40 3150,51
1953125 625 278182,03 295862,39 246937,82 266550,94

244140625 25 2746617,80 3443838,20 1047073,45 1324553,15
30517578125 1 2731343,54 3561608,73 914742,69 1192905,34
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processors. At the same time, torus interconnection networks gained wide-spread
popularity in the industry. In this paper, we proposed a new parallel matrix multipli-
cation algorithm for 2D and 3D torus architectures which performs better than the
competitive algorithms especially as the size of the matrix sub-blocks gets smaller.
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2.5D Acoustic Wave Propagation in Shallow
Water Over an Irregular Seabed Using
the Boundary Element Method

A. Pereira, A. Tadeu, L. Godinho and J. A. F. Santiago

Abstract In this paper a Boundary Element formulation, in the frequency domain,
is used to investigate the 2.5D acoustic wave propagation in shallow water over an
irregular seabed that is assumed to have a rigid bottom and a free surface.

The problem is solved using a model which incorporates Green’s functions that
take into account the presence of flat surfaces. With this procedure only the irregular
bottom and the vertical interface between regions of different depths are discretized.
The model is implemented to obtain the 3D time domain pressure responses in a
shallow water region with step or slope irregularities, originated by point pressure
loads placed at different positions. Simulations are performed to identify wave prop-
agation features that may help the assessment of the presence and shape of the bottom
irregularities.

Keywords Shallow water · Irregular seabed · Boundary element method · 2.5 D
wave propagation

1 Introduction

Acoustic wave propagation in the open ocean has been a topic of interest for
researchers for many years. Traditional approaches to the problem include computa-
tionally efficient methods based on acoustic ray theory, normal modes or parabolic
equations. The now classical book by Jensen et al. [1] presents an extensive review of
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those techniques, describing in detail their formulation and applications. However,
in the context of this work, it is important to note that each has specific limitations.
Ray theory is known to be suitable for deep water wave propagation, in particular
for high excitation frequencies, but it does not provide accurate results at the lower
frequencies and in configurations with strong bottom interaction. Normal mode the-
ory is efficient for the analysis of range-independent problems, but its application is
not straightforward when the propagation domain is range dependent. For range de-
pendent problems the coupled-mode model developed by Evans [2], which assumes
that the waveguide is subdivided into a finite number of adjacent columns, has been
widely used through the associated code COUPLE [3]. This model considers the full
coupling between the modes and is able to handle the backscattering effects. How-
ever, the model has to approximate the various continuous surfaces of the problem
by making use of piecewise constant sections, forming a sequence of small steps. A
large number of sections are usually needed, with a corresponding increase in the
computational requirements of the model.

Parabolic equation methods, initially introduced in underwater acoustics by
Hardin and Tappert [4], have also been extensively applied in deepwater longrange
sound propagation. The fact that they can easily account for range-dependent prop-
agation and their very high computational efficiency have made them the preferred
method for long-range ocean acoustic analysis. However, since the parabolic equa-
tion is a simplified version of the full-wave equation for the case of a pure one-way
propagation, it neglects the backscattering effects which are essential in shallow
waters in the presence of topographic features.

Due to the advent of high-speed computers and to the recent developments of
numerical physics, sound propagation in the shallow ocean margins can be studied
and quantitatively described in greater detail with the more exact wave theory. Many
models have been developed based on the well-established finite difference, finite
element and boundary element numerical methods.

This paper describes a Boundary Element Model developed to compute the three-
dimensional wave propagation in a shallow water region with an irregular bottom.
The model assumes a two-dimensional geometry, to simulate coastal regions which
have little variation in the long shore direction, excited by a point pressure source.
The regions of constant depth are modeled using Green’s functions to avoid the dis-
cretization of the surface and bottom boundaries, which means that only the bottom
irregularities and the vertical interfaces need to be discretized. The applicability of
the formulation is then illustrated by analyzing the wave propagation in the vicinity of
an irregular seabed. Time domain signatures computed for the case of a seabed con-
taining a step or a slope are displayed by applying an Inverse Fast Fourier Transform
and the main features of wave propagation are identified.

The 2.5D problem formulation is presented next, in Sect. 2. The Boundary El-
ement Method and the Green’s functions used are then described, followed by the
verification of the model. The procedure used to obtain time domain signatures is
also described. Finally the proposed model is applied to compute frequency and time
domain signatures for several shallow water configurations, in order to identify wave
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Fig. 1 Three-dimensional geometry of the problem

propagation features that may allow assessment of the presence and shape of the
bottom irregularities.

2 2.5D Problem Formulation

Consider the problem of acoustic wave propagation in shallow water with an irregular
seabed, displayed in Fig. 1. This figure shows a region of infinite extent along the
x and z directions, limited by a rigid bottom and free surface. The normal particle
velocity must be null at the rigid bottom and the pressure has null values at the free
surface.

The confined acoustic medium has a mass density ρf , a Lamé constant λf and
permits a constant dilatational wave velocity αf = √

λf /ρf .
Consider the above model to be excited by a point pressure load, oscillating with

an angular frequency ω, acting in the fluid medium at (x0, y0, z0). In these conditions
the incident pressure wave field, at (x, y, z) can be expressed by

σ̂ f ull (x, y, z, x0, y0, z0,ω) = Ae
i ω
αf

(

αf t−
√

(x−x0)
2+(y−y0)

2+(z−z0)
2
)

√

(x − x0)
2 + (y − y0)

2 + (z − z0)
2

, (1)

in which A is the wave amplitude and i = √−1.
As the geometry of the model is constant along the z direction and the source is

three-dimensional, it is possible to apply a Fourier transformation along z, decom-
posing the 3D problem into simpler 2D problems with varying wavenumbers along
z. With this procedure, the responses are obtained in the frequency-wavenumber do-

main for varying effective wavenumbers, kα =
√

(ω/αf )2 − k2
z , with Im (kαf ) ≤ 0

and kz being the wavenumbers along z ( kz = 2π
Lz

m). In this kz domain, the system is
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excited by spatially sinusoidal harmonic line loads acting at (x0, y0) whose pressure
field at a point (x, y) is given by,

σf ull (x, y, x0, y0, kz,ω) = −iA

2
H(2)

0

(

kα

√

(x − x0)
2 + (y − y0)

2

)

e−ikzz, (2)

in which H(2)
n (. . . ) are Hankel functions of the second type and order n.

By applying an inverse Fourier transformation, and assuming the existence of an
infinite number of sources placed along the z direction at equal intervals, Lz, the
former three-dimensional pressure field can then be calculated as a discrete sum-
mation of two-dimensional problems. This sum converges and can be approximated
by a finite sum of terms. The distance Lz needs to be large enough to avoid spatial
contamination. The use of complex frequencies further reduces the influence of the
neighbouring fictitious sources. A detailed description of the technique can be found,
for example, in reference [5].

Using this technique, the scattered field caused by a point pressure load in the
presence of the confined medium can likewise be obtained as a discrete summation of
2D harmonic line loads, with different values of kz. This problem is often referred to
in the literature as a 2.5D problem, because the geometry is 2D and the source is 3D.

3 Numerical Analysis

3.1 Boundary Element Method

Each two-dimensional scattered field produced by a harmonic line load aligned along
the z direction, acting on the fluid medium confined by a free surface and an irregular
rigid bottom, is computed in the frequency domain by using the Boundary Element
Method (BEM). The formulation makes use of Green’s functions that directly verify
the boundary conditions at the rigid bottom and free flat surfaces. Therefore these
interfaces do not need to be discretized. The two-dimensional domain is divided into
two regions (
1 and
2 as displayed in Fig. 2) and only the vertical interface between
regions and bottom irregularities are discretized (interface �1 and boundary �2 as
depicted in Fig. 2), so that different Green’s functions can be used in the two regions.

Continuity of pressure and normal velocity is ascribed along the interface �1,
while at the boundary �2 null normal velocity must be enforced. Assuming a virtual
load acting at a point x of the interface �1 or boundary �2, and after simplification to
account for the specific boundary conditions, the Boundary Integral equations may
be written as:

Region 
1:

cp(x0, kz,ω)=
∫

�1

q(x, νn,ω)G
1 (x, x0, kz,ω)d�1

−
∫

�1

H
1 (x, νn, x0, kz,ω)p(x, kz,ω)d�1 + υpinc(x, xF , kz,ω). (3)
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Fig. 2 Regions dividing the shallow water section and the discretization of the problem

Region 
2:

cp(x0, kz,ω)=
∫

�1

q(x, νn,ω)G
2 (x, x0, kz,ω)d�1

−
∫

�1

H
2 (x, νn, x0, kz,ω)p(x, kz,ω)d�1

−
∫

�2

H
2 (x, νn, x0, kz,ω)p(x, kz,ω)d�2 + (1 − υ) pinc(x, xF , kz,ω)

(4)

In these equations, G
i andH
i are Green’s functions for the acoustic region
i(with
i = 1,2) confined by a rigid bottom and a free surface, that enables the pressure (p)
and normal velocity (q) to be obtained at point x of the boundary when a virtual
harmonic line load acts at x0 of the boundary; c depends on the geometry of the
boundary at the loaded point and equals 1/2 if x0 ∈ � and the boundary is smooth;
νn is the unit outward normal for the boundary; pinc(x, xF , kz,ω) is the incident field
when the source is placed at xF , υ = 1 if the source is placed in the region 
1, and
υ = 0 when the source is positioned in region 
2. The incident field is obtained by
using the Green’s functions for a confined fluid layer, described in the next section.

The Boundary Integral equations are solved after discretization of the interface �1

and boundary�2 intoN1+N2 constant boundary elements. The resulting integrations
are calculated using a Gaussian quadrature scheme, except for the integrations of the
source terms of the Green’s functions for the confined fluid layer, which are carried
out analytically when the element to be integrated is the loaded element.

Solving the resulting system makes it possible to obtain the nodal solid pressure
and normal velocities. The scattered wave field at any point of the domain can then
be calculated by applying the Boundary Integral equation.
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3.2 Green’s Function

The fundamental solutions for the above described model was developed using the
image source method, with multiple virtual source points representing reflections at
the bottom and at the surface, allowing to obtain the wave field for a region with
rigid and free flat surfaces.

By applying the image source method one obtains a Green’s function, written as
an infinite series of source terms, which directly satisfies both boundary conditions
at the ocean rigid bottom and free flat surface. ([6]). This solution can be given as:

G(ω, x, y, kz) = − i

4

[

H0(kαf
r)
]− i

4

{
NS
∑

n=0

(−1)n
[

H0(kαf
r1) −

4
∑

i=2

H0(kαf
ri)

]}

,

(5)

where

r =
√

(x − x0)2 + (y − y0)2;

r1 =
√

(x − x0)2 + (y + y0 + 2hn)2;

r2 =
√

(x − x0)2 + (y − 2h− y0 − 2hn)2;

r3 =
√

(x − x0)2 + (y + 2h− y0 + 2hn)2;

r4 =
√

(x − x0)2 + (y − 2h+ y0 − 2hn)2.

In these expressions, h represents the depth of the channel and NS is the number of
virtual sources

It is worth noting that the above defined series exhibits a slow convergence, re-
quiring a large number of terms to obtain the solution. However, this process can be
greatly improved by using complex frequencies, with the form ωc = ω− iζ , with ζ

defining a damping effect [7].

4 Responses in the Time Domain

The pressure field in the spatial-temporal domain is obtained by modeling a Ricker
wavelet whose Fourier transform is

U (ω) = A
[

2π1/2toe−iωts
]


2e−
2
(6)

in which 
 = ωto/2; A is the amplitude; ts is the time when the maximum occurs
and πto is the characteristic (dominant) period of the wavelet.



2.5D Acoustic Wave Propagation in Shallow Water Over an Irregular Seabed . . . 29

This wavelet form has been chosen because it decays rapidly in both time and
frequency, thereby reducing computational effort and allowing easier interpretation
of the computed time series and synthetic waveforms.

The Fourier transformations are obtained by discrete summations over wavenum-
bers and frequencies. Mathematically, this is achieved by adding periodic sources
at spatial intervals Lx = 2π/�kn (in the x axis) with �kn being the wavenumber
step, and temporal intervals T = 2π/�ω where �ω is the frequency step [7]. The
spatial separation, Lx , must be large enough to guarantee that the response of the
fictitious sources occurs at times later than T, thereby avoiding contamination. The
analysis uses complex frequencies where ωc = ω− iζ , with ζ = 0.7�ω, which fur-
ther reduce the influence of the neighboring fictitious sources and avoid the aliasing
phenomena. In the time domain, this shift is later taken into account by applying an
exponential window eξt to the response [8].

5 Verification of the Model

The BEM model (designated by Model 1) developed in this work was then imple-
mented and verified using a conventional BEM model as reference. In this model
(designated by Model 2), the Green’s function for an infinite fluid medium was used,
and therefore the rigid bottom and the free surface needed to be discretized. In order
to limit the number of boundary elements used to discretize these interfaces, com-
plex frequencies with an imaginary part are used (ζ = 0.7 2π

T
). This considerably

attenuates the contribution of the responses from the boundary elements placed at
L = 2αf T , reducing the length of the interface to be discretized. In our calculations
a value of T = 0.25s and a length L1 = 750 m and L2 = 764 m were used to define
the discretization of the surface and bottom respectively.

Several verifications were performed, considering different configurations of the
irregular seabed. The responses in shallow water with a seabed forming a slope
10.0 m high and 10 m length (see Fig. 3a), were chosen to illustrate the accuracy of
the models. The depths of the shallower and deeper water regions areh2 = 10.0 m and
h1 = 20.0 m, respectively. The acoustic medium with a density ρf = 1000.00 kg/m3,
allows a dilatational wave velocity of αf = 1500.0 m/s. The geometry was sub-
jected to a dilatational harmonic line load applied at point (−25.0 m; 3.0 m) of the
fluid medium with kz = 0.2rad/m. The responses were calculated at a receiver R1
with coordinates (−4.0 m; 1.0m), placed in region 
2 and at a receiver R2 placed
within region 
1( (14.0 m; 11.0 m)). which contains the source. Computations are
performed in the frequency range between 4.0 Hz to 256.0 Hz, with a frequency step
of 4.0 Hz. The BEM model using Green’s functions for a full space assumes surfaces
discretized with 1514 boundary elements. Using the BEM model (Model 1) described
in this paper, the slope and the vertical interface are discretized, using 34 boundary
elements. In order to illustrate the responses obtained in the verification, Fig. 3b, 3c
display the pressure recorded at receivers R1 and R2 obtained with the three models.
Analysis of the results confirms a good agreement between the solutions.
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Fig. 3 Verification of the BEM Model: a Geometry; b Response provided by and harmonic line
load with kz = 0.2rad/m at receiver R1; c Response provided by an harmonic line load with
kz = 0.2rad/m at receiver R2

6 Applications

The BEM model presented has been implemented to compute the 3D pressure wave
field generated in a shallow-water configuration with an irregular seabed (see Fig. 4).
Two different geometries are analyzed in this section: an irregular bottom consisting
of two flat seabed regions separated by a 10.0 m high step (see Fig. 4a); the same two
regions separated by a smoother transition, consisting of a 45◦ slope (see Fig. 4b).
The depths of the two flat regions are h1 = 20.0 m and h2 = 10.0 m, respectively.
In all cases the seabed is assumed perfectly rigid, while null pressures are assumed
along the water surface.

The responses were computed for a point pressure source placed at the bottom of
the deeper region (F1) at (−25.0; 0.0; 0.0). The acoustic medium is assumed to be
water, with a density ρf = 1000.0 kg/m3 and allowing a dilatational wave velocity
of αf = 1500.0 m/s.

The irregular seabed and the vertical interface were modelled using a number
of boundary elements that was defined according to the excitation frequency of the
harmonic source. A ratio of 15 was adopted between the wavelength of the incident
waves and the length of the boundary element. The minimum number of boundary
elements used was 30.
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The calculations were performed over a frequency range between 4.0 Hz
and 512.0 Hz, assuming a frequency step of 4.0 Hz, which gives a total time of
T = 250.0 ms. Time domain signals are computed by means of an inverse Fourier
transform, using the methodology described before. For this case, the source is
modeled as a Ricker wavelet with a characteristic frequency of 200.0 Hz.

The pressure field was computed over three grids of receivers, equally spaced of
�x = 1.0 m, �y = 1.0 m and �z = 1.0 m, placed between: x = −25.5 m and
x = 25.5 m; y = 1.0 m and y = 19.0 m, z = 0.0 m and z = 39.0 m. A sequence of
snapshots displaying the pressure wave field over the grids of receivers at different
instants is presented to illustrate the results. The responses provided by a flat seabed
with the same depth as the source region are also displayed and used as a reference.

Figure 5 illustrates the propagation of the Ricker pulse, generated by a source lo-
cated at position F1, for the cases of a flat seabed (first column), a seabed with a step
(second column) and forming a slope (third column). In all cases, at time t= 0.00 ms,
the point load creates a spherical pressure wave that propagates away from it. In the
first set of snapshots (Fig. 5a1–5a3) this incident pulse is visible (identified as P1),
although it is already combined with a first reflection from the rigid bottom of the
waveguide. A second reflection generated at the free surface can also be identified
(P2), with inverted polarity. In Fig. 5a2 and 5a3 it is also possible to observe a first
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Fig. 5 3D time domain responses in a shallow water region when a point source is placed at position
F1: a t = 21.97 ms; b t = 32.96 ms; c t = 36.62 ms; d t = 50.04 ms

reflection from the bottom discontinuity (P3), with significantly higher amplitude
when the obstacle is a step. In fact, for this set of snapshots, the wavefront reflected
from the step exhibits a very strong amplitude, evidencing the existence of a strong
geometrical discontinuity in the propagation path. By contrast, when the obstacle is
a slope, the pressure wave energy is spread over a larger area to produce a wavefront
of lower amplitudes. At a later time (see Fig. 5b1–5b3, computed for t= 31.74 ms),
higher order reflections start to occur (identified as P4, P5 and P6), originated at the
horizontal free surface and at the irregular bottom. At this time, the pulses generated
at the bottom discontinuity also become visible for receivers located near the surface
placed further away along the z axis. It also becomes clear, in these figures, that the
simple wave pattern exhibited by Fig. 5b1, when the bottom is horizontal, is greatly
disturbed by the presence of the obstacles. This disturbance is further enhanced for
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later times, as can be easily observed in Figs. 5c1–5c3 and 5d1–5d3. Interestingly,
comparison between the snapshots of Figs. 5d1–5d3 reveals that the presence of the
slope gives rise to the most complex pattern, due to the intricate sequence of reflec-
tions that are generated, and to the energy-spreading effect of the inclined bottom.

7 Conclusions

In this paper, a model based on the Boundary Element Method has been proposed and
successfully applied to predict acoustic wave propagation in a shallow water region
with an irregular seabed, excited by a point pressure load. In this model, Green’s
functions that take into account the flat free surface and the flat bottom are used,
while seabed irregularities are discretized with boundary elements. Its applicability
has been demonstrated by computing the time domain signatures provided by a
seabed with a step or a slope, when a point pressure load is placed either in the
shallower region or in the deeper region. When the source is in the deeper region,
wave propagation features were identified both in the time and in the frequency
domain signatures that allowed a clear identification of the presence and type of an
irregularity on the seabed.
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Towards Replacing Lyapunov’s “Direct” Method
in Adaptive Control of Nonlinear Systems

József K. Tar

Abstract In adaptive nonlinear control Lyapunov’s 2nd or “Direct” method became
a fundamental tool in control design due to the typical practical difficulties viz. a)
most of the control problems do not have closed analytical solutions; b) from nu-
merical calculations “well behaving within a finite period” the stability cannot be
taken for granted. According to Lyapunov, guaranteeing negative time-derivative of
the Lyapunov function by relatively simple estimations the stability of the solution
can theoretically be guaranteed. However, finding an appropriate Lyapunov function
to a given problem is rather an “art” that cannot algorithmically be automated. Adap-
tivity normally requires slow tuning of numerous model parameters. This process
is sensitive to unknown external disturbances, and the tuning rule is determined by
numerous other, more or less arbitrary “adaptive control parameters”. Furthermore,
making the necessary estimations is a laborious, tedious work that normally results
in “very strange conditions” to be met for guaranteeing stability of the solution. In
the present paper the application of “Robust Fixed Point Transformations” is pro-
posed instead of the Lyapunov technique. It can find the proper solution without
any parameter tuning and depends on the setting only of three “adaptive control
parameters”. As application example direct control of a “Single Input—Single Out-
put (SISO)” system, and a novel version of the “Model Reference Adaptive Control
(MRAC)” of a “Multiple Input—Multiple Output (MIMO)” system is presented.
Since this method cannot automatically guarantee global stability, as a novelty, a
possible adaptive tuning of one of the adaptive control parameters is proposed for
SISO systems to keep the control within the local basin of attraction of the proper
convergence. Its operation is presented via simulations at first time in this paper.
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1 Introduction

Lyapunov’s 2nd Method is a widely used technique in the analysis of the stability
of the motion of the non-autonomous dynamic systems of equation of motion as
ẋ = f (x, t). The typical stability proofs provided by Lyapunov’s original method
published in 1892 [5] (and later on in e.g. [6]) have the great advantage that they
do not require to analytically solve the equations of motion. Instead of that the
uniformly continuous nature and non-positive time-derivative of a positive definite
Lyapunov-function V constructed of quadratic terms of the tracking and modeling
errors of the system’s parameters are assumed in the t ∈ [0,∞) domain. From
that the convergence V̇ → 0 can be concluded according to Barbalat’s lemma [4]
utilizing the uniform continuity of V̇ . It used to be guaranteed by showing that V̈
is bounded. Due to the positive definite nature of V from that it normally follows
that the tracking errors have to remain bounded, or in certain special cases, has to
converge to 0. To illustrate the difficulties related to the “orthodox use of Lyapunov’s
direct method”, on the basis of [4, 11, 14], and [13] a brief summary will be given
in the next subsection.

1.1 Example for Orthodox Use of Lyapunov Functions

The most “historical” adaptive controllers used in robotics are the methods of “Adap-
tive Inverse Dynamics” and the “Adaptive Slotine–Li” controllers [4]. Since similar
observations can be done for both of them, in the present considerations we recapit-
ulate only the latter one. It utilizes subtle details of the Euler–Lagrange equations
of motion, viz. that the terms quadratic in the generalized velocity components can
specially be symmetrized. In this approach the exerted generalized torque/force com-
ponents are constructed by the use of the actual model marked by the symbol ˆ and
causes q̈ according to the exact model values:

Q = Ĥ (q)v̇ + Ĉ(q, q̇)v + ĝ +KDr = H (q)q̈ + C(q, q̇)q̇ + g

e := qN − q, v := q̇N +�e, r := ė +�e, p̃ := p̂ − p

Cij = 1
2

∑

z q̇z

(

− ∂Ĥzj

∂qi
+ ∂Ĥij

∂qz
+ ∂Ĥiz

∂qj

)

, Q = Y (q, q̇, v, v̇)p̂ +KDr

(1)

in which qN and q denote the generalized co–ordinates of the nominal and the actual
motion, KD and � are symmetric positive definite matrices, matrices H, C, and g

denote the system’s inertia matrix, the Coriolis, and the gravitational terms. The
possession of the exact form of the dynamical model makes it possible to linearly
separate the system’s dynamic parameters p in the expression of the physically inter-
preted generalized forces Q by the use of matrix Y that exclusively consists of known
kinematical data. The Lyapunov function of this method is V = rT Hr + p̃T �p̃,
with positive definite symmetric matrix �. For guaranteeing negative derivative of
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the Lyapunov function the skew symmetry of the Cij matrix and the parameter tuning
rule ˙̂p = �−1YT r are utilized. The above results well exemplify the difficulties with
the application of the Lyapunov function: (a) no unknown external perturbations can
be present; (b) for a complex Classical Mechanical System p̂ may have many (say
m) independent components; besides the elements of the positive definite matrices
�, KD we have further m+ (m2−m)/2 independent elements in the positive definite
matrix � (the main diagonals plus the parameters of the arbitrary orthogonal ma-
trix O that can transform a positive definite diagonal matrix D into a more general
non-diagonal form � = OTDO); (c) the tuning process is too slow, since it happens
according to the matrix � in spite of the fact that more explicit information can be
obtained for the parameter errors if we subtract Ĥ q̈, Ĉq̇, and ĝ from both sides of
(1) [13]: Ĥ ṙ + Ĉr +KDr = (H − Ĥ )q̈ + (C − Ĉ)q̇ + g − ĝ = ϒ(q, q̇, q̈)(p− p̂).
Since both the LHS of this equation and ϒ are known, an SVD-based generalized
inverse of ϒ can provide direct information for optimal parameter tuning. Regarding
the variation of the “error metrics” from both sides of the 1st line of (1) H v̇, Cv̇,
KDr , and g can be subtracted so again some information can be obtained on the
modeling errors: Y p̃ = −KDr −Hṙ −Cr . The fragment of the Lyapunov function
rT Hr itself can serve as a metrics for r . It has the time-derivative d(rT Hr)/dt =
2rT H ṙ+ rT Ḣ r = rT (Ḣ −2 C)r−2rT KDr−2rT Y p̃ = −2rT KDr−2rT Y p̃. That
is this metrics is kept at bay during the new tuning process by the negative quadratic
term and it is perturbed only by a linear one with a coefficient p̃ that converges to zero
as the tuning proceeds. That is asymptotic stability can be also maintained without
using the original Lyapunov function.

1.2 Adaptive Control Based on Robust Fixed Point
Transformations

Certain control tasks can be formulated by using the concept of the appropriate
“excitation” U of the controlled system to which it is expected to respond by some
“desired response” rd . The appropriate excitation can be computed by the use of
the inverse dynamic model of the system as U = ϕ(rd ). Since normally this inverse
model is neither complete nor exact, the actual response determined by the system’s
dynamics, ψ , results in a realized response rr that differs from the desired one:
rr ≡ ψ(ϕ(rd )) ≡ f (rd ) 
= rd . The controller normally can manipulate or “deform”
the input value from rd to rd� so that rd ≡ ψ(rd� ). Such a situation can be maintained
by the use of some local deformation that can properly “drag” the system’s state
in time while it meanders along some trajectory. To realize this idea a fixed point
transformation was introduced in [12] that is quite “robust” as far as the dependence
of the resulting function on the behavior of f (•) is concerned. This robustness can
approximately be investigated by the use of an affine approximation of f (x) in the
vicinity of rd� and it is the consequence of the strong nonlinear saturation of the
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sigmoid function tanh (x):

G(r|rd ) := (r +K)
[

1 + B tanh (A[f (r) − rd ])
]−K

G(rd� |xd ) = rd� , if f (rd� ) = rd then G( −K|rd ) = −K ,

G(r|rd )′ = (r+K)ABf ′(r)
cosh (A[f (r)−rd ])2 + 1 + B tanh (A[f (r) − rd ]),

G(rd� |rd )′ = (rd� +K)ABf ′(rd� ) + 1.

(2)

It is evident that the transformation defined in (2) has a proper (rd� ) and a false
(−K) fixed point, but by properly manipulating the control parameters A, B, and
K the good fixed point can be located within the basin of attraction of the iteration
obtained by the repetitive use of function rn+1 := G(rn|rd ) if the requirement of
|G′(r|rd )| < 1 can be guaranteed in the vicinity of rd� : if |G′| ≤ H [0 ≤ H < 1] can
be maintained then a Cauchy sequence is obtained via the iteration that is convergent
in the real numbers and it converges to the solution of the Fixed Point Problem
rn → rd� = G(rd� ) [12]. Instead of the function tanh any sigmoid function, i.e. any
bounded, monotone increasing, smooth function σ (x) with the property of σ (0) = 0
can naturally be used (e.g. σ (x) := x/(1 + |x|)), too. A possibility for applying
the same idea outlined in (2) of adaptivity is the application of a sigmoid function
projected to the direction of the response-error defined in the nth control cycle as
�h := �f (�rn)− �rd , �e := �h/||�h||, B̃ = Bσ (A||�h||), so that �rn+1 = (1+ B̃)�rn+ B̃K�e. If
||�h|| is very small, instead of normalizing with it the approximation �rn+1 = �rn can be
applied since then the system already is in the very close vicinity of the fixed point.

This idea can be used in the following manner for SISO systems: on the basis
of the available rough system model a simple PID controller can be simulated that
reveals the order of magnitude of the occurring responses. Parameter K can be so
chosen for which the r+K values are considerable negative numbers. Depending on
sign(f ′) let B±1 and let A > 0 be a small number for which |∂G(r|rd )/∂r| ≈ 1−ε

for a small ε > 0. For rd varying in time the following estimation can be done in
the vicinity of the fixed point when |rn − rn−1| is small: rn+1 − rn = G(rn|rdn ) −
G(rn−1|rdn−1) ≈ ∂G(rn−1|rdn−1)

∂r
(rn − rn−1) + ∂G(rn−1|rdn−1)

∂rd
(rdn − rdn−1). Since from the

analytical form of σ (x)
∂G(rn−1|rdn−1)

∂rd
is known, and the past “desired” inputs as well

as the arguments of function G are also known, this equation can be used for realtime

estimation of
∂G(rn−1|rdn−1)

∂r
. ε can be tried to be fixed around −0.25 by a slow tuning

of parameter A as Ȧ = α(εest +0.25)A (α > 0) to keep the system in the local basin
of attraction. The simulations revealed that increasing A resulted in smooth control,
decreasing A caused small fluctuations. To avoid the occurrence of such fluctuations
instead of a single α different values were chosen for “slow increase” (αincr ) and
“very fast decrease” was prescribed by αdecr = 20αincr . In the sequel a simple
possible application is outlined for a strongly nonlinear system, the Electrostatic
Microactuator (EμA). In connection with this problem in [10] the possibility of
tuning A was not considered.
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2 A Potential Example for Tuning the Adaptive Control
Parameter

Paper [10] was inspired by the work by Vagia, Nikolakopoulos and Tzes who sug-
gested the application of a robust switching PID controller coupled to a feed-forward
compensator for controlling an electrostatic micro-actuator (EμA) in [15]. In their
approach the precise non-linear model of a given EμA was linearized in certain
set-points as typical operating points and the LMI technique was used in the design
phase to stabilize separate PID controllers that were determined in the vicinity of
these set points. Such kinds of controllers have to switch at the boundaries within
which static PID parameters are set. The design typically was made by minimization
of quadratic cost functions. The EμA corresponds to a micro-capacitor whose one
plate is attached to the ground while its other moving plate is floating in the air. In the
present paper the model considered was taken from [15]. Accordingly, the equation
of motion of the system is given as follows

q̈ = −bq̇ − kq + εAPlU
2/(2(ηmax − q)2) +Qd

m
(3)

in which b = 1.4×10−5 kg · · · is the viscous damping of the motion of the EμA in air,
k = 0.816 N/m is a spring constant, APl = (400× 10−6 m)2 denotes the area of the
plate, m = 7.096× 10−10 kg is its mass, ηmax = 4× 10−6 m is the distance between
the plates when the spring is relaxed, q is the displacement of the plates from the
relaxed position, ε = 9×10−12 C2/(N · m2) is the dielectric constant, Qd denotes the
external disturbance forces, and U denotes the control voltage e.g. the physical agent
by the help of which the plate’s displacement can be controlled. It can be seen that
(3) is singular near q = ηmax , therefore for controllability allowable displacements
of the micro-capacitor’s plate in the vertical axis were q ∈ [0.1, 1.3] × 10−6 m that
was deemed necessary in order to guarantee the stability of the linearized open-loop
system in [15]. In that paper only responses to step-like inputs were considered.

In the present simulations continuous variation of the nominal motion was pre-
scribed by 3rd order spline functions in which the 2nd derivatives linearly vary with
the time within neighboring intervals. A the boundaries of these intervals the accel-
erations are continuous functions. To study the effect of the modeling errors in the
simulations the controller assumed the approximate model parameters as follows:
ÂP l = 0.8APl, m̂ = 1.2 m, b̂ = 1.2b, k̂ = 1.2k, η̂max = 0.8ηmax, and ε̂ = 0.8ε.
Their effects can well be traced in the first row of Fig. 1 that reveals erroneous tra-
jectory and acceleration (response) tracking in the case of a common PID controller
defining the prescribed relaxation as q̈Des = q̈N + 3�2(qN − q) + 3�(q̇N − q̇) +
�3
∫ t

t0
(qN (ξ ) − q(ξ ))dξ with � = 8500/s in which qN (t) denotes the nominal tra-

jectory. The adaptive controller used the following parameters: K = −500m/s2,
B = 1, and as an initial estimation Aini = 3 × 10−3 s2/m, and αincr = 103/s. As it
can be seen from the 2nd and 3rd rows of Fig. 1, the tracking errors quickly relaxed,
and in the non-transient phase of the motion fine tracking and acceleration tracking
were realized. It is also clear that the initial Aini parameter was “overestimated”, it
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Fig. 1 The operation of the non–adaptive controller (1st row), and that of the adaptive one: the
trajectory and acceleration tracking (2nd row), the tracking error and the tuned adaptive control
parameter A (3rd row)

was quickly decreased in the initial phase of the motion and later was finely tuned
to keep the control near the center of the local basin of attraction by decreasing
and increasing sessions. The simulations well exemplify the expected behavior of the
simple adaptive controller.

3 The Traditional and the Novel MRAC Approaches

The MRAC technique is a popular and efficient approach in the adaptive control of
nonlinear systems e.g. in robotics. A great manifold of appropriate papers can be
found for the application of MRAC from the early nineties (e.g. [4]) to our days
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(e.g. [2]). One of its early applications was a breakthrough in adaptive control. In [7]
C. Nguyen presented the implementation of a joint-space adaptive control scheme
that was used for the control of a non-compliant motion of a Stewart platform-
based manipulator that was used in the Hardware Real-Time Emulator developed
at Goddard Space Flight Center to emulate space operations. The mainstream of
the adaptive control literature at that time used some parametric models and applied
Lyapunov’s “direct method” for parameter tuning (e.g. [4, 3]). The essence of the
idea of the MRAC is the transformation of the actual system under control into a
well behaving reference system (reference model) for which simple controllers can
be designed. In the practice the reference model used to be stable linear system
of constant coefficients. To achieve this simple behavior normally special adaptive
loops have to be developed.

In our particular case the reference model can be the nonlinear analytical model
of the system built up of its nominal parameters. Assume that on purely kinematical
basis we prescribe a trajectory tracking policy that needs a desired acceleration of
the mechanical system as q̈D . From the behavior of the reference model for that
acceleration we can calculate the physical agent that could result in the response q̈D

for the reference model (in our case the generalized force components UD). The
direct application of this UD for the actual system could result in different response
since its physical behavior differs from that of the reference model. Therefore it
can be “deformed” into a “required” UReq value that directly can be applied to the
actual system. Via substituting the realized response of the actual system q̈ into the
reference model the “realized control action” UR can be obtained instead of the
“desired one” UD . Our aim is to find the proper deformation by the application of
whichUR well approachesUD , that is at which the controlled system seems to behave
as the reference system. The proper deformation may be found by the application
of an iteration as follows. Consider the iteration generated by some function G as
U

Req

n+1 = G(UReq
n ,UR

n ,UD
n+1) in which n is the index of the control cycle. For slowly

varying desired value UD can be considered to be constant. In this case the iteration
is reduced to U

Req

n+1 = G(UReq
n ,UR

n |UD) that must be made convergent to U
Req
� . It is

evident that the same function G and the same considerations can be applied in this
case as that detailed in Sect. 1.2. In the sequel an possible application is outlined via
simulation.

3.1 Novel MRAC Control of a 3 DOF System

The sketch of the system considered is given in Fig. 2. In the dynamical model it
was assumed that the hamper is assembled to the end of the beam at its mass center
point. The Euler-Lagrange equations of motion also given in Fig. 2 are valid in this
case.

The dynamic parameters of the actual system were assumed to be M = 30 kg
(the mass of the cart moving in the horizontal direction), m = 10 kg (the mass of the
hamper), L = 2 m (the length of the beam), � = 20 kg · m2 (the inertia momentum
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Fig. 3 The paradigm considered: the cart + beam + hamper system

of the hamper), and g = 10 m/s2 the gravitational acceleration. For the simplicity
the mass and the inertial momentum of the beam was neglected. The appropriate
“nominal parameters of the reference model” quite considerably differed from the
actual one as follows: M̂ = 60 kg, m̂ = 20 kg, L̂ = 2.5 m (only within the dynamic
model, the kinematic model that is responsible for trajectory tracking used the exact
value), �̂ = 50 kg · m2, and ĝ = 8 m/s2. The appropriate results for the non-adaptive
and adaptive approaches for the PID type prescribed tracking error relaxation as
q̈D = q̈N +3�2(qN −q)+3�(q̇N − q̇)+�3

∫ t

t0
(qN (ξ )−q(ξ ))dξ with a small � =

1/s resulting in lose tracking [qN (t) denotes the nominal trajectory that was generated
by 3rd order spline functions to produce linearly varying nominal acceleration within
well defined intervals with continuous connection at their boundaries]. The fixed
adaptive parameters were: K = 7000, B = −1, and A = 10−5. Representative
results are given in Fig. 3. The improvement due to the adaptivity is quite illustrative:



Towards Replacing Lyapunov’s “Direct” Method in Adaptive Control . . . 43

0 5 10

80.0

56.7

33.3

10.0

-13.3

-36.7

-60.0

Time [s]

Nominal & Simulated Trajectories 10^-1 [rad] or [m]

0 5 10

60.0

36.7

13.3

-10.0

-33.3

-56.7

-80.0

Time [s]

Realized ddot q (yellow, dark blue, light blue) 10^0 [rad/s^2] or [m/s^2]

0 5 10

80.0

56.7

33.3

10.0

-13.3

-36.7

-60.0

Time [s]

Nominal & Simulated Trajectories 10^-1 [rad] or [m]

0 5 10

60.0

36.7

13.3

-10.0

-33.3

-56.7

-80.0

Time [s]

Realized ddot q (yellow, dark blue, light blue) 10^0 [rad/s^2] or [m/s^2]

Time [s]

Realized ddot q (yellow, dark blue, light blue) 10^0 [rad/s^2] or [m/s^2]

0 5 10

28

4

Time [s]

Q Exerted, Reference, & Recalculated 10^2 [Nm] or [N]
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the nominal trajectories are well approximated by the “realized” (simulated) ones
while the QD forces calculated from the reference model are well approximated
by the recalculated QR values and both considerably differ from the really exerted
forcesQReq that is needed for properly manipulating the actual physical system under
control. This altogether proves that the MRAC controller works, and the “deformed
part” in the RHS of Fig. 4 really behaves like the reference model.
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4 Concluding Remarks

In this paper possible substitution of Lyapunov’s “Direct Method” by the application
of “Robust Fixed Point Transformations (RFPT)” in the adaptive control of nonlin-
ear dynamic systems was suggested. For this purpose two typical frameworks, the
“Model Based Computed Force Control” using approximate model and the “Model
Reference Adaptive Controllers” were considered for a SISO and a MIMO system
to be controlled. It was shown that this latter method is far less complicated and
works with far less “arbitrary” parameters than the Lyapunov function based tuning
approaches. Illustrative examples obtained by simulation have shown that in spite
of the fact that this latter method cannot guarantee global asymptotic stability, it
can work for a wide set of physical systems to be controlled. For compensating this
deficiency for the case of SISO systems additional tuning of one of the altogether
three control parameters proposed to keep the control near the center of the local
basin of attraction of the RFPT transformation. Its operation was illustrated via sim-
ulations. In the next phase of the research this tuning is expected to be extended for
the adaptive control of MIMO systems.
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Fractional Particle Swarm Optimization

E. J. Solteiro Pires, J. A. Tenreiro Machado and P. B. de Moura Oliveira

Abstract The paper addresses new perspective of the PSO including a fractional
block. The local gain is replaced by one of fractional order considering several pre-
vious positions of the PSO particles. The algorithm is evaluated for several well
known test functions and the relationship between the fractional order and the con-
vergence of the algorithm is observed. The fractional order influences directly the
algorithm convergence rate demonstrating a large potential for developments.

Keywords Fractional calculus · Particle swarm optimization

1 Introduction

In the last decade particle swarming optimization (PSO) has been applied in a plethora
of fields such as social modeling, computer graphics, simulation and animation of
natural flocks or swarms, pattern recognition, color image quantization and com-
putational biology [1]. PSO has motivated considerable interest from the natural
computing research, where important work has been enforced in the study of its
convergence.

Fractional Calculus (FC) is a natural extension of the classical mathematics. Since
the beginning of theory of differential and integral calculus, several mathematicians
investigated the calculation of noninteger order derivatives and integrals. Neverthe-
less, the application of FC has been scarce until recently, but the recent scientific
advances motivated a renewed interest in this field.
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Bearing these ideas in mind, this work uses a fractional derivative to control
the convergence rate of the PSO. The article is organized as follows. Section 2
introduces the FC. Section 3 presents the PSO and its working principles. Based
on this formulation, Sect. 4 generalizes the PSO to a fractional order. Section 5
presents the results for the PSO with fractional velocity. Finally, Sect. 6 outlines the
main conclusions.

2 Introduction to Fractional Calculus

FC goes back to the beginning of the theory of differential calculus. Nevertheless, the
application of FC just emerged in the last two decades, due to the progresses in the
area of nonlinear and complex systems that revealed subtle relationships with the FC
concepts. In the field of dynamics systems theory some work has been carried out, but
the proposed models and algorithms are still in a preliminary stage of establishment.

The fundamentals aspects of FC theory are addressed in [2–5]. Concerning
FC applications research efforts can be mentioned in the area of viscoelasticity,
chaos, fractals, biology, electronics, signal processing, diffusion, wave propagation,
modeling, control and irreversibility [6–10].

FC is a branch of mathematical analysis that extends to real, or even complex,
numbers the order of the differential and integral operators. Since its foundation,
the generalization of the concept of derivative and integral to a non-integer order α
has been the subject of distinct approaches. A formulation based on the concept of
fractional differential, is the Grünwald–Letnikov definition given by the equation:

Dα [x(t)] = lim
h→0

[

1

hα

+∞
∑

k=0

( − 1)k�(α + 1)x(t − kh)

�(k + 1)�(α − k + 1)

]

(1)

where �() is the Euler function.
An important property revealed by expression (1) is that while an integer-order

derivative just implies a finite series, the fractional-order derivative requires an infi-
nite number of terms. Therefore, integer derivatives are ‘local’operators in opposition
with fractional derivatives which have, implicitly, a ‘memory’ of all past events.

Often, in discrete time implementations expression (1) is approximated by:

Dα [x(t)] = 1

T α

r
∑

k=0

( − 1)k�(α + 1)x(t − kT )

�(k + 1)�(α − k + 1)
(2)

where T is the sampling period and r is the truncation order.
The Z −transform formulation of a derivative of fractional order α ∈ C of the

signal x(t), Dα[x(t)], is a ‘direct’generalization of the classical integer-order scheme
yielding, for zero initial conditions:

Z {Dα[x(t)]} =
(

1 − z−1

T

)α

X(z) (3)
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where z is the Z −transform variable.
The characteristics revealed by fractional-order models make this mathematical

tool well suited to describe phenomena such as irreversibility and chaos because
of its inherent memory property. In this line of thought, the propagation of pertur-
bations and the appearance of long-term dynamic phenomena in a population of
individuals subjected to an evolutionary process configure a case where FC tools fit
adequately [11].

3 Particle Swarm Optimization Algorithm

Evolutionary algorithms have been successfully adopted to solve many complex
optimization engineering applications. Together with genetic algorithms, the PSO al-
gorithm, proposed by Kennedy and Eberhart [12], has achieved considerable success
in solving optimization problems.

The PSO algorithm was proposed originally in [12]. This optimization technique
is inspired in the way swarms behave and its elements move in a synchronized way,
both as a defensive tactic and for searching food. An analogy is established between a
particle and a swarm element. The particle movement is characterized by two vectors,
representing its current position x and velocity v. Since 1995, many techniques were
proposed to refine and/or complement the original canonical PSO algorithm, namely
by analyzing the tuning parameters [13] and by considering hybridization with other
evolutionary techniques [14].

In literature, some work embedding FC and PSO algorithms can be found. Pires
et al. [15] studies the fractional dynamics during the evolution of a PSO. Reis
et al. [16] propose a PSO, for logic and circuit design, where is implemented a
proportional-derivative fitness function to guide the optimization. Pires et al. [17]
study the convergence of a PSO with a fractional order velocity.

Algorithm 1 illustrates a standard PSO algorithm. The basic algorithm begins
by initializing the swarm randomly in the search space. As it can be seen in the
pseudo-code, were t and t + 1 represent two consecutive iterations, the position x of
each particle is updated during the iterations by adding a new velocity v term. This
velocity is evaluated by summing an increment to the previous velocity value. The
increment is a function of two components representing the cognitive and the social
knowledge.

The cognitive knowledge of each particle is included by evaluating the difference
between its best position found so far b and the current position x. On the other
hand, the social knowledge, of each particle, is incorporated through the difference
between the best swarm global position achieved so far g and its current position x.
The cognitive and the social knowledge factors are multiplied by random uniformly
generated terms φ1 and φ2, respectively.

Algorithm 1: Particle swarm optimization
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Initialize Swarm;
repeat

forall particles do
calculate fitness f

end
forall particles do

vt+1 = vt + φ1.(b − x) + φ2.(g − x);
xt+1 = xt + vt+1;

end
t = t + 1

until stopping criteria ;

PSO is a optimization algorithm that proves to be efficient, robust and simple.
However, if no care is taken the velocities may attain large values, particularly when
particles are far away from local and global bests. Some approaches were carried
out in order to eliminate this drawback. Eberhat et al. [18] proposed a clamping
function (4) to limit the velocity, through the expression:

vij (t + 1) =
{

v′ij (t + 1) if v′ij (t + 1) < Vmax j

Vmax j if v′ij (t + 1) ≥ Vmax j
(4)

where v′ij (t + 1) is given by v′ij (t + 1) = vij (t) + φ1.(b − x) + φ2.(g − x) for the
parameter j of particle i at iteration t + 1.

Later, a constant, the inertia weight, was introduced [13] to control the velocity
from exploding (5). The inertia weight ω is very important to ensure convergence
behavior over evolution by adopting the equation:

vt+1 = ω.vt + φ1.(b − x) + φ2.(g − x) (5)

Some empirical and theoretical studies were made to determine the best inertia value
[19] in order to obtain better PSO behavior.

Oliveira et al. [20] represent the PSO as a feedback control loop and establishing
an analogy between the particle dynamics with a feedback control loop. They present
a proportional and integral controller based on particle swarm algorithm, which does
not require any parameter to regulate the swarm convergence over time.

4 Fractional PSO

In this section the PSO is modeled through Z block diagram. Additionally, the local
unit feedback of xt signal is replaced by a fractional one, represented by the pink
block in Fig. 1.

The position term b− x is substituted by a fractional version given in expression
(5). In fact, considering the first r = 4 terms of the fractional derivative series, the
b − x term is replaced by:
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Fig. 1 PSO Diagram Block, el—local error, eg—global error

b − xt+1 = b −
[

αxt + α

2
(1 − α)xt−1 + α

6
(1 − α)(2 − α)xt−2 (6)

+ α

24
(1 − α)(2 − α)(3 − α)xt−3

]

Therefore, the expression (5) can be rewritten as:

vt+1 = vt + φ1.
[

b − αxt − α

2
(1 − α)xt−1 − α

6
(1 − α)(2 − α)xt−2

− α

24
(1 − α)(2 − α)(3 − α)xt−3

]

+ φ2.(g − xt ) (7)

In the next section, several distinct values of r are tested.

5 Test Functions

This section introduces the optimization functions that are adopted during the tests of
PSO with fractional velocity update (7). The objective consists in minimizing several
well known functions [19]. These functions have n parameters, i = {1, . . ., n} and
their global optimum value is f ∗. The algorithm adopts a real encoding scheme. In
this line of thought are considered: (1) Rosenbrock’s valley (also known as Banana
function), (2) Drop wave, (3) Easom and (4) Michalewicz’s, represented in the
following expressions:
(1) Rosenbrock’s valley function:

f1(x) =
n−1
∑

j=1

100
(

xi+1 − x2
i

)2
(8)

with xi ∈ [ − 2.048, 2.048], i = {1, . . ., 4} and f ∗(x) = 0.0.
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Fig. 2 Rosenbrock’s function, evolution of the median of best PSO solution versus iteration for
α = {0, 0.1, . . . , 2.0}

(2) Drop wave function:

f2(x) = −
1 + cos

(

12
√

x2
1 + x2

2

)

0.5
(

x2
1 + x2

2

)+ 2
(9)

with xi ∈ [ − 10, 10], i = {1, 2} and f ∗(x) = −1.0.
(3) Easom function:

f3(x) = − cos (x1) cos (x2)e−(x1−π )2−(x2−π )2
(10)

with x1, x2 ∈ [ − 100, 100] and f ∗(x) = −1.0.
(4) Michalewicz’s function:

f4(x) =
n
∑

j=1

− sin (xj )

[

sin
(j + 1)x2

j

π

]2 m

(11)

with n = 2, m = 1, xi ∈ [0,π ], i = {1, 2} and f ∗(x) = −1.84.
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Fig. 3 Drop wave, evolution of the median of best PSO solution versus iteration for
α = {0, 0.1, . . . , 2.0}

6 Simulation Results

To study the influence of the fractional feedback effect in the algorithm, several tests
are now developed. A 10–population size PSO is executed during a period of 200
iterations with {φ1,φ2} ∼ U [0, 1], where U represents the function that generates
numbers with a uniform distribution in the specified range. The fitness evolution of
the best global particle is taken as the system output.

Since PSO is a stochastic algorithm, every time it is executed it leads to a different
trajectory convergence. Therefore, a test group of 201 simulation was considered,
and the median is taken as the final output, for each value in the set of fractional order
α = {0, 0.1, . . ., 2.0}. In Figs. 2, 3, 4, and 5 are depicted results for the optimization
functions fj , j = {1, . . ., 4}.

It can be verified that the convergence of the algorithm depends directly upon the
fractional order α. Normally, values of α = 1.8 reaches faster convergence results.
One the other hand, for low values of α the algorithm reveals convergence problems.
This is due to the local error, el = φ1[b− αxt − 0.5α(1− α)xt−1 − . . .] � φ1b, that
does not weights adequately the error between the particle actual position and the best
position found so far by the particle. Therefore, the algorithm becomes inefficient
and the algorithms takes more time to find the optimum.
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7 Conclusions

Block diagram and Z −transform are engineering tools that lead the designer to a
better understanding of the PSO in a control perspective. On the other hand, FC is a
mathematical tool that enables an efficient generalization of the PSO algorithm. Bear-
ing these facts in mind, the fractional order position error was analyzed showing that
it influences directly the algorithm convergence. Moreover, the results are consistent
representing an important step towards understanding the relationship between the
system position and the convergence behavior. In conclusion, the FC concepts open
new perspectives towards the development of more efficient evolutionary algorithms.
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A Multi-Robot SLAM Case Study
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Abstract Over time, biological societies such as humans, ants or bees have shown
us the advantages inherent to the collective work. It is based on such results that
many researchers have been trying to successfully develop new approaches in Multi-
Robot Systems. Nevertheless, several assumptions need to be assured for collective
work to emerge. In this paper, it is presented the significance and the advantages of
cooperation in the different societies bridging the gap to the concept of robot society.
In order to compare the advantages of cooperative robots, it is considered essential
the development of computational simulation based on the robotic cooperation in
unstructured environments. Hence, a Multi-Robot Simultaneous Localization and
Mapping (SLAM) using Rao-Blackwellized particle filter is implemented in a sim-
ulation environment developed in the Player/ Stage platform for robot and sensor
applications.

Keywords Robot · Society · Cooperation · Multi-robot slam

M. S. Couceiro (�) · R. Rocha
Institute of Systems and Robotics, University of Coimbra,
Pólo II, 3030-290 Coimbra, Portugal
e-mail: micaelcouceiro@isr.uc.pt; micael@isec.pt

R. Rocha
e-mail: rprocha@isr.uc.pt

M. S. Couceiro · N. M. Fonseca Ferreira
RoboCorp, Department of Electrotechnics Engineering, Engineering
Institute of Coimbra, Rua Pedro Nunes, 3030-199 Coimbra, Portugal

N. M. Fonseca Ferreira
e-mail: nunomig@isec.pt

A. R. Lopes
Faculty of Economics of Coimbra, University of Coimbra,
Av. Dias da Silva 165, 3004-512 Coimbra, Portugal
e-mail: andilope@gmail.com

A. G. Ferreira
Coimbra School of Education, Pólo I, Praça Heróis do Ultramar,
Solum, 3030-329 Coimbra, Portugal
e-mail: anabelagoncalves@esec.pt

57N. M. Fonseca Ferreira, J. A. Tenreiro Machado (eds.), Mathematical Methods
in Engineering, DOI 10.1007/978-94-007-7183-3_6,
© Springer Science+Business Media Dordrecht 2014



58 M. S. Couceiro et al.

1 Introduction

The concept of robot society soon appeared showing the inherent advantages when
compared to single solutions [1]. Since societies are formed as collaborative struc-
tures to execute tasks which are not possible or are difficult for individuals alone,
having societies formed by robots would bring at least two advantages: fault toler-
ance and parallelism. At first glance, having multiple robots performing a task or a
set of common tasks may seem more problematical (and challenging) than useful.
Why not use a single and complex robot capable of performing all these tasks? The
answer is all around us in nature. Much of the work developed in the area of coop-
erative robots mention biological systems as a source of inspiration. The collective
behavior of ants, bees, birds and other similar societies provide strong evidence that
systems composed of simple agents can perform complex tasks in the real world. The
robustness and adaptability of biological systems represent a powerful motivation
to replicate these mechanisms in an attempt to generate software and hardware with
features comparable to those of biological systems. These and many other reasons
will be addressed in this study showing the benefits of cooperative robots over a
single robot.

Cooperative robots, or Multi-Robot Systems (MRS), describe the situation in
which a group of robots get an overall benefit. A first key issue in cooperation
is whether robots should be identical (homogeneous groups) or different (hetero-
geneous grouping) and if the efficiency should come into consideration for the
performance of the whole group or only to each individual robot. This kind of co-
operation in robotics can vary from having only two robots to perform a simple task
together (e.g., two industrial arms manipulating a large object) [2] to a group of
heterogeneous robotic agents that can connect and form a more complex structure
[3].

More recently, some studies have been focused interest in MRS incorporating al-
gorithms of localization and mapping [4] thus enjoying all the advantages of the
cooperation between robots in unstructured environments. Many applications in
robotics, such as search and rescue, surveillance, exploration, among others, re-
quire the exact location in unknown environments. When robots are operating in
unstructured environments, in order to obtain their exact location, we need to create
and analyze the map of the environment. The concept of robot society will show us the
improvements of systems that require robots to operate in unstructured environment.

Section 2 highlights the importance of cooperation in societies focusing on co-
operation and sociological systems. Section 3 gives a brief survey of Simultaneous
Localization and Mapping (SLAM) applied to single robots and multiple robots and
in order to demonstrate the advantages of cooperative robots over a single robot, a
Multi-Robot SLAM algorithm inspired in the work of Andrew Howard [5] is imple-
mented in Sect. 4 using the Player/ Stage platform for robot and sensor applications.
Finally, in Sect. 5 outlines the main conclusions.
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2 Cooperative Systems

“Man is a natural animal and, inevitably, selfish” has been the beginning of all the
discussions about capitalism since the early stages reinforced by the powerful and
seemingly scientific notion survival of the fittest. Charles Darwin defended that in
what turned out to be one of the most important works in the history of science: The
Origin of Species [6]. The theory of natural selection defended by Darwin concluded
that not all organisms, at birth, offered the same survival conditions and that only
those who better adapt to the environment survive. Put in a less complicated way,
Darwin believed that the evolution of the species was like the “law of the jungle”,
where only the brightest would survive and evolve, while all the others disappear or
hardly survive. Darwin’s theory has been applied mainly to the biological level, but
over the years, turned out to be applied also in the economic and social competition.

Nevertheless, the survival of a particular member of a society may depend on the
cooperation with other members of this society or even other societies. The Britain’s
Kevin Foster [7], which has given the continuity to the work of William Hamilton,
proved that there are situations of cooperation between individuals who do not fit
the basic principle of Darwin arguing that altruism is a way that nature has to assert
itself. In June 2008, Kevin Foster said, at the Institute of Molecular Pathology and
Immunology in the University of Porto, Portugal, that cooperation is everywhere:
“The genes have joined in the genomes, the cells work together in multicellular
organisms and animals cooperate in societies”. Also, thousands of years before, the
King Solomon, who was a student of the nature, observed the humble ant, and wrote:
“Go to the ant, you sluggard; consider its ways and be wise! It has no commander,
no overseer or ruler, yet it stores its provisions in summer and gathers its food at
harvest.” [8]. In fact the ants are a perfect example of cooperation, diligence and
order. In addition to work together and help each others, the ants seem to be able to
find their paths (the nest to a food source and back or just getting around an obstacle)
with relative ease, despite being virtually blind. Several studies have found that in
many cases this capacity is the result of the interaction of chemical communication
between ants (for a substance called pheromone) and emergent phenomena caused
by the presence of many ants. This is the concept of stigmergy [9]. This mechanism
is so efficient that there are algorithms that use this principle as is the case of the
heuristic principle Ant System that simulates the behavior of a group of ants that work
together to solve an optimization problem using a simple communications [10] and
the case of Brood Sorting (group selection) used in swarms of robots [11].

Another very similar principle can be seen in other optimization algorithms such
as genetic algorithms, evolutionary strategies and the well-known Particle Swarm
Optimization (PSO) initially proposed by Kennedy and Eberhart [12], based on the
behavior of social organisms such as birds or fishes. On cooperation and competition
among the potential solutions, the optimal complex problems can be achieved more
quickly. In PSO algorithms each individual of the population is called a particle and
the position of these individuals is modified over time. Thus, the particles wander
through the multidimensional search space. Along the way, each particle adjusts its
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position according to their experience and the experience of the other members of
the population, taking advantage of the best position of each particle and the best
position of the whole group.

Suppose the following scenario: a group of birds are randomly looking for food
in an area where there is only one type of food. Although birds don’t know where
the food is, they know how close to the food they are at each iteration. So what is
the best strategy to find the food? The most efficient one is to follow the bird that is
closer to the food.

The PSO has been successfully used in many applications such as robotics [13–15]
and electrical systems [16].

Another interesting engineering example based on biological cooperation is re-
flected in the flight of pelicans. Researchers discover that the pelicans that fly in
formation earn extra boost when compared to the ones flying forward, resulting in a
15 % reduction in the heart rate. In order to validate this concept, a group of engi-
neers prepared a flight test with electronic equipment that enabled the pilot to keep
the plane at a distance of 90 m (with a small tolerance of 30 cm) over the plane that
was ahead. What was the outcome? The plane suffered an air resistance 20 % lower
and it consumed 18 % less fuel. These results can be used on military or civilian
planes, but also in the concept of robotics to improve the dynamics of flying robots
to monitor forest fires [17] or biologically inspired robots for spying [18].

However, when we speak about cooperation we should say Cooperative Systems.
The cooperation is just one of the indispensable tools for the Cooperative Systems
since without the collaboration between different members of a particular group or
society Cooperative Systems cannot survive. On the other hand, to cooperate, the
communication is essential between group members and this communication must be
familiar to all of them. The coordination also plays an important tool in cooperative
systems, since it organizes the group to prevent that communication and cooperation
efforts are lost and that tasks are performed in the correct order, at the correct time and
meeting the constraints and objectives. The Cooperative Systems has been studied
in several areas including computer science [19] and [20] and robotics [4, 21, 22].

Inspired by the results of the existing cooperation in various societies (e. g., ants,
bees, plants, humans), researchers have placed a great emphasis on developing robots
that can cooperate with each other and perform multiple tasks. The Cooperative
Multi-Robot Systems (CMRS) are based on the interception of the contribution of
each member (i.e., robot): if we have a group of robots cooperating to perform a
given task, they need to communicate with each other in order to coordinate their
actions and obtain the desired result. This concept offers a countless number of
advantages similar to the benefits of Cooperative Systems in other societies that may
be described in the following key factor: time. One way to circumvent the limitations
inherent to the concept of time is to perform simultaneous procedures: if we have
multiple robots instead of one they can act on multiple places at the same time
(spatial distribution) and they can perform multiple tasks simultaneously (temporal
distribution).
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3 Multi-Robot SLAM

The search for a solution to the SLAM problem has been one of the notable successes
of the robotics community over the past decade. The SLAM has been formulated and
solved as a theoretical problem in a number of different forms being implemented
in a number of different domains from indoor robots to outdoor, underwater, and
airborne systems. Basically, SLAM is a process by which a mobile robot can build a
map of an environment and at the same time use this map to deduce its location. So,
in a probabilistic form, the SLAM problem requires that the probability distribution
(1) be computed for all times k.

P (xk ,m|Z0:k , U0:k , x0) (1)

This probability distribution describes the joint posterior density of the landmark
locations and vehicle state (at time k) given the recorded observations and control
inputs up to and including time k together with the initial state of the vehicle.

The SLAM approach for a single robot began to receive attention in 1990 [23]. The
majority of the solutions to the SLAM problem are based on the implementation of the
extended Kalman filter (EKF) that correlates the pose estimation relative to different
landmarks [24, 25]. Although the EKF is one of the most effective approaches
for map estimation, [26] proved that the FastSLAM performance was substantially
higher than those obtained by the EKF. The FastSLAM algorithm was used for the
construction of indoor maps in [27, 28]. They used an algorithm based on occupancy
grids in order to build a metric map of the environment.

A variant of the FastSLAM was proposed [29] combining the Rao-Blackwellized
particle filter (RBPF) for samples of the trajectory of the robot and an EKF to
represent the map. This algorithm contains many elements of the standard Monte-
Carlo localization algorithm [30]. The challenge lies in maximizing the per-particle
update speed while minimizing the corresponding storage requirements, so that the
filter may run in real time and in bounded memory with a relatively large number
of particles. As always, the speed and storage demands tend to conflict, and our
implementation favors the former over the latter.

Based on the previous single robot SLAM algorithm Andrew Howard developed
a similar algorithm applied to multiple robots [5].

This algorithm has two important assumptions: (i) robots are able to detect, iden-
tify and measure the relative pose of other robots at some time during the exploration
task (when those robots are both nearby and within line-of-sight, for example). Such
encounters allow robots to fuse their subsequent observations into a common map,
using the measured relative pose to initialize the filter (note, however, that only the
first such encounter is used; subsequent encounters between robots are ignored);
and (ii) the particle-filter based SLAM algorithm supports time-reversed updates;
this generalization allows robots to incorporate observations that occurred prior to
the first encounter, by treating those observations as if they came from additional
“virtual” robots travelling backwards in time.
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Fig. 1 Bayes net for multi-robot SLAM with unknown initial poses [5]. The robots first encounter
one another at time s, recording the relative pose �2

s

As an illustration, consider the following example: two robots are exploring an
environment from distant and unknown initial locations. When robots encounter
one another they measure their relative pose constructing a filter in which robot 1
has an initial pose of zero, and robot 2 has the measured relative pose. Subsequent
measurements from the two robots are fed to the filter, and thereby fused into a
common map. At the same time, two virtual robots are added to the filter with poses
initialized as above where the previously recorded measurements are fed to the filter
in reverse time-order, such that these virtual robots appear to be driving backwards
through the environment. Thus, the filter incrementally fuses data from both robots,
recorded both before and after the encounter, into a single map.

Let �2
s denote the relative pose of robot 2 as measured by robot 1 at time s. We

wish to estimate the posterior over maps and trajectories given by:

p
(

x1
1:t , x

2
s+1:t , m|z1

1:t , u1
0:t−1, x1

0 , z2
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s

)
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x2
s+1:t |z2
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s , �2
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)

where x1
1:tand x2

s+1:tdenotes a sequence of robot 1 and 2 poses at times 1; 2;. . . ; t,
and s+ 1; s+ 2;. . . ; t, respectively. z1

1:tand z2
s+1:tdenotes the corresponding sequence

of observations, and u1
0:t−1and u2

s:t−1denotes the sequence of actions executed by the
robots (Fig. 1).
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Fig. 2 Map generated using
the single-robot algorithm;
the map is 16 m by 16 m with
a resolution of 0.50 m

This algorithm has number of attractive features. First, it is able to fuse all data
from all robots into a single map, without knowing the initial robot poses. Second,
it inherits the bounded-time, bounded-memory properties of the single robot SLAM
algorithm (CPU and memory requirements do not increase with path length). Third
and finally, the algorithm is fast: our implementation can fuse data from two robots in
real time. Collectively, these features make the algorithm highly suitable for on-line,
in-the-loop applications, such as multi-robot exploration and search tasks.

4 Experimental Results

In order to demonstrate the advantages of cooperative robots over a single robot, we
implemented a single and Multi-Robot RBPF-SLAM algorithm in the Player/ Stage
platform based on the work of Andrew Howard [5].

The filter update step requires two ray-tracing operations on the occupancy grid
for each and every particle: one to evaluate the sensor model and another to up-
date the map. Since these operations are expensive, we approximate the ray-tracing
step by considering only the ray end-points, and decimate the laser scans by using
only one scan for every 0.50 m of distance traveled. These approximations improve
processing speed by an order of magnitude or more, thereby allowing real-time op-
eration. For each particle, we maintain a complete occupancy grid map, generally
with a resolution of 0.50 m and covering an area of between 2,000 and 8,000 m2. The
robots used are the Pioneer II with odometry and 2D laser (horizontal plane) with
1◦ of resolution and retro-reflective markers (for mutual recognition).

Figure 2 shows a typical map generated by the single-robot algorithm, with all
three loops closed correctly. Processing time for this map is 126 s on a 1.6 GHz Intel
Centrino using 150 particles. Figure 3 shows the results produced by the multi-robot
algorithm for an autonomous exploration task. Two robots were deployed into this
environment at distant locations, from which they executed a cooperative, but largely
reactive, exploration strategy.
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Fig. 3 Sequence of events events: a robots starts at distant locations and the global map begins being
generated by the robot 1 (red) considering its initial position zero; b robot 1 (red) encounters robot
2 (green) (due to the retro-reflective markers) at time t = 54 s and uses the combined information
adding it to the global map; c at time t = 62 s the entire map is obtained with a resolution of 0.50 m

In the final map all the major topological features have been properly extracted
and the map quality is uniformly high. The processing time for this map is 62 s on a
computer 1.6 GHz Intel Centrino using 150 particles.
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5 Conclusions and Discussion

The concept of robot society shows potential in applications where the space and time
distribution of single robots are restricted and also as an alternative to more complex
robots. To demonstrate possible advantages of the cooperation in robotics, a single
and a multi-robot SLAM algorithm based on a RBPF was implemented on the Player/
Stage platform. One of the attractive features of the multi-robot SLAM algorithm is
that it’s easy to implement after the implementation of the single robot algorithm.
The basic elements of the algorithm (i.e., the sensor and action models, occupancy
grids and ray-tracing) are easily adapted from the Monte-Carlo location algorithm.
Despite possible improvements to this algorithm, the results show that a cooperative
exploration strategy becomes far superior to the individual one. The processing time
of the map for the single-robot solution is greater than twice the processing time of
the two-robots solution. Therefore, the use of cooperative strategies in robotics offers
several attractive features since robots are constantly interacting and communicating
with each other with the dynamic environment and with other members of different
societies (e.g., man). The collective intelligence emerging from cooperative strategies
in robotics gives a reason to call these systems, at their highest level, as robot society.
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(in 5 of September) University of Trás-os-Montes e Alto Douro

3. Fukuda T, Nakagawa S, Kawauchi Y, Buss M (1989) Structure decision method for self
organizing robots based on cell structures—CEBOT. In: Proceedings of IEEE international
conference on robotics and automation, pp 695–700, Scottsdale, AZ

4. Rocha R (2006) Building volumetric maps with cooperative mobile robots and useful in-
formation sharing: a distributed control approach based on entropy. PhD thesis, Faculty of
Engineering of University of Porto, Portugal, May 2006

5. Howard, A (2006) Multi-robot SL, mapping using particle filters. Int J Robot Res 25(12):
1243–1256

6. Darwin, C (1872) The origin of species by means of natural selection, or the preservation of
favoured races in the struggle for life. John Murray, London

7. Foster KR, Xavier JB (2007) Cooperation: bridging ecology and sociobiology. Curr Biol
17:R319–R321

8. Dean, M (1913) Book of Proverbs. Catholic encyclopedia. Adapted from Holman Bible
Handbook on Proverbs

9. Aras R, Dutech A, Charpillet F (2004) Stigmergy in multi agent reinforcement learning. Loria,
Inst. Nat de Recherche en Inf et Autom, Nancy

10. Dorigo, M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge



66 M. S. Couceiro et al.

11. Wilson M, Melhuish C, Sendova-Franks A, Scholes S (2004) Algorithms for building annular
structures with minimalist robots inspired by brood sorting in ant colonies. Auton Robot 17
(2–3):115–136

12. Kennedy J, Eberhart R (1995) A new optimizer using particle swarm theory. In: Proceedings
of the IEEE sixth international symposium on micro machine and human science, pp 39–43,
Nagoya

13. Tang J, Zhu J, Sun Z (2005) A novel path planning approach based on AppART and particle
swarm optimization. Advances in Neural Networks–ISNN 2005. Springer Berlin Heidelberg,
pp 253–258

14. Pires EJS, Oliveira PBM, Machado JAT, Cunha JB (2006) Particle swarm optimization ver-
sus genetic algorithm in manipulator trajectory planning. In: 7th Portuguese conference on
automatic contol, Instituto Superior Técnico, Lisbon, Portugal, 11–13 Sept 2006

15. Couceiro MS, Mendes R, Ferreira NMF, Machado JAT (2009) Control optimization of a robotic
bird. EWOMS ’09, Lisbon, Portugal, 4–6 June, 2009

16. Alrashidi MR, El-Hawary MEA (2006) Survey of particle swarm optimization applications in
power system operations. Electric Power Compon Syst 34(12):1349–1357

17. Martinez JR, Merino L, Caballero F, Ollero A, Viegas DX (2006) Experimental results of
automatic fire detection and monitoring with UAVs. For Ecol Manage 234:232

18. Couceiro MS, Figueiredo CM, Ferreira NMF, Machado JAT (2009) Biological inspired flying
robot. In: Proceedings of IDETC/CIE 2009 ASME 2009 international design engineering
technical conferences & computers and information in engineering conference, San Diego, 30
Aug–2 Sept 2009

19. Borghoff UM, Schlighter JH (2000) Computer-supported cooperative work: introduction to
distributed applications. Springer, USA

20. Fuks H, Raposo AB, Gerosa MA, Lucena CJPO (2003) Modelo de Colaboração 3C e a
Engenharia de Groupware. Pontifícia Universidade Católica, Rio de Janeiro (PUC-Rio)

21. Cao Y, Fukunaga A, Kahng A (1997) Cooperative mobile robotics: antecedents and directions.
Auton Robot 4:1–23

22. Jung, D (1998) An architecture for cooperation among autonomous agents. PhD thesis,
Department of Computer Science, University of Wollongong, Australia

23. Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In:
Ingemar JC, Gordon TW (eds) Autonomous robot vehicles. Springer, New York, pp 167–193

24. Dissanayake M, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the
simultaneous localization and map building (SLAM) prob-lem. IEEE Trans Robot Autom,
17(3):229–241

25. Thrun S, Dirk H, David F, Montemerlo D, Rudolph T, Wolfram B, Christopher B, Zachary
O, Scott T, William W (2003) A system for volumetric robotic mapping of abandoned mines.
Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on
,vol. 3, pp. 4270–4275. IEEE

26. Thrun S, Dirk H, David F, Montemerlo D, Rudolph T, Wolfram B, Christopher B, Zachary
O, Scott T, William W (2003) A system for volumetric robotic mapping of abandoned mines.
Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on
,vol. 3, pp. 4270–4275. IEEE

27. Stachniss C, Hahnel D, Burgard W (2004) Exploration with active loop-closing for FastSLAM.
In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems,
Department of Computer Science, Freiburg University, Germany

28. Stachniss C, Grisetti G, Burgard W (2005) Recovering particle diversity in a Rao-Blackwellized
particle filter for SLAM after actively closing loops. In: Proceedings of IEEE international
conference on robotics and automation, Freiburg, Germany

29. Hahnel D, Burgard W, Fox D (2003) An efficient FastSLAM algorithm for generating maps of
large-scale cyclic environments from raw laser range measurements. In: IEEE/RSJ international
conference on intelligent robots and systems, Las Vegas, Nevada, USA, Oct 2003

30. Thrun S, Fox D, Burgard W (2001) Robust Monte Carlo localization for mobile robots. Artif
Intell J 128(1–2):99–141



Generalized State-Space Modeling for m Level
Diode-Clamped Multilevel Converters

Miguel Chaves, Elmano Margato, J. Fernando Silva and Sónia F. Pinto

Abstract Multilevel power converter structures have been introduced as the solutions
for high power high voltage applications and also for grid interface connection of
renewable energy sources systems, where they have several advantages, namely low
distortion voltages and currents, low switching losses resulting in higher efficiency.
As a consequence of the increasing interest on multilevel converter applications, ac-
curate models of these power converters are essential for computer simulation studies.
This paper presents a systematic modeling approach suitable to obtain generalized
state-space models for m level diode-clamped multilevel converters supplying AC
loads. In particular, for m = 5, the proposed model is compared to the corresponding
model using general purpose Simulink blocks and SimPowerSystems toolbox.

Keywords Power electronics · Power drives · Multilevel converter modeling

1 Introduction

Recently, multilevel converters are being used in applications such as high-voltage
high-power DC-AC drives and renewable energy sources grid connection.

The first multilevel converter structures, also known as neutral point clamped
(NPC) converters, had three levels [1]. These converter structures consist of two DC
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bus capacitor voltages in series being the central tap the neutral level. Each converter
leg has two pairs of switching devices being the center of each device pair tied to
the neutral level by clamping diodes. The diode clamped method can be applied and
generalized for m level converters.

Multilevel converters have several attractive features when compared to conven-
tional voltage source inverters such as: staircase output voltage waveforms, meaning
lower distortion and smaller dv/dt, along with lower voltage rated switches (often
IGBTs); common-mode voltage is generally lower and can be eliminated using ad-
vanced modulations strategies benefiting the converter load [2, 3]. The converter
output voltages waveforms approach the ideal sinusoidal waveforms, as converter
m level number increases, allowing load currents with low distortion. Multilevel
converters can operate with relatively low switching frequency which means lower
switching losses and higher efficiency.

The basic multilevel concept uses appropriate switch combinations to obtain an
output voltage which can be one of the (m-1) DC voltages provided by the capacitive
voltage divider connected to the DC bus voltage Udc [4]. The converter staircase like
output waveforms can reach high voltage values, while the power semiconductors
must withstand only a reduced voltage normally Udc/(m-1).

Still, there are some problems to solve in multilevel converters. One is a gener-
alized strategy to balance all (m1) DC capacitor voltages, which requires additional
modulation techniques to face the capacitive voltage divider drift, otherwise some
capacitors become overcharged and others discharged.

Also, accurate models of power converters are essential for computer simulation.
These studies are an important tool, allowing time and cost savings, when it is
aimed the design, behavior analysis, capacitor voltage equalization and converter
controller synthesis, since multilevel power converters are non-linear structures that
can establish, in a discrete way imposed by the switching strategy, several appropriate
electrical connections between the DC source and AC load.

Converter structure complexity increases for high m level number converters. It
can become cumbersome when associations of multilevel power converters are used
and operated in a cooperative way. This is the case of grid interface connection of
renewable energy sources using back-to-back multilevel converters. This type of
power structures needs several control loops and linear [5–7] and non-linear [8, 9]
controllers. Thus, for converter computer modeling implementation and controller
synthesis, it is useful to have a systematic modeling approach, valid for m level
converters, in order to ease the modeling task and to design suitable controllers.

This paper presents a systematic modeling methodology suitable to develop gen-
eralized switched state-space models for m level diode-clamped multilevel power
converters whose general structure is shown in Fig. 1.

The converter interconnects capacitor divided DC bus voltages to the AC load.
The capacitor number is equal to (m1). All the three converter legs, one per output
phase, have (m-1) complementary state switch pairs with anti-parallel and series
connected diode. Each leg has also (m-2) clamping diodes pairs in order to guarantee
the circuit topological constraints. The converter legs are parallel connected to the DC
bus voltage and each leg midpoint is connected to the respective output load phase.
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Fig. 1 Three phase m level diode-clamped converter supplying an AC load

In both modeling approaches, electrical and semiconductor devices are considered
ideal components (zero ON voltages, zero OFF currents, zero switching times).

The proposed modeling is presented in Sect. 2 and compared to the existing
one [8, 9] in Sect. 3. It is shown that the existing modeling has an easier code
implementation if used for multilevel converters with few levels (m = 3), while the
generalized modeling is useful for converters having higher number of levels.

The generalized state space model developed for a m level neutral point clamped
multilevel converter is applied to m = 5 and implemented using general purpose
Simulink blocks. Simulations results are compared with the model of the same
converter obtained using SimPowerSystems toolbox, Sect. 4.

2 Generalized State Space Converter Model in Phase
Coordinates

To obtain a general model for a m level converter, it is advantageous, for each k
leg (k∈{1,2,3}), to start numbering the upper IGBT switches Sk1, Sk2, . . . Skn, . . .
Sk(m1) from the leg midpoint, and S’k1, S’k2, . . . S’kn, . . . S’k(m1) up from the zero
voltage point.
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Using this numbering methodology, the switching strategy for a m level multi-
level converter assures that upper leg switches [Sk1 Sk2 . . . Skn . . . Sk(m-1)] and the
corresponding ones on the lower side [S’k1 S’k2 . . . S’kn . . . S’k(m-1)] are always in
complementary states. Consequently: if Skj = 1, meaning that the specified Skj switch
is ON, then S’kj must be equal to 0 (S’kj switch is OFF).

For each leg the output voltage uk , defined from the k leg midpoint to the zero
voltage, can be written in terms of leg switches logical state and DC bus capacitor
voltages by (1):

uk =
m−1
∑

j=1

Skjucj (1)

Where ucj is the voltage of a considered n level capacitor (j= n) that is connected
in series with the previous capacitor voltage uc(n-1) by the action of turning ON
switch Skn.

Equation (1) can also be written in matrix form as (2).

⎡

⎣

u1

u2

u3

⎤

⎦ =
⎡

⎣

S11 S12 ... S1n ... S1(m−1)

S21 S22 ... S2n ... S2(m−1)

S31 S32 ... S3n ... S3(m−1)

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uC1

uC2

:
uCn

:
uC(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

The DC bus n level current in, n∈{1,2, . . . , m-1}, can be related to load phase currents
iSk by (3).

in =
3
∑

k=1

ΓnkiSk (3)

Where Γnk is a time dependent switching variable, written in terms of the k leg
switches logical state as (4).

Γnk = Sk1Sk2...Skn(1 − Sk(n+1))(1 − Sk(n+2))...(1 − Sk(m−1)) (4)

Equation (3) can also be written in matrix form:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

i1
i2
:
in
:

i(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

... ... ...

Γn1 Γn2 Γn3

... ... ...

Γ(m−1)1 Γ(m−1)2 Γ(m−1)3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

iS1

iS2

iS3

⎤

⎦ (5)

In Eq. (5) each column of the matrix can carry a maximum of one nonzero element,
since each load phase current iSk (k leg) is connected to a n DC bus level when

Γ nk = 1, or to the zero voltage bus when
(m−1)∑

j=1
Γjk = 0.
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Each DC bus n level current capacitor iCn can be related to the corresponding
voltage uCn by (6).

iCn = Cn

duCn

dt
(6)

The above current icn can be expressed in terms of the upper capacitor current ic (n+ 1)

and the corresponding DC bus n level current in. In the case of capacitor C(m-1), a
generic source iL0 current (7) (8) is considered to contribute to the upper capacitor
current.

iCn = iC(n+1) − in = Cn

duCn

dt
(7)

iC(m−1) = iL0 − i(m−1) = C(m−1)
duC(m−1)

dt
(8)

Rewriting Eqs. (7) and (8) for the voltage capacitor state variables, the matrix
equation (9) is obtained.

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uC1

uC2

:
uCn

:
uC(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

C1
− 1

C1
... − 1

C1
... − 1

C1

1

C1

0 − 1

C2
... − 1

C2
... − 1

C2

1

C2
... ... ... ... ... ... ...

0 0 ... − 1

Cn

... − 1

Cn

1

Cn

... ... ... ... ... ... ...

0 0 ... 0 ... − 1

C(m−1)

1

C(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i1
i2
:
in
:

i(m−1)

iL0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Using (5) it is possible to express equation (9) in terms of load phase currents isk

(10).

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uC1

uC2

:
uCn

:
uC(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ΓC11

C1
−ΓC12

C1
−ΓC13

C1

1

C1

−ΓC21

C2
−ΓC22

C2
−ΓC23

C2

1

C2
... ... ... ...

−ΓCn1

Cn

−ΓCn2

Cn

−ΓCn3

Cn

1

Cn

... ... ... ...

−ΓC(m−1)1

C(m−1)
−ΓC(m−1)2

C(m−1)
−ΓC(m−1)3

C(m−1)

1

C(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

iS1

iS2

iS3

iL0

⎤

⎥
⎥
⎦

(10)
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Where the k column matrix element Γ Cnk (k leg) is determined adding from n to
(m-1) the values of time dependent switching variables Γ nk, as in (11):

ΓCnk =
m−1
∑

i=n

Γik (11)

As in existing three levels voltage source inverters modeling, the k load phase voltage
usk can be related to all leg output voltages uk and, using (1), expressed as a function
of DC bus capacitor voltages as (12).

uSk = 1

3

m−1
∑

j=1

⎛

⎜
⎝2Skj −

3
∑

i=1
i 
=k

Sij

⎞

⎟
⎠ uCj (12)

Considering a standard R-L balanced load with electromotive force esk and isolated
neutral, the converter load equation can be written as (13).

uSk = RiSk + L
diSk

dt
+ eSk (13)

From Eqs. (12) and (13) it is possible to obtain the phase currents dynamic model in
terms of DC bus capacitor voltages using matrix form (14).

d

dt

⎡

⎢
⎢
⎣

iS1

iS2

iS3

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−R

L
0 0

SC11

L

SC12

L
...

SC1n

L
...

SC1(m−1)

L

0 −R

L
0

SC21

L

SC22

L
...

SC2n

L
...

SC2(m−1)

L

0 0 −R

L

SC31

L

SC32

L
...

SC3n

L
...

SC3(m−1)

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

uC1

uC2

:
uCn

:
uC(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

L
0 0

0 − 1

L
0

0 0 − 1

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

eS1

eS2

eS3

⎤

⎥
⎥
⎦

(14)

Matrix elements SCkj are determined by (15).

sCkj = 1

3

⎛

⎜
⎝2Skj −

3
∑

i=1
i 
=k

Sij

⎞

⎟
⎠ (15)
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The complete m level multilevel converter system model, in phase coordinates, can
be written in matrix form by (16).

This generalized switched state-space model, for m level diode clamped multilevel
converters, is a detailed nonlinear model suited for computer implementation.

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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iS2
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:
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:
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⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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=
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⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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L
0 0

SC11
L

SC12
L

...
SC1n
L
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SC1(m−1)

L
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L
0

SC21
L

SC22
L

...
SC2n
L
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L

0 0 −R
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L

SC32
L
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L
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C1

−ΓC12
C1

−ΓC13
C1

0 0 ... 0 ... 0

−ΓC21
C2

−ΓC22
C2

−ΓC23
C2

0 0 ... 0 ... 0

... ... ... ... ... ... ... ... ...

−ΓCn1
Cn

−ΓCn2
Cn

−ΓCn3
Cn

0 0 ... 0 ... 0

... ... ... ... ... ... ... ... ...

−ΓC(m−1)1

C(m−1)
−ΓC(m−1)2

C(m−1)
−ΓC(m−1)3

C(m−1)
0 0 ... 0 ... 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

uC1

uC2

:

uCn

:

uC(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

L
0 0 0

0 − 1

L
0 0

0 0 − 1

L
0

0 0 0
1

C1

0 0 0
1

C2

... ... ... ...

0 0 0
1

Cn

... ... ... ...

0 0 0
1

C(m−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eS1

eS2

eS3

iL0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

3 State Space 5 level Converter Model using Existing approach

The existing approach, [8, 9], will be here applied to the five level (m = 5) multilevel
converter.

To write this model a time dependent switching variable γk is defined and written
in terms of the switches state logical value (17). This variable is used to define the
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leg output voltage uk .

γk =

4∑

j=1
Skj

4
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1 ⇐ [

Sk1 Sk2 Sk3 Sk4
] = [

1 1 1 1
]

3

4
⇐ [

Sk1 Sk2 Sk3 Sk4
] = [

1 1 1 0
]

1

2
⇐ [

Sk1 Sk2 Sk3 Sk4
] = [

1 1 0 0
]

1

4
⇐ [

Sk1 Sk2 Sk3 Sk4
] = [

1 0 0 0
]

0 ⇐ [

Sk1 Sk2 Sk3 Sk4
] = [

0 0 0 0
]

(17)

The leg output voltage uk is expressed as function of γk by (18) and written as (19):

uk =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

uC1 + uC2 + uC3 + uC4 ⇐ γk = 1

uC1 + uC2 + uC3 ⇐ γk = 3
4

uC1 + uC2 ⇐ γk = 1
2

uC1 ⇐ γk = 1
4

0 ⇐ γk = 0

(18)

uk = (Γ1k + Γ2k + Γ3k + Γ4k)uC1 + (Γ2k + Γ3k + Γ4k)uC2

+(Γ3k + Γ4k)uC3 + Γ4kuC4 (19)

In this case, Γ nk is a time dependent switching variable written as a γk dependent
function (20) that, as stated before, it will be used to define the connection state
between each k phase and the n DC bus level.

Beyond stated in references [8] and [9], it is now presented a systematic way
to write the Γ nk switching functions. Functions Γ nk (n∈{1; 2; 3; . . . (m-1)}) can
be written as a product of (m-1) factors. Each factor, itself written in terms of γk„
must assure two conditions: the first is that each factor must be equal to zero for
one specified value of γk , excluding γk = n/4 (γk∈{0; 1/(m-1); 2/(m-1); . . . (m-
1)/(m-1)}); the second condition states that all the factors must be equal to one
when γk = n/4. The systematic form of the switching variable Γ nk can be expressed
as (20b).
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Γnk =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Γ1k = 4γk (−4γk + 2)

(

−2γk + 3

2

)(

−4

3
γk + 4

3

)

=
{

1 ⇐ γk = 1/4

0 ⇐ γk 
= 1/4

Γ2k = 2γk (4γk − 1) (−4γk + 3) (−2γk + 2) =
{

1 ⇐ γk = 1/2

0 ⇐ γk 
= 1/2

Γ3k = 4

3
γk

(

2γk − 1

2

)

(4γk − 2) (−4γk + 4) =
{

1 ⇐ γk = 3/4

0 ⇐ γk 
= 3/4

Γ4k = γk

(
4

3
γk − 1

3

)

(2γk − 1) (4γk − 3) =
{

1 ⇐ γk = 1

0 ⇐ γk 
= 1

(20a)

Γnk =
(m−1)
∏

{

j=0
∧

j 
=n

(

γk − j

(m−1)
n

(m−1) − j

(m−1)

)

(20b)

The load phase voltage uSk can be written in terms of converter legs output voltage
uk as in (21).

uSk =

⎧

⎪
⎨

⎪
⎩

uS1 = 1
3 (2u1 − u2 − u3)

uS2 = 1
3 (−u1 + 2u2 − u3)

uS3 = 1
3 (−u1 − u2 + 2u3)

(21)

Using (19) and (21) the output phase voltages uSk can be rewritten in terms of the
capacitors voltages as (22).

⎡

⎣

uS1

uS2

uS3

⎤

⎦ =
⎡

⎣

SC11 SC12 SC13 SC14

SC21 SC22 SC23 SC24

SC31 SC32 SC33 SC34

⎤

⎦

⎡

⎢
⎢
⎣

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎦

(22)

Where matrix elements SCkj are functions of Γ nk, as shown in the following
expressions (24), which could also be obtained using (15).
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SC11 = 1

3
(2(Γ11 + Γ21 + Γ31 + Γ41) − (Γ12 + Γ22 + Γ32 + Γ42) − (Γ13 + Γ23 + Γ33 + Γ43))

SC21 = 1

3
(−(Γ11 + Γ21 + Γ31 + Γ41) + 2(Γ12 + Γ22 + Γ32 + Γ42) − (Γ13 + Γ23 + Γ33 + Γ43))

SC31 = 1

3
(−(Γ11 + Γ21 + Γ31 + Γ41) − (Γ12 + Γ22 + Γ32 + Γ42) + 2(Γ13 + Γ23 + Γ33 + Γ43))

SC12 = 1

3
(2(Γ21 + Γ31 + Γ41) − (Γ22 + Γ32 + Γ42) − (Γ23 + Γ33 + Γ43))

SC22 = 1

3
(−(Γ21 + Γ31 + Γ41) + 2(Γ22 + Γ32 + Γ42) − (Γ23 + Γ33 + Γ43))

SC32 = 1

3
(−(Γ21 + Γ31 + Γ41) − (Γ22 + Γ32 + Γ42) + 2(Γ23 + Γ33 + Γ43))

SC13 = 1

3
(2(Γ31 + Γ41) − (Γ32 + Γ42) − (Γ33 + Γ43))

SC23 = 1

3
(−(Γ31 + Γ41) + 2(Γ32 + Γ42) − (Γ33 + Γ43))

SC33 = 1

3
(−(Γ31 + Γ41) − (Γ32 + Γ42) + 2(Γ33 + Γ43))

SC14 = 1

3
(2Γ41 − Γ42 − Γ43)

SC24 = 1

3
(−Γ41 + 2Γ42 − Γ43)

SC34 = 1

3
(−Γ41 − Γ42 + 2Γ43) (23)

Considering now a standard R-L balanced load with electromotive force esk and
isolated neutral, and using the converter load voltages (13), the isk currents dynamic
model, can be written in the matrix form (24).

d

dt

⎡

⎣

iS1

iS2

iS3

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−R

L
0 0

SC11

L

SC12

L

SC13

L

SC14

L

0 −R

L
0

SC21

L

SC22

L

SC23

L

SC24

L

0 0 −R

L

SC31

L

SC32

L

SC33

L

SC34

L

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

− 1

L
0 0

0 − 1

L
0

0 0 − 1

L

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣

eS1

eS2

eS3

⎤

⎦ (24)

The DC bus n level current in can also be expressed in terms of load phase currents
iSk by (25).

⎡

⎢
⎢
⎣

i1
i2
i3
i4

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

Γ41 Γ42 Γ43

⎤

⎥
⎥
⎦

⎡

⎣

iS1

iS2

iS3

⎤

⎦ (25)
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Capacitors currents iCn can be written in terms of DC bus nth level current in as (26).

iCn =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

iC1 = iL0 − i1 − i2 − i3 − i4

iC2 = iL0 − i2 − i3 − i4

iC3 = iL0 − i3 − i4

iC4 = iL0 − i4

(26)

Using (25) and the generic capacitor current Eqs. (6), (26) can be rewritten and the
matrix equation (27) is obtained.

d

dt

⎡

⎢
⎢
⎣

uC1
uC2
uC3
uC4

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Γ11 + Γ21 + Γ31 + Γ41
C1

−Γ12 + Γ22 + Γ32 + Γ42
C1

−Γ13 + Γ23 + Γ33 + Γ43
C1

1

C1

−Γ21 + Γ31 + Γ41
C2

−Γ22 + Γ32 + Γ42
C2

−Γ23 + Γ33 + Γ43
C2

1

C2

−Γ31 + Γ41
C3

−Γ32 + Γ42
C3

−Γ33 + Γ43
C3

1

C3

−Γ41
C4

−Γ42
C4

−Γ43
C4

1

C4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

iS1
iS2
iS3
iL0

⎤

⎥
⎥
⎦

(27)

Equation (27) compares to Eq. (10) where the matrix elements can be related as it
shows (28).

�C11 = �11 + �21 + �31 + �41

�C12 = �12 + �22 + �32 + �42

�C13 = �13 + �23 + �33 + �43

�C21 = �21 + �31 + �41

�C22 = �22 + �32 + �42

�C23 = �23 + �33 + �43

�C31 = �31 + �41

�C32 = �32 + �42

�C33 = �33 + �43

�C41 = �41

�C42 = �42

�C43 = �43 (28)

Using (28), Eq. (27) can be rewritten in terms of Γ Cjk as (29).

d

dt

⎡

⎢
⎢
⎣

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ΓC11

C1
−ΓC12

C1
−ΓC13

C1

1

C1

−ΓC21

C2
−ΓC22

C2
−ΓC23

C2

1

C2

−ΓC31

C3
−ΓC32

C3
−ΓC33

C3

1

C3

−ΓC41

C4
−ΓC42

C4
−ΓC43

C4

1

C4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

iS1

iS2

iS3

iL0

⎤

⎥
⎥
⎦

(29)
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The global system model in phase coordinates can be written in matrix form (30)
using (24) and (29).

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−R

L
0 0

SC11

L

SC12

L

SC13

L

SC14

L

0 −R

L
0

SC21

L

SC22

L

SC23

L

SC24

L

0 0 −R

L

SC31

L

SC32

L

SC33

L

SC34

L

−ΓC11

C1
−ΓC12

C1
−ΓC13

C1
0 0 0 0

−ΓC21

C2
−ΓC22

C2
−ΓC23

C2
0 0 0 0

−ΓC31

C3
−ΓC32

C3
−ΓC33

C3
0 0 0 0

−ΓC41

C4
−ΓC42

C4
−ΓC43

C4
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1

L
0 0 0

0 − 1

L
0 0

0 0 − 1

L
0

0 0 0
1

C1

0 0 0
1

C2

0 0 0
1

C3

0 0 0
1

C4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

eS1

eS2

eS3

iL0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)

If a zero voltage reference in the DC bus midpoint has been selected (umk voltages
reference instead of uk), slightly simpler equations for (23) and (27) would have been
obtained, as is shown in (31) and (32) respectively.
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SC11 = 1

3
(−2Γ01 + Γ02 + Γ03)

SC21 = 1

3
(Γ01 − 2Γ02 + Γ03)

SC31 = 1

3
(Γ01 + Γ02 − 2Γ03)

SC12 = 1

3
(−2(Γ01 + Γ11) + (Γ02 + Γ12) + (Γ03 + Γ13))

SC22 = 1

3
((Γ01 + Γ11) − 2(Γ02 + Γ12) + (Γ03 + Γ13))

SC32 = 1

3
((Γ01 + Γ11) + (Γ02 + Γ12) − 2(Γ03 + Γ13))

SC13 = 1

3
(2(Γ31 + Γ41) − (Γ32 + Γ42) − (Γ33 + Γ43))

SC23 = 1

3
(−(Γ31 + Γ41) + 2(Γ32 + Γ42) − (Γ33 + Γ43))

SC33 = 1

3
(−(Γ31 + Γ41) − (Γ32 + Γ42) + 2(Γ33 + Γ43))

SC14 = 1

3
(2Γ41 − Γ42 − Γ43)

SC24 = 1

3
(−Γ41 + 2Γ42 − Γ43)

SC34 = 1

3
(−Γ41 − Γ42 + 2Γ43)

(31)

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uC1

uC2

uC3

uC4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ01

C1

Γ02

C1

Γ03

C1

1

C1
Γ01 + Γ11

C2

Γ02 + Γ12

C2

Γ03 + Γ13

C2

1

C2

−Γ31 + Γ41

C3
−Γ32 + Γ42

C3
−Γ33 + Γ43

C3

1

C3

−Γ41

C4
−Γ42

C4
−Γ43

C4

1

C4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

iS1

iS2

iS3

iL0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)

This modeling approach also conducts to a detailed non-linear state space model
which has an easier code implementation, in case of converters with low level number
(specially m = 3). Otherwise for m > 3, establishing analytical functions for time
dependent switching variable (Γ nk) and for matrix elements SCkj could become a
hard and fastidious task.
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Fig. 2 Simulation of three phase output voltages using the uSk voltage equations from Sect. 2 and
3 implemented in simulink

4 Simulations Results

To evaluate the performance of presented models both were used in the modeling
of a five level converter supplying an AC load. Simulation results provided by mod-
els were compared with the corresponding ones obtained using SimPowerSystems
toolbox.

Multilevel converter was driven using a sinusoidal pulse width modulation
(SPWM) technique. The simulation conditions were: constant capacitor voltage
uCn = 150 V; RL balanced load with R= 10 
 and L= 20 mH; carrier frequency
fc = 650 Hz; modulation frequency fm = 50 Hz.

Figure 2 shows the obtained simulation results of the three phase output voltages
usk using models presented in Sects. 2 and 3, implemented in Matlab/simulink. The
results of both models are overlapped and cannot be separated.

The same output voltages obtained using the IGBT/diode models of SimPower-
Systems toolbox are shown in Fig. 3. It is possible to verify that results match the
corresponding ones in Fig. 2.

Figure 4 and 5 present the simulated start-up transient of output load currents
obtained using models in Sect. 2, 3 and SimPowerSystems toolbox, respectively.
These dynamic results also match.

Figure 6 and 7 present output voltage us1 and load current is1 frequency spectrum,
using the proposed model implemented in simulink
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Fig. 3 Simulation of three phase output voltages using SimPowerSystems toolbox
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implemented in simulink
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Fig. 5 Simulation of three phase load currents using SimPowerSystems toolbox
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Fig. 6 Phase output voltage us1 spectrum using the proposed model implemented in simulink
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Fig. 7 Phase load current is1 spectrum using the proposed model implemented in simulink

The multilevel converter provides a voltage staircase like waveform with low
harmonic distortion as can be qualitatively seen in 6 and 7.

The presented model is valid independently of the power flow direction (DC-AC
or AC-DC), or even with active balanced loads with line to line electromotive force
peak value higher then DC bus voltage.

In order to prove these model features the following figures present simulation
results of DC bus supplying current iL0 obtained, respectively, using the proposed
model, Fig. 8. The results were obtained considering an active balanced load (RLE),
with the previously presented RL values and applying a step in the electromotive
force rms value, at t= 0,02 s, from 0 to 400 Vrms.

DC bus capacitor voltage divider is assumed to be connected in parallel with a
non-ideal voltage source with internal resistance of 0.1 
.

The time evolution of iLo DC bus supplying current, presented in Fig. 8, shows
power flow inversion at DC voltage source terminals, due to a rise in line-to-line
voltage from 0 to a value higher then the DC bus voltage.

5 Conclusions

This work proposes new generalized state-space modelling for m level diodeclamped
multilevel converters. The m generalized modelling was applied to a five level con-
verter and compared to existing modelling approaches. The proposed generalized
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Fig. 8 Simulation of DC bus supplying current iLo using the proposed model implemented in
simulink

approach is systematic and advantageous for converters with high number of levels.
It is also suited for computer simulation.

Comparing obtained simulation results using developed models and the corre-
sponding ones using SimPowerSystems toolbox it is concluded that the presented
models show well the detailed system behaviour and are accurate enough.

The proposed modelling approaches are valid for passive and active loads. In the
case of active loads, the proposed models are valid for both power flow directions
and peak line-to line voltages lower or higher than the DC voltage value.

Advantages of multilevel converters were also confirmed by simulation waveform
results, such as voltage staircase waveform, which means low load phase voltage and
low current distortion as shown.
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Modelling Codfish Drying: Comparison
Between Artificial Neural Network, Diffusive
and Semi-Empirical Models

CN Boeri, FJ Neto da Silva and JAF Ferreira

Abstract Convective drying is of prime importance in the food conservation indus-
try and has been constantly studied and improved to obtain products with higher
quality and lower processing time. In this work, three different models were used
to perform the codfish drying simulation: artificial neural network (ANN), diffusive
and semi-empirical models. The simulation results were compared for the follow-
ing experimental conditions: drying air temperature of 20 ◦C, air velocities of 2 and
3 m/s and drying air relative humidities comprise between 55 and 65 %. The sim-
ulations showed good results for the semi-empirical and ANN models, requiring
improvements to the diffusion model.

Keywords Artificial neural network · Diffusion law · Semi-empirical models ·
Codfish drying

1 Introduction

As all fish, fresh codfish is susceptible to deterioration by fast destructive action
of enzymes, oxidation of lipids, high pH, high water activity and accentuated con-
tents of non-protein nitrogen substances. Accordingly, it is of critical importance to
adopt measures ensuring perfect conservation immediately after capture and during
distribution and commercialization.

There are several techniques for processing fish (drying, salting, smoking, etc.)
which can be used to meet the above requirements. In this work, the emphasis will
be allocated to the drying conservation process.

The relevance of drying operations within a vast range of industrial processes is
unquestionable: drying is present in the chemical, agricultural, wood processing,
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food, ceramics, and pulp and paper industries, among others. It is estimated that
drying operations are responsible for 10–25 % of the national energy consumption in
developed countries [1]. The correct definition of drying procedures of a vast range
of products is crucial in what concerns energy minimization and minimal time of
kiln residence without compromising the final product quality. Drying can change
the sensory characteristics and nutritional value of foods, and the intensity of these
changes depends upon the conditions used in the drying process and the specific
characteristics of each product.

Several parameters influence the time required to reduce the moisture content of
the product. The principal external factors to consider are air temperature, relative
humidity and velocity. Whole salted codfish drying prevents the utilization of temper-
atures above 20–22 ◦C, since they lead to an inevitable deterioration of the product.
Hence convective drying must be conducted without exceeding the required tempera-
ture limits. The limitation seriously conditions drying time and energy consumption.

Mathematical modelling of food drying processes represents an adequate and
straightforward manner to predict drying behaviour of a given material in response
to given drying conditions or to a change in these conditions. When a drying model
is integrated with a proper control algorithm aiming at energy reduction and in-
creased drying speeds, manual control can be replaced by automatic operation which
may result in significant reductions in drying costs without compromises in product
quality.

Hence the purposes of this work are the determination of the codfish drying
kinetics for the following experimental conditions: drying air temperature of 20 ◦C,
initial moisture contents comprise between 56 and 62 % (wet basis), air velocities of
2 and 3 m/s and drying air relative humidities comprise between 55 and 65 %, which
replicate the conditions found in the whole salted codfish processing industry; and to
compare the accuracy of several modelling techniques namely thin layer, diffusive
and neural network models.

2 Materials and Methods

2.1 Product and Dryer

The experimental data used in this work were obtained from drying experiments
carried out with the use of four salted whole green codfishes, with an initial mass
which varied between 1,060 and 2,000 g. The codfishes were cut in samples with an
approximate mass of 100 g each, and kept until utilization tightly wrapped in plastic
bags in a refrigerator at a constant temperature of 5 ◦C. The oven drying method
was used to determine the initial and the final moisture contents of the samples. The
method implied extraction of parts of the sample and their drying in a controlled
temperature environment at 105± 2 ◦C during, at least, 48 h.
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Table 1 Drying air and
product conditions for drying
experiments

Experiment T (◦C) v (m/s) RH (%) X0 (%)

1 20 3 55 60.76
2 20 3 60 59.43
3 20 3 65 56.56
4 20 2 60 62.70

At the beginning of each experiment, a codfish sample was placed in the drying
chamber over a digital balance. The mass of the sample was continuously deter-
mined by the monitoring system and the readings were recorded every 5 min. The
equilibrium moisture content of the codfish was determined experimentally in a hy-
grometric chamber. During convective drying the sample mass was acquired at each
time interval, which allowed for determination of the instantaneous moisture content
using (1).

X = (Xe − X0) · (m−m0)

(mf −m0)
+X0 (1)

where Xe is the equilibrium moisture content, X0 is the initial moisture content, m
is the instantaneous mass, m0 is the initial mass and mf is the final mass.

The values of initial, equilibrium and instantaneous moisture content of the codfish
sample were used to obtain the values of the dimensionless moisture content:

Xdim = X −Xe

X0 −Xe

(2)

where X is the instantaneous moisture content of the product.
Four different drying situations were used in the experiments described in Table 1:

2.2 Drying Models

In the literature one can found several models to simulate the drying process. Here,
experimental data were collected to adjust parameters on the thin layer and on the
diffusive drying models and to train the neural network model. Modelling of the
drying experiments was performed by resorting to the Page and Thompson semi-
empirical models (thin layer drying model), to a Fick diffusion law (diffusive model)
and to a neural network model.

The neural networks are a problem solving concept which represents an alternative
to conventional algorithmic methods [2]. The concept was used herewith to build a
neural model able to predict the behaviour of drying curves. The neural network used
in this work was a multi-layer “feed-forward”, consisting of four input layers, one
hidden layer and one output layer with a convergence criterion for training purposes.
In this network, each neuron of one layer is connected to all neurons in adjacent
layers. The training of feed-forward networks is of the supervised type: this type of
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training requires a set of data for training, i.e., a series of pairs of inputs and desired
outputs. The inputs are presented to the network and their weights are changed so that
the output approximates the desired output. Therefore, experimental data of codfish
drying was used in the steps of training and validation. Input variables were drying
time, temperature, relative humidity and air velocity, with the output variable, the
codfish moisture content. As convergence criterion, was used the mean square error
of 1.0 × 10−5 for the network training.

The diffusive model is based on Fick’s law, which states that the mass flow per
unit area is proportional to the concentration water gradient. Crank [3] determined
a large number of solutions of the diffusion equation for varied initial and boundary
conditions. However, these solutions apply to simple geometric shapes and when the
diffusivity is constant or varies linearly or exponentially with the concentration of
water.

Considering a flat plaque:

∂X

∂t
= ∂

∂z

(

Def

∂X

∂z

)

, 0 < z < L (3)

Assuming the following initial and boundary conditions and the definition (7):

X(z, 0) = X0 (4)

∂X

∂z

∣
∣
∣
∣
z=0

= 0 (5)

X(L, t) = Xe (6)

X = 1

L

L∫

0

X(z, t)dz (7)

the analytical solution to Fick’s diffusion equation is given by:

X − Xe

X0 − Xe
= 8

π2

∞
∑

i=0

1

(2i + 1)2
exp

[

−(2i + 1)2π2Def
t

4L2

]

(8)

where t is the drying time, Def is the effective diffusivity, L is the sample half
thickness and z is the direction.

The previous solution was adapted to the present drying situation by considering
the codfish slab as a flat plaque for which the boundary located in contact with the
digital balance plate was considered as impermeable to moisture transfer.

Semi-empirical models are known as exponential laws of drying. These models
rely, in general, in an analogy with Newton’s law of cooling, considering that the
drying rate is proportional to the difference between the current moisture content and
moisture content equilibrium. ∂x

∂t
α = (X−Xe). Recent applications of such models

can be found in abundance in the literature [4–7]. Here, the drying semi-empirical
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Fig. 1 Comparison
between experimental
data and neural network
model—Experiment 1
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models proposed by Page [8] and Thompson [9] were used. The Page equation was
adjusted incorporating the air velocity and the drying air temperature as a model
parameter by following the methodology proposed in the literature [10]:

Xdim = e[−v·A·X0
B ·e(C·Ts )·tD] (9)

where v is the air velocity, Ts is the temperature of drying air, t is the drying time, A,
B, C and D are constants related with the drying process and with the product.

Thompson’s model is given by:

Xdim = e

[(

−A−(A2+4·B·t)0,5
)

/2B
]

(10)

where t is the drying time, A and B are constants that depend of the drying process
and the type of product.

3 Results and Discussion

In the modelling performed by artificial neural networks, several models were trained
using the set of experimental data, through the use of Matlab® 7.0.1 software. The
most satisfactory performance for the training phase was reached with the Levenberg-
Marquardt’s algorithm, where the best error was obtained using 50 neurons in the
hidden layer, with 62 training epochs. The transfer functions used were the Sigmoid
Function (Tansig) for the hidden layer and the linear function (Purelin) for the output
layer. Were used 11 drying experiments in the training phase and 6 experiments in
the validation phase of the network.

Results from the validation of the neural network are shown in the Figs. 1, 2, 3
and 4:

In what concerns the diffusive model for each drying conditions, the diffusion
coefficients were calculated using five terms of the series, by nonlinear estimation,
with the use of estimation method Quasi-Newton.

The values obtained for the diffusion coefficients in each experiment are shown
in Table 2. The obtained diffusivity coefficients are in accordance with the values
found in literature [11].
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Fig. 2 Comparison
between experimental
data and neural network
model—Experiment 2
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Fig. 3 Comparison
between experimental
data and neural network
model—Experiment 3
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Fig. 4 Comparison
between experimental
data and neural network
model—Experiment 4
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Table 2 Values obtained
for diffusion coefficients

Experiment Diffusion coefficients (m2/s)

1 3.13226 × 10−10

2 4.39182 × 10−10

3 2.70456 × 10−10

4 2.72722 × 10−10

The results obtained for the simulations accomplished with diffusive model,
together with the experimental data, are shown in Figs. 5, 6, 7 and 8:

The relative inaccuracy of the diffusive type models reflect the constraints im-
posed both by the choice of the boundary condition at the exposed surface and by
adopting constant diffusion coefficients; in fact it is quite doubtful that equilibrium
moisture content at the surface may be attained immediately; future work will also
be conducted on the adoption of a moisture dependent diffusion coefficient.

The parameters of Page’s and Thompson’s semi-empirical models were estimated
by using the simplex algorithm, implemented in the fminsearch function of the
MatLab® optimization toolbox and the data obtained from each experiment (Table 3):
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Fig. 5 Comparison between
experimental data and dif-
fusive model—Experiment 1
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Fig. 6 Comparison between
experimental data and dif-
fusive model—Experiment 2
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Fig. 7 Comparison between
experimental data and dif-
fusive model—Experiment 3
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Fig. 8 Comparison between
experimental data and dif-
fusive model—Experiment 4
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Table 3 Parameters found
for Page’s and Thompson’s
models

Parameters Page Thompson

A 0.00027295 − 33.102
B 5.2444 1.0506
C 0.022755 –
D 0.95259 –
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Fig. 9 Comparison between
experimental data and
semi-empirical
models—Experiment 1
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Fig. 10 Comparison between
experimental data and
semi-empirical
models—Experiment 2
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Fig. 11 Comparison between
experimental data and
semi-empirical
models—Experiment 3
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Fig. 12 Comparison between
experimental data and
semi-empirical
models—Experiment 4
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The results obtained for the simulations accomplished with Page’s and Thomp-
son’s model, together with the experimental data, are shown in Figs. 9, 10, 11 and 12:

The semi-empirical models used do not take into account the influence of the
relative humidity of the drying fluid. In future work, it is intended to overcome this
limitation by including this parameter into the model, in order to improve its accuracy.
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Table 4 Statistical analysis

Analysis Mean absolute error (%) Pearson’s correlation coefficient

Experiment Page Thompson Diffusive ANN Page Thompson Diffusive ANN

1 4.783 3.765 5.987 5.706 0.995 0.995 0.956 0.995
2 3.005 6.359 6.134 4.927 0.992 0.993 0.959 0.996
3 2.529 2.894 11.480 1.172 0.992 0.995 0.864 0.999
4 1.856 2.059 11.264 3.587 0.997 0.996 0.869 0.992

The models’ accuracy was assessed using the mean absolute error between the
simulated and the experimental values of the codfish moisture content and the Pear-
son’s correlation coefficient. Table 4 shows the result of statistical analysis for each
model, for all drying situations studied.

The results show good agreement between experimental and simulation data for
the semi-empirical and artificial neural network models. However, for the diffusive
model, the results obtained do not reveal good agreement. This can also be confirmed
through the statistical analysis that was performed for each curve. Regarding the
Pearson’s correlation coefficient, a high linear correlation between the experimental
and simulation values is verified by Page’s, Thompson’s and neural network models.
In the diffusion model, the values obtained for the correlation coefficient are lower.
The same is verified when analyzing the values obtained for the errors between the
experimental and simulated curves. The smaller errors were found for the Page’s
model and the bigger errors for the diffusive model.

4 Conclusions

Simulations with the artificial neural network model have shown good results. The
error ranged between 1.17 and 5.7 % and showed a correlation coefficient between
0.992 and 0.999. Despite the fact that the neural network model has shown promising
potential, new experimental data is being collected in order to improve the accuracy
of the model and new training will be conducted with other network settings.

For the diffusion model the obtained diffusion coefficients varied from
2.7 × 10−10 to 4.4 × 10−10 m2/s which are in agreement with those found in the lit-
erature. However, the diffusion model did not show good results since statistical cor-
relation of the coefficients for all the set of experiments ranged from 0.864 to 0.959.
The semi-empirical models provided a good representation of the drying curve; the
statistical analysis performed on the drying curve has shown a Pearson’s correlation
coefficient ranging from 0.992 to 0.997 for Page’s model, and from 0.993 to 0.996
for Thompson’s model. However, these models could be improved if the air relative
humidity was included in Page’s model.
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Stability of Matrix Differential Equations
with Commuting Matrix Constant Coefficients

Fernando Martins, Edgar Pereira, M. A. Facas Vicente
and José Vitória

Abstract Sufficient conditions for the asymptotic stability of systems of first order
linear differential equations with commuting matrix constant coefficients is studied.
Stability criterion in terms of blocks is presented. Inertia of a block circulant matrix
is obtained.

Keywords Block companion matrix ·Block Hermite matrix ·Block Hurwitz matrix ·
Block Routh matrix ·Block Schwarz matrix ·Matrix polynomials ·Matrix differential
equations · Lyapunov matrix equation · Block circulant matrix · Inertia

1 Introduction

Stability questions arise in many problems in Science, Engineering and Economics;
in particular, when the control of discrete or continuous systems is the main
preoccupation. Matrices partitioned into blocks play a significant role, when studying
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control problems which are modeled by means of matrix differential equations or
matrix difference equations. In the present paper, we deal with differential equations
whose coefficients are matrices commuting into pairs.

Let Pn(R) denote a set of n−order square real matrices that commute into pairs
and let Mp,q(Pn(R)) stand for the set of real matrices partitioned into p × q blocks
each belonging to Pn(R), and if p = q = m, we simply write Mm(Pn(R)).

We consider systems of first order linear differential equations with matrix
constant coefficients that can be written in a matrix form

y ′(t) = Aby(t) (1)

where y(t) ∈ Rmn and Ab ∈ Mm(Pn(R)) is a block matrix.
The block determinant of a matrix Ab ∈ Mm(Pn(R)) is the matrix (block) ob-

tained by developing the determinant of Ab, by considering the blocks as elements;
it is denoted as detb(Ab) ([18]). The block trace of a matrix Ab ∈ Mm(Pn(R)) is
the matrix (block) that is the sum of the blocks Aii , i = 1, . . . ,m, and is denoted as
trb(Ab) ([20]). Moreover, A⊗ B is the Kronecker product of the matrices A and B.

In the following, we present some known results and definitions that we use in
this paper.

Definition 1.1 ([19]) The matrix polynomial detb (Im ⊗�− Ab) is called the
characteristic matrix polynomial of the matrix Ab ∈ Mm(Pn(R)), where the
indeterminate � belongs to Pn(R).

Proposition 1.1 ([20]) Let Ab ∈ Mm(Pn(R)) be a block matrix. Then

P (X) = Xm + ( − E1)Xm−1 + · · · + ( − Em−1)X + ( − Em),Ei ∈ Pn(R),

is the characteristic matrix polynomial of Ab, where the matrix coefficients Ei are
constructed by the following algorithm

D1 = Ab → E1 = trb(D1) → B1 = D1 − (Im ⊗ E1) →
D2 = AbB1 → E2 = 1

2 trb(D2) → B2 = D2 − (Im ⊗ E2) →
· · · · · · · · ·
Dm−1 = AbBm−2 → Em−1 = 1

m−1 trb(Dm−1) → Bm−1 = Dm−1 − (Im ⊗ Em−1) →
Dm = AbBm−1 → Em = 1

m
trb(Dm) → Bm = Dm − (Im ⊗ Em) = 0mn.

Definition 1.2 ([17]) A matrix � of order n is a (right) solvent of the matrix
polynomial P (X) if P (�) = 0n.

Definition 1.3 ([9], p. 72) Let Ab be a block matrix of order mn. If

AbX1 = X1�, (2)

where � is a block (a matrix of order n) and the block vector X1 (a matrix of
dimension mn × n) is full rank, then � is called a (right) block eigenvalue of Ab

and X1 is the corresponding (right) block eigenvector.

Theorem 1.1 ([6], p. 265) Any solvent of the characteristic matrix polynomial of
the matrix Ab ∈ Mm(Pn(R)) is a block eigenvalue of Ab.
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Definition 1.4 Let P (X) = Xm +A1X
m−1 + · · · +Am−1X+Am, Ai ∈ Pn(R), be

a matrix polynomial. The matrix Cb, of order mn, partitioned into blocks of order n,
given by

Cb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0n In 0n · · · 0n

...
. . .

. . .
. . .

...
...

. . .
. . . 0n

0n · · · · · · 0n In
−Am −Am−1 · · · −A2 −A1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is said to be a block companion matrix associated to matrix polynomial P (X).

Theorem 1.2 ([9], p. 79) If the matrix �1, of order n, is a solvent of the matrix
polynomial P (X), then

CbX1 = X1�1,

where Cb is the block companion matrix of P (X) and

X1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

In

�1

...

�m−1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 1.3 ([9], p. 85) Let Cb be a block companion matrix associated with the
matrix polynomial P (X) and let �1 be a block eigenvalue of Cb associated with the
full rank block eigenvector X1, i.e.,

CbX1 = X1�1.

Under these conditions, if the first block X11, of X1, is nonsingular, then �1 =
X11�1X

−1
11 is a solvent of P (X).

Definition 1.5 ([16]) Let Ab be a block matrix of order mn and let �1,�2, . . . ,�m

be a set of block eigenvalues of Ab. This set is said to be a complete set of block
eigenvalues when all the eigenvalues, and respective partial multiplicities, of these
block eigenvalues are the eigenvalues, with the same partial multiplicities, of the
matrix Ab.

2 Sufficient Conditions for the Stability

In this section, we obtain sufficient conditions for the asymptotic stability of the
equilibrium of the matrix differential Eq. (1). We use block versions of companion,
Schwarz and Hermite matrices.
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Definition 2.1 Let �1 be a block eigenvalue of the block matrix Ab. If

Re(λi) < 0, (3)

for all λi ∈ σ (�1), i = 1, . . . , n, then �1 is said to be stable.
The stability criterion in terms of blocks for the equilibrium of the matrix

differential Eq. (1) is stated next.

Proposition 2.1 Let �1,�2, . . . ,�m be a complete set of block eigenvalues of the
block matrix Ab. If all block eigenvalues, �j , are stable, then the equilibrium of the
matrix differential Eq. (1) is asymptotically stable.

Furthermore, we will need the following two definitions and two theorems.

Definition 2.2 ([4], p. 67) A matrix N ∈ Rn×n is said to be symmetrizable if there
exists a matrix R = RT ∈ Rn×n positive definite such that NTR = RN .

Definition 2.3 ([1]) Two matrices N1,N2 ∈ Rn×n are said to be simultaneously
symmetrizable if there exists a matrix R = RT ∈ Rn×n positive definite such that

NT
1 R = RN1 andNT

2 R = RN2. (4)

It follows directly from Definition 2.3 thatN1+N2 andN1−N2 are simultaneously
symmetrizable.

Theorem 2.1 ([12], p. 50) Let N1,N2 ∈ Cn×n be diagonalizable. Then, N1 and N2

comute if and only if they are simultaneously diagonalizable.

Theorem 2.2 ([5]) A set of matrices simultaneously diagonalizable is also a set of
matrices simultaneously symmetrizable.

Next, we are able to prove that, under certain conditions, the Lyapunov matrix
equationCT

b V+VCb = W has a unique solutionV , whereCb is the block companion
matrix associated to the matrix polynomial P (X).

Proposition 2.2 Let Cb ∈ Mm(Pn(R)) be the block companion matrix associated
with the matrix polynomial P (X). If

(i) σ (Cb) ∩ σ ( − Cb) = Ø;
(ii) AαAβ ∈ Pn(R), with 0 ≤ α < β ≤ m, are diagonalizable;

(iii) W = WT = [Wij ] ∈ Rmn×mn where

Wij = Wji =
{

2RAm+1−jAm+1−i ifm+ i andm+ j are even, i ≤ j

0n ifm+ i orm+ j is odd
(5)

(i, j = 1, 2, . . . ,m) and R = RT ∈ Rn×n is positive definite,

then the Lyapunov matrix equation

CT
b V + VCb = −W (6)
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has a unique solution V = V T = [Vij ] ∈ Rmn×mn, where

Vij = Vji =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

i−1
∑

k=0

( − 1)k+i−1RAm−i−j+k+1Am−k if i + j is even, i ≤ j

0n if i + j is odd

. (7)

From the above proposition, we obtain two important results on the stability of a
matrix differential equation, using a block companion matrix.

Corollary 2.1 If the Lyapunov matrix equation

CT
b V + VCb = −W , (8)

has a unique symmetric solution V , such that:

(i) V is positive definite;
(ii) W is positive semi-definite;

(iii)

⎡

⎢
⎢
⎢
⎣

W 1/2

W 1/2Cb

...

W 1/2Cm−1
b

⎤

⎥
⎥
⎥
⎦

is of full rank;

(iv) �1,�2, . . . ,�m are a complete set of block eigenvalues Ab,

then all block eigenvalues, �j , are stable.

Corollary 2.2 The equilibrium of the matrix differential equation

y ′(t) = Aby(t)

is asymptotically stable.
Thereafter, we present the block versions of the Hermite, Hurwitz, Routh and

Schwarz matrices.

Definition 2.4 ([15]) Let P (X) = A0X
m + A1X

m−1 + · · · + Am−1X + Am,

Ai ∈ Pn(R), be a matrix polynomial. The matrix He
b =

[

He
b(ij )

]

∈ Mm(Pn(R)),

where

He
b(ij ) = He

b(ji) =

⎧

⎪
⎨

⎪
⎩

i−1
∑

k=0

( − 1)k+i−1AkAi+j−k−1 if i + j is even, i ≤ j

0n if i + j is odd

(9)

(i, j = 1, 2, . . . ,m) is said to be the block Hermite matrix of P (X).

Definition 2.5 ([6]) Let P (X) = A0X
m + A1X

m−1 + · · · + Am−1X + Am,
Ai ∈ Pn(R), be a matrix polynomial. And let be the matrix Hb = [

Hb(ij )
] ∈



102 F. Martins et al.

Mm(Pn(R)), where Hb(ij ) = A2j−i with Ar = 0n if r < 0 or r > m (i, j =
1, 2, . . . ,m). To this matrix Hb, given by

Hb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A3 A5 · · · · · · · · · A2m−1

A0 A2 A4 · · · · · · · · · A2m−2

0n A1 A3 · · · · · · · · · A2m−3

0n A0 A2
. . . · · · · · · A2m−4

0n 0n A1 · · · . . . · · · ...
... · · · · · · · · · · · · . . .

...

0n 0n 0n · · · · · · · · · Am

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

we call the block Hurwitz matrix.

Definition 2.6 ([15]) If we perform the block elimination of the block Hurwitz
matrix, Hb, we obtain the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C21 C22 C23 · · · · · · · · ·
0n C31 C32 C33 · · · · · ·
0n 0n C41 C42 · · · · · ·
0n 0n 0n C51 C52 · · ·
.
.
.

. . .
. . .

. . .

0n 0n 0n · · · 0n C(m+1)1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Mm(Pn(R)), (10)

which we call the block Routh matrix.

Definition 2.7 ([6]) Let Sb =
[

Sb(ij )
] ∈ Mm(Pn(R)), where

Sb(ij ) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

In if j − i = 1
−Sk if i − j = 1 (k = 2, . . . ,m)
−S1 if j = i = m

0n otherwise

.

The matrix

Sb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0n In 0n · · · 0n

−Sm 0n In
. . .

...

0n

. . .
. . .

. . . 0n

...
. . . −S3 0n In

0n · · · 0n −S2 −S1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)

is named the block Schwarz matrix.
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A strong relationship between the block companion matrix and the block Schwarz
matrix is that they are similar, i.e., Sb = T CbT

−1 with

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

In . 0n 0n 0n 0n 0n 0n 0n

. . . . . . . . .

C−1
(m−1)1C(m−1)2 . In 0n 0n 0n 0n 0n 0n

0n . 0n In 0n 0n 0n 0n 0n

C−1
(m−3)1C(m−1)3 . C−1

61 C62 0n In 0n 0n 0n 0n

0n . 0n C−1
51 C52 0n In 0n 0n 0n

C−1
(m−5)1C(m−5)4 . C−1

41 C43 0n C−1
41 C42 0n In 0n 0n

0n . 0n C−1
31 C33 0n C−1

31 C32 0n In 0n

. . C−1
21 C24 0n C−1

21 C23 0n C−1
21 C22 0n In

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(12)

where Cij are the elements of the block Routh matrix, with Ci1 ∈ Pn(R), i =
2, · · · ,m, being nonsingular ([15]).

Next, we state conditions for the stability of a matrix differential equation through
the block Schwarz matrix Sb.

Proposition 2.3 Let Sb ∈ Mm(Pn(R)) be a block Schwarz matrix and let the
matrices S1, S1S2, S1S2S3, . . . , S1S2S3 · · · Sm−1Sm ∈ Pn(R) be diagonalizable and
positive definite. Then, for a symmetric and positive semi-definite matrix Q, there
exists a unique solution M , symmetric and positive definite, of the Lyapunov matrix
equation ST

b M +MSb = −Q.

Corollary 2.3 If �1,�2, . . . ,�m are a complete set of block eigenvalues Ab, then
they are stable.

Corollary 2.4 The equilibrium of the matrix differential equation

y ′(t) = Aby(t)

is asymptotically stable.
In the following result, we study the stability of a matrix differential equation, by

using a block Hermite matrix.

Proposition 2.4 Let He
b be a block Hermite matrix of P (X). If He

b is pos-
itive definite and if AαAβ ∈ Pn(R) are diagonalizable, 0 ≤ α ≤ β ≤
m, and ifA0is nonsingular, then the equilibrium of the matrix differential equation
y ′(t) = Aby(t) is asymptotically stable.

3 Block Circulants Matrices with Commuting Blocks

In this section, we deal with questions of stability and localization. We shall treat
eigenvalues location in terms of inertia.

We consider now the equation

y ′(t) = Aby(t), (13)
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where y(t) ∈ Rmn and the matrix Ab has a block circulant structure.
Let consider a real mn×mn block circulant matrix

Ab = bcirc(A1,A2, . . . ,Am) =

⎡

⎢
⎢
⎣

A1 A2 · · · Am

Am A1 · · · Am−1

· · · · · · · · · · · ·
A2 · · · Am A1

⎤

⎥
⎥
⎦

,

where A1,A2, . . . ,Am ∈ Pn(R).
In the next result it is stated, essentially, that the eigenvalues of Ab are given in

terms of the eigenvalues of the blocks of a block diagonal matrix.

Theorem 3.1 ([8], p. 181) Let F ∗
p = 1√

p
V (1, w, w2, . . . , wp−1)
︸ ︷︷ ︸

Vandermonde Matrix

, with w = e

(
i2π
p

)

,

and let Bi = FnAiF
∗
n , i = 1, 2, . . . ,m. Then, we have:

(i)
⎡

⎢
⎢
⎢
⎢
⎢
⎣

M1

M2

M3
...

Mm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= (
√
mF ∗

m ⊗ In)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

B3
...

Bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

(ii) (Fm ⊗ Fn)Ab(Fm ⊗ Fn)∗ = diag(M1,M2, . . . ,Mm);
(iii) The eigenvalues of M1,M2, . . . ,Mm are eigenvalues of Ab.

We notice that the matrices M1,M2, . . . ,Mm are the Block Eigenvalues of Ab.

Proposition 3.1 If M1,M2, . . . ,Mm are stable then the equilibrium of the matrix
differential equation

y ′(t) = Aby(t)

is asymptotically stable.
In Engineering and Applied Sciences [2, 10, 13, 14] inertia results are used, this

mea-ning that the number of eigenvalues with positive, negative and null real parts is
taken into account. Stability and eigenvalues location are strongly related. Stability
of systems is studied through the Lyapunov matrix equation. By using a Lyapunov
matrix equation, we get information on the number of eigenvalues having negative
real parts.

So, calculating the inertia of the matrix Ab, we obtain some useful information
about the eigenvalues having negative real parts. The structure of the block circulant
matrices allows us to have some knowledge about their inertia and consequently
concerning their stability. In the present case of block circulant matrices, we are able
to exhibit some interesting formulas.

We approach the inertia of Ab, by considering two cases for m:
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(1) m is even.
Let λk1 , λk2 , . . . , λkn be eigenvalues of Mk , k = 1, . . . ,

[
m
2

]+ 1, such that

Mk = (
√
mF ∗

m ⊗ In)k

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

B3
...

Bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where (
√
mF ∗

m ⊗ In)k is the kth block row of type n by mn of the block matrix
(
√
mF ∗

m ⊗ In).
Thus,
(i) if xkp = Re(λkp ),p = 1, . . . , n, N−

(

xk1 , xk2 , . . . , xkn

) = lk , then the

matrix Ab has l1 + 2
(

l2 + · · · + l[m
2 ]

)

+ l[m
2 ]+1 eigenvalues with negative

real parts;
(ii) if xkp = Re(λkp ),p = 1, . . . , n, N+

(

xk1 , xk2 , . . . , xkn

) = rk , then the

matrix Ab has r1 + 2
(

r2 + · · · + r[m
2 ]

)

+ r[m
2 ]+1 eigenvalues with positive

real parts;
(iii) ifxkp = Re(λkp ),p = 1, . . . , n, N0

(

xk1 , xk2 , . . . , xkn

) = uk , then the matrix

Ab has u1 + 2
(

u2 + · · · + u[m
2 ]

)

+ u[m
2 ]+1 eigenvalues with null real parts.

(2) m is odd.
Let λk1 , λk2 , . . . , λkn be eigenvalues of Mk , k = 1, . . . ,

[
m
2

]+ 1, such that

Mk = (
√
mF ∗

m ⊗ In)k

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

B3
...

Bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where (
√
mF ∗

m ⊗ In)k is the kth block row of type n by mn of the block matrix
(
√
mF ∗

m ⊗ In).
Thus,
(i) if xkp = Re(λkp ),p = 1, . . . , n, N−

(

xk1 , xk2 , . . . , xkn

) = lk , then the matrix

Ab has l1 + 2
(

l2 + · · · + l[m
2 ]+1

)

eigenvalues with negative real parts;

(ii) if xkp = Re(λkp ),p = 1, . . . , n, N+
(

xk1 , xk2 , . . . , xkn

) = rk , then the

matrix Ab has r1 + 2
(

r2 + · · · + r[m
2 ]+1

)

eigenvalues with positive real
parts;

(iii) if xkp = Re(λkp ),p = 1, . . . , n, N0
(

xk1 , xk2 , . . . , xkn

) = uk , then the

matrix Ab has u1 + 2
(

u2 + · · · + u[m
2 ]+1

)

eigenvalues with null real parts.

The results in this section remain valid when the blocks of the block circulant
matrices are neither necessarily commuting into pairs nor necessarily real.
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4 Final Remarks and Conclusions

The Propositions 2.2, 2.3 and 2.4 correspond to results stated in a more general
context, when the blocks of the considered block matrices are not necessarily com-
muting into pairs [15]. We omit the proofs of the above mentioned results. These
proofs follow from [15] by using the Theorems 2.1 and 2.2.

Datta [7], when referring to Barnett [3], stated the following: “once a matrix has
been transformed into Schwarz form the stability problem is solved immediately”.
We hope, in the future, to be able to assert something similar about the block Schwarz
matrix.

We have seen that, in the case when a block matrix has a block circulant structure,
we got interesting formulas for solving the stability problem.

In future work, we can consider the inertia of the block Schwarz matrix Sb and
the inertia of the block circulant matrix

bcirc(A1,A2, . . . ,Am) =

⎡

⎢
⎢
⎣

A1 A2 · · · Am

Am A1 · · · Am−1

· · · · · · · · · · · ·
A2 · · · Am A1

⎤

⎥
⎥
⎦

,

where A1,A2, . . . ,Am are the matrix constant coefficients of the matrix polynomial
P (X), in order to study the respective stability.

The quest for root localization of polynomials—albeit a quite old activity of
mathematicians, applied scientists and engineers and despite the rich history of the
subject in the case of univariate polynomials—keeps vivid [11].

Readers with some acquaintance with block structured matrices and who are
using them for dealing with root localization may feel far from comfortable, when
wondering how long and hard should be the path ahead, in order to achieve the degree
of maturity displayed in [11], for the case structured matrices having scalar entries.
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Identification of Material Thermophysical
Parameters with Regard to Optimum Location
of Sensors

Ewa Majchrzak and Jerzy Mendakiewicz

Abstract As a practical example illustrating the considerations presented in the paper
the thermal processes proceeding in a system casting-mould are considered.

The casting is made from Fe-C alloy (cast iron) and the austenite and eutectic
latent heats of this material should be identified. To estimate these parameters the
knowledge of temperature history at the points selected from the domain considered is
necessary. The location of sensors should assure the best conditions of identification
process.

So, the algorithm of optimum location of sensors basing on the D-optimality
criterion is presented, while the inverse problem is solved using the gradient method.

Keywords Heat transfer · Solidification process · Inverse problem

1 Formulation of Problem

A system casting-mould-environment is considered. Temperature field in casting
domain is described by equation [1, 2]

x ∈ 
 : C(T )
∂T (x, t)

∂t
= λ∇2T (x, t) (1)

where C(T ) is the substitute thermal capacity of cast iron, λ is the thermal
conductivity, T, x, t denote the temperature, geometrical co-ordinates and time.

The following approximation of substitute thermal capacity is taken into account

C (T ) =
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cL, T > TL

cL + cS

2
+ Qaus

TL − TE

, TE < T ≤ TL

cL + cS

2
+ Qeu

TE − TS

, TS < T ≤ TE

cS , T ≤ TS

(2)
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where TL, TS are the liquidus and solidus temperatures, respectively, TE is the tem-
perature corresponding to the beginning of eutectic crystallization, Qaus, Qeu are the
latent heats connected with the austenite and eutectic phases evolution, cL, cS are
constant volumetric specific heats of molten metal and solid one, respectively.

The temperature field in mould sub-domain is described by equation

x ∈ 
m : cm
∂Tm(x, t)

∂t
= λm∇2Tm (x, t) (3)

where cm is the mould volumetric specific heat, λm is the mould thermal conductivity.
On the contact surface between casting and mould the continuity condition in

the form

x ∈ �c :

{−λn · ∇T (x, t) = −λmn · ∇Tm(x, t)
T (x, t) = Tm(x, t)

(4)

can be accepted.
On the external surface of the system the Robin condition

x ∈ �0 : −λmn · ∇Tm(x, t) = α [Tm(x, t) − Ta] (5)

is given (α is the heat transfer coefficient, Ta is the ambient temperature).
For time t = 0 the initial condition

t = 0 : T (x, 0) = T0(x), Tm(x, 0) = Tm0(x) (6)

is also known.
It is assumed that the aim of experiments is to determine the latent heats Qaus,

Qeu of casting material and in order to find the optimum location of sensors the
D-optimality criterion [3, 4] is taken into account.

2 Optimal Sensors Location

The model above formulated contains two unknown parameters Qaus, Qeu which will
be reconstructed on the basis of observations. Let us assume that the approximate
values of Q 0

aus, Q
0

eu are available e.g. from preliminary experiments. Our goal is to
determine the optimum sensors location in order to maximize the expected accuracy
of parameters identification which will be found using the data generated in new
experiments.

In Fig. 1 the domain considered and its discretization is shown. Let x1 = (x1
1 ,

x1
2 ), x2 = (x2

1 , x2
2 ), . . . , xM = (xM

1 , xM
2 ) are the points from the casting sub-domain

which are taken into account as the possible sensors location (Fig. 1). The design
problem consists in the selection of the best positions of sensors under the assumption
that only two sensors will be taken into account (it corresponds to the number of
estimated parameters).
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Fig. 1 Domain considered and its discretization

Let us introduce the sensitivity coefficients

Z
f

l1 =
∂T
(

xl, tf,Q0
aus ,Q

0
eu

)

∂Q0
aus

, Z
f

l2 =
∂T
(

xl, tf,Q0
aus,Q

0
eu

)

∂Q0
eu

(7)

where l denotes number of node (l = 1, 2,. . . , M) and tf is the moment of time (f = 1,
2,. . . , F). On the basis of (7) the sensitivity matrix is constructed

Z
(

xi , xj
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z1
i1 Z1

i2
... ...

ZF
i1 ZF

i2

Z1
j1 Z1

j2

... ...

ZF
j1 ZF

j2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

where xi , xj are the pair of nodes, at the same time i, j = 1, 2,. . . , M, i 
= j.
D-optimality criterion used in the design of sensors location is the following [3, 4]

det M
(

xi∗, xj∗) = max
( xi ,xj )

det M
(

xi , xj
)

(9)

where

M
(

xi , xj
) = ZT

(

xi , xj
)

Z
(

xi , xj
)

(10)
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It is easy to check that

M
(

xi , xj
) =

⎡

⎢
⎢
⎢
⎣

F∑

f=1

(

Z
f

i1

)2 +
(

Z
f

j1

)2 F∑

f=1
Z

f

i1Z
f

i2 + Z
f

j1Z
f

j2

F∑

f=1
Z

f

i1Z
f

i2 + Z
f

j1Z
f

j2

F∑

f=1

(

Z
f

i2

)2 +
(

Z
f

j2

)2

⎤

⎥
⎥
⎥
⎦

(11)

The nodes (xi*, xj*) being the solution of optimum problem (9) correspond to the
best sensors location in the case of simultaneous identification of parameters Qaus

and Qeu.

3 Sensitivity Coefficients

Elementary step in the design of optimal sensor locations is to use an effective
procedure for the computations of sensitivity coefficients. One of the method is the
direct differentiation of governing equations with respect to the identified parameters
[2, 5], [6–8]. So, differentiation of Eqs. (1–6) with respect to p1 =Qaus, p2 = Qeu

leads to the following additional boundary-initial problems

x ∈ 
 :
∂C(T )

∂pe

∂T (x, t)

∂t
+ C(T )

∂

∂pe

(
∂T (x, t)

∂t

)

= λ
∂∇2T (x, t)

∂pe

x ∈ 
m : cm
∂

∂pe

(
∂Tm(x, t)

∂t

)

= λm

∂∇2Tm(x, t)

∂pe

x ∈ �c :

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−λn · ∂∇T (x, t)

∂pe

= −λmn · ∂∇Tm(x, t)

∂pe

∂T (x, t)

∂pe

= ∂Tm(x, t)

∂pe

x ∈ �0 : −λmn · ∂∇Tm(x, t)

∂pe

= α
∂Tm(x, t)

∂pe

t = 0 :
∂T (x, 0)

∂pe

= 0,
∂Tm(x, 0)

∂pe

= 0

(12)

or

x ∈ 
 : C(T )
∂Ze(x, t)

∂t
= λ∇2Ze(x, t) − ∂C(T )

∂pe

∂T (x, t)

∂t

x ∈ 
m : cm
∂Zme(x, t)

∂t
= λm∇2Zme(x, t)

x ∈ �c :

{−λn · ∇Ze(x, t) = −λmn · ∇Zme(x, t)

Ze(x, t) = Zme(x, t)

x ∈ �0 : −λmn · ∇Zme(x, t) = αZme(x, t)

t = 0 : Ze(x, 0) = 0,Zm e(x, 0) = 0

(13)
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where

Ze(x, t) = ∂T (x, t)

∂pe

,Zme(x, t) = ∂Tm(x, t)

∂pe

(14)

Summing up, in order to construct the sensitivity matrix (8) the basic problem
described by Eqs. (1–6) and the sensitivity problems (13) should be solved.

4 Inverse Problem Solution

As it was mentioned above, the parameters appearing in the mathematical model of
casting solidification are known except the latent heats Qaus and Qeu. It is assumed
that the temperature values T

f

dl at the points x1 = xi*, x2 = xj* (c.f. Eq. (9)) located in
the casting sub-domain for times tf are known

T
f

dl = Td

(

xl , tf
)

, l = 1, 2, f = 1, 2, . . .,F (15)

To solve the inverse problem the least squares criterion is applied

S
(

Qaus ,Qeu
) = 1

2F

2
∑

l=1

F
∑

f=1

(

T
f

l − T
f

dl

)2
(16)

where T
f

dl and T
f

l = T (xl , t f ) are the measured and estimated temperatures, re-
spectively. The estimated temperatures are obtained from the solution of the direct
problem (c.f. Chap. 1) by using the current available estimate of these parameters
e.g. from preliminary experiments.

In the case of typical gradient method application [2, 5, 6] the criterion (16)
is differentiated with respect to the unknown parameters Qaus, Qeu and next the
necessary condition of optimum is used.

So, one obtains the following system of equations

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∂S

∂Qaus
= 1

F

2∑

l=1

F∑

f=1

(

T
f

l − T
f

dl

)(

Z
f

l1

)k = 0

∂S

∂Qeu
= 1

F

2∑

l=1

F∑

f=1

(

T
f

l − T
f

dl

)(

Z
f

l2

)k = 0

(17)

where k is the number of iteration.
Function T

f

l is expanded in a Taylor series about known values of Q k
aus , Q k

eu ,
this means

T
f

l =
(

T
f

l

)k +
(

Z
f

l1

)k (

Qk+1
aus −Qk

aus

)+
(

Z
f

l2

)k (

Qk+1
eu −Qk

eu

)

(18)
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Fig. 2 Temperature field in
casting sub-domain (t= 90 s
and t= 180 s)
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(19)

This system of equations allows one to find the values of Q k+ 1
aus and Q k+ 1

eu . The
iteration process is stopped when the assumed number of iterations K is achieved.

5 Example of Computations

The casting–mould system shown in Fig. 1 has been considered. The basic prob-
lem and additional problems connected with the sensitivity functions have been
solved using the explicit scheme of FDM [1]. The regular mesh created by
25 × 15 nodes with constant step h = 0.002 [m] has been introduced, time step
�t = 0.1 [s]. The following input data have been assumed: λ= 30 [W/(mK)], λm =
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Fig. 3 Temperature field in mould sub-domain (t= 90 s and t= 180 s)

Fig. 4 Distribution of sensitivity function ∂T/∂Qaus (t= 90 s and t= 180 s)

1 [W/(mK)], cL = 5.88 [MJ/(m3K)], cS = 5.4 [MJ/(m3K)], cm = 1.75 [MJ/(m3K)],
pouring temperature T0 = 1300 ◦C, liquidus temperature TL = 1250 ◦C, border tem-
perature TE = 1160 ◦C, solidus temperature TS = 1110 ◦C, initial mould temperature
Tm0 = 20 ◦C.

At first, the direct problem under the assumption that Qaus = 923 [MJ/m3],
Qeu = 964 [MJ/m3] has been solved. In Figs. 2 and 3 the temperature field for t = 90 s
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Fig. 5 Distribution of sensitivity function ∂T/∂Qeu (t= 90 s and t= 180 s)

Fig. 6 Cooling curves
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and t = 180 s in the casting and mould sub-domains is shown. Figs. 4 and 5 illustrate
the distributions of sensitivity functions for t = 90 s and t = 180 s.

Next, the inverse problem has been considered. The problem of optimum sensors
location has been solved under the assumption thatQ 0

aus = 900 [MJ/m3], Qeu
0= 1000

[MJ/m3]. The application of optimization procedure showed that the best sensors
position corresponds to the nodes from casting domain marked by A and B in Fig. 1.

Figure 6 illustrates the cooling curves at the points A, B obtained for the real
values of Qaus, Qeu(Qaus = 923 [MJ/m3] Qeu = 994 [MJ/m3]). Using these curves
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Fig. 7 Inverse problem
solution
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Fig. 8 Solution using points
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the inverse problem has been solved. The successive iterations of Q k
aus , Q k

eu are
shown in Fig. 7. It is visible that the iteration process is quickly convergent and the
identified latent heats correspond to the previously assumed values.

The proper choice of sensors location seems to be very essential because it assures
the effective and exact solution of identification problem. The good confirmation of
this fact is the situation shown in Fig. 8. In this Figure the successive steps of iteration
process (Eq. (19)) are marked. One can see that the solution is not convergent and
the identification of unknown parameters is impossible. The results shown in Fig. 8
have been obtained for two randomly selected points (sensors) from casting domain
(C and D in Fig. 1).
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For the others positions of sensors location one can obtain the good values of
searched parameters but the number of iterations will be probably greater than for
optimal sensors position.
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Mathematical Modeling of Heat and Mass
Transfer in Domain of Solidifying Alloy

Bohdan Mochnacki and Ewa Majchrzak

Abstract In the paper the mathematical model, numerical algorithm and example of
cylindrical casting solidification are presented. In particular the casting made from
Cu-Zn alloy is considered. It is assumed that the temperature corresponding to the
beginning of solidification is time-dependent and it is a function of temporary alloy
component concentration. The course of macrosegregation has been modeled using
the mass balances in the set of control volumes resulting from a domain discretiza-
tion. The balances have been constructed in different ways, in particular under the
assumption of instant equalization of alloy chemical constitution (a lever arm rule),
next the Scheil model (e.g. Sczygiol 2000, Publ Czest Univ Techn Monographs, 71)
has been used and finally the broken line model (Curran et al. 1980, Appl Math Mod-
elling, 4, 398–400) has been taken into account. On a stage of numerical algorithm
construction the boundary element method has been used in the variant called BEM
using discretization in time (Curran et al. 1980, Appl Math Modelling, 4, 398–400;
Sichert 1989, Technischen Fakultat der Universitat Erlangen; Szopa 1999, Publ. of
the Silesian Univ. of Techn, 54) supplemented by the alternating phase truncation
procedure (Majchrzak and B.Mochnacki 1995, Engineering Analysis with Bound-
ary Elements, 16, 99–121; Lara 2003, Application of generalized FDM in numerical
modelling of moving boundary problems, Doctoral Theses, Czestochowa).

Keywords Mathematical modeling of solidification process · Numerical methods

1 Governing Equations

In a casting domain, two changing with time sub-domains are distinguished. They
correspond to liquid and solid phases. The moving boundary is identified by a tempo-
rary position of liquidus temperature T∗(zL), where zL is a temporary concentration
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of alloy component of liquid state near a border surface (in a case of lever arm and
Scheil models zL corresponds to concentration in the whole liquid part of casting
domain). In the model proposed a presence of mushy zone is neglected and in a place
of T∗one can introduce the so-called equivalent solidification point [7].

A transient temperature field in domain considered (taking into account the cylin-
drical geometry of casting—1D task) is determined by the following system of partial
differential equations

cLρL

∂TL(r , t)

∂t
= λL

r

∂

∂r

[

r
∂TL(r , t)

∂r

]

,

cSρS

∂TS(r , t)

∂t
= λS

r

∂

∂r

[

r
∂TS(r , t)

∂r

] (1)

In Eq. (1) c, ρ, λ denote the specific heats, mass densities and thermal conductivities,
T, r, t—are the temperature, geometrical co-ordinates and time.

On a border surface the Stefan condition is given:

r = η (t) :

⎧

⎨

⎩

λS

∂TS(r , t)

∂r
− λL

∂TL(r , t)

∂r
= LV

d r

d t

TS(r , t) = TL(r , t) = T ∗ (zL)
(2)

where LV is a volumetric latent heat.
On an external surface the following continuity condition is assumed

r = R : q(r , t) = α [T (r , t) − Ta] (3)

where α is a substitute heat transfer coefficient, Ta is an ambient temperature. At
the moment t = 0: TL (r, 0)= T0, zL(r, 0)= z0, at the same time T0 is the pouring
temperature, z0—initial concentration of alloy component.

The algorithm of numerical simulation bases on the alternating phase truncation
procedure. This approach requires the application of enthalpy approach on a stage
of governing equations construction. So, we introduce the following definition of
physical enthalpy

H (T ) =
T∫

0

c(μ)ρ(μ) d μ+ LV u(T ) (4)

where

u(T ) =
{

0 T < T ∗ (zL)
1 T ≥ T ∗ (zL)

(5)

The course of enthalpy function is shown in Fig. 1.
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Fig. 1 Enthalpy diagram

The system of Eq. (1) written using the enthalpy convention takes a form

∂HL(r , t)

∂t
= aL

r

∂

∂r

[

r
∂HL(r , t)

∂r

]

,

∂HS(r , t)

∂t
= aS

r

∂

∂r

[

r
∂HS(r , t)

∂r

] (6)

where aL and aS are the heat diffusion coefficients (a = λ/cρ).
The Stefan boundary condition can be written as follows

r = η :

⎧

⎨

⎩

aS

∂HS(r , t)

∂r
− aL

∂HL(r , t)

∂r
= LV

d r

d t

AL (zL) = AS (zS)+ LV

(7)

where AL and AS are the right hand side and left hand side limits of enthalpy at the
point T∗ (see: Fig. 1).

The Robin boundary condition is of the form

r = R : q(r , t) = β [H (r , t) −Ha] (8)

where β= a/cρ is a substitute heat transfer coefficient written using the enthalpy
convention, Ha is the enthalpy corresponding to Ta . The initial condition is also
given:

t = 0 : H (r , 0) = H0.

The adequate fragment of equilibrium diagram [8] of alloy considered (Zn< 30 %)
one can approximate by two sectors starting from the same point. In a such situation
the partition coefficient k = const and zS = k·zL. The formula determining the liquidus
line is of the form T∗ = Tm+m·zL, where Tm is a solidification point of pure metal
(Cu), while m—is a slope of straight line.
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Fig. 2 Control volume Vj

2 Mass Balance Under the Assumption of Lever Arm Model

The mass balance of component alloy in domain of casting can be written in the form

m0 z0 = mS(t)zS(t) +mL(t)zL(t) (9)

where m0 denotes a mass of component.
The domain considered is divided into control volumes (cylindrical rings) which

altitude can be assumed in optional way (e.g. h= 1). Internal radius of element Vj

is denoted by rj−1, while an external one by rj—Fig. 2.
Solid state fraction in volume Vj at time t equals Sj (t). A mass of metal in solid

and liquid state results from equations

mSj = Sj (t)VjρS , mLj =
[

1 − Sj (t)
]

VjρL (10)

Now, the time grid should be introduced

0 = t0 < t1 < . . . < tf < tf+1 < . . . < tF < ∞, �t = tf+1 − tf (11)

The local values of Sj result from the numerical model of solidification and they are
defined in the following way

Sj

(

tf+1
) = AL −H

(

rj , tf+1
)

AL − AS

, AS < H
(

rj , tf+1
)

< AL (12)

while for the others enthalpy values the function Sj equals 0 and 1, correspondingly.
Mass balance (9) written for time tf + 1 leads to the equation

zL
(

tf+1
) = m0z0

kmS

(

tf+1
)+mL

(

tf+1
) (13)
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In the last equation the definition of partition coefficient k has been introduced.
Finally

zL
(

tf+1
) = R2ρLz0

k
n∑

j=1
VjρSSj

(

tf+1
)+

n∑

j=1
VjρL

[

1 − Sj

(

tf+1
)]

(14)

A temporary value of alloy component concentration determines a new value of
solidification point T∗ and border values AL and AS .

3 Mass Balance under the Assumption of Scheil Model

The Scheil model results from the assumption of limiting form of macrosegregation
model determining the mass diffusion in a casting domain. Because the diffusion
coefficient for solid state is essentially less than the same coefficient for molten
metal and, from the other hand, the convection proceeding in a molten metal causes
the equalization of chemical constitution in this domain, therefore it is assumed that
DS = 0, while DL →∞ (D is a diffusion coefficient). So, the mass balance resulting
from Scheil’s assumptions takes a form

m0 z0 =mS

(

t1
)

zS
(

t1
)+mS

(

t2
)

zS
(

t2
)+ ...+

+mS

(

tf
)

zS
(

tf
)+mS

(

tf+1
)

zS
(

tf+1
)+mL

(

tf+1
)

zL
(

tf+1
) (15)

or

zL
(

tf+1
) = m0 z0 −

[

mS

(

t1
)

zS
(

t1
)+mS

(

t2
)

zS
(

t2
)+ ...+mS

(

tf
)

zS
(

tf
)]

k mS

(

tf+1
)+mL

(

tf+1
)

(16)

After mathematical manipulations one obtains

zL
(

tf+1
) =

R2ρL z0 −
f∑

p=1

n∑

j=1
VjρS zS (tp)

(

S
p

j − S
p−1
j

)

k
n∑

j=1
Vj ρS

(

S
f+1
j − S

f

j

)

+
n∑

j=1
Vj ρL

[

1 − S
f+1
j

] (17)

where Sp

j = Sj (tp) etc.
Similarly, as in a case of previous model, the calculated value of zL(tf + 1)

determines a temporary temperature T∗ and the border values AL and AS .
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4 Broken Line Model

Macrosegregation process proceeding in the cylindrical casting domain is described
by the system of diffusion equations in the form

P (r) ∈ 
L :
∂zL(r , t)

∂t
= 1

r

∂

∂r

(

DLr
∂zL(r , t)

∂r

)

P (r) ∈ 
S :
∂zS(r , t)

∂t
= 1

r

∂

∂r

(

DSr
∂zS(r , t)

∂r

) (18)

where zL, zS are the concentrations of alloy component for liquid and solid state
sub-domains, DL, DS are the diffusion coefficients, r, t denote spatial co-ordinates
and time. It is assumed that the diffusion coefficients of liquid and solid sub-domains
are the constant values.

On the moving boundary between liquid and solid sub-domains the condition
resulting from the mass balance is given [1, 5, 7]

r = η : DL

∂zL(r , t)

∂r
−DS

∂zS(r , t)

∂r
= d r

d t
[zL(r , t) − zS(r , t)] (19)

Introducing the partition coefficient k one obtains the other form of condition (19)

r = η : DL

∂zL(r , t)

∂r
−DS

∂zS(r , t)

∂r
= (1 − k) zL(r , t)

dr

dt
(20)

If the mass transfer in the solid body is neglected (DS = 0)

r = η : DL

∂zL(r , t)

∂r
= (1 − k)vzL (21)

where v= dr/ dt denotes the solidification rate.
On the outer surface of the system the no-flux condition should be assumed

r ∈ �0 :
∂zS(r , t)

∂r
= 0 (22)

For time t = 0: zL(r, 0) = z0.

The idea of broken line model is the following. The concentration field in molten
metal is assumed in the form of broken line. In particular the first segment corresponds
to a certain layer δwhile the second one to the other part of liquid state. The parameters
of above distribution result from condition (20) and mass balance. The concentration
in solid body results from partition coefficient k (Fig. 3). The details of this approach
can be found in [9].
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Fig. 3 The broken line model

5 Alternating Phase Truncation Method

In this paper the classical variant of APTM presented by Rogers, Ciment and Berger
(e.g. [6]) is used. Generalized form of the method can be found, among others, in
[6, 7]. The algorithm of numerical solution of problem discussed (Eqs. (6), (7) and
(8)), this means the computations concerning the transition from time tf to time tf + 1

is the following. Let us denote by H
f

j the discrete set of enthalpy values in the casting
domain for timetf at points rj . In the first stage of computations the casting domain
is conventionally treated as a liquid one. At the points rj for which enthalpy H

f

j is
less than AL one assumes the local value of enthalpy equal to AL, while for the others
nodes the local value of enthalpy is invariable. So, the real enthalpy distribution is
substituted by the following one

V1(rj , tf ) = max
{

Hf

j , AL (zL)
}

(23)

For homogeneous (molten metal) casting domain the enthalpy field for time tf + 1 is
calculated (using the optional numerical method). The solution obtained we denote as
V

′
1(rj , tf + 1) (parameter a in Eq. (6) corresponds to aL). The first stage of algorithm

goes to the end by substraction of previously added enthalpy, this means

V1
(

rj , tf+1
) = V

′
1

(

rj , tf+1
)+ Hf

j − V1
(

rj , tf
)

(24)

The second stage of computations concerning the transition tf → tf + 1, starts from
the homogenization of casting domain to the solid state, in other words

V2
(

rj , tf
) = min

{

AS (zL), V1
(

rj, tf+1
)}

(25)

The enthalpy field V2(rj , tf ) is again calculated (a= aS). The final solution
concerning the time tf + 1 results from the formula

H
f+1
j = V ′

2

(

rj , tf+1
)+ V1

(

rj , tf+1
)− V2

(

rj , tf
)

(26)
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6 Boundary Element Method

The numerical solution of equation

∂H (r , t)

∂t
= a

∂2H (r , t)

∂r2
+ a

r

∂H (r , t)

∂r
(27)

has been found using the boundary element method. Because the BEM algorithm
for the objects oriented in cylindrical co-ordinate system is very complicated, the
simpler approach is proposed.

Equation (22) can be written in the form

∂H (r , t)

∂t
= a

∂2H (r , t)

∂r2
+Q (28)

where Q is the artificial source function and

Q(r , t) = a

r

∂H (r , t)

∂r
(29)

In this way one obtains the energy equation corresponding to the objects oriented in
cartesian co-ordinate system for which the BEM algorithm is simple and effective
on a stage of numerical simulation.

In the case of variant called the BEM using discretization in time, the derivative
∂H/∂t for transition tf → tf + 1 is substituted by differential quotient and the
Eq. (23) takes a form

H
(

r , tf+1
)−H

(

r , tf
)

�t
= a

∂2H (r , t)

∂r2
+Q (30)

A basic BEM equation for the problem (24) results from the weighted residual method
application and then one obtains

R∫

0

[

∂2H
(

r , tf+1
)

∂r2
− 1

a�t
H
(

r , tf+1
) + 1

a�t
H
(

r , tf
)+ Q

a

]

H ∗(ξ , r) d r = 0

(31)

where H ∗(ξ , r), ξ∈ (0,R) is the fundamental solution. In the case considered it is
a function of the form [3, 5]

H ∗(ξ , r) =
√
a�t

2
exp

(

−|r − ξ |√
a�t

)

(32)

After mathematical manipulations, the Eq. (28) takes a form

H
(

ξ , tf+1
)+
[

1

a
H ∗(ξ , r) q

(

r , tf+ 1
)
]R

0

= 1

a

[

q∗(ξ , r)H
(

r , tf+1
)]R

0 +p(ξ ) + z(ξ )

(33)
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Fig. 4 Kinetics of
solidification

where q∗(ξ , r) = −a∂H ∗/∂r , while

p(ξ ) = 1

a�t

R∫

0

H ∗ (ξ , r)H
(

r , tf
)

d r (34)

and

z(ξ ) = 1

a

R∫

0

QH ∗(ξ , r) d r (35)

For ξ→ 0+i ξ→ L− one has
[
g11 g12

g21 g22

][
q
(

0, tf+1
)

q
(

R, tf+1
)

]

=
[
h11 h12

h21 h22

][
H
(

0, tf+1
)

H
(

R, tf+1
)

]

+
[
p(0)

p(R)

]

+
[

z(0)

z(R)

]

(36)

Values of matrices g, h, p, z coefficients result from Eq. (33).
The capacity of artificial heat source can be found by substitution of ∂H/∂r by

the adequate differential quotient [8].

7 Example of Computations

We consider the solidification of cylindrical casting (R= 8 cm) made from Cu-Zn
alloy (10 % Zn). The following thermophysical parameters have been assumed λL=
λS =λ=0.12 kW/mK, cL=cS =c=3354 kJ/m3K, ρL=ρS =ρ=8600kg/m3,



128 B. Mochnacki and E. Majchrzak

Fig. 5 Cooling curves (axis
and r = 2 cm)

LV =1.634 ·106kJ/m3, k=0.855, T ∗ =1083 − 473.68 ·zL, DL=3.5 · 10−8m2/s,
δ=1.5 mm, initial temperature 1070◦C. On the outer surface the Robin condition has
been taken into account (α=40W/m2K , Ta=30◦C).

In Figs. 4 and 5 the kinetics of casting solidification is shown, at the same time the
different models of macrosegregation have been considered. The next Figure shows
the cooling curves at the points from casting domain

8 Final Remarks

The differences between solutions are non-drastic, but visible. It seems, that the
numerical algorithm of solidification supplemented by the simple procedures taking
into account the changes of alloy chemical composition are closer to the real physical
conditions of the process and can be used on a stage of process modelling.
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Total Variation Approach to Density
Reconstruction from X-Ray Radiograph
Tomography

Suhua Wei and Guiping Zhao

Abstract For cone beam x-ray radiographic tomography, density reconstruction
for 1-dimensional objects can be performed by Abel transform inversion. For
2-dimensional cylindrical objects, we propose to divide the object into small blocks,
in each block the density is viewed as a constant. The projection operator corresponds
to a matrix. Density reconstruction leads to solve a linear algebraic equation system.
To deal with its ill conditioning, we use Total Variation regularization. Numerical ex-
periments show that TV regularization gives correct recovery of object edges, while
the density contrast may be changed in some smooth parts.

Keywords Total variation regularization · Image reconstruction · Abel transform ·
Tomography

1 Introduction

The density reconstruction of objects from a few of radiographic views is an impor-
tant tomography problem. Because of the complexity of x-ray-generation instrument,
a single radiography view is widely used to detect the density of axially symmetric
objects. For 1-dimensional object, typical works are done by T. J. Asaki [1, 2] and
K. M. Hanson [3–6]. They approached regularization method for Abel transform
inversion and Bayesian theory. For 2-dimensional objects with general cylindrical
symmetry, if the projection view is not generated by parallel x-ray beam, the to-
mography can not be viewed as Abel transform inversion. In the paper, we consider
density reconstruction for 2-dimensional case with a single projection view generated
by cone beam x-ray. Since radiographs are transmission intensity maps, the signal is
attenuated by the object, if we neglect the scatter, then the logarithm of the intensity
of the received signal is proportional to the integral of the absorption alone the beam
path. From the mathematical point of view, we can assume that function ρ(r, z) has
known integral value on the projection plane along each beam path. Our goal is to
reconstruct ρ(r, z). Our method is based on the discretization of the object and the
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Fig. 1 High energy X-ray radiography schematic diagram

integral. After discretization, we need to solve a linear algebraic equation system.
Because of the ill conditioning of the system, regularization is adopted. We com-
pared Total Variation regularization with H1 semi-norm regularization. TV has the
advantage to reconstruct discontinuous functions, especially good for the restoration
of edges. This is important for distinguishing materials with different densities. Our
method is tested by 1- and 2-dimensional examples. The rest of the paper is orga-
nized as follows. In Sect. 2 we address our research background. In Sect. 3 we derive
TV based density reconstruction model. In Sect. 4 we give numerical examples for
1-dimensional and 2-dimensional cases. Section 5 is our conclusion

2 Problem Description

In the case of this paper concerns, density reconstruction problem can be illustrated
as in Fig. 1. The cone beam x-ray emits from source point which is indicated by letter
“O”. X-ray energy is attenuated after illuminating the object. In the recording plane
we get a digitized image. For example, Pj is one pixel of the image. The pixel value
is proportional to the integral of density function along x-ray path from O to Pj if we
neglect the physics of interaction between the object and detectors with the radiation.
Since function ρ represents volumetric density, then

∫

ρ (r)dl is areal density. Areal
density can be known from the measured data of the digitized image. Our goal is to
calculate ρ from

∫

ρ dl.
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Suppose the unknown object has limited volume and then density function has
finite support, that is, the function ρ(r) is zero outside some radius R. In Fig. 1, letter
“a” represents the distance from object centre to path line. “l”, “r” and “a” has the
relationship r2 = l2 + a2. Then

∫

ρ(r)dl can be rewritten as the Abel transform

∫

ρ(r)d1=2
∫ R

a

rρ(r)√
r2 − a2

dr

The inversion of Abel transform has been discussed by Asaki in paper [1, 2]. We will
focus on the 2-dimensional case. For simplicity, we address our method by starting
from the discretization of object with 1-dimensional.

3 Total Variation Approach to Density Reconstruction

For 1-dimensional object with unknown density, we denote the density function as
ρ(r). r is the radius of the object. Suppose the function ρ(r) has finite support, that
is, ρ(r) = 0, when r ≥ R.

We divide [0, R] by n intervals. Let dr = R
n

, ri = i∗dr , ρi = ρ(ri), i = 1, 2, · · · ,n
In the projection plane every pixel of the image corresponds to an areal density

value, all the values compose a matrix. It can be taken as a vector of m elements
b = (b1, b2, · · · , bm)T. The unknown density and the known areal density have the
following relationship:

∫

1j

ρ(r)dl = bj, j = 1, 2, · · · , m. (1)

Where 1j denotes the trace line between source and the projection point corresponding
to bj.

To solve ρ(r) from (1), we discretize every equation of the system and get a linear
algebraic equation system:

Aρ = b (2)

Where ρ = (ρ1, ρ2, · · · ,ρn)T, A = (aij ) is a m × n matrix. Every entry of A can
be calculated according to the cross points of ray trace with blocks of object. For
example, aij is equal to the length of ray lj between sphere r = ri−1 and r = ri .
Because of the ill-conditioning of matrix A and the noise contained in the measured
data of right-hand side b, solving the least square problem min‖Aρ − b‖2 can not
give the right answer of Eq. (2). Regularization is necessary to ensure that the small
perturbation in right-hand side b will not cause high oscillation of numerical solution.
In [7] Total Variation norm is proposed as regularization functional. TV does not
penalize discontinuities in ρ and thus allows a better edge recovery. One purpose
of density reconstruction is to get the edge position between different materials.
Total Variation regularization is the proper choice for this goal. Therefore, density
reconstruction problem can be written as:

min

{

‖Aρ − b‖2
2 + α

n
∑

i=2

|ρi − ρi−1|
}

(3)



134 S. Wei and G. Zhao

The minimization problem (3) can be solved by using fix-point iterative meth-
od [8].

For 2-dimensional axially symmetric objects, the density function has the form
ρ(r, z), where r = √

x2 + y2. We discretize the object along r1 and z1, both of
the two series have equal steps. Let ρi, j denote the density value inside the block
ri-1 ≤ r < ri, zj-1 ≤ z < zj. Suppose that i = 1, 2, · · · ,n1, j = 1, 2, · · · ,n2, the
projection data is a matrix with size m1 ×m2. Similar to 1-dimensional case, we get
the following equation

Aρ = b (4)

Where A is a m1 ×m2 × n1 × n2 matrix. Its entry is equal to the length of ray trace
inside blocks. b is a vector with size m1×m2. To solve Eq. (4), we use Total Variation
regularization, the corresponding minimization problem is:

min
ρ

{

‖Aρ − b‖2
2 + α

m1m2n1n2∑

k=1

|∇ρk|
}

(5)

Where |∇ρk| represents the gradient of function ρ at block k. Minimization problem
(5) can be solved by Vogel and Oman’s fast numerical method proposed in [9].

4 Numerical Examples

The first example is the reconstruction of an object of four nested density rings.
Figure 2a is the exact density profile. The corresponding projection data (Fig. 2b)
is a synthetically generated areal density with added Gaussian noise. Reconstructed
density without using regularization is shown in Fig. 2c. Reconstruction with H1

semi-norm regularization in Fig. 2d (The dotted line is our numerical solution, and
the continuous line is the exact solution). Reconstruction withTV norm regularization
in Fig. 2e. TV regularization can suppress noise and preserve density discontinuity.

In example 2, we tested density reconstruction for functions (6) to (8). First, we
generate areal density by calculating integral values of these functions along cone
beam x-ray traces. Secondly, we add Gaussian noise to the areal density. And then
we use our method to reconstruct the density functions according to the synthetic
areal density. Figure 3a, b and c are the numerical results of reconstructed density
profiles. The corresponding exact solutions are functions (6) (7) (8). They are defined
as follows.

The density function corresponding to Fig. 3a is (6).

ρ(r , z) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0.00129 (r , z) ∈ C1

18.25 (r , z) ∈ C2 − C1

1.77 (r , z) ∈ C3 − C2

2.64 (r , z) ∈ C4 − C3

0 (r , z) /∈ C4

(6)
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Fig. 2 a Exact solution. b Areal density. c Density reconstruction without regularization. d Den-
sity reconstruction with H1 semi-norm regularization. e Density reconstruction with TV norm
regularization

Where C1 = {(r , z) : r2

0.52 + z2

1.02 ≤ 1}, C2 = {(r , z) : r2

22 + z2

32 ≤ 1},
C3 = {(r , z) : r2

2.32 + z2

3.32 ≤ 1}, C4 = {(r , z) : r2

2.82 + z2

3.82 ≤ 1}.
The density function corresponding to Fig. 3b is (7).

ρ(r , z) =
⎧

⎨

⎩

2.0 (r , z) ∈ C1

18.0 (r , z) ∈ C2 − C1

0 (r , z) /∈ C2

(7)
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Fig. 3 Reconstructed density profile of axially symmetric objects. r = 0 is the synthetic axis

Where c1 = {(r , z) : 1.5 ≤ r ≤ 2.5,−1.5 ≤ z ≤ −0.5}, c2 = {(r , z) : r2 + z2 ≤
4.02}.

The density function corresponding to Fig. 3c is (8).

ρ(r , z) =
⎧

⎨

⎩

32.0 (r , z) ∈ C1

18.0 (r , z) ∈ C2 − C1

0 (r , z) /∈ C2

(8)

Where c1 = {(r , z) : 0 ≤ r ≤ 0.5,−0.5 ≤ z ≤ 1.0}, c2 = {(r , z) : r2 + z2 ≤ 3.02}.
For different types of cylindrical objects, Total Variation regularization based den-

sity reconstruction gives correct recovery of object edges, while the density contrast
may be changed in the process of recovery. See Fig. 2e. The recovered function is
different the true solution in the region of r< 0.5.

5 Conclusions

The numerical method of density reconstruction from a single x-ray radiograph
depends on how the beam is shaped. For parallel beam of x-ray, any cylindrical
objects can be reconstructed by Abel transform inversion. For cone beam of x-ray,
1-dimensional case can be performed by Abel transform inversion, but two dimen-
sional case can not be done like this. We propose to divide the object into small
blocks, in each block the density is viewed as a constant. By exactly computing the
trace length of x-ray inside each block we get a matrix, and the density reconstruc-
tion leads to solve a linear algebraic equation system. The ill-conditioning of the
system can be overcome by adding TV regularization term. The obtained minimiza-
tion problem can be solved using fix-point iterative method. Numerical experiments
show that TV regularization gives correct recovery of object edges, while the density
contrast may be changed in some smooth parts.
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The Improvement of Total Variation Based
Image Restoration Method and Its Application

Suhua Wei and Guiping Zhao

Abstract Total variation based image restoration method was first proposed by Rudin
Osher and Fatermi in 1992. The images resulting from its application are usually
piecewise constant, and have sometimes undesirable staircasing effect. To reduce
this effect, we propose an improved model by combining the advantages of total
variation and H 1 regularization. The new model substantially reduces the staircase
effect, while preserving sharp edges. This model can be used in image reconstruction,
it has advantages of keeping edges and recovering smooth region’s value. We give
1D and 2D experimental results to show the efficiency of the proposed model.

Keywords Total variation regularization · Image restoration · Staircasing effect

1 Introduction

Image processing refers to the analysis and extraction of information from images,
including restoration, compression and segmentation. Applications can be found in
many areas like medical diagnosis, satellite surveying and computer techniques.

The aim of image restoration is to estimate the ideal true image from the recorded
one. The direct problem is the computing of blurred image from a given image. The
usual model for it is the convolution by a given kernel or point spread function. In
many cases, the inverse problem of computing the true image from the observation is
ill-posed. A general method to dealing with inverse problem is that of regularization.
The choice of regularization will be essential for a satisfactory image restoration
process. The solution of regularization based on least squares criteria is usually
continuous, therefore, the image edges can not be well restored. To overcome this
difficulty, a technique based on the minimization of total variation norm subject to
some noise constraints is proposed by Rudin, Osher and Fatemi [1], that is, to seek
solutions in BV space. The space of functions of bounded total variation plays an
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important role when accurate estimation of discontinuities in solutions is required.
The total variation (TV) denoising method preserves edges well, but has sometimes
undesirable staircase effect, namely the transformation of smooth regions into piece-
wise constant regions (stairs), which implied that the finer details in the original
image may not be recovered satisfactorily. To solve this problem, Chan, Marquina
and Mulet [2] proposed an improved model, constructed by adding a nonlinear fourth
order diffusive term to the Euler-Lagrange equations of the variational TV model.
Marquina and Osher [3] preconditioned the right hand side of the parabolic equa-
tion with |∇u| which had a staircase reducing effect. Another popular way to reduce
staircasing is to introduce in some way higher order derivatives into the regulariza-
tion term. Chambolle and Lions [4] do this by minimizing the inf-convolution of the
TV norm and a second order functional. Instead of combing TV norm and second
order derivatives within one regularization functional, Lysaker and Tai [5] use two
regularization functionals. In [6], Blomgren, Chan and Mulet propose a “TV-H 1

interpolation” approach to address the staircase problem of the TV technique. The
approach is performed by redefining the TotalVariation functionalR(u) in view of the
properties of TV-norm and H 1-seminorm. However, it is not completely clear how
to choose a function �, which makes the regularizing functional R(u) being convex.
In this paper, we give a choice of function �, and the corresponding regularizing
functional R(u) verifies the sufficient conditions for convexity. This is mathemati-
cally desirable, for then the constrained optimization problem will have some kind
of uniqueness.

The paper is organized as follows: in Sect. 2, we introduce the image restoration
problem using the Total Variation norm as regularization functional. In Sect. 3,
we describe the staircase effect caused by the TV model and briefly review some
techniques proposed in literature to deal with it. In Sect. 4, we construct an improved
regularizing functional to reduce the staircase effect. We then analysis our model and
give its Euler-Lagrange equation as well as its discretization method. In Sect. 5,we
give numerical examples to test the efficiency of our new model. The final part is
our conclusion.

2 Total Variation Image Restoration

An image can be interpreted as either a real function defined on 
, a bounded and
open domain of R2, or as a suitable discretization of this continuous image. Our aim
is to restore an image which is contaminated with noise and blur. The restoration
process includes the recovery of edges and smooth regions. Let us denote by z the
observed image and u the real image. We assume that the degradation model is
Ku + n = z, where K is a known linear blur operator, and n is a Gaussian white
noise, i.e. the values ni of n at pixels i are independent random variables, each with
a Gaussian distribution of zero mean and variance σ 2. Our objective is to estimate u
from given z. The inverse problem has many solutions and is ill-posed. If we impose
a certain regularity condition on the solution u, then it may become well-posed [7].
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In [1], it is proposed to use as regularization functional the so-called Total Variation
norm or TV-norm:

T V (u) =
∫




|∇u|dxdy =
∫




√

u2
x + u2

ydxdy. (1)

Since TV norm does not penalize discontinuities in u, thus we can recover the
edges of the original image. The restoration problem can be written as:

min
u

∫




|∇u|dxdy, (2a)

subject to ||Ku − z‖2
L2 = |
|σ 2. (2b)

Using known techniques, the solution of problem (2) can be achieved by solving
the equivalent unconstrained problem:

min
u

∫




(

α|∇u| + 1

2
(Ku − z)2

)

dxdy, (3)

where α represents the tradeoff between smoothness and fidelity to the original
data. Assuming homogeneous Neumann boundary conditions, the Euler-Lagrange
equation of (3) is:

0 = −α∇ ·
( ∇u

|∇u|
)

+K∗(Ku − z). (4)

The above Eq. (4) is not well defined at locations where |∇u| = 0, due to the pres-
ence of the term 1/|∇u|. The common method to overcome this technical difficulty
is to slightly perturb the total variation functional to become:

∫




√

|∇u|2 + βdxdy,

where β is a small positive number.
In [9] it is shown that the solutions of the perturbed problems

min
u

∫




(

α
√

|∇u|2 + β + 1

2
(Ku − z)2

)

dxdy (5)

converge to the solutions of (3) when β → 0. The Euler-Lagrange equation of (5) is

0 = −α∇ ·
(

∇u
√|∇u|2 + β

)

+K∗(Ku − z), (6)

with homogeneous Neumann boundary conditions.
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Fig. 1 Original image
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3 The Staircase Effect

The image restoration model based on total variation regularization tends to yield
piecewise constant images. This is ‘staircasing effect’. Smooth regions in original
image are recovered as piecewise smooth regions. In order to overcome this difficulty,
some works focus on introducing higher order derivatives into the regularization
term. Some starts from the parabolic equation and reform the right hand side of
the equation to get reduced effect of staircasing. A popular approach to reducing
staircasing is to combine the ability of TV denoising to preserve edges with the
ability of H 1 to preserve smooth regions. Blomgren, Chan and Mulet [6] proposed
to use as regularizing functionals the interpolation of TV-norm and H 1-seminorm,
because staircase effect is partly due to the fact that the TV-norm is not biased against
discontinuous nor continuous functions. On the other hand, the functional

H 1(u) =
∫




|∇u|2dxdy,

has a strong bias against discontinuous functions.
Consider functionals of the type:

R(u) =
∫




|∇u|pdxdy, (7)

where p ∈ [1, 2]. TV-norm and H 1 functionals can be obtained by Eq. (7) with p =
1, 2, respectively. In [6], numerical evidence show that sharp edges are obtained for
p = 1, 1.1, and the staircase effect does exist. With the increasing of p, for instance
p = 1.5, 2, those sharp edges are smeared, but the staircase effect is alleviated. In
view of these results, the criterion of constructing regularization functionals should
be that obtain TV behavior at sharp gradients (edges) and H 1 behavior away from
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Fig. 2 Noisy and blurred
image
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Fig. 3 Total Variation
restoration
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edges. The approach which is proposed by Blomgren, Chan and Mulet is to consider
regularizing functionals of the type:

R(u) =
∫




�(|∇u|) dxdy, (8)

�(|∇u|) could be a “convex combination” of x and x2, with variable weight α(x) ∈
[0, 1]:

�(x) = α(x)x + (1 − α(x)) x2,

with α(x) → 1 when x → ∞ and α(x) → 0 when x → 0. That is, at edges
where |∇u| is very large, �(x) is close to x, the result of using functional R(u) is
approximately equal to that of TV-norm. At smoother region where |∇u| is very
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Fig. 4 BCM model
restoration.Dotted line is
reconstructed image, solid
line is original image
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Fig. 5 Our proposed model
restoration. Dotted line is
reconstructed image, solid
line is original image
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small, �(x) is close to x2, the result of using functional R(u) is approximately equal
to that of H 1-seminorm.

4 A Convex Regularizing Functional for Staircase Reduction

As stated in Sect. 3, we consider regularizing functional R(u),

R(u) =
∫




�(|∇u|)dxdy,

�(x) =α(x)x + (1 − α(x))x2 (9)
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Fig. 6 Original image with value 1 inside and 18 outside

where α(x) = x
1+x

, which satisfies α(x) → 1 when x → ∞ and α(x) → 0 when
x → 0. Thus we get regularizing functional

R(u) =
∫




2|∇u|2
1 + |∇u| dxdy (10)

Therefore, the new model for total variation denoising is

min α

∫




2|∇u|2
1 + |∇u| +

1

2
‖Ku − z‖2

L2 (11)

The Euler-Lagrange equation of (11) is

0 = −∇ ·
(

2 + |∇u|
(1 + |∇u|)2

∇u

)

+ λK∗(Ku − z) (12)

We calculate the derivatives of functional R(u),

R′(u) = −∇ ·
(
�′(|∇u|)
|∇u| ∇u

)

(13)

R′′(u)v = −∇ ·
(
�′(|∇u|)
|∇u|

(

∇v − (∇u,∇v)

|∇u|2 ∇u

))
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Fig. 7 Blurred image with random noise and gaussian kernel

+ �′′ (|∇u|) (∇u,∇v)

|∇u|2 ∇u

)

.

From (14) we deduce that:

(R′′(u)v, v) =
∫




(
�′(|∇u|)
|∇u| (|∇v|2 − (∇u,∇v)2

|∇u|2
)

(14)

+�′′(|∇u|) (∇u,∇v)2

|∇u|2 )dxdy. (15)

The Cauchy-Schwartz inequality implies that

|∇v|2 − (∇u,∇v)2

|∇u|2 ≥ 0,

therefore�′(x) ≥ 0 and�′′(x) ≥ 0, x ≥ 0, that is, � is an increasing convex function
in [0,∞), are sufficient conditions for the functional R of (10) being convex. It’s
easy to get the expression of �′(x) and Φ ′′(x):

�′(x) =x(x + 2)

(1 + x)2

�′′(x) = 2

(1 + x)3
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Fig. 8 Restored image by Total Variation regularization

Obviously, �′(x) ≥ 0, �′′(x) > 0 when x ≥ 0. Therefore, the functional R of (10)
is convex.

There are many methods to solve Euler-Lagrange Eq. (12). L. Rudin, S. Orsher
and E. Fatemi [1] use a time marching scheme to reach a steady state of a parabolic
equation; C. Vogel and M. Oman [8] propose the fixed point iteration method, which
results in the lagged diffusivity fixed point algorithm. Chan and Mulet [9] give the
convergence of the lagged diffusivity fixed point method. Considering the presence
of highly nonlinear and non-differentiable term in Euler-Lagrange equation, Chan,
Golub and Mulet proposed a nonlinear primal-dual method [10], Chan and Chen [11]
intrduced the nonlinear multigrid method. Further works about fast total variation
minimization method and algorithm can be seen in literature [12, 13]. In our com-
putation, we referenced Vogel and Oman’s fast, robust total variation-based image
reconstruction method [14]. To solve Euler-Lagrange Eq. (12), fixed point iteration
technique is adopted:

u0 = z, solve for uk+1:

−∇ ·
(

2 + |∇uk|
(1 + |∇uk|)2

∇uk+1

)

+ λK∗ (Kuk+1 − z
) = 0. (16)

The new model (11) has some advantages: First, because of the convexity of
the regularizing functional R(u), the solution to problem (11) has some kind of
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Fig. 9 Restored image by BCM model

uniqueness. Second, our model has no non-differentiable locations. It is not necessary
to do numerical regularization, namely, to replace the term |∇u| by

√|∇u|2 + β for
a small enough positive artificial parameter β. Third, the new model can efficiently
reduce the staircase effect in smooth regions while keep sharp edges behaving like
total variation based image restoration model.

5 Numerical Examples

In this section,we perform numerical experiments in 1D and 2D images. In the
first experiment, we use a synthetic 1D image which includes piecewise constant,
piecewise linear and piecewise parabolic regions. The original image, shown in Fig. 1,
is added random noise and blurred by Gaussian kernel. The kernel is defined as

g(x) = 1√
2πσ

e
−x2

2σ2 .

31 points of the discrete kernel with σ = 4.5 is used to get the contaminated image
Fig. 2. From Figs. 3 to 5 we give three kinds of restoration of the corrupted image.
Restoration by total variation regularization is shown in Fig. 3, restoration by BCM
(Blomgren, Chan and Mulet) model [6] in Fig. 4 and our proposed model in Fig. 5.
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Fig. 10 Restored image by our proposed model

We observe that in Fig. 5 the staircase effect of smooth regions is improved and edges
are correctly reserved. Figure 4 has better staircasing reduction in some region, but
worse edge location retaining and the ‘Gibbs’ phenomenon exists. To evaluate the
quality of restored images, we calculated signal to noise ratio (SNR) for each image.
The SNR values of images in Figs. 4 and 5 are 14.5dB and 15.5dB respectively.
Before restoration, the image SNR is 11.8dB. We can see that the reconstructed
image with proposed model has better SNR value. In the computation, we found
that the staircase effect depends on the choice of regularizing parameter λ in (16),
therefore, we use the same value (λ = 0.005) when doing comparison.

In the second experiment, we perform 2D image restoration with different stair-
casing reduction models. The original image is created by a two values function, 1
inside and 18 outside (Fig. 6). We contaminate the image with random noise and
Gaussian kernel (Fig. 7). The kernel takes the value of σ = 4.5. We discretize the
gaussian function by step size h = 0.02 both in x and y directions. Similar to the
1D case, we use 31 by 31 points to blur the original image. In Fig. 8, the noisy and
blurred image is restored using TV technique. Figures 9 and 10 are reconstructed
images using BCM model and our model respectively. We can see that both TV and
BCM model have problems on recovering curve edges. The resulted edges do not
look so smooth as it should be. This is suffering from the staircasing effect. Using
our model curve edges can be better recovered. Notice also that how the adjoint parts



150 S. Wei and G. Zhao

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Fig. 11 Comparison by cross lines.The solid line, dotted line and dashed line respectively
corresponds to the original image,blurred image and restored image by our model

of the two edge circles are recovered. Our model retains corner better than BCM
model does. BCM model uses a third order polynomial interpolating between 0 and
sgmax . gmax is the maximum reliable gradient on the discrete grid and 0 < s ≤ 1. The
recovered image is sensitive to the choice of s. We have tried different s, Fig. 9 gives
best image recovery among all other images we have obtained by BCM model. The
SNR values corresponding to images from Figs. 8 to 10 are, respectively, 13.7dB,
14.4dB and 14.1dB. The contaminated image SNR value is 4.2dB. For the 2D image
our model has very close SNR value improvement with BCM model, but the advan-
tage of curve edge recovery is obvious. In Fig. 11 we plot three cross lines which
respectively correspond to the original, the blurred and the restored images. We can
observe that the proposed model is efficient in recovering image edges and pixel
values. In application fields, it’s necessary for both pixel values and edge locations
be recovered.

6 Conclusions

Total Variation based image restoration method is widely used in image processing
area. Its disadvantage is the staircase effect caused at smooth regions. We proposed
an improved model which combines the advantage of TV and H 1. It can reduce the
staircase effect and recover both the pixel values and correct edge locations. In the
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application field of nuclear physics, tomographic reconstruction of axially symmetric
objects from a single dynamic radiograph is based on the inversion of Abel transform
[15]. Abel inversion can be realized by using total variation regularization. It is better
to use improved total variation based regularizing term proposed in this paper. We
have tested it for density reconstruction from x-ray attenuation date generated by a
single radiograph.
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Adaptive System for Control of Active
Ankle-Foot Orthosis and Gait Analysis

Ivanka Veneva and Nuno Ferreira

Abstract The main aim of this research is the development of an autonomous adap-
tive system for actuation, data acquisition and control of active ankle-foot orthosis.
In this paper the design of a control unit composed by microcontroller, driver and
sensor system, and its application to the actuation and position of the foot orthotic
segment is presented. The research work combines hardware and software design of
the intelligent control device with graphical interface for representation and analysis
of the data acquired during human motion. The dynamic system simulation is done
in Matlab Simulink and SimMechanics.

A laboratory model of the proposed system was implemented to demonstrate its
autonomy and verify experimentally its functionality.

The proposed control device can be used in several applications involving human
motion analysis and control of different types of orthoses or functional electrical
stimulation used for gait correction.

Keywords Control · Active ankle-foot orthoses · ATmega128 microcontroller ·
Biomechanics · Rehabilitation robotics

1 Introduction

Ankle foot orthoses (AFO) are assistive devices for Drop foot pathology. Drop foot is
the inability of an individual to lift their foot because of reduced or no muscle activity
around their ankle. The major causes of drop foot are severing of the nerve, stroke,
cerebral palsy and multiple sclerosis. The standard AFO is a rigid polypropylene
structure that prevents any ankle motion. There are several commercial products
currently on the market. The more widely used device is a dorsiflexion-assist spring
ankle foot orthosis, produced by several manufacturers, i.e. Tamarack Joints, Becker
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Fig. 1 States and transitional conditions

Orthoses. This AFO is able to help individuals during normal walking by lifting their
toe during initial swing.

The idea of an actively powered orthotic device has been explored since the early
1980s using hydraulic and pneumatic device. More recently, compressed gas and
DC motors have been researched to provide active assistance to the individuals with
paraplegia [2, 3]. An active ankle-foot orthosis with a force-controllable series elastic
actuator (SEA) was also designed [1] capable of controlling orthotic joint stiffness
and damping for plantar and dorsiflexion ankle motions.

We propose an autonomous adaptive device for actuation, data acquisition and
control of active ankle-foot orthosis. The aim of the work is to present an autonomous
control and monitoring system for gait analysis using tactile sensors and active ankle-
foot orthoses during normal level walking. The device is used to help or rehabilitate
persons with control disorders and other weaknesses of ankle foot complex.

2 Methods

Within a given walking cycle, four distinct positions were used corresponding to the
phases: heel strike, stance, toe-off and swing. During the swing phase, where the
clearance of the toe is released, electro-mechanical system must actively adjust the
flexion of the orthosis by actuator movement and keep this position till the heel strike
appears. Thus the ankle torque has to be modulated from cycle-to-cycle throughout
the duration of a particular gait phase (Fig. 1).

Active ankle-foot orthosis (AAFO) is a system with one degree of freedom which
foot segment is connected to the shank segment by a rotational joint. A direct drive
actuator is attached laterally to the AFO.

A feedback with Proportional-Integral-Derivative control was used to estimate
the trajectory of the foot and position the actuated foot segment of AFO when the
foot rotates about the ankle. Control signals are received in real time from two
tactile sensor arrays incorporated in the foot part of AFO and in the insole of the
healthy leg, which is the basement of the control algorithm. During each gait cycle
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Fig. 2 Ankle-foot orthosis
with direct drive actuator

Fig. 3 Autonomous control
and monitoring system with
active ankle-foot orthoses

a microcontroller estimates forward speed and modulates swing phase flexion and
extension in order to assure automatic adaptation of the joint torque [4, 5]. Realizing
flexion/extension the actuator applies a torque adequate to the joint position of the
human ankle during level ground walking (Fig. 2).

The used Voice Coil Actuator (VCA) has two build-in mechanical stops, which
limit its range of motion to slightly less than 30◦.

3 System Design

Active Ankle-foot orthoses is an electro-mechanical system controlled by a control
module. The complete autonomous system consists of four primary components—
sensing, data acquisition, communication and friendly oriented software for interpre-
tation of the data (Fig. 3). The sensor system has mounted into two basic components:
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Fig. 4 ATmega128 controlling a VCA

insole for the healthy leg and ankle-foot orthoses. During the walking the acquisi-
tion unit gathers and digitizes the information from the sensors. In monitoring mode
these data are transferred through the RS-232 lines to a graphical user interface for
visualization and interpretation [4].

A very important design characteristic is the system power source. One of the
main objectives of this system is to reach a significant level of autonomy.

Many batteries technologies have been lately developed. Nowadays Lithium Ion
is the battery technology imposed in market having a good power density.

3.1 Control Module Prototype. Design and Implementation

The control module prototype (Figs. 4 and 5) has been realised using microcontroller
ATmega128 (Atmel Co.), featuring basic hardware peripherals such as analog to
digital converter (ADC), USART for RS232 communication and a timer with Pulse
Width Modulation (PWM) output. The PWM channel is connected to the driver
to control the direction and speed of the motor by varying the duty cycle of the
PWM output. By varying the current flow thought the coil the speed and torque of
the motor can be varied. The position control is handled by electronics according
the outputs from a set of two sensor arrays—tactile sensors TR incorporated in the
foot part of AFO and TL in the insole of the healthy leg. The sensors change their
outputs throughout the stance and the swing phases of walking. Additional feedback
element—angular position sensor RP is attached to the moving parts of the motor
assemblies to sense the velocity and position.

Secondary functions for the electronics in control application is to ensure that the
speed and overload detection are as desired by closed loop control.
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Fig. 5 Control module
prototype

3.2 Control Algorithm

The control algorithm is based on the biomechanical interpretation of the locomotion.
During each gait cycle, by measuring the total time TL (for the left leg) and TR (for
the right leg) when the foot remains in contact with the ground the microcontroller
estimates the forward speed and modulates the swing phase flexion and extension in
order to achieve quite normal lower limb dynamics (Fig. 6). Thus the joint torque of
the actuator was automatically modulated to match patient specific gait requirements
to permit smooth and natural heel strike to forefoot transition. The tactile sensors
and a rotary potentiometer measure ankle joint position in real-time and send signals
to the microcontroller. These sensors data are then used in every step of the control
algorithm (Fig. 7) in order to optimize the heel to forefoot transition during the stance
phase TL or swing phase TR of walking.

The microcontroller receives the diagnostic information about the system from
the sensors and generates the torque command to the driver.

To get a more exact torque it is important to have a feedback and PID control in
order to maintain stability when a foot load is applied [7] (Fig. 8).

The controller reads the system state y, by a rotational potentiometer, subtracts
the measured angle from a desired reference y0, to generate the error value, e. The
error will be managed in three terms—the proportional, Tp, the integral, Ti , and the
derivative, Td , terms are summed to calculate the output based on the PID algorithm:

u(t) = kp

⎡

⎣e(t) + 1

Ti

t∫

0

e(τ )dτ + Td

de(t)

dt

⎤

⎦ (1)



158 I. Veneva and N. Ferreira

Fig. 6 Signals from
the external sensors

Approximating the integral and the derivative terms to get the discrete form this gives
the controller:

u(n) = Kpe(n) +Ki

n
∑

k=0

e(k) +Kd (y(n) − y(n− 1)) (2)

where n is the discrete step at time t.

4 System Analysis Models

In Matlab SimMechanics (Fig. 9) the ankle-foot orthosis is built of two segments
connected by rotational joint with a single rotational degree of freedom: Body1
(shank) and Body2 (foot). We simulate the model in Inverse Dynamics mode to
compute the joint torque required to rotate the foot in desired position. During the
simulation the geometry of the orthosis is presented as a double pendulum. Once we
know the computed torque, we can calculate the required dynamic motor torque and
to decide which is the correct motor with appropriate parameters for joint actuation.

Tz = Td − Tc − Tg , (3)

Td =
(

Jc +md2
)

q̈ + kq̇ +mgd sin q, (4)
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Fig. 7 Control algorithm

Fig. 8 PID controller
with feedback

where Td is the driving torque; Tc—the torque caused by the friction; Tg—torque
caused by the gravity; Jc is the foot body inertia moment; q—generalized coordinate.

Using a model of a direct drive DC actuator driving an inertial load it is possible
to develop differential equations that describe its behaviour:

di

dt
= −R

L
i (t)

Kb

L
ω (t)+ 1

L
uapp (t) (5)

dω

dt
= − 1

J
Kfω (t)+ 1

J
Kmi (t), ω(t) = dq

dt
. (6)



160 I. Veneva and N. Ferreira

Fig. 9 Electromechanical system model with PID control

In this model the foot is the inertial load driven by the actuator. The model shows
the angular velocity of the foot, w(t), as the output and applied voltage, uapp(t), as
the input of the circuit. The resistance of the circuit is R and the self-inductance of
the armature is L.

A state-space representation of the DC actuator as a dynamic system is developed
in Matlab [6]. The current i and the angular velocity ω are the two states of the
system. The applied voltage, uapp, is the input to the system, and the angular velocity
ω is the output.

where

• J is the inertia of a body;
• Km is the armature constant related to physical properties of the motor, such as

magnetic field strength, the number of turns of wire around the conductor coil;
• Kb is the electromotive force constant;
• Kf is a linear approximation for viscous friction.

di

dt

[

i

w

]

=
⎡

⎢
⎣

−R

L

Kb

L
Km

J

Kf

J

⎤

⎥
⎦.

[

i

w

]

+
⎡

⎣

1

L
0

⎤

⎦.uapp(t), (7)

y(t) = [

0 1
]

.

[

i

w

]

+ [0].uapp(t), (8)

Giving the nominal values for parameters we can obtain the transfer function of the
actuator. In Fig. 9, the actuator is represented by its transfer function.
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Fig. 10 The geometry of the orthosis is presented as a double pendulum during the simulation in
MATLAB

Fig. 11 AAFO with the hinge joint and attached laterally direct drive actuator

During the simulation the geometry of the orthosis is presented as a double pen-
dulum. In Fig. 10, we can see the position oft he orthosis corresponding to the phases
swing, stance and toe-off. During the swing phase, where the clearance of the toe is
released, electro-mechanical system must actively adjust the flexion of the orthosis
by actuator movement and keep this position till the heel strike appears.

Once we know the actuator parameters and computed torque, we can verify that
this is the correct answer of the system simulation by analysing driven angular motion
for the articulation of the ankle joint (foot) in Matlab Simulink.

5 Experimental Results

The proposed control module is designed and tested. In order to test the control
algorithm and system functionalities a laboratory model of orthosis with hinge joint
and attached laterally direct drive actuator was designed (Fig. 11). The orthoses is
restricted in the ankle joint to + /− 20◦.
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Fig. 12 Graphical program written in MATLAB for visualization of human motion data

A healthy subject equipped with the sensors mounted under the heel and the toes
part of the insole (TR1, TR2 for the right leg and TL1, TL2 for the left leg), performs
different trials of slow and normal level walking. During walking the motion of the
orthosis is observed—if the time and phase parameters of the orthosis coincide with
these of the right leg.

The sensors work together to detect walking over one given interval of time and
to collect the following parameters: ankle joint angles, foot (heel and toe) contacts
and foot velocities. Angle sensor (rotary potentiometer) detects joint position and
provides a signal ADC during swing and stance phase. The tactile sensors acted like
a switch, turning off when the foot was over the sensor and turning on when the leg
moved away from it. The microcontroller collects sensor data in four VS buffers,
ADC buffer and PWM duty-cycle buffer.

In monitoring mode the data are transmitted to the PC through the RS232 serial
interface. A graphical program module written in MATLAB receives the data and
visualizes it in its own window, giving us the representation of the signals (Fig. 12).

VS0 and VS1 are recorded digital signals from the tactile sensors mounted on the
orthosis. Signals from the lower insole of the healthy leg are VS2 and VS3.

The features of normal walking are important for overall autonomous control and
are not achievable with most mechanically passive orthoses. We assumed that normal
gait is symmetrical and that deviation from a reference pattern is a sign of disability.
To analyze asymmetry, the step time of the affected side (TR) was subtracted from the
unaffected side (TL). The difference in stride lengths should be zero for symmetric
gait.
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6 Discussion

Autonomy of a system for use by a disabled is a crucial goal in mobility restoration.
The percentage of persons suffering from muscular weakness of the lower limb can
oscillate between 0.05 and 1 % of the total European population.

The presented device for control of active ankle-foot orthosis integrates biome-
chanics based algorithms with active control system. The autonomy of the developed
system has been demonstrated presenting experimental data during walking. The
system controls the orthosis functionalities, records the data received from sensors
during the gait and transfers recorded data to graphical user interface for visualization
and future analysis.

The developed device provides broad information for both control and gait
analysis. The data from the sensors are used in every step from the control algo-
rithm. The actuator joint torque is automatically modulated in order to optimize the
heel-to-forefoot transition during the stance or the swing phase of walking.

The experimental data discussed in this paper can be used in cases of the drop foot
treatment and lower limb rehabilitation to enhance theAAFO functional performance
and to improve the patient gait.
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Vector Ellipsoidal Harmonics Structure
Peculiarities and Limitations

George Dassios

Abstract The theory of scalar ellipsoidal harmonics was introduced by Lamé in
1837, more than half a century after Laplace introduced his theory of spherical
harmonics in 1782. It is amazing that the relative theory of vector spherical harmonics
was demonstrated as late as 1935 by Hansen.The appearance of a corresponding
theory for vector ellipsoidal harmonics was resisting until 2009, for the very simple
reason that such a theory can not exist, at least not in such a nice form as the theory
of their spherical counterparts. The intrinsic difficulties of the ellipsoidal coordinate
system, the fine and symmetric structure that is encoded in the anisotropic character
of the ellipsoidal geometry, as well as the necessary generalizations and limitations
that are needed are discussed in this presentation. Furthermore, the new analytical
techniques that are suggested through the introduction of vector ellipsoidal harmonics
are also demonstrated via special examples.

Keywords Vector harmonics · Ellipsoidal harmonics · Potential theory

1 Introduction

Separation of variables led to spectral theory for linear operators with physical impli-
cations that can hardly be compared with any other mathematical method in Physics.
A quick glance to the mathematical basis ofVibration Theory, or Quantum Mechanics
will justify this statement. The method of eigenfunction expansions, which has been
invented through separation of variables, provides the most effective way to solve
analytically boundary value problems. But, nature is seldom very generous, and in
order to obtain a manageable separable system we need linearity of the governing
operators, simple geometry, and above all, a lot of luck!

In almost all cases of physical interest, the mathematical characteristics of the
separated ordinary differential equations, such as convergence, orthogonality, com-
pletence of the eigensolutions and so on, are concluded from the general theory of
Sturm–Liouville systems [10]. In the early 1950’s, Eisenhart, Moon and Spencer
attempted to find all coordinate systems that allow separation for the Laplace and
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the Helmholtz equations [7]. They found that, among all the orthogonal curvilinear
coordinate systems with first and second degree coordinate surfaces, there are only
11 systems that allow for splitting of the partial differential equation to three ordi-
nary differential equations. Among these coordinate systems, the simplest one is the
Cartesian and the most complicated one is the ellipsoidal [4], [5].

If the partial differential operator acts on a vector field, which is decomposed in
three scalar components with respect to some curvilinear system, then separation
of variables seeks for the splitting of the vector equation into three scalar partial
differential equations, each one involving only a single component of the decomposed
field. Then, each one of these three scalar equations can be further separated into three
ordinary differential equations and the theory of scalar equations is readily applied.

In the present work we will investigate the case of the ellipsoidal system, where
such a program is not applicable and we will try to find how we can handle this situa-
tion. We will demonstrate a novel approach to the problem of evaluating coefficients
of a not completely orthogonal system.

2 The Spherical Case

If the eigensolutions of a scalar problem are known then the naive approach to
solve a vector problem, is to expand every Cartesian component in terms of the
corresponding scalar eigenfunctions and look for solutions in the form

U (r) =
∑

n

∑

m

Cnmunm(r) (1)

where

Cnm = (

C1
nm,C2

nm,C3
nm

)

(2)

denotes the vector of the unknown coefficients. If we apply the boundary conditions
to the above form of the solution we will find that the evaluation of the coefficients
CCnm is either very hard, or impossible. The reason for this difficulty is that we
casted the vectorial character of the field U into the coefficients CCCnm and not
into the eigenfunctions, which carry information about the natural geometry of the
problem. Therefore, the right approach is to introduce vector eigenfunctions that are
compatible with the geometry of the boundaries [8, 9]. But this is not an easy task. In
fact, vectorial eigenfunctions are known only for spherical and spheroidal geometries.

The vector spherical harmonics were introduced by Hansen [2]. The interior solid
harmonics are given by

Am
1n(r) = rnrYm

n (r̂) − 1

2n+ 3
∇ (rn+2Ym

n (r̂)
)

(3)

Am
2n(r) = ∇ × Am

1n(r) = ∇ × (rnrYm
n (r̂)

)

(4)

Am
3n(r) = ∇ × Am

2n(r) = ∇∇ · Am
1n(r) (5)
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and the exterior solid harmonics are given by

Bm
1n(r) = r

Ym
n (r̂)

rn+1
+ 1

2n− 1
∇
(
Ym
n (r̂)

rn−1

)

(6)

Bm
2n(r) = ∇ × Bm

1n(r) = ∇ ×
(

r
Ym
n (r̂)

rn+1

)

(7)

Bm
3n(r) = ∇ × Bm

2n(r) = ∇∇ · Bm
1n(r) (8)

where

Ym
n (r̂) = Cm

n Pm
n ( cosϑ)eimϕ (9)

denotes the complex normalized form of the scalar surface spherical harmonics,
with Cm

n the normalization constants. The functions Am
in and Bm

in solve the vector
Laplace equation

�F (r) = ∇∇ · F (r) − ∇ × ∇ × F (r). (10)

In applying boundary conditions, the important functions are the following surface
vector harmonics

Pm
n (r̂) = r̂Ym

n (r̂) (11)

Bm
n (r̂) = 1√

n(n+ 1)
DYm

n (r̂) (12)

Cm
n (r̂) = 1√

n(n+ 1)
(DYm

n (r̂)) × r̂ (13)

where

D = r∇ = ϑ̂
∂

∂ϑ
+ ϕ̂

sin ϑ

∂

∂ϕ
. (14)

Observe that Pm
n are radial functions, while Bm

n and Cm
n are tangential functions.

The set {Pm
n , Bm

n , Cm
n

}n=∞,m=n

n=0,m=−n
is a local orthogonal system.

Performing the indicated differentiations we obtain

Am
1n(r) =

√
n+ 1

2n+ 3
rn+1

[√
n+ 1Pm

n −√
nBm

n

]

(15)

Am
2n(r) = √

n(n+ 1)rnCm
n (16)

Am
3n(r) = (n+ 1)

√
nrn−1

[√
nPm

n +√
n+ 1Bm

n

]

(17)
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where Am
2n are tangential for every n and m and Am

1n, Am
3n are both perpendicular to

Am
2nfor everyn andm. Any vector harmonic function inside a sphere has the expansion

F (r) =
∑

n,m

[

cm1nA
m
1n(r) + cm2nA

m
2n(r) + cm3nA

m
3n(r)

]

(18)

For Dirichlet data on the boundary r = a, the function F is then written as

F (ar̂) =
∑

n,m

[

pm
n Pm

n (r̂) + bm
n Bm

n (r̂) + cmn Cm
n (r̂)

]

(19)

wherepm
n and bm

n are linear combinations of cm1n and cm3n and cmn are proportional to cm2n.
The orthogonality of Pm

n , Bm
n , Cm

n allows for the analytic evaluation of the unknown
coefficients cm1n cm2n and cm3n. A similar approach solves the Neumann problem.

3 Vector Ellipsoidal Harmonics

The challenging question now is whether the above logic for the sphere can be
extended to the case of the ellipsoidal system. We scrutinize the procedure that led
to the definition of Vector Spherical Harmonics (VSH) for a general orthogonal
curvilinear system (ξ1, ξ2, ξ3) and a vector harmonic field

F (ξ ) = f 1(ξ )ξ̂ 1 + f 2(ξ )ξ̂ 2 + f 3(ξ )ξ̂ 3 (20)

and we see that separability for the vector Laplacian is possible only when the
following conditions among the metric coefficients hξ1, hξ2, hξ3 hold [9]

• hξ1 = 1

• ∂
∂ξ1

hξ2
hξ3

= 0

• hξ2hξ3 is proportional either to 1 or to ξ 2
1

It is easy to see that no one of these conditions holds for the ellipsoidal system. Hence,
we can not introduce Vector Ellipsoidal Harmonics (VEH) which are as good as the
VSH. But let us ignore this obstacle for the moment and proceed further, in order to
find what is the best we can do with the ellipsoidal system [3, 6]

The ellipsoidal coordinates(ρ, μ, ν) are connected to the Cartesian ones by the
relations

x1 = ρμν

h2h3
(21)

x2 =
√

ρ2 − h2
3

√

μ2 − h2
3

√

h2
3 − ν2

h1h3

(22)

x3 =
√

ρ2 − h2
2

√

h2
2 − μ2

√

h2
2 − ν2

h1h2
(23)
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with

0 � ν2 � h2
3 � μ2 � h2

2 � ρ2 < ∞ (24)

and

h2
1 = a2

2 − a2
3 ,h2

2 = a2
1 − a2

3 ,h2
3 = a2

1 − a2
2 (25)

are the semi-focal distances of the system. The ellipsoidal metric coefficients are

h2
ρ =

(

ρ2 − μ2
) (

ρ2 − ν2
)

(

ρ2 − h2
3

) (

ρ2 − h2
2

) (26)

h2
μ =

(

μ2 − ρ2
) (

μ2 − ν2
)

(

μ2 − h2
3

) (

μ2 − h2
2

) (27)

h2
ν =

(

ν2 − ρ2
) (

ν2 − μ2
)

(

ν2 − h2
3

) (

ν2 − h2
2

) (28)

from where it is obvious that none of the above conditions is satisfied, since all
coefficients depend on all variables. Let

Em
n (ρ,μ, ν) = Em

n (ρ)Em
n (μ)Em

n (ν) (29)

Fm
n (ρ,μ, ν) = Fm

n (ρ)Em
n (μ)Em

n (ν) (30)

be the interior and exterior solid ellipsoidal harmonics, respectively, and let

Sm
n (μ, ν) = Em

n (μ)Em
n (ν) (31)

be the corresponding surface ellipsoidal harmonics. As we mentioned earlier, the
importance of the theory of vector spherical harmonics is that the the surface vec-
tor spherical harmonics Pm

n , Bm
n , Cm

n are complete and orthogonal over the unit
sphere S2. That allows for the calculation of the coefficients of an eigenexpansion in
closed form.

For the spherical case, we choose one function in the normal direction r̂ and two
tangential functions in the directions of∇Y and r̂×∇Y . Following a similar approach
for the ellipsoid, we choose the normal direction ρ̂ and the two tangential directions
∇S and ρ̂ ×∇S. Hence, we define the vector surface ellipsoidal harmonics as

Rm
n (μ, ν) = d(ρ,μ, ν)ρ̂Sm

n (μ, ν) (32)

Dm
n (μ, ν) = f (ρ,μ, ν)∇Sm

n (μ, ν) (33)

T m
n (μ, ν) = g(ρ,μ, ν)ρ̂×∇Sm

n (μ, ν) (34)

and specify the functions d , f and g in such a way as to secure as much orthogonality
as possible. We know that complete orthogonality among these functions is not
possible. So, let us try for the best possible, i.e. let us try to maximize the set of
orthogonal relations among the functions (32)–(34).



170 G. Dassios

The orthogonality relations we need to have are
∮

Sρ

Rm
n ·Dm′

n′ lρdsρ = 0 (35)

∮

Sρ

Dm
n · T m′

n′ lρdsρ = 0 (36)

∮

Sρ

T m
n ·Rm′

n′ lρdsρ = 0 (37)

∮

Sρ

Rm
n ·Rm′

n′ lρdsρ = Rm
n δnn′δmm′ (38)

∮

Sρ

Dm
n ·Dm′

n′ lρdsρ = Dm
n δnn′δmm′ (39)

∮

Sρ

T m
n · T m′

n′ lρdsρ = T m
n δnn′δmm′ . (40)

A long, detailed and tedious investigation leads to the choice

d(ρ,μ, ν) = 1 (41)

f (ρ,μ, ν) = ρ

√

ρ2 − μ2
√

ρ2 − ν2

√

ρ2 − h2
3

√

ρ2 − h2
2

(42)

g(ρ,μ, ν) = ρ (43)

lρ(μ, ν) = 1
√

ρ2 − μ2
√

ρ2 − ν2
(44)

for which the orthogonality relations (35)–(39) are satisfied. Orthogonality (40) is
managed if we replace the weighting function lρ by the function

l̃ρ (μ, ν) =
√

ρ2 − μ2
√

ρ2 − ν2
(

ρ2 − h2
3

) (

ρ2 − h2
2

) . (45)

Hence, complete orthogonality for the ellipsoidal system demands the use of two
different inner products! For the relative proofs we refer to [1].

Note that, in contrast to the spherical system, where the surface harmonics
{Pm

n , Bm
n , Cm

n

}

given by (11)–(13), are independent of the radial variable r , the
ellipsoidal system {Rm

n , Dm
n , T m

n } is ρ−dependent. In other words, in the case of
the ellipsoid, the set of surface harmonics changes as we move from one ellipsoidal
surface to another.

The completeness of the vector ellipsoidal harmonics, over the surface of any
ellipsoid, is a consequence of the fact that every spherical harmonic is expandable
in ellipsoidal harmonics and vice versa.
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The expansion algorithm for a smooth vector field F defined on the ellipsoid
ρ = constant works as follows

F (μ, ν; ρ) = 1

hρ

∞
∑

n=0

2n+1
∑

m=1

Am
n (ρ)Rm

n (μ, ν; ρ)

+ 1

hρ

∞
∑

n=1

2n+1
∑

m=1

Bm
n (ρ)Dm

n (μ, ν; ρ)

+ 1

hρ

∞
∑

n=1

2n+1
∑

m=1

Cm
n (ρ)T m

n (μ, ν; ρ). (46)

Taking the inner product of (46) with Rm′
n′ (μ, ν; ρ), with respect to the inner product

defined by the weighting function lρ(μ, ν) we obtain the coefficient Am
n (ρ). Taking

the inner product of (46) with Dm′
n′ (μ, ν; ρ), with respect to the inner product defined

by the weighting function l̃ρ(μ, ν) we obtain the coefficient Bm
n (ρ). Then the function

F ′(μ, ν; ρ) = F (μ, ν; ρ)

− 1

hρ

∞
∑

n=0

2n+1
∑

m=1

Am
n (ρ)Rm

n (μ, ν; ρ)

− 1

hρ

∞
∑

n=1

2n+1
∑

m=1

Bm
n (ρ)Dm

n (μ, ν; ρ) (47)

becomes and has the expansion

F ′(μ, ν; ρ) = 1

hρ

∞
∑

n=1

2n+1
∑

m=1

Cm
n (ρ)T m

n (μ, ν; ρ). (48)

Finally, taking the second inner product with T m′
n′ (μ, ν; ρ) we obtain the coefficients

Cm
n (ρ). Hence, the above expansion can be completely calculated.

4 Conclusions

It is not possible to introduce vector ellipsoidal harmonics which behave as nice as
the vector spherical harmonics. Perhaps, this is the reason why the vector ellipsoidal
harmonics were lacking from the literature for 74 years after the vector spherical
harmonics were introduced. Here we define a complete set of vector ellipsoidal har-
monics, that depend on the ellipsoid on which they are living, and that are orthogonal
with respect to two analytic structures defined by two inner products having differ-
ent weighting functions. Using these two inner products it is easy to calculate the
coefficients of any vectorial eigenfunction expansion. Just as it is with the case of



172 G. Dassios

spherical geometry, one set of vector surface ellipsoidal harmonics is locally normal
to the particular ellipsoid and the other two sets are tangential to the surface of the
ellipsoid at this point. The crucial difference though is that, in general, the directions
of the position vector and the corresponding normal do not coincide, and this is the
source of many difficulties with the ellipsoidal system.

The introduction of Vector Spherical Harmonics in 1935, provided a significant
freedom in solving boundary value problems in spherical geometry. The present
introduction of vector ellipsoidal harmonics identifies an area of classical applied
mathematics that is open to many theoretical and real life problems. For example,
we know that every vector boundary value problem in ellipsoidal geometry that has
been solved up to now involves a tremendous amount of calculations, since it was
done the “wrong”(but the only possible) way, i.e. using scalar ellipsoidal harmonics.
Now, it can be solved the “right” way by using vector eigenfunctions. It is of interest
to see how much easier a vector problem can be solved using vector instead of
scalar ellipsoidal harmonics. Even more important it is to investigate which vector
problems that were impossible with the scalar eigenfunctions are tractable with the
corresponding vector eigenfunctions. We hope that these questions will find some
answers in the near future.
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Casualties Distribution in Human and Natural
Hazards

Carla M. A. Pinto, A. Mendes Lopes and J. A. Tenreiro Machado

Abstract Catastrophic events, such as wars and terrorist attacks, big tornadoes and
hurricanes, huge earthquakes, tsunamis, floods, and landslides, are always accom-
panied by a large number of casualties. The size distribution of these casualties have
separately been shown to follow approximate power law (PL) distributions. In this
paper, we analyze the number of victims of catastrophic phenomena, in particu-
lar, terrorism, and find double PL behavior. This means that the data set is better
approximated by two PLs instead of one. We have plotted the two PL parameters
corresponding to all terrorist events occurred in every year, from 1980 to 2010. We
observe an interesting pattern in the chart, where the lines, that connect each pair of
points defining the double PLs, are roughly aligned to each other.

Keywords Casualties distribution · Power law behavior · Double power law

1 Introduction

Catastrophic events are characterized by a huge severity, usually defined by a large
number of casualties. By catastrophic events, we mean wars, terrorist attacks, torna-
dos, earthquakes, floods, and landslides. The distribution of the number of casualties
in these events is proved to be a power law (PL) [4, 5, 6, 9, 12, 21, 23].
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PL distributions were first mentioned in 1896, when Pareto described the distri-
bution of income [19]. Pareto proved that the relative number of individuals with an
annual income larger than a certain value x was proportional to a power of x. This
has been known by Pareto distribution. After this work, Auerbach [1] demonstrated
an analogous result for city size distributions. Ranking cities from 1 to n, with the
city with bigger population ranked as 1, Auerbach demonstrated that the product of
cities populations by their ranks was approximately constant, for a given territory.
Estoup [10] and Zipf [25, 26] applied PLs to words frequencies in texts. They found
that there are words that are used more often than others and that the distribution of
words frequencies follows a PL. Zipf [26] described the distribution of city sizes by
a Pareto distribution.

Often, to show that a certain data set follows a PL distribution, researchers depict
a plot of the size and the frequency of the event studied. In logarithmic scales, they
obtain a straight line with negative slope. In the case of the Pareto distribution, the
behavior is exactly linear, and is given by

ln (P [X ≥ x]) = ln C − ln α̃ − α̃ ln x (1)

where X is a random variable following a PL distribution, α̃ > 0, C̃ = C
α̃

> 0. In
these distributions, the tail falls asymptotically according to the value of α̃, translating
in heavy tails, comparatively to other distributions. Zipf’s law is a special case of
the Pareto’s law, with coefficient α̃ = 1. Relevant reviews on PL distributions can
be found in [16, 20, 24].

This paper is organized as follows. In Sect. 2, we summarize results found in
the literature concerning application of PL behavior to the number of casualties in
natural or human-made disasters. In Sect. 3, we apply double PLs to data from real
disasters. Finally, in Sect. 4, we enumerate the main results and conclusions of this
paper.

2 Catastrophic Occurrences

Patterns seen in wars, terrorist attacks, tornadoes, earthquakes, landslides, floods,
and other severe occurrences, have been at close attention by various researchers
[4–6, 9, 12–15, 21–23]. Many attentive explanations have arisen in the literature.
Nevertheless, a complete understanding of these patterns is a complicated task. Im-
portant and complex political, geographical, historical, and, even cultural, factors
oppose to a better understanding. Predicting the number of casualties in natural
or human-made disasters is extremely important in developing pre-disaster strate-
gies. Aspects like rationalization of medical supplies and food, gathering emergency
teams, organize shelter spaces, amongst others, have to be dealt with, in order to
minimize the damage.

A PL behavior is indicative of a particular property of a system, it indicates
that the size of an event is inversely proportional to its frequency. In this sense,
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large casualties are associated with low frequency phenomena, and more frequent
events are less harmful in terms of preserving human lives [21, 22]. Examples of
phenomena with low probability and huge casualties, are the two world wars (WW),
high magnitude earthquakes, strong tornadoes, huge tsunamis, amongst others.

In 1948, Richardson [21], analyzed domestic and international cases of violence,
in the period from 1820 to 1945. He distributed the cases, according to casualties
measured in powers of ten, into five categories, being the two WWs in the highest
category. In a later work [22], the same author showed that if the frequency of
an occurrence decreased by a factor close to three, then the number of casualties
increased by a power of ten.

Guzzetti [13] considers landslide events in specific periods in different countries,
such as Italy, Canada, Alps, Hong Kong, Japan, and China. He shows that the plot
of the cumulative distribution function of the number of landslide events vs the
number of casualties is well approximated by a straight line. This result suggests a
PL distribution of the data.

Cederman [6] followed Richardson’s work [21, 22]. He used data from the Cor-
relates of War (COW) Project [11], focusing on interstate wars. He computed the
cumulative relative frequency of war size and showed that it obeyed a PL. The author
proposed a self-organized critical dynamical system, that replicated the PL behavior
seen in real data. Its model allowed conflict to spread and diffuse, potentially over
long periods of time, due to the quasi-parallel execution.

In 2005, Jonkman [15] focused on the number of human deaths caused by three
types of floods (river floods, flash floods and drainage issues), between January 1975
and June 2002. Highest average mortality was computed for flash floods. The author
plotted of the global frequency of events with N or more deaths vs N . Nevertheless,
the author did not find a PL behavior for flood data. Becerra et al. [2] use the same
data set as Jonkman [15], but consider all disasters combined, both globally and
disaggregated by continent. They obtained straight-line log-log plots for all disasters
combined. The slopes of the casualties PL distributions were smaller than those for
modern wars and terrorism. The explanation for this remained an open question.
Another unsolved issue was the existence of PL behavior in combined disasters and
not in individual disasters, such as floods. Here it is worth mentioning that casualties
in earthquakes verified a PL distribution [2, 12, 15].

Johnson et al. [14] suggested a microscopic theory to explain similarity in patterns
of violence, such as war and global terrorism. The similarity was observed regardless
of underlying ideologies, motivations and the terrain in which events occurred. The
authors introduced a model where the insurgent force behaved as a self-organizing
system, which evolved dynamically through the continual coalescence and fragmen-
tation of its constituent groups. They analyzed casualties’ patterns arising within a
given war, unlike previous studies that focused on the total casualty figure for one
particular war [6, 18, 21, 22]. A PL behavior fitted well the data not only from
Iraq, Colombia and non-G7 terrorism, but also with data obtained from the war in
Afghanistan. The PL parameter for Iraq, Colombia and Afghanistan, was (close to)
α̃ = 2.5. This value of the coefficient equalized the coefficient value characterizing
non-G7 terrorism. In the literature, the PL parameter value was α̃ = 2.51 for non-G7
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countries [7] and α̃ = 1.713 for G7 countries. This result suggested that PL patterns
would emerge within any modern asymmetric war, fought by loosely-organized
insurgent groups.

In 2006, Bogen and Jones [3] treated the severity of terrorist attacks, in terms
of deaths and injured. They applied a PL distribution to victim/event rates and used
the PL to predict mortality due to terrorism, through 2080. Authors claimed that
these PL models could be used to improve strategies “to assess, prevent and manage
terror-related risks and consequences”.

Clauset et al. [8] studied the frequency and the number of casualties (deaths and
injuries) of terrorist attacks, since 1968. They observed a scale-invariance behavior,
with the frequency being an inverse power of the casualties. This behavior was
independent of the type of weapon, economic development, and distinct time scales.
The authors presented a new model to fit the frequency of severe terrorist attacks,
since previous models in the literature failed to produce the heavy tail in the PL
distribution. Their model assumed that the severity of an occurrence was a function
of the execution plan, and that selection tools were better suited to model competition
between states and non-state actors. Finally, researchers claimed that periodicity was
a common feature in global terrorism, with period close to roughly 13 years.

Bohorquez et al. [4] studied the quantitative relation between human insurgency,
global terrorism and ecology. They introduced a new model to explain the size
distribution of casualties or the timing of within-conflict events. They considered
insurgent populations as self-organized groups that dynamically evolved through
decision-making processes. The main assumptions of the model were (i) being con-
sistent with work on human group dynamics in everyday environments, (ii) a new
perception of modern insurgencies, as fragmented, transient and evolving, (iii) the
decision-making process about when to attack was based on competition for media
attention. Authors applied a PL distribution to Iraq and Colombia wars, with param-
eter value close to α̃ = 2.5. A coefficient value of α̃ = 2.5 was in concordance with
the coefficient value of α̃ = 2.48± 0.07 obtained by Clauset et al. [8] on global ter-
rorism. A PL fit to Spanish and American Civil Wars revealed a PL parameter value
smaller (around α̃ = 1.7). Authors claimed that their model suggested a remarkable
link between violent and non-violent human actions, due to its similarity to financial
market models.

3 PL Behavior in Real Data

A double PL behavior is observed in various natural and man-made systems. In
such cases, two different PLs, characterized by distinct PL parameters, fit to the real
data. An example is given in Fig. 1, which represents the complementary cumulative
distribution of the severity of worldwide terrorist attacks for the year 2005. The
adopted measure to quantify the severity of an attack is the total number of fatalities.
The depicted graph corresponds to a rank/frequency log-log plot. To construct the
graph, we first sort the data (i.e., the terrorist attacks) in decreasing order according
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Fig. 1 Rank/frequency
log-log plot corresponding to
the distribution of the severity
of terrorist attacks over the
year 2005 (max size = 115;
max rank = 2053)

to their severity, and number them, consecutively, starting from one [17]. Then a
normalization of the values is carried out, meaning that, the number of fatalities
(x-axis) is divided by the corresponding highest value, and the rank (y-axis) is
divided by the rank of the smallest event. Finally, a PL is adjusted to the data using
a least squares algorithm. All the log-log plots presented in this paper were made by
following a similar procedure. The data used in this study was collected at the Global
Terrorism Database (GTD) website (http://www.start.umd.edu/gtd). The GDT is an
open-source database that includes information about more than 98,000 worldwide
terrorist attacks, from 1970 through 2010 [18].

As can be seen in Fig. 1, a double PL distribution with parameters (C̃1, α̃1) =
(0.0143, 0.7918) and (C̃2, α̃2) = (0.0011, 1.6858) fits well the data. The change in
the behavior occurs at the relative value of x = 0.0625, approximately. Analyzing
the period from 1980 up to 2010 (except 1993 because there is no data available),
a similar behavior is found, meaning that in every year a double PL is observed. In
Figs. 2, 3 the time evolution of the parameters (C̃i , α̃i), i = 1, 2 of the two PLs is
shown. Regarding the parameters C̃1 and C̃2, it can be seen that they vary in a similar
way, although C̃2 is more random than C̃1 and has values lower than it. With respect
to α̃1 and α̃2, we have a similar evolution but, in this case, parameter α̃2 is always
greater than α̃1. Generally speaking, a greater value of the exponent of the PL means
that the events are more similar between each other than they are for lower values of
α̃. Hence, we can conclude that severe terrorist attacks are more evenly distributed,
because they are characterized by a PL that has a higher exponent.

To complement the analysis with respect to the date of the occurrences, the pa-
rameters (C̃i , α̃i), i = 1, 2 of the PLs, corresponding to all events occurred in each
year, were plotted (Fig. 4). It can be seen an interesting pattern emerging from the
graph. The lines that connect each pair of points defining the double PLs are roughly
aligned to each other. This graphical pattern reflects intrinsic properties of the recur-
sive relationship behind each phenomenon. A comprehensive analysis for each type
of application needs still further work to be clearly understood.
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Fig. 2 Time evolution of parameters C̃1 and C̃2 over the period 1980–2010 (except 1993 because
there is no data available)

Fig. 3 Time evolution of parameters α̃1 and α̃2 over the period 1980–2010 (except 1993 because
there is no data available)

4 Conclusion

In this paper we reviewed interesting and important results on PL distributions and
their applications to the modeling of the number of victims in catastrophic events. We
found double PL behavior in real data of catastrophic occurrences and, in particular, in
terrorism. We have plotted the two PLs parameters, (C̃i , α̃i), i = 1, 2, corresponding
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Fig. 4 Locus of the parameters (C̃i , α̃i ), i = 1, 2, that characterize the distributions of terrorist
attacks over the period 1980–2010 (except 1993 because there is no data available)

to all events occurred in each year, from 1980 to 2010. We observe an interesting
pattern in the chart, where the lines, that connect each pair of points defining the
double PLs that characterize every year, are roughly aligned to each other. More
work is need in order to interpret these results.
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Optimization of Quadruped Robot Locomotion
Gaits Through a Genetic Algorithm

Manuel F. Silva

Abstract During the last years research and development on legged robots has
grown steadily. Legged systems present major advantages when compared with
“traditional” vehicles, allowing locomotion in terrain inaccessible to vehicles with
wheels and tracks. However, its energy consumption still lag being these vehicles,
existing several aspects that need to be improved and optimized. One of them re-
gards the parameters values that these machines should adopt to minimize the energy
consumption. Due to the large number of parameters involved in this optimization
process, one way to achieve meaningful results is using evolutionary strategies. Ge-
netic Algorithms are a way to “imitate nature” replicating the process that nature
designed for the generation and evolution of species. The objective of this paper is to
present a genetic algorithm, running over a simulation application of legged robots,
which allows the optimization of several parameters of a quadruped robot model, for
distinct locomotion gaits.

Keywords Legged robots · Locomotion · Gait · Optimization · Genetic algorithms

1 Introduction

Several walking robots have been developed up to date [1]. Compared with tradi-
tional vehicles with wheels and tracks, their major advantage is the fact of allowing
locomotion in terrain inaccessible to other type of vehicles, because they do not need
a continuous support surface.

Since legged locomotion robots are inspired in animals observed in nature, a
frequent approach to their design is to make a mechatronic mimic of the animal that
is intended to replicate, either in terms of its physical dimensions, or in terms of
characteristics such as the gait and the actuation of the limbs. Several examples of
robots that have been developed based on this approximation are discussed by Silva
and Machado [1].
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However, in the present state of development, there are several aspects that need
to be improved and optimized in these machines. With this idea in mind, different
optimization strategies have been proposed and applied to these systems, either
during its design and construction phases, or during its operation [2].

One possibility makes use of genetic algorithms (GAs) as the engine to generate
robot structures. GAs are an alternative way of imitating nature. Animals characteris-
tics are not directly copied but, instead, is replicated the process that nature conceives
for its generation and evolution.

In some cases it is performed a GA modular approach to the robot design [3–
5]. There are also works on which evolutionary strategies are used to optimize the
structure of a specific robot [6, 7]. Other authors proposed the use of GAs for the
simultaneous generation of the mechanical structure and the robot controller, for
distinct types of robots [8–12].

Bearing these ideas in mind, the objective of this paper is to present a GA, running
over a simulation application of legged robots, which allows the optimization of
a quadruped robot model parameters, for distinct locomotion gaits often used by
animals moving at different velocities.

The remainder of this paper is organized as follows. Section 2 presents the robot
model and its control architecture. Sections 3 and 4 present the implemented GA, and
some simulation results, respectively. Finally, Sect. 5 outlines the main conclusions
of this study.

2 Robot Model and Control Architecture

2.1 Kinematics and Trajectory Planning

We consider the model of a legged robot (Fig. 1, left) with n= 4 legs, equally dis-
tributed along both sides of the robot body, having each one two rotational joints
(i.e., j = {1, 2} ≡ {hip, knee}) [13].

Motion is described by means of a world coordinate system. The kinematic model
comprises: the cycle time T , the duty factor β, the transference time tT = (1−β)T ,
the support time tS = βT, the step length LS , the stroke pitch SP , the body height
HB , the maximum foot clearance FC , the ith leg lengths Li1 and Li2 (being the total
length of each robot leg equal to 1 m) and the foot trajectory offset Oi (i = 1, . . . ,
n). Moreover, a periodic trajectory for each foot is considered, with body velocity
VF = LS/T .

Gaits describe sequences of leg movements, alternating between transfer and sup-
port phases. In this work are considered three walking gaits (Walk, Chelonian Walk
and Amble), two symmetrical running gaits (Trot and Pace) and five asymmetrical
running gaits (Canter, Transverse Gallop, Rotary Gallop, Half-Bound and Bound).
These are the gaits usually adopted by animals moving at low, moderate and high
speed, respectively, being their main characteristics presented in Table 1.
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Table 1 Quadruped gait
parameters

Gait φ1 φ2 φ3 φ4 β

Walk 0 0.5 0.75 0.25 0.65
Chelonian Walk 0 0.5 0.5 0 0.8
Amble 0 0.5 0.75 0.25 0.45
Trot 0 0.5 0.5 0 0.4
Pace 0 0.5 0 0.5 0.4
Canter 0 0.3 0.7 0 0.4
Transverse gallop 0 0.2 0.6 0.8 0.3
Rotary gallop 0 0.1 0.6 0.5 0.3
Half-bound 0.7 0.6 0 0 0.2
Bound 0 0 0.5 0.5 0.2

Given the particular gait and the duty factor β, it is possible to calculate, for leg
i, the corresponding phase φi , the time instant where each leg leaves and returns
to contact with the ground and the Cartesian trajectories of the tip of the feet (that
must be completed during tT ) [14]. Based on this data, the trajectory generator is
responsible for producing a motion that synchronises and coordinates the legs.

The robot body, and by consequence the legs hips, is assumed to have a de-
sired horizontal movement with a constant forward speed VF , being the Cartesian
coordinates of the hip of the legs, for leg i, given by pHd(t) = [xiHd (t), yiHd (t)]T [13].

Regarding the feet trajectories, for each cycle, the desired trajectory of the foot
of the swing leg is computed through a cycloid function and described by (for leg i)
pFd(t) = [xiFd (t), yiFd (t)]T [13].

The algorithm for the forward motion planning accepts, as inputs, the desired
Cartesian trajectories of the leg hips pHd(t) and feet pFd(t) and, by means of
an inverse kinematics algorithm ψ−1, generates as outputs the joint trajectories
Θd(t) = [Θi1d (t), Θi2d (t)]T [13], that constitute the reference for the robot control
system. In this study it is adopted the mammal leg configuration, namely selecting
in ψ−1 the solution corresponding to a forward knee.

In order to avoid the impact and friction effects, at the planning phase null veloc-
ities of the feet are considered in the instants of landing and taking off, assuring also
the velocity continuity.

2.2 Robot Dynamic Model

2.2.1 Inverse Dynamics Computation

The model for the robot inverse dynamics is formulated as [13]:

Γ = H (Θ) Θ̈+ c
(

Θ, Θ̇
)+ g (Θ)− FRH − JT(Θ)FRF (1)

where Γ is the vector of forces/torques, Θ is the vector of position coordinates, H(Θ)
is the inertia matrix and c

(

Θ, Θ̇
)

and g(Θ) are the vectors of centrifugal/Coriolis
and gravitational forces/torques, respectively. The matrix JT(Θ) is the transpose of
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the robot Jacobian matrix, FRH is the vector of the body inter-segment forces and
FRF is the vector of the reaction forces that the ground exerts on the robot feet, being
null during the foot transfer phase.

Moreover, the joint actuators are not considered ideal, exhibiting a saturation,
being the maximum torque that each actuator can supply τ ijMax .

2.2.2 Robot Body Model

The dynamic model for the hexapod body and foot-ground interaction (Fig. 1) consid-
ers a compliant robot body, divided in n identical segments (each with mass Mbn

−1,
while making the total mass of the robot equal to 100 kg) and a linear spring-damper
system is adopted to implement the intra-body [13]. The parameters of this spring-
damper system, KηH and BηH (η = {x, y} in the {horizontal, vertical} directions,
respectively), are defined so that the body behavior is similar to the one expected to
occur on an animal [13].

2.2.3 Foot-Ground Interaction Model

The contact of the ith robot foot with the ground is modelled through a non-linear
system (Fig. 1) with linear stiffness KηF and non-linear damping BηF (η = {x, y} in
the {horizontal, vertical} directions, respectively) [15]. The values for the parameters
KηF and BηF are based on the studies of soil mechanics [15].

2.3 Control Architecture

The general control architecture of the multi-legged locomotion system is depicted
in Fig. 1 (right), being Gc1(s) a PD controller and Gc2 a simple P controller [15].
The trajectory planning is held in the Cartesian space, but the control is performed
in the joint space, which requires the integration of the inverse kinematic model in
the forward path. The control algorithm considers an external position and velocity
feedback and an internal feedback loop with information of foot-ground interaction
force.

3 Developed Genetic Algorithm

GAs are adaptive methods which may be used to solve search and optimization
problems [16]. By mimicking the principles of natural selection, GAs are able to
evolve solutions towards an optimal one. Although the optimal is not guaranteed,
the GA is a stochastic search procedure that, usually, generates good results. The
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GA maintains a population of candidate solutions (the individuals). Individuals are
evaluated and fitness values are assigned based on their relative performance. They
are then given a chance to reproduce, i.e., replicating several of their characteristics.
The offspring produced are modified by means of mutation and/or recombination
operators before they are evaluated and reinserted in the population. This is repeated
until some condition is satisfied.

3.1 Structure of the Used Chromosome

The chromosome used in the developed GA presents 34 genes (i.e., 34 robot param-
eters). The genes are organized as presented in Table 2: the first gene (Ls) contains
information regarding the step length and the last gene (Kd22) contains the deriva-
tive gain of joint 2 of the robot rear legs. These values are coded directly into real
numbers (value encoding).

3.2 Measure for the Fitness Evaluation

For the fitness function is used the mean absolute density of energy per travelled
distance Eav [17]. This index is computed assuming that energy regeneration is
not available by actuators doing negative work (by taking the absolute value of the
power). At a given joint j (each leg has m= 2 joints) and leg i (n= 4 legs since a
quadruped is being considered), the mechanical power is the product of the motor
torque and angular velocity. The global index Eav is obtained by averaging the
mechanical absolute energy delivered over the travelled distance d:

Eav = 1

d

n
∑

i=1

m
∑

j=1

∫ T

0

∣
∣τij (t) Θ̇ij (t)

∣
∣dt

[

Jm−1
]

(2)

The performance optimization is achieved through the minimization of the index
Eav.

3.3 Base Structure of the Developed GA

The outline of the specific GA is as follows:

1. Start: Generate a random population of v = 50 chromosomes. The values for
the genes that constitute the chromosome are uniformly distributed in the ranges
mentioned in Table 2.

2. Simulation: Simulate the robot locomotion for all chromosomes in the popula-
tion.

3. Fitness: Evaluate the fitness function for each chromosome by computing Eav.
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Table 2 Interval of variation
of the 34 genes used in the
chromosome

Minimum Value Variable Maximum Value

0 < Ls ≤ 10 m
0 < HB ≤ 1 m
0 < FC ≤ 1 m
0 < L11 ≤ 1 m
0 < L12 ≤ 1 m
0 < L21 ≤ 1 m
0 < L22 ≤ 1 m
0 < O1 ≤ 10 m
0 < O2 ≤ 10 m
0 < Mb ≤ 100 kg
0 < M11 ≤ 10 kg
0 < M12 ≤ 10 kg
0 < M21 ≤ 10 kg
0 < M22 ≤ 10 kg
0 < Kxh ≤ 10000 Nm
0 < Kyh ≤ 10000 Nm
0 < Bxh ≤ 10000 Nms−1

0 < Byh ≤ 10000 Nms−1

−400 < τ11 min ≤ 0 Nm
0 < τ11Max ≤ 400 Nm

−400 < τ12 min ≤ 0 Nm
0 < τ12Max ≤ 400 Nm

−400 < τ21 min ≤ 0 Nm
0 < τ21Max ≤ 400 Nm

−400 < τ22 min ≤ 0 Nm
0 < τ22Max ≤ 400 Nm
0 < Kp11 ≤ 10000
0 < Kd11 ≤ 1000
0 < Kp12 ≤ 10000
0 < Kd12 ≤ 1000
0 < Kp21 ≤ 10000
0 < Kd21 ≤ 1000
0 < Kp22 ≤ 10000
0 < Kd22 ≤ 1000

4. New population: Create a new population by repeating the following steps:
• Selection—Select the four best parent chromosomes according to their fitness.

These solutions are copied without changes to the new population (elitism).
• Crossover—Select 90 % of the individuals to be replaced by the crossover of

the parents: two random parents are chosen and an arithmetic mean operation
is performed to produce one new offspring.

• Mutation—Select 1 % of the individuals to be replaced by mutation of the
parents: one random parent is chosen and a small number is added to selected
values, to make a new offspring.

• Spontaneous generation—The remaining individuals are replaced by new
randomly generated ones (such as in step 1).

5. Loop: If this iteration is the 500th or the GA has converged (the value of the
fitness function for the chromosome with the best fitness function is equal to the
one that is in the position corresponding to 90 % of the population), stop the
algorithm, else, go to step 2.
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Table 3 Optimum values for
the hexapod parameters while
walking with the Walk Gait,
being VF = 1 ms−1,
Eav = 500.002 J/m and the
travelled distance d = 1.281 m

Parameter Optimum Value

Ls = 1.056 m
HB = 0.724 m
FC = 0.076 m
L11 = 0.484 m
L12 = 0.516 m
L21 = 0.425 m
L22 = 0.575 m
O1 = − 0.383 m
O2 = − 0.035 m
Mb = 83.134 kg
M11 = 4.976 kg
M12 = 2.923 kg
M21 = 6.485 kg
M22 = 2.482 kg
Kxh = 79991.055 Nm
Kyh = 9084.575 Nm
Bxh = 991.235 Nms−1

Byh = 92.299 Nms−1

τ11min = − 296.987 Nm
τ11max = 105.782 Nm
τ12min = − 136.718 Nm
τ12max = 145.311 Nm
τ21min = − 287.426 Nm
τ21max = 115.196 Nm
τ22min = − 283.489 Nm
τ22max = 342.611 Nm
Kp11 = 3012.207
Kd11 = 789.264
Kp12 = 4395.400
Kd12 = 165.975
Kp21 = 3202.196
Kd21 = 543.265
Kp22 = 5429.295
Kd22 = 156.955

4 Simulation Results

The main objective of this study was to find the optimal values for the robot model
and controller parameters, considering that the robot was moving with VF = 1 ms−1,
while adopting the gaits Walk (1), Chelonian Walk (2), Amble (3), Trot (4), Pace
(5), Canter (6), Transverse Gallop (7), Rotary Gallop (8), Half-Bound (9) and Bound
(10).

This study started by determining the optimal values for the robot model and
controller parameters, considering a robot moving at VF = 1 ms−1, with the Walk
Gait. Running the GA, with the parameters described in Sect. 3.3, the algorithm
converged to the results given in Table 3.

Analyzing the results presented in Table 3 it should be referred that the length of
the upper segment of the leg should be smaller than the corresponding length of the
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Fig. 2 Optimum values of the Step Length LS (left) and Body Height HB (right), for the gaits
under study
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Fig. 3 Optimum values of the front legs links lengths L11 and L12 (left) and of the rear legs links
lengths L21 and L22 (right), for the gaits under study

lower segment. In the same way, the upper segment of the leg should be heavier than
the lower segment. Finally, the trajectory of the legs must be displaced to the rear of
the moving direction, as indicated by the values of the parameters Oi .

Following, the GA was executed with the same parameters, for the distinct gaits
under analysis. The algorithm converged to the results that are described in the sequel.
There was one exception: for the Chelonian Walk gait the GA did not converge,
although several attempts (distinct runs of the GA) were made.

Figure 2 depicts two charts with the optimum values of the Step Length (LS) (left)
and Body Height (HB) (right), for the distinct gaits under consideration, determined
by the GA. It is seen that the robot should move with a value of LS ≈ 1.1 m, except
for the Canter and Bound gaits, for which case it should be LS ≈ 1.3 m. Concerning
the value for the Body Height, analyzing the chart presented in the left part of this
figure, one can conclude that the robot should adopt a value of HB ≈ 0.8 m.

Figure 3 depicts two charts with the optimum values of the front legs links lengths
L11 and L12 (left) and of the rear legs links lengths L21 and L22 (right), for the distinct
gaits under study, determined by the GA. Analyzing the results presented in these
figures it should be referred that the length of the upper segment of the leg should be
smaller than the corresponding length of the lower segment. The relation between
the lengths of both segments is Li1/Li2 ≈ 0.3/0.7.

There are only two exceptions to these general results; for the case of the front legs,
when the robots adopts theAmble gait both segments should be of similar lengths and
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Fig. 5 Optimum values of the front legs link masses M11 and M12 (left) and of the rear legs link
masses M21 and M22 (right), for the gaits under study

when the quadruped adopts the Bound gait the results obtained by the GA indicate
that the lower segment of the leg should be smaller than the corresponding upper
segment.

In Fig. 4 are presented two charts with the optimum values of the foot trajectory
offset O1 and O2 (left) and of the Body Mass (MB) (right), determined by the GA, for
the gaits under study. Concerning the foot trajectory offset, the results presented in
this chart indicate that the robot should move with the feet trajectory displaced to the
rear of the hip trajectory (in the moving direction), as indicated by the values of the
parameters Oi . Regarding the robot mass distribution, the body should concentrate
most of its value (it is assumed that the total mass of the robot is equal to 100.0 kg)
being MB > 70 kg for all gaits under study, except for the Half-Bound.

Finally, Fig. 5 shows two charts with the optimum values of the front legs link
masses M11 and M12 (left) and of the rear legs link masses M21 and M22 (right),
determined by the GA, for the gaits under study. The left chart indicates that the lower
segment of the front legs should be heavier than the upper segment (M12 > M11),
except for the Half-Bound gait.

In a similar manner, the right chart indicates that the lower segment of the rear legs
should be heavier than the upper segment (M22 > M21), except for the Transverse
Gallop gait. These results seem to agree with the ones presented in Fig. 3, since
longer legs links segments are heavier.
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5 Conclusions

This paper presented a GA developed for the optimization of quadruped robot pa-
rameters. This GA runs over a simulation application of legged robots (developed in
the C programming language), which allows the optimization of several parameters
of the robot model and of its gaits for different locomotion speeds.

Based on this GA, were determined the optimum locomotion parameters for the
quadruped robot and its controller, while the robot is moving at VF = 1ms−1 with
distinct gaits.

As ideas for future work, the author plans to develop several simulation experi-
ments to find the parameters that optimize the robot locomotion, from the viewpoint
of the index Eav, for different values of VF in the range 0.1 ≤ VF ≤ 10.0 ms−1.

Acknowledgments To Sérgio Carvalho, for implementing the basic structure of the GA used in
this work.
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Analysis of an Incomplete Information System
Using the Rough Set Theory

C. I. Faustino Agreira, M. M. Travassos Valdez, C. M. Machado Ferreira
and F. P. Maciel Barbosa

Abstract In this paper it is applied a Rough Set approach that takes into account an
incomplete information system to study the steady-state security of an electric power
system. The Rough SetTheory has been conceived as a tool to conceptualize, organize
and analyze various types of data, in particular, to deal with inexact, uncertain or
vague knowledge. The knowledge acquisition process is a complex task, since the
experts have difficulty to explain how to solve a specified problem. So, an incomplete
set of relevant information may arise. The study presents a systematic approach to
transform examples in a reduced set of rules. These rules can be used successfully to
avoid security problems and provides a deeper insight into the influence of parameters
on the steady-state system performance.

Keywords Incomplete information systems · Rough set theory

1 Introduction

Recently, the Rough Sets theory (RST) has been used successfully to handle effi-
ciently problems where large amounts of data are produced [1]. RST constitutes a
framework for inducing minimal decision rules. These rules can be used in turn to
perform a classification task. Important concepts include the elimination of redun-
dant criteria to give more compact rules. The strength of a rule can be quantified
using rough membership. The main goal of the rough set analysis is to search large
databases for meaningful decision rules and, finally, acquire new knowledge. This
approach is based in four main topics: indiscernibility, approximation, reducts and
decision rules [1]. A reduct is a minimal set of attributes, from the whole attributes
set, that preserves the partitioning of the finite set of objects and, therefore, the
original classes. It means that the redundant attributes are eliminated. When the
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reducts are evaluated, the task of creating definite rules for the value of the deci-
sion attribute of the information system is practically performed. Decision rules are
generated combining the attributes of the reducts with the values. Decision rules ex-
tracte knowledge, that can be used when classifying new objects not in the original
information system.

The RST has been conceived as a tool to conceptualize, organize and analyze var-
ious types of data, in particular, to deal with inexact, uncertain or vague knowledge.
In the Rough Sets analysis the concept of an information system is used to construct
the approximation space. It enables representation of data in a useful form of a table.
The information system is, in fact, a finite data table where columns are labelled
by attributes and rows are labelled by objects [2]. Attributes are generally classified
into conditions and decisions. Usually, a number of condition attributes and a single
decision attribute are presented. In an incomplete information system the attribute
values for objects may be unknown (missing or null) [3].

The knowledge acquisition process is a complex task, since the experts have dif-
ficulty to explain how to solve a specified problem. So, an incomplete set of relevant
information may arise. This study presents a systematic approach to transform ex-
amples in a reduced set of rules [4]. These rules can be used successfully to avoid
security problems and provides a deeper insight into the influence of parameters on
the system performance.

This paper is organised as follows. Section 1 presents an introduction to the
problem. Section 2 is devoted to the Rough Set Theory considering an incomplete
information system. In Sect. 3 is presented the test power network that was analysed
and shows the results obtained using the proposed approach [5]. Finally, in Sect. 4,
some conclusions that provide a valuable contribution to the understanding the RST
applied to the security analysis of the electric power system are presented.

2 Rough Set Theory

Rough Set Theory can be considered as an extension of the Classical Set Theory,
for use when representing incomplete knowledge. Rough sets can be considered sets
with fuzzy boundaries—sets that cannot be precisely characterized using the avail-
able set of attributes. Many different problems can be addressed by RST. During
the last few years this formalism has been approached as a tool used in connection
with many different areas of research. It has also been used for, among many oth-
ers, knowledge representation, data mining, dealing with imperfect data, reducing
knowledge representation and for analysing attribute dependencies.
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Fig. 1 Definition
of R-approximation sets
and R-regions NEGR (X)

BNR (X)

POSR (X)

RX

RX

2.1 Information System

Information System (IS) can be defined as a K= (U, R, V, ρ), where U is a finite
set of objects, R is a finite set of attributes, V is the domain of each attribute of R,
and ρ is a total function that defines the following application: ρ. U × R→V, i.e, the
examples. Va is called the value set of a.

2.2 Approximations Sets

The Rough Set Theory (RST) is a new mathematical tool presented to dispose in-
complete and uncertainty problem [1]. It works with lower and upper approximation
of a set as it is shown in Fig. 1. The discernibility relation is used for two basic opera-
tions in rough set theory i.e. upper RX and lower RX approximations, which defines
crisp and vague manner in the sets. If any concept of the universe can be formed as
a union of some elementary sets, it is referred as crisp (precise). On the contrary,
if the concept cannot be presented in such a way, it is referred as vague (imprecise,
rough). RX is defined as the collection of cases whose equivalence classes are fully
contained in the set of cases to approximate. RX is defined as the collection of cases
whose equivalence classes are at least partially contained in (i.e. overlap with) the
set of cases to approximate [6].

There are five regions of interesting: RX and RX, and POSR(X), BNR(X) and
NEGR(X). These sets are defined as shown below.

Let a set X ⊆ U , R be an equivalence relation and knowledge. Two subsets base
can be associated:

i) R—Lower: RX = U{Y ∈ U/R : Y ⊆ X}
ii) R—Upper: RX = U{Y ∈ U/R : Y ∩X 
= ϕ}
It means that the elements belonging to RX set can be with certainty classified
as elements of X; while the elements belong to RX set can be possibly classified
as elements of X. In the same way, POSR(X), BNR(X) and NEGR(X) are defined
below [1].
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iii) POSR(X) = RX ⇒ certainly member of X
iv) NEGR(X) = U − RX ⇒ certainly non member of X
v) BNR(X) = RX − RX ⇒ possibly member of X

Before the presentation of the algorithm, it is necessary to define two major concepts
in Rough Set Theory, reduct and core. These concepts are important in the knowledge
base reduction. Let R be a family of equivalence relations. The reduct of R, RED(R),
is defined as a reduced set of relations that conserves the same inductive classification
of set R. The core of R, CORE(R), is the set of relations that appears in all reduct of
R, i.e., the set of all indispensable relations to characterize the relation R. As the core
is the intersection of all reducts, it is included in every reduct, i.e., each element of
the core belongs to some reduct. Therefore, in a sense, the core is the most important
subset of attributes, since none of its elements can be removed without affecting the
classification strength of attributes.

The approximation of classification is a simple extension of the definition of
approximation of sets. Namely if F = {X1, X2,. . . , XN} is a family of non empty
sets, then RF = {RX1, RX2,. . . , RXn} and R̄. F= {R̄. X1, R̄. X2,. . . , R̄. Xn}, are called the
RF—lower and the R̄. F—upper approximation of the family F [3].

Two measures can be defined to describe inexactness of approximate classifica-
tion. The first one is the extension of the measure defined to describe accuracy of
approximation sets.

The accuracy of approximation of F by R is defined as [1]:

αR(F ) =
∑

cardRXi
∑

cardRXi

(1)

where card(X) denotes the cardinality of X =φ.
The accuracy of approximation can be used to measure the quality of approxima-

tion of decision classes on the universe U. It is possible to use another measure of
accuracy defined by 1− αR(X). Some other measures of approximation accuracy are
also used based on entropy or some more specific properties of boundary regions.
The choice of a relevant accuracy of approximation depends on a particular data set.
The accuracy of approximation of X can be tuned by R.

The second measure, called the quality of approximation of F by R, is the
following [1]:

γR(F ) =
∑

cardRXi

card U
(2)

The accuracy of classification expresses the percentage of possible correct decision,
when classifying objects, employing the knowledge R. The quality of classification
expresses the percentage of objects that can be correctly classified as belonging
to classe F employing knowledge R. By selecting a proper balance between the
accuracy of classification and the description size it is expected to define the
classifier with the high quality of classification also on unseen objects.

One of the most important applications of RST is the generation of decision rules
for a given information system for the prediction of classes for new objects which are
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Fig. 2 Reduction algorithm

STEP 2
Eliminate Identical Attributes

STEP 3
Eliminate Identical Examples

STEP 4
Eliminate Dispensable Attributes

STEP 5
Compute the Core of the Decision Table

STEP 1
Transform Continuous Values in Range

STEP 6
Compose a Table With Reduct Value

STEP 7
Merge Possible Examples

STEP 8
Compose the Final Set of Rules

beyond observation. The rules are presented in an “If condition(s) then decision(s)”
format.

2.3 Incomplete Information System

It may happen that some attribute values for an object are missing. To indicate such
a situation a distinguished value, so-called null value, is usually assigned to those
attributes [2]. If Va contains null value for at least one attribute a ε U then K is
called an incomplete information system, otherwise it is complete. Further on, we
will denote null value by * [2]. The algorithm of the reduction of a decision table is
shown in Fig. 2 [7].
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Fig. 3 IEEE 118 test power network

3 Application Examples

In Fig. 3 it is shown the 118IEEE Test Power Network that was used in this study [8].
The input numerical values for the Rough Set approach considering an incomplete
information system were obtained using the software package SecurMining 1.0,
developed by the authors [5]. The ROSE software package was used to perform the
RST analysis [9].

In this section it is presented the final results using the Rough Set Theory. A first
order contingency study was carried out and it was obtained a list of 231 contingen-
cies that allows the construction of a contingency control database. The specified
attributes are as follows:

A Overloads in the transmission lines
B Number of overloaded transmission lines
C Voltage levels
D Number of busbars with voltage violation
E Severity indices related to the power and the voltage
F Severity indices related to the power losses

Table 1 presents a set of information related to a contingency control database. Table 2
shows the chosen range for the coded qualitative attributes. The condition attributes
are coded into three qualitative terms: Low, Medium and High. The decision attribute
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Table 1 The attributes represented by the set

Cont No Attributes

A B C D E F S

1 2 1 1 1 3 3 A
2 0 1 1 1 3 3 A
3 3 1 1 1 3 3 E2

4 2 1 1 1 3 3 E1

5 2 1 1 1 3 3 E1

6 2 1 1 1 3 3 A
7 3 3 0 1 3 3 E2

8 2 1 1 1 3 3 E1

9 2 1 1 1 3 3 E1

10 2 1 1 1 3 3 E1

11 2 1 2 1 3 3 A
12 2 1 1 1 3 3 A
13 2 0 1 1 3 3 A
14 2 1 2 1 3 3 A
15 2 1 1 1 3 3 A
16 2 1 1 1 3 3 A
17 2 1 1 1 3 3 A
18 2 1 1 1 3 3 A
19 3 1 1 1 3 3 E2

20 2 1 1 1 3 0 A
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

222 3 1 1 1 3 1 E2

223 2 1 1 1 3 1 A
224 2 1 1 1 3 1 A
225 2 1 1 1 3 1 A
226 2 1 1 1 3 1 A
227 2 1 1 1 3 1 A
228 2 1 1 1 3 1 A
229 2 1 1 1 3 0 A
230 2 1 1 1 3 1 A
231 2 1 1 1 3 1 A

is coded into four qualitative terms: Normal (N), Alert (A), Emergency 1 (E1) and
Emergency 2 (E2).

Step 1 The first step of the algorithm is to redefine the value of each attribute
according to a certain metric that was described above. Using these redefinitions for
each contingency of Table 1, Table 3 arises.

Step 2 and 3 The next step of the algorithm is to verify if any attribute can be
eliminated by repetition. It can be verified that the attributes are different for all
examples. Some examples are identical (for instance, contingencies 5–6, 9 and 10).
The similar examples are also merged.

Step 4 The next step is to verify if the decision table contains only indispensable
attributes. This task can be accomplished eliminating each attribute step–by–step
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Table 2 Definition of range
attributes coding

Attributs Codes

0 1 2 3

A 90 %< 90 %≤ a≤ 110 % > 110 %
B 2≤ 3≤ b≤ 4 > 4
C 0.85< 0.85≤ c≤ 1.05 > 1.05
D 2≤ 3≤ d≤ 5 > 5
E 0.800< 800≤ e≤ 0.900 > 0.900
F 0.800< 0.800≤ e≤ 0.900 > 0.900
S N A E1 E2

and verifying if the table gives the correct classification. For example, if the attribute
E is eliminated, the table continues to give a correct classification. So, it can be said
that E is a dispensable attribute for this decision table. However, when the attribute
C is eliminated it can be verify that the contingencies 1 and 4 have the same set of
attributes but they give different classification. In this case, we say that the attribute
C is indispensable for all attributes, so we can realize that the attributes A, B, C, D
and F are indispensable, and E is dispensable for this decision table.

Step 5 and 6 Using the last information, can be computed the core of the set of
contingencies. This computation can be done eliminating each attribute, step-by-
step, and verifying if the decision table continues consistent. Using the compute
package [9] it can be verified that the attributes A, B, C, D and F are the Core and
the Reduct of the Problem.

Step 7 and 8 According to the step 5 and 6, and using logical arithmetic, we can
compose the set of rules. Incorporating the range values the final set of rules and
approximate rules that contains the knowledge of Table 1, can be expressed the
quality of classification for all conditions and the attributes in the core is 0.1385.

The Table 4 shows the approximation of the objects in the Decision levels.
According to the algorithm described, and using logical arithmetic, it is possible

to compose the set of rules. Also, incorporating the range values the final set of rules
and approximate rules that contains the knowledge of a initial database range values
were obtained with the software package SecurMining 1.0 and the ROSE computer
programme [5, 9].

Exact Rules:

1. If (A is M and D is M) then S =A.
2. If (C is M and E is L) then S =A.
3. If (A is H) then S =E2.

Approximate Rules:

4. If (A is M and C is L) then S =A or S =E1.

5. If (A is M and D is L) then S =A or S =E2.
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Table 3 Database with range values

Cont No Attributes

A B C D E F S

1 M L L L H H A
2 * L L L H H A
3 H L L L H H E2

4 M L L L H H E1

5 M L L L H H E1

6 M L L L H H E1

7 H H * L H H E2

8 M L L L H H E1

9 M L L L H H E1

10 M L L L H H E1

11 M L M L H H A
12 M L L L H H A
13 M * L L H H A
14 M L M L H H A
15 M L L L H H A
16 M L L L H H A
17 M L L L H H A
18 M L L L H H A
19 H L L L H H E2

20 M L L L H * A
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

223 M L L L H L A
224 M L L L H L A
225 M L L L H L A
226 M L L L H L A
227 M L L L H L A
228 M L L L H L A
229 M L L L H * A
230 M L L L H L A
231 M L L L H L A

Table 4 Approximation of the objects

Decision level Number of
objects

Approximation
upper

Approximation
lower

Precision the approximation.
of classification

1—Alert 167 2 201 0.0100
2—Emerg. I 34 0 199 0.0000
3—Emerg. II 30 30 30 1.0000

The above rules can be written in a more clear way:
Exact Rules:

1. If the overloads in the transmission lines present a medium value and the num-
ber of busbars with voltage violation are medium then the Power System is
in Alert state.
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2. If the voltage levels assume a medium values and the severity indices related
to the power and the voltage are lower values then the Power System is also
in Alert state.

3. If the overloads in the transmission lines present a high values then the Power
System is in Emergency state II .

Approximate Rules:

4. If the voltage levels assume a medium values and the voltage levels present a
Lower values then the Power System is in Alert or in Emergency state I .

5. If the voltage levels present a medium values and the number of busbars with
voltage violation assume lower values then the Power System is in Alert or
in Emergency state II .

4 Conclusions

In this paper it was presented the RST applied to an Electric Power System con-
sidering an incomplete information system. The Knowledge acquisition process is
a complex task, since the experts have difficulty to explain how to solve a specified
problem. The proper definitions of reducts allow to define knowledge reduction that
does not diminish the original system’s abilities to classify objects or to make de-
cisions. Both reduction of dispensable knowledge and finding of optimal decision
rules are transformable to the problem of computing prime implicates discernibility
functions. It was also shown that discernibility functions for incomplete information
systems may be constructed in conjunctive normal form. Consequently, an incom-
plete set of relevant information may arise. In order to overcome this problem it
is proposed a new methodology to study and analyse the steady-state contingency
classification using the RST. The study presents a systematic approach to transform
examples in a reduced set of rules.
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Chain Drives Modelling Using Kinematic
Constraints and Revolute Clearance Joints
Formulations

Cândida Pereira and Jorge Ambrósio

Abstract Based on Multibody Dynamics two different formulations for modelling
chain drive mechanisms are presented in this work: (i) one in which the revolute
joints are considered as ideal joints, modelled as kinematic constraints; (ii) and an-
other in which the kinematic constraints are removed and replaced by a pair of forces
representing the contact between the connected bodies, i.e., modelled using the rev-
olute clearance joint formulation. When the chain drive components’ connections
are modelled as kinematic joints, the integration of the equations of motion lead to
constraint violations that grow to a point at which the chain seems to start vibrating
with a very high frequency and ends up disintegrating, even when the Baumgarte sta-
bilization method is used. This problem is, however, eliminated when the interaction
between the chain drive components is modelled using the revolute clearance joint
formulation, since any constraint violation is exhibited as the number of kinematic
constraints used in the multibody model is kept to a minimum.

Keywords Multibody dynamics ·Revolute clearance joints ·Kinematic constraints ·
Constraint violations · Chain drives

1 Introduction

The dynamics of chain drives may be efficiently analyzed by employing multibody
dynamics tools, since these mechanisms can be modelled as a constrained dynamic
system composed by a large number of bodies, here taken as rigid bodies, intercon-
nected by ideal or clearance revolute joints [1]. The links and rollers that compose
the chain are connected to each other by revolute joints that constrain the relative
motion of the links in different directions, as depicted in Fig. 1. The same definition
can be extended to the chain engagement on the sprockets. When the roller is seated
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Fig. 1 Multibody representation of a chain drive

on the sprocket tooth, its relative motion is restricted and the connectivity of these
two bodies modelled by a set of kinematic constraints or by a force relation.

The functionality of a kinematic joint relies on the relative motion allowed between
the connected components, which in practice implies the existence of clearance
between the mating parts. Accurate clearance modelling is thus required to correctly
predict the behaviour of the impact process to fully describe the dynamic of systems,
which is not possible to account for using kinematic constraints to describe joints
[2–4]. In fact, no matter how small the clearance is, its presence in mechanical
systems can lead to wear, vibration and fatigue phenomena. As a result, lack of
precision or even random overall behaviour can be expected [2–10]. Despite these
undesirable effects, clearances are necessary in a roller chain drive to allow relative
motion between links and sprockets and to permit the link assemblage. It is important
to quantify the effects of clearances on the global system response in order to define
the minimum level of suitable tolerances that will allow the roller chain to achieve the
required performance. However, regardless of clearance values, the overall dynamics
of the chain drive may be insensitive to their presence but also the identification of
the nominal behaviour of such drives is done by assuming perfect kinematic joints.

In this work and based on the multibody dynamics tools, two different formula-
tions for modelling chain drive systems are presented: (i) one in which the revolute
joints are considered as perfect joints, modelled as kinematic constraints; (ii) and
another in which the contact between the connected bodies is modelled using the rev-
olute clearance joint formulation. A joint with clearance is included in a multibody
system much like a revolute joint. However, while a perfect or ideal joint imposes



Chain Drives Modelling Using Kinematic Constraints . . . 207
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Fig. 2 Schematic representation of a generalized multibody system

two kinematic constraints, limiting the motion between bodies, the presence of clear-
ance in a revolute joint implies that those kinematic constraints are removed and
replaced by a pair of forces representing the interaction between the connected bodies
[5–10]. Therefore, the clearance in a revolute joint implies that the system to which
it is applied has two extra degrees of freedom relative to an ideal system, which
are modelled using an appropriate contact force model [11]. The relative merits and
drawbacks of the proposed formulations with clearance joints with respect to models
with ideal joints are discussed in this context.

2 Multibody Systems Formulation

A multibody system can be represented schematically as a collection of rigid and/or
flexible bodies interconnected by kinematic joints and by some force elements, as
shown in Fig. 2. Thus, any mechanical system can be understood as a multibody
system, where the kinematic joints control the relative motion between the bodies,
while the force elements represent the internal forces that develop between bodies
due to their relative motion. The forces applied to the system components may be the
result of springs, dampers, and position and/or force actuators, or externally applied
forces describing e.g. gravitational forces, friction forces and contact/impact forces.
A wide variety of mechanical systems can be modelled in this way such as robots,
heavy machinery, automotive suspensions and steering systems, machinery tools,
satellites, sports vehicles or railway rolling stock, among others [1, 12–14] as well
as the human body [15].

In order to analyze the dynamic response of a constrained multibody system, it
is first necessary to formulate the equations of motion that govern its behaviour.
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Fig. 3 Planar revolute joint
connecting bodies i and j
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In a broad sense, the best known methods to derive the equations of motion are:
Newton-Euler’s method [1], Lagrange’s method [16], and Kane’s method [17]. Two
kinds of coordinates are frequently employed to formulate the equations of motion
of multibody systems. The first one uses a minimum number of relative coordinates,
corresponding to the degrees of freedom of the system. The second approach, a
system of dependent coordinates, e.g. Cartesian coordinates, is used to describe the
system configuration. The formulation of multibody system dynamics adopted in
this work closely follows the Cartesian coordinates approach proposed by Nikravesh
[1]. In this formulation, the Lagrange multipliers technique with 2D generalized
Cartesian coordinates and the Newton-Euler equations of motion of rigid bodies are
employed to govern the dynamics of roller chain drives.

2.1 Constraint Equations

A kinematic joint imposes kinematic conditions on the relative motion between ad-
jacent bodies of the system. When these conditions are expressed in analytical form
they are called constraint equations. Kinematic constraint types include revolute
joints, translational joints, spherical joints and cylindrical joints. The kinematic con-
straints considered in this work are assumed to be holonomic, arising from geometric
relations on the generalized coordinates [1, 16, 18]. In order to illustrate the method-
ology, and because this is the only type of joint used to model roller chain drive
mechanisms, the formulation for the planar revolute joint is reviewed. Details on the
formulation of other types of kinematic joints can be found e.g. in Nikravesh [1]. The
revolute joint is a pin and bush type of joint that constrains the relative translation
between the two bodies i and j, allowing only relative rotations, as illustrated in
Fig. 3. The centers of mass of bodies i and j are Oi and Oj , respectively. Body-fixed
coordinate systems ζη are attached at their centers of mass, while the XY coordinate
frame represents the global coordinate system.

The kinematic conditions for the revolute joint require that two distinct points,
each belonging to a different body, share the same position in space all the time.
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This means that the global position of a point P in body i is coincident with the
global position of a point P in body j. That condition is expressed by two algebraic
equations as

ri + sP
i − rj − sP

j = 0 (1)

which is rewritten as

Φ(r,2) ≡ ri + Ais
′P
i − rj − Ajs

′P
j = 0 (2)

where Φ(r,2) denotes the planar revolute (r) joint constraint, which contains two (2)
independent equations, and Ai and Aj represent the transformation matrixes of body
i and j, respectively.

2.2 Kinematic Analysis

In the study of multibody systems motion there are two different types of analysis
that can be performed, namely, kinematic and dynamic analysis. Kinematics is a
first step in the complete analysis of a mechanical system, dealing only with space
and time and neglecting forces and their effects [19]. Kinematic analysis is thus
the study of the system’s motion regardless of the forces that produce it. Since the
interaction between the forces and the system motion is not considered, the motion
of the system needs to be specified by driving elements that govern it during the
analysis. The position, velocity and acceleration are obtained using the kinematic
constraint equations that describe the topology of the system.

When the configuration of a multibody system is described by nc Cartesian coor-
dinates, a set of m algebraic kinematic independent holonomic constraints Φ can be
written in a compact form as [1],

Φ(q,t) = 0 (3)

where q is the vector of generalized coordinates and t is the time variable generally
associated with the driving elements. The velocities and accelerations of the system
elements are evaluated using the velocity and acceleration constraint equations. Thus,
the first time derivative of (3) provides the velocity constraint equations,

Φqq̇ = −Φt ≡ υ (4)

where Φq is the Jacobian matrix of the constraint equations, i.e. the matrix of the
partial derivates ∂ Φ/∂ q, q̇ is the vector of generalized velocities and υ is the right
hand side of velocity equations, which contains the partial derivates of Φ with respect
to time, ∂ Φ/∂t. The second-order derivative of (3) with respect to time leads to the
acceleration constraint equations, expressed as

Φqq̈ = −(Φqq̇)qq̇ − 2Φqtq̇ −Φtt ≡ γ (5)
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where q̈ is the acceleration vector and γ is the right hand side of acceleration equa-
tions, i.e. the vector of quadratic velocity terms, which contains the terms that are
exclusively functions of velocity, position and time. In the case of holonomic scle-
ronomic constraints, i.e. when Φ is not explicitly dependent on time [1, 16, 18], the
term Φt in (4) and the terms Φqt and Φtt in (5) vanish.

2.3 Equations of Motion for a Constrained Multibody System

Dynamic analysis of multibody systems, on the other hand, aims to understand the
relation between the motion of the system components and the causes that produce
it, including external applied forces and moments. The motion of the system is not
usually prescribed and its calculation is one of the principal objectives of the analysis.
Dynamic analysis also provides a way to estimate external forces that depend on
the relative position between the system components such as the forces exerted by
springs, dampers and actuators. Furthermore, in the process of the dynamic analysis
the external forces that are developed through the interaction between the system
components and the surrounding environment, such as contact-impact forces and
friction forces, are evaluated. The internal reaction forces and moments generated at
the kinematic joints are also obtained in the dynamic analysis.

The equations of motion for a constrained multibody system of rigid bodies are
written as [1]

Mq̈ = g + g(c) (6)

where M is the system mass matrix, q̈ represents the vector that contains the sys-
tem accelerations, g is the generalized force vector, which contains all internal and
external forces and moments, and g(c) is the vector of constraint reaction equations.
The joint reaction forces can be expressed in terms of the Jacobian matrix of the
constraint equations and the vector of Lagrange multipliers as [1]

g(c) = −ΦT
qλ (7)

where λ is the vector that contains m unknown Lagrange multipliers associated
with m holonomic constraints. The Lagrange multipliers are physically related to
the reaction forces and moments generated between the bodies interconnected by
kinematic joints. Thus, substituting (7) in (6) yields

Mq̈ +ΦT
qλ = g (8)

In dynamic analysis, a unique solution is obtained when the constraint equations and
the differential equations of motion are considered simultaneously for a proper set
of initial conditions. With this objective, (5) is appended to (8), yielding a system of
differential algebraic equations. Thus, the mathematical simulation of a constrained
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multibody system requires the solution of a set of nc differential equations coupled
with a set of m algebraic equations, written as

[

M ΦT
q

Φq 0

]{

q̈
λ

}

=
{

g
γ

}

(9)

From the initial values for positions and velocities, (9) is solved for accelerations,
q̈, and Lagrange multipliers, λ, using the L-U factorization in conjunction with
forward and backward substitution. The positions and velocities in the next time step
are then obtained by integration of the velocity and acceleration vectors, q̇ and q̈.
This procedure is repeated until the final time is reached. The integration process
is performed here using a predictor-corrector algorithm with both variable step and
order [20, 21].

3 Dynamics of Chain Drives Using Kinematics Constraints

The system of equations of motion, described by (9), does not use explicitly the
position and velocity constraint equations, i.e. equations (3) and (4). As a result, for
moderate or long simulations the position and velocity constraint equations start to
be violated due to problems such as: inaccurate initial conditions for positions and
velocities [22], constraints that are treated introducing forces of constraint within
the equations of motion [23, 24], numerical integration [25], large number of bodies
involved and/or the stiffness of the system [26]. Since the cause is unknown, the
constraints violation problem happens when the pin-bushings, the bushing-rollers
and the rollers-sprockets connections are modelled as kinematic joints. Special pro-
cedures must be followed to avoid or minimize this drift, including the Constraint
Violation Stabilization Method, proposed by Baumgarte [23]. This constraint stabi-
lization method has been extensively applied to the dynamic analysis of mechanical
systems in order to suppress the growth of error and achieve a stable response [1].
Therefore, it is also implemented here.

When (9) is solved, (5) and (6) are only solved implicitly. In fact, only the second
derivatives of constraint equations are satisfied in each integration step. It is known
that (5) represents an unstable system [27, 28]. The Baumgarte Stabilization Method
includes in the differential equation (5) the feedback terms from the position and
velocity constraint violations as [23]

Φ̈+ 2αΦ̇+ β2Φ = 0 (10)

Equation (10) is the differential equation for a closed-loop system in terms of
kinematic constraint equations, where the terms 2αΦ̇ and β2Φ play the role of con-
trol terms. The equations of motion for a dynamic system subjected to holonomic
constraints is rewritten as

[

M ΦT
q

Φq 0

]{

q̈
λ

}

=
{

g
γ − 2αΦ̇− β2Φ

}

(11)
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Fig. 4 Sequence of images of a complex multibody system configuration from a the correct initial
positions, b–f accumulation of error until the total disintegration of the system takes place

For nonzero values of the feedback coefficients, i.e. if α and β are chosen as positive
constants, the solution vector oscillates around the exact solution, and the stability
of the general solution of (11) is usually guaranteed. Moreover, when α is equal to
β, critical damping is achieved, which generally stabilizes the system response more
rapidly [1]. Generally, for rigid multibody dynamics the values of α =β = 5 are used
and also here taken [8–10].

3.1 Elimination of Initial Constraint Violations

Regardless of the original cause and for the chain drive multibody system, as time
progresses the constraint violation errors increase and even the use of the Baumgarte
Stabilization Method is unable to control the problem. For instance, for the chain drive
shown in Fig. 4, in which the pin/bushing hinges are represented by ideal revolute
joints, the integration of the equations of motion leads to constraint violations that
grow to a point at which the chain seems to start vibrating with a very high frequency,
as depicted by Fig. 4e) and ends up disintegrating, as depicted by Fig. 4f).

In order to attempt to minimize the problem of the constraint violations, a pro-
cedure to ensure the kinematic consistency of the initial conditions of the problem
proposed by Nikravesh [25] has been used. In the initial condition correction method
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the correct positions and velocities are expressed as

q0 = qe +�q (12a)

q̇0 = q̇e +�q̇ (12b)

where qe and q̇e are the initial guesses for the positions and velocities, respectively,
and �q and �q̇ are the corrections of the positions and velocities that need to
be evaluated. Based on the minimization of the sum-of-squares of the corrections,
Nikravesh [25] shows that the iterative process to correct the positions is done as
follows:

For q = qi :
Evaluate σi = Φ(qi);

Compute �qi = −ΦT
qi

(

ΦqiΦT
qi

)−1

σ i ;

Correct qi+1 = qi +�q;

Repeat if necessary
The correction of the velocities is done by first evaluating the velocity constraint

violations

ε = Φqq̇ (13)

Then, the correction of the velocities required for (12b) is obtained as

�q̇ = −ΦT
qi

(

ΦqiΦT
qi

)−1
ε (14)

Although the initial conditions guarantee the non-violation of constraint equations
on position and velocity level, (3) and (4) are only satisfied at the initial instants
of time. Unfortunately, even for the case of initial consistent kinematic conditions,
the constraint violations that accumulate during the integration process cannot be
handled by the constraint stabilization method for this type of mechanism. Therefore,
the simulation of chain drives requires that a constraint correction method is used
throughout the analysis and not only a constraint stabilization method.

4 Dynamics of Chain Drives Using the Revolute
Clearance Joint Formulation

When the chain drive mechanism is described as a dynamic system composed of a
large number of rigid bodies, links and rollers, connected to each other by revolute
clearance joints, the kinematic joints used in the multibody model with perfect joints
are eliminated from the system and contact forces are applied in each contact pair.
In fact, a joint with clearance is included in a multibody system much like a revolute
joint. However, while for a perfect or ideal revolute joint it is assumed that the
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Fig. 5 Generic revolute joint
with clearance in a multibody
system
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connecting points of the two bodies are coincident, as shown in Fig. 3, the inclusion
of a clearance in a joint separates the connecting points and, as a result, two extra
degrees of freedom are added to the mechanical system. It is, therefore, necessary
to establish the geometric condition that defines whether the joint elements are in
contact. Figure 5 illustrates two bodies, i and j, connected by a generic revolute joint
with clearance, in which part of body i can represent e.g. the bushing link and part
of body j represents the pin link. The centers of mass of bodies i and j are Oi and
Oj , respectively, and body-fixed coordinate systems ξη are attached at their center
of mass. Point Pi indicates the center of the revolute body i, while the center of the
joint in body j is denoted by point Pj .

When the centers of the bushing and pin, given by points Pi and Pj respectively,
separate, there is the possibility for contact to take place if their distance exceeds the
existing radial clearance of the joint, denoted by c. A penetration between bodies i
and j exist if

δ =
√

eT e − c > 0, (15)

where the vector eccentricity e, that connects the centers of the bodies, is

e = rP
j − rP

i (16)

in which the positions of points Pi and Pj , rP
j and rP

i , are described in the global
coordinates reference frame as [1, 5–10]

rP
k = rk + Aks

′P
k , (k = i, j) (17)

where Ak is the transformation matrix from the local to global coordinates. In (15)
eT is the transpose of vector e.

Based on the continuous contact force method, the dynamics of revolute clearance
joints is controlled by the contact forces developed on each contacting rigid body,
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which are evaluated using an appropriate contact force model [11]. Thus, when (15)
is fulfilled, the resultant contact force in each body is evaluated by summing the
contributions of both the normal fn, that results from deformation of the impacting
bodies, and tangential forces ft , associated to friction phenomenon, as expressed by

fi = fnn + ft t (18)

fj = −fi (19)

for bodies i and j, respectively. The contributions of contact forces are incorporated
into the equation of motion of a multibody system, given by (9), through the gen-
eralized vector of forces and moments g. The mathematical models that represent
the contact conditions between the chain and the sprocket teeth have been recently
presented [29].

The dynamics of revolute clearance joints is then controlled by the contact-impact
forces developed on each contacting rigid body and included into the equations of
motion during the contact-impact period [5–10]. The chain drive modelled in this
form does not exhibit any constraint violation as the number of kinematic constraints
used in the multibody model is kept to a minimum. Dynamic results show that
this formulation is robust and describe thoroughly all the features of chain drives,
including the polygonal effect, the pretension effect, the vibration patterns and the
impact on the chain due to chain engagement on the sprockets, which can be found
in Ref [30].

5 Conclusions

Based on the multibody dynamics formulations two different approaches for mod-
elling chain drive systems: (i) one in which the revolute joints are considered as
perfect joints; (ii) and another in which the contact between the connected bodies is
modelled as a revolute clearance joint are presented in this work.

When modelling the pin-bushings, the bushing-rollers and the rollers-sprockets
connections as kinematic joints, these are included in the equations of motion that
govern the behaviour of the chain drive constrained multibody system using an Aug-
mented Lagrangian formulation. However, because such form of the equations of
motion are solved together with the acceleration constraints, the explicit form of the
position and velocity constraint equations are not present. The integration of the equa-
tions of motion lead to constraint violations that grow to a point at which the chain
seems to start vibrating with a very high frequency and ends up disintegrating even
when the Baumgarte Stabilization Method is used. A procedure to ensure the kine-
matic consistency of the initial conditions of the problem, proposed by Nikravesh,
is implemented to prevent initial violation constraints. Unfortunately, even for the
case of initial consistent kinematic conditions, the constraint violations that accumu-
late during the integration process cannot be handled by the constraint stabilization
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method for this type of mechanism. The simulation of chain drives requires, there-
fore, that a constraint correction method is used throughout the analysis and not only a
constraint stabilization method. This means that much more work must be pursued to
solve the constraints violation problem. However, this problem is eliminated when
the chain drive component connections are modeled as revolute clearance joints,
since the kinematics constraints are replaced by contact forces, which are evaluated
by penalty contact force models. The dynamics of revolute clearance joints is then
controlled by the contact-impact forces developed on each contacting rigid body and
included into the equations of motion during the contact-impact period. The chain
drive modelled in this form does not exhibit any constraint violation as the number
of kinematic constraints used in the multibody model is kept to a minimum.
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Jacobi Polynomials and Some Related Functions

Mariana Marčoková and Vladimír Guldan

Abstract The classical Jacobi orthogonal polynomials (especially their special
case—the Legendre polynomials) appear as the solutions of some problems of
mathematical physics. In the contribution we deal with some relations connecting
generalized Legendre polynomials of a certain type and the classical Jacobi polyno-
mials orthogonal with respect to two different special weight functions. We also point
out relations between the classical Legendre polynomials, the associated Legendre
functions of the first kind, the Legendre functions of the first kind and the generalized
g-Legendre functions obtained by Mirevski et al. using fractional calculus.

Keywords Jacobi polynomial · Legendre polynomial · Legendre function

1 Basic Properties of Orthogonal Polynomials

In this section we recall the definitions concerning orthogonal polynomials and some
theorems on their basic properties.

Definition 1 Let (a, b) ⊂ R be a finite or infinite interval. A function w(x) is called
the weight function if at this interval it fulfills the following conditions:

(i) w(x) is nonnegative at (a, b), i.e.

w(x) ≥ 0 ,

(ii) w(x) is integrable at (a, b) and

0 <

b∫

a

w(x)dx < ∞ ,
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(iii) if (a, b) is an infinite interval, then for every n = 0, 1, 2, . . .

0 <

b∫

a

|x|nw(x)dx < ∞

is necessary condition for the weight function.

Definition 2 Let {Pn(x)}∞n=0 be a system of polynomials, where every polynomial
Pn(x) has the degree n. If for all polynomials of this system

b∫

a

Pn(x)Pm(x)w(x)dx = 0 n 
= m

then the polynomials {Pn(x)}∞n=0 are called orthogonal in (a, b) with respect to the
weight function w(x). If moreover

||Pn(x)||w(x) =
⎡

⎣

b∫

a

P 2
n (x)w(x)dx

⎤

⎦

1
2

= 1

for every n = 0, 1, 2, . . . , then the polynomials are called orthonormal in (a, b) with
respect to w(x).

Remark 1 The condition of the orthonormality of the system {Pn(x)}∞n=0 has the
form

b∫

a

Pn(x)Pm(x)w(x)dx = δnm

where δnm = 1 for n = m and δnm = 0 for n 
= m.

Theorem 1 For every weight function w(x) one and only one system of polynomials
{Pn(x)}∞n=0 orthonormal in (a, b) exists, where

Pn(x) =
n
∑

k=0

a
(n)
k xn−k a

(n)
0 > 0.

Proof E.g. in [1] or [2].

Theorem 2 A polynomial Pn(x) is orthogonal in (a, b) with respect to the weight
function w(x), if and only if for arbitrary polynomial Sm(x) of the degree m < n

the following condition is fulfilled

b∫

a

Pn(x)Sm(x)w(x)dx = 0.

Proof E.g. in [1] or [2].



Jacobi Polynomials and Some Related Functions 221

Theorem 3 If the interval of orthogonality is symmetric according to the origin of
coordinate system and weight function w(x) is even function, then every orthogonal
polynomial Pn(x) is even function and odd function, respectively, depending on
evenness and oddness of its degree n, respectively, i.e.

Pn( − x) = ( − 1)nPn(x).

Proof E.g. in [1] or [2].

2 Jacobi Polynomials, Legendre Polynomials, Legendre
Associated Functions

It is well-known that the classical Jacobi polynomials {Pn(x;α,β)}∞n=0 are
orthogonal in the interval I = ( − 1, 1) with respect to the weight function

J (x) = (1 − x)α(1 + x)β , x ∈ ( − 1, 1), (1)

where α > −1,β > −1. Very important special case of the Jacobi polynomials are
the classical Legendre polynomials {Pn(x; 0, 0}∞n=0, for which α = β = 0 in the
weight function J (x). In the next we denote them by {Pn(x}∞n=0.

Classical orthogonal polynomials are solutions of the second order linear
homogeneous differential equations of the form (cf. e.g. [1])

a(x)y ′′n (x) + b(x)y ′n(x) + λnyn(x) = 0,

where a(x) is a polynomial of the degree at most 2, b(x) is a polynomial of the degree
1 and λn does not depend of x. For the classical Jacobi polynomials this equation
has the form

(1 − x2)y ′′n (x) + [β − α − (α + β + 2)x] y ′n(x) + n(n+ α + β + 1)yn(x) = 0,

which in the case of the classical Legendre polynomials is reduced to the equation

(1 − x2)y ′′n (x) − 2xy ′n(x) + n(n+ 1)yn(x) = 0. (2)

Associated Legendre equation occurs e.g. in applications described by Laplace or
Helmholtz equation in spherical coordinates. For m = 0, 1, 2, . . . , n it has the form

(1 − x2)y ′′n (x) − 2xy ′n(x) +
[

n(n+ 1) − m2

1 − x2

]

yn(x) = 0. (3)

Observe that for m = 0 it reduces to the Legendre Eq. (2). Its solutions are called
the associated Legendre functions of the first and second kind, respectively. They
are defined by (cf. [3])

Pm
n (x) = (1 − x2)

m
2

dm

dxm
Pn(x) (4)
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and

Rm
n (x) = (1 − x2)

m
2

dm

dxm
Rn(x),

respectively. Here Pn(x) and Rn(x) are solutions of the Legendre Eq. (2), the first of
them are the classical Legendre polynomials.

The classical Jacobi polynomials are often defined by the Rodrigues’ formula
(cf. [1])

Pn(x;α,β) = ( − 1)n

2n n! J (x)

dn

dxn
[J n(x)] (5)

where J (x) is given by (1). In the case of the classical Legendre polynomials it
reduces to

Pn(x;α,β) = ( − 1)n

2n n!
dn

dxn
[(1 − x2)n]. (6)

3 Generalized Legendre Polynomials of a Certain
Type and Classical Jacobi Polynomials with Different
Weight Functions

As it is seen from preliminaries, the Legendre classical polynomials {Pn(x}∞n=0 are
orthogonal in I = ( − 1, 1) with respect to the weight function L(x) = 1.

Now we introduce the system of polynomials {Qn(x}∞n=0 which will be the
polynomials orthonormal in I with respect to the weight function

Q(x) = (x2)γ ,

where γ > 0 and Qn(+∞) > 0. It is clear that these polynomials are generalization
of the classical Legendre polynomials, which can be obtained by substituting γ = 0
in the weight function Q(x).

Further, we introduce two classes of orthonormal polynomials:

(a) polynomials {Pn(x; 0, γ − 1
2 )}∞n=0 orthonormal in I with respect to the weight

function

J1(x) = (1 + x)γ−
1
2

and

(b) polynomials {Pn(x; 0, γ )}∞n=0 orthonormal in I with respect to the weight
function

J2(x) = (1 + x)γ .

In both these cases we have classical Jacobi polynomials orthogonal with the weight
function (1) for α = 0, β = γ − 1

2 and α = 0, β = γ , respectively. In the next we
establish relations between them and the polynomials {Qn(x}∞n=0.
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Theorem 4 In the notations introduced in the previous sections

Q2n(x) = 2
γ
2 − 1

4 Pn

(

2x2 − 1; 0, γ − 1

2

)

(7)

and

Q2n+1(x) = 2
γ
2 xPn(2x2 − 1; 0, γ ). (8)

Proof According to the Theorem 3, the function Q2n(x) is even function. Putting
t = x2 we denoteWn(t) = Q2n(x). The orthogonality of the polynomials {Qn(x}∞n=0
for r = 0, 1, . . . , n− 1 and n > 0 yields

0 =
1∫

0

x2rQ2n(x)x2γ dx = 1

2

1∫

0

t rWn(t)tγ−
1
2 dt

= 1

22

1∫

−1

(
τ + 1

2

)r

Wn

(
τ + 1

2

)(
τ + 1

2

)γ− 1
2

dτ

= 1

2γ+ 3
2

1∫

−1

(
τ + 1

2

)r

Wn

(
τ + 1

2

)

(τ + 1)γ−
1
2 dτ .

From that it is clear that the polynomials Wn

(
x+1

2

)

are orthogonal in I with
respect to the weight function J1(x). According to the Theorem taking into account
the uniqueness of these polynomials, we have

Wn

(
x + 1

2

)

= k Pn

(

x; 0, γ − 1

2

)

,

where k > 0 in consequence of the fact that Pn

(∞; 0, γ − 1
2

)

> 0 and Wn(+∞)> 0.
From the orthonormality of the polynomials Wn(t) we derive

1

2
=

1∫

0

W 2
n (t) tγ−

1
2 dt = k2

1∫

−1

P 2
n

(

τ ; 0, γ − 1

2

)(
τ + 1

2

)γ− 1
2 1

2
dτ

= 1

2γ+ 1
2

k2

1∫

−1

P 2
n

(

τ ; 0, γ − 1

2

)

(τ + 1)γ−
1
2 dτ

from where we have k = 2
γ
2 − 1

4 and the relation (7), i.e.

Q2n(x) = 2
γ
2 − 1

4 Pn

(

2t − 1; 0, γ − 1

2

)

, t = x2.

Now we prove the relation (8). Putting t = x2 we have

Wn(t) = x−1Q2n+1(x),
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where Wn(t) is the polynomial of the degree n and Q2n+1(x) is odd function. For
r = 0, 1, . . . , n−1 and n> 0 the orthogonality of the polynomials {Qn(x)}∞n=0 yields

0 =
1∫

0

x2r+1Q2n+1(x) x2γ dx = 1

2

1∫

0

t r Wn(t) tγ+
1
2 dt

= 1

22

1∫

−1

(
τ + 1

2

)r

Wn

(
τ + 1

2

)(
τ + 1

2

)γ+ 1
2

dτ

= 1

2γ+ 5
2

1∫

−1

(
τ + 1

2

)r (
τ + 1

2

) 1
2

Wn

(
τ + 1

2

)

(τ + 1)γ dτ .

From there
(
x + 1

2

) 1
2

Wn

(
x + 1

2

)

= k Pn(x; 0, γ )

where k > 0 and from the orthonormality of the polynomials t
1
2 Wn(t) we derive

1

2
=

1∫

0

x−2 Q2
2n+1(x) x2γ dx =

1∫

0

t W
2
n(t) tγ dt

= 1

2

1∫

−1

(
τ + 1

2

)

W
2
n

(
τ + 1

2

)(
τ + 1

2

)γ

dτ

= 1

2γ+1
k 2

1∫

−1

P 2
n (τ ; 0, γ )(τ + 1)γ dτ.

Finally we get k = 2
γ
2 and the relation (8) of the theorem.

4 Jacobi and Legendre Polynomials Related to Fractional
Calculus

In [4], the authors have defined so-called g-Jacobi functions by the formula

Pν(x;α,β) = ( − 1)ν

2ν �(ν + 1) (1 − x)α(1 + x)β
Dν[(1 − x)ν+α(1 + x)ν+β], (9)

where ν > 0, α > −1, β > −1 and Dν is the Riemann–Liouville fractional
differentiation operator defined for x > 0, m natural and m− 1 ≤ μ < m as

Dμf (x) = Dm[Im−μf (x)]
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with the Riemann–Liouville fractional integral Im−μf (x) of the function f (x) of
order m− μ > 0

Im−μf (x) = 1

�(m− μ)

x∫

0

(x − t)m−μ−1f (t)dt.

In (9) the functions Pν(x;α,β) are generalization of the classical Jacobi polynomials
defined by Rodrigues’ formula (5) in which natural n is substituted by real ν > 0
and the derivative dn

dxn is substituted by Dν.

In virtue of (6) for corresponding generalized g-Legendre functions we can write

Pν(x; 0, 0) = ( − 1)ν

2ν �(ν + 1)
Dν[(1 − x2)ν].

According to [4, Theorem 12] the g-Legendre functions can be expressed by means
of Gauss hypergeometric functions (cf. [3]) in the form

Pν(x; 0, 0) = 2F1

(

−ν, ν + 1; 1;
1 − x

2

)

, (10)

where

2F1(a, b; c; x) =
∞
∑

n=0

(a)n(b)n
(c)n

xn

n! |x| < 1.

As it is seen in [3] the expression (10) presents the definition of the Legendre function
of the first kind of degree ν denoted in [3] by Pν(x) reached by generalization
of the relationship between the nth Legendre polynomial Pn(x) and the Gauss
hypergeometric function 2F1

(−n, n+ 1; 1; 1−x
2

)

. So, we can write

Pν(x; 0, 0) = Pν(x). (11)

In [4], the authors proved that the g-Jacobi functions Pν(x;α,β) satisfy the linear
homogeneous differential equation

(1 − x2)y ′′ν (x) + [β − α − (α + β + 2)x] y ′ν(x) + ν(ν + α + β + 1)yν(x) = 0.
(12)

From (11) and (12) we can conclude that the g-Legendre functions Pν(x; 0, 0) as
well as the Legendre functions Pν(x) of the first kind of the degree ν satisfy the
differential equations

(1 − x2)y ′′ν (x) − 2xy ′ν(x) + ν(ν + 1)yν(x) = 0.

Finally, taking into account the proof of the fact that the associated Legendre functions
(4) of the first kind satisfy the Eq. (3) we can conclude that the functions

Pm
ν (x) = (1 − x2)

m
2

dm

dxm
Pν(x)

satisfy the equations

(1 − x2)y ′′ν (x) − 2xy ′ν(x) +
[

ν(ν + 1) − m2

1 − x2

]

yν(x) = 0, (13)
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where ν > 0 , m = 0, 1, 2, . . . , [ν] and [ν] is integer part of ν. The proof is similar
as it is done in [3] for the Eq. (3) and the function (4).

Because the associated Legendre functions of the first kind Pm
n (x) and the

Legendre functions of the first kind Pν(x) have many properties in common with
the Legendre polynomials Pn(x), we can suppose that also the functions Pm

ν (x)
have some similar properties like the above functions given in (4).

5 Applications

The classical Jacobi orthogonal polynomials and their special case—the Legendre
polynomials and the associated Legendre functions as well as their generalizations
occur in various applications of mathematics in engineering sciences.

In [5] we suggested to compute the length of a junction curve of a railroad between
two sections of a rail with different curvatures by means of classical Legendre poly-
nomials. Junction curve is a curve inserted between a straight line and a circle arc.
Junction curve enables fluent transition between two sections of a rail with different
curvatures. At Slovak railroads the cubic parabola is used as the junction curve. In [6]
the length of such junction curve is computed by using binomial series, because the
integral of the function

√

1 + [f ′(x)]2, f (x) = cx3,

(c is the specific constant) had to be computed. We suggested to use the Legendre
polynomials, because the best approximation of a function by means of a polynomial
is the approximation by means of an expansion of the function into a series of
orthogonal polynomials followed by substituting the function by the partial sum of
such series (cf. [1]). So we have used the following expansion of a function

√
1 + x

(cf. [1])
√

1 + x = 4

3
√

2
P0(x) − 4√

2

∞
∑

n=1

( − 1)nPn(x)

(2n− 1)(2n+ 3)

where {Pn(x)}∞n=0 are the classical Legendre polynomials.
Another application of the classical Legendre polynomials can be found in [7].

The authors used the Legendre polynomials for the approximation of cylindrical sur-
faces which was submitted as a strategy of measurement supported by experimental
verification. The results were very good—the precision was high.

The Legendre associated functions were used in [8] for the approximation of
the Earth shape. The author uses the functions Pm

n (sinφ) ( φ is the geocentric
coordinate of the geocentric radiusvector of a point of the Earth) defined by (4).
The gravity potential of the Earth is expressed by the expansion into the series of
spherical functions, where the functions Pm

n (sinφ) occur.
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6 Conclusion

In this paper we proved relations (7) and (8) which may be used as expressions of
the classical Jacobi polynomials of the argument 2x2 − 1 by means of generalized
Legendre polynomials {Qn(x)}∞n=0 of the argument x. We have also pointed out some
known relations of the classical Legendre polynomials and the associated Legendre
functions related to certain their generalizations including those obtained by using
fractional calculus. All the functions dealt with above are useful in applications
especially those described by the Laplace equation.
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Descartes Rule of Signs and Linear
Programming

Carla Fidalgo and Alexander Kovačec

Abstract Let � = {(x, y) : x + y = 1, x, y ≥ 0} be the 1-simplex and for m ≥ 2
consider the (binary) form

F (x, y) = unx
n + u0y

n −
∑

i, j ≥ 1
i + j = n

uix
iyj .

Using linear programming and a little known refinement of Descartes’ rule of signs
due to Laguerre, it is shown that if all ui ≥ 0 and F is nonzero and nonnegative on
�, then it assumes there exactly one global minimum. The investigation is motivated
by a question concerning sum of squares representation.

Keywords Roots of polynomials · Linear programming · Positive semidefinitness ·
Sums of squares

1 Introduction

By a diagonal minus tail form we understand a real homogeneous polynomial

F (x) = F (x1, . . . , xk) = a1x
n
1 +· · ·+anx

n
k −

∑

i1, . . . , ik ≥ 0
i1 + · · · + ik = n

ai1i2···ik x
i1
1 · · · xik

k ,

with n ≥ 2 and all occurring ai , ai1i2···ik ≥ 0. The (k − 1)-simplex is defined as
�k−1 = {x ∈ R

k
≥0 : x1 + · · · + xk = 1}. The authors conjecture that if F is positive

semidefinite and of even degree then it is a sum of squares of polynomials. An
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algorithm for such a representation relying on finding the global minimum of F on
the simplex has as yet performed successfully and has prompted the conjecture that
in fact there is only one local, and hence global minimum for F on �.

For the binary case we write

� = �1 = {(x, y) : x + y = 1, x, y ≥ 0}, u = (u0, u1, . . . , un−1, un),

and the form as

F (x, y) = F (x, y, u) = unx
n + u0y

n −
∑

i,j≥1
i+j=n

uix
iyj .

We will see that F |� ≥ 0 implies uniqueness of a critical point and hence in this
case uniqueness of the global minimum.

The proof of this seems not as easy as may be expected. First the problem is
reduced to a problem in one variable. We have to show that the nonnegativity of
a certain polynomial function R>0 � t �→ f (t , u) obtained from dehomogenizing
F (x, y, u) implies existence and unicity of the positive root of a polynomial t �→
p(t , u) related to the natural derivative of F in �. This latter claim is proved as a
strengthening of its contrapositive. Supposing that u is such that t �→ p(t , u) has more
than one positive root, f would be negative in 1 or on a root where p (tendentially)
changes from positive to negative; a ‘±-root of p’, for short: see theorem 3.5.

In both of these polynomials the coordinates of u enter linearly. Fixing t0, u0, un,
we consider the polyhedron P = P (t0, u0, un) of all nonnegative u (of given u0, un)
that define functions t �→ p(t , u) that have t0 as a ‘±-root’ and identify its vertices.
Using that the affine function P � u1:n−1 = (u1, . . . , un−1) �→ f (t0, u) takes its
maximum at some vertex of the polyhedron, and showing that the corresponding
maximum value is negative will complete the proof in the cases where t0 is not too
large, in particular for t0 ≤ 1.

2 Descartes’ Rule of Signs

The well known Descartes rule of signs states that the number of positive roots of a
polynomial p(x) with real coefficients does not exceed the number of sign changes
of the nonzero coefficients of p(x). So it gives an upper bound for the number of
positive roots in terms of sign changes of the coefficients of a polynomial.

Despite its intuitive plausibility, Descartes’ rule of signs was not directly proven
until over a century after its original statement, in 1637. Since then many refinements
and extensions where found by mathematicians like Laguerre, Pólya and Szegö
among others and its interest remains nowadays to both mathematicians and computer
scientists areas like isolation of the real roots of polynomial equations, polynomial
real root-finding algorithms, etc.

We learned of refinements of Descartes’ rule found by Laguerre, Polya and Szegö
that we formulate here.
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Theorem LPS Let f (t) = ∑n
j=1 aj t

j be a polynomial with real coefficients and
u > 0. Then

a. the number of roots of f|]0,u[ is by an even number less than the number of
signchanges of the coefficient sequence of the power series f (tu)/(1− t)k , where
k ∈ Z≥0.

b. furthermore as k →∞ the number of signchanges ‘converges’ to the number of
roots of f in ]0, u[.

Let us see an example that shows that this theorem is stronger than Descartes’ rule
of signs.

Example 2.1 The polynomialf (t) = 1+20t−90t2+140t3−70t4 has by Descartes’
rule of signs at most three positive roots. But in fact the following table, where in row
k = 0, 1, . . . , 4 we have the first few coefficients of the powerseries f (t)/(1 − t)k ,
shows that it is positive in the whole interval ]0, 1[.

a : 1 20 − 90 140 − 70 0 0 · · ·
lps(1)(a) : 1 21 − 69 71 1 1 1 · · ·
lps(2)(a) : 1 22 − 47 24 25 26 27 · · ·
lps(3)(a) : 1 23 − 24 0 25 51 78 · · ·
lps(4)(a) : 1 24 0 0 25 76 154 · · ·

To study the number of roots in ]1,+∞[ one considers the reciprocal polynomial
x4 f (1/x) = −70+140x−90x2+20x3+x4. It has roots in ]0, 1[ that via inversion
correspond to roots of f in ]1,+∞[. Looking at the first three rows of its associated
table,

a : −70 140 −90 20 1 0 0 · · ·
lps(1)(a) : −70 70 −20 0 1 1 1 · · ·
lps(2)(a) : −70 0 −20 −20 −19 −18 −17 · · ·

we find that the last row will eventually turn positive. So the original polynomial
which evidently has at least one positive root, has in fact precisely one positive
root somewhere in ]1,+∞[, and hence only one in ]0,+∞[. The slow convergence
towards a positive value is consequence of the fact that the original polynomial and
the reciprocal polynomial have as (only) (approximate) positive roots 1.04 and 0.96,
respectively. If one chooses u = 1.3 (instead of 1) then the second table reads

a : −70 182 −152.1 43.94 2.86 0 0 · · ·
lps(1)(a) : −70 112 −40.1 3.84 6.70 6.70 6.70 · · ·
lps(2)(a) : −70 42 1.9 5.74 12.44 19.13 25.83 · · ·

,

showing in the last row an earlier sign change. It estimates the roots of the reciprocal
in ]0, u[ hence of the original in ]1/u,+∞[.

3 Precise Statements

In connection with the representation of multivariate polynomials as sums of squares
we came up with the following conjecture.
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Let � = {(x, y) : x+y = 1, x, y ≥ 0} be the 1-simplex, u = (u0, u1, . . ., un−1, un)
∈ R

n+1
≥0 and consider the binary form

F (x, y) = F (x, y, u) = unx
n + u0y

n −
∑

i,j≥1
i+j=n

uix
iyj .

Conjecture 3.1 If F|� ≥ 0 then it has only one critical point (which is necessarily
a unique global minimizer).

We present one of our solutions because we think it is quite surprising and possibly
applicable in other contexts.

It is natural to approach this problem by trying to make use of the vast literature
on (real) roots of univariate polynomials and hence to dehomogenize the original
question.

To study a linear combination of monomials xiyj under the condition x+y = 1 is
the same as studying combinations of monomials t i(1−t)j (which figure prominently
in Bernstein polynomials) on the real line. If one does so introducing t = x/y and
defining

μi(t) = − i

n
t i−1 +

(

1 − i

n

)

t i ,

p(t , u) = −u0 +
n−1
∑

i=1

uiμi(t) + unt
n−1 (1)

=
(

−u0 − u1

n

)

+
n−2
∑

i=1

(
(

1 − i

n

)

ui − i + 1

n
ui+1

)

t i +
(un−1

n
+ un

)

tn−1,

f (t , u) = u0 −
n−1
∑

i=1

ui t
i + unt

n,

some elementary calculations lead to

Lemma 3.2 Supposing y 
= 0 and putting t = x
y

we have

i. DF (x, y) = nyn−1p(t , u);
ii. If u0, un > 0 then DF (1, 0) > 0 and DF (0, 1) < 0, that is, the points (1, 0) and

(0, 1) are not critical;
iii. F (x, y) = ynf (t , u).
One can reformulate conjecture 1 as follows

Conjecture 3.3 If R≥0 � t �→ f (t , u) is nonnegative then R≥0 � t �→ p(t , u) has
exactly one positive root.

Note that nonnegativity off implies f (1, u) ≥ 0 which means
∑n−1

i=1 ui ≤ u0+un.

For some time we conjectured that this inequality is sufficient for unicity of roots.
As in Sect. 2 the LPS-theorem can be used for estimating the number of zeros in

]u′,+∞[ of any polynomial. To this end define similarly as above the polynomial
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p̃(x) = xdeg(p)p(1/x) and note that p̃(x) has in ]0, 1/u′[ as many zeros as p has in
]u′,+∞[.

By means of the LPS-theorem we were able to show that under the hypothesis
∑n−1

i=1 ui < u0 + un one of the sets ]0, 1[, {1}, ]1,∞[ must contain all the positive
roots of the polynomial p(t , u). Unfortunately we discovered that as we increased the
degree n− 1 of our polynomials the only way to show that p(t , u) has only one root
was to increase k in the calculation of the power series p(t , u)/(1 − t)k. Worse than
this, after considerable theoretical insight we managed to find a counter example for
the strengthened conjecture that

n−1
∑

i=1

ui < u0 + un implies unicity of roots of p(t , u).

If u0 = un = 1 the first such example seems to occur for n = 636.

Example 3.4 Assume n = 750, u0 = un = 1, u1 = 1.01412, u500 = 0.942, and all
other ui = 0. Then

p(t , u) = −1 + u1μ1(t) + u500μ500(t) + t749

= −1.00135216 + 1.01276784 t − 0.628 t499 + 0.314 t500 + t749

and

f (t , u) = 1 − u1t − u500t
500 + t750.

Here
∑n−1

i=1 ui = 1.95612 < u0 + un = 2, but p(t , u) has roots (p) = {0.991366,
0.992061, 0.992877}.

The following graphics show the behavior of p near its root t0 = 0.992061 at
two scales in the intervals ]0.98, 1[ and ]0.991, 0.993[. (The pairs of numbers in left
upper and lower right corners delimited the figures.)

So we were back to square one.
Still not knowing how to accommodate the requirement that f be nonnegative,

we formulated the conjecture as a contrapositive.
Let us say that a polynomial f has a weak±-root in t0 if f (t0) = 0 and ḟ (t0) ≤ 0.
We show now how we proved (surprisingly by means of theory of Linear

Programming)
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Theorem 3.5 Assume p(t , u) has at least two roots in R>0. Then f (1, u) < 0 or
there is a weak ±-root t0 of p|R>0 such that f (t0, u) < 0.

Note that it is clear that this theorem implies our conjecture, since it guarantees
that if p has more than one root, then f is negative somewhere; since p(0, u) < 0, it
is also clear that the existence of two (distinct) roots for p, imply the existence of a
weak ±-root.

Given a polynomial p(t , u) and a weak ±-root t0 one can define a polyhedron
P = P (t0, u0, un). Actually to say that t0 is a weak ±-root is to say that p(t0, u) = 0
and ṗ(t0, u) := ∂p

∂t
(t0, u) ≤ 0. By the formulae for p, in (1), this means that u satisfies

the following system of linear inequalities; the matrix at the left being (n+2)×(n−1)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ1(t0) −μ2(t0) · · · −μn−1(t0)
μ1(t0) μ2(t0) · · · μn−1(t0)
μ̇1(t0) μ̇2(t0) · · · μ̇n−1(t0)
−1

−1
. . .

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

u1

u2
...

un−1

⎤

⎥
⎥
⎥
⎦
≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−u0 + unt
n−1
0

u0 − unt
n−1
0

−(n− 1)unt
n−2
0

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The first two rows encoding p(t0, u) = 0 are evidently linearly dependent; the
n−1 lower rows encode the nonnegativity of u1:n−1.The system defines a polyhedron
P = P (t0, u0, un) which may well be empty. Indeed if n = 3 for example, then it is
easy to see that for any u0, un, t0 > 0, P (t0, u0, un) is empty, but there are examples
for large n where P 
= ∅.

Given this formalization one can show by means of the theory of linear pro-
gramming that every vertex of P has exactly two nonzero coordinates. More
P � u1:n−1 �→ f (t0, u0e0 + u1:n−1 + unen) takes its maximum at some vertex of
P , and then, by means of Cramer’s rule that in each such vertex f (t0, u) < 0, which
concludes the proof.
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Abstract This paper presents an analytical model that evaluates the performance
of the Maximum Packing channel allocation technique on linear and planar cellular
systems. The main innovations introduced by this model are the deterministic iden-
tification of the system space-state SMP and its application to a multi-dimensional
Markov chain.

The model was thereafter applied to several cellular systems with different char-
acteristics: number of cells, number of channels, interference constraints and offered
traffic values. Simulation results have validated the model and shown that Maximum
Packing technique provides the best performance among all the available algorithms.

Keywords Markov chains · Maximum packing · Models

1 Introduction

The exponential growth observed on the number of current mobile cellular systems
users, has however, exposed several capacity and performance problems of those
networks originated by an inefficient usage of the assigned spectrum. The inclusion
of dynamic channel allocation technique on the mobile network protocols increases
the utilization of the radio resources mitigating earlier mentioned problems and
leading to more efficient solutions.

This paper presents a new analytical model to evaluate MP (Maximum Packing)
assignment technique performance based on multidimensional Markov Chains. A
Markov chain is a special case of a Markov process, which itself is a special case of a
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random or stochastic process. A Markov chain is a discrete-state random process in
which the evolution of the state of the process beginning at a time t (continuous-time)
or n (discrete-time) depends only on the current state X(t) or Xn, and not how the
chain reached its current state or how long it has been in that state.

The analytical model is based on the system space-state SMP, evaluation based
only on the cellular geometry, interference constraints and amount of radio resources.
The blocking probabilities at the system and cell level are determined by adding the
occurrence probabilities, of all the states that correspond to specific cell and system
blocking conditions.

2 MP Analytical Evaluation

2.1 Maximum Packing

The MP technique [1] is an idealized DCA algorithm that will only block a call if
there are no possible reassignments in order to free a channel for the new call. This
algorithm tries to find a possible solution to serve each call at each moment. The
large amount of information required by this technique, in order to search for all
possible reallocations, makes this algorithm impractical for implementation.

2.2 The Dimensionality of the MP Problem

In mobile cellular networks that adopt the FCA (Fixed Channel Allocation) technique
as a resource management method, the existing radio resources are divided among
the cells of the different clusters in a predefined and permanent way. Having in mind
that in this channel allocation technique the cells are independent from each other,
we conclude that the performance evaluation problem has only one dimension. In
this case the blocking probability of each cell is given by the Erlang B formula where
it is only necessary to know the number of available channels and the offered traffic
load values per cell.

DCA techniques employ a different approach. In addition to the knowledge of
the channel usage in a particular cell, the system must also be aware of the resource
utilization in the neighboring cells. The acceptance of a new call depends on the
global state of the system i.e. the number of calls accepted in each cell and the
information with respect to the channels used in supporting ongoing calls.

The MP algorithm however precludes the necessity of that information because a
call is admitted only if there are possible reassignments of the existing calls, in order to
free a channel in that cell. Therefore, the dimension of the MP performance evaluation
problem is equal to the number of cells on the considered mobile cellular system.
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2.3 Mathematical Model Definition

The scenario presented in this paper points for a cellular system built up by a finite set
of N non-overlapping cells that share a common pool of radio resources according
to the MP channel allocation technique presented in the former section. It is also
assumed that the offered traffic values of each cell are known, being independent
from each other.

A non-negative integer vector �x of length N was introduced to represents the radio
resources utilization in the system at a given instant of time. Each of its component
xi represents the total number of active calls on a given cell [2].

After the scenario and model definitions the next step in our analysis is the iden-
tification of all the states that a given cellular system can take with respect to the
radio resources utilization, which altogether form the space-state SMP. The result-
ing space-state SMP is a sub-space of ZN+ restricted only by the number of available
channels on the pool, the channel reuse constraints and the cellular system geometry
i.e. the number of cells and its spatial distribution. These limitations on the system
space-state SMP can be expressed by (1)

SMP =
⎧

⎨

⎩
�x ∈ ZN

+ :
N
⋂

i=1

⎛

⎝

∑

j∈Ci

xj ≤ M ∀Ci

⎞

⎠

⎫

⎬

⎭
(1)

This equation declares that the maximum number of active calls inside any cluster
containing a particular cell must be smaller or equal to M (the total number of
channels on the system). It is necessary to take into account that this condition must
be fulfilled simultaneously for all the system cells. In Eq. (1) the symbol Ci was
introduced to represents an arbitrary cluster that contains the cell i.

The following step is the system stochastic property characterization. Under
the usual accepted assumptions, a Poisson call arrival process and an exponential
call-holding time distribution, the system stochastic process {x(t), t ≥ 0} can be
considered as a Markov chain on the space-state SMP, being the states occurrence
probability in statistical balance p(x) given [3]

p (�x) =
N
∏

i=1

Ai
xi

xi ! · p (0, 0, · · · , 0) for all �x ∈ SMP (2)

As usual in this type of problems, that set of equations is not sufficient to evalu-
ate the state occurrence probabilities, being necessary to introduce the statistical
normalization equation.

∑

�x∈SMP

p (�x) = 1 (3)

The blocking probability will be now evaluated adding the occurrence probabilities
of all the states that correspond to a given blocking situation. A call will be blocked
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Fig. 1 Three cell system
321

if it finds the system in a state for which the maximum number of ongoing calls
in at least one cluster, that contains this particular cell, is equal to the number of
available channels.

The system blocking probability measured at a global basis is obtained by

GoS = 1

L
·

N
∑

i=1

Ai · Pbi with L =
N
∑

i=1

Ai (4)

3 Highway Cellular Systems Analysis

This section is devoted to the evaluation of the MP channel allocation technique
performance on linear cellular systems. The study of linear arrays of cells was sepa-
rated from planar layouts of cells, due to certain particularities, which facilitate the
evaluation of the system space-sate SMP on this specific case leading to very sim-
ple equations. A cluster in a linear cellular system is made of K consecutive cells,
being the cluster size equal to the system reuse factor. The total number of distinct
clusters on a linear system is given by N −K + 1. The restrictions on the number of
simultaneous calls in a cluster imposed by the channel reuse concept are now used
to establish a very simple set of independent equations that will deterministically
determine the system space-state.

Example 1: The 3-Cell Highway System This simplest possible scenario was
selected among others because it provides a simple starting point for more complex
system’s studies. The system presented in Fig. 1 has the following parameters: N = 3;
M = 4; K = 2; Type=Linear, where N represents the number of cell in the system,
M the number of channel and K the system reuse factor.

The MP channel allocation technique works as follows: if a call arrives at one of
the extremity cells and there is an available channel on the system, this channel is
selected and locked in that cell and in the central cell in order to avoid interference.
On the other hand, if a channel is assigned to the central cell, this channel must be
locked in all the cells.

The space-state SMP is a sub-space of Z3+, i.e. SMP ⊂ Z3+ being its definition given
by the following equation:

SMP = {�x → (x1, x2, x3) ∈ Z3
+ : x1 + x2 ≤ M ∧ x2 + x3 ≤ M

}

(5)

Figure 2 presents all the 55 states that belong to SMP, the states that represent cell-
blocking conditions in the clusters C1, 2 and C2,3 and the allowed transitions among
the system states.
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Fig. 2 Space SMP and Markov
chain for the three-cell system x1

x2

x3

States belonging to - Ω1,2

States belonging to - Ω2,3

The steady state probabilities of each one of the system states is now easily
evaluated appealing only to the normalizing constant G assessment

G = p(0, 0, 0)−1 =
M
∑

x1=0

M−x1∑

x2=0

M−x2∑

x3=0

3
∏

i=1

Ai
xi

xi ! (6)

The occurrence probability values of each one of the 55 states belonging to SMP, was
presented in Fig. 3 considering a uniform offered traffic distribution per cell of 1.0
Erl. Those results were obtained analytically, appealing to Eqs. (2) and (6) and by
simulation [4].

The next step is the blocking sub-spaces for each one of the system cells identifi-
cation. Cell #1 is on a blocked state if the sum of active calls on the cluster C1,2, is
equal to the number of radio resources in the system. The set B1 that represents the
conjunction of all the states for which the cell #1 is blocked is equal to 
1,2 and is
given by the following expression

B1 = {�x ∈ SMP : x1 = M − x2} (7)

The associated blocking probability value Pb1, is obtained adding the occurrence
probability of all the elements of B1, which leads to the following equation

Pb1 =

M∑

x2=0

M−x2∑

x3=0

(

A1
(M−x2)

(M−x2)! ·
3∏

i=2

Ai
xi

xi !
)

M∑

x1=0

M−x1∑

x2=0

M−x2∑

x3=0

3∏

i=1

Ai
xi

xi !
(8)
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Fig. 3 State space SMP occurrence probability values

On the other hand the cell #3 is in a blocked state if the sum of ongoing calls in the
cluster C2,3, is equal to the number of radio resources in the system.

B3 = {�x ∈ SMP : x3 = M − x2} (9)

The blocking probability value Pb3 for the cell 3 is given by

Pb3 =

M∑

x1=0

M−x1∑

x2=0

(
2∏

i=1

Ai
xi

xi ! · A3
(M−x2)

(M − x2) !
)

M∑

x1=0

M−x1∑

x2=0

M−x2∑

x3=0

3∏

i=1

Ai
xi

xi !
(10)

The central cell blocking probability evaluation follows the same steps earlier pre-
sented. However, in opposition to the extremity cells, the central cell #2 is affected
by the radio resources utilization in the distinct clusters C1,2 and C2,3. The block-
ing probability space-state for the central cell is given by the reunion of the states
contained on the sets 
1,2 and 
2,3 resulting in the following expression.

B2 = {�x ∈ SMP : x1 + x2 = M ∨ x2 + x3 = M} (11)

In the evaluation of B2 it is necessary to take into account that the elements of the sub-
spaces 
1,2 and 
2,3 are not mutually exclusive. Thus, we should use the following
equation retrieved from the set theory:

P
(


1,2 ∪
2,3
) = P

(


1,2
)+ P

(


2,3
)− P

(


1,2 ∩
2,3
)

(12)

The sub-spaces 
1,2 and 
2,3 probabilities were already evaluated on the Eqs. (7) and
(9) being necessary only to assess the sub-space 
1,2 ∩ 
2,3 and its corresponding
probability. The set 
1,2 ∩ 
2,3 is given by


1,2 ∩
2,3 = {�x → (x1, x2, x3) ∈ SMP : x1 = x3 = M − x2} (13)
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Fig. 4 Three cells highway system blocking probabilities

The blocking probability on the central cell #2 is obtained replacing (8), (10) and
(13) on (12).

Pb2 = Pb1 + Pb3 −

M∑

x2=0

A1
(M−x2)

(M − x2) ! ·
A2

x2

x2! · A3
(M−x2)

(M − x2) !
M∑

x1=0

M−x1∑

x2=0

M−x2∑

x3=0

3∏

i=1

Ai
xi

xi !
(14)

Cells blocking probabilities and the system GoS of the linear cellular system (N = 3;
M = 4; K = 2, Type=Linear) are depicted on Fig. 4.

Besides the blocking probabilities values evaluation it is also necessary to assess
the algorithm complexity by counting the total number of states of each one of the
earlier mentioned space-states SMP, B1, B2 and B3.

For the considered example (a system with three cells, and four channels), the
sub-spaces B1 and B3 have 15 states less than the 25 states of central cell blocking
sub-space B2. The number of states belonging to SMP is generically a function of the
number of available channels in the system being given by

#SMP =
M+1
∑

k=1

k2 = (M + 1) · (M + 2) · (2 ·M + 3)

6
(15)

On the other hand, the number of states of the sub-spaces B1 and B3 is obtained from

#B1 = #B3 =
M+1
∑

k=1

k = (M + 1) · (M + 2)

2
(16)



242 V. D. N. Santos et al.

Finally the number of states on the sub-space B2 is given by

#B2 = (M + 1)2 (17)

One can verify from the above equations, that the extremity cells present always a
smaller number of blocking states than the central cell. This propriety is common to
others cellular systems and arises from the fact that the boundary cells do not have the
complete set of interference cells. The evaluation of the MP technique performance in
more complex cellular systems, with a larger number of cells and other interference
reuse constraints, will be considered now using the knowledge retrieved from this
simple example.

Example 2: The n-Cell Highway System Lets consider now a highway cellular
system with the same constraints as the above one but with an increased number of
cells in its layout (N = n; M = 4; K = 2, Type=Linear). Under these assumptions
the system space-state SMP is defined by the following equation:

SMP =
{

�x ∈ ZN
+ :

N−1
⋂

i=1

(xi + xi+1 ≤ M)

}

(18)

The occurrence probability of the system states is evaluated as before appealing to a
new normalizing constant.

G = p

⎛

⎝0, · · · , 0
︸ ︷︷ ︸

nelements

⎞

⎠

−1

=
M
∑

x1=0

M−x1∑

x2=0

· · ·
(M−xN−1)∑

xn=0
︸ ︷︷ ︸

nsums

n
∏

i=1

Ai
xi

xi ! (19)

The peculiar structure of the last equation conducts to a very simple and efficient
algorithm based on nested loops. The unique enigma on the proposed implementation
is the loops index values selection. As it can be seen in (19) that the initial value of all
the vector components is always zero. On the other hand the upper limit value of the
vector components is given by an expression that contains the outer loops variable
values only.

With respect to the blocking probabilities evaluation, for example the cell #1, is
on a blocked state if the Eq. (7) is fulfilled, the single difference holds on the vector
dimension that is now n instead of 3, being its blocking probability given by

Pb1 = 1

G
·

M
∑

x2=0

M−x2∑

x3=0

· · ·
(M−xn−1)∑

xn=0
︸ ︷︷ ︸

n−1 sums

(

A1
(M−x2)

(M − x2) ! ·
n
∏

i=2

Ai
xi

xi !

)

(20)

Figure 5 shows the cells blocking probabilities and the system GoS concerning
to a particular cellular system represented by the parameters (N = 7; M = 4; K = 2;
Type=Linear).
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Fig. 6 Seven cells planar
network

6         7         3

1         2

5         4

It was observed that the extremity cells present a lower blocking probability than
the cells situated on inner positions. This trend was earlier explained based on the
number of states of each cell. From the results retrieved from Figs. 4 and 5 we can
also conclude that the blocking probabilities of the inner and outer cells present
similar values irrespectively of the number of cells on the system.

4 Planar Cellular Systems Analysis

The deterministic evaluation of planar cellular systems space-state SMP and blocking
probabilities is not so simple as for linear cellular systems. It is only possible under
certain restricted reuse factor values and system geometry.

Example 3: The Planar 7-Cell System Lets consider as a planar system example
a 7-cell cellular system, represented in Fig. 6 with the following parameters (N = 7;
M = 10; K = 3, Type= Planar).
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Six cluster configurations were identified for this particular example: C1,2,7; C2,3,7;
C3,4,7; C4,5,7; C5,6,7; C1,6,7 resultant from different arrangements of the system cells.
The system’s space-state, SMP, is now easily defined considering the constraints
embedded on the cluster definition

SMP = {�x → (x1, x2, · · · , x7) ∈ Z7+ : x1 + x6 + x7 ≤ M ∧
· · · ∧ xi + xi+1 + x7 ≤ M : i = 1, 2, · · · , 5} (21)

The normalization constant G for this particular system is given by the following
formula

G =
M
∑

x7=0

χ
∑

x6=0

δ
∑

x5=0

ε
∑

x4=0

ϕ
∑

x3=0

φ
∑

x2=0

min(δ;γ )
∑

x1=0

7
∏

i=1

Ai
xi

xi ! (22)

where

χ = M − x7; δ = M − (x6 + x7); ε = M − (x5 + x7);
ϕ = M − (x4 + x7); φ = M − (x3 + x7); γ = M − (x2 + x7);

The Eq. (22) presents however one particularity, the variable x1 upper limit, that is
given by the minimum of two numbers δ and γ . This operation arises from the planar
systems intrinsic nature, for which, at end it remains one cell that is restricted by two
other constraints already defined.

The evaluation of the cells blocking probability begins as usual with the identifi-
cation of the clusters that contain that particular cell. The outer cells of the system,
cells #1 to #6, are on a blocking condition if at least one cluster that contains that
cell cannot receive an incoming call. For example the cell #1 blocking space-state is
given by

B1 = {�x ∈ SMP : x1 + x6 + x7 = M ∨ x1 + x2 + x7 = M} (23)

For the central cell of the system, cell #7, all the clusters must be considered in the
analysis. Cell #7 blocking space-state is given by the reunion of 
1,6,7, 
1,2,7, 
2,3,7,

3,4,7, 
4,5,7, and 
5,6,7

B7 = {�x ∈ SMP : x1 + x6 + x7 = M ∨ x1 + x2 + x7 = M

· · · ∨ xi + xi+1 + x7 = M : i = 1, 2, · · · , 5} (24)

Figure 7 shows the blocking probabilities of the cells and the system GoS as func-
tion of the offered traffic, concerning the planar cellular system presented on the
example 3.

From the figure one can verify that under uniform traffic load conditions the outer
cells, cell #1–#6, blocking probability presents the same value approximately 3 times
less than the observed for central cell # 7.
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Fig. 7 Seven cells planar system performance

5 Conclusions

This paper proposes an analytical model that is expected to be so useful to evaluate
the MP technique performance, as the classical Erlang B formula is to evaluate
the FCA technique GoS. The model is the first known method that evaluates the
MP technique performance and was validated by simulations performed for all the
considered examples: highway and planar cellular systems. The main disadvantage
is the enormous computational effort needed to evaluate its performance even on
small systems with a reduced number of cells and channels.
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A Manufacturing Scheduling Approach
by Combining Simulation Technique
with the Hodgson’s Algorithm

Telmo Pinto and Leonilde Varela

Abstract The main objective of this paper consists on presenting an application of
The Hodgson’s manufacturing scheduling algorithm applied on a production system
model, through simulation technique. The simulation, executed on Arena, is applied
to a model of a production environment for producing three new products, by using
five different components. The components are processed on several work centres,
which include different machines, organized on a job shop environment. The Hodg-
son’s algorithm is applied on a particular machine of the job shop, which consists
on a bottleneck, and the main objective consists on minimizing the total number of
tardy jobs on that bottleneck machine.

Keywords Manufacturing scheduling · Simulation ·ARENA ·Hodgson’s algorithm

1 Introduction

Simulation techniques have been greatly applied on manufacturing scheduling over
the last 30 years, by establishing itself as a high practical application on solving this
kind of problems occurring on real world scenarios, which is highly due to its quality
on enabling a powerful decision making process [1, 2]. In this work we usedARENA,
because it is a user-friendly environment, which enables partners from different areas
to easily work together, without having to know a programming language [3]. The
ARENA uses SIMAN (SIMulation ANalysis) as a language for elaborating a model,
by using a graphical interface, and enables powerful reports for different kind of
results analysis.

The aim of this work consists on simulating a manufacturing environment where
three different articles are to be produced by using five distinct components. Two
production models are defined, one integrating machines, expressed by Mi, and
another integrating machine centres, CMi. These models are going to be compared
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through decision analysis, so that: if they execute equivalent operations the time/cost
balancing has to be analysed in order to obtain acceptable time and cost values.

Another concern about this work has to due with the combination of the Hodgson’s
algorithm within the simulation process, in order to minimize the total number of
tardy jobs on a bottleneck machine [4].

2 Problem Description

Suppose a company pretends to manufacture three new products, A1, A2 e A3, in a
modular production from five components: C1, C2, C3, C4 e C5. The quantity of
weekly search expected of the results is variable and normally distributed with the
parameters (100; 5) for A1, (200; 10) for A2 and (400; 15) for A3. The processing
times for each machine vary accordingly with the component that is being processed.

The assemblage of the three products is done in a assemblage flow shop, Pi
(i= 1, . . . , 3) while the components are produced in work posts (of a generic job
shop) having machines designated by Mi (i= 1, . . . , 6). It is also possible to use
machine centres, CMi (i= 1, 2) alternatively to the machines, which are twice as
fast. The sequence of manufacture depends according with the component. After each
operation, the component can immediately follow the next machine. The process of
add in pile is done at the launching of the component, that is, at the transportation
to the assemblage flow shop. The components transportation from the warehouse
of raw materials to the machines (or alternatively, to the machine centres) is done
by an Automatic Guided Vehicle (AGV). Every transport has the capacity for two
components (of any type).

2.1 Assumptions

The following assumptions were considered on the resolution of the proposed
problem:

1. Each machine does only one specific type of operation.
2. A machine can only execute an operation at a certain moment in time and it

implies a permanent employee.
3. An operation can’t be interrupted after being initiated.
4. There aren’t alternative sequences for each component.
5. Each AGV can transport a maximum of two pallets for trip.
6. Mean Time Between Failures (MTBF) for any machine, machine centre or AGV

is 200 h.
7. Mean Time To Recovery (MTTR) of each equipment is 10 h.
8. The velocity of any vehicle or transportation of production material in the system

is fixed during the simulation time and it is 1 m per second. The acceleration and
slowdown are ignored.
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9. The weekly activity time is 40 h.
10. The transportation of the components between the machines is done in wagons

that follow unidirectional paths fixated in rails.

3 Methodology

The simulation model was developed using ARENA 10.0 software.
The problem described will be simulated 3 times and each simulation will last a

total of 1000 h. The Warm Up time is 20 h.
The processing time varies according with the component and the ma-

chine/machine centre in which that is being processed.
There were two identical production models implemented: the first executes

processes in machines, and the second uses machines centres.
At a first phase, every existing waiting queues on the model are ordered following

the FIFO (First In First Out) technique, that is, the entity that is waiting for a longer
period will be the first to be processed when the machine gets free. The goal of this
paper is to change, for each specific processor, the priority of that waiting queue.

The amount of each machine type varies according with the exposed scenario at
the results analysis. This variation will have an effect not only on the production
costs but also on the quickness of the whole production process. Thus, the time/cost
components should be heuristically analyzed in order to produce the best possible,
and at an acceptable cost and duration.

3.1 EDD Rule and Hodgson’s Algorithm

There are several priority measures. A priority rule is a rule that specifies the priority
of how the entities present in the waiting queue of a processor are processed. The
Earliest Due Date rule specifies that when a machine is free, it is selected the entity
that has the earliest due date to be processed first.

The Hodgson algorithm determines the sequence of tasks whose number of
delayed jobs is minimum [5–7].

Let E be the set that contains all the jobs that must be processed and L the empty
set. Thus, the algorithm is constituted by the following sequence of steps:

Step 1: Sort the jobs that belong to the E set and sort by increasing deliver date
(earliest due date rule).

Step 2: If none of the jobs is delayed the sequence is optimal. If the opposite
happens, the delayed job and its k position (i.e. [k]) are indentified.

Step 3: Identify the entity of bigger duration in the set of the first k jobs. Remove
it from the set E and put it on the L set. Establish the new times for the conclusion
of the remained jobs on E and return to step 2.

For this work was implemented the Hodgson algorithm, by using JAVA 5 language.
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Table 1 Problem
data—processing time (Ti)
and due date (Ei) for each
component (Ci)

Ci Ei Ti

1 1 2
2 5 7
3 3 8
4 9 13
5 7 11

Table 2 Components of each
article

A1 2c1 2c3 1c5 –

A2 3c1 2c2 1c3 1c4
A3 2c1 2c3 3c5 –

As described the Hodgson algorithm ensures the sequence with the least num-
ber of delays in a unique machine. The modulated system illustrates a job shop
(Machines/Machine centre 1) and also an assemblage flow shop (Assemblages Posts).

The goal is to restrict the problem to a single machine and evaluate the impact in
the priority of the waiting queue. This approach needs demands new considerations:

• Restrict the machine process to only five considered components;
• Ignore the existing sequences that were causing intervening periods and random-

ization of the components in the waiting queue;
• Consider the components of that machine, after processed, as finished products;
• Consider that the due dates are only related to the components we wish to evaluate.
• Consider that there are five components with known delivery dates that go through

the machine.

For the implementation of the Hodgson Algorithm in Arena, besides the considera-
tions cited above, it was necessary to execute the following procedures:

• Wait t time units, during which the processor is inactive.
• Apply the Hodgson Algorithm for the existing components in the waiting queue;
• Keep the values of the due dates for the components that belong to the E set;
• Increase at a large scale the due dates values of the L set;
• Change the choice rule for the machine waiting queue (until now FIFO) in order

to allow priority to the lower values of due date (EDD rule);

The example considered the following data shown on Table 1:

4 Simulation Model in Arena

The input in the system is performed by the demand of three types of articles (A1, A2
and A3). If there are products in stock, it won’t be necessary to produce more. The
demand of an article implies the necessity to produce the respective components, as
seen in Table 2.
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Fig. 1 Machines in the work centre

The components will be produced in machines or machine centres, proceeding
afterwards to the flow shop (assemblage posts) in order to manufacture the final
articles.
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Table 3 Processing times in minutes of the components in each machine

cmp Op o1 o2 o3 o4 o5

c1 3 M2 5 M1 4 M5 10 M6 –
c2 12 M1 6 M3 4 M2 3 M4 6 M6
c3 5 M3 1 M1 2 M4 8 M5 7 M6
c4 5 M2 6 M3 3 M4 5 M5 10 M6
c5 5 M1 7 M2 2 M3 4 M5 –

Fig. 2 Machine centres

4.1 Machines

After receiving the information about the article demand, the raw material is required
from the warehouse. Then, it will be sent to the machines (Fig. 1), where it will be
processed in order to obtain the necessary components to produce articles.

The production sequence of the five components and their processing times (in
minutes) of each machine can be seen in Table 3.

4.2 Machine Centre

The machine centres work as machine substitutes. The raw material is sent to those
machine centres and processed in order to obtain the necessary components to
produce the articles (Fig. 2).
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Table 4 Components
processing times, in minutes,
on each machine centre

Component Operation o1 o2 o3

c1 4 CM1 2 CM2 10 M6
c2 11 CM1 1.5 CM2 6 M6
c3 3 CM1 5 CM2 7 M6
c4 5.5 CM1 4 CM2 10 M6
c5 7 CM1 2 CM2 –

The machine centres are twice as fast to produce than machines. The machine
centre 1 (CM1) will replace the machines M1, M2 e M3. The machine centre 2 (CM2)
replaces M4 and M5. The machine 6 (M6) doesn’t has substitute. The components
processing times in minutes and their sequence in the machine centres are defined in
Table 4.

4.3 Assembling Centres

After processing the components in the machines or in the machine centres, the
components are sent to a flow shop with three posts (Fig. 3) where are produced the
final articles.

5 Results Analysis

The results presented below highlight the existing processes in the machines and
in the machines centres. The simulation results suggest parameters to evaluate the
system state, like waiting queues length, mean waiting time and mean occupancy. So
it is necessary to change the resource parameters and verify the impact in the system.

Fig. 3 Assembly centres
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Table 5 Results for each machine (M1=M2=M3=M4=M5=M6= 1 unit)

(a) M1 M2 M3 M4 M5 M6

(b) 1 1 1 1 1 1
(c) 6800 1071 4.59 0.20 470.51 977.85
(d) 22.75 22.75 16.46 8.07 22.75 22.76
(e) 0.96 0.96 0.79 0.34 0.96 0.96

Fig. 4 Average length for each machine queue

At the following tables are presented the corresponding results of the various
machines there are present in the model. The values presented are the arithmetic
mean of the values from the three simulations. The number of machines is modified
to check the variation produced in the various measures of the resource.

In this first Table (5), the machine number of each type is one unit, and:

a. Types of machines;
b. Number of resources;
c. Average size of the waiting queue;
d. Average cost of the resource in activity;
e. Average occupancy of the resource;
f. Types of machines centres

In the next graphic (Fig. 4), it can be seen the average length in each waiting queue.
In the next Table (6), the number of machines for each type is 2 units.
The next tables indicate the machine centre results. It is also adjusted the number

of machine centres in the model to confirm the impact of this modification in the
resource measures. In the next Table (7) and in the next graphic (Fig. 5), the machine
centres number for each type is one unit.

In the next Table (8), the machines centre number for each type is two units.
As can be seen, the average length in the waiting queues for some machines and

machine centre is very high.



A Manufacturing Scheduling Approach by Combining Simulation . . . 255

Table 6 Results for each machine (M1=M2=M3=M4=M5=M6= 2 units)

(a) M1 M2 M3 M4 M5 M6

(b) 2 2 2 2 2 2
(c) 12 1.47 0.23 0.18 59.88 106.49
(d) 47.50 38.515 22.9 15.34 45.51 45.51
(e) 1 0.81 0.48 0.32 0.96 0.96

Table 7 Results for each
machine centres

(f) CM1 CM2 M6

(b) 1 1 1
(c) 227.91 0.01 175.02
(d) 71.25 42.17 71.25
(e) 1.0 0.59 1.0

Fig. 5 Average length of
queues on the machine
centres

Table 8 Results for each
machine centre
(CM1=CM2=M6= 2
units)

(f) CM1 CM2 M6

(b) 2 2 2
(c) 5.71 0 2419
(d) 125.86 25.37 142.5
(e) 0.88 0.18 1.0

5.1 Sensitivity Analysis

In order to minimize the average time in the waiting queues for each resource, the
machine number and machine centres are adjusted. Those resources number are
changed to reasonable values using empirical methods.
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Table 9 Results for each
machine

(a) M1 M2 M3 M4 M5 M6

(b) 3 3 2 1 6 6
(c) 0.57 0.41 0.38 0.59 0.32 0.36
(d) 47.51 37.82 22.39 14.47 47.96 58.47
(e) 0.67 0.53 0.47 0.61 0.34 0.41

Fig. 6 Average length for
each waiting queues of each
machine

Table 10 Results for each
machine centres

(f) CM1 CM2 M6

(b) 3 2 6
(c) 0.11 0.02 0
(d) 125.85 74.47 188.96
(e) 0.59 0.52 0.44

The obtained results for that empirical modification can be seen in the next
Table (9) and in the next graphic (Fig. 6).

Another option is adjust the number of machine centres Table (10).
It can be seen in the graphics and tables above that the average length of waiting

queues for each machine and for each machine centres is very low. Therefore, the
resource average costs increase.

6 Conclusion

Applying the Hodgson’s algorithm combined with the simulation technique enables
to optimize the number of late jobs.

Moreover, combining the simulation technique with the Hodgson algorithm en-
ables to obtain more attractive results for the analyzed manufacturing scheduling
problem, namely related with the accomplishment of imposed orders due dates at
the same time we can easily change any other problem parameter, regarding the jobs
processing times as assigned machines for its execution.
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We can also realize that, if the time between job arrivals is not very long, the
results obtained are considerable good.

Considering the dispatching rule, based on the earliest due date, for the Hodgson’s
algorithm initialization also performed very well, enabling almost every job to be
delivered on the corresponding deadline but this approach based on the combination
of this method with the simulation technique also enables to easily change rules, for
other kind of performance measure selection, namely related with the minimization
of total completion time of jobs. In terms of future work we are also considering
to implement additional computational rules for enriching alternative approaches,
based on other kind of methods, namely based on neighborhood search techniques,
to be used in a comparative basis to the work presented on this paper.
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Long Time Numerical Approximation
of Coherent-Structure Solutions of the Cubic
Schrödinger Equation

I. Alonso-Mallo, A. Durán and N. Reguera

Abstract The purpose of this work is to determine suitable numerical methods
to simulate the evolution of coherent structures for the cubic nonlinear Schrödinger
equation with Dirichlet boundary conditions on a finite one-dimensional interval. We
consider different time integrators, some of them preserving one or two invariants
of the problem. We show that the preservation of these invariants is essential for a
good long time simulation.

Keywords Cubic nonlinear Schrödinger equation · Dirichlet boundary conditions ·
Ground state · Invariants · Finite element methods · Conservative integration

1 Introduction

In this work we are going to consider the nonlinear Schrödinger equation on an
interval [0,L] with homogeneous Dirichlet boundary conditions:

i%t +%xx + f (|%|2)% = 0, t > 0, 0 ≤ x ≤ L,
%(0, t) = %(L, t) = 0, t > 0,
%(x, 0) = �(x), 0 ≤ x ≤ L.
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where % = %(x, t) and f is the nonlinear term. It is well known the importance of
these kind of equations in many applications such as waves in plasmas and propaga-
tion in optical fibers [1, 4, 6, 7, 8, 13, 14]. Although this work can be carried out for
more general non linear terms (see [3]) we are going to consider f (x) = x, which
corresponds to the cubic nonlinear Schrödinger equation.

Of special relevance for this work are the two invariant quantities given by the
Hamiltonian energy

H (%) = 1

2

∫ L

0
|%x |2dx − 1

4

∫ L

0
|%|4dx, (2)

and the particle number

N (%) = 1

2

∫ L

0
|%|2dx. (3)

Problem (1) admits ground state solutions of the form

%(x, t) = �(x)e−iλt (4)

where � is the solution of the problem

�xx + f (|�|2)�+ λ� = 0, 0 ≤ x ≤ L

�(0) = �(L) = 0

}

(5)

Some works [9–11] suggest a relevant role of these structures in the dynamics of (1),
in the sense that the solutions of these NLS models tend to form coherent structures
that persist along with small turbulences. On the other hand (see [11]), the profiles
�(x) are minimizers of the Hamiltonian subject to a fixed value of the particle
number, that is, �(x) is the solution of the problem

H (ϕ) → min subject to N(ϕ) = N0. (6)

2 Spatial Discretization

For the numerical integration of the problem (1) we are going to consider the method
of lines. We first discretize in space with cubic finite elements [2]. For this, let
us establish a spatially discretized version of the weak formulation of (1): finding
uh(t) ∈ Vh, such that,

〈 duh

dt
, wh〉 + i〈∂xuh, ∂xwh〉 = i〈|uh|2uh, wh〉, ∀wh ∈ Vh, t ≥ 0
uh(0) = u0,h

}

(7)

whereVh (hdenotes the parameter of the spatial discretization) is the space of Hermite
piecewise cubic polynomial functions, which are continuous and with continuous
derivative, and satisfying homogeneous Dirichlet boundary conditions.
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Therefore, we are looking for approximations uh(x, t) ∈ Vh, to the solution u(x, t)
of (1). More precisely, ifh = L/J > 0 for a natural J , xj = jh for 0 ≤ j ≤ J are the
spatial nodes, and {σj }J−1

j=1

⋃{̃σj }Jj=0 are the shape functions, then the approximation
uh(x, t) will be of the form:

uh(x, t) =
J−1
∑

j=1

uj (t)σj (x) +
J
∑

j=0

ũj (t )̃σj (x) (8)

where uj (t), 1 ≤ j ≤ J − 1 and ũj (t), 0 ≤ j ≤ J are the approximations to u(xj , t),
1 ≤ j ≤ J − 1 and ∂xu(xj , t), 0 ≤ j ≤ J respectively.

After applying this spatial discretization, we obtain a system of ordinary differen-
tial equations

Rh

dU

dt
= MhU + φ(U ) (9)

with

U = [̃u0, u1, ũ1, u2, ũ2, . . . , uJ−1, ũJ−1, ũJ ]T ,

and where Rh and Mh are symmetric matrices and φ(·) is the nonlinear term.

3 Time Integration

In order to choose a convenient method for the numerical integration of (9) we
should take into account that the preservation of the invariants of the problem in
the numerical integration is associated to a better simulation of the solutions for
nonlinear Schrödinger equations (see [5]).

With the purpose of analyzing the importance of preserving the invariants H and
N in our problem, we are going to consider several methods for the time integration.
Firstly, the simply diagonally implicit Runge–Kutta (SDIRK) method of order three
with tableau

3+√3
6

3+√3
6 0

3−√3
6

−√3
3

3+√3
6

1
2

1
2

(10)

This method, although with interesting properties, does not conserve the invariantsH
and N . That is the reason why it will be modified so that we obtain three different new
methods: SDHP that preserves the Hamiltonian H , SDNP that preserves the particle
number N , and SD2P preserving both invariants. This preservation is obtained by
projecting the numerical approximation onto the manifold levels, defined by the
functional H and N . The construction of these methods is explained with more
detail in [3]. We also will compare these methods with two symplectic methods: the
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Fig. 1 Experiment with initial condition (12). Time evolution of the error in the invariant N for
the different methods used. Time step: �t = 8.0d−2 for SD2P, SDNP, SDHP, SYM and SDIRK,
�t = 4.0d−2 for IMPR

implicit mid-point rule and an order three method consisting on a concatenation of
three implicit midpoint steps of length b1�t , b2�t and b3�t respectively (see [12])
with

b1 = b3 = 1

3

(

2 + 21/3 + 2−1/3
)

, b2 = 1 − 2b3. (11)

4 Numerical Experiments

In the numerical experiments we present next, we are going to determine which of
the time integrators used is more competitive in each case and we are going to show
the advantages of using numerical integrators in time that preserve the invariants of
the problem.

In the first experiment we have considered as initial condition

u0(x) =
√

2α

ν
exp

(
iV

2
x

)

sech(
√
αx), x ∈ [−30, 30] (12)
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Fig. 2 Experiment with initial condition (12). Time evolution of the error in the invariant H for
the different methods used. Time step: �t = 8.0d−2 for SD2P, SDNP, SDHP, SYM and SDIRK,
�t = 4.0d−2 for IMPR

where α = 1, ν = 1 and V = 0.25. This initial condition would give rise to a
soliton traveling with velocity 0.25 in the case of the pure initial value problem.
When we use Dirichlet boundary conditions, while the support of the solution is
inside the computational window, the numerical solution behaves as such a soliton.
Nevertheless, in this case, when the numerical solution “arrives” to the boundary it
“bounces” into the computational window again.

We have integrated the problem with the spatial discretization previously ex-
plained and, in order to make a selection of the more convient methods, with several
integrators in time: the simply diagonally implicit Runge–Kutta method of order
three (SDIRK) given by (10), the implicit mid-point rule (IMPR), the symplectic
method (SYM) with coefficients given by (11), the method SDHP that preserves the
Hamiltonian H , SDNP that preserves the particle number N , and SD2P preserving
both invariants.

Figure 1 shows, in logarithmic scale, the time evolution of the relative error in
the invariant N for the six methods considered. We can observe three different kind
of behaviour. As expected, the worst results are for the non conservative method
SDIRK and for the method SDHP that, although preserving the invariant H it does
not preserve the invariant N that is being studied in this figure. A better behaviour is
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Fig. 3 Experiment for a ground state. Time evolution of the error in the invariants for the method
SDNP. Time step: � t= 1.0d−2

obtained with the symplectic methods IMPR and SYM. Nevertheless, the results are
optimal (the errors are similar to the precision used in the computation) when we use
the method SDNP that preserves the invariant N or the method SD2P that preserves
both invariants N and H .

In a similar way, Fig. 2 shows, in logarithmic scale, the time evolution of the
relative error in the invariant H for the six methods used. The comments for this
figure are equivalent as those for Fig. 1. We conclude then, that the best option is to
use integrators in time that preserve the invariants of the problem.

In the next experiment we are interested in studying the evolution of a ground state.
In order to obtain initial profiles that give rise to ground states of our problem it is
enough to consider a discrete version of (6) that after some manipulation can be solved
with standard algorithms (more precisely, we have used the NAG library). Taking
into account the conclusions of the previous experiment we are going to consider
now only time integrators that preserve one of the invariants of the problem. The
algorithm SD2P is not possible to use in this case. The reason is that there exists a
dependence between the variational derivatives of the two invariants at the ground
state which affects the numerical resolution needed to carry out the two projections
(see [3] for more details).
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Fig. 4 Experiment for a ground state. Time evolution of the error in the invariants for the method
SDHP. Time step: � t= 1.0d−2

In Fig. 3 we can observe the time evolution of the relative error in both invariants
when the method SDNP is used as time integrator. As expected, the errors in the
invariant N are similar to the precision used in the computation. Moreover, notice
that the results obtained when we measure the errors in the Hamiltonian H are quite
good and they do not grow with time. Equivalent results are obtained when we use
the integrator SDHP which can be seen in Fig. 4. The results are as expected since
now the invariant that is preserved is H .

Finally, we are going to consider an initial condition with a gaussian profile which
is similar to a ground state although it is not, and it can be considered as a perturbation
of a ground state. More precisely, u0(x) = A exp (−(x − 10)2), x ∈ [0, 20], where
A is chose so that the norm of u0(x) is equal to the norm of the ground state used in
the previous experiment.

The purpose of this experiment is to see the behavior of the numerical solution after
a long time integration. For the integration in time we have used the two projection
method SD2P for which we expect the best behavior. In Fig. 5 we see the modulus of
the numerical solution at three different times: t = 0, t = 25000 and t = 50000. In
this quite long interval of time the solution has developed to a structure localized at
the mid point of the space interval that persists with time along with some turbulence
of small size. It is reasonable to suppose that the previous structure is a ground
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Fig. 5 Modulus of the numerical solution at different times when the initial condition is a gaussian
profile. Time step: �t = 1.0d−2

state. In order to have more numerical evidence of this, we have done the following
experiment. If the numerical solution was a ground state (4), denoting by uj ,n this
solution at (xj , tn), the value of λ at this time can be estimated as

λ ≈
arg
(

uj ,n−1

uj ,n

)

�t
.

We can see the evolution with time of this estimation for this experiment (at x = 10)
in Fig. 6. We observe that this estimation has small oscillations around a constant
value. This constant in time behavior of the numerical estimate of the velocity λ is
associated to the conservative character of the time integrator and it is not obtained
in the corresponding simulation with nonconservative methods [3].
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A Statistical Approach for Tuning the Windowed
Fourier Transform

Miguel F. M. Lima and J. A. Tenreiro Machado

Abstract A time frequency analysis is used in many fields for studying signals with
a time-varying spectral content. The windowed Fourier transform is one of the most
used time-frequency representations. In order to use this technique several parameters
must be defined, including the type, the length and the overlap of the windows. For
tuning the windowed Fourier transform a new method based on the information
theory is presented. Several tests with robotic signals illustrate the appropriateness
of the proposed method.

Keywords Windowed Fourier transform · Short time Fourier transform · Robotics ·
Signal processing · Time-frequency analysis · Mutual information

1 Introduction

Very often real-world processes are non-stationary containing a time-varying fre-
quency content. In many applications we are interested in the frequency content of
a signal at a given period of time. In the case of a non-stationary signal, the classical
Fourier transform (FT) is not suitable for its analysis. In fact, information localized
in time, such as spikes, impacts, seismic events, and high frequency bursts, are not
easily detected by the FT. Therefore, a time frequency analysis is used in many fields
for studying signals with a time-varying spectral content.

There are several approaches to achieve the time frequency analysis of non sta-
tionary signals. Among others, the most popular are the Wigner distribution, the
Gabor transform, the windowed Fourier transform (WFT) and the wavelet transform
[1]. Textbooks that address the time-frequency representations can be referenced
in [2–4]. The comparison between the different approaches, for achieving the time
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frequency analysis, was developed by several authors [5–7] and it was verified that
the choice of the best representation depends on the application [5].

The WFT, also known as short time (or term) Fourier transform (STFT) or time-
varying Fourier transform (TVFT), is one of the most widely used time-frequency
representations. In fact, this technique is adopted in many fields of engineering, such
as in audio (speech and musical) signal processing, vibration signal processing [8]
seismic signal processing, electromagnetic radiation [9] and robotics [10]. The WFT
is an extension of the classical FT, where the transform is evaluated repeatedly for
a running windowed version of the time domain signal. Each FT gives a frequency
domain ‘slice’ associated with the time instant at the window center.

There are several studies for implementing WFT recursive algorithms [11–14].
One important aspect of the WFT is the window length that is related with the
time–frequency resolution. The frequency-resolution of the WFT is proportional to
the effective bandwidth window. Consequently, for the WFT we have a trade-off
between the time and the frequency resolutions: on one hand, a good time resolution
requires a short window, while, on the other hand, a good frequency resolution
requires a long window. Several authors addressed this issue [5, 6, 15]. In order to
adjust the desired resolution, the window length can be adjusted adaptively [16–19]
based on an instantaneous quality measurement of the time frequency content.

Another aspect of the WFT is the type of window adopted [20, 21]. Several authors
studied the effect of the WFT window [1, 22, 23] and verified that the best choice
depends on the type of signal [14].

In summary, there are distinct parameters that must be defined to use the WFT.
In this line of thought the need of indices for tuning adequately the WFT motivated
the work presented here. In fact the authors developed several experiments and
indices that were tested for tuning the WFT. The indices included statistical, entropy
and information theory approaches. In this field several authors investigated the
connections between the information theory (entropies and mutual information) and
the time-frequency representations [24–27]. A method based on the information
theory is presented in this work, revealing to be a promising strategy.

To show the behavior of the information theory approach, the WFT is applied
to a set of signals captured in a robotic manipulator, which is briefly described in
the following section. In the third section are presented some fundamental concepts.
The fourth section presents the results based on experimental signals and, finally, the
fifth section outlines the main conclusions and points out future work.

2 Apparatus and Experimental Signals

In order to analyze signals that occur in a robotic manipulator an experimental plat-
form was developed. The platform has two main parts: the hardware and the software
components [28]. The hardware architecture is shown in Fig. 1. Essentially it is made
up of a mechanical manipulator, a computer and an interface electronic system. The
interface box is inserted between the arm and the robot controller, in order to acquire
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Fig. 1 Block diagram of the hardware architecture

the internal robot signals; nevertheless, the interface captures also external signals,
such as those arising from accelerometers and force/torque sensors. The modules
are made up of electronic cards specifically designed for this work. The function of
the modules is to adapt the signals and to isolate galvanically the robot’s electronic
equipment from the rest of the hardware required by the experiments.

The software package runs in a Pentium 4, 3.0 GHz PC and, from the user’s point
of view, consists of two applications: (i) the acquisition application is a real time
program responsible for acquiring and recording the robot signals; (ii) the analysis
package runs off-line and handles the recorded data. This program allows several
signal processing algorithms such as, FT, WFT, correlation, time synchronization,
etc.
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To test the phenomenon of mechanical impacts, in the experimental setup it is
used a flexible link that consists of a long, thin, round, flexible steel rod clamped
to the end-effector of the manipulator. The robot motion is programmed in a way
such that the clamped rod collides with a surface and several signals are recorded
with a sampling frequency of fs = 500 Hz. The signals come from different sensors,
such as accelerometers, wrist force and torque sensors, position encoders and joint
actuator current sensors. Additionally, in another experiment, it is adopted a spheri-
cal container carrying a liquid that oscillates during the acceleration/deacceleration
transients. To test the behavior of the variables in different situations, the container
(Fig. 1) can remain empty or can be filled with a liquid or a solid. The robot motion
is programmed in a way that the container moves from an initial to a final position
following a linear trajectory.

Figures 2 and 3 depict a typical time evolution of some variables and the corre-
sponding spectrum. Figure 2a shows the forces at the end-effector of the manipulator
captured during a total period of tT = 8 s for the impact analysis. These signals present
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clearly a strong variation at the instant of the impact, that occurs approximately at
t = 4 s. The Fourier spectrum of f imp

z (force z component for the case of impact) is
shown in Fig. 2b.

Figure 3a shows the accelerations a
liq

1 (accelerometer 1 at the clamped end of the
container) and a

liq

2 (accelerometer 2 at the terminal link of the robot) when the robot
carries the liquid container. The signals are captured during a total period of tT = 20
s. The a

liq

1 signal spectrum is shown in Fig. 3b.
Figures 2b and 3b show the spectrum of signals that contains information which

is localized in time, due to the rod impact and the liquid vibration, respectively.
Occasionally the signal spectra are scattered. In order to deal with these issues a
multiwindow algorithm is used in the next sections.

3 Main Concepts

3.1 The Windowed Fourier Transform

One way of obtaining the time-dependent frequency content of a signal is to take the
FT of a function over an interval around an instant τ . The WFT transform accom-
plishes this by using a general window function. The concept of this mathematical
tool is straightforward. We multiply the signal to be analyzed x(t) by a moving
window g(t − τ ) and, then, we compute the Fourier transform of the windowed sig-
nal x(t)g(t − τ ). Each FT gives a frequency domain ‘slice’ associated with the time
value at the window centre. Actually, windowing the signal improves local spectral
estimates [1]. The WFT for a window function centered at time τ , is represented
analytically by:

F (ω, τ ) =
∫ +∞

−∞
x(t)g(t − τ )e−jωtdt (1)

where ω= 2π f is the frequency.
Each window has a width tw and the distance between two consecutive windows

can be defined in a way so that they become overlapped during a percentage of time
β in relation to tw. Therefore, the frequencies of the analyzing signal f < 1/tw are
rejected by the WFT. Diminishing tw reduces the frequency resolution and increases
the time resolution. Augmenting tw has the opposite effect. Therefore, the choice of
the WFT window entails a well-known duration-bandwidth trade-off.

The rectangular window can introduce an unwanted side effect in the frequency
domain. As a result of having abrupt truncations at the ends caused by the window,
the spectrum of the FT will include unwanted “side lobes”. This gives rise to an
oscillatory behavior in the time domain called the Gibbs phenomenon [22]. In order
to reduce this unwanted effect, usually is used a weighting window function that
attenuates the signals at their discontinuities. For this reason there are several popular
windows normally adopted in the WFT as, for example, the Hanning, Hamming,
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Gaussian and Blackman [22]. Harris [20] and Nuttall [21] present several windows
with its spectrum characteristics.

If the windows do not overlap, then it is clear that some data are lost. Additionally,
if the windows overlap in a short period of time a significant part of the time signal is
ignored due to the fact that most windows exhibit small values near the boundaries.
To avoid this loss of data, overlap analysis must be performed.

In resume, in order to apply the WFT there are several parameters that must be
defined, namely the window type, the window’s width tw and the overlapped time β.
Some windows have also a parameterα that affects its shape. In this study are adopted
three types of windows: the Gaussian, the fractional, and the Hanning window.

The Gaussian window has the following expression:

g(t) = e
− 1

2

(

α t
tw/2

)2

, t ∈
[

−1

2
tw;

1

2
tw

]

(2)

where α, tw ∈ &+ are parameters.
Expression (3) represents a window that we call fractional due to the fact that the

parameter α ∈ & can present any real value in the interval 0<α<αmax. The window
is centered at time τ and the parameters (α, tw) affect its shape and width.

g(t) = 1 −
∣
∣
∣
∣

t − τ

tw

∣
∣
∣
∣

α

, t ∈
[

−1

2
tw;

1

2
tw

]

(3)

This window is interesting due to the fact that the variation of α modifies significantly
its shape. If α= 1 it yields the well known Bartlett (or triangular) window.

The Hanning window [22] is represented by:

g(t) = 0.5

[

1 − cos

(
2πt

tw

)]

, t ∈
[

−1

2
tw;

1

2
tw

]

(4)

where tw is the width of the window. In this case there is no shaping parameter.
Many authors studied the windows applied to the WFT in the perspective of their

own characteristics. As referred previously, the choice of the window for a particular
signal depends of the signal itself. Therefore, the automatic tuning of the window
parameters is also dependent from the signal. Bearing these facts in mind, this article
considers the window together with the signal.

3.2 Mutual Information

The WFT denoted by F (ω, τ ) can be interpreted as a bidimensional probability
density function with two variables ω and τ as long as we normalize it according
with the expression:

F1(ω, τ ) =
∫ tmax
tmin x(t)g(t − τ )e−jωtdt

∫

τ

∫

ω

∣
∣
∣

∫ tmax
tmin x(t)g(t − τ )e−jωtdt

∣
∣
∣ dω dτ

(5a)
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Fig. 4 The index Iav(ω, τ ) vs (β, tw) of f imp
x signal for the Gaussian window with α= 2.5, tT = 8 s

The marginal probability distributions of the variables ω and τ are F2(ω) and F3(τ ),
respectively, according with the expressions:

F2(ω) =
∫

τ

F (ω, τ )dτ (5b)

F3(τ ) =
∫

ω

F (ω, τ )dω (5c)

The mutual information [29, 30], or transinformation [31], is the index that measures
the dependence of two variables in the viewpoint of the information theory. The
mutual information for the two values of variables ω and τ is:

I (ω, τ ) = log2
F1(ω, τ )

F2(ω)F3(τ )
(6)

The average mutual information Iav ∈ & between the two variables is given by:

Iav(ω, τ ) =
∫

τ

∫

ω

F1(ω, τ )log2
F1(ω, τ )

F2(ω)F3(τ )
dω dτ (7)
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2 signal for the Gaussian window with α= 2.5,
tT = 20 s

One application of Iav is to obtain the time lag required to construct the pseudo phase
space. The Iav connects two sets of measurements with each other and establishes a
criterion for their mutual dependence based on the idea of information connection.
Additionally, Iav recognizes the non-linear properties of the variables [32]. By other
words, the mutual information presents good results both for linear and nonlinear
relationships between the variables. In this line of thought, the mutual information
will be tested for tuning the WFT.

4 Results

To evaluate the average mutual information for WFT tuning, a set of signals captured
in a robotic manipulator is used. Due to space limitations we depict only the most
relevant features.

Figure 4 depicts the average mutual information Iav(ω, τ ) for thef
imp
x signal (force

x component at the gripper of the robot for the rod impact) for the Gaussian window
acquired during tT = 8 s. The Gaussian window’s width tw and the overlapping time
β vary in the ranges 0.25< tw < 6 s and 5<↔ β < 90 %, respectively, while adopt-
ing α= 2.5. There are three locus of peaks and several experiments demonstrated
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2 signal for the Hanning window with tT = 20 s

that the best tuning is found in the first curve that occurs in the increasing direc-
tion of tw. Therefore, the best tuning parameters corresponds to the higher peak at
(β, tw)= (36.7, 2.6).

Figure 5 depicts the average mutual information Iav(ω, τ ) of the a
liq

2 signal (ac-
celerometer 2 at the terminal link of the robot) when the robot carries the liquid
container for the Gaussian window, acquired during tT = 20 s. The range values of
tw, β and α is identical to those adopted in the previous example. Again, we choose
the higher peak, located at the first curve in the increasing direction of tw. In this
case, the higher peak occurs at (β, tw)= (20.83, 2.29) which is the higher absolute
peak of Iav(ω, τ ).

In the previous examples was adopted the Gaussian window and now we test
the Hanning window. Figure 6 shows Iav(ω, τ ) for the signal analyzed in Fig. 5
(aliq

2 ). The higher peak occurs at (β, tw)= (20.83, 2.29) corresponding to the best
WFT tuning that, in fact, is the one obtained for the Gaussian window. The tests
proved that the results for the Hanning window are very close to those obtained for
the Gaussian window with α = 2.5. For instance, analyzing the same signal, for the
Gaussian window with α= 2.0, the higher peak occurs at (β, tw)= (21.67, 2.29)
which is different from that obtained for the Hanning window.

We can test also the fractional window (3). Figure 7 depicts the average mutual
information Iav(ω, τ ) of the f

imp
x signal (force x component of the robot gripper
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x signal for the fractional window with α= 1, tT = 8 s

for the rod impact) for the fractional window, acquired during tT = 8 s. The range
values of tw and β are those used in the previous examples. If we choose the higher
peak, located at the first curve in the increasing direction of tw, we get the tuning
parameters (β, tw)= (31.7, 2.3).

Previous examples show the applicability of the proposed method. Nevertheless,
the practice reveals for some signals that it is difficult to choose the adequate tuning
parameters (β, tw). Figure 8 shows Iav(ω, τ ) vs (β, tw) of the i

liq

2 signal. There are
several curves of peaks with identical values, and consequently it is difficult to select
the most appropriate. Therefore, a deeper insight into the nature of this feature must
be envisaged to better understand the behavior of Iav(ω, τ ).

5 Conclusions

The WFT is one of the most widely used time-frequency representations that
is adopted in many fields of engineering. In order to use this technique several
parameters must be defined according to the signal analyzed.

This work presents the average mutual information as an index that can be used
for tuning the WFT. The window settings obtained with the proposed index revealed
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to constitute a good compromise between the time and the frequency resolutions for
the signals under analysis. The results based on experimental signals are promising
and demonstrate the applicability and the effectiveness of the new approach. Nev-
ertheless, the practice reveals for some signals it is difficult to choose the adequate
tuning parameters based on the proposed method. Therefore, a deeper insight into
the nature of this feature must be envisaged to overcome this limitation.
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Can People With High Physical Movement
Restrictions Access to Any Computer?
The CaNWII Tool

N. Rodrigues, N. Martins and J. Barbosa

Abstract The potential of the common webcam, allied to the technology of the com-
mand of the well known Nintendo’s game console, the WII, enlarge the possibilities
of new ways to interact with computers. The presented work describe one of those
ways, an accessibility tool to people with very restrict physical movements. The
CaNWII tool allows an easy and robust way to interact with any computer.

Keywords Accessibility · Face tracking ·WII controller · Mouse controller through
head movements

1 Introduction

This paper describes a first phase of a developed work, with the main purpose settled
in a research related with the creation of new interfaces human-machine, involved
with the accessibility concepts. In this phase, the work made sure only in the use
of movements capture techniques based in the use of vision sensors and infrared
sensors, both available as low cost equipments.

The vision sensor chosen was the common webcam due its lower cost and porta-
bility. Although its reduced resolution, when used to perform simple tasks related to
computer vision, the intended results could be achieved.

In December of 2006, Nintendo launch a new game machine, the Nintendo WII.
The great innovation of this new console was its controller. It contains an accelerom-
eter and an infrared light sensible camera. These functionalities allowed millions of
users to interact with computers in new ways and where the main reason we chose
to use that controller, named WII Remote or Wiimote [1].
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In this context, our first experiences done focused in the creation of an application
to control the mouse cursor, capturing the head movements, through the combined
use of an webcam and a Wiimote. This application is being used successfully, in
the Association of Cerebral Paralysis of Coimbra (APPCC—Associação de Paral-
isia Cerebral de Coimbra). This association helps people of different age levels and
different disability levels, both intellectual level and physical level. Physical disabili-
ties imply, many times, the lack of motor coordination translated in the impossibility
of these users using the interaction traditional equipments like the mouse or the
keyboard.

Due the low cost, ease of installation and use and solution portability here pro-
poses, the users of this center now have the ability to use the computer in their homes
besides their stay in the association.

The name for the proposed system, CANWII, derives from the names of the two
types of sensors used: the CAmera aNd the WII command.

The article is organized as follows. In the second section, it is described how to
control the cursor through head movements, using a simple webcam. In the third
section, it is described how to control the cursor through head movements, using the
Wiimote. In the fourth section, we present some of the problems that each of the
previous approaches has, and how to overcame those problems, joining both of the
applications. In the end it was made some conclusions are made and some ideas are
presented to improve the created tool.

2 Cursor Controller Using a Webcam

In this section we describe a system that tries to control the traditional mouse cursor
of graphical user interfaces tracking the user’s head movements, relying on a regular
consumer webcam.

2.1 Introduction

The main goal of this system is to allow users to control the mouse cursor, used as a
primary device of human-computer interaction in most modern computer systems,
without requiring the use of the hands. This way, be it by convenience of by physical
disabilities, users can still use computer programs, even if they can’t use a hand to
handle the mouse.

Choosing a low cost webcam allows the system to be considered for use in a wide
range of situations where a high budget is not an option. Furthermore, the tracking
of user’s movements is based on computer vision techniques that do not require the
usage of additional devices like colored markers or similar accessories.

In order to control the mouse cursor on screen, this system tries to track head
movements analyzing the positions of the user’s nose within the images that the
webcam is continuously capturing when the service is running.
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Fig. 1 Mouse through
webcam subsystem
architecture

2.2 Implementation

The overall software architecture for the mouse through webcam subsystem is
illustrated in Fig. 1.

The system runs in the background, performing an endless loop and, for each
iteration, the first step consists in capturing a low-res image (320 × 240 pixels)
easily achievable by any low-end consumer webcam. Once the image is acquired,
and if the system is just starting (or the user’s nose position has been lost), control is
handed to a face detection module which tries to find within the image the location
of the user’s face. The next step is to isolate the nose region and choose the most
viable features to track the user’s head movements. If the nose position was already
determined in a previous iteration, the system tries to track the new position in order
to find the movement that occurred and, using that value, update the mouse cursor
position within the screen.
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2.2.1 Face Detection

The face detection module uses a version of the technique developed by Paul Viola
and Michael Jones [2], later extended by Rainer Lienhart and Jochen Maydt [3]. This
technique is based on a supervised classifier, which was previously trained to rec-
ognize frontal human faces in images, using a boosting machine learning algorithm.
To detect the face, a window is slid across the image and the pre-trained classifier
tries to detect a series of simple Haar-like features (mostly based on rectangles or
rotated versions of rectangles identifying lines and edges in the image). The Viola-
Jones classifier has been implemented as a cascade of increasing complexity nodes,
where the early nodes quickly reject areas of the image where a face is not present.
These simpler nodes still identify a lot of false positives which are later discarded
as more complex nodes are applied to the image. This kind of approach allows for
a fast detection of the face to the degree where it can be used in real time. Taking
advantage of this, in our system, to further enhance the correct detection of the initial
position of the head in front of the webcam, we require that the user is sufficiently
still for a specified number of frames such that the detected positions of the head
within the captured images in those frames are approximately the same.

2.2.2 Nose Detection

Detection of the nose relies on basic knowledge of anthropometrical characteristics
of human face—the approximate position of the nose is around the second third of
the face. With this knowledge, that region of the image is scanned for those features
which will be easier to track in subsequent frames. Intuitively, we easily understand
that the best features to find recurrently in a sequence of images of the same subject
are those that are nearly unique. So a good approach would be to look for points with
significant change in them, for example points with a strong derivative. Of course,
a point with a strong derivative can be a point belonging to an edge of some kind
and this point will probably be very similar to other points in the same edge and, as
such, hard to identify in later images. So a better approach would be to choose points
where strong derivatives are present in two orthogonal directions. These features are
called corners and are those with the more information to be more easily tracked
from one image to the next.

A commonly definition of corner is based on a matrix of second-derivatives of the
image intensities and the autocorrelation matrix of the image formed by the second-
derivative values, over a small window around each point [4]. According to this
definition, the corners are identified by points where the smallest of the eigenvalues
of the autocorrelation matrix for that point is above a given minimum threshold [5].
In our system, we try to find a specified number of these features around the nose
region (second third of the detected face rectangle) and define the nose position to
be the mean of the selected features.
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2.2.3 Track Nose Movement

To obtain nose movement between subsequent captured user images we have to
track the new positions of the selected features for each new image we capture. The
tracking is made relying in a sparse optical flow algorithm, based in the Lucas-Kanade
algorithm [6]. This algorithm estimates the “velocity” each of the features moved
from one frame to the next, thus allowing to obtain their new position. Obtaining the
new center of mass of these points we get the new location of the nose. Sometimes,
because of lighting inconsistencies or the angle the user is facing the camera the
tracked position of some of the features is too distant from that center of mass. In
those situations, those features are no longer tracked, and the position is determined
by the remaining points.

The difference of position of the nose within the image is then smoothed by means
of applying a low pass filter to the movement history so that excessive jittering of
the cursor is avoided.

2.2.4 Update Mouse Cursor Position

The final step consists in sending a message to the operating system to simulate that
the mouse moved by an amount proportional to the nose movement and this way
update the cursor position accordingly.

3 Cursor Controller Using the WII Command

Another part of this work was the attempt to do what was presented in the previous
section replacing the camera by the Wiimote and a pair of infrared lights. For this
situation, it’s necessary that the computer used by this system have the capacity of
communication via Bluetooth, since is the technology used by theWiimote command.

3.1 Related Work

Regarding the use of the Wiimote command, it was the HCI, Johnny Lee, the first
to show the word what could be done with this new command and that no one
knew it was possible. From his projects stand the Wiimote whiteboard and the head
tracking system. The first application allows the creation of an interactive board which
transforms any surface (wall, upper table, computer screen, etc.) in an interactive
screen. To surfaces that aren’t a computer screen it’s necessary to use a projector. The
second updates the vision angle accordingly with the user position. This causes the
creation of the effect that the screen is a visualization window to a three dimensional
world, that is beyond it. The application presented here follows the same concept of
this last application.
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Fig. 2 a Wiimote controller. b Wiimote rotation angles

Other works also very important were those that resulted on libraries’ creation
to use the Wiimote command, specifically, control and data obtaining that Wiimote
sends to the computer. From these libraries stands out the Wiiuse library, the Wi-
imoteLib library and the Wiiyourself! library. The Wiiuse library [7] was chosen to
the development of the application.

3.2 Introduction to the Wiimote

Wiimote command appearance can be seen in Fig. 2a. This command uses a com-
bination of movements’ sensor technology and infrared lights detection [8], so to
create on games a certain level of interaction, considered impossible before.

Wiimote command uses an infrared camera to monitor light points that will be
interpreted by a receiving station. These points can be any infrared light sources.
However, camera isn’t limited to the infrared bandwidth, because it uses a filter,
placed ahead, in order to eliminate any strange light to that frequency range. The
command technology associated to the camera can detect, at most, four points of
infrared light. The resulting image, with the captured points, is used to estimate
command position in the real world. Like this, when light points are in the lower
part of the image, we know that in the command front part is raises in relation to the
rear part. On the other hand, when Wiimote is bended down, the referred points are
in the upper part of the image captured by the camera. The same concept is applied
with the left and right movement, using now the lateral parts of that image.
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The command has, also, an accelerometer that keeps the direction and gravity
forces applied to the command. Its function is detecting the directions where the
command is moving regarding the three axes of the world referential system/ZZ
axis, XX axis and YY axis). These forces are used to calculate, in a discerning way,
the direction of the applied force. The accelerometer can also detect the rotations
regarding to the ZZ axis and XX axis. For a better perception, see Fig. 2b.

Finally, a Wiimote characteristic, useful in any application, is the wireless connec-
tivity to a base station. Wiimote has a Bluetooth chip responsible for the information
transmission and reception. The fact of not being applied any of the Bluetooth au-
thentication or encryption functionality, makes possible, that Wiimote sent data can
be recognized by any device.

3.3 Implementation

The system of using user movements of any computer like mouse movements works
fixing Wiimote next to the monitor or to the surface where its content is being
projected. The controlled user, like this, the mouse with infrared lights placed, for
example, on glasses or helmet. Like this, the command is going to capture the
infrared light points, under the user application control and translate them to the
position where the lights point to.

Be able to translate the light point’s movements into mouse cursor movements
it was necessary to obtain the position of the light point in a certain moment, and
immediately in the following moment to obtain the position again, so to be able
to calculate the light direction and shift. After it, to introduce lights position in the
mouse controllers, it was enough to follow what was done and presented in the
previous section, this is, initialize the INPUT structure, used by Windows function,
ant that synthesizes mouse clicks and movements. Mouse click emulation is done by
the time the cursor stays in the same place.

The number of lights that can be used in this situation depends on the user difficulty
getting moves them, but with a single light the movement won’t be too smooth. To
smooth the movement to make calculations more robust it were used two infrared
lights to control user movements.

3.4 Results

Figure 3, shows the system being used by a user. Notice that Wiimote is placed on
the computer monitor and the lights are on the users glasses. In this case the person
only has to be able to move the head to use the computer. The writing can be done
through any accessibility software since controlled by the mouse. Lights don’t make
the user uncomfortable, because they are placed in an accessory already belonging
to the user. Aren’t, because of that, non invasive.
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Fig. 3 Mouse control system
in operation

The fact that the user can control the cursor position through the lights, allows
accessibility to people with several mobility difficulties, because those lights can be
placed in any part of the user body. Despite the option taken here, the choice of the
lights position to be placed in a user must be based of course on his comfort.

4 The CaNWII Tool

By themselves, each of the two subsystems has some limitations.
It is common sense that any light could affect the images captured by the camera.

In fact, the cursor controller through a webcam is somewhat sensitive to light changes
(for example, when a window is opened or a light is switched on). Sometimes, when
this happens, the nose tracker is unable to identify the features that it was working
with and the system must reset the tracking procedure, meaning the user has to adopt
his initial position, centered in front of the webcam.

On the other hand, as described in Sect. 3, the Wiimote has an infrared camera that
captures the position of the infrared light emitters. It was also said that the Wiimote
camera captures, at most, four lights. Specifically, the controller captures the first
four points of light it finds, ignoring the rest, if they exist. Knowing that the sun
emits infrared light, we can understand that sun rays could affect the performance of
the cursor controller through the Wiimote.

To overcome those problems, we combine both approaches presented in Sects. 2
and 3, creating the CaNWII tool. It is a redundant system, but it is this redundancy
that makes the system more robust. In general terms, the main loop of the CaNWII
program, each os the subsystems is running and obtaining its own cursor position.
Then, it is calculated the mean of the two obtained positions. The final cursor position
is saved.
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When a new position, detected by any of the subsystems, is different from the saved
position by more than a specified threshold, this means that one of the subsystems
failed. In that case, only the position of the other subsystem is used to update the
actual mouse cursor, while the failing subsystem resets its tracking procedures to
restart providing correct positions. If both approaches fail, the whole system informs
the user that it must assume his initial position so both tracking procedures can
be restarted.

5 Conclusion

The described work in this paper is the initial result of a broader and deeper study of
new human-machine interfaces. The results obtained till now are pretty promising,
because the CaNWII tool is a robust system of low cost, easy to install, configure
and to use, having regard to similar systems owners. It is a tool of high potential to
APCC users, because besides using it in the time they are in the association, they can
install it at their homes (now here are two users to use it effectively at their homes).

Was thus reached the main purpose of this project, this is, to facilitate the access
to the new informatics technologies to people with special needs due to their physical
limitations, that otherwise would be almost impossible.

Wiimote has also a vibration motor, a speaker and a sound amplification chip,
which can give feedbacks. These functionalities are of extreme importance in the
struggle of the lack of accessibilities, because they can help people with a low degree
of vision or hearing. These were not used yet, but are being studied in order to gain
the CaNWII tool.
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Nuno Ferreira, Pedro Iglésias, Rui Mendes, Maria Castro
and Orlando Fernandes

Abstract This study presents an experimental research design of a PhD work,
studying the effects of the variability in the performance of the Golf putting. The
instruments used to analyze the putting were two digital cameras to detect the rele-
vant dynamic objects (i.e., ball and putter) and a biaxial accelerometer to confirm the
exact moment at which the putter hits the ball. To synchronize the instruments, it was
used a trigger. The ball’s trajectory and the putting movement were automatically
analyzed based on visual detection and parameter estimation. The kinematic analysis
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of the putting was performed using the Matlab software, to determine the amplitude,
velocity and acceleration of the players’gestures. We concluded that the Golf putting
action parameters are divided into different stages (i.e., backswing, downswing and
follow-through) and that those can be useful to investigate the effects of variability
in this movement.

Keywords Golf putting · Performance · Kinematic analysis · Matlab · Process
variables

1 Introduction

The literature presents several studies on the Golf putting analysis, mainly focusing
around its biomechanical properties [1–3]. However, both followers of cognitive
theories of Motor Control [1] and Dynamic Systems Theories [4] analyze the same
biomechanical variables in their studies, its use is quite different in movement
analysis [2]. As “traditional” cognitive theories use experimental designs that
privilege the analysis of product variables, the Dynamic Systems Theories approach
drives its research design to studies that privilege process variables, being closer
to the real and ecological situation [5, 6].Few studies have been made analyzing
process variables, such as position, velocity/speed or acceleration in Golf putting
execution (linear or angular) [2, 7]. Pelz work [3], as a reference for the study of the
putting, suggests the possibility of stability and variability aspects in this movement
execution, analyzed in expert and inexperienced players, presents considerable
differences in amplitude, velocity and acceleration of execution.Accordingly to
empiric knowledge as well as the considerations already made, it is concluded that
the Golf putting need further analysis not only from a quantitative point of view, but
also in a qualitative way privileging the study of process variables.Attending to the
exposed information, this work presents the experimental design and methodological
aspects that support a PhD thesis, in the analysis of the effects of variability in the
Golf putting performance in expert subjects.

2 Experimental Design

It is presented the experimental design and methodological aspects that support this
research, which analyzes the effects of variability on Golf putting performance. The
adopted task was the Golf putting, implying the strike of a ball (Titleist; model ProV1)
with a putter (Putter Jumbo Black Beauty; size 35; standard) on a horizontal and still
surface, placed on the ground over a ramp.
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Fig. 1 Apparatus a Top view—reference points and cameras b Side view

2.1 Apparatus and Procedure

It was used an apparatus which included an artificial plain green carpet, used by
Minigolf professionals, rectangular with no flaws, quite similar to the green’s natural
surface texture, with 10 m long, 2 m wide and 4 mm thick [8].

The ball’s rolling speed on the carpet was measured with a stimpmeter, corre-
sponding to 10 m, which is an acceptable value accordingly to the green’s validation
criteria of the Professional Golf Association (PGA Tour).

A real Golf hole was placed at 3.5 m of carpet’s ending and at 1 m of each lateral
extremity. Three black dots marked the putting places at 2 m (D1), 3 m (D2) and 4 m
(D3). The dots were in the same direction of the hole, at 1 m of each lateral extremity
of the carpet as well (Fig. 1).

Under the carpet it was placed a ramp with 1 m long, leveling up the carpet’s
surface in 10 cm high. Next to the ramp, it was placed a platform with 4 m long to
keep that height (Fig. 1). The ramp allows the ball to get to the level of the hole.

2.2 Coordinate System

Since the putting for this study was recorded with digital cameras, in order to aid
the data analysis, there were marked 13 references points on the carpet, according to
Table 1 and Fig. 1, corresponding to the real coordinates of the experimental device.
The centre of the hole is the reference for the adopted coordinate system, with the
point (0.0). This coordinate system allows knowing the exact location of the ball in
the apparatus, just by reading the result tables. These points were determined based
on the work of [9], as it clearly characterizes the 3 plans of the experimental device.

The reference points were digitalized in a file, in the same format and order of
the file used to store the real coordinates of the apparatus. These 13 reference points
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Table 1 Real coordinates
of the experimental device

Reference x-axis (cm) y-axis (cm)

1 0 0
2 − 200 100
3 0 100
4 50 100
5 150 100
6 200 100
7 400 100
8 − 200 − 100
9 0 − 100

10 50 − 100
11 150 − 100
12 200 − 100
13 400 − 100

(Table 1 and Fig. 1), are needed to make a match with the virtual coordinates (pixel
points) of the video recordings, so that a correspondence between real and virtual
coordinates could be made [9]. It was used the high level computational tool Matlab,
to deal and analyze all the data [10].

2.3 Data Recording and Synchronization

To perform this study, two similar digital cameras were used, Casio Exilim/High
Speed EX-FH25. The autonomy of the digital cameras was also considered, and in
order to smoothly record the entire session without further problems, it were used
rechargeable 2700 mA batteries and 16 GB memory cards.

One camera (Camera1) was placed at 4 m from the experimental device, in front
of the subject while the other (Camera2) was placed 2 m after the apparatus ending
capturing the entire device, in order to retrieve ball’s trajectory and eventual error
to the hole. These procedures were based on Knudson and Morrison’s work [11],
suggesting shooting distances of 2 to 10 m in studies of this kind. Both cameras
were working still in their tripods and all the positioning and calibration features
mentioned were used the same way for the entire study, guaranteeing reliability for
later data analysis.

Camera1 was placed at 55 cm from the ground, pointing forward. It was shooting
at 210fps at a resolution of 480 × 360 pixels and its lens with a focal length of 26 mm.
Camera2 was placed on a tripod as well, at 1 m and 55 cm high, with an inclination
of 22 pointing down. It was shooting at 30fps at a resolution of 1280 × 720 pixels
and its lens with a focal length of 26 mm. Some previous studies about putting
performance analysis used 25fps to 50fps [12] which leads to the conclusion that the
210fps considered is an adequate procedure to study a gesture as precise as the Golf
putting.

The apparatus and digital cameras were always in the exact same place, so that
everything was recorded in the same conditions.
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The digital cameras recordings allowed retrieving the following information:

1. Ball’s trajectory through the apparatus;
2. Golf putting action parameters in distinct stages, backswing, downswing, ball

impact and follow-through;
3. Position, velocity and acceleration of the putter during the movement;
4. Error distances in vertical length (VE), horizontal width (HW) and radial error

(RE) to the hole.

Putter’s movement monitoring was performed with a Biovision 2003 accelerometer,
biaxial movement sensor with two orthogonal axis. This accelerometer dimensions
are: 9.0 mm × 11.5 mm, with 50 g and it is sensitive to acceleration changes of 2G
(gravitical force). The accelerometer was placed in the upper side of the putters
head. The accelerometer sensor cables were connected to an input box (Inputbox
Biovision) through two independent channels. A software called DASYLab v9.0
was used to retrieve and storage all data provided by the accelerometer. DASYLab
was configured so that all signals would be recorded at 840 Hz (which is a multiple
of both 30 Hz and 210 Hz) allowing the synchronization of all the information
of both the accelerometer and the two camera footages. Additionally, red LEDs
(light-emitting diodes) were placed in the frontal side of the putters head allowing
a better understanding of the putter movement on Camera1.

The data synchronization of both digital cameras and the accelerometer was per-
formed using a trigger. This instrument had a pressure button connected to the
Biovision Inputbox and to two independent boxes with blue LEDs on them. These
boxes were placed in a visible place in the corner of each camera field of view. In
practical terms, every time this pressure button was manually triggered, the blue LED
would turn on in both boxes (and therefore recorded in the videos), and the signal was
simultaneously received in the Biovision Inputbox (and recorded through DASYLab).

2.4 Data Storage and Processing

The accelerometer simultaneously with the digital cameras recordings allowed
retrieving the following information: i) putting action parameters in backswing,
downswing, ball impact and follow-through stages (Fig. 2); and ii) position, velocity
and acceleration of putter movement.

Although the accelerometer has retrieved putting action parameter simultaneously
with the digital cameras, its main purpose consisted in giving the exact moment at
which the putter hits the ball (it worked as some kind of an auxiliary trigger). This
procedure turned out to be more reliable and precise then the video recordings pro-
cessing for this specific moment. The retrieved data was saved through DASYLab
in ASCII format files. The information on these files is easily imported in other
programs, such as Microsoft Excel or Matlab. Every file obtained with accelerom-
eter data or from the digital cameras was renamed according to a pre-established
codification, allowing organizing all the information by the order of execution of
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Fig. 2 Putter movement
action parameter analysis
(adapted from [12])

Downswing

Backswing
Folow-through

Impact

the subject, making it easier to access and deal with. All the information from the
accelerometer and both digital camera recordings were processed using Matlab. A
program was developed in order to determine biomechanical parameters, such as:
position, velocity and acceleration of the putter, allowing the qualitative analysis of
the putting [12].

Another program was developed in order to track ball’s trajectory and perform
quantitative analysis, by determining the distance error of the ball to the hole (if any
existed). Both putter and ball’s movement analysis were performed using automatic
tracking of these objects. All data retrieval was performed by the same researcher
and the adopted procedures were the same for all subjects. A trial study was made
in order to check all instruments performance and validate the adopted procedures.

To confirm if the obtained information was reliable, all data of this previous study
was compared with other researches concerning putt movement [12]. For data quality
control, were also taken into account the researches of [12, 15].

3 Visual Data Analysis

Algorithms for object detection are one of the fundamental issues in several fields such
as robotics [16]. The vision-based techniques can be classified into two categories,
the stereo vision approach and the motion-based approach [17]. In the latter one, the
motion field is computed from consecutive images obtained from the same camera,
and other static or dynamic objects are then detected when their motions are dominant
in the scene. One of the most reliable methods for object recognition is the color-based
recognition algorithms (e.g., color histogram intersection, the color region adjacency
graph and methods which use the statistics of color space components). Visual data
analysis can be divided in two distinct steps: i) detect the several objects in the scene
identifying the ball and the putter; and ii) estimate the ball and putter’s trajectory.
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Fig. 3 Observations of the putter’s trajectory retreived from Camera1 and estimation using the
cubic smoothing spline method

Our detection algorithm is based on Schettini [18] that perform a search for an
object with a similar shape, using color histogram intersection for object color match
verification afterwards. One of the major challenges in this design is to estimate the
ball and putter’s trajectory, since the obtained videos (image quality) is affected by the
ambient light. The problem of tracking dynamic objects and estimating their time-
varying position has been studied extensively in robotics, engineering, computer
vision, and several other areas [19]. In that sense, the appearance of objects is
ambiguous, partly occluded, may vary quickly over time, and is perceived via a high
dimensional measurement space.

The estimation of the ball and putter’s trajectory was based on the cubic smoothing
spline method. Considerable effort has been devoted over several decades to devel-
oping the mathematics of spline functions. In statistics, smoothing splines have been
used in fitting curves to data ever since workable algorithms first became available
in the late sixties [20]. The cubic smoothing spline f minimizes:

n
∑

j=1

(

yj − f
(

xj

))2 + (1 − p)

∫

f̈ (x)2dx (1)

where y and x are the values of the observations over time respectively, n is the number
of entries of observations, and the integral is over the smallest interval containing
all the entries of x. The default value for the smoothing parameter, p, is chosen in
dependence on the given data sites x defined between 0 and 1. We chose a smoothing
parameter p= 0,4 based on the average spacing of the data sites.

Figure 3 depicts the retrieved data relative to the putter’s trajectory obtained
through image analysis using a simple color and area-based recognition algorithm
and the respective estimation of the trajectory based on the cubic smoothing spline
method.
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Fig. 4 Putter’s position in the x-axis for the first subject at 2 m of the hole (distance D1) in his first
three attempts

These results seam satisfactory and close to what is seen in the respective literature
[2, 7]..

4 Results

In order to get validation of the procedures described, it was performed a previous
study including 3 inexperienced subjects (results of this study in Fig. 4, Table 2 and
Fig. 5). The obtained results show that putter’s trajectory during the movement is
similar to a sinusoidal function (Fig. 4). It was also verified that after the impact on the
ball (when the sinusoidal function passes through the origin), end the negative semi-
cycle composed by both backswing and downswing, the subject tends to perform a
positive semi-cycle (follow-through) with a maximum amplitude in module similar
to the amplitude of the negative semi-cycle, getting near the origin in the end.

Table 2 allow analysing the subjects’ performance based on position, velocity and
acceleration amplitudes of each attempt. With the obtained data, two distinct analyses
can be performed: i) intra-subject—analyzing the motor behavior and cinematic of
the same subject in different attempts at the same distance and at distinct distances;
and ii) inter-subject—analyzing the motor behavior and cinematic of each subject in
different attempts at the same distance and distinct distances.

The most relevant intra-subject feature reports to ones performance in the three
trials at the same distance. It is possible to see reduced putter amplitude in position,
velocity and acceleration in the first strike at each distance.

The data shows that when a subject has a radial error different than zero (Fig. 5),
the tendency is to raise the amplitude in position, velocity and acceleration of the
putter in the second trial, in order to correct that error. In the third and last trial,
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Table 2 Intra and inter-subject performance analysis of putter’s maximum amplitude position,
velocity and acceleration at 2, 3 and 4 m to the hole

Distance
(cm)

S1 S2 S3

E1 E2 E3 E1 E2 E3 E1 E2 E3

Position 200 33.53 43.43 32.52 63.66 64.61 54.42 31.58 36.92 28.93
(cm) 300 41.21 28.02 26.54 31.66 60.52 37.39 26.17 40.03 41.87

400 21.18 24.60 29.09 66.93 81.11 55.74 37.00 27.04 48.25
Velocity 200 51.64 61.97 47.35 79.11 86.11 73.12 52.62 57.14 45.78

(cm/s) 300 63.91 45.68 46.65 53.41 81.59 56.82 44.10 58.80 59.08
400 38.33 42.72 40.71 80.49 102.19 75.68 51.47 37.26 65.34

Accele- 200 116.26 130.82 96.38 129.87 172.96 163.72 139.49 145.47 116.33
ration 300 130.42 101.95 116.53 136.06 168.29 129.95 109.54 131.34 132.11
(cm/s) 400 102.41 103.69 64.04 155.25 208.04 156.35 104.99 59.42 141.09

0

50

100

150

200

250

300

350

400

200cmE1 200cmE2 200cmE3 300cmE1 300cmE2 300cmE3 400cmE1 400cmE2 400cmE3

er
ro

 ra
di

al

Trials [by distance] 

erS1

erS2

erS3

Fig. 5 Intra and inter-subject performance analysis of radial error of the ball to the hole (Legend:
E1/E2/E3 Trials, cm centimeters)

the subject has tendency to correct once again the amplitude in position, velocity
and acceleration of the putter. Anyway, exceptions to this situation occur, when the
subject can reduce or even eliminate the radial error in the second attempt, tends to
maintain or raise the amplitude in position, velocity and acceleration of the putter.

About the inter-subject analysis, one feature stands out, and it’s related with
amplitude’s maximum value in position, velocity and acceleration of the putter. For
instance, subject 2 (S2) tends to have higher values in any of the attempts at the same
distance, and at different distances (Table 2). The data available confirm that Golf
putting is a complex gesture and differently executed from subject to subject.

5 Conclusion

According to the experimental design and methodological aspects mentioned, it can
be concluded that the Golf putting action parameters are divided into different stages
(i.e., backswing, downswing and follow-through) and that those can be useful to
investigate the effects of variability in this movement.
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The Golf putting action parameters can be accurately determined by processing
the video information using detection and estimation techniques. With the implemen-
tation of those techniques, the study benefits by using automatic tracking to analyse
the putter movement as well as ball’s trajectory.

Specific lighting techniques must be studied and applied, since the exclusive use
of ambient light should be avoided in the recordings, because its unpredictability can
cause significant color changes in the obtained videos.

It is recommended that the instruments and the adopted methodological aspects
in this work may be validated in other studies in order to consolidate and go even
deeper in the known data about it.
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Analysis of Electricity Market Prices Using
Multidimensional Scaling

Filipe Azevedo and J. Tenreiro Machado

Abstract This paper studies the impact of the energy upon electricity markets using
Multidimensional Scaling (MDS). Data from major energy and electricity markets is
considered. Several maps produced by MDS are presented and discussed revealing
that this method is useful for understanding the correlation between them. Further-
more, the results help electricity markets agents hedging against Market Clearing
Price (MCP) volatility.

Keywords Multidimensional scaling · Electricity markets · Energy markets ·
Hedging · Econometric models · Electricity price volatility

1 Introduction

Due to the specific nature of the electricity commodity, namely its non-storability,
and due to the necessity of maintaining the electrical system constantly in balance,
wide fluctuations on spot market prices occur. This effect, when associated to heat
or cold climate waves, can stimulate the spot price to climb up to 1,000 % for short
periods of time [1]. Therefore, the volatility is unusually high even when compared
with other energy markets such as oil or gas. Another implication of the electricity
non-storability is the impossibility of transferring a certain amount of energy from
one part of the world to another one, without considering transmission restrictions.
However, besides the instantaneous nature of the product electrical energy, factors
like the uncertainty associated to fuel prices, energy demand, generation availability
or, even, social and political events have also a high impact on price volatility [2–5].

Facing this state of affairs, electricity market agents have to deal with the necessity
of understanding phenomena that are at the basis of market price evolution. The
knowledge of those factors allows decision makers to develop the most adequate set

F. Azevedo (�)
INESC TEC (formerly INESC Porto) and School of Engineering,
Polytechnic Institute of Porto, Porto, Portugal
e-mail: filipe.azevedo@inescporto.pt; fta@isep.ipp.pt

J. T. Machado
School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
e-mail: jtm@isep.ipp.pt

305N. M. Fonseca Ferreira, J. A. Tenreiro Machado (eds.), Mathematical Methods
in Engineering, DOI 10.1007/978-94-007-7183-3_28,
© Springer Science+Business Media Dordrecht 2014



306 F. Azevedo and J. T. Machado

Fig. 1 Sources of electricity in the U. S. during 2009 a Anthracite, bituminous, subbituminous,
lignite, waste coal, and coal synfuel. b Distillate fuel oil, residual fuel oil, jet fuel, kerosene, and
waste oil. c Blast furnace gas, propane gas, and other manufactured and waste gases derived from
fossil fuels. d Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill
gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic
energy, and wind. e Non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,
purchased steam, sulfur, tire-derived fuel, and miscellaneous technologies

of strategies to sell, or to buy, electric energy in the spot, forward and futures market.
In addition, those strategies are important to practice the hedge against electricity
market price volatility and, simultaneously, to increase the profits.

Derivatives markets were introduced in electricity markets to allow their agents
to eliminate the risk of credit and to turn the market more liquid. This effect is
mainly due to the appearance of new agents that operate in traditional markets, that
see in electricity markets an opportunity to withdraw dividends and to increase the
efficiency in risk management. In addition, some of the new agents described above
are also active participants on energy markets, like oil and natural gas.

The first power plants were driven by waterpower or by coal, but today we rely on
a larger variety namely, coal, nuclear, natural gas, hydroelectric and petroleum, with
a small contribution from solar energy, wind generators and geothermal sources.
Figure 1 illustrates the production of electricity in the U. S. by source for the year
2009.

From Fig. 1 it is clear that, in the U. S. and for the year 2009, the main sources
for the production of electricity are coal, natural gas and nuclear.
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Table 1 Energy markets Energy market Abbreviation Country

West Texas intermediate WTI USA
BRENT crude BRENT UK
Natural gas NG USA

Table 2 Electricity markets Electricity market Abbreviation Country

OMEL electricity market OMEL-PT Portugal
OMEL electricity market OMEL-ES Spain
Energy exchange Austria EXAA Austria

Germany
Gestore Mercati Energetici GME Italy
PJM interconnection PJM USA

For better understanding electricity markets, price behavior and their correlation
with the evolution of energy prices, the Multidimensional Scaling (MDS) technique
is used in this paper [6–10].

MDS is adopted in distinct scientific areas such as visualizing time-varying
correlations across stock markets [11, 12], signal processing [13, 14], digital com-
munications [15], adaptive controllers [16] and music [17]. However, presently there
are no studies about applying MDS for analyzing electricity market prices and their
correlation with the energy price evolution.

Monthly historical data, from July 2007 up to August 2010, for energy and elec-
tricity markets is used. It is considered data from July 2007, because OMEL defined
prices for Portugal and Spain separately due to market splitting, from that date. In
Tables 1 and 2 are presented the energy and the electricity markets used in this study.
For PJM Interconnection electricity market is used Locational Marginal Price (LMP)
Load Weighted Mean Price.

Bearing these ideas in mind, the paper is organized as follows: Sect. 2 introduces
the MDS method. Section 3 presents a case study. Section 4 discusses the results out
coming from the MDS processing. Finally Sect. 5 outlines the main conclusions.

2 Multidimensional Scaling

MDS is a technique for the analysis of similarity or dissimilarity data on a set of
objects [18]. Its main purpose is to find a configuration of the data points in a
low n-dimensional space, such that the original distance between objects in the
full-dimensional space is represented with some degree of fidelity by the distances
between points in the low-dimensional space. This means that observations that are
close together in a high-dimensional space should be close in the low-dimensional
space and vice-versa. Many aspects of MDS were originally developed by researchers
in the social science community and the method is now widely available in some
statistical packages [19].
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2.1 Classical Multidimensional Scaling

Classical scaling is also known under the names Torgerson scaling and Torgerson-
Gower scaling, because the first practical method available was a technique presented
in [6–9], and it is based on theorems developed in [7, 10]. The fundamental idea of
classical multidimensional scaling is to transform the distance matrix into a cross-
product matrix and, then, to find its eigen-decomposition, which gives a Principal
Component Analysis (PCA). Due to this reason in some literature classical mul-
tidimensional scaling is also referred as PCA. Like PCA, MDS can be used with
supplementary or illustrative elements, which are projected into the dimensions after
they have been computed.

2.2 Nonclassical Multidimensional Scaling

Nonclassical multidimensional scaling creates a configuration of points whose inter-
point distances approximate the given dissimilarities. This is sometimes a too strict
requirement and non-metric scaling is designed to relax it a bit. Instead of trying
to approximate the dissimilarities themselves, non-metric scaling approximates a
nonlinear, but monotonic, transformation of them. Because of the monotonicity,
larger or smaller distances on a plot of the output will correspond to larger or smaller
dissimilarities, respectively. However, the nonlinearity makes only an attempt to
preserve the ordering of dissimilarities. Therefore, there may be contractions or
expansions of distances at different scales.

There are two forms of nonclassical multidimensional scaling namely, metric scal-
ing and nonmetric scaling. In metric MDS it is created a configuration of points such
that their inter-point distances approximate the original dissimilarities. One measure
of the goodness of fit of that approximation is known as the “stress”. Nonmetric
MDS has a slightly less ambitious goal than metric scaling. Instead of attempting to
create a configuration of points, for which the pairwise distances approximate the
original dissimilarities, it attempts only to approximate the ranks of the dissimilar-
ities. Another way of saying this is that nonmetric MDS creates a configuration of
points whose inter-point distances approximate a monotonic transformation of the
original dissimilarities [8, 9,18–21].

3 Case Study

This study aims to study the correlation between energy and electricity markets prices
using nonmetric scaling. To achieve this goal, historical data from major energy, stock
and electricity markets is used.
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3.1 Energy and Electricity Markets

Tables 1 and 2 present the energy market prices, and the electricity markets,
respectively.

3.2 Nonmetric Scaling Stress Function

In this case study is adopted the Nonmetric Scaling form of Nonclassical MDS.
Moreover, two measures, namely the City Block and Standardized Euclidean distance
metric function defined in (1) and (2), respectively, are compared and used to measure
the distance (dst) between each pair of observations:

dCB
st =

m
∑

j=1

∣
∣xsj − xtj

∣
∣ (1)

(

dSE
st

)2 = (xs − xt ) V
−1(xs − xt )

′ (2)

where m represents the number of observations, x the variables, V the n × n diagonal
matrix whose jth diagonal element is S(j)2 and S the vector of standard deviations.

The effect of the two alternatives is compared in the sequel.

3.3 Number of Dimensions in MDS

The variation on the “stress” value with the number of dimensions to use is presented
in Fig. 2. The goodness-of-fit criterion used, also known as the “stress”, is the sum
of squares of the inter-point distances.

From Fig. 2 we conclude that the required number of dimensions to use is n= 3
for the Cityblock and Standard Euclidean distances. However, we can verify that
Cityblock metric function has, for all dimensions n of the MDS plot, lower “stress”
values; therefore, in this work will be adopted the metric function Cityblock.

4 Results

The nonmetric MDS solution plot of the configuration for n= 3 is represented in
Fig. 3. It is clear the emergence of three major clusters: U. S. PJM electricity market
and energy group {PJM, NG, WTI, BRENT}, Iberian electricity market {OMEL-PT,
OMEL-ES} and electricity market group {EXAA, GME}.

In U. S. the main sources for the production of electricity are coal, natural gas
and nuclear. This is the reason why PJM electricity market is closer to natural gas
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Fig. 2 Stress variation versus the number n of dimensions of the MDS plot

Fig. 3 Nonmetric MDS solution

energy markets (NG) than oil markets (WTI and BRENT). Moreover, the natural gas
market (NG) used in this case study is for U. S., which reinforces its proximity to
the PJM electricity market.

To check the fitting of the output MDS configuration and to analyze the disparities,
it is useful to analyze the Shepard chart depicted in Fig. 4.

Figure 4 reveals that MDS has found a configuration of points in three dimen-
sions whose inter-point distances approximates the disparities, which, in turn, are
a nonlinear transformation of the original dissimilarities. The concave shape of the
disparities as a function of the dissimilarities indicates that fitting tends to contract
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Fig. 4 Shepard plot for n= 3

small distances relative to the corresponding dissimilarities. This result is perfectly
acceptable in practice and demonstrates that MDS can be easily adopted for the visual
analysis of energy and electricity market prices.

5 Conclusions

In this paper we proposed a statistical graphical method for visualizing time-varying
correlations between energy market and electricity market behavior. We illustrated
the MDS-based method on the basis of monthly price average for three energy
markets and five electricity markets.

The results show, clearly, the emergence of three major groups: U. S. PJM electric-
ity market and energy group {PJM, NG, WTI, BRENT}, Iberian electricity market
{OMEL-PT, OMEL-ES} and electricity market group {EXAA, GME}. From the
described groups, natural gas is closer to PJM electricity market then oil group.
This is due to the importance of combined cycle power plants upon the electricity
production. The natural gas market (NG) used in this case study is for U. S., which re-
inforces its proximity to the PJM electricity market. In European electricity markets
this effect is not so strong.

There are several issues relevant for further research. A first issue concerns apply-
ing the proposed method to alternative data sets, to see how informative the method
can be in these cases. A second issue concerns incorporating the graphical evidence
in an econometric time series model for improving empirical specification strategies.
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Mathematical and Statistical Concepts Applied
to Health and Motor Control

Filipe Melo and Catarina Godinho

Abstract Variability and complexity are characteristic of human motor behavior.
Research concerning movement patterns generation is a subject of interest shared
by different areas like sports, health, or neurosciences. Among other motor abilities,
postural control or gait, are abilities studied in normal and disabled subjects of
different ages, using different types of methodologies and analytical approaches,
including linear and nonlinear models. Nevertheless, depending on what we are
looking for, these approaches can be more or less accurate for our purposes. Humans
as biological systems, must be analyzed in a dynamical way, employing specific
tools. The knowledge of the information given by these tools can be very helpful in
medical research allowing the clinicians to identify and differentiate specific motor
manifestations, like tremor, or postural instability, that are common to different
pathologies, or even different levels of severity, like in Parkinson’s Disease.

Keywords Motor Control · Movement dynamics · Variability and complexity ·
Parkinson’s Disease

The research related with movement patterns generation, concerning sports and
health, psychology, or neuroscience, uses concepts and methodologies related to
the analysis of variability and complexity in human motor behavior. This type of
approach includes mathematical models, as well as non linear tools, to explain
movement dynamics. Several studies have been conducted in order to analyze motor
behavior of different populations (normal subjects, PD patients, athletes, etc.), per-
forming different tasks, such as postural control or gait tasks, in different conditions
(with or without vision, with stable or unstable area of support, etc.).

Many clinicians specialized in medical research and clinical evaluation use linear
models for prediction and intervention. However, it is very clear that linear models
are considered limited in many cases and, in some specific cases, they are not the
optimal approach [4].
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The term linear can be associated to only one dimension. Linear tools measuring
variability give information about the quality, but not about the time-evolving di-
mension of the signal. These tools, including the statistics of range, mean, standard
deviation, and coefficient of variation, while providing correct descriptions of inher-
ent variability, are not helpful in explaining what is actually happening or varying
within a system. They are incomplete in their justification about human movement
variability. Mean values eliminate movement temporal variation and cover the correct
composition of variability present in the movement action. The observed variations
between the repetitions of a task are, usually, considered random and independent
of past and future repetitions, which have been shown to be false. Perturbations to
a dynamic system may lead to different patterns of macroscopic order that are not
predictable by traditional methods [3].

The term nonlinear, in association with the term dynamics – nonlinear dynam-
ics, can be associated to a system relating multiple dimensions, whose output is not
proportional to its input. Nonlinear systems are related with the production of unpre-
dictable responses revealing chaotic characteristics. Humans, as biological systems,
are, generally, good examples of complex nonlinear systems, showing a great amount
of inherent variability, in space and time, in their behaviors.

This variability, attested by differences in the observed behavior, when performing
multiple repetitions of a task, reflects the numerous solutions available, traduced
by the different adopted strategies. This plasticity, contrasting with the idea of an
inflexible programming process, is guaranteed by the multiple complex synergies
related to the neuromuscular system.

The idea of an optimal variability, associated to a characteristic movement behav-
ior, is essential in a nonlinear perspective. For the Dynamical Systems Theory (DST)
the increased variability in a system is related to an increasing instability which may
indicate a possible change to another behavior. A biological system presenting no
variability corresponds to an inert organism associated to a non dynamic condition.
This invariance in movement behavior, must conduct to an atypical mapping of the
sensory-motor homunculus, resulting in a disturbed motor function, usually related
with more primitive behaviors, characterizing less complex systems.

The concept of optimal movement variability can be associated to a system whose
dynamics lie between great variability and complete repeatability. Considering the
great inventory of human motor actions, and more specifically gait as an example of
a cyclic task, the different steps produced when walking cannot be consider either
random or totally repeatable, showing instead a normal and healthy variability that
can be considered optimal (within certain limits).

The problem of quantifying exactly the amount of optimal (normal) variability
that a system should present, can be related to the identification and understanding
of movement dynamic patterns.
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1 Postural Tasks

Many studies tried to understand the strategies used by the postural control system
to maintain the complex multi-degrees-of-freedom process controlled by the mus-
culoskeletal system, in equilibrium with external forces, during quiet standing, or
during the execution of an action.

The competence of maintaining an upright posture implies the use of a complex
sensory-motor control system. We cannot adopt an upright position without produc-
ing a sway associated to an oscillation of the Center of Gravity (COG) or of the
Centre of Pressure (COP). The analysis of the time-varying coordinates of the cen-
tre of pressure, known as a stabilogram, can show two types of control: a) a more
reflexive closed-loop control in response to external perturbations; b) a more stabi-
lizing open-loop control during longer periods of undisturbed stance. Earlier studies
limited the analysis of these time series plots to statistics concerning the calculation
of the length of the sway path, concerning both antero-posterior and medio-lateral
directions, the average sway amplitude and radial area, ignoring the dynamic charac-
teristics of the stabilograms (magnitude and direction of the COP displacements, the
temporal ordering of COP time series coordinates, etc.). Mathematical techniques,
employing non linear analysis, like stabilogram-diffusion analysis, recurrence quan-
titative analysis (RQA), can be applied to the study and interpretation of stabilograms,
conducting to the extraction of repeatable, physiologically meaningful parameters.

The Lyapunov Exponent(LyE), is a measure that quantifies the level of separa-
tion, or divergence with time, of nearby trajectories, in the state space. This separation
of nearby trajectories is usually associated to instability, which can be characterized
by Lyapunov Exponent, meaning that the higher the instability (divergence) of a
system, the larger the value of the LyE.

The Entropy is a primary mathematical concept, firstly presented in information
theory, representing a measure of the variability of a system. On the other hand,
approximate entropy (ApEn) is a specific process to determine complexity, which
quantifies the regularity or predictability of a time-series [8, 10]. Approximate en-
tropy quantifies the probability that a series of data points, a certain distance apart,
within a state space, will show comparable characteristics on the next incremental
comparison [8, 9]. Time series presenting a greater probability of lasting the same
distance apart upon comparison, will correspond to lower ApEn values, while time
series presenting large differences in distances between data points will correspond
to higher values of ApEn. In other words a more regular and predictable time-series
is less complex than a less regular and predictable one.

2 Application in Medical Sciences and Research

TheApEn has been used in several medical settings during the last decade. It has been
used to study different aspects like the effect of aging on cardiovascular dynamics
[5], differences in heart rate control in normal and sudden infant death syndrome
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Table 1 Analysis of the joint angular time series data from one PD patient and one healthy age-
matched control subject during treadmill walking, using different non linear parameters. (Adapted
from [[1], p. 39–43])

LyE ApEn CoD

Control Parkinson Control Parkinson Control Parkinson

Hip 0,117 0,102 0,314 0,278 2,012 2,015
Knee 0,166 0,191 0,353 0,505 3,151 3,441
Ankle 0,188 0,195 0,337 0,446 3,246 3,673

[11], or the effect of gender in growth hormone secretion [12]. Studies on the effect
of aging on cardiovascular dynamics generally showed a good correlation between
sickness and aging, and decreasedApEn values. These findings are in agreement with
the general hypothesis advanced in the medical sciences that atypical physiological
behavior can be related with more regularity, while normal physiological behavior
is related with less regularity (great complexity) [9].

Some researchers have also used ApEn to characterize human movement. In
such studies, learning and behavior reorganization are associated with changes in
complexity [7, 15]. Morrison and Newell [6] used ApEn to analyze the level of
active control during limb motion. In particular, they observed that the lower the
ApEn value, the more active the control at the particular segment analyzed.

Different human movement studies have also used the ApEn measure with patho-
logical populations. Vaillancourt and Newell [15] examined the complexity of resting
and postural tremor in Parkinson’s patients using finger accelerometer signals.

Buzzi [1] in his laboratory attempted to understand differences in locomotor
variability of Parkinson’s disease patients. The author examined the angular dis-
placements of the lower limb joint for regularity changes in PD, during treadmill
walking, at the off cycle of their dopamine treatment (Fig. 1).

The results reported in Table 1, concerning LyE and ApEn, showed that the knee
and the ankle of both subjects presented more complexity than the hip, attested by
higher values for these two joints, and also that the Parkinson’s subject presented
even more complexity in the time series than the control subject. An interesting
observation was that the Parkinson’s subject presented lower values for the hip joint.
This finding possibly demonstrates an adaptation at the hip for the Parkinson’s subject
to compensate for the increased complexity and local stability at the more distal
joints. The author suggested that a possible explanation for these results is a loss of
independent sources of control due to the pathology.

However, statistical analysis didn’t show significant differences in the LyE and
ApEn values between PD patient and the control (Fig. 1). Nevertheless, the results
showed a decreasing regularity from distal to proximal joints. More studies are
needed in order to understand Parkinson’s disease motor behavior.

Schmit et al. [13], in a study concerning sport activities, compared the spatiotem-
poral profile of postural sway, of trained ballet dancers and track athletes, during four
different balance conditions (standing on a stable, or unstable surface, with the eyes
open, or closed). Linear analysis of the results did not present significant differences
between both groups during the normal vision condition, but presented increased
variability in both groups during closed eyes condition and on a foam surface.
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Fig. 2 Centre of Pressure (COP) time series in the anterior/posterior (AP) axis (left) and Recurrence
Plots (right) of the data of COP time series of a dancer (a), and a track athlete (b). (Adapted
from [13])

Non linear analysis (Fig. 2), and more specifically recurrence quantification anal-
ysis of the data, of both groups, revealed significant differences in postural sway. The
postural sway of the dancers was less regular (lower recurrence), less sTable(lower
maxline), less complex (lower entropy), and more stationary (lower absolute trend)
than that of track athletes. Dancers, possibly as a result of focused balance training,
exhibited different dynamic patterns of postural sway.

There are numerous oscillatory phenomena in motor control that occur regularly
or irregularly, both in health and disease processes. These behaviors are clinically
evaluated, during specific sessions. The observation of motor function time series
presenting an irregular behavior, like tremor (Fig. 3), does not allow a clinician to
infer, by visual inspection, whether the underlying process should be characterized
as a deterministic (regular) or a stochastic (irregular) process.

Outcome assessment has become important in evaluating upper limb extremities
in patients suffering from movement disorders. Nevertheless, some of the instruments
used in clinical evaluation are quite generic, measuring grip strength, and range of
motion, but are not able to evaluate daily life activities.

More instruments and methodologies of analysis are needed in order to accurately
and objectively characterize patients’ data during clinic evaluation sessions. Nonlin-
ear analysis seems to provide promising methods to help diagnose and intervention
in clinical settings.
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