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Abstract Three different approaches to the concept of probability dominate the
teaching of stochastics: the classical, the frequentistic and the subjectivistic ap-
proach. Compared with each other they provide considerably different possibili-
ties to interpret situations with randomness. With regard to teaching probability, it
is useful to clarify interrelations and differences between these three approaches.
Thus, students’ probabilistic reasoning in specific random situations could be char-
acterized, classified and finally, understood in more detail. In this chapter, we pro-
pose examples that potentially illustrate both, interrelations and differences of the
three approaches to probability mentioned above. Thereby, we strictly focus on an
educational perspective.

At first, we briefly outline a proposal for relevant teachers’ content knowledge
concerning the construct of probability. In this short overview, we focus on three
approaches to probability, namely the classical, the frequentistic and the subjectivis-
tic approach. Afterwards, we briefly discuss existing research concerning teachers’
knowledge and beliefs about probability approaches. Further, we outline our nor-
mative focus on teachers’ potential pedagogical content knowledge concerning the
construct of probability. For this, we discuss the construct of probability within a
modelling perspective, with regard to a theoretical perspective on the one side and
with regard to classroom activities on the other side. We further emphasize consid-
erations about situations which are potentially meaningful with regard to different
approaches to probability. Finally, we focus on technological pedagogical content
knowledge. Within the perspective of teaching probability, this kind of knowledge is
about the question of how technology and, especially simulation, supports students
understanding of probabilities.
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Fig. 1 Different kinds of
knowledge which teachers
should have according to Ball
et al. (2008)

1 Introduction

The success of any probability curriculum for developing students’ probabilistic reasoning
depends greatly on teachers’ understanding of probability as well as much deeper under-
standing of issues such as students’ misconceptions [. . .]. (Stohl 2005, p. 345)

With these words Stohl (2005) begins her review on teachers’ understanding of
probability. The first part of this quote seems to be self-evident. However, probabil-
ity is known as a difficult mathematical concept yielding “counterintuitive results
[. . .] even at very elementary levels” (Batanero and Sanchez 2005, p. 241). Even to
grasp the construct of probability itself lasted centuries from elaborating the clas-
sical approach (Pascal 1654, cited in Schneider 1988), the frequentistic approach
(von Mises 1952) to an axiomatic definition by Kolmogoroff (1933). Moreover, the
subjectivistic approach that fits Kolmogoroff’s axioms but in some sense negate
the existence of objective probabilities (De Fineti 1974; Wickmann 1990; Batanero
et al. 2005a), complement the set of very different approaches to the construct of
probability. Particularly when the different approaches of probability that dominate
the stochastics curricula (Jones et al. 2007) are analysed a crucial question arises
(Stohl 2005): What must teachers know about the construct of probability?

In this chapter, we will deduce an answer to this question from a pure educa-
tional perspective. For this we use a currently widely accepted model of Ball et al.
(2008). Following this model, teacher should have knowledge of the content (CK:
content knowledge; Fig. 1) and as part of CK, a knowledge that is “not typically
needed for purposes other than teaching” (SCK: specialized content knowledge;
Ball et al. 2008, p. 400). Teachers further should have pedagogical knowledge which
combines knowledge about students (KCS), curriculum, and content and teaching
(KCT) which “combines knowing about teaching and knowing about mathematics”
(Ball et al. 2008, p. 401).

Some of the relevant domains of stochastical knowledge (cf. Ball et al. 2008)
are discussed in this volume, e.g. the horizon content knowledge represented by
philosophical or mathematical considerations. In addition, the knowledge we gained
about students (KCS) is reviewed extensively elsewhere (e.g. Jones et al. 2007). For
this reason we focus on aspects of the teachers’ content knowledge (KC) with a spe-
cific perspective on the teachers’ specialized content knowledge (KCS). We center
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on the teachers’ pedagogical knowledge and, in particular, on the teachers’ knowl-
edge of content and teaching (KCT) from a normative perspective. This normative
perspective we expand partly referring to results of empirical research concerning
students’ knowledge (Jones et al. 2007) and teachers’ knowledge (Stohl 2005).

2 Three Different Approaches to Probability (Content
Knowledge)

We restrict the discussion about different approaches of probability to a brief
overview of knowledge that teachers should have since deeper analyses exists al-
ready (e.g. Borovcnik 1992 or Batanero et al. 2005a). Highlighting the central ideas
of each approach from their underlying philosophical points of view (including the
historical context of their emerging) conduces to set out the crucial aspects, which
teachers have to consider when they think about relevant conditions of teaching
probability. Thus, there is a base for argumentation when outlining pedagogical
ideas of teaching probability by means of specific random situations.

2.1 The Classical Approach

Although there were many other well-known historic figures dealing and thinking
about probability, the classical approach is namely connected with Pierre Simon
Laplace and his groundbreaking work “Essai Philosophique sur les Probabilités”
from 1814. One very essential point of this work is the definition of probability,
which we today know about as “Laplace-probability”: “Probability is thus simply a
fraction whose numerator is the number of favorable cases and whose denominator
is the number of all cases possible.” (Laplace 1814/1995, p. ix cited by Batanero
et al. 2005a, p. 22) The underlying theoretical precondition of this definition is the
equiprobability given for all possible outcomes of the random process being re-
garded. This modelling principle of having no reason for doubting on equiprobabil-
ity can mostly be maintained by using artificial, symmetrical random generators like
a fair die, an urn containing balls, which are not distinguishable from each other with
regard to be drawn by chance, or a symmetrical spinning wheel and treating them
as being theoretically perfect. Because of these preconditions the term “a priori” is
connected to the classical approach to probability measurement (e.g. Chernoff 2008;
Chaput et al. 2011). “A priori” means that, together with the underlying theoretical
hypothesis of equiprobability being aligned before, there is no need to conduct the
experiment with a random generator. In fact, probabilities that refer to a random
generator can be calculated deductively without throwing a die or spinning a wheel.
From a mathematical point of view, Laplace-probability is only applicable in a fi-
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nite set of possible outcomes of a random process; in case of an infinite set it is not
possible to adopt this approach of probability.

2.2 The Frequentistic Approach

With its strong preconditions the classical approach of probability measurement is
an approach rooted in a theoretical world allowing for predictions within the em-
pirical world. What is its advantage on the one side is its disadvantage on the other
side: many random phenomena of the empirical world (more exactly said, phenom-
ena explained as being caused by random) are not suitable to be purely theoretically
regarded as a set of equiprobable outcomes of a random generator. For example, in
case of throwing a pushpin: Before throwing the pushpin the first time, no theoreti-
cal arguments can be reasonably deduced so that the probability for landing on the
pushpin’s needle can exactly be predicted. But already during the time of Laplace
the empirical fact was well known that the frequencies of a random experiment’s
outcome are increasingly stabilizing the more identical repetitions of the random
experiment are taken into account. This empirical fact, called “empirical law of
large numbers”, served as a basis to estimate an unknown probability as the num-
ber around which the relative frequency of the considered event fluctuates (Renyi
1992). Since the stabilization is observable independently by different subjects, the
frequentist approach was postulated as being an objective approach to probability. It
was Bernoulli who justified the frequentist approach of probability by formulating
a corresponding theorem: Given that there is a random experiment being repeated
enough times, the probability that the distance between the observed frequency of
one event and its probability is smaller than a given value can approach 1 as closely
as desired. Von Mises (1952) tried to take a further step forward and defined proba-
bility as the hypothetical number towards which the relative frequency tends during
the stabilization process when disorderly sequences are regarded. This definition
was not without criticism: It was argued that the kind and conditions of the underly-
ing limit generation was not sufficient with regard to a theoretical point of view of
the mathematical method.

From a practical point of view, it was criticized that this empirical oriented ap-
proach is only useful for events which allow for repeating the underlying experi-
ment as often as needed, at least in theory. However, within phenomena of the real
world this is often neither possible nor practicable. Apart from that, in principle, no
number can be fixed to ensure an optimal estimation for the interesting probability.
Nevertheless, the frequentistic approach enriched the discussion about probability
because of its empirical rootedness. Because of this the term “a posteriori” is con-
noted with the frequentistic approach to probability (e.g. Chernoff 2008). According
to the frequentistic approach, it is necessary to gain data (or rather relative frequen-
cies) concerning the outcomes of a random generator for estimating corresponding
probabilities. Within this experimental approach, probability can be interpreted as
being a physical magnitude which can be measured, at least principally, as exactly
as needed.
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2.3 The Subjectivistic Approach

Within the subjectivist approach, probability is described as a degree of belief, based
on personal judgement and information about a situation that includes objectively no
randomness. One example to illustrate this fact concerns HIV infection (cf. Eichler
and Vogel 2009). For a specific person the objective probability to be infected with
HIV is 0 or 1. Thus, the infection of a specific person comprises no randomness.
However, a specific person could hold an individual degree of belief about his (or
her) status of infection (may be oriented to the base rate of infection). This degree
of belief can change by information, e.g. a result of a diagnostic test. Thus, subjec-
tivistic probabilities depend on several factors, e.g. the knowledge of the subject,
the conditions of this person’s observation, the kind of event whose uncertainty is
reflected on, and available data about the random phenomena.

The subjectivist point of view on probability is closely connected with the
Bayesian formula being published in the late eighteenth century. The Bayesian
formula allowed for revising an “a-priori”-estimation of probability by processing
new information and for estimating a new “a-posteriori” probability. In general,
the subjectivistic approach calls the objective character postulated by the frequen-
tist approach or the classical approach into question. With this regard Batanero et
al. (2005a, p. 24) state: “Therefore, we cannot say that probability exists in real-
ity without confusing this reality with the theoretical model chosen to describe it.”
Thus, following the subjectivistic approach, it is not possible to treat probability
as being a physical magnitude and to measure it accordingly in an objective way.
Beyond this fundamental difficulty, Wickmann (1990) finds fault with the frequen-
tistic approach in being very limited with regard to its applicability within real world
problems because the theoretical precondition of an unlimited number (n ∈N) of an
experiment’s repetitions is not given within limitedness of the real world. Mostly, in
reality this number is comparably small being not sufficiently large for an objective
estimation of probability.

3 Teachers’ Knowledge About Probability

In the last section, we have not differentiated between common content knowledge
(CCK) and a specific teacher’s specialized content knowledge (SCK). Neverthe-
less, we interpret knowledge concerning the distinction and connections between
“a priori” probability (classical approach) and “a posteriori” probability (frequen-
tist approach) as well as the combination of “a priori” and “a posteriori” proba-
bility (subjectivist approach) as knowledge teachers must have. In particular, the
knowledge of connection between the mentioned three approaches of probability
has been often claimed (e.g. Steinbring 1991; Riemer 1991; Stohl 2005; Jones et al.
2007).
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However, research has yielded only scarce results of what teachers actually know
about probability and about how to teach probability in the classroom (Shaughnessy
1992; Jones et al. 2007). Begg and Edwards (1999) reported weak mathematical
knowledge of 34 practicing and pre-service elementary school teachers concerning
the construct of probability (classical and frequentistic approach). Further, Jones et
al. (2007) reported (citing the research of Carnell 1997) on difficulties which 13
secondary school teachers had when they were asked to interpret conditional proba-
bilities that are a prerequisite for teaching the subjectivistic approach of probability.
Stohl (2005) and Jones et al. (2007) do not mention further research that underlines
the difficulties teachers seem to have when dealing with probabilities.

Similarly, research in stochastics education has provided scarce results about how
teachers teach the three mentioned approaches of probability and, thus, about the
teachers pedagogical content knowledge. A quantitative study in Germany refer-
ring to 107 upper secondary teachers showed that all of them teach the classical
approach (Eichler 2008b). While 72 % of these teachers indicated to teach the fre-
quentist approach 27 % indicated to teach the subjectivist approach. This research
yielded isolated evidence that although the European classroom practice showed a
strong emphasis to probability (Broers 2006) the challenge to connect all three ap-
proaches of probability is still not achieved (Chaput et al. 2011). Further, a study
of Eichler (2008a, 2011) showed that even when teachers include the frequentistic
approach in their classroom practice the way to teach this content can considerably
differ. While one teacher emphasizes the frequentist approach by experiments with
artificial random generators (urns, dice, cards) another teacher uses real data sets.
Doing so, the latter teacher conforms to the paradigm of teaching the frequentist ap-
proach mentioned by Burril and Biehler (2011). Finally, Stohl (2005) reported that
teachers’ knowledge about connecting different approaches of probability may be
due to a limited content knowledge. However, Dugdale (2001) could show that pre-
service teachers benefit from computer simulation to realize connections between
the classical and the frequentist approach of probability.

Although the empirical knowledge about teachers’ content knowledge and peda-
gogical content knowledge concerning the three approaches of probability is low,
in the following we use existing research to structure a normative proposal for
teaching these three approaches of probability. Of course, such a proposal needs
development along a coherent stochastics curriculum across several years includ-
ing the development of the underlying mathematical competencies. Referring to
this proposal, we firstly outline three situations of throwing dice (artificial random
generator) that provide the three approaches of probability. We connect these three
situations using a modelling perspective. Afterwards, we focus on situations which
do not base on artificial random generators to emphasize the modelling perspective
on the three approaches of probability. Finally, we discuss computer simulations
that potentially could facilitate students’ understanding of the three approaches of
probability.
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Fig. 2 Modelling structure
with regard to the classical
approach

4 Probability Measurement Within the Modelling Perspective

An important competency for the thinking and teaching of probability is the com-
petency of modelling (e.g. Wild and Pfannkuch 1999). Instead of differentiating
distinct phases of modelling (e.g. Blum 2002), we restrict our self to the core of
mathematical modelling, i.e. the transfer between the empirical world (of data) and
the theoretical world (of probabilities). The discussion about the different types of
probability measurement shows that each approach of probability is touching both
the theoretical world and the empirical world as well as the interrelationship of these
worlds.

One very essential characteristic of the concept of probability is its orientation
towards future—probabilities are used to quantify the possibility of occurring a cer-
tain event’s outcomes which still hasn’t happened. The situational circumstances
and the available information (including the knowledge of the probability estimat-
ing person) are decisively determining how the process of quantifying probability
is possible to go on. In principle, three different scenarios of mutual processes of
looking ahead and looking back can be distinguished when the modelling process
is considered as transfer between the empirical and the theoretical world (cf. Vogel
and Eichler 2011). We will illustrate each kind of modelling by means of possible
classroom activities. In doing so, we use rolling dice to validate these modelling pro-
cesses quantitatively. Concerning these classroom activities, we restrict the discus-
sion on secondary schools, although in primary schools in some sense the teaching
of probability is also possible.

4.1 Modelling Structure with Regard to the Classical Approach

With regard to the classical approach, the modelling structure principally includes
the following four steps (Fig. 2):

1. Problem: Defining and structuring the problem
2. Looking ahead: Building a theoretical model based on available information and

making a prediction on base of this theoretical model (looking ahead; theoretical
world)

3. Looking back: Validating this prediction by producing data (for example, by do-
ing simulations) based on this theoretical model and analysing these data in a
step of reviewing (looking back)

4. Findings: Drawing conclusions and formulating findings

A classroom activity concerning the mentioned four steps is as follows:
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Fig. 3 Relative frequency of the six referring to series of throwing the die 10, 100 and 1000 times

Fig. 4 Cumulated
frequencies of the six in
series of ten throws

Problem: The students are given ordinary dice. They have to
predict the relative frequency of the six referring to the future
10, 100 and 1000 throws. Afterwards the students have to vali-
date their predictions.

Looking ahead: Most of the students, who reached secondary school, presumably,
do not doubt that the chance given for each side is “a priori” 1/6 (for example,
by analysing the symmetrical architecture of the cube). Given that the students have
experienced the variability of statistical data (Wild and Pfannkuch 1999), they might
predict the frequency to get a six by 1/6 accepting qualitatively small differences
between the real frequency and the predicted frequency (which corresponds to the
“a priori” estimated probability) of 1/6.

Looking back: To be able to decide if the predictions are appropriate, the students
have to throw the die. This can be conducted by hand or by computer simulation,
following to the law of large numbers: “the more the merrier.” The empirical data
represent at most qualitatively the 1√

n
-law (Fig. 3).

Findings: The intervals of frequencies of the six get smaller when the series of
throws gets bigger. Thus, the frequencies of the six will fit the model of 1/6 better
the more throws are performed. In another similar experiment, these findings lead to
the empirical law of large numbers when the relative frequencies of series of throws
are cumulated (Fig. 4).

All the findings mentioned above are based on the theoretical model of the prob-
ability of the six “a priori.” Thus, coping with the given problem starts by consid-
erations into the theoretical world of probabilities that have to be validated into the
empirical world of data.
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Fig. 5 Modelling structure
with regard to the
frequentistic approach

4.2 Modelling Structure with Regard to the Frequentistic
Approach

With regard to problems following the frequentistic approach, the modelling struc-
ture includes the following five steps (Fig. 5):

1. Problem: Defining and structuring the problem
2. Looking back: Analysing available empirical data of the interesting phenomena

for detecting patterns of variability that might be characteristic
3. Looking ahead: Building a theoretical model based on available information and

extrapolating these patterns for purposes of prediction or generalization of this
phenomena

4. Looking back: Validating this prediction by producing new data (for example, by
doing simulations) based on this theoretical model and analysing these data in a
further step of reviewing

5. Findings: Drawing conclusions and formulating findings

A classroom activity concerning the mentioned five steps is as follows:

Problem: The students get a cuboid die (in Germany, a so-
called “Riemer-Quader” Riemer 1991) and have to predict the
relative frequency of the numbers referring to the future 10,
100 and 1000 throws. Afterwards the students have to validate
their predictions.

Looking back: Although it is possible to hypothesize about a model concerning the
cuboid die, i.e. the probability distribution, at the end nothing more can be done
except throwing the cuboid die. Before that some students tend to estimate prob-
abilities according to the relative ratio between the area of one side of the cuboid
and the whole surface (there might be also other reasonable possibilities). However,
such a model will not endure the validation. Thus, students get a model by throwing
the cuboid die as many times as possible to get reliable information about the rela-
tive frequency of the different outcomes using the empirical law of large numbers.
The students might be confident with this approach: When they follow the same
procedure using the ordinary die (see above), they can get an empirical affirmation
because they know the probabilities’ distribution of the ordinary die.
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Looking ahead: The empirical realizations are the base for estimating probabilities
for each of the cuboid’s sides. With regard to the modelling process it is crucial
to remark that the relative frequencies cannot be simply adopted as probabilities.
In the given problem, the geometrical architecture of the cuboid die gives a reason
for assigning the same probabilities to each pair of opposite sides of the cuboid.
For example, if the distribution of the relative frequencies of the cuboid is given by
h(1) = 0.05; h(2) = 0.09; h(3) = 0.34; h(4) = 0.36; h(5) = 0.11; h(6) = 0.05,
then the students should think about what to do with these unsymmetrical em-
pirical results. One appropriate consideration obviously seems to be to take the
mean of two corresponding sides and to estimate the probabilities based on the two
corresponding frequencies (but not adopting one of the frequencies). Accordingly,
with regard to the example mentioned before, a reasonable estimation for the dis-
tribution of probabilities could be: P(1) := P(6) := 0.05; P(2) := P(5) := 0.10;
P(3) := P(4) := 0.35. In this way, the students deduce patterns of probabilities
from the available data and readjust them with regard to theoretical considerations
within the modelling process.

Looking back: The validation process in the case of the cuboid die equals to the
validation process of the ordinary die.

Findings: Since long series of throwing the ordinary die potentially yield in con-
fidence concerning the stabilization of relative frequencies, relative frequencies of
throwing the cuboid die might serve as an appropriate basis to estimate the prob-
ability distribution. An estimation of probabilities is not done by simply adopting
the relative frequency. This is an essential finding that a partly symmetrical random
generator like the cuboid die provokes. Thus, the cuboid die seems to be more ap-
propriate than a random generator like the pushpin for which the estimation of a
probability is potentially equal to the relative frequency.

4.3 Modelling Structure with Regard to the Subjectivistic
Approach

With regard to problems following the subjectivist approach, the modelling struc-
ture is not restricted. Thus this structure could potentially include user-defined steps
since the number of alterations between the theoretical world and the empirical
world is not defined (Fig. 6).

1. Problem: Defining and structuring the problem
2. Looking back: Subjective estimation (theoretically or empirically based, not in

general exactly distinguishable) based on given information
3. Looking ahead: Coming to a provisional decision and making a subjective but

theoretically based prediction
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Fig. 6 Modelling structure
with regard to the
subjectivistic approach

4. Looking back: Inspecting the first and provisional decision by generating and
processing new empirical data
. . .
(Now, the process of modelling alternates between the steps 3 and 4 as long as
an appropriate basis to decide between two or more hypothesis is reached. The
assessment of being appropriate is subjective, the prediction is the more objective
the more information is processed.)
. . .

n. Findings: Drawing conclusions and formulating findings
A classroom activity concerning the mentioned steps is as follows:

Problem (cf. Riemer 1991; Eichler and Vogel
2009): The students are playing a game along the
following rules: There are small groups of students
each with one referee. The referee has two dice,
an ordinary die (O) representing an equal distribu-
tion of probability and a cuboid die (R—“Riemer-
Quader”) with the distribution: 1–0.05; 2–0.10; 3–
0.35; 4–0.35; 5–0.10; 6–0.05 (derivation see above,
Sect. 4.2). The dice are covered for the other mem-
bers of the referee’s group. The referee has covertly
chosen one of the dice and throws it repeatedly.
The other students try to find out which die the ref-
eree has chosen by processing information about the
diced spots and by estimating step-by-step the prob-
abilities for the die covertly been thrown.

Looking ahead: Because there are two dice and because the students have no infor-
mation about the referee’s preference, the first estimation (“a priori”) could yield
P(R) = 0.5 for the cuboid die and P(O) = 0.5 for the ordinary die.

Looking back: The referee informs the students about having thrown a 1.

Looking ahead: Qualitatively, this outcome gives evidence for the ordinary die since
this die should produce a 1 more often than the cuboid die (P(1|O) > P(1|R)). By
using the Bayesian formula, this information can help to get a new estimation of
probability for the referee’s die-choice at the beginning:

P(O|1) = P(1|O) · P(O)

P (1|O) · P(O) + P(1|R) · P(R)
=

1
6 · 1

2
1
6 · 1

2 + 1
20 · 1

2

= 10

13
≈ 0.769.

Correspondingly there is a new estimation a posteriori with P(O) := 0.769 and
P(R) := 0.231.



86 A. Eichler and M. Vogel

Results of throwing the unknown die:
1—2—5—6—6—3—6—1
P(O) ≈ 0.998; P(R) ≈ 0.002

Fig. 7 Development of estimating probabilities which results from successively applying
Bayesian formula

Looking back: The referee informs the students about having thrown a 2. The a
posteriori-estimation of the first round of the game simultaneously is the a priori-
estimation of the following second round.

Looking ahead: Qualitatively, this outcome gives again evidence for the ordinary
die since this die should produce a 2 more often than the cuboid die (P(2|O) >

P(2|R)). Using the Bayes formula again results in:

P(O|2) = P(2|O) · P(O)

P (2|O) · P(O) + P(2|R) · P(R)
≈ 0.847.

Correspondingly, there is a new estimation a posteriori with P(O) = 0.847 and
P(R) = 0.153.

Looking alternating back and ahead: A series of further throws is shown in
Fig. 7.

This Fig. 7 clearly shows that the step-by-step processing yields at the end a good
basis for the decision.

Findings: The processing of information according to the Bayesian formula could
yield an empirical based decision concerning different alternative hypotheses. The
decision is not necessarily correct. Given the results above and given that the referee
used covertly a third die (a cuboid die for which the 1 and 6 are on the biggest
sides, and the 3 and 4 on the smallest sides), the decision for the ordinary die would
actually be false in an objective sense. But within the subjective perspective, it is the
optimal decision based on available information.

4.4 Some Principles of Modelling Concerning Probability

With regard to the three situations mentioned above, it is to remark that, in general,
there is no fixed rule how to model a problem, it depends on kind and circumstances
of the problem, on the one side, and on the problem solver’s abilities and knowl-
edge, on the other side (cf. Stachowiak 1973). The basic idea of modelling is to
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desist from the complexity of the original question and to concentrate on aspects
which are considered as being useful for getting an answer. This is at the core of
modelling: A model is useful for someone within a specific situation to remedy spe-
cific demands (cf. Schupp 1988). Thus, all models cannot be judged by categories
of being right or wrong, they have to be judged by their utility for solving a specific
problem (cf. Box and Draper 1987).

However, concerning modelling there is a fundamental difference among using
a model of objective probabilities (classical and frequentistic approach) and sub-
jectivistic probabilities. Since the former approach could validate by collecting new
data, in the latter approach the validation is integrated in every step of readjusting a
probability for a decision to one of different (and potentially incorrect) models.

In the cases when data can be interpreted as being empirical realizations of ran-
dom processes, the probability modelling process could be considered within the
paradigm of Borovcnik’s (2005) structural equation for modelling data (cf. Eichler
and Vogel 2009): an unknown probability is assumed to be immanent in a random
process (cf. Sill 1993) as well as to be appropriate to quantify a certain outcome of
this process. Regardless of the different approaches mentioned above, the modelling
process in general aims to get a reliable estimation for this unknown probability.
The estimation is a modelling pattern approximating the unknown probability. It
means: This estimation results from pattern which the modelling person detects by
analysing the random process and its different outcomes. According to Stachowiak
(1973), there is always a difference between a model and the modelled original.
In the light of Borovcnik’s (2005) structural equation, this difference and the mod-
elling pattern mentioned above sum up to the unknown probability. Thus, it could be
highlighted that not the unknown probability itself is captured by the modeller but
what he (or she) perceives, what he already knows about different types of random
processes and accordingly reads into this process.

5 Problem Situations Concerning Three Approaches of
Probability

Following Greer and Mukhopadhyay (2005), for many years a well-known prejudice
against teaching stochastics is the fact that stochastics is applied only by formula-
based calculating within the world of simple random generators. This world is rep-
resented by random processes like throwing dice as discussed above as well as spin-
ning wheels of fortune, throwing coins, etc. However, the world of gambling is
merely connecting the theoretical world of probability with the empirical world if
real data are regarded representing the statistical part of teaching stochastics. With
reference to Steinbring and Strässer (1981) Schupp (1982) states: “Statistics without
probability is blind [. . .], probability without statistics is empty” (translated by the
authors). Burril and Biehler (2011, p. 61) claimed that “probability should not be
taught data-free, but with a view towards its role in statistics.”

At a first view, our “dice world” considerations of Sect. 4 seem to contradict
these statements. Nevertheless, our concern of emphasizing the three approaches to
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probability using throwing dice is to be interpreted in a slightly different perspective.
Within a pedagogical point of view, the “dice world” must not be avoided at all:
This world also contains data (e.g. empirical realizations of random processes like
throwing dice) and provides situations which are reduced from complex aspects of
real world contexts. Thus, such situations might facilitate students’ understanding
of different approaches to probability. However, remaining in such a “dice world”
must be avoided: Although this artificial world fulfils a crucial role for the students’
mathematical comprehension of probability, teaching probability must be enriched
by situations outside the pure world of gambling. Thus, the students can deepen
their understanding of probability by reflecting on its role in applying statistics.
By this, probability can become more meaningful to the students. So, changing the
citation of Schupp (1982) a little, it can be said that probability without accounting
for realistic situations and real data stays empty for students.

Our statement is underlined from psychology with regard to theories of situated
learning and anchored instruction. “Situations might be said to co-produce knowl-
edge through activity. Learning and cognition, it is now possible to argue, are funda-
mentally situated.” (Brown et al. 1981, p. 32) Essential characteristics (among oth-
ers) of this situational oriented approach are interesting and adequate complex prob-
lems to be mastered as well as realistic (not necessary real) and authentic learning
surroundings containing multiple possible perspectives on the problem (cf. Mandl
et al. 1997). By following the goal to prevent the so-called inert knowledge, the re-
search group Cognition and Technology Group at Vanderbilt (1990) developed and
applied in practical oriented research the theory of anchored instruction. The cen-
tral characteristic of this approach is its narrative anchor by which the interest of
the learners should be produced and the problem should be embedded in the con-
text so that situated learning can take place. Within this perspective, we suggest that
emphasizing only the “dice world” would not meet the demands of a perspective of
situated learning or anchored instruction briefly outlined above.

Considering the different situations that could be regarded concerning ap-
proaches of probability measurement and different roles data are playing during
the modelling process, we differentiate three kinds of problem situations (Eichler
and Vogel 2009):

• Problem situations which contain all necessary information and represent a
stochastic concept like an approach to probability in a strongly reduced context
(that is usually not given within the complex circumstances of real world prob-
lems) we call virtual problem situations.

• Problem situations which demand analysing a situation’s context that is more “au-
thentic” and provide a “narrative anchor” (see above), but still provide demands
that do not aim to reconstruct real world problems we call virtual real world
problem situations.

• Problem situations that include the aim to reproduce real problems of a society
we call real world problem situations.

In the following, we exemplify three situations of the latter two kinds of problems
representing the three approaches of probability outside the world of gambling.
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5.1 A Virtual Problem Situation Concerning the Classical
Approach

A computer applet concerning the so-called Cliffhanger Problem could be seen as
an example (source: http://mste.illinois.edu/activity/cliff/ (12.2.2012)).

A long day hiking through the Grand Canyon
has discombobulated this tourist. Unsure of
which way he is randomly stumbling, 1/3 of his
steps are towards the edge of the cliff, while 2/3
of his steps are towards safety. From where he
stands, one step forward will send him tumbling
down. What is the probability that he can escape
unharmed?

With regard to the underlying mathematical structure, this problem situation is
one variation of the so-called random walk problems. Defined by the question for the
unknown probability, it is comparable to the task to find out what the probabilities
of a fair dice, or rather a fair coin, are.

A normative solution for this situation represents the classical approach of proba-
bility. Given the positions measured in steps from the edge by 0, 1, etc., and denoting
probabilities for falling down at different positions by p1,p2, . . . , the probability of
falling down starting at the position 1 is represented by: p1 = 1/3 + 2/3p2. Further,
the probability of moving from position 2 to position 1 is the same as moving from
position 1 to position 0 (i.e. falling down), namely p1. Thus, the probability p2 of
falling down at the position 2 equals to p2

1, i.e. p2 = p2
1. Combing these two equa-

tions leads to the quadratic equation p1 = 1/3+2/3p2
1, which is solved by p1 = 0.5

(the second solution 1 apparently does not make sense within the given situation).
Those students who are able to find a theoretical solution afterwards have the

opportunity to check their considerations by using a simulation which is enclosed
in the computer application. Thus, (virtual) empirical data could help validate the
theoretical considerations.

However, the situation must not be analysed by using the classical approach of
probability. Students who do not get along well with the classical approach have the
opportunity first to use the computer application for simulating and thus, for getting
a concrete image of the problem situation and its functioning as well as an idea what
the solution could be. In this way, their attempt to find a theoretical explanation is
guided by their empirically funded assumption of about 0.5 being the right solution.

As already mentioned above, there is no fixed rule how to solve such problem
situations: starting with theoretical considerations followed by data based validating
or starting with data based assumptions followed by theoretical explanations or even
multiple changing between theoretical considerations and data based experiences, it
is a modelling question by aiming to make decisions and predictions within the
given computer based problem situation.

The Cliffhanger Problem is structurally equivalent to the problem of throwing
an ordinary die. It provides also artificial simplifications within a given virtual sit-

http://mste.illinois.edu/activity/cliff/
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Averages

blue brown green orange red yellow

3.1 3.1 2.9 3.1 3.0 2.8

Fig. 8 Statistics concerning 100 opened candy bags

uation, but emphasizes approaches to probability in a situation beyond the “dice
world” mentioned above. Students have the opportunity to apply their stochastic
knowledge and mathematical techniques according to a situated learning arrange-
ment prepared by the teacher. Thus, students do not only learn something about the
situation’s stochastic content but also about techniques of problem solving. In this
sense, such virtual problem situations could allow for speaking of learning about
stochastic modelling in a mathematically protected area under laboratory condi-
tions.

5.2 A Virtual Real World Problem Situation Concerning the
Frequentistic Approach

Explore the distribution of colors in the candy bags.

The candy bags contain six different colors. By focusing on only one color, the
complexity could be reduced to a situation which in a teacher’s forethought could
allow for modelling by using a binomial distribution (assuming that the mathemati-
cal pre-conditions are given). Provided that there is no further information available
(e.g. about production process of the candy bags), only a theory-based approach to
the problem seems not to be given. The empirical character of the problem situation
indicates that data is needed (Wild and Pfannkuch 1999) before reliable hypothesiz-
ing about the colors’ distribution is possible.

Opening of 100 candy bags has produced data which are represented in statistics
of Fig. 8.

To found a theoretical model on these descriptive analyses it is necessary to name
the underlying assumptions: For example, with regard to color each candy bag is
modelled as being filled independently from the others. Further, the probability of
drawing one candy with a specific color is assumed not to change. Beyond that a
further modelling assumption is that all candy bags contain the same number of can-
dies. Accepting these modelling assumptions and thus, assuming there is an equal
distribution of all six colors founding an underlying theoretical model, this leads to
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Theory binomial distribution Simulation frequencies (10 000 bags)
r H(X = r) P (X = r) r H(X = r) h(X = r)

0 376 0.038 0 366 0.037
1 1352 0.135 1 1369 0.137
2 2299 0.230 2 2329 0.233
3 2452 0.245 3 2405 0.241
4 1839 0.184 4 1871 0.187
5 1030 0.103 5 1031 0.103
6 446 0.045 6 422 0.042
7 153 0.015 7 155 0.016
8 42 0.004 8 39 0.004

> 8 11 0.001 > 8 13 0.001

Fig. 9 Distribution of a random variable X counting the number r of red candies in 10 000 candy
bags

a data-based estimation of probability, e.g. P(red) = 1/6 for drawing a red colored
candy and P(not red) = 5/6 for drawing another color. Based on these assumptions,
it is possible to model the situation by a binomially distributed random variable X

that counts the number r of red colored candies:

P(X = r) =
(

18
r

)
·
(

1

6

)r

·
(

5

6

)18−r

.

Using this model, the students can calculate the different probabilities for different
numbers of red candies as well as fictive absolute numbers of candy bags containing
r red colored candies. Figure 9 (left) contains the probability distribution and the
distribution of absolute frequencies resulting from calculating with 10 000 fictive
opened candy bags. If students do not know the binomial distribution, they could
use a computer simulation (prepared by the teacher). Thus, they are able to simu-
late 10 000 fictive candy bags and to calculate the absolute as well as the relative
frequencies of different numbers of red colored candies (Fig. 9, right).

The arrays of Fig. 9 could be used to derive criteria for validating the underlying
theoretical model of equal color distribution with regard to reality. For example,
the students could decide to reject the model when there are 0 or 8 (or even more)
red colored candies in a new real candy bag. In this case, they would be wrong by
refusing the underlying theoretical model in about 5 % of cases.

This color distribution problem is structurally equivalent to the situation of
throwing the cuboid die. Thus, to model the problem situation of the candy bags,
the frequentistic approach of probability seems to be necessary. A theoretical model
could not be convincingly found without a sample of real data which is big enough.
Data are again needed to validate the theoretical model and its implications.

In comparison with the Cliffhanger Problem, the situation of the candy bags is
much less artificial. Although this problem includes modelling real data, the sit-
uation contains, however, a virtual problem of the real world. In fact, the color
distribution of candy bags is not a real problem if students’ life or society is re-
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garded. Nevertheless, within a pedagogical point of view, such data based problem
situations represent situated learning (Vosniadou 1994). They are further to be con-
sidered worthwhile because they are anchored in the real world of students’ daily
life and provoke students’ activity. Activity-based methods have been recognized to
be a pedagogically extremely valuable approach to teaching statistical concepts (e.g.
Scheaffer et al. 1997; Rossman 1997). By this, such a data based approach should
encounter learning scenarios concerning probability which were criticized by Greer
and Mukhopadhyay (2005, p. 314) as consisting of “exposition and routine applica-
tion of a set of formulas to stereotyped problems”.

5.3 A Real World Problem Situation Concerning the Subjectivist
Approach

The following news item is given:
“The local health authority advises against using an HIV rapid
test”

The rapid test has the following characteristics:

– If a person is infected with HIV (I ), the rapid test yields a pos-
itive result (+) in 99 % of cases, P(+|I ) = 0.99, but wrongly
yields a negative result (−) in 1 % of cases, P(−|I ) = 0.01.

– If a person is not infected with HIV (I ), the rapid test yields
a negative result (−) in 98 % of cases, P(−|I ) = 0.98, but
wrongly yields a positive result in 2 % of cases, P(+|I ) = 0.02.

Referring to these characteristics, the rapid test seems to be very
good. So what might be the reason for the local health authority to
publish this news item?

The characteristics of the rapid test represent objective frequentistic probabilities
that should be based on empirical studies. However, for modelling the given situ-
ation, the situation must be regarded from a subjective perspective. By doing this,
the relevant question concerns the probability of being infected with HIV given a
positive test result. This situation comprises no randomness since a specific person
is either infected or not infected. If this specific person has no information about his
status of infection, he or she might hold an individual degree of belief, i.e. a subjec-
tive probability, of being infected or not. This subjective probability might be based
on an official statement of the prevalence in a specific country, e.g. the prevalence in
the Western European countries is about 0.1 %. However, this subjective probability
could be higher (or lower), if a person takes into account his individual environ-
ment. Processing the test characteristics using the base rate of 0.1 % as “a priori”
probability yields:

P(I |+) = P(+|I ) · P(I)

P (+|I ) · P(I) + P(+|I ) · P(I)
= 0.99 · 0.001

0.99 · 0.001 + 0.02 · 0.999
≈ 0.047.
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Although the information of a positive test result yields a bigger “a posteriori”
probability concerning an individual degree of belief referring to the status of infec-
tion, the probability to actually be infected given a positive test result is very low.
However, the test itself is not bad, but the test applied concerning a tiny base rate.
Given a higher base rate, i.e. a subjective probability “a priori”, yields fundamentally
different results. For example, the base rate of 25 %, which is an existing estimation
of prevalence in some countries (www.unaids.com), results in P(I |+) ≈ 0.943.

The structure of this real world problem is similar to the die game we discussed
in Sect. 4.3. Thus, a model “a priori” (looking ahead) is revised by information
(looking back), resulting in a model “a posteriori” (looking ahead). The difference
between the rapid test and the die game is that the die could produce further infor-
mation being independent from that known earlier. By contrast, it is not appropriate
to repeat the rapid test to gain more than a single piece of information since the
results of repeated tests could reasonably not be modelled as being independent.

As opposed to the former two problem situations, the HIV task comprises a real
world problem that is relevant to society (equivalent problem situations are breast
cancer and mammography, BSE, or even doping). The problem situation shows the
impact of the base rate on decision making using the subjectivistic approach of prob-
ability. On the one hand, such a problem situation aims to illustrate that elementary
stochastics provides methods to reconstruct problems that are relevant to life or so-
ciety. On the other hand, such a problem complies with the demands of situated
learning as well as anchored instruction (see above). Thus HIV infection involves
an authentic and interesting real world problem situation aiming at students’ com-
prehension of the subjectivistic approach of probability.

6 The Role of Simulations

By reflecting on the different kinds of randomness concerning problem situations
which are described above, simulations could play different roles within the under-
lying modelling activities. As well as, e.g. Girard (1997); Coutinho (2001); Zim-
mermann (2002); Engel (2002); Biehler (2003); Batanero et al. (2005a, 2005b);
Pfannkuch (2005); Eichler and Vogel (2009, 2011); Biehler and Prömmel (2011),
we see possible advantages within a simulation-based approach to model situations
with randomness, although there are also possible disadvantages to be kept in mind
(e.g. Countinho 2001). Within the problem situations discussed above, we identify
three different roles, i.e. simulation as a tool to:

1. Explore a model that already exists,
2. Develop an unknown model approximately, and
3. Represent data generation.

We briefly discuss these three roles of simulation including aspects of what
Mishra and Koehler (2006) call technological pedagogical content knowledge
(TCPK) (with regard to probabilities, see also Heitele 1975; Biehler 1991;
Pfannkuch 2005).

http://www.unaids.com
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6.1 Simulation as a Tool to Explore an Existing Model

Concerning all problem situations we have discussed, simulation could yield rel-
evant insights into the process of data generation within a model (Stohl and Tarr
2002). We emphasized this aspect concerning throwing the ordinary die: Simulation
could illustrate possible results of relative frequencies dependent on the underlying
model. In particular, simulation could (qualitatively or quantitatively) yield insight
into the 1√

n
-law as well as into the empirical law of large numbers and, thus, yield

“a deeper understandings of how theoretical probability [. . .] can be used to make
inferences” (Stohl and Tarr 2002, p. 322).

Simulations concerning a well-known model (the ordinary die) could support stu-
dents when they have to make the transfer from the estimation of future frequencies
based on such a well-known model to the estimation of a frequentistic probability
based on relative frequencies concerning a (large) data sample. Thus, the theoret-
ical world of probability and the empirical world of data could be convincingly
connected. This is, in our opinion, one of the central pedagogical impacts of simu-
lations: allowing for bridging these two worlds (cf. Eichler and Vogel 2011; Vogel
and Eichler 2011; Batanero et al. 2005b).

6.2 Simulation as a Tool to Explore an Unknown Model

In case of the virtual problem situation of Cliffhanger, computer-based simulations
producing virtual empirical data could support students by assuring them of their
theoretical considerations before, during or after the modelling process. Further,
simulation could be used to explore the distribution of red candies even if the (theo-
retical) binomial distribution is unknown. In general, simulations could help build a
model where irrelevant features are disregarded, and the mathematical phenomenon
is condensed in time and available to the students’ work (Engel and Vogel 2004).
Thus, formal mathematics could be reduced to a minimum, allowing students to ex-
plore underlying concepts and to experiment with varying set-ups. In this regard,
the didactical role of simulations, which in sense of Coutinho (2001) could be con-
sidered as being pseudo-concrete, is to implicitly introduce a theoretical model to
the student, even when mathematical formalization is not possible (cf. Henry 1997).
Simulations are at the same time physical and algorithmic models of reality since
they allow an intuitive work on the relevant model that facilitates later mathematical
formalization (cf. Batanero et al. 2005b). Moreover, understanding of methods of
inferential statistics could be facilitated by simulating a virtual but empirical world
of data (cf. Pfannkuch 2005).

6.3 Simulation as a Tool for Visualizing Data Generation

In the former two sections, we described simulation as a tool to facilitate and to
enhance students’ learning of objective probabilities. Actually, the benefit of simu-
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lation concerning the subjectivistic approach of probability seems to be not as im-
portant as if objective probability is considered. Thus, regarding, for instance, the
HIV infection problem simulation conducted with educational software like Excel,
Fathom, Geogebra, Nspire CAS, and even professional software like R yields fre-
quencies of an arbitrary number of tested persons. However, these simulation results
seem to have no advantage in opposite to graphical visualizations like the tree with
absolute frequencies (Wassner and Martignon 2002). By contrast, visualizing the
process of data generation by simulation might facilitate the comprehension of a
problem’s structure concerning the subjectivistic approach (e.g. the HIV infection
problem).

Educational software like Tinkerplots is suitable to visualize the process of data
generation. In the box on the left side, the population according to the base rate is
represented. In the middle, the characteristics of a diagnostic test are shown. On the
right side, the results are represented using a two by two table (the test character-
istics concern mammography and breast cancer; Hoffrage 2003). The advantage of
such a simulation is to be seen in running the process of data generation in front
of the learner’s eyes. With regard to recent and current research in multimedia sup-
ported learning environments, there is a lot of empirical evidence (e.g. Salomon
1993; Zhang 1997; Schnotz 2002; Vogel 2006) that using them the learners can be
successfully supported in building adequate mental models of the problem domain,
here in learning about conditional probabilities.

7 Conclusion

There are three approaches of modelling situations with randomness: the classical
approach, the frequentistic approach and the subjectivistic approach. With regard
to a pure educational perspective, we asked for what teachers must know about the
underlying concept of probability. To answer this question, we first made a short
proposal of essentials of a basic content knowledge teachers should have and con-
trasted it with empirical findings of existing research concerning teachers’ knowl-
edge and beliefs about probability approaches. On this base, we developed a nor-
mative proposal for teaching the three approaches of probability: firstly, we outlined
our normative focus on teachers’ potential pedagogical content knowledge (PCK)
concerning the construct of probability, and secondly, we elaborated the underlying
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ideas by examples of three different classroom activities of throwing dice that pro-
vide the three approaches mentioned above. Thereby we used a modelling perspec-
tive which allows for interpreting the different approaches to probability as being
different kinds of modelling a problem situation of uncertainty.

This modelling perspective also allows for leaving the gambling world and for
applying different approaches to probability in problem situations which could be
categorized along a scale between a virtual world, on the one side, and the real
world, on the other side. In a nutshell, we finally focused on technological pedagog-
ical content knowledge (TCPK). By discussing the question how technology, and
simulation in particular, can enhance students understanding of probabilities, we
distinguished three different roles which simulations can play. Especially computer-
based simulations are estimated to being worthwhile because of their power of pro-
ducing new data which could be interpreted as empirical realizations of a random
process. But by using digital tools in modelling situations with randomness, new
research questions arise.
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