
Chapter 14
Targeting Tumor Angiogenesis

Stefania Staibano and Paolo Antonio Ascierto

Abstract Four decades after the seminal work of Judah Folkman, in 1971, cancer
therapies based on the suppression of neo-angiogenesis (Folkman, N Engl J Med
285:1182–1186, 1971) are becoming a reality (Verheul et al., Clin Cancer Res
14(11):3589–3597, 2008).

The shift toward the up-regulation of pro-angiogenic factors secretion from both
tumor and stroma, results from the interplay between endothelial cell activation,
proliferation, extracellular matrix degradation, migration, canalization. It leads to
the generation of a chaotic vascular vessels network in prostate cancer tissue
(Ahmed and Bicknell, Method Mol Biol 467:3–24, 2009), which can be detected
also by modern imaging techniques based on magnetic resonance, ultrasound, and
nuclear imaging through targeting of key angiogenic factors (Russo et al., BJU Int
110(11 Pt C):E794–E808, 2012).

This hopefully will lead to further improvements in prostate cancer diagnosis
and staging. Preclinical evidence indicates that angiogenesis inhibitors can improve
the efficacy of conventional cytotoxic agents mainly by normalizing tumor blood
flow, thus improving drug delivery. Although significant biological activity of
most vascular growth factors-interfering agents is demonstrated in preclinical
models, single-agent activity is almost universally poor (Aragon-Ching et al.,
J Oncol 2010:361836, 2010). Due to the redundancy within the signalling pathways
that promote angiogenesis, combining anti-angiogenic agents with different
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mechanisms of action seems likely to significatively potentiate their therapeutic
efficacy (Corcoran and Gleave 2012; Ellis and Hicklin, Nat Rev Cancer 8:
579–591, 2008; Verheul et al., Cancer Chemother Pharmacol 60:29–39, 2007).

14.1 Prostate Tumor Microenvironment, Hypoxia
and Tumor Neoangiogenesis

Stefania Staibano (�)

Prostate cancer-associated angiogenesis is a well recognised process (Russo et al.
2012).

Microvessel density (MVD) usually is higher in primary tumors of patients
with metastatic disease compared with localised prostate cancers (Weidner et al.
1993; Fregene et al. 1993; Strohmeyer et al. 2000; Gravdal et al. 2009). As
well, higher MVD correlates with advanced pathological stage (Lee et al. 2004),
increased PSA levels (Lee et al. 2001a, b), higher tumor grade (Park et al. 2007),
increased metastatic potential (Aragon-Ching and Dahut 2009; Park et al. 2007),
and decreased survival of patients (Park et al. 2007; Lee et al. 2001a, b).

Moreover, tumor blood vessels show multiple structural and functional abnor-
malities (Russo et al. 2012), increased tortuosity, blind ends and high cellular
proliferation rate, leading to dysfunctional and heterogeneous tumor tissue micro-
circulation, with frequent avascular tumor areas, hypoxia, acidosis, and glucose
deprivation (Shannon et al. 2003; Teicher et al. 1990; Vaupel et al. 1989; Airley
et al. 2000; Brown 1999; Folkman 1971).

This results in a net efflux of fluid into the interstitial space, devoted of functional
lymphatics, so that it distends the extracellular matrix and increases the interstitial
pressure (An et al. 1998).

All these features are associated with metastatic risk (Siim et al. 1996; Wang
et al. 1992; Peters et al. 2001).

VEGF is a 46-kDa dimeric protein also known as a vascular permeability factor
(VPF), and represents the most potent growth factor acting in stimulating cell
proliferation, angiogenesis and lymphangiogenesis (Ferrer et al. 1998; Shweiki et al.
1995). VEGF, in prostate cancer progression, is regulated by hypoxia (Shweiki et al.
1992, 1995; Minchenko et al. 1994; Walker et al. 1994), cytokines, and androgens;
moreover, several oncogenes, as Ras-, Raf-, and Src, the inactivation of tumor-
suppressor genes as p53 and von Hippel – Lindau (Ravi et al. 2000) concur to its
modulation.

VEGF immunohistochemical expression is highest in metastatic prostatic cancer
tissue, but it does not predict prostate cancer progression (Botelho et al. 2010), nor
correlates with VEGF expression and clinical and pathological features of tumors
(Shariat et al. 2004).
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VEGF acts in a paracrine manner by binding its receptors (VEGF-R1 and VEGF-
R2) expressed on the surface of endothelial cells. VEGF binding activates the
receptor’s tyrosine kinase activity, and via the stimulation of several molecular
pathways, as ERK and Akt, leads to vasodilatation, increased vascular permeability,
cell proliferation, degradation and invasion of the underlying stroma (Aragon-Ching
and Dahut 2009).

However, these vascular growth factors have multiple functions. As an example,
prostate cancer cells overexpress also the VEGF receptor (VEGFR), so VEGF
and VEGFR reciprocally act in an autocrine manner promoting, besides neo-
angiogenesis, prostate cancer cell proliferation and survival (Jackson et al. 2002).
In addition, it inhibits tumor cell apoptosis by inducing the expression of the anti-
apoptotic protein Bcl-2 (Pidgeon et al. 2001).

Addition of VEGF inhibitors to antiandrogen therapy results in increased oxygen
delivery to hypoxic tumors areas and thus further potentiates radiation therapy (Zhu
and Kyprianou 2008).

Prostate tumor cells respond to hypoxia with the over-transcription of the
hypoxia-inducible factor-1a (HIF-1) (Rang et al. 1999), which in turn overstimulates
VEGF production and leads to neo-angiogenesis (Cvetkovic et al. 2001). VEGF
production and signaling is partly dependent on mTOR induced expression of
HIF-1a (Treins et al. 2002).

HIF-1a is hydroxylated at the proline residue and degraded by interaction with
the von Hipple-Lindau protein complex and proteosome machinery (Semenza 2003;
Forsythe et al. 1996) in normoxic conditions. In prostate cells, androgens can
activate HIF-1 through an autocrine loop, and HIF-1 interacts with AR on PSA
gene promoter, thereby activating its expression (Zhong et al. 2008).

Under hypoxic conditions, as in advanced prostate cancer, HIF-1a protein is
stabilized and translocated into the nucleus for specific gene expression regulation
including VEGF, and regulates intracellular pH, metabolism, cell invasion and
autophagy, preventing death of aggressive cancer cells (Pouyssegur et al. 2006).

HIF-1a is then a preferential target for the development of anticancer drugs (Pili
and Donehower 2003).

Histone deacetylase (HDAC) inhibitors have shown an anti-angiogenic activ-
ity mediated in part by HIF-1a down-regulation in both tumor and endothelial
cells, with the consequent down-regulation of VEGF and other HIF-1a regulated
angiogenesis-related genes (Qian et al. 2004). Class II HDAC are important mod-
ifiers of HIF-1a. Recently, it has been reported that the HDAC inhibitor LBH589
reduced tumor growth and angiogenesis in a preclinical prostate cancer model (Qian
et al. 2006a, b).

Prostate cancer cells overexpress also TGF “, which promotes either extracellular
matrix production and angiogenesis (Russell et al. 1998), favouring also osteoblastic
bone metastases in experimental systems. The increase of TGF “ RI is associated
with high-grade and higher clinical stage of prostate cancer.

TGF“ RI expression correlates with tumor vascularity, tumor grade, and metasta-
sis (Wikström et al. 2001). On the opposite side, TGF “ RIII expression is decreased
or lost in most human prostate cancers, where it correlates with advanced tumor
stage and high risk of PSA recurrence.



224 P.A. Ascierto

The occurrence of intraepithelial prostate cancer correlates instead with the loss
of TGF “ RII responsiveness in stromal fibroblasts. Thus, partially blocking TGF“

through angiogenesis inhibitors, e.g. angiostatin and endostatin could potentially
reverse the continuous stimulation of tumor angiogenesis (Deryugina and Quigley
2006).

Prostate cancer has the ability to produce MMPs, TGF“; and cyclooxygenase 2
(COX-2).

Several endogenous inhibitors of angiogenesis have also been described in
prostate cancer, namely angiostatin, endostatin, PSA, TSP1, interleukin 8, and
interferons.

Overall, the microenvironment of prostate cancer is a critical determinant in
cancer genesis (Chung et al. 2005).

14.2 Targeting the Angiogenic Pathways
in Castration-resistant Prostate Cancer

Paolo Antonio Ascierto (�)

Monoclonal antibody Bevacizumab is a recombinant humanized IgG1 monoclonal
antibody with high affinity and specificity for all VEGF-A isoforms. Upon
binding to soluble VEGF-A, bevacizumab limits ligand binding to EC receptors
VEGFR-1 and VEGFR-2, thus blocking pro-angiogenic intracellular signals
transduction.

In a phase II study, Reese et al. evaluated bevacizumab at 10 mg/kg every 14 days
for 6 cycles in 15 chemotherapy-naı̈ve patients with CRPC. No objective responses
were showed.

But there was a PSA decline (less than 50 %) in 27 % of patients. Antibodies
to VEGF slow tumor proliferation in prostate cancer xenograft models, especially
when combined with chemotherapy (Gross et al. 2009; Antonarakis and Armstrong
2011).

Despite strong preclinical rationale, a phase III randomized study in men with
chemotherapy-untreated CRPC (CALGB 90401) failed to show a survival advan-
tage with the anti-VEGF antibody bevacizumab when combined with docetaxel
compared with docetaxel used alone (22.6 vs 21.5 months), although significant im-
provements were seen with respect to PSA responses (70 vs 58 %) and radiographic
responses (53 vs 42 %), as well as progression-free survival (9.9 vs 7.5 months)
(George et al. 2011).

However, these results do not indicate that antiangiogenic therapies may never
have a role in the treatment of CRPC, as much of this failure may be explained
by an imbalance of treatment-related toxicities (cardiovascular events, neutropenic
complications) in this older population with multiple co-morbidities. To this end,
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it was reported that the presence and number of co-morbidities (for example,
cardiovascular disease, hypertension, diabetes, renal disease, liver disease) among
patients in the CALGB 90401 trial significantly correlated with survival, and that
there was an increase in the average number of co-morbidities in the docetaxel-
bevacizumab arm (Wu et al. 2005).

Future development of this and other antiangiogenic agents may rely on
combinations with other classes of angiogenesis inhibitors or other chemother-
apeutic drugs whose toxicities do not overlap, and will require careful patient
selection for those men most likely to benefit and not be harmed by this class of
agents.

Combinations of bevacizumab with other agents were also evaluated. The phase
II trial CALGB 90006 enrolled 79 patients with metastatic CRPC patients who were
treated with docetaxel (70 mg/mq every 21 days), bevacizumab (15 mg/kg every
21 days) and estramustine (280 mg on days 1–5 of the 21 day cycle).

Promising results were showed with a median PFS of 8 months and a median
OS of 24 months, with a PSA decline (higher than 50 %) in 75 % of patients (epub.
theoncologist.com) (Sturge et al. 2011).

In a phase III trial with metastatic CRPC, 1,050 patients were randomized to
receive docetaxel (75 mg/mq every 21 days), prednisone (5 mg twice daily) and
either bevacizumab (15 mg/kg every 21 days) or placebo.

This study showed, despite an improvement in the secondary endpoints of
progression-free survival (PFS), measurable disease response and post-therapy PSA
decline, but the combination with bevacizumab was not statistically significant
for OS (22.6 vs 21.5 months). Furthermore, there was higher toxicity in the
experimental arm (epub.theoncologist.com).

Other combinations of bevacizumab with other drugs (cytotoxin agents and
immunotherapy) didn’t show results and further studies are needed. Sunitinib is
an oral TKI targeted to all three VEGFR isoforms as well as PDGF“ and KIT,
currently approved for renal cell carcinoma (Powles et al. 2011) and gastrointestinal
stromal tumor. Several phase II studies of sunitinib were conducted in patients with
metastatic CRPC, both in chemotherapy-naı̈ve patients and in post-docetaxel setting
(epub.theoncologist.com).

Also a multicenter, randomized, double-blind phase III trial comparing sunitinib
plus prednisone versus prednisone alone (NCT00676650) in patients with post
docetaxel progressive metastatic CRPC was conducted. But This trial has been
recently interrupted prematurely since the combination of sunitinib with prednisone
didn’t improve OS when compared to prednisone alone.

Aflibercept is a recombinant fusion protein of the extracellular domain of human
VEGF-R1 and VEGF-R2 and the Fc portion of human IgG. It acts as a ‘VEGF trap’
or decoy receptor, binding free ligand and preventing it from interacting with and
activating membrane-bound receptor. As expected, it potently binds all naturally
occurring ligands of VEGF-R1 and VEGF-R2, including VEGF-A, VEGF-B, and
placental growth factor, and so may be anticipated to possess greater anti-angiogenic
activity than bevacizumab. In phase I trials, the combination of aflibercept and
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docetaxel was shown to be safe and well tolerated, and the combination is now under
evaluation in a large phase III trial (VENICE study) in patients with mCRPC.51
This study has completed accrual of approximately 1,200 patients, and is expected
to report in mid-2012, with overall survival as the primary endpoint (Corcoran and
Gleave 2012).

Other immunomodulatory-antiangiogenic agents like Thalidomide have been
studied. The best data on thalidomide were in combination with other cytotoxic
agents. Weekly docetaxel (30 mg/mq weekly for 3 out every 4 weeks) with
or without thalidomide (200 mg/day) has been evaluated in chemotherapy-naı̈ve
metastatic CRPC. The combination arm was favored in terms of PSA decline
(53 versus 37 % experiencing >50 % decrease in PSA) and PFS (5.9 versus
3.7 months). The most frequent adverse events were fatigue, peripheral neuropathy
and constipation. Furthermore the combination arm may increase thromboembolic
events and requires prophylactic anticoagulant therapy. Lenalidomide is an analog
of thalidomide that has been evaluated in CRPC patients showing lower toxicity
than thalidomide and a better antiangiogenic effect (Merino et al. 2011).

A phase I–II trial evaluating efficacy and tolerability of lenalidomide has been
conducted and it compared lenalidomide 5 versus 25 mg/day, administered during
6 months, or until progression, in 60 patients, without hormonal therapy, after PSA
relapse. Main toxicity was neutropenia, thrombotic events, asthenia and rash, with
more grades 3–4 events in the 25 mg dose arm. Despite higher toxicity, PSA decline
curve was favourable to patients receiving the 25 mg/day dose. The first results of
a phase II trial combining bevacizumab, lenalidomide, docetaxel and prednisone in
CRPC patients were presented at ASCO meeting 2011.

Among 24 patients who had completed four or more cycles, 22 patients had
a >50 % PSA decline, and 20 patients had >75 % PSA decline, 14 patients,
with measurable disease, showed 2 RC, 9 PR and 3 SD (overall response rate of
78.6 %). Therefore this combination seems to be associated with a high response
rate with manageable toxicity. A phase III trial comparing different doses of
lenalidomide combined with docetaxel-prednisone versus placebo is, however,
currently underway (Merino et al. 2011).

Although one might conclude from these studies that antiangiogenic therapies
are ineffective in mCRPC, we believe these negative data highlight an important
biologic principle in prostate cancer angiogenesis that should inform the design
of future trials (Antonarakis and Armstrong 2011). Specifically, the bone marrow
microenvironment contains multiple proangiogenic factors in addition to VEGF
including PDGF, basic fibroblast growth factor (bFGF), interleukin 8, and other
soluble cytokines. This multiplicity of angiogenic pathways creates “redundancy”
and the potential for “tumor escape” from antiangiogenic therapies and suggests
that blocking multiple pathways simultaneously, rather than VEGF alone, may be
necessary to effectively block angiogenesis in mCRPC. In support of this, our
experience with clinical trials suggests that blocking PDGF and VEGF simul-
taneously (with sunitinib) is more potent in eliciting PSA responses in patients
with mCRPC than blocking either VEGF alone (with bevacizumab) or PDGF
alone (with imatinib) (Chi et al. 2005). Reflecting these data, studies are currently
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Fig. 14.1 Therapies targeting angiogenic pathway. Vascular endothelial growth factor (VEGF)
and its receptors (VEGFR-1, VEGFR-2 and VEGFR-3) provide for new vessel formation and
their maintenance. VEGF expression is markedly higher in prostate cancer specimens compared
to non-neoplastic prostatic tissue controls and plasma VEGF levels are significantly higher with
metastatic versus localized disease. Bevacizumab is a recombinant humanized IgG1 monoclonal
antibody with high affinity and specificity for all isoforms of VEGF-A. It binds to soluble VEGF-A
limiting ligand binding to EC receptors VEGFR-1 and VEGFR-2 and blocking the transduction of
proangiogenic intracellular signals. Sorafenib, sunitinib and Cediranib are multitargeted receptor
tyrosine kinase inhibitors (TKI), that exerts their antiangiogenic effect targeting, respectively,
RAF kinase, VEGFR-2 and platelet-derived growth factor receptor (PDGFR-“), the three VEGFR
isoforms, PDGF“ and KIT, and VEGFR 1 and 2

underway using tyrosine kinase inhibitors that target multiple angiogenic pathways
(e.g., TKI258, which potently blocks VEGF, PDGF, and bFGF) (ClinicalTrials.gov
identifier: NCT00831792), or alternatively, combine agents that block angiogenesis
through different mechanisms (e.g., combining bevacizumab plus lenalidomide). In
addition, in a recent phase I/II study combining sunitinib and docetaxel for the
treatment of mCRPC in the frontline setting, patients demonstrated reductions in
both PSA levels and tumor burden that were more substantial than a historical cohort
of patients receiving docetaxel alone (Fig. 14.1) (Sowery et al. 2008).

The observation that both bevacizumab and sunitinib have shown prolongation
of progression-free survival without differences in overall survival also raises
the possibility that sustained suppression of angiogenesis is required to affect
overall survival (Antonarakis and Armstrong 2011; Dayyani et al. 2011). Enhanced
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tumor growth following cessation of antiangiogenic therapy has been described, a
“rebound” phenomenon that could influence overall survival (Chi et al. 2009). To
address these limitations, it may be necessary to continue antiangiogenic therapy
beyond standard definitions of disease progression to observe a beneficial impact on
overall survival.

There are many question to be answered to optimize antiangiogenic therapy for
advanced prostate cancers.

– The role of several angiogenic regulator factors is still poor understood. As an ex-
ample, we currently know that the prostate-specific membrane antigen (PSMA)
expression in tumor-associated neovasculature is necessary for angiogenesis and
endothelial cell invasion, but we are unaware of its real role in angiogenesis
(Gordon et al. 2008).

– As well, VEGF activation is probably mediated by other still unknown transcrip-
tion factors such as the Activator protein 1 (AP-1) transcription factor complex
(Shih and Claffey 1998).

– Further studies will also address the predictive role of expression of HIF-
1 alpha, VEGF, and other angiogenic growth factors in patients treated with
radiotherapy alone. These patients, in fact, lack the beneficial effect on tumor
vascularization exerted by a neoadjuvant androgen deprivation. Therefore, the
angiogenic markers may be even more important in this subgroup of patients
(Vergis et al. 2008).

Anyhow, it is a matter of fact that almost all the key regulators of angiogenesis
are upregulated in prostate cancer, particularly in the castration-resistant setting, and
this undoubtedly has a great relevance for the gain of prostate cancer aggressiveness.
This strongly stimulates the search for new reliable marks for effectively targeting
prostate cancer angiogenesis.
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