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Abstract Traditional tree improvement programs are long-term endeavours requiring 
extensive resources. They require establishing mating designs, installing progeny 
tests on multiple sites to evaluate parents and their offspring over large geographic 
areas, monitoring those tests over extended periods of time, and eventual analysis of 
measurements to assess economic traits. Most tree breeding programs follow the 
classical recurrent selection scheme, resulting in the generation of multiple breeding 
and production populations. This process, while successful in attaining appreciable 
gains, remained static for a long time. The availability of plentiful, reliable, and most 
of all increasingly affordable genetic markers brought about drastic changes to pres-
ent-day breeding methods. In this chapter, we focus on four significant genetic 
marker-dependent approaches with significant potential to directly or indirectly 
change contemporary tree breeding methods. These include pedigree reconstruction, 
pedigree-free models, association genetics, and genomic selection.

1  Introduction

Tree breeding programs are resource- and time-dependent endeavours. The selection 
and testing phases are often conducted over vast geographic areas with large trials, 
requiring frequent and long-time monitoring and assessment. The lowest- intensity 
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approach to tree improvement is a reciprocal transplanting-like approach known as 
provenance testing (Callaham 1964) for the identification of superior seed sources 
for reforestation. Provenance testing allowed evaluating several seed sources 
 originating from multiple locations within the species’ natural range through their field-
testing over potential target planting areas. This process aided in identifying superior 
seed sources and their adaptability for the safe transfer of their seed to the new planting 
sites (Rehfeldt 1983). Provenance testing focused on acquiring precise knowledge of 
the seed sources and their performance over testing sites (Konig 2005). This process is 
a simple population improvement method, as the pedigree or genealogy of the tested 
material is often unknown. The main achievement of provenance testing is the delinea-
tion of areas for safe seed transfer, known as seed zones (Campbell 1986).

The first and simplest pedigree-known testing utilized wind-pollinated/open- 
pollinated families (also known as half-sib families because their offspring share the 
seed donors’ genotype). Wind-pollinated testing, as a partial pedigree method, per-
mits within and among family selection, thus it is expected to yield greater gains 
than provenance testing. The New Zealand radiata pine tree improvement program 
is the most notable program for adopting this approach (Burdon and Shelbourne 
1971). The main attractive feature of this method is its simplicity and suitability for 
testing large number of families; however, it is often considered as a spring-board to 
full pedigree testing (Jayawickrama and Carson 2000). It should be stated that 
wind-pollinated testing is fraught with assumptions that cannot be either tested or 
fulfilled, and often leads to inaccuracies in estimates of individual breeding values 
(Namkoong 1966).

The utilization of a full pedigree (i.e., individuals with known genealogy) is the 
most common testing mode in tree breeding programs (White et al. 2007). The for-
mation of a structured pedigree, created through the implementation of a mating 
design of controlled pollinations, provides greater control of the genealogy and the 
eventual accurate estimation of genetic parameters such as trait heritabilities and 
parent and offspring breeding values (Namkoong et al. 1988). It should be stated 
that the successful completion of structured pedigree is an elaborate process requir-
ing time and substantial painstaking effort. The recurrent selection scheme is the 
most common breeding framework used when full pedigree is used (Allard 1960).

2  Pedigree Reconstruction

Structured pedigree designs (full- and half-sib families) constitute the backbone for 
most tree breeding programs, resulting in impressive gains and better management 
of inbreeding and genetic diversity (White et al. 2007). Lambeth et al. (2001) intro-
duced an idea of polymix breeding and pedigree reconstruction. El-Kassaby and 
Lstibůrek (2009) further implemented this idea via the posterior analysis of 
naturally- occurred crosses among a group of parents. They coined the method 
“Breeding without Breeding (BwB)” and proposed the utilization of molecular 
markers, SSRs in this case, and pedigree reconstruction models (see Jones and 
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Ardren 2003 for review) to by-pass the costly and time consuming breeding phase. 
The disconnected partial diallel mating scheme is often employed to create the 
structured pedigree for generating the offspring needed for testing (Namkoong et al. 
1988). The BwB concept is illustrated using bulk seed sample from a 63-parent 
lodgepole pine seed orchard (El-Kassaby, unpublished), and can be compared with 
the disconnected partial- diallel design. With this number of parents and the imple-
mentation of a six-parent scheme, 153 full-sib families are expected to be generated 
(seven 6-parent and three 7-parent partial diallel units). However; when pedigree 
reconstruction was implemented, a total of 446 full-sib families were assembled 
without making any controlled crosses (Fig. 1). The resulting mating is far more 
efficient as many more crosses were created as compared to the classical discon-
nected partial diallel.

Furthermore, El-Kassaby et al. (2011) extended the BwB concept and increased 
the method’s efficiency through the application of two distinct steps: (1) the use of 
simplified half-sib progeny testing with large sample size per parent and (2) restrict-
ing offspring sampling for DNA fingerprinting and pedigree reconstruction to a 
random sample of offspring from a subset of parents rather than the entire parental 
population. The use of half-sib families in testing is expected to simplify the 
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Fig. 1 Distribution of posteriorly assembled naturally-occurred crosses among 63-parent lodge-
pole pine seed orchard revealed by full pedigree reconstruction of bulk offspring (i.e., unknown 
maternal and paternal parentage) using DNA microsatellite markers (nine nuclear and six chloro-
plast loci) and pedigree reconstruction (El-Kassaby, unpublished)
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progeny test design as compared to multiple full-sib families. A random sample of 
offspring from a subset of seed parents is expected to capture most of the un-sampled 
parents as fathers (i.e., paternal half- and full-sib families) and therefore their breed-
ing values can be estimated. Finally, the inclusion of all the offspring phenotypic 
information from both full- and half-sib families is expected to increase the esti-
mated genetic parameters’ precision; however, it should be stated that the breeding 
value of the half-sib individuals will be estimated with lesser precision as compared 
to those of full-sib families. El-Kassaby et al. (2011) empirically tested this concept 
and assessed offspring generated from only 15 seed-donors (i.e., half-sib families) 
out of a 41-parent western larch seed orchard. In this experiment, each half-sib fam-
ily was represented by 400 seedlings bringing the total experiment sample size to 
N ≈ 6,000. They randomly sampled 1,500 individuals, irrespective of their half-sib 
family designation, for DNA fingerprinting and pedigree reconstruction. As 
expected, an unbalanced mating structure was produced reflecting variation in 
parental reproductive output (Fig. 2).

It is interesting to note that the assembled matings produced offspring sired by 
all 41 parents in the orchard, indicating that the pedigree reconstruction success-
fully captured the un-sampled parents as pollen donors even when the offspring 
sampling was restricted to 15 seed-donors only. The most interesting observation 
from the data analyses is the congruence between height breeding values from the 
combined analysis (1,500 FS + 4,500 HS) and that based on the conventional full-
sib families alone (1,500 individuals). This was observed for both parents and off-
spring (Fig. 3). The great advantage of the FS and HS combined analysis is the role 

Fig. 2 Pedigree reconstruction from natural mating produced from seed collected from 15 seed 
donors growing in a 41-parent western larch seed orchard showing the formation of full-sib fami-
lies nested within the maternal and paternal half-sib families with selfing presented as black bars 
(After El-Kassaby et al. (2011))
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played by the 1,500 FS individuals in linking the remaining 4,500 HS to the paternal 
and maternal parents and their half- and full-sib families (Fig. 3). Furthermore, 
El-Kassaby et al. (2011) demonstrated that individuals’ breeding values precision 
did not change drastically if the random sampling of individuals for fingerprinting 
and pedigree reconstruction was reduced to approximately one third (i.e., less fin-
gerprinting efforts).

Pedigree reconstruction is an effective method in situations where the posterior 
determination of offspring genealogy is needed or for species that do not lend 
themselves to controlled pollination. Using pedigree reconstruction for trees from 
plantation blocks that originated from seed orchards or breeding arboreta can 
instantaneously convert them to progeny test trials (Hansen and McKinney, 2010). 
While this approach requires good GIS tracking of plantations polygons over the 
landscape (see Ding et al. 2012), it also requires rigorous spatial analysis to account 
for site heterogeneity (see Cappa et al. 2011).

3  Pedigree-Free Models

Fundamentally, Breeding without Breeding is anchored to the utilization of pedi-
gree reconstruction to assemble half- and full-sib families needed for conducting 
standard intra-class correlation analyses for estimating quantitative genetics param-
eters such as traits’ heritabilities and parental and offspring breeding values 
(Falconer and Mackay 1996). In situations where pedigree reconstruction is not 
feasible, molecular genetic markers offer an alternative approach for estimating 
quantitative genetic parameters. Molecular markers can be used to estimate 

Fig. 3 Scatter plot of predicted breeding values for parents (left) and offspring (right) from the 
incomplete (combined HS + FS) and complete (FS) pedigree models. Pearson correlation (r) is in 
the left corner of each graph (After El-Kassaby et al. (2011))
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“marker- based pairwise relationships” among any group of individuals irrespective 
of their genealogy, based on the assumption that markers identical by state are also 
identical by descent (Li et al.1993; Queller and Goodnight 1989; Lynch and Ritland 
1999; Wang 2002). The use of “marker-based pairwise relationship” created an 
opportunity to studying domesticated and undomesticated species in experimental 
or natural setting with and without the availability of pedigree, thus permitting the 
estimation of genetic parameters in an unstructured population. Efficient methods 
have been developed for the use of high-density marker information for a group of 
individuals to estimate their realized relationship matrix (vanRaden 2008). This 
matrix is used in place of the classical pedigree-based numerator relationship 
matrix required in quantitative genetics analyses. This approach allows estimating 
quantitative genetic parameters such as narrow sense heritability and breeding 
 values using the genomic best linear unbiased prediction method, as described in 
more detail below (Zapata-Valenzuela et al. 2011; El-Kassaby et al. 2012; Porth 
et al. 2012).

The realized relationship matrix was successfully used to estimate narrow sense 
heritability, breeding value and genetic and phenotypic correlations in an unstruc-
tured black cottonwood population (El-Kassaby et al. 2012; Porth et al. 2012). More 
interesting is the study of Klápště et al. (2013) in which a pedigree-free model was 
compared to a marker-based pairwise relationship model. Surprisingly, Pearson’s 
product moment and Spearman’s rank correlations between western larch offspring 
breeding values produced from the two approaches were highly significant, indicat-
ing that the generated DNA-based pair-wise relationship matrix is indeed a valid 
substitute for the classical pedigree matrix (Fig. 4). This approach was further 
extended to accommodate a mixture of information generated from both genetic 
markers and conventional pedigree by Korecký et al. (2013). This approach is 
unique as the combination of historical and contemporary co-ancestry generated by 
the genetic markers and pedigree, respectively, could not be attained by either 
approach individually. Thus, combining both data sets is expected to improve the 
accuracy of the estimated genetic parameters as the often ignored Mendelian 
 sampling term in structured pedigree is precisely accounted for when molecular 
markers are used.

The availability of molecular markers is expected to effectively increase breed-
ing efficiency. The use of densely well dispersed SNP data to estimate the realized 
relationship among individuals is expected to result in a greater kinship resolution 
and offers an opportunity improvement to classical breeding efforts.

4  Marker-Trait Association

The availability of cost-effective molecular genetic marker systems opens the door 
to analysis of the genetic basis of phenotypic traits measured in breeding populations. 
Classical quantitative genetics approaches, whether based on provenance, pedigree, 
or realized relationship matrices, are based on the ‘infinitesimal model’ proposed by 
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Fisher (1918). Fisher’s model reconciled the disparate views of geneticists who 
studied quantitative traits that show continuous variation, and geneticists who stud-
ied discrete characters controlled by single genes, by hypothesizing that continuous 
variation is the cumulative effect of many different genes, each with a small and 
approximately equal additive effect on the phenotype. This model has been 
extremely useful for close to a century, and recent publications have reviewed the 
substantial body of evidence supporting the main features of the model (Hill et al. 
2008; Stranger et al. 2011). This model has important implications for efforts to 
understand the molecular genetic mechanisms that underlie phenotypic variation in 
forest tree breeding programs, and for breeders interested in accurately predicting 
genetic merit of individuals based on genotype information.

The analytical approach called “association genetics” was described over 15 
years ago (Lander and Schork 1994; Risch and Merikangas 1996) as an alternative 
to family-based linkage mapping approaches to characterize the genetic basis of 
human disorders. Much more work has been done using association genetics in the 

Fig. 4 Correlations of individuals’ breeding values produced from pedigree-based full-sib (FS) 
and four molecular genetic markers-based pairwise relationship estimation methods (W: Wang 
(2002); LR: Lynch and Ritland (1999); L: Li et al. (1993); QG: Queller and Goodnight (1989)) 
(After Klápště et al. (2013))
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field of human biomedical genetics than in any other area, and much has been 
learned about the strengths and weaknesses of the approach (reviewed by Stranger 
et al. 2011; Rowe and Tenesa 2012). Neale and Savolainen (2004) reviewed key 
requirements for association genetics, and proposed that populations of conifers 
(and by extension, other wind-pollinated forest tree species) would be suitable 
experimental materials for association genetics. Applications of association genet-
ics in tree breeding were described by White et al. (2007, pp. 543–547) and Wilcox 
et al. (2007); a brief overview will be given to set the stage for discussion of the 
current status.

The fundamental concept in association genetics is to test for a statistical asso-
ciation between the allelic state at a genetic marker locus in an individual and the 
phenotype of that individual, for many individuals in a population. The value of 
such associations is that they can help to identify the molecular basis for phenotypic 
variation, which in turn may provide molecular markers useful for marker-assisted 
breeding (Neale and Savolainen 2004). The power to detect associations is a  function 
of several parameters, including the presence of population structure (Neale and 
Savolainen 2004), the extent of linkage disequilibrium in the test population, the 
size of the test population, and the proportion of phenotypic variation accounted for 
by each causative genetic variant involved in the phenotype of interest. The genetic 
variants tested for association with phenotype may be in known genes that are 
believed to play a role in controlling the phenotype under study (the ‘candidate 
gene’ approach), or they may be chosen on the basis of the allele frequencies in the 
population and distribution in the genome (the ‘genome-wide’ approach). As with 
any statistical testing procedure, if multiple tests of the same hypothesis are con-
ducted, false positive (Type I) errors are likely unless the significance threshold is 
corrected for the number of tests made. Risch and Merikangas (1996) proposed a 
threshold of 5 × 10−8 for genome-wide significance in an experiment testing associa-
tions of one million single-nucleotide polymorphism (SNP) loci in the human 
genome; more recent publications have refined this estimate slightly for different 
sets of human SNP loci (Li et al. 2012). Linkage disequilibrium (LD), the non- 
random association between allelic states at different loci, affects the independence 
of multiple tests, and so correction for multiple testing should take into account 
patterns of LD among the loci analyzed.

An early study of linkage disequilibrium in Douglas fir, based on a relatively 
small sample of 18 genes from 32 haploid megagametophyte samples, concluded 
that each gene contained 2–3 independent “haploblocks” of genetic variation, and 
4–5 SNP loci per gene would be required to adequately sample the genetic variation 
in each gene (Krutovsky and Neale 2005). This study focused on transcribed 
regions, because relatively few resources were available at the time for analysis of 
non-transcribed regions of genomic DNA in any conifer species. The majority of 
SNPs identified as significantly associated with target traits in human GWA studies 
are in non-coding sequences (45 % in introns and 43 % in intergenic regions; 
Hindorff et al. 2009), suggesting that efforts to model the genetic variation underly-
ing phenotypic variation must include analysis of non-coding genomic DNA 
sequences. Fortunately, reference genome sequencing projects are now underway 
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for loblolly pine, white spruce, and Norway spruce (searchable abstracts available 
on-line at https://pag.confex.com/pag/xx/webprogram/start.html), and reference 
genome sequences are already available for poplar (Tuskan et al. 2006) and euca-
lyptus (available on-line at http://phytozome.net/), so genomic sequence informa-
tion will be more readily available for future efforts to model genetic variation.

Determination of the appropriate sample size and number of genetic loci to test 
in order to achieve a specific level of power in an association study requires 
 evaluation of several population parameters that affect power (Ball 2005; Spencer 
et al. 2009). The magnitude of the genetic effect of a locus, the frequency in the 
population of the allele that causes an effect, and the extent of LD between the caus-
ative allele and nearby genetic markers (e.g. SNPs) are some of these parameters. 
Association studies in humans primarily focus on disease-related phenotypes, and 
the magnitude of the genetic effect is often expressed as a ratio of the likelihood of 
disease occurrence in a heterozygous individual to the likelihood of disease in an 
individual homozygous for the most common allele (genotypic risk ratio, Risch and 
Merikangas 1996, or relative risk per allele, Spencer et al. 2009). The structure of 
linkage disequilibrium in the human genome is complex enough that simulation is 
the most general approach to modeling the dependence of experimental power on 
sample size, relative risk, and allele frequency (Spencer et al. 2009). Such simula-
tions indicate that power is lower for lower risk allele frequencies, for lower risk per 
allele, and for lower numbers of genetic variant loci tested; for a relative risk per 
allele of 1.5, an array that assays one million SNP loci provides only about 50 % 
power in a sample size of 5,000 when the risk allele frequency is less than 10 % 
(Spencer et al. 2009). A relative risk per allele of 1.5 is roughly equivalent to 
accounting for 5 % of phenotypic variation, although that equivalence is affected by 
allele frequency in the population; relatively few loci detected to date in human 
genome-wide association studies have effects that large (Stranger et al. 2011). This 
suggests that association genetics studies will not be powerful enough to detect 
individual genes that account for a significant proportion of phenotypic variation in 
complex traits in forest trees, if the infinitesimal model is accurate. Some traits of 
interest to tree breeding programs, such as resistance to fusiform rust disease in 
Pinus taeda, are controlled by individual genes with major effects (Wilcox et al. 
1996); association genetics approaches are well-suited to analysis of such traits.

Height growth is an important phenotype in many tree breeding programs, so 
results of association genetics analysis of height in humans are of interest. Yang 
et al. (2010) reported that joint analysis of all SNPs as random effects in a mixed 
linear model that incorporated relationship information derived from marker geno-
types explained almost half the genetic variation in height in a sample human popu-
lation of less than 4,000 individuals, although all 180 loci identified by meta-analysis 
of association studies in a combined population of 183,727 individuals (Lango 
Allen et al. 2010) together explained about 14 % of the genetic variation in height. 
The difference between the analytical approaches taken by these two groups is that 
Yang et al. focused their attention on creating a predictive model, without concern 
for identifying specific loci, while Lango Allen et al. followed a more classical 
association approach using rigorous statistical methods to reduce the likelihood of 
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false positive results and identify loci and pathways mechanistically related to 
height growth. Many of the loci identified by Lango Allen et al. can be grouped into 
biological pathways with recognized effects on growth and development, and in 
many cases, multiple genetic variants were identified per gene (Lango Allen et al. 
2010). This phenomenon, referred to as allelic heterogeneity, reduces power in 
association analyses, because the same phenotype can be due to multiple different 
genetic variants, even at the same functional gene. Occurrence of multiple genetic 
variants within genes that affect the same phenotype creates the possibility for epi-
static interactions; epistatic interactions within genes or between tightly-linked 
genes can result in differences between the heritability estimated from closely- 
related individuals versus distantly-related individuals (Haig 2011; Würschum et al. 
2012; Zuk et al. 2012). The approach of analyzing association genetics data by 
grouping variants into functional genes, organizing genes into pathways, and inte-
grating genetic pathways with gene expression data may provide additional power 
for understanding phenotypic variation, if modeling approaches that can take path-
way structure and gene expression patterns into account can be developed (Cookson 
et al. 2009; Bennett et al. 2012; Kreimer et al. 2012; O’Hagan et al. 2012). Another 
approach, similar to that used by Yang et al. (2010), is to incorporate all SNP loci as 
random effects in the association analysis; this approach has been reported to over-
come disadvantages of both traditional linkage analysis and association analysis 
methods in livestock (Kemper et al. 2012). This type of analysis has much in com-
mon with genomic selection, discussed later in the chapter.

Allele frequency of the minor allele at biallelic SNP loci has a major impact on 
the power of association genetics studies (Spencer et al. 2009; Stranger et al. 2011). 
Most SNP loci in a sample of over 3,000 SNPs assayed in over 900 loblolly pine 
trees had minor allele frequencies of less than 15 % (Eckert et al. 2010). Such low 
minor allele frequencies in samples of unrelated populations contributes to a 
requirement for extremely large sample sizes to achieve significance in traditional 
association genetics studies; only alleles with relatively large effects can be detected 
unless sample sizes exceed 5,000 and marker allele frequency is close to causative 
variant allele frequency (Ball 2005; Stranger et al. 2011). Structured populations 
descended from a smaller number of parents can reduce this problem by increasing 
the frequency of rare alleles that occur in that sample of parents. This strategy has 
been used to develop the maize Nested Association Mapping (NAM) population 
(Yu et al. 2008; McMullen et al. 2009), and methods to deal with the population 
structure that arises in populations produced from mating designs have also been 
developed (Yu et al. 2006). The combined use of the NAM population and a more 
typical association population of 282 inbred lines allowed identification of several 
SNPs that affect maize kernel composition (Cook et al. 2012). Similar strategies 
may become feasible in forest tree breeding programs, once reference genome 
sequences are available and haplotype information can be readily developed for the 
parents of elite breeding populations.

Understanding of molecular mechanisms underlying phenotypic variation is not 
the primary objective of breeding programs – instead, the objective is to create mod-
els of genetic variation in breeding populations that have predictive power to 
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identify individuals of high genetic merit. Studies that increase understanding 
molecular mechanisms can contribute to development of predictive genetic models 
in the long term, while studies that focus on developing models of inheritance of 
complex traits in breeding populations have more immediate value in the short term. 
Understanding molecular mechanisms can be challenging in human biomedical 
genetics (Peters and Musunuru 2012), and will be even more challenging for most 
trees of interest to breeding programs. The association genetics approach can con-
tribute fundamental understanding of mechanisms underlying traits controlled by 
relatively small numbers of genes, but traits controlled by many genes of equal and 
small effects will be very expensive to analyze using this method.

5  Genomic Selection

5.1  Background

Many traits of interest to breeders are polygenic, being controlled by many genes 
each with small effect (Hill et al. 2008). These small-effect genes are crucial for the 
success of complex trait improvement (Crosbie et al. 2003). For many decades plant 
and animal breeders relied on phenotype and resemblance among relatives to cap-
ture genetic variance explained by these small effect genes. The methods used to 
improve complex traits were ‘black box’ as breeders did not know the underlying 
genetic architecture of complex traits, such as the number of genes controlling the 
trait and their location in the genome. Tree breeders have adopted these methods 
since 1950s. The success in improvement of tree characteristics has been relatively 
modest because breeding-testing-selection cycles for forest trees take many years to 
complete and tree breeding is logistically complex. Breeders have long looked to 
molecular markers to overcome challenges and improve the efficiency of selection 
(Neale and Savolainen 2004).

Beginning in late 1970s quantitative trait loci (QTL) mapping and later candidate 
gene approaches have been explored as tools to explain gene architecture of com-
plex traits. The idea was that if alleles with large effects on the trait are traced (oli-
gogenic model) with the markers, they could be used for selection of superior 
genotypes in breeding populations. This concept is called marker aided selection 
(MAS). However, QTL mapping and candidate gene approaches have had limited 
use to improve quantitative traits in most plant and animal breeding programs. 
Major reasons include the cost of producing large number of markers, and the 
observation that most quantitative traits are controlled by many QTLs, each with 
small effect, as predicted by the infinitesimal model. Individual QTLs often 
explained only a small percent (<5 %) of total variance and marker-trait associations 
discovered in individual families were not repeatable across the population (Goddard 
and Hayes 2009; Neale 2007).

QTL mapping experiments have been useful in discovering the genetic architec-
ture of quantitative traits important in agricultural and forestry, but the focus is on 
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identifying genetic loci associated with phenotypes. In breeding, on the contrary, 
the emphasis is on predicting genetic merit of individuals or lines rather than on 
discovering individual genes. A good predictor of genetic merit does not have to 
identify the underlying genes (Goddard and Hayes 2009). What is needed is a large 
number of markers to populate the genome and to explore the LD between these 
markers and the many QTL with small effect. This approach is called genomic 
selection (GS) or genome-wide selection. Since the introduction of the concept by 
Meuwissen et al. (2001), GS has shifted the paradigm, driven by the increased effi-
ciency in DNA sequencing technologies and computing power.

GS contrasts greatly with traditional MAS, because in GS there is no defined 
subset of significant markers used for selection. Instead, GS jointly analyzes all 
markers in a population, attempting to explain the total genetic variance with dense 
genome-wide marker coverage through summing marker effects to predict breeding 
values of individuals (Meuwissen et al. 2001). The idea is that if we populate the 
genome with high-density markers, we can capture the LD between markers or 
marker haplotypes and causal polymorphism. Such association would be consistent 
across different families (Meuwissen et al. 2001). With advancement in DNA 
sequencing technologies and efficiency in genotyping, GS has become a reality in 
dairy cattle breeding (Goddard and Hayes 2009). Many livestock breeding pro-
grams now routinely apply GS to market bulls (Hayes et al. 2009). Genomic selec-
tion processes start from a training population. Candidates to establish a next cycle 
of breeding are selected through GS. The training can be performed iteratively as 
new phenotype and marker data accumulate (Heffner et al. 2011).

5.2  Empirical Examples from Forest Trees

Forest tree breeding programs are still at the first stage of breeding-testing and 
selection cycles with little genetic difference from natural populations. If success-
ful, the impact of genomic selection on forest tree breeding could be far greater than 
for other crops or animal breeding programs. A few early empirical studies on 
genomic selection in forest trees are encouraging. For example, in a cloned loblolly 
pine breeding population, accuracies of GS varied between 0.55 and 0.88, matching 
those achieved by conventional phenotypic selection (Resende et al. 2012). Similarly 
in the same species, Isik et al. (2011) reported genomic estimated breeding values 
with reliability as high as breeding values based on resemblance among relatives 
and phenotypic data. These studies estimated the individual marker effect and 
summed up the coefficients to estimate genomic estimated breeding values of trees.

Alternatively a smaller subset of markers can be used to estimate realized 
genomic relationships using frequency of alleles shared by individuals (Legarra and 
Misztal 2008). Then, the additive genetic relationship matrix derived from pedigree 
is substituted by the genomic relationship matrix to predict genomic estimated 
breeding values. Genomic BLUP (GBLUP) could be a powerful tool for forest tree 
breeding programs. Such models can capture the Mendelian segregation effect in 

Y.A. El-Kassaby et al.



453

full-sib families, which was not the case using the average additive genetic relation-
ships. For example, Zapata-Valenzuela et al. (2011) showed that accuracies of 
genomic estimated breeding values using GBLUP were comparable to traditional 
pedigree-based BLUP methods. In the same study, breeding values of a training 
population were estimated using GBLUP and classical BLUP (Henderson 1984). In 
the absence of phenotype, sibs from a cross had the same mid-parent breeding 
values when classical BLUP was used (Fig. 5). However, genomic relationship 
matrices based on SNP markers allowed prediction of different genetic values for 
sibs from a single cross.

5.3  Statistical Machinery

Classical linear mixed models are not efficient to handle large number of markers as 
predictors because the number of predictors (p) is larger than the number of data 
points (n) to explain variance in the phenotype. Such large p and small n effect 
causes lack of degrees of freedom. Statistical analysis of large number of markers 
has been a very active area of research in recent years, and many statistical methods 
have been proposed in the literature (Gianola et al. 2009). The effect of markers or 
haplotypes can be estimated by simultaneously including all markers in a model, 
but the challenge is to estimate the variances of marker effects. The best linear 
 unbiased prediction (BLUP) method and ridge regression approaches have been 
proposed to estimate individual marker effects (Meuwissen et al. 2001; Whittaker 
et al. 2000). These methods make the assumption that markers are sampled from a 
population with expectation N g∼ σ0 2,( )  and each marker explain the same (σ g n2 / ) 

Fig. 5 Predicted breeding values of loblolly pine clones based on pedigree (y-axis) and genomic 
BLUP (x-axis) for eight crosses. Each cross is designated with a different color. In the absence of 
phenotype, the expected breeding value of sibs would be the same, which is the mid-parent value 
(ABLUP). However, DNA markers can capture Mendelian sampling effect within each cross as shown 
here, and thus, sibs can be ranked and selected without progeny testing (Zapata-Valenzuela et al. 2011)
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amount of genetic variance. Rather than categorizing markers as either significant 
or as having no effect, ridge regression and BLUP shrink all marker effects toward 
zero (Meuwissen et al. 2001). This is not a realistic assumption because regardless 
of association of markers with the trait loci, all the markers are shrunk towards the 
mean at the same level. Bayesian methods have a natural way of taking into account 
uncertainty about all unknowns in a model (e.g., Gianola et al. 2009) and, when 
coupled with the power and flexibility of Markov Chain Monte Carlo, Bayesian 
methods can be applied to almost any parametric statistical model. Meuwissen et al. 
(2001) introduced BayesA and BayesB and compared them with BLUP method in 
their original paper on GS. In BayesA, all the markers explain a fraction of genetic 
variance and the variance explained by each marker can vary based on the scaled 
inverted chi-square distribution as prior. Method BayesB corrects the shortcoming 
of BayesA by shrinking a high proportion (π) of markers to zero. Bayes C, Cπ, and 
D and Dπ were introduced to address the undesirable effect of priors on estimations 
observed for BayesA and BayesB. Habier et al. (2011) concluded that accuracies of 
the alternative Bayesian methods were similar and none of them outperformed all 
others across all traits and training data sizes. The choice of statistical methods for 
GS is sometimes is a matter of practicality, time and ease of application. Examples 
on empirical and simulated data suggest that Bayesian approaches are efficient to 
increase accuracy of predictions but the increase is usually minimal unless a large 
fraction of genetic variance in the trait in question is controlled by a few loci.

5.4  Challenges of GS in Forest Tree Breeding

Despite advances in the efficiency of genotyping technologies, genotyping is still 
costly for forest trees. For example, the Illumina SNP genotyping platform costs 
about $150 per sample for loblolly pine as of 2012, though the cost is decreasing. 
Several labs in the USA and other countries are working on alternative genotyping 
technologies, such as genotyping by sequencing (Baird et al. 2008; Elshire et al. 
2011; Peterson et al. 2012; Poland et al. 2012; Truong et al. 2012), and we expect 
that the cost of genotyping could be less than $50 as of 2013.

GS has been successful in cattle breeding because the number of founders in 
these populations is relatively small (<30) and the LD between markers and trait 
loci are large, thanks to deep pedigree in the populations and small effective 
population size. Tree breeding populations still are at their infancy. The pedigree 
structures are still shallow with very low linkage disequilibrium (Neale and 
Savolainen 2004). Marker-trait phase detected in one generation may not hold in 
a subsequent generation because of meiotic recombination. For GS to be suc-
cessful, well-structured populations (small effective population size, multiple 
generations) are needed.

Conifers are major targets of breeding programs in the northern hemisphere, 
and they have large and complex genomes. GS require dense coverage of whole 
genome to trace many QTLs associated with phenotype. Many more markers 
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might be needed to populate genome of conifers. Grattapaglia and Resende (2011) 
suggested that 20 markers/cM are needed for an effective population size of 
greater than 30.

Forest trees have some advantages in implementation of GS. A large population 
can be put together easily. Each family can be represented by large number of prog-
eny (several hundreds) with little investment and time. Phenotyping can be quite 
accurate thanks to efficient experimental designs and cloning of individuals.

An example GS plan has been proposed for a loblolly pine breeding population 
within the North Carolina State University Tree Improvement Program in the USA 
(Fig. 6). In the diagram given in Fig. 6, the process starts with creating a training 
population with an effective population size (Ne) smaller than 50 parents. In this 
example, 20 parents are used. Relatedness among the 20 founders is desirable, 
because that will make the marker-based model more powerful to predict GEBV by 
tracing historical LD in the population. From full-sib crosses of 20 parents, about 
1,000 individuals can be genotyped. This progeny population is field-tested and 
breeding values are obtained Deregressed breeding values of 1,000 individuals or 
phenotypic values adjusted for fixed effects can be obtained to use as new ‘pheno-
type’ for development of a marker-based model (M1).

There are different methods to validate the predictive ability of markers. An 
additional 500 progeny from the same crosses (with known phenotype and geno-
types) can be used as a validation population. Alternatively, random sampling of a 
small subset of progeny or selection of subset of progeny within each full-sib family 
can be used to validate model M1. This step is a proof of concept to show that the 
model has predictive power, and is not necessarily an application of GS. In order to 
utilize the benefit of GS approaches, we need to breed the selected individuals from 
the training population, obtain seeds, and use M1 to make selection decisions. This 
can be called ‘across generation’ GS application. The M1 model can be retrained 

Genomic Selection – M2

• Cross selected individuals from 2nd gen
• Genotype full-sib seedlings
• Make selection (no phenotype available)

Training Population

• Ne: 20 parents
• 1000 full-sib progeny
• Develop marker-based model (M1)

Across Generation validation
(Genomic Selection – M1)

• Select 25 trees out of 1000 and cross
• Progeny test (40 progeny per parent)
• Genotype new 1000 progeny (2nd gen)
• Validate M1 (no phenotype)
• Retrain model M1 (M2)

Proof of Concept Validation
• Select subset progeny (500) from the

same parents not used in the training
• Phenotype and genotype are

available
• Validate model M1

Fig. 6 Genomic selection process for an elite breeding population. A marker-based prediction 
model is retrained across multiple generations. Such process would make the model more power-
ful for genomic estimated breeding values to trace LD of markers and QTLs
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when more genotypic and phenotypic data become available as breeding progresses 
(M2). GS training models would have more reliability as new data are included and 
can be used for multiple generations.

6  Conclusions

The availability of cost-effective genetic markers in forest tree species is expanding 
rapidly due to advances in DNA sequencing technology and investment in deter-
mining the reference genome sequences for several commercially-important species 
of forest trees. These resources are likely to fundamentally change the way tree 
breeding programs characterize genetic variation in their breeding populations, and 
several research groups are actively working to develop methods for applications of 
these tools in practical breeding programs. Molecular markers are already useful 
tools for population management applications such as validation of crosses, pedi-
gree reconstruction, and unambiguous identification of clones. Association genetics 
results have already been reported for several traits in various species of forest trees, 
and application of these results in practical breeding programs may follow soon. 
Development of more sophisticated analytical methods capable of integrating the 
analysis of genetic variation detected by SNP assays with variation in gene expres-
sion patterns, metabolite levels, and phenotypic measurements may provide new 
tools capable of more accurate prediction of genetic value based on molecular 
assays. Predictive modeling of genetic value is the central objective of genomic 
selection methods, which have shown considerable promise in livestock and crop 
species that have appropriate patterns of LD in breeding populations. Forest tree 
breeding populations are likely to have very different patterns of LD than livestock 
or crop species, and new approaches to genomic selection may be required in order 
for this method to reach its full potential in applied tree breeding programs.
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