
Chapter 8
Crossroads of Signaling Pathways

Stefania Staibano

Abstract As studies on PC progression continue to uncover a growing number
of crosstalks and co-occurrences of mutations and epigenetic alterations, new drugs
are getting approved bringing significant changes in the treatment paradigm of these
tumors.

This chapter recapitulates the best known examples of molecular interactions
potentially targetable to achieve these therapeutic evolutionary changes, to allow a
better control of PC which, in 2012 alone, has still killed more than 28,000 men,
in USA (Siegel et al, CA Cancer J Clin, 62:10–29, 2012; El-Amm, Aragon-Ching,
Ther Adv Med Oncol, 5(1):25–40, 2013).

8.1 Background and Aims

Prostate cancer (PC) is a multifocal disease, composed by several independent
tumor foci that may show different degrees of molecular alterations. The hetero-
geneous nature of PC which, at a molecular level, derives from the crosstalk of
multiple signal transductions variously acting in promoting growth, survival and
therapy-resistance of PC cells (Pittoni et al. 2011).

The development of new therapeutic strategies, particularly focused toward
castration-resistant prostate cancer (CRPC), relies on a better understanding of the
resistance pathways selectively adopted from prostate cancer cells (El-Amm and
Aragon-Ching 2013).

Recently, it has been shown that androgens residual from androgen-deprivation
therapy may indirectly favor cancer growth, with a progressive increase of the
PSA levels, via the over-expression of many HIF-1 dependent, hypoxia-inducible
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genes. The interplay between hypoxia and AR, further cross-talks with several
oxidative stress mediators, cytokines, growth factors, DNA-repair pathways, and
epigenetic regulators, in a cooperative effort to ensure the survival of neoplastic cells
in a highly adverse metabolic (and environmental) background. These interacting
signaling mechanisms, indeed, may either potentiate or counteract each other,
leading alternatively to cell death or adaptation and radio-chemoresistance. It thus
becomes apparent that resistance to therapy can be overcome only through a proper
therapeutic manipulation of the right factor(s) that, in turn, will influence the others,
triggering PC cells death (Marignol et al. 2008).

As an example, it has been surprisingly shown that cell death can be induced
in castration-resistant tumors “still” via AR, which can modulate apoptosis and
autophagy if targeted in conjunction with PKA pathway members (Attar et al. 2009).

As well, considering that AR is largely expressed in tumor microenvironmental
stromal cells, drugs targeting AR signaling in PC cells give rise to a therapeutic
favourable effect also on the stromal compartments, as AR is largely expressed in
tumor microenvironmental stromal cells (Mantalaris et al. 2001).

Thus, a favourable response to AR targeting will encompass both reductions in
serum PSA and bone-specific, osteoblast derived, alkaline phosphatase.

Overall, mounting evidence suggest that the cell fate, in response to therapeutic
attack, depends on a plethora of variable factors, ranging from metabolic stress,
functional status of cells, the interaction level between the stress-response pathways,
paracrine mediators produced by tumor microenvironment, and the epigenetic
interactions on DNA damage response and DNA repair (Murr 2010).

During these last years, the efforts of the scientific community have been focused
on the correct interpretation of the complementary pathways which could kill radio-
and chemoresistant cancer cells.

The end-point of such a program will require carefully designed clinical trials,
a rigorous patient selection and retrospective analyses of clinical, pathological, and
follow-up data.

In the rapidly evolving field of prostate cancer therapy, new drugs are being
used; as well, new insights indicating possible different rational approaches to
the treatment sequencing with “old” drugs are being proposed. The search for
novel biomarkers, useful for the individualized prediction of treatment response and
outcome of PC patients, is actively on. This is a particularly complex investigational
field (considering that the malignant phenotype of prostate cancer cells results from
a highly variable combination of functional, genetic and epigenetic defects in cell
cycle metabolism, checkpoint control and DNA-repair pathways, working together
to render PC a lethal disease). The real challenge lies not only in detecting all these
alterations, but also in defining the multiple layers of their reciprocal intersection
(Sarwar and Persson 2011).

We are thus requested to critically review our knowledge about the role of the
plethora of molecular guests acting on the scenario of prostate cancer progression,
which comprises both epithelial and stromal cells, both contributing to tumor
heterogeneity and growth dynamics (Cho-Chung 1989, 1990; Camps et al. 1990;
Cunha et al. 1996).
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That prostate cancer development and growth is dependent on androgens and
can be suppressed by androgen ablation monotherapy is an old concept (Zhu and
Kyprianou 2008).

The appearance of androgen-independent prostate tumor growth, leading to
cancer recurrence and highly metastatic disease, is a well-known phenomenon as
well (Wang et al. 2007).

During the entire life-span of prostate cancer, the androgen axis actively cross-
talks with a plethora of growth factors, driving the shift of prostate cancer
cell toward survival and invasion advantage. Androgenic control of growth and
differentiation is tightly regulated in both stromal and epithelial cells (Sar et al.
1990).

This explain why the successful treatment of PC with drugs targeting (AR)
signaling (defined as Epithelial-Stromal Targeting Agents), leads to reduction in
either serum PSA and bone-specific alkaline phosphatase (Mantalaris et al. 2001;
Niu et al. 2010).

A poor clinical outcome for prostate cancer patients has been associated, instead,
with low-AR levels in the stromal microenvironment (Henshall et al. 2001), and
this finding has been proposed as one of the mechanisms involved in the emergence
of androgen-independent cancer (Dayyani et al. 2011). The propulsive effect
of androgens on prostate epithelial cell proliferation and survival are indirectly
regulated by paracrine mediators produced by stromal cells, such as insulin-like
growth factor (IGF), fibroblast growth factor (FGF), epidermal growth factor (EGF),
(Cunha and Donjacour 1989), vascular endothelial growth factor (VEGF) and
transforming growth factor-“ (TGF-“) (Byrne et al. 1996).

The epidermal growth factor-1 (EGF) and its receptor (EGFR), (Russell et al.
1998) are frequently up-regulated in advanced stages of PC (Di Lorenzo et al. 2002)
Targeting EGFR with monoclonal antibodies or with tyrosine kinase inhibitors,
suppresses growth and invasion of androgen-dependent and -independent prostate
cancer cells in vitro, leading to the conclusion that the multi-crossed signals
between EGF/EGFR and androgen signaling is crucial for the acquisition and the
maintenance of androgen sensitivity (Bonaccorsi et al. 2004; Festuccia et al. 2005;
Leotoing et al. 2007).

Both AR and EGF can activate MAPK and, in a ‘functional-symmetry’, the
EGF-activated MAPK/extracellular signaling-regulated kinase kinase-1 (MEKK1)
cascade. This allows EGF to interfere with AR function, modulating the androgen
response and blocking androgen-dependent transcription in differentiated cells.
MAPK extracellular kinase (MEK) inhibition reverses the EGF-mediated AR down-
regulation in differentiated cells (Peterziel et al. 1999).

The alteration of this EGF–AR interplay is an important contributor to prostate
tumor progression. The modulation of AR signaling activity by ERBB2 (HER-
2/neu), a lead member of the EGFR family of receptor tyrosine kinases, has been
found correlated with prostate cancer progression to cell growth of androgen-
independent metastatic disease (Heinlein and Chang 2004), in vitro and in vivo
(Craft et al. 1999; Yeh et al. 1999; Mellinghoff et al. 2004; Liu et al. 2005).
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Similar positive feedbacks with AR activity in prostate cancer cells have been
described also for several other growth factors (Orio et al. 2002). Evidence supports
a strict interaction between AR and the IGF signaling. The high IGF1 signaling
in prostate cancer cells (HepG2 and LNCaP cells) (Wu et al. 2007) likely depends
upon AR up-regulation of IGF1 receptor expression and/or, alternatively, upon the
modulation of IGF-binding proteins (IGFBPs), which, in turn, are up-regulated by
either androgens and IGF1 in androgen-responsive human fibroblasts (Yoshizawa
and Ogikubo 2006) IGF1 enhances AR transactivation under low/absent androgen
levels (Culig et al. 1994; Orio et al. 2002) and promotes prostate tumor cell
proliferation (Burfeind et al. 1996). According to several reports, high IGF1 levels
in the serum can be considered a marker of an increased risk of prostate cancer
(Pollak et al. 1998; Wolk et al. 1998).

Even more data concern the cross-talks between AR and Transforming growth
factor-“ (TGF“). This ubiquitous cytokine, for instance, contributes to the regulation
of proliferation, growth and differentiation of prostate stromal and epithelial cells.

Cofilin and prohibitin, two novel signaling effectors of TGFB1, that serve as
potential intracellular effectors of its apoptotic action, were identified in human
prostate cancer cells (Zhu et al. 2006). Androgens can inhibit TGFB1-induced
apoptosis in prostate cancer cells (Chipuk et al. 2002) via the AR-associated
protein 55 (ARA55/Hic-5; LIM protein superfamily). Overexpression of ARA55
inhibits TGFB-mediated up-regulation of SMAD transcriptional activity in rat
prostate epithelial cells, as well as human prostate cells, via an interaction between
ARA55 and SMAD3 (Wang et al. 2005). Cancer cells become refractory to the
growth inhibitory activity of TGFB due to the loss (or mutation) of transmembrane
receptors or intracellular TGFB signaling effectors during tumor initiation (Akhurst
and Derynck 2001). In advanced prostate cancer and in PC bone metastasis, TGFB
is over-expressed and TGFB1 ligand overexpression results in pro-oncogenic rather
than growth suppressive effect (Coffey et al. 1986; Roberts et al. 1986; Derynck and
Zhang 2003; Zhu and Kyprianou 2005).

The androgenic-mediated TGFB enhancement seems to play a role on the
epithelial-mesenchymal transition (EMT) in metastasizing cancers (Zavadil and
Bottinger 2005), with a further interplay with E-cadherin. The effects of TGFB1
expression on stromal cell proliferation and differentiation, depend on the specific
stromal cell type, microenvironment, and interactions with other growth factor
(Sporn and Roberts 1992). AR and TGFB1 levels significantly correlate in the
stromal component of prostatic intraepithelial neoplasia (Cardillo et al. 2000). Very
interestingly, TGFB1 triggers the AR translocation from nucleus to cytoplasm in
prostate stromal cells underlying to myodifferentiation (Gerdes et al. 1998, 2004),
while androgens enhance TGFB1-mediated proliferation of prostatic smooth muscle
cells (Salm et al. 2000).

Prostate cancer progression toward androgen-independent disease has been
linked also to changes in the expression of several members of the FGF family,
characterized by a broad spectrum of functions on cell differentiation, migration,
and angiogenesis (Ornitz and Itoh 2001). FGF2 can stimulate also the proliferation
of prostate stromal cells, in a synergistic fashion with DHT (Niu et al. 2001).
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The synthesis of FGF2 and FGF7 in prostate epithelial cells seems to be mainly
regulated by estrogen receptors (ER), whereas ER act in coordination with AR to
mediate the synthesis of these growth factors in stromal cells. Androgen deple-
tion rapidly reduces stromal IGF1 expression, after castration, favoring PC cells
apoptosis (Ohlson et al. 2007). AR can otherwise directly influence the expression
of FGF1, FGF2, FGF8, and FGF10 in either prostate tumor epithelial cells and
stromal cells (Saric and Shain 1998; Nakano et al. 1999; Rosini et al. 2002), while
a paracrine secretion of FGF10 exert a positive feedback on AR, up-regulating
its expression (Memarzadeh et al. 2007). In response to FGFs, AR potentiates
FGF-induced survival of prostate cancer cells, possibly through BCL-2 induction,
allowing the escape of selected clones from androgenic control (Rosini et al. 2002;
Gonzalez-Herrera et al. 2006).

Among the cross-actions between AR and the multifunctional growth factor
signaling pathways, the interplay between the cellular responses to androgen
and hypoxia is emerging as a further key phenomenon in the developing of
androgen-independent, metastasizing prostate cancer cell clones (Marignol et al.
2008). In prostate cells, androgens and hypoxia share several regulatory molecular
mechanisms: both androgens and hypoxia, in fact, due to the presence of a hypoxia-
responsive region in the human PSA promoter, can induce in fact PSA expression
(Horii et al. 2007).

It has been then hypothesized that hypoxia, mainly through the hypoxia-inducible
factor (HIF1A), may facilitate PC progression through the cross-talk with AR.
To further support this idea, it has been recently reported that residual androgens
following androgen deprivation induce the expression of hypoxia-inducible genes
and stimulate cancer re-growth (Marignol et al. 2008).

This is of particular interest if we consider that, as for most solid cancers,
hypoxia is a common feature of prostate tumors. Then, targeting hypoxia looks as a
very appealing complementary strategy for the management of aggressive prostate
cancers.

The ‘hypoxia-response’ signaling system up-regulates the expression of a a wide
spectrum of effectors that increase the ability of tumor cells to turn poor oxygenation
into survival advantage (Anastasiadis et al. 2003) and radio- and chemoresistance
(Zhou et al. 2006).

In response to the decrease in the micro-environmental oxygen (Ellis et al.
2009) HIF-1’ regulates gene expression of several genes involved in multiple
physiological responses, such as erythropoiesis and glycolysis (short term solutions)
and angiogenesis (long term solution) (Semenza 1998), via the expression of VEGF
(Delongchamps et al. 2006).

VEGF, is “the” angiogenic cytokine, driving endothelial cell proliferation and
migration, and vessel assembly (Fong et al. 1995). The expression of HIF1, AR
and VEGF expression are tightly correlated (Boddy et al. 2005; Banham et al.
2007). So, AR regulates angiogenesis in androgen-sensitive PC through the HIF1-
induced VEGF increase (Boddy et al. 2005). Following androgen-deprivation, the
intracellular reactive oxygen species induce, instead, the direct up-regulation of
VEGF-C, which favor AR transactivation mediated by the AR co-activator BAG-1L
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(Rinaldo et al. 2007). Clonal selection for cells with higher expression of HIF-1a
and/or apoptotic resistance pathways contributes to determine cell specific responses
to hypoxia (Zhou et al. 2006).

HIF-1’ over-expression/hyperfunction may be induced by genetic loss of ex-
pression/function of pVHL (Ivan and Kaelin 2001, p 53; An et al. 1998) and/or
PTEN (Zundel et al. 2000) leading to the activation of PI3K/AKT/mTOR pathway
(Zundel et al. 2000; Stiehl et al. 2002) which, in turn, plays a well-known role
in proliferation, survival and metastatic ability of hormone independent prostate
cancers, as demonstrated by the correlation between elevated phosphorylated AKT
and high Gleason grade of PC (Yuan et al. 2007). HIF-1’ may be induced, in
addition, by several cytokines and growth factors including insulin (Zelzer et al.
1998), insulin like growth factors (Feldser et al. 1999), P42/44 mitogen activated
kinase (MAPK) (Richard et al. 1999).

Furthermore, alternative mechanisms to those mentioned above have been
identified which include the tumor microenvironment (Weidemann and Johnson
2008) and mutations within the ODD domain of HIF-1’ (Mabjeesh and Amir 2007).
This eloquently explain why targeting only one member of the hypoxia-related
angiogenetic pathway is insufficient to permanently inhibit tumor angiogenesis and
why tumor cells, treated with a mono-drug therapy, develop resistance by selection
of ‘hypoxia resistant’ cells or by activating alternate angiogenic pathways (Kerbel
and Folkman 2002).

To further complicate this scenario, under severe hypoxia, radio-/chemo-
resistance and clonal selection may develop as a response of opposing signals
delivered by survival and death pathways that allow selection of cells that have a
growth advantage either genetically or epigenetically determined (Zhou et al. 2006).

Post-translational epigenetic modifications, including acetylation mediated
by histone acetyltransferases (HATS) and deacetylation by histone deacetylases
(HDACs), have been shown to be critical to HIF-1’ signaling (Ellis et al. 2009).

HIF-1’ signaling up-regulates the activity of HDACs. Then, HDAC inhibitors
are emerging as a new class of anti-angiogenetic cancer therapeutics.

However, the anti-angiogenic properties of HDACI have been associated also
with the alteration of numerous pro- and anti-angiogenic genes (Liu et al. 2006)
other than HIF-1’ and VEGF. They encompass FGF, angiopoietin, tunica intima
endothelial kinase 2 (TIE2), endothelial nitric oxide synthase (eNOS) (Qian et al.
2004; Rossig et al. 2002, p 53), pVHL, thrombospondin 1 (Kim et al. 2001;
Kwon et al. 2002; Sasakawa et al. 2003; Kang et al. 2008, p 21)WAF1/CIP1, and
survivin (Qian et al. 2004). Even for HDACI, monotherapy has shown limited
responses in the clinic, but it seems very promising, as a part of combination
therapies. Pre-clinical and clinical studies indicate that HDACI have positive effects
on the expression of pro- and anti-angiogenic genes, suggesting their useful role in
reinforcing the actions of anti-VEGF therapies.

As it has been largely shown in the past decade, the intricate molecular
cross-talks underlying the malignant phenotype and the emergence of androgen-
independent prostate tumors encompass the expression and functional defects in
HR, single-strand break- (DNA-ssb) repair, MMR and base-excision repair (BER).
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Prostate cancer cell lines (Chen et al. 2003; Yeh et al. 2001) have been found to be
defective in mismatch–repair (MMR), and up to 23 % of prostate cancers display a
high level of microsatellite instability associated with mutations in MMR genes and
deficient MMR protein expression (Norris et al. 2007; Prtilo et al. 2005; Sun et al.
2006).

This, in turn, may lead to high mutation rates among microsatellites, ending in a
mutator phenotype.

As well, DNA polymorphisms in BER- or DNA-ssb repair associated Xrcc1,
Ogg1 and DNA polymerase-b genes have been associated with higher risk for
prostate cancer (Chen et al. 2003; Rybicki et al. 2004; Xu et al. 2002).

Most of the molecular therapies targeting the key control pathways involved in
prostate cancerogenesis and progression may indirectly influence the DNA-dsb
repair activity of neoplastic cells. This has been observed for therapies inhibiting
EGFR, IGFR, HDAC and proteasome pathways (Ma et al. 2003; Chinnaiyan et
al. 2005; Dittmann et al. 2005a, b) have documented that the radiosensitization
mediated by inhibiting EGFR can be related with the altered DNA-PKcs expression,
function and cytoplasmic sequestration; as well, an increased DNA-dsbs (Rochester
et al. 2005) has been shown to be induced by the inhibition of IGF-1R, via
the altered ATM activation, and could be used in combination with radiotherapy
(Choudhury et al. 2006) in hypoxic cancers. By converse, the RAS-mediated tumor
cell radioresistance could be linked to the augmented DNA-dsb repair (Chang et al.
2005) induced by the use of farnesyl transferase inhibitors (FTIs) via the increase
of Ku80 expression.

An additional crosstalk involves DNA-repair genes in human cancers. It
concerns the occurrence of silencing DNA repair genes such as MLH1 and
O-6-methylguanine-DNA methyltransferase (MGMT) leading to microsatellite
instability and a failure to repair DNA lesions (Jones and Baylin 2002). This
phenomenon is still a matter of investigation in PC.

Another intriguing example of molecular co-sharing in PC is represented by the
c-kit receptor (Pittoni et al. 2011). c-Kit receptor is normally expressed by prostate
stem cells, that apparently require the c-Kit signaling for prostate regeneration
(Leong et al. 2008) in humans, after hormone ablation, c-Kit expression may be
observed in a considerable percentage of high-risk prostate cancer cells (Di Lorenzo
et al. 2004) and in 10–30 % of this subset of prostate cancers NE differentiation
occurs.

In normal prostate, a resident stromal population of mast-cells (MCs), also
express the c-kit receptor (Leong et al. 2008).

It was initially thought that MCs can promote tumor growth of WD adenocarci-
noma synthetizing MMP-9. MMP-9 has been indicated to correlate with progression
of prostate tumor in humans (Castellano et al. 2008). As an ECM-degrading
enzyme, it facilitates cell migration and invasion of tumor cells, allowing also the
cleavage and activation of growth factors concurrently acting in tumor progression.
In addition, peritumoral MCs were shown to stimulate prostate tumor growth in rats
by providing proangiogenic factors (Johansson et al. 2010).
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For these reasons, it was hypothesized that targeting MCs would be considered
useful to counteract the growth of prostate cancers.

However, it was demonstrated, both in mouse and in humans, that poorly-
differentiated prostate tumors with features of EMT show an autocrine production
of MMP-9 and are devoid of infiltrating MCs.

This implies that MC inactivation would be ineffective when used in therapy
for advanced and poorly-differentiated PC, and lead to the intriguing consideration
that MC may contribute to the maintenance of prostate stem cell homeostasis
and counteract NE tumor formation, serving as “natural decoys” that sequester
stimulating growth factors, thus limiting c-Kit signaling in prostate cancer stem cells
(Pittoni et al. 2011).

This hypothesis strongly discourages the idea of MC inhibition in PC. Otherwise,
the therapeutic use of c-Kit tyrosine kinase inhibitors, such as imatinib, would
instead offer the advantage of targeting both adenocarcinoma-promoting MCs
(stroma targeting) and NE tumor variants (tumor targeting (Pittoni et al. 2010).

Overall, prostate cancerogenesis emerges as an extremely complex field, involv-
ing genetic and epigenetic alterations with multiple layers of merging.

We are still far away to use molecular classifications to unequivocally define
different prognostic subcategories of prostate cancer. Key questions remain to
be answered before the full range of mutations and genetic alterations will be
elucidated.

Nevertheless, it is likely that, as for most of human cancers, also in PC the
genes with a high incidence of mutation frequently participate to the evenience of
abnormal epigenetic events, and this co-occurrence may be related, for instance,
to the abnormal expansion of neoplastic stem cell population (Coussens and Werb
2002; Meng and Riordan 2006) which, in turn, may further select the addiction
of oncogenic gene mutations, which drive PC cells to invasion, metastasis, and
resistance to therapy.

Our knowledge of the intricated cross-links between genetic and epigenetic
events occurring in PC has registered exciting progresses during the last decade.

The role of the three-dimensional texture and regulation of chromatin function
in PC has been partially uncovered, and this has led to hypothesize the therapeutic
use of drugs and small molecules such as HDAC inhibitors or DNA methylating and
demethylating agents, acting as epigenetic modulators, as alternative or complemen-
tary tools for fighting aggressive PC (Murr 2010). The emerging data confirm that
prostate carcinogenesis bases upon a definite group of interconnecting key signaling
pathways.

Large scales of studies and carefully designed clinical trials will be required to
validate novel effective therapeutic strategies for the treatment of PC.

The availability of next-generation sequencing will provide us with a broad
genotyping platform which contribute to further refine our notions, shortening
the time occurring to set-up multi-faceted molecular strategies tailored against
the multiple molecular alterations responsible for the killing ability of advanced,
androgen-independent, prostate cancers (Dias-Santagata et al. 2010) (Fig. 8.1).
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Fig. 8.1 Crossroads of molecular pathways involved in PCa. In this picture the most frequent
intersections between the major molecular pathways promoting growth, survival, invasiveness,
metastasis and therapy-resistance of PC cells, potentially targetable for therapeutic strategies are
summarized
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