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Abstract This chapter focuses on how puzzles and paradoxes in probability de-
veloped into mathematical concepts. After an introduction to background ideas, we
present each paradox, discuss why it is paradoxical, and give a normative solution
as well as links to further ideas and teaching; a similar approach is taken to puzzles.
After discussing the role of paradoxes, the paradoxes are grouped in topics: equal
likelihood, expectation, relative frequencies, and personal probabilities. These cover
the usual approaches of the a priori theory (APT), the frequentist theory (FQT),
and the subjectivist theory (SJT). From our discussion it should become clear that
a restriction to only one philosophical position towards probability—either objec-
tivist or subjectivist—restricts understanding and fails to develop good applications.
A section on the central mathematical ideas of probability is included to give an
overview for educators to plan a coherent and consistent probability curriculum and
conclusions are drawn.

1 How Paradoxes Highlight Conceptual Conflicts

What makes a paradox? Progress in the development of mathematical concepts is
accompanied by controversies, ruptures, and new beginnings. The struggle for truth
reveals interesting breaks highlighted by paradoxes that mark a situation, which re-
flects a contradiction to the current base of knowledge. Yet, there is an opportunity
to renew the basis and proceed to wider concepts, which can embrace and dissolve
the paradox. A puzzle, however, is a situation in which the current concept yields
a solution that seems intuitively unacceptable. Such a puzzle shows that the intu-
itive basis of the concept has to be improved or that the concept is contrary to the
expectation of the solver. Examples from other areas of mathematics include neg-
ative numbers (for younger children) or complex numbers (for most adults). From
puzzles and paradoxes one can learn about crucial properties of the theory involved.
The situations are challenging and can also lead experts to err; the purpose of the
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concepts can also be better understood than by a sequential exposition of theory and
examples.

Székely (1986) is the standard exposition which classifies puzzles and paradoxes
and highlights the crucial contradictions that have contributed to clarify the basis
of probability and mathematical statistics. He discusses each paradox in five parts:
history, its formulation, explanation, remarks, and references: the reader is encour-
aged to study his approach for an extensive range of puzzles and paradoxes, which
include some presented in this chapter.

Our approach is to link more closely to the underlying ideas and their applica-
tion in teaching and learning. This vision is directed at the multi-faceted concepts
entrenched with philosophical principles, especially with the two grand schools and
conceptions of probability which are linked to the frequentist and Bayesian (subjec-
tivist) interpretation of probability. Our exposition also encompasses the personal
thoughts of pupils and students who are encountering these ideas for the first time.
The underlying ideas are complex, overlapping, and interwoven. Steps to explain
and overcome the traps are needed. For learners, the concepts are still emerging and
change their character. This affects the subject of probability, which itself affects
other areas of study. Think, for example, of the drastic change of the paradigm in
physics which currently has changed completely from a causal to a random ideal.

A major purpose is to explain what is paradoxical and to link the solution to
mathematical concepts and their historical perception. We assert that the present
dominant position of objectivist probability narrows the flexibility not only of the
models but also of the conceptions of the learner with the consequence that the
exclusion of subjectivist notions hinders understanding.

We discuss 15 paradoxes and puzzles, only five of these feature in Székely
(1986). The paradoxes are grouped alongside mathematical concepts which some-
times deviate from the historical development. Equal likelihood is followed by a re-
view of the principle of insufficient reason, which regulates how and when equally
likely cases are present (Sect. 2). A discourse on expected values follows to cover
the central competing idea to probability since olden times (Sect. 3). The frequen-
tist conception of probability has emerged as almost the sole interpretation, despite
some key puzzles on randomness (Sect. 4). The concept of conditional probability
is connected to subjectivist interpretations of probability (Sect. 5). We present math-
ematical theory from school to university (Sect. 6), although in a curtailed format.
While the paradoxes highlight isolated developments in concepts, this section is in-
tended to reveal central ideas that link the concepts coherently. This requires more
technical and mathematical detail, which sometimes is prone to be avoided. How-
ever, a deeper understanding of the fundamental ideas is vital and may get lost if one
strives to simplify the mathematics too much. The final section (Sect. 7) presents our
conclusions.

Our presentation shows that the mathematical context of the concepts has to
be accompanied by philosophical aspects, otherwise a comprehension of the the-
ory will be biased, resulting in difficulties not only to understand but—more
importantly—for learners to accept the concepts and apply them sensibly.
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2 Equal Likelihood

The classical a priori theory (APT) starts with an assumption of equal likelihood,
often in games of chance, and uses combinatorial methods to find the probability
of various events. It is still, rightly, the initial approach to introduce probability to
children. These ideas originally arose from a variety of puzzles and paradoxes.

Combinatorial multiplicity is linked to the possible outcomes which are con-
sidered to be equally likely. Moreover, links are soon made to relative frequencies
as otherwise the concept of probability would lack an orientation about what will
happen in repeated experiments. The emergence of these ideas is interwoven. To
investigate equally likely cases and to apply a rule of favourable to possible cases
draws heavily on counting the possibilities correctly, which proves to be harder than
one might imagine, as evident from the difficulties shown by children and students.
The conceptual confusion was aggravated by a competing concept, the expected
value: at times, some like Huygens (1657) regarded it as more basic than probabil-
ity with his value of an enterprise, corresponding to today’s expected value. This
was shortly after the great leap forward by Pascal and Fermat in 1654 (Fermat and
Pascal 1679) when they specified a suitable set of outcomes and counted the pos-
sibilities correctly. An explicit, if contested definition of probability had to wait till
Laplace (1812/1951). His approach is characterized by an intermixture of sample
space—the mathematical part—and the intuitive part of an idea of symmetry. Prob-
ability is defined by assuming the equal likelihood of all possible results (APT).

In modern theory, the sample space is separated from probability, which is a func-
tion defined on a specific class of subsets of the sample space. This gives the free-
dom to view any specific probability as a model for a real situation. Until this final
step to separate the levels of the model and the real problem, probability was con-
sidered as a property of the real world like length or weight. Thus—within bounds
of measurement errors—there is one probability, a unique value for a problem. Ac-
cordingly, the task of a probabilist was either to find a sample space suitable to fit the
equally likely conditions, or, since the empiricism of the nineteenth century, to find
a suitable random experiment, repeat it often enough, and substitute the unknown
probability by the relative frequency (FQT). Laplace recognized the difficulty re-
lated to judging cases to be equally likely and modified a principle going back to
Jakob Bernoulli, which was later re-evaluated by Bayes: If one is ignorant of the
ways an experiment ends up and there is no reason to believe that one case will oc-
cur preferentially compared to another, the cases are equally likely. This principle
of insufficient reason underpins the application of Laplace’s probability.

The first subsection below includes the historically famous puzzles arising from
the struggle to sharpen the conception of possible cases, the rule of favourable to
unfavourable cases, and expected value. Subsequently, problems arise from the prin-
ciple of Laplace about equally likely cases. These provide excellent and motivating
starting points to introduce probability in the classroom.
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2.1 Early Notions of Probability

When concepts emerge and are not yet well-defined, confusion between closely
related terms occurs. This may be confirmed by the early endeavours to find tools
to describe and solve problems with uncertainty. As no other embodiments of the
pre-concepts were available, it is no wonder that the context of games of chance was
used extensively. Furthermore, the old idea of fairness and its close connection to
games of chance was used as a “model” to a situation that had no relation to chance
before.

The first puzzle, 9 or 10, deals with the sum of three dice. It marks a definite step
towards the Cartesian product for counting the possibilities of repeated experiments,
thus viewing the result 1.2.6 as different from 2.1.6, which gives a total multiplicity
of 6 instead of 1. Lacking a theoretical argument for respecting order, the choice
was justified by empirical frequencies. De Méré’s problem with sixes marks a step
in clarifying what can count as possibility. The confusion about the rule involved
might be traced back to an overlap between the concepts of probability and expected
value. The third puzzle is remarkable insofar as a counter-intuitive step was needed
to sharpen the concept of possible cases: the solution is based on hypothetical cases,
which are extended against the rules and are thus impossible. However, the greatest
progress by Pascal and Fermat was to model a situation without a link to probabil-
ities by a hypothetical game of chance to mimic the progress of a competition and
use the resulting relative winning probabilities for a fair division of the stakes.

P1: Problem of the Grand Duke of Tuscany Three dice are thrown. The possi-
bilities to get a sum of 9 or 10 are counted in the following way (Galilei 1613–1623;
cited from David 1962, p. 192):

[. . .] 9 and 10 can be made up by an equal diversity of numbers (and this is also true of 12
and 11): since 9 is made up of 1.2.6, 1.3.5, 1.4.4, 2.2.5, 2.3.4, 3.3.3, which are six triple
numbers, and 10 of 1.3.6, 1.4.5, 2.2.6, 2.3.5, 2.4.4, 3.3.4, and in no other ways, and these
also are six combinations.

This theoretical argument is confronted with experience:

Nevertheless, although 9 and 12 can be made up in as many ways as 10 and 11 respectively,
and therefore they should be considered as being of equal utility to these, yet it is known
that long observation has made dice-players consider 10 and 11 to be more advantageous
than 9 and 12.

Galilei ordered the results of the ways of getting 9 as follows: there are 6 different
orderings of 1.2.6 but only 3 out of 2.2.5 and only one from 3.3.3. His table is well
worth reproducing and studying by pupils (see Table 1), as its structure conveys a
hierarchical process of ordering, first the results of the dice and then ordering them
using the symmetry that a sum of 3 and 18 has the same multiplicity, as have 4 and
17, up to 10 and 11.

What is the Paradox? Two counting procedures lead to different numbers and
yield different probabilities. As the probabilities were communicated in odds, the
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Table 1 Galilei’s protocol (from David 1962, p. 194)—slightly modified

10 9 8 7 6 5 4 3

6.3.1 6 6.2.1 6 6.1.1 3 5.1.1 3 4.1.1 3 3.1.1 3 2.1.1 3 1.1.1 1

6.2.2 3 5.3.1 6 5.2.1 6 4.2.1 6 3.2.1 6 2.2.1 3

5.4.1 6 5.2.2 3 4.3.1 6 3.3.1 3 2.2.2 1

5.3.2 6 4.4.1 3 4.2.2 3 3.2.2 3

4.4.2 3 4.3.2 6 3.3.2 3

4.3.3 3 3.3.3 1

27 25 21 15 10 6 3 1 108

108

216

first count leads to 1: 1 while the second yields 25: 27 for 9 against 10, which is
advocated as correct by Galilei; today, we read the result as a probability of 0.1157
for 9 and of 0.1250 for 10. With the modern concept of repeated experiments, in-
dependence is a theoretical argument in favour of the second way to count. Without
such a concept, the result was certainly puzzling. Another strange feature is how
they could find such a small difference by playing. For Székely (1986, p. 3) the
paradoxical feature of 9 or 10 lies in the fact that for two dice 9 is more probable
while for three dice 10 is more probable.

Further Ideas The argument to find which solution is right is interesting. It signi-
fies that since olden times counting the possibilities in order to calculate the relative
probabilities was linked to what actually happens in games. As the difference in
probabilities for 9 and 10 is very small (0.0093), it is hard to believe that this has
really been detected by playing as this would require roughly 10,000 trials.

Such an argument as a substitute for theoretical reasoning is used at several places
in the history of probability. It signifies that the theoretical argument alone was too
weak to convince and that the writers considered a strong connection from their
chances to relative frequencies. If an argument for a way to count contradicts the
experience of relative frequencies, it is useless.

From a teaching perspective, there are valuable lessons which can be drawn and
used. It is difficult for children to find all the possibilities in throwing three dice and
then calculate the probabilities. Nevertheless, the approach here can help to develop
combinatorial skills. It also confronts the difference between a theoretical (APT)
probability and a frequentist (FQT) interpretation.

P2: De Méré’s Problem In this famous problem, a simple proportional argu-
ment suggests that it is equally likely to get (at least) a six in throwing a die four
times as to get (at least) a double six in throwing two dice in 24 trials. De Méré
posed the problem to Fermat as to why, apocryphally, he won a fortune betting on
a six with one die and lost it betting on a double six in 24 trials (cf. David 1962,
p. 235). Fermat listed the cases correctly and calculated the winning probabilities
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as 1 − (5/6)4 = 671/1296 = 0.518 for the six and as 1 − (35/36)24 = 0.491 for
the double six game. He concluded that, in fact, to bet on the single six game is
favourable (higher than 1/2) and betting on the double six game is unfavourable
(lower than 1/2).

What is the Paradox? In evaluating the chances, the following rule was emerging
but far from clear: compare the number of favourable to unfavourable cases, or
determine the ratio of favourable to possible cases. In a careless application of the
emergent rule of “favourable to possible”, the argument might have been as follows:
with one die, 4 throws make 4 chances (i.e. 4 favourable cases to get a six). The 6
faces of the die mark the 6 possible cases. The ratio of favourable to possible yields
4/6. With two dice, the 24 throws establish 24 chances (favourable cases to get a
double six) with 36 possible cases and the same rule yields 24/36. As the ratios are
equal, the probabilities should be equal.

This argument is confronted by data in actually playing, whereby the game with
one die is favourable while with two dice it is unfavourable. The line between
favourable and unfavourable was drawn by the winning probability of 1/2. If prob-
abilities are linked to relative frequencies then there is definitely a problem with the
original solution, and it is difficult to see what is wrong with counting the cases.

Another paradoxical feature lies in the difference between the concepts of proba-
bility and expected value, which are often confused in the discussion. The expected
number of sixes in four trials with one die equals to 4 · 1

6 = 4
6 and for double sixes

with two dice it equals 24 · 1
36 = 24

36 . In this respect, a correct application of expected
value leads to the same result for both games and the question is why this fails to
predict the relative frequencies in games.

Further Ideas The classical random experiment is an independent binary 0–1
experiment with probability of p for the result 1. The expected value for one trial
is p, for n repetitions it is n · p. The reader may note that this yields another rule
of favourable (the favourable cases are the n trials) to possible cases (with equal
chances 1/p is the same as the number of all possible cases):

Expected value = n ·p = n · 1
1/p

, which equals the fraction of n chances to (1/p)
possible cases.

Though the rules are identical they bear a different meaning, which can be rec-
ognized only if the difference between the concepts of probability and expectation
is discussed in teaching.

This overlap may also be traced in Huygens’ method to derive probabilities by
calculating the corresponding expected values. However, in de Méré’s problem, the
two solutions differ. With the games above, the amount to win is 1 if the winning
figure occurs (and 0 else); note that the payment is the same irrespective of the
actual count and so the double six game is unfavourable. If the amount to win were
exactly the number of sixes (double sixes), the games, in fact, would be equal. Yet,
the double six game has a greater variance and bears more risk to lose but also gives
more chances to win a higher amount.
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Historically it was difficult to separate the concepts of probability and expecta-
tion and arrive at a clear vision of what probability can achieve and how to interpret
or evaluate specific probabilities. The situation is usually blurred by the fact that
an outcome is related to an impact, especially in games of chance. The perceived
impact differs if it is a win or loss—even if the expected amounts are the same, as
experiments by Kahneman and Tversky (1979) have shown.

P3: Division of Stakes

A and B are playing a fair game of balla. They agree to continue until one has won six
rounds. The game actually stops when A has won four and B three. How should the stakes
be divided?

Pacioli suggested the stakes should be split as 4 to 3 (Pacioli 1494; see David 1962,
p. 37). We changed his original data to the situation Pascal and Fermat deal with
in their famous exchange of letters 1654. They assess the possible ways to win the
whole series:

Since A needs 2 points and B needs 3 points the game will be decided in a maximum of four
throws. The possibilities are: [see Table 2]. In this enumeration, every case where A has 2,
3, or 4 successes is a case favourable to A, and every case where B has 3 or 4 [successes]
represents a case favourable to B . There are 11 for A and 5 for B , so that the odds are 11:
5 in favour of A. (Pascal in Fermat and Pascal 1679, referenced by David 1962, p. 91)

What is the Paradox? The solution is paradoxical from the standpoint of counting
the possibilities, rather than dividing the stake by the current score of 4:3. What may
be viewed as a possibility as the game has been interrupted? A great step forward is
marked by introducing a hypothetical continuation of the game on the basis of what
could happen if the game is continued. Of course, the series is decided if A wins
two more games in this scenario. Thus, there are only 10 actual possibilities and 6
are favourable to A, which would split the stakes as 6 to 4 or 3 to 2. At this point, it
is important that Fermat recognized that it makes no sense to consider these “real”
cases as equally likely. To assign equal weights to them, he extended the “real”
cases by imagined further rounds to make them of equal length. Interestingly, this
conflicts with the rules of the game as one of the players would already have won
and the series finished. To introduce a hypothetical continuation was the first step

Table 2 Pascal’s hypothetical cases and real cases compared

[Counting hypothetical cases by Pascal Counting “real” cases]

AAAA AAAB AABB ABBB BBBB AA ABA BAA BBAA BBB

AABA ABAB BABB ABBA BABA BBAB

ABAA BAAB BBAB ABBB BABB

BAAA ABBA BBBA

BABA

BBAA
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to find possibilities, to introduce an extension beyond the rules was to invent cases,
with the aim to make them equally likely.

There are no signs that the stakes puzzle has anything to do with chance. The
basic paradox is, however, Pascal and Fermat’s view of the situation as if it were
random. Originally the problem seems to be devoid of probability. The series has
been interrupted and it is a problem awaiting a resolution. Probabilities are intro-
duced only in the sense of a scenario. The focus lies on dividing the stakes fairly
instead of finding a good model to describe the continuation of the game.

Further Ideas Székely (1986, p. 10) exclaims that “this [. . .] is considered [. . .]
to be the birth of probability theory [. . .]”. In earlier times, (fair) decisions were
made by a game of chance if sufficient knowledge about the situation, or expertise
(or trust) was missing. Somehow, probability introduces a sort of higher capacity
(knowledge) beyond god (according to Laplace) who can always predict the result.
Instead of exploring something like god’s decision by a chancy game, the probability
model is utilized to advocate a split of the stakes as fair. For teaching purposes, such
a theoretical extension requires careful discussion in the classroom; it is instructive
to explore the difference between a current proportion (4:3 here) and a fair division
(11:5).

2.2 Conceptual Developments in Probability

The use of probability in the eighteenth and nineteenth centuries is signified by a
diversity of conceptions. Two fundamental theorems concerned the relation between
relative frequencies and probabilities: Bernoulli’s law of large numbers (1713/1987)
and Bayes’ theorem including a corollary (1763).

Bernoulli’s direct probability approach used the unknown probability p as a con-
stant and the binomial distribution to derive the convergence of the relative fre-
quencies towards this probability. With his theorem, Bernoulli provided the basis
for relative frequencies (FQT) as an input to evaluate the probability of arguments.
However, he was well aware that one might need more data to reach a reliable result.

Bayes’ inverse probability method took the opposite approach: the weights on the
unknown p converge to the relative frequencies of repeated experiments. Here, the
unknown probability p is different from a constant (but unknown) number: in fact,
one has to express a distribution upon it, which represents the status of knowledge
on this parameter.

Bayes (1763) derived his theorem within an embodiment, in which the uniform
prior distribution on p was obvious. Furthermore, he argued that if one lacks any
knowledge about the value of the probability p of an event then one should accept
equal stakes in betting on 0,1, . . . , n events in n repeated trials. On this assump-
tion, he derived the uniform distribution on p mathematically. His argument was
quite complex so that following writers abbreviated it to “if one lacks any know-
ledge about p then it is uniformly distributed” (similar to an older argument by
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Bernoulli), which has become known as Bayes’ postulate. Bayes’ rule of succession
is a corollary to his theorem and proves—on the basis of a uniform distribution on
the parameter—that the posterior weights (distribution) on p after k successes in n

trials have an expected value of (k + 1)/(n + 2) and a variance that converges to
zero (in modern terms he derived a beta distribution for the parameter p). Thus, the
posterior distribution restricts itself to a point, which corresponds to the limit of the
relative frequencies. Instead of using variance, Bayes calculated the probability of
intervals around (k + 1)/(n + 2), which was correctly interpreted as the probability
of an event occurring in the next trial to follow (Price 1764–1765).

De Moivre gave a specification of probability as the number of favourable divided
by the number of possible cases based on equally likely cases, which comes close
to the generally accepted definition by Laplace (1812/1951). Laplace reproduced
Bayes’ theorem and used his “postulate” extensively to check and justify whether
equally likely cases are appropriate in a problem. His approach (“if we are equally
undecided about”) was later named as the principle of insufficient reason. This was
rejected by the empirical critique of Venn (1888). There is no way to transform
complete ignorance into probabilities, which represent a form of knowledge. Venn
asked for an empirical basis of probability as an idealized relative frequency. The
difficulty of the principle of insufficient reason, and of independence is highlighted
by the following problem where SJT is contrasted to APT.

P4: D’Alembert’s Problem Two coins are flipped. What is the probability to
obtain heads twice?

(a) Applying Laplace’s principle on the combinatorial product space of HH, HT ,
TH, TT (thus respecting order) yields the answer 1/4 (APT).

(b) D’Alembert (1754) refers to the fundamental probability set {no head, one
head, two heads} (neglecting order) and applied equi-probability to the three
cases, giving an answer of 1/3 (will be linked to SJT below).

Since Pascal and Fermat it had been well acknowledged that, for repeated experi-
ments, respecting order helps to find equally likely cases. Therefore, d’Alembert’s
approach was rejected as mere error illustrating how experts can err with probability
(see Székely 1986, p. 3, or Maistrov 1974, p. 123).

What is the Paradox? The problem is a paradox in the history of probability as it
has been overlooked that d’Alembert’s solution is correct if only the same principle
of insufficient reason is applied. This principle uses the uniform prior distribution
on the unknown probability p of the coin to land heads up. With Bayes’ rule of
succession (a correct mathematical theorem) and the multiplication rule (a correct
theorem) the following holds.

Before any data (k = 0, n = 0), one can conclude that P(H) = 0+1
0+2 = 1

2 ;
after seeing H(k = 1, n = 1), the “conditional” probability to see heads again is
P(H |H) = 1+1

1+2 = 2
3 . This yields the following probabilities for the three basic

cases:

P(two heads) = P(H) · P(H |H) = 1

2
· 2

3
= 1

3
,
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P(no head) = P(T ) · P(T |T ) = 1

2
· 2

3
= 1

3
,

and for the last it has to be

P(head tail mixed) = 1 − 2

3
= 1

3
.

The paradox leads to two probabilities (one linked to classical and the other to
Bayes’ conception of probability), which are irreconcilable.

Further Ideas There can be a strong justification to neglect the order of the re-
sults. D’Alembert’s argument is theoretically consistent but neglects long-term ex-
perimental data on coins, which strongly supports the independence of the throws
and corroborates the equi-probability of the four cases with the order distinguished.
For a biased coin with probability p for head, the result would be p2, p(1 − p),
(1 − p)p, (1 − p)2.

The underlying ideas are certainly worthy of careful discussion in the classroom
as, in modern physics, the description of various particles in real physical systems
can be described by d’Alembert’s approach: photons, nuclei and atoms containing
an even number of elementary particles are essentially indistinguishable and may
be best described by the Bose–Einstein statistics, which neglects order. It is quite
startling that the world is found to work in this way, experimentally.

3 Expectation

Historically, the concepts of probability and expected value developed in parallel
with overlap and confusion. The first formalization by Huygens (1657) used the
expected value in a financial framework based on a situation of implicitly equally
likely cases. While the value of an enterprise is unambiguous, probability has been
laden with personal conceptions and philosophical difficulties. Of course, both con-
cepts are closely connected and Huygens used this economic value to calculate
probabilities in problems, which were discussed at the time. The shift to probabili-
ties was completed by Jakob Bernoulli (1713/1987) with his efficient combinatorial
methods, which were faster than the rather lengthy recursive approach of Huygens.

Probability at the same time became strongly connected to relative frequencies
by the law of large numbers by Bernoulli. As probability took the lead and expected
value became a derived concept, the latter was engulfed by the philosophical “bur-
den” of probability. Already in the publication of Huygens’ treatise, the wording
expected value appeared but this was mainly due to a bad translation to Latin and
missed Huygens’ intention. Such a change in terminology shifted away from the
original frugal meaning of an economic exchange price between risk and certainty
to wishes, desires, and similar vague conceptions.

Expected value lacked a strong connection to relative frequencies even if today it
is motivated as the average amount paid after a long series of random experiments.
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It is important to remember that expected value plays a basic role for the subjec-
tivist position as probabilities get a wider interpretation, which integrates relative
frequencies (if available) and qualitative knowledge beyond that. By such a weight-
ing process, the subjectively accepted equivalence of a price (an expected value) in
a simple 0–1 bet with probability p for 1 “measures” the personal probability of an
individual.

3.1 Expectation and Probability

From a modern perspective, it has been forgotten that one may base the whole the-
ory of probability either on the concept of probability or on the concept of expected
value (despite the fact that there are mathematical approaches to reconstruct or re-
place Kolmogorov’s axiomatic theory on the basis of expectation). It is no wonder
that the two concepts were intertwined in the early stages. Huygens marks a special
point in history—a temporary shift away from probability to expectation. He defined
the term in an economic context as a price one would accept to switch between an
uncertain (risky) situation and a situation without uncertainty—which resembles the
features of taking out an insurance policy and amounts to a basic paradigm in deci-
sion theory.

The fundamental concept for Huygens is his value of an enterprise. Based on
equal cases, he states

to have p chances of obtaining a and q of obtaining b, chances being equal, is worth pa+qb
p+q

.
(Huygens 1657, cited from David 1962, p. 116)

Huygens circumvents the need to calculate probabilities or proportions; instead he
solves the problems by his economic approach. The wording expected value is un-
fortunate as it associates hope, fear, and many other emotions related to the potential
outcomes while Huygens used the term as a purely financial concept. In an analogy
to determine the net present value of a future amount by a discount rate in financial
mathematics, the present value of an uncertain enterprise equals the various amounts
to gain or lose, discounted by their chances. Such a value is vital for any insurance
policy. Future potential amounts have to be discounted to a value that is paid today.

The St Petersburg paradox unexpectedly (no pun intended) produced an infinite
expected value, which is absurd if the concept is interpreted as an economic notion.
The startling situation was resolved by amendments to probabilities, which are still
disputed.

P5: St Petersburg Paradox Two players A and B toss a coin until it shows
‘head’ for the first time. If this occurs at the nth trial, then player B pays £ 2n−1 to
player A. What amount should A pay to B before this game starts in order to make
it fair? The expected value is infinite as the series diverges (cf. Székely 1986, p. 27):

20 · 1

2
+ 21 ·

(
1

2

)2

+ 22 ·
(

1

2

)3

+ · · · = 1

2
+ 1

2
+ 1

2
+ · · · = ∞.
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What is the Paradox? As an economic value of exchanging risk and certainty, an
infinite value is completely unacceptable. No one could pay an infinite amount of
money in advance. Nor would the player ever have a positive balance as all pay-
ments from the game will always be finite. And no human could witness the theo-
retical never-ending of tossing to get this infinite amount. A revision of the concept
of expected value or of probability was urgently required. As an equivalent for an
uncertain situation, expected value was regarded as a property of the situation. The
time was not yet ripe to see this as artificial. However, it is still disputed whether a
distribution makes sense if its expected value is infinite.

Further Ideas The paradox was put forward in 1738 by Daniel Bernoulli. Either
the concept of expected value has to be revised or probability has to be conceptual-
ized in a different way. The ways to resolve the paradox were twofold.

One way is to introduce utilities instead of money. Bernoulli (1738/1954) sug-
gested replacing the payments by their logarithms arguing that the more money one
has the less it is of importance to the person. In fact, he brought the expected utility
down to a finite value but failed to provide a comprehensive solution to the paradox
as, with a slightly different payment table, an infinite (expected) value would still re-
sult. The second way is to introduce a new entity such as a moral probability, which
can be neglected if sufficiently small. The ensuing dilemma is to specify the size
where probabilities lower than this benchmark could be neglected. The suggestions
varied from 10−4 to 10−15.

The concept of utility has been taken up by various approaches to applied proba-
bility. For a Bayesian probabilist, the way to evaluate an unknown probability is first
by the subjective degree of credibility. Combinatorial multiplicity is a substantial
factor as well as the information on past relative frequencies from similar experi-
ments, but there are also personal and qualitative ingredients. All factors are prone
to utility of the outcomes as—in measuring them—Bayesians would use the idea of
equivalent bets that are accepted. Nowadays, utility has been revived by the discus-
sion of teaching approaches based on risk which focus not only on probability but
also on the impact associated to the possible outcomes.

The probabilist community has still not solved the problem of small probabilities.
On the one hand, for events with small probabilities, the related impact may bias the
personal perception of the magnitude, and data is missing as the probabilities are so
small. On the other hand, small probabilities play a vital role as inherent properties
of statistical procedures as the size of a significance test or the confidence level of a
confidence interval show. Both reveal a lack of interpretation of small probabilities
in the frequentist sense despite widespread endeavour to simulate the underlying
assumptions in scenarios of the real situation.

3.2 Independence and Expectation

Probabilities have to be recalculated when games of chance are dependent. However,
for expectation, it is irrelevant whether games are dependent or independent. In this
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sense, expected value is a functional analytic and not a stochastic property while
variance is a genuine stochastic concept. In the first example below, two simple
independent spinners are introduced and then changed to become dependent. In
the second example, samples from a bag of coins are dealt with to illustrate the
consequences of replacing or not replacing the drawn coins. The latter example
highlights the advantages of the economic concept of a value.

P6: Dependent Spinners Two simple spinners are spun and the shaded area gives
an amount of 1 to the player while the white sector leads to a 0 payment. The small
spinner has a winning probability of p, i.e. P(X = 1) = p, and the big spinner of
q , i.e. P(Y = 1) = q . The expected amounts to win are E(X) = p and E(Y) = q .
If played independently, one after the other, the fair price is p for the small and q

for the big spinner (Fig. 1(a)). The price could also be paid in advance to play the
game of X + Y with an expected value of E(X + Y) = p + q . Putting the spinners
one over the other, the game can be decided in one turn; when the spinner lands
in the overlapping sector, the player wins both from the small and the big spinner,
that means the win is 2 (Fig. 1(b)). With this variation the expected value of X + Y

remains the same. Whether the games are independent or dependent, for expected
values the following additivity holds:

E(X + Y) = E(X) + E(Y).

What is the Paradox? Despite the close connection of expected value to probabil-
ity, which remained confused for quite a long period, some basic properties differ.
Expected values can be calculated from dependent random variables as if they were
independent and represent—in this sense—not a stochastic property. Yet, the con-
cept is used to find the fair price of a game of chance. In the special case of binary
variables with 0 and 1, expected values do actually coincide with the probabilities.

Further Ideas With an overlap of x for the winning sectors in the spinners, the
probabilities for the single payments are easily read off Table 3. The exact value of
p0 is not required for further calculations.

Fig. 1 (a) Two independent spinners. (b) Dependent spinners
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Table 3 Payments for
dependent spinners X + Y Probability

0 p0

1 p + q − 2x

2 x

The terms involving x cancel, in fact. Interestingly enough, for the variance an
additivity relation holds only in case of independence of the games, i.e.

var(X + Y) = var(X) + var(Y ) iff P(X=1 and Y=1) = P(X=1) · P(Y=1),

i.e. x = p · q.

P7: Dependent Coins Another example relates to drawing three coins (values
10p, 10p, 10p, 50p, 50p, 50p, 100p) from a bag with and without replacement
(Borovcnik et al. 1991, p. 62). Calculations show that expected value is 3 × 40p,
which is the same irrespective of replacement.

What is the Paradox? To calculate the probabilities, one has to know the result of
the first draw in case the coins are not put back—the single draws turn to dependent
random variables. Yet, for the calculation of the mean of the second draw one can
neglect the result of the first. This is counter-intuitive. Furthermore, the design of the
game without putting coins back prompts many people to reconstruct the situation
personally. Speculating that the 100p coin can be drawn at first and decrease the net
gain for the second is quite frequent resembling the sayings “the first wins” or “who
dares to start wins”.

Further Ideas This surprising result characterizes a substantial difference between
probability and expectation. From the perspective of probability, the simplifying re-
lation of linearity seems intuitively unacceptable if the random variables are depen-
dent. However, for expectation there is symmetry; the probability of a specific coin
being drawn at the first draw is the same as for the second or third try, even if coins
are not replaced. Consistently, its individual contribution to each of the draws is the
same. As this holds for all coins, the values are equal for all draws,

E(X1) = E(X2) = E(X3) = 40p,

whether coins are replaced or not. Thus the required expectation is 120p. Straight-
forward mathematical arguments support this reasoning. However, the historic situ-
ation was obscured by lengthy calculations, which outweighed its conceptual sim-
plicity. The spinners and coins puzzles indicate that intuitions about expectation
need to be discussed in teaching probability; these examples provide good stimuli.

In recent endeavours to enrich curricula and shift probability away from games
of chance, risk is being taught in schools: situations are dealt with including the
different outcomes with their related impact and their probabilities. Different op-
tions are then compared by their expected impact. For an individual the perception
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and evaluation of the probability of an outcome is influenced by its related impact.
This interdependence is much increased if the probabilities are (very) small but the
impact is enormous—as with screening programmes for preventing diseases like
cancer. While risk extends the scope of teaching to an important field of applica-
tion, it is inappropriate to introduce it right from the beginning. As the historical
development has shown—the perception of probabilities, and the appreciation of a
probability statement takes time to clarify; the notion of impact might obliterate the
process of calibrating the feeling what a probability of e.g., 1/4 (or the proportion
of 1 to 3) signifies for an event.

4 Relative Frequencies

The early attempts to explore probability were accompanied by the idea of fre-
quency. The right way to count multiplicity was supported by the similarity of
derived probabilities to the frequency of occurrence in repeated trials. Bernoulli
(1713/1987) proved his law of large numbers and provided a justification to inter-
pret probabilities as relative frequencies, which paved the way to many applications
from life-tables to the behaviour of particles in physics.

Another move forward was Laplace’s derivation of the central limit theorem (go-
ing back to preliminary results of de Moivre 1738/1967), which promoted the nor-
mal not only as a limiting distribution to the binomial but also as an element to
formulate laws: laws in physics to describe the behaviour of entities at the micro-
scopic level, but also laws to extract an estimation of unknown parameters from
data. The focus of applications definitely turned towards empirical probabilities.
The basis laid by Laplace was equi-probability and the principle of insufficient rea-
son, which was criticized by empiricists like Venn. The time was ripe for probability
as something like idealized relative frequencies (FQT).

The most serious attempt to classify relevant properties of relative frequencies in
series of experiments axiomatically was made by von von Mises (1919), though it
was dismissed as not sufficiently rigorous. The basic entities of his approach were
infinite series of (theoretical) relative frequencies and some quite vague properties.
One counter-argument to this approach was its complexity, while some contradic-
tions were only repaired by Schnorr (1971). Kolmogorov’s (1933) probability used
the fundamental probability space and idealized relative frequencies for events in-
stead of series of outcomes. It was universally acknowledged as a sound basis and
also justified the interpretation of probability as relative frequency though there was
an ongoing debate on repairing the direct approach by von Mises at the famous
Geneva conference in 1937 (see the proceedings edited by Wavre 1938–1939).

Relative frequencies are based on independently repeating a random experiment,
which is not always easy to define as shown by the exemplar paradoxes of the library
problem and Bertrand’s chord. It is startling to note that the conditions of random-
ness have to be operationalized when one would initially think that the experiment
under scrutiny is random and its description is unambiguous. In both problems, the
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random selection of an object is operationalized in different ways thus confusing
those who may think that random selection and the resulting relative frequencies
must lead to a unique probability.

There are many idiosyncratic perceptions about how randomness manifests itself
in repeated trials, which need to be addressed in the classroom. These perceptions
underline the complexity of the concept of probability as the limit of relative fre-
quencies. One irritating aspect refers to the patterns of a finite sequence of trials,
which attract many to build up their own structure to continue the short-term be-
haviour of the frequencies—see Shaughnessy (2003), Konold (1989), or Borovcnik
and Bentz (1991) for empirical teaching studies on such phenomena and strategies
used. While the examples are puzzles in the sense of confusing problems, the fea-
tures are also counter-intuitive with respect to personal thought and not due to a
mathematical conception of probability as relative frequency.

Intuitively one might think that an experiment which is random has a unique
formulation automatically, yet this is far from being true. This is made worse if
the conception of probability is seen as a unique and almost physical property, like
weight or length. So, if probability is nothing but the relative frequencies in the long
run, how can it be that a problem gives rise to several experiments, which all depict
the situation but lead to different relative frequencies and thus to different proba-
bilities? If probability were only relative frequencies (of real objects), the situation
would amount to a paradox, as illustrated by the library problem and the chord of
Bertrand (1888).

P8: Library Problem A book is selected randomly from the library. Determine
the probability that it is written in English if there are 500 English out of 1,000 books
in the library. A student has performed the experiments more than 2,000 times in
going to the library randomly selecting a book; he reports a relative frequency close
to 0.67. The librarian, on the other hand, has randomly chosen the book’s index card
from the search catalogue and got a relative frequency of 0.5. Why? (cf. Borovcnik
et al. 1991, p. 60).

What is the Paradox? To choose randomly an element from a sample space seems
to be unambiguous. Thus, following the steps the result should be the same for
both. The paradox is that randomness has to be operationalized. There is no unique
randomness, as the concept is bound to a model of the real situation. According to
the model used, the relative frequencies differ and give different probabilities. The
probabilities refer to the model rather than to the real situation while one may be
surprised that there are various models to represent “random choice”. One cannot
“act” in the real situation (“behave” randomly) without using a model. This gives a
clear hint that probability is a model entity rather than a physical property as it is
related genuinely to a model of the world.

Assume that the library has a big and a small room, with a corridor in between.
The student selects in two random steps: (i) throwing a coin to decide which room
to enter; (ii) when in the room, selecting the book from the shelves from left to right
according to a random number. Assume that there are |E1| = 410 English books of a
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total of |T1| = 900 books in the big room while for the small room the corresponding
numbers are |E2| = 90 and |T2| = 100. A short calculation will show that, in fact,
the student’s random selection to get an English book by this selection is 61/90
while using the card index yields 0.5.

If picking randomly is to be conceptualized by Laplace’s approach then all the
possible ways of selecting a book should yield the same probability. As various
feasible (random) selection processes lead to different answers, the approach fails
as long as one refers to the real situation instead of a model of it. The model is
determined by the operational steps of selection.

P9: Bertrand’s Chord An equilateral triangle is drawn in a circle with radius
R and a line randomly drawn through the circle (Fig. 2). What is the probability
that the segment s of the line in the circle is longer than the side a of the triangle?
(Bertrand 1888, or Székely 1986, p. 43). Three possible solutions are given here
(Figs. 3(a)–(c); cf. Borovcnik et al. 1991, p. 59).

(a) As the segment is uniquely determined by its mid-point M , we may focus on
the position of M . If M is contained in the inner circle with radius R1 with
R1 = R/2, we have s > a, otherwise s ≤ a (Fig. 3(a)). Hence

P(s > a) = R2
1π

R2π
= 1

4
.

(b) We may compare the position of s on the diameter d perpendicular to s. If s

falls within the interval I (see Fig. 3(b)), its length is greater than the length of
a. As |I | = R, this yields

P(s > a) = |I |
d

= 1

2
.

(c) As each segment s cuts the circle in P and Q, we may consider the angle β

between s and the tangent t at Q in order to express the position of P in terms
of β , which can lie in the range of (0,180). If 60 < β < 120, we have s > a

(Fig. 3(c)), thus

P(s > a) = 60

180
= 1

3
.

What is the Paradox? There should be a unique way to draw a chord in the plane.
The puzzling issue is that the experiment is hard to perform in reality and the steps

Fig. 2 Bertrand’s chord:
Line segment s and side a of
the triangle to be compared
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Fig. 3 (a)–(c): Bertrand’s chord: Different possibilities to draw a random line

on how it is done have to be operationalized. In fact, the way the experiment is
performed influences the result. Randomly drawing, in whatever way this may be
defined, requires the use of Laplacean equi-probability on the possibilities which are
open. Equi-probability refers only to the model and there is no guarantee that the
right model is chosen. That implies that each of the three solutions represents chance
and inherent equi-probability via its particular random generator. Is there more than
one way of randomly determining a line? This reflects an intuitive conflict and yields
a contradiction to the basic assumption of Laplace’s definition; the word randomly
is neither fully covered by this approach nor is it meaningful without reference to
an actual generator of the events.

Further Ideas From today’s perspective, there is no paradox. Probability is math-
ematically defined via the axioms and a stochastic experiment is described by dif-
ferent models, which may, of course, lead to different answers. The only question is
which of the models in a real experiment delivers the better predictions. Only solu-
tion (b) fulfils the requirement of invariance to translations and rotations of the plane
(see Székely 1986, p. 45 for a hint, or Palm 1983, for a full explanation), which is
better in certain systems in statistical mechanics and gas physics. Nevertheless, the
example shows that there is a problem worthy to discuss in the classroom situa-
tion. If not, then false intuitions may remain with children, and progress in learning
probabilistic ideas and their application is hindered.

5 Personal Probabilities

There is little room (in APT and FQT philosophies) for the idea of probability as
a judgement of a person about a statement or an event (SJT). This would make
probability personal and subjective, rather than an objective concept. This view of
probability is legitimatised by axioms on rational behaviour since de Finetti (1937)
who states that probability does not exist, except as a personal idea: this approach
is rejected by many as non-scientific. Where the focus is on the measurement of
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probabilities and the use of random experiments (which is an idealization), the cri-
tique against subjectivist probability is justified. The problem, however, is that with
the exclusion of subjectivist probability other merits of this latter position are aban-
doned. The recurrent difficulties with conditional probabilities within a closed ob-
jectivist probability theory are a convincing argument that the idea of subjectivist
probability is integral not only to people’s intuitive reconstructions of mathematical
concepts but also that a wider conception of probability is needed; this is especially
true where events of low probability are concerned.

Despite the eminent role of independence, relevant intuitions are hard to clarify
within mathematics. Some vague, nearly mystic arguments about “lack of causal
influence” are used to back it up. It is interesting to note that subjectivists avoid
these difficulties by replacing independence by exchangeability, an intuitively more
accessible concept. The difficulties increase even with dependence, which is more
than a simple complement to the notion of independence as there is a whole range of
dependencies. Dependence is formalized by conditional probability, which is simp-
ly the “old” distribution restricted to the subspace determined by the conditioning
event.

It should be no surprise that this mathematical approach gives rise to many diffi-
culties in understanding. For example, for the dominant situation with equally likely
cases, a reduction to a subspace cannot affect the equal probabilities—can it? On the
contrary, for subjectivists, probability is a degree of belief and conditional probabil-
ity is a basic notion which covers the intuitive idea of revising judgements as new
information becomes available.

The Bayesian formula is a key tool and it is clear that for the final (posterior)
probability judgement two ingredients have to be integrated, namely the prior proba-
bility of the states and the likelihood of the new information under the various states.
The formula is so important that its clumsy appearance within Kolmogorov prob-
ability is changed into a more suitable and elegant mode for quicker re-evaluation
of probabilities, which allows more direct insight on the relative importance of the
influence factors (the prior probabilities and the likelihoods) and their impact on the
final judgement. For this purpose, subjectivists often speak about probabilities in the
form of odds or relative probabilities.

Carranza and Kuzniak (2009) analyse examples included in the curriculum with
the conclusion that many deal with conditional probabilities and do not match the
rest of the curriculum, which is oriented to the objectivist paradigm. According
to objectivist paradigms, probability is strictly a property of objects which can be
modelled differently mainly on the basis of available frequencies. The subjectivist
paradigm relates probability to a judgement by a person who has some information
available, which includes frequencies and qualitative information.

As the subjectivist position is criticized for being subjective (!), it was rejected as
solution for a mathematical concept of probability. However, the Bayesian approach
(SJT) is much closer to how many people think and can thus much better explain
the part of conditional probabilities.
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5.1 Inverse Probabilities

The following paradoxes show the difficulties in assimilating information in calcu-
lating probabilities. Intuitively many people do not believe that new information can
change a probability. The application of Bayes theorem to calculate posterior prob-
abilities is certainly complicated as shown by the furious international discussion of
the Monty Hall problem (see Gigerenzer 2002). Here we present Bertrand’s paradox
and one relating to Father Smith.

P10: Bertrand’s Paradox A cabinet has three boxes each with two drawers.
Three gold and three silver coins are put into the drawers so that two boxes con-
tain coins of the same kind and one the mixture. Randomly choose a box, then a
drawer and open it; it is assumed that it contains a gold coin, which is denoted as
event “G”. Of interest is whether the box drawn first has coins of same type, which
will be denoted as ST . After choosing the box but before the drawer is opened, there
are 2 of 3 equally likely boxes, which yields P(ST ) = 2/3 (Bertrand 1888; for an
easy-to-play card version of the game, see Gardner 2006, p. 93; Gardner named it
the “Three Card Swindle”).

After seeing a gold coin, there remains 1 of 2 equally likely boxes, thus
P(ST |“G”) = 1/2. After a silver coin is seen in the opened drawer, for symme-
try, it holds that P(ST |“S”) = 1/2. If either a gold or a silver coin is in the opened
drawer, the new probability is 1/2. There is no need to look into the drawer, any re-
sult will decrease the probability to 1/2, thus it is 1/2. But probability of ST cannot
be 2/3 and 1/2 at the same time (Figs. 4(a)–(b)).

Fig. 4 Bertrand’s paradox of drawers:
(a) Perceived random selection: 2 of 3 for same type before and 1 of 2 after seeing gold.
(b) Hidden random selection: 4 of 6 for same type before and 2 of 3 after seeing gold.
(c) Tree to combine priors and likelihoods
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What is the Paradox? The focus on equi-probable objects (the boxes) leads to the

trap. Logically, information “G” is used to reduce the possibilities—the S
S

box is

eliminated. With equi-probability on the remaining boxes this yields 1/2 for G
G

and 1/2 for G
S

; all in all this yields 1/2 for same type and for mixed boxes. This

argument leads to the paradox.
Seeing gold reduces the space, in fact, to the pure gold and the mixed box. How-

ever, the two-stage random selection leads to a hidden selection of the remaining
coins as seen in Fig. 4(b), i.e. 2 out 3 gold coins lead to the pure gold box and
thus for ST while the third leads to the mixed box. Thus the conditional probability
remains at 2/3 and the paradox is solved. This result can be confirmed by Bayes’
formula. With equi-probable cases it is hard to think that this property of equal
probabilities can be changed by new information. As, by definition, the conditional
probability is simply a reduction of the present to a smaller space, how can this pro-
cedure change equal probabilities? The crux is that information “G” is used only on
this logic base to reduce the space. Many people forget to discriminate between the
other two boxes.

Further Ideas The mixed box has a conditional probability of 1/3 confirming
the hidden lottery argument. The situation can be generalized as it will enhance the
structure of such situations.

The three boxes are perceived as hypotheses Hi and the evidence A as the result
of the opened drawer. The hypotheses have a prior probability of 1/3 each. The
new or updated probabilities are calculated using Bayes’ formula (the details are
omitted):

P(Hi |A) = P(Hi ∩ A)

P (A)
= P(Hi) · P(A|Hi)

P (A)
.

Bayesians frequently use relative probabilities, so-called odds. For P(E) = 1
6 , the

odds of E against its complement Ē are as 1
6 : 5

6 , or 1 : 5. Odds are proportions but
can freely be read as fractions. From odds of 1 : 5, the probability is calculated back
by P(E) = 1

1+5 = 1
6 , generally with odds of a : b, a probability of P(E) = a

a+b
is

associated.
Comparing the updated probabilities of the hypotheses by odds yields (Fig. 4(c)):

P(Hi |A)

P (Hj |A)︸ ︷︷ ︸
posterior odds

= P(Hi)

P (Hj )︸ ︷︷ ︸
prior odds

· P(A|Hi)

P (A|Hj)︸ ︷︷ ︸
likelihood ratio

.

For Bertrand’s cabinet this delivers a probability of 2/3 from the posterior odds of
2 : 1.

P( G
G

|“G”)

P ( G
S

|“G”)
= 1

1︸︷︷︸
prior

· 2

1︸︷︷︸
likelihoods

= 2

1
= 2 : 1.
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It is a deep-seated fallacy that the given information about a gold coin will leave
the equi-distribution on boxes intact and that equal probabilities can be applied to
the reduced sample space with the two remaining boxes—Bertrand (1888) favoured
the wrong equi-probability of the two remaining boxes ending up with a paradox.
There is also a reluctance to accept the results of Bayes’ formula. Various didactical
strategies to overcome this problem have been designed.

Freudenthal (1973) uses the technique of implicit lotteries (p. 590); the lottery
on the boxes is symmetric, but the choice of the drawer is, by no means, symmetric.
Falk and Bar-Hillel (1983) and Borovcnik (1987) suggest the favour concept which
could intuitively clarify the higher estimate of the probability of the pure gold box
as gold in the open division is circumstantial evidence for the box with two gold
coins. Borovcnik and Peard (1996) suggest adapting mathematical formalism to fit
better. The resulting view on Bayes’ formula with odds connects objectivist and
subjectivist conceptions. It gives a clearer view on the structure of the problem with
prior possible states and evidence that leads to a new judgement of the probabilities.
The value of an indication is represented by the relative likelihoods. The best is: to
have evidence that has a high probability under one state and very small probabilities
under the other states. Such an indication gives a clear new judgement. However,
such situations are rare.

P11: Father Smith and Son Mr. Smith is known to have two children and various
items of information may be analysed, leading to different posterior probabilities
that he has two sons (this is the Two Children Problem of Gardner 1959, p. 51; cf.
also Borovcnik et al. 1991, p. 64). The information is set out in Table 4 ((a) seen in
town with a son, (b) visiting his home and randomly see a boy, (c) told eldest child
is a boy, (d) told he has at least one boy, (e) told he prefers to go out with his son,
(f) told he prefers to take his eldest child out, (g) told there are different probabilities
for a boy or a girl to be at home).

What is the Paradox? It is confusing that information that seems to be similar
or equivalent has a different impact on the probabilities. One has to judge how the
information has been gathered before one can start to solve the problem.

Table 4 Different impact of the evidence on the posterior odds

Item Information
“B”

Posterior odds Solution Primitive result

BB BG GB GG P(BB|“B”)

(a) See in town 1 : 1
2 : 1

2 : 0 1
2

1
3

(b) See at home 1 : 1
2 : 1

2 : 0 1
2

1
3

(c) Eldest is boy 1 : 1 : 0 : 0 1
2

1
2

(d) At least one boy 1 : 1 : 1 : 0 1
3

1
3

(e) p prefers boys 1 : p : p : 0 1
1+2p

1
3

(f) q prefers first 1 : q : 1 − q : 0 1
2

1
3

(g) pG, pB at home 2−pB

4−pB−pG
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Further Ideas In a structural view of the puzzle, the given information has to be
linked to the possible states to re-evaluate them. The method of comparing prior
and posterior probabilities of states can be applied to the information; but, as noted
above, Bayes’ theorem is complicated.

5.2 Conflicts with Logic

The theory of probability has a mathematical foundation, derived by logic. It is
startling that reasoning with probabilities reveals a structure that appears to conflict
with some of the rules of ordinary logic. This amounts to a puzzling situation as
users erroneously expect all conclusions with probabilities to be in line with the
following logical laws.

(a) Transitivity of logical reasoning. If A is bigger than B and B bigger then C,
then one can conclude that A is bigger than C. Such a property signifies logical
implication: If A implies B and B implies C, then—by transitivity—A implies
C. This method establishes an important technique of mathematical proof.

(b) Poof by exhaustion or proof by cases. If a logical statement is true in either of
two cases and these amount to all possibilities (and are disjoint), then the state-
ment is true in all cases. That principle may be extended to 3 or more (countably
infinite) cases, for example, if an equation q(x) = 0 holds for x > 0 (case 1),
x < 0 (case 2) and x = 0 (case 3), it is true (for all real numbers x).

Probability statements conflict with these two principles, as shown by the following
puzzles. As the logical relations seem quite natural, the clash is between properties
of probability statements and intuitions. Nothing is wrong with probabilities thereby
and nothing can be changed about these properties.

P12: Intransitive Spinners Suppose there are three spinners (Fig. 5). Which is
the best to choose if two players compete and the higher number wins?

Player 1 chooses a spinner; player 2 chooses a spinner from the two remaining.
There is no best choice for player 1; a short calculation shows that

P(S1 > S2) = 0.52, P (S2 > S3) = 0.61, and P(S1 > S3) = 0.25.

The second player can always find an alternative that is better. Player 1 is doomed
to lose in this game. Recognizing this, it gets even more confusing that there is an

Fig. 5 Intransitive spinners
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Fig. 6 Spinners from Blyth’s
paradox

order of the options with respect to losing (which is the complement to winning):
To avoid losing too often, player 1 has a ranking on the spinners:

S2 � S3 � S1

according to losing probabilities 0.52, 0.61 and 0.75 (against the best alternative).

What is the Paradox? If P(Si > Sj ) > 0.5 is interpreted as Si � Sj (and � is used
in the sense of “is better”) then the properties of the spinners read as:

S1 � S2 and S2 � S3 but not—as transitivity would imply—S1 � S3.

This is also puzzling in an everyday context: if A is better than B (in whatever
respect) and B is better than C then, of course, A is better than C. A preference
system that contradicts transitivity is counter-intuitive. Another puzzling feature is
that with respect to winning there is no ranking for the spinners but to avoid losing
too often there is a definite ranking. Is losing complementary to winning or not?

There is a high expectation that possibilities can be ranked according to some
criterion and that ranking fulfils transitivity. The lack of transitivity in the choice
illustrates that stochastics is different rather than a weak form of logic, as expressed
by saying ‘. . . is true with probability p’ instead of ‘. . . is definitely true’.

P13: Blyth’s Intransitive Spinners Blyth (1972) varies the situation (see Fig. 6):
two or three players might enter the game. In fact, the optimal choice depends on
the number of players. The calculations are left to the reader to explore because of
restrictions of space, and similarly for the next puzzle.

P14: Reinhardt’s Single Spinner Reinhardt (1981) has a single spinner with
several wheels with a similar puzzling result (Fig. 7).

Fig. 7 Reinhardt’s spinners
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For a more detailed discussion of these spinners, see Borovcnik et al. (1991,
p. 65). Puzzles like these can be motivating in the classroom situation. Usually they
lead to a lively discussion of the applicability of such ideas; sporting situations such
as in a football league are a suitable context. It certainly does happen that team A

can beat team B but lose to team C, who are also beaten by team B . There are many
intransitive situations in the real world that can cause confusion. A third player
reversing the ranking of choice does occur.

P15: Simpson’s Paradox of Proportions In 1973, the following phenomenon
was observed at the University of California at Berkeley: the overall admission rate
of female applicants of 35 % was lower than that of their male colleagues, which
amounted to 44 %. Females seemed to be less likely to gain admission. Searching
for the reason for this sexual ‘discrimination’, it turned out that in some departments
women actually had higher admission rates than men while most of the departments
had similar rates for both (see Bickel et al. 1977). The following setting shows that
admission rates can be higher for women than for men in all departments, and yet
be lower for the whole university.

The situation is simplified by assuming there are only two departments. Green
marbles represent admission, red marbles rejection, so, in Table 5, for example, 2 out
of 5 females and 1 out of 3 males are accepted by department 1.

In both departments, the proportion of green marbles (admitted) is higher for
females than for males, 2/5 > 1/3 and 3/4 > 5/7. But for the university as a whole,
the reverse holds: 5/9 for females admitted is lower than 6/10 for males.

What is the Paradox? In department 1, the statement “women have a higher ad-
mission rate” is true. This holds also for department 2. Since, the two disjoint cases
exhaust all the possibilities, why is the complementary statement true for the whole
university? In what follows, a probabilistic framework for the situation will be es-
tablished, first to show it deals with a probabilistic puzzle, second, to extend the
analogy to logic.

Let F , M , G, R be the events female, male, green (admitted), red (rejected).
Two urns are filled for the departments according to Table 5 and the experiment is
drawing a ball within each department urn. Then the experiment is repeated with

Table 5 Illustrative data for Simpson’s paradox

Females Males All

Green Red Green Red Green Red

Department 1 2 3 1 2 3 5

Department 2 3 1 5 2 8 3

University 5 4 6 4 11 8
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Table 6 Some probabilities of interest within the departments and overall

P (F) P (M) P (R) P (G) P (G|F)

Department 1 0.625 0.375 0.625 0.375 0.400

Department 2 0.364 0.636 0.273 0.727 0.750

University 0.474 0.526 0.421 0.579 0.556

a university urn that is filled with all these balls. Some probabilities of interest are
listed in Table 6.

In both departments, it holds that P(G|F) > P(G), yet for the university the
reverse relation holds as P(G|F) < P(G). The reason for the intuitive clash lies in
the application rates of males and females; females tend to apply to departments
with low admission rates.

Further Ideas For logical implication A ⇒ B the truth of statement A implies
the truth of B . In analogy to this, a new (and weaker) relation between events is
introduced. If one event increases the (conditional) probability of the other, i.e. if
P(B|A) > P(B), this is defined as A ↑ B , in words, A favours B . Disfavouring,
denoted as A ↓ B means that the conditional probability is smaller. With this con-
cept, reasoning with probabilities is shown to differ from logical conclusions (Ta-
ble 7).

Conditional probabilities are a subsidiary concept in the usual approach towards
probability (either APT or FQT) and within the axiomatic approach there is no
room for an investigation about the order or the direction of change of conditional
probabilities. Such operations are, however, at the core of subjectivist theory (SJT)
of probability, and it is important to integrate some elements from this position
into teaching in order to enhance the underlying concepts, as advocated by Car-
ranza and Kuzniak (2009) who supported their view by an analysis of teaching ap-
proaches.

The Simpson effect occurs in various contexts. Vancsó (2009) discusses an ex-
ample with higher mortality in Mexico than in Sweden within all age classes (0–10,
10–20, etc.) but overall mortality being higher for Sweden than for Mexico. Under-
lying this version of the Simpson paradox is the fact that the Swedish population is
much older while Mexico is a young country.

Table 7 Comparing the structure of logical reasoning and favouring

Favouring Logical implication

In case 1 it holds F ↑ G and A ⇒ B

In case 2 it holds F ↑ G A ⇒ B

In all cases it holds F ↓ G (in the example) A ⇒ B (generally)
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6 Central Ideas of Probability Theory

In line with the intention of Kapadia and Borovcnik (1991), we present some central
ideas in the theory of probability to provide a coherent treatment. Paradoxes indi-
cate where a specific conception comes to an end and a reformulation of the terms
is required to resolve the conflict. Puzzles show a divergence between official inter-
pretations and private conceptions. Both paradoxes and puzzles though have limited
implications. To develop a stable conception of notions, the mathematical structure
is vital. What are the central ideas that link the concepts? We suggest the following
set of ideas: independence and random samples; central theorems; standard situ-
ations; axiomatization. In order to reveal the value and role of axiomatization of
probability, of course, a more detailed exposition of the underlying mathematics is
important. To simplify here bears the risk of transmitting a limited picture of the the-
ory and its potential for applications. The stronger mathematical demand in reading
will pay off only afterwards by a deeper evaluation of the scope and limitations of
probability.

6.1 Independence and Random Samples

The basic paradigm for probability is the experiment which can be repeated under
essentially the same conditions and for which the outcome cannot be known be-
forehand with absolute certainty. This is modelled by a random variable X and the
cumulative distribution F of X, i.e. F(x) = P(X ≤ x). The notion of independence
extends naturally from events to random variables. For events A and B , indepen-
dence means that

P(A ∩ B) = P(A) · P(B).

With the distribution function, the independence of random variables is defined by
the condition:

F(x, y) = FX(x) · FY (y) = P(X ≤ x) · P(Y ≤ y).

A sequence of independent random variables X1, X2, . . . , each with the same dis-
tribution is called a random sample from that distribution and is denoted by

Xn
iid∼ X ∼ F

(iid stands for independent and identically distributed). Such a series is a useful
model for repeated observations, all independent and following the same distribu-
tion F .

The notion of a random sample is easily represented by a spinner which is inde-
pendently spun several times. Another effective representation for sampling from a
finite population is drawing balls from an urn, which is thoroughly mixed, prior to
each draw.
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6.2 Central Theorems

Historically, the development of the sum Hn = X1 + X2 + · · · + Xn has been in-
vestigated in special cases of the distribution of the single variables and Hn was
binomially distributed. The deviations of Hn from their expected value tend to zero
if n goes to infinity—Bernoulli’s law of large numbers. Later, the probabilities of
such deviations were asymptotically calculated, which led to the normal distribution
and the central limit theorem. The assumption of independence was hidden in the
binomial distribution.

Laws of large numbers show a convergence of the average of the random vari-
ables to a fixed value, while central limit theorems deal with the convergence of
the standardized average from a sample to the normal distribution. Variations of the
theorems cover different types of convergence of the average, other statistics like
the median or the standard deviation derived from the series, specific distributions
of single random variables, and restrictions leading to limiting distributions other
than the normal distribution. We use modern notation to describe two theorems that
became famous in the early mathematical development of the field, Bernoulli’s law
of large numbers and Laplace’s central limit theorem.

Bernoulli’s Law of Large Numbers Let A be an event of an experiment with
P(A) = p, and Xi be a binary variable determined by an occurrence of A in inde-
pendent repetitions, i.e.

Xi =
{

1 if A occurs at the ith trial,
0 if A fails to occur at the ith trial,

and let Hn = X1 + X2 + · · · + Xn be the absolute frequency of A in n trials, then
for any positive real number ε

lim
n→∞

P

(∣∣∣∣Hn

n
− p

∣∣∣∣ ≥ ε

)
= 0.

A generalization refers to the convergence of the mean of samples to the mean of
the underlying population (cf. Meyer 1970, p. 246, or Çinlar 2011, p. 118).

If X1,X2, . . . ,Xn are independent random variables from a common distribution
with finite mean μ and variance σ 2 then, given ε > 0

lim
n→∞P

(∣∣∣∣X1 + X2 + · · · + Xn

n
− μ

∣∣∣∣ ≥ ε

)
= 0.

The law of large numbers states that the mean of a sample will be close to the (un-
known) mean of a distribution from which the sample was drawn, with a high prob-
ability provided that the sample size is sufficiently large and the selection process is
random.

There is a strong version of both laws of large numbers stating that the set of
infinite series which do not converge to the expected value of a single variable (i.e.
p or μ) has a probability of zero (cf. Çinlar 2011, p. 122). This strong law of large
numbers goes back to Borel (1909); its disputed status was not clarified until Kol-
mogorov’s axiomatic foundation on the basis of measure theory.
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Laplace’s Central Limit Theorem The variable Hn (the absolute frequency) in
Bernoulli’s theorem will deviate from the expected value np in n independent trials
so that it is a random variable with its own distribution. De Moivre considered a
special case and Laplace found Hn to be approximately normal:

lim
n→∞

P

(
Hn − np√
np(1 − p)

≤ z

)
=

∫ z

−∞
ϕ(t) dt

with ϕ(t) being the probability density function of the standard normal distribution.
If the single random variables follow independently the same distribution as X

(iid) and this distribution has a finite mean μ and a finite variance σ 2, the theorem
would still hold, i.e.

lim
n→∞

P

(
Hn − nμ√

nσ 2
≤ z

)
=

∫ z

−∞
ϕ(t) dt.

Thus, the central limit theorem is a natural basis to approximate the distribution of
the mean from random samples in order to derive confidence intervals or statistical
tests for the (unknown) mean. For a proof, see Meyer (1970, p. 250), or Çinlar (2011,
p. 127).

Central Limit Theorem of Poisson Another limiting situation for the sum of
variables, i.e. for Hn = X1 + X2 + · · · + Xn which is binomially distributed, was
investigated by Poisson. Let the single summands be independent and binary with
P(Xi = 1) = pn and consider a new parameter λ = n · pn > 0. For n tending to
infinity and X = limn Xn it holds

P(X = k) = λk

k! e
−λ, for k = 0,1,2, . . . ,

i.e. the binomial distributions with this restriction converge to the Poisson distribu-
tion, which appears as the distribution of rare events as pn tends to 0 as the product
with n remains constant. For a proof, see Meyer (1970, p. 160), or Çinlar (2011,
p. 137).

An example for modelling with the Poisson distribution is counting the atoms
decaying in a specific period of time out of 1 kg of uranium U238. The convergence
above may be illustrated by the following ideal situation. If n = 10 raisins (points,
events) should be distributed independently and randomly to 5 rolls (unit squares,
observational unit), the number of raisins within a special roll is to be analysed. This
corresponds to the random variable H10 with Xi = 1 if the ith raisin was attributed
to it. Clearly, H10 is binomially distributed with parameters 10 and 1/5 and expected
number of raisins of n · pn = 10 · 1

5 = 2. With n = 100 raisins and 50 rolls, the
number of raisins in one special roll H100 is binomially distributed with 100 and
1/50 and expected number of raisins of n · pn = 100 · 1

50 = 2. In the latter situation,
H100 is well approximated by the Poisson distribution with parameter λ = 2, which
is the initial number of raisins per roll and is called the intensity of the process of
distributing.
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6.3 Standard Situations

Here we describe a few standard situations. We start with simpler processes such as
those of Laplace and Bernoulli. We go on to more complex ideas of Markov chains
and Brownian motion, typically studied at a university. It is remarkable that only a
few distributions cover a wide range of applications. For modelling it is important
to know the key idea behind the basic situation leading to that distribution. This
explains the properties of the model and the modelled phenomenon.

Laplacean Experiments These are experiments where the equi-distribution is
plausible on the basis of a physical symmetry. Conventional representations are
spinners with equal sectors or urns filled with balls. For teaching, such experiments
are useful to illustrate numerical probabilities to calibrate uncertainty.

Bernoulli Experiments The special case of a Laplacean experiment with two
outcomes is known as a Bernoulli experiment. There are two different ways to ex-
plore this situation: to count “successes” in a specified number of trials leading to
the binomial, or to wait for the next “success” leading to the geometric distribution.

Poisson Process Poisson experiments may be introduced as Bernoulli series in
which the number of trials is high and the probability p is small. The Poisson
process, however, describes a genuine random phenomenon of ‘producing’ events
within time; heuristically, the process has to obey the following rules (see Meyer,
p. 165).

(i) It does not matter when the observation of the process actually starts, the prob-
abilities of various counts of events depend only on the length of observation.

(ii) For short periods the probability to have exactly one event is essentially the
intensity λ of the process to produce events multiplied by the length of obser-
vation.

(iii) For short periods one may neglect the probability of two or more events.
(iv) Events occur independently in time.

The variable X which counts events in t units of time then follows a Poisson distri-
bution:

P(X = k) = (λt)k

k! e−λt , for k = 0,1,2, . . . ; λ > 0.

Beside the probabilities of the number of events (Poisson), it is of interest to derive
the probability for the waiting time for the next event (exponential distribution).

Elementary Errors Due to the central limit theorem, the distribution of an ob-
served quantity X can be approximated by the normal distribution if it can be
thought of as the result of a sum, i.e. X = X1 + X2 + · · · + Xn. The analogy of
small errors (the summands) contributing to generate the final quantity accounts for
the ubiquity of the normal distribution. Historically, this reading of the central limit
theorem has been a driving force and is still given in textbooks (Meyer 1970, p. 251).
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Stochastic Processes The independence assumption is at the core of the random
sample idea and also at the basis of central theorems like the law of large numbers
and central limit theorem. There was another situation emerging from applications
in physics that needed growing attention, where a probability measure was needed
for an infinite dimensional Cartesian product: processes describing the change of a
variable under scrutiny with progressing time. A slight shift in the description of the
Poisson process will illustrate the conceptual change:

The variable Xt counts the number of events in the interval (0, t]. To be called a
Poisson process, it has to fulfil the following conditions:

1. X0 = 0. At the beginning the count starts at 0.
2. The process has stationary increments, i.e. the growth during time (t, t + s] de-

pends only on the length and not on the starting point of observation and its
distribution depends only on s.

3. The process has independent increments, i.e. the growth in disjoint intervals is
stochastically independent, i.e. for t0 < t1 < t2 < · · · the increments Xt1 − Xt0 ,
Xt2 − Xt1 , . . . are independent.

4. With the exception of a set of zero measure, the trajectories Xt(ω) jump at most
by 1 unit.

From the conditions one can conclude the following: The number of events in
(0, t] follows a Poisson distribution with parameter λ · t , the waiting time for the
next event is exponentially distributed with parameter λ, the location of any event
in (0, t] is uniformly distributed over this interval. The process is a Markov process
with continuous time. Condition 2 corresponds to (i) and part of (ii) (the rest is not
even required), 3 corresponds to (iv), while 4 corresponds to (iii).

An important Markov process was used as a tool in physics to describe the drift-
ing of particles suspended in a fluid. A random walk in two dimensions means walk-
ing along the lattice of points with equal probabilities of 1/4 for continuing up,
down, right, or left. By refining the grid more and more, and the central limit the-
orem, the following process—a so-called Wiener process—was motivated. Let Xt

be the position of a particle at time t (usually this was a point in three-dimensional
space).

1. X0 = 0. The particle starts at the origin.
2. The process has stationary increments, i.e. the growth during time (s, t] depends

only on the length and not on the starting point of observation and its distribu-
tion depends only on the length t − s and is, in fact, a normal distribution with
expected value 0 and variance t − s.

3. The process has independent increments, i.e. the growth in disjoint intervals is
stochastically independent, i.e. for t0 < t1 < t2 < · · · the increments Xt1 − Xt0 ,
Xt2 − Xt1 , . . . are independent.

4. With the exception of a set of zero measure, the trajectories Xt(ω) are continuous
functions of time.

For a similar formulation of the Poisson and Wiener process, see van Zanten
(2010, p. 3). Most modern expositions like Çinlar (2011, p. 171), use the concept
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of martingales to define stochastic processes and are therefore less accessible. The
phenomenon which was described in physics by such a model is Brownian motion.
It is striking that at the time when such applications boosted the theory of thermody-
namics, the foundations of probability was still not laid and probability was more or
less justified by Laplacean equi-probability and interpreted as relative frequencies
in long series of independent trials. But the reader should note that with the Markov
processes above there was no independence in trials. And, of course, there was no
firm foundation of a probability measure on an infinite-dimensional space as the tra-
jectories of the process were the elements of the probability space. It was high time
to solve the situation and in his 1900 address, Hilbert included the axiomatic basis
of probability and mechanics as among the most urgent mathematical problems.

6.4 Kolmogorov’s Axiomatic Foundation of Probability

Instead of the infinite random sequences of von Mises, Kolmogorov returns to a fun-
damental probability set which describes the potential of the experiment to produce
outcomes in one trial. The question is how to define unambiguously the probability
on the sample space and still have repeated independent experiments. The solution
was to use measure theory to mathematize probability like other measures such as
area or weight, and add the concept of independence between different trials subse-
quently. Repeated trials are modelled by the sample space which is built from the
Cartesian product of the sample space of single experiments.

The Axioms Kolmogorov (1933) developed a system of axioms for the special
case of a finite sample space S = {x1, x2, . . . , xm}. Instead of using the power set
of S (which is feasible here), he refers to a field F of events (an algebra of events)
as the domain for a probability function. A field F thereby is a system of subsets
of S, which has the property that the set operations of union, intersection and com-
plementation (finitely) applied on elements of F always yield a set that belongs
to F (i.e. the field is closed under the usual set operations). His axioms are (p. 2):

(I) F is a field of sets.
(II) F contains the set S.

(III) To each set A in F a non-negative real number P(A), the probability of A, is
assigned.

(IV) P(S) equals 1.
(V) If A and B have no element in common, then P(A ∪ B) = P(A) + P(B).

The conditional probability is defined for a fixed event A with P(A) > 0 as

PA(B) := P(A ∩ B)

P (A)

with the justification that the function PA fulfils the axioms. Two events A and B

are defined as independent if

P(A ∩ B) = P(A) · P(B),
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which is shown as equivalent to the following relations if both events have a positive
probability:

PA(B) = P(B) and PB(A) = P(A).

At this point, Kolmogorov proceeds (p. 14) to define probability measures on in-
finite spaces by adding one more axiom, the so-called continuity of a probability
measure:

(VI) For a strictly decreasing sequence of events A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · of F
with

⋂
n An = ∅ the following equation holds limn P (An) = 0 for n → ∞.

Ensuring this axiom, the countable additivity is proved as a theorem, i.e. it holds
that

P

(⋃
n

An

)
=

∞∑
n=1

P(An) for any sequence An of F with Ai ∩ Aj = ∅ for i �= j ;

i.e., the additivity holds for any sequence of pairwise disjoint events.
In the rest of his seminal work, Kolmogorov refers to the system F as a σ -

field (σ -algebra), i.e. he requires the field to be closed also under countably infinite
applications of the usual set operations by the following argument:

Only in the case of [σ ] fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability. (p. 16)

Modern representations of Kolmogorov’s axioms prefer to relocate his first two ax-
ioms into the denotation of a probability measure P as a real function on a σ -algebra
F , i.e.

P :F → R

and refer to the σ -additivity instead of the continuity so that the axioms read as the
following conditions on the function P :

(A1) P (A) ≥ 0 for any event A from F .

(A2) P (S) = 1 for the whole sample space S.

(A3) If A0,A1, . . . is a sequence of mutually exclusive events from F , then
P(

⋃∞
n=0 An) = ∑∞

n=0 P(An).

The first two conditions mean that probabilities are non-negative and that certainty
is characterized by a value of 1. The substantial condition of σ -additivity embodied
in A3 means that, mathematically, probability is a measure. It may be regarded in
some respect as analogous to ‘area’, ‘mass’, or ‘weight’, measures which also share
the additivity property.

Kolmogorov (p. 1) believes that

The theory of probability, as a mathematical discipline, can and should be developed from
axioms, in exactly the same way as Geometry and Algebra [. . .] all further exposition must
be based exclusively on these axioms, independent of the usual concrete meaning of these
elements and their relations.
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The special choice of a set of axioms has deep consequences on semantics. The
axioms are the foundation of the theory and are simultaneously at the interface be-
tween theory and reality. The basic axioms could be considered as models of intu-
itive ideas of probability to be sharpened by the theory. This might be thought of as
the historical genesis of ideas in general and also in the sense of how ideas settle
down in an individual’s learning.

Distribution Functions In his paper, Kolmogorov uses the concept of a (cumula-
tive) distribution function extensively (p. 19). This only makes sense if the concept
fully characterizes a probability measure. Therefore, before turning to examples of
probability functions on the space of real numbers, Kolmogorov (p. 16) proves an
abstract extension theorem, which states that a probability measure on a field F can
be uniquely extended to the smallest σ -field [F ], which contains F . The impor-
tance of that theorem cannot be overestimated as in the real numbers the domain
of a probability function, the so-called Borel σ -algebra B of events is precluded
from any intuitive access. But, luckily, it is possible to focus on a simple generating
system of it which is built up of specific intervals (a, b] (a and b could be real num-
bers or ±∞) and their finite unions, which form a field F . Even more, a simpler
generating system suffices as there are more general extension theorems that do not
require the structure of a field on the generator.

C∗ = {
(a, b] | a, b ∈ R

}
or C = {

(−∞, x] | x ∈ R
}
.

That means, of any probability measure P on the Borel σ -algebra B on R it suffices
to know the values of P on sets of C. Or, conversely, the pre-probabilities fulfilling
the axioms on sets of C uniquely determine a probability measure P on the Borel
sets B.

The complicated story with the Borel sets and σ -algebras has its origin in the
following theorem. There can be no probability measure P fulfilling all the axioms
for all subsets of R. A contradiction can be derived if it is assumed that a probability
can be attributed to all subsets with all the named properties. To avoid this, the
domain of the function P has to be restricted to a true subset of the power set of R.
The natural structure of all admissible sets (for probability) is that of a σ -algebra,
which is a system of subsets that is closed under the usual set operations, countably
often applied in any order. The Borel sets B serve this purpose perfectly.

Probability Measures on Infinite-Dimensional Spaces What distinguishes the
theory based on this set of axioms from measure theory is the concept of indepen-
dence, which is part of a fundamental definition, but not, interestingly, part of the
axioms. This independence relation is the key assumption of fundamental theorems
like Bernoulli’s law of large numbers. Such theorems established a link from the
structural approach to the frequentist interpretation and thus contributed to the im-
mediate acceptance of Kolmogorov’s axioms within the scientific community.

More complications arise in the case of infinite sample spaces for single trials
as the sets of the form E1 × E2 (which are known as cylinder sets) are only a
small part of all subsets of S1 × S2. In practice, events in the combined experiment
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may not be of this special form, e.g. in spinning a pointer twice, consider the event
‘position of the trials differ by more than π/4’. This complication is not a conceptual
difficulty of probability as a phenomenon to be modelled but is linked to specific
aspects of mathematics. For applications it is fortunate that assigning probabilities
to cylinder sets is sufficient to uniquely determine an extension of this assignment
to probabilities of all events. For infinite-dimensional spaces, the trick was used to
start from cylinder sets defined on a finite number of coordinates (cf. Kolmogorov,
p. 27).

Lebesgue Integral There is another unifying element in Kolmogorov’s funda-
mental paper, namely the use of integrals for calculating probabilities and expected
values. The distribution function FX uniquely defines a probability measure PX on
the Borel sets. Probabilities and expected values may be written as integrals as fol-
lows

PX(A) =
∫

A

dFX(x) and E(X) =
∫

x dFX(x),

which are Lebesgue–Stieltjes integrals. This unified the theory of probability of dis-
crete and continuous distributions. For practical needs these integrals can be evalu-
ated as ordinary sums or—in case of intervals as events, i.e. A = (a, b), as integrals;
for the bulk of applications the Lebesgue integral is not even required in evaluat-
ing the integrals involved, as the Riemann integral suffices for the most important
distributions:

PX(A) =

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈A

pi X with discrete probabilities pi = P(X = i),

∫ b

a

fX(x)dx X with absolutely continuous density fX = d

dx
FX,

E(X) =

⎧⎪⎪⎨
⎪⎪⎩

∑
i

ipi,

∫
xfX(x)dx.

These ideas are well beyond school level. Yet, it is important to be aware of and
remember this theory. It forms the deep foundation on which probability has been
built.

It is important to note that the many deep results like the central limit theo-
rem were derived before a sound axiomatic basis had been established and they
retained their validity and importance after the axiomatization. What was differ-
ent is the prestige probability gained as a scientific discipline, which then attracted
many young researchers to the field. Furthermore, axiomatization paved the way
to probability distributions on infinite-dimensional spaces and the field of stochastic
processes, which revolutionized not only physics but many other fields like financial
mathematics. For example, the price of an option in the financial market is derived
by the solution of a stochastic differential equation of a stochastic process similar to
the one described above.
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7 Conclusions

Modern expositions of probability such as Çinlar (2011) have reached an elegance
of mathematical standard, which is sometimes in sharp contrast to the philosoph-
ical framework. The situation resembles somehow the early culmination of devel-
opment with Laplace working on the central limit theorem but expressing a naïve
determinism that probability is only for those ignorant of the causes. The general
philosophical debate such as von von Plato (1994) in the context of physics shows
dramatically that probability without a firm philosophical footing misrepresents its
scope in limits as well as in reach.

The standard paradigm is to interpret probability initially as equal possibilities
and then as the limit of relative frequencies—or as relative frequencies from samples
large enough. All the concepts of inferential statistics from the objectivist position
heavily draw on this paradigm. This way was paved by Kolmogorov’s own views
on his axioms justifying the frequentist conception of probability. The reaction from
the subjectivist position was fierce, led by de Finetti who ironically noted, in capital
letters that “PROBABILITY DOES NOT EXIST” (1974, p. x); he sees probability
as a way to think about the world. But their mathematical exposition—grounded on
axioms of rational behaviour and rational updating of probabilistic information via
Bayes’ formula—normally uses a different terminology and a unified exposition of
probability respecting both subjectivist and objectivist ideas has not been published,
yet.

Urgent topical problems on the objectivist side are that small probabilities are
growing in importance, yet data is missing or is highly unreliable, or originates
from qualitative knowledge. Probability is often used more in the sense of a scenario
which means that probabilistic models are used as a heuristic to explore reality in-
stead of finding the best-fitting model and determining the “best” solution relative
to it for the real problem under scrutiny (see Borovcnik and Kapadia 2011). Another
source of confusion is an adequate understanding of statistical methods that reminds
one of the historical problems to understand the puzzling examples or paradoxes on
the sole basis of an objectivist probability.

What remains of probability if it is deprived of its main interpretation as relative
frequencies is hard to tell. Some key properties such as the additivity of expected
values or the key idea behind any distribution, which sets the scene for a structure
of situations—a structure that goes beyond and behind the fact that the relative fre-
quencies do fit and can be modelled by it, are illustrated in Borovcnik (2011). The
link to relative frequencies remains too dominant. The conception of a degree of
belief and how to revise it by new data gives guidance to understand the notions and
related methods much more easily. The discussion of the paradoxes shows that such
ideas enhance understanding.

A well-balanced exposition covering subjectivist and objectivist probability
seems unlikely. Barnett (1982) marked a promising step into this direction with a
comparative analysis of the positions but this remains an isolated project within the
statistical community despite the fact that the theory based on Kolmogorov’s axioms
could serve as a common language. Barnett (1982, p. 69) notes that these axioms
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are a “mathematical milestone” in laying firm foundations; they remain, however, a
“philosophical irrelevance” in terms of explaining what probability really is.

Returning to paradoxes and fallacies, they can be entertaining. They raise class
interest and motivation. Discussion of these ideas can help to

– analyse obscure or complex probabilistic situations properly;
– understand the basic concepts better;
– interpret formulations and results more effectively;
– balance and shift between different interpretations of probability;
– educate probabilistic intuition and reasoning more firmly.

The misconceptions in the examples show that probabilistic intuitions seem to be
one of the poorest among our natural and developed senses. Perhaps, this is a re-
flection of the desire for deterministic explanation. People have great difficulty in
grasping the origins and effects of chance and randomness: they search for pattern
and order even amongst chaos. Or, it may be due to an education too restricted to
one perception of probability. The examples above illustrate the gap between in-
tuition and mathematical theory, particularly because stochastic reasoning has no
empirical control to revise inadequate strategies. Paradoxes and puzzles highlight
these difficulties as signs of a cognitive conflict between an intuitive level of rea-
soning and formalized, mathematical arguments. In a paradox, the ‘objective’ side
is inadequate though intuitively straightforward, whereas in a puzzle the objective
side is adequate but intuitively inaccessible. Empirical research in using paradoxes
in teaching is limited, though a promising start has been made by Vanscó (2009)
with trainee teachers; this now needs to be replicated in schools. Our own long
and varied experience leads us to assert that planned discussion of paradoxes and
puzzles fosters individual conceptual progress of children and students in learning
probability.
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