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    Abstract     Climate change could potentially become one of the most important 
infl uences on forest ecosystem function and diversity due to its profound effect on 
many biotic processes. Additionally, climate change could interact with other 
anthropogenically driven agents of forest alteration, such as non-native invasive 
species. Although their arrival is primarily facilitated by global trade and travel, 
climate and changes to climate have affected and will likely continue to affect rates 
of invasive species establishment, range expansion, and impact to native ecosys-
tems. In this chapter, we attempt to synthesize broadly the interaction between 
 climate change and non-native insect invasions in temperate forest ecosystems. We 
highlight four primary effects: changes in distributional ranges, outbreak frequency 
and intensity, seasonality and voltinism, and trophic interactions. A paucity of data 
for some processes necessitated the use of exemplar native species in native ranges, 
and their extrapolation to non-native species. Future studies should give greater 
attention to the complexity associated with these interacting forces of change in for-
est ecosystems.  

      The Infl uence of Climate Change on Insect 
Invasions in Temperate Forest Ecosystems 

             Patrick     C.     Tobin     ,     Dylan     Parry    , and     Brian     H.     Aukema   

        P.  C.   Tobin      (*) 
  Forest Service, United States Department of Agriculture , 
 Northern Research Station ,   Morgantown ,  WV   26505 ,  USA   
 e-mail: ptobin@fs.fed.us   

    D.   Parry    
  College of Environmental Science and Forestry , 
 State University of New York ,   Syracuse ,  NY   13210 ,  USA     

    B.  H.   Aukema    
  Department of Entomology ,  University of Minnesota , 
  St. Paul ,  MN   55108 ,  USA    



268

1         Introduction 

 Climate change and invasions by non-native species each constitute major threats to 
 forest ecosystems worldwide (Dale et al.  2001 ), yet attempts to synthesize broadly their 
interacting impacts are limited (Engel et al.  2011 ; Hellmann et al.  2008 ; Walther et al. 
 2009 ). The inherent complexity of each and the potential confounding and compound-
ing effects when considered jointly have hampered analysis of actual and potential 
effects on forest ecosystems. Another consideration is that the paramount stage of bio-
logical invasions, the arrival stage, is predominately a result not of climate change but of 
increasing global trade through which new species ‘hitchhike’ on products, nursery 
stock, packing materials, and in ship hulls and ballast water (Hulme et al.  2008 ; 
Lockwood et al.  2007 ). Consumer demand for many foreign manufactured goods is also 
not generally dependent upon or infl uenced by climate, at least not in the short-term. In 
fact, one could argue that due to changing climates, there could be a greater emphasis on 
reducing carbon footprints associated with foreign imports with a consequent increase 
in the desire to purchase locally available products that in turn could conceivably reduce 
the volume of imports and species that are introduced with these imports. 

 In the absence of an environmental revolution and major shifts in economic  patterns 
and in governmental policy, however, the arrival of new species will likely continue to 
increase as long as global trade increases. Once a new species arrives to a novel habi-
tat, the other stages of the invasion process, establishment, spread, and impact, could 
be directly and indirectly infl uenced positively or negatively by climate and changes 
in climate. In this chapter, we fi rst briefl y describe the causes and dynamics of biologi-
cal invasions and climate change independently. We then focus on how these forces 
interact to affect forest ecosystems by mediating range shifts, altering population out-
break frequency and intensity, changing seasonality and voltinism, and decoupling 
interactions between and among trophic levels. In some cases, we rely on examples 
from native species in native ranges, and then extrapolate these observations to non-
native species in non-native habitats. We lastly consider the economic ramifi cations of 
the interaction between biological invasions and climate change.  

2     Dynamics of Biological Invasions 

 Biological invasions consist of four distinct stages: arrival, establishment, spread, 
and impacts (Lockwood et al.  2007 ). The arrival stage is defi ned as the movement of 
a species from an area in which it is established to a novel habitat. Although the 
interchange of biota among biogeographic regions is integral to the history of life 
(Crosby  1986 ; di Castri  1989 ), arrival rates of new species have increased dramati-
cally in recent decades due to increases in global trade and travel (Aukema et al. 
 2010 ). Establishment after arrival is a critical transition, and it is believed that most 
arriving species fail to establish (Simberloff and Gibbons  2004 ). One of the most 
important factors infl uencing the establishment of newly arrived species is propagule 
pressure: the number of individuals in the arriving founder population, the number of 
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independent introductions, or a combination of both (Lockwood et al.  2007 ). For 
example, low-density populations tend to be subject to environmental and demo-
graphic stochasticity, and Allee effects (positive density-dependence, Stephens et al. 
 1999 ). Allee effects can arise when individuals in sparse populations encounter 
diffi culties fi nding suitable mates, satiating natural enemies, and overcoming host 
defense mechanisms, all of which can exacerbate the challenges that small founder 
populations already face during the establishment phase (Liebhold and Tobin  2008 ; 
Taylor and Hastings  2005 ; Tobin et al.  2011 ). Other factors infl uencing establishment 
success include the level of genetic diversity in founder populations, availability of 
resources, degree of habitat disturbance, and presence or absence of competitors, 
mutualists, and natural enemies (Lockwood et al.  2007 ). Another factor that is impor-
tant to consider in the context of this chapter is climate suitability (Beaumont et al. 
 2009 ; Hayes and Barry  2008 ; Thuiller et al.  2005 ), and thus shifting climatic patterns 
could have critical consequences for the establishment success of invaders. 

 Following successful establishment, a species often begins to expand its geo-
graphic range, often through a process known as stratifi ed dispersal in which local 
growth and diffusive spread is coupled with long-distance population ‘jumps’ 
(Hengeveld  1989 ). These population jumps are often facilitated through anthropo-
genic (e.g., Gilbert et al.  2004 ), hydrological (e.g., Davidson et al.  2005 ), and atmo-
spheric transport mechanisms (e.g., Isard et al.  2005 ), and can greatly accelerate the 
rates of spread of invading species (Shigesada and Kawasaki  1997 ). Long-range 
dispersal can also serially initialize new invasions, which are effectively subject to 
the same constraints that affect the establishment success of any newly-arrived spe-
cies in a non-native environment (Liebhold and Tobin  2008 ; Taylor et al.  2004 ). 

 The fourth stage of the invasion process is the ecological and economic impacts 
of non-native species (Lockwood et al.  2007 ). Impacts due to invasive species can 
vary dramatically among species, and within a species depending upon the region 
being invaded. A recent analysis on non-native insects in forests within the 
 continental United States has suggested that only a minority of introduced and 
established insects (≈14 %) since 1860 have caused major damage (Aukema et al. 
 2010 ), yet this minority of species can still account for several billion USD in costs 
(Aukema et al.  2011 ; Holmes et al.  2009 ; Pimentel et al.  2005 ). The costs to the 
United States of the non-native emerald ash borer,  Agrilus planipennis  Fairmaire, 
which are primarily associated with the treatment, removal, and replacement of ash, 
 Fraxinus  spp., is predicted to be 10.7 billion USD alone (Kovacs et al.  2010 ). It is 
also likely that the impacts and consequent costs due to non-native species will be 
affected by climate and changes in those regimes.  

3     Climate Change 

 Recent increases in the concentrations of atmospheric greenhouse gases, most nota-
bly carbon dioxide, methane, and nitrous oxide, have led to a corresponding change 
in local and global climates. Global mean surface temperatures have increased by 

The Infl uence of Climate Change on Insect Invasions in Temperate Forest…



270

0.3-0.6 °C over the last century (Mann et al.  1998 ), and global temperatures are 
projected to continue to increase by the end of the next century (Intergovernmental 
Panel on Climate Change  2007 ). The projected increase in global surface tempera-
tures is thought to range from 1 °C under a low (B1) greenhouse gas emission sce-
nario, which assumes substantial mitigation and reductions in greenhouse gas 
emissions, to 6 °C under a high (A1fi ) greenhouse gas emission scenario, which 
assumes temperatures under the current conditions and without any mitigating strat-
egies (Hayhoe et al.  2007 ; Kunkel et al.  2008 ). 

 The increase in global surface temperatures can also result in a number of cas-
cading effects. For example, as temperatures warm, there could be changes in 
hydrological cycles leading to increases or decreases in precipitation patterns, such 
that some places could be more prone to drought while others more prone to fl ood-
ing. Changes in climatic variability, including increases in storm event frequency 
and intensity, could also be the result of recent warming trends (Rosenzweig et al. 
 2001 ). More subtle changes, such as the diminishment of winter snow pack, could 
also have important ecological ramifi cations for both insects and trees. Consequently, 
climate change has the potential to destabilize many ecosystem functions, and cause 
major changes to the dynamics of individual species and to those communities in 
which they reside. 

 Insect species are particularly sensitive to climate change because many of their 
physiological processes are temperature-dependent. Insects could respond to chang-
ing climates by going extinct, moving into areas with a more tolerable weather 
regime, or adapting in situ. Climate change can affect insect species differentially 
depending upon the latitude at which they live; for example, temperate insects that 
evolved under strong seasonality could inherently have greater phenotypic plasticity 
for withstanding the pressures of climate change relative to tropical species already 
near their thermal tolerances, and thus could be more capable of adapting to warm-
ing trends (Deutsch et al.  2008 ). Such changes could include accelerated develop-
mental rates with a consequent change in the timing of year-to-year phenological 
events, and/or in the number of generations per year. Species abundance can be 
directly affected by temperature, resulting in population density extremes, from 
extinction to outbreaks. The distributional ranges of insects can also be affected by 
the removal of biogeographic boundaries formed by climatic factors.  

4     Ecological Interactions Between Forest Insect Invasions 
and Climate Change 

 We now turn our attention to the effects, both documented and those projected to 
occur, of climate change on insect invasions in forest ecosystems. Although non- 
native species across a diversity of taxa have been introduced to novel areas 
(Pimentel  2002 ; Simberloff and Rejmánek  2011 ), forest insects, such as xylopha-
gous species, represent a particularly important group of invaders because of their 
propensity for importation in solid wood packaging material, wood dunnage, and 

P.C. Tobin et al.



271

wood pallets (Bartell and Nair  2003 ; Brockerhoff et al.  2006a ; Liebhold et al.  1995 ; 
Wingfi eld et al.  2010 ), all of which are important components in global trade. Forest 
insects can also be introduced through imports of infested timber and forest prod-
ucts, as well as on infested live plants (Brasier  2008 ; Liebhold et al.  2012 ; Reichard 
and White  2001 ). In recent decades, a number of economically damaging, non- 
native forest insect species have been or were likely introduced through global 
trade routes, such as  A .  planipennis  (Poland and McCullough  2006 ) and 
 Anoplophora glabripennis  (Motschulsky) (Smith et al.  2009 ) in North America, 
 Dendroctonus valens  LeConte in China (Yan et al.  2005 ), and  Sirex noctilio  F. in 
Australasia, South Africa, South America and most recently, North America 
(Slippers et al.  2012a ). 

4.1        Changes in Geographic Ranges 

 There exists a rich literature around bioclimatic envelope modeling documenting 
how the distribution and abundance of forest insects are restricted to (or released 
from) suitable habitat(s) by various climatic factors in time and space (e.g., Hlasny 
and Turcani  2009 ; Jonsson et al.  2011 ; Logan et al.  2003 ; Robinet et al.  2007 ; 
Williams and Liebhold  1995a ). Changes in climate compared to historic norms have 
relaxed these boundaries, allowing for rapid range expansion in some species, and 
range retraction in others. In this section, we will discuss three types of changes in 
the geographic ranges of forest insects: expansions in latitudinal range, expansions 
in geographic range, and range retractions. We restrict our treatment to natural dis-
persal, even though human-assisted transport may be a confounding factor in many 
range expansions (Brockerhoff et al.  2006b ) that could be detected post hoc within 
the genetic structure of subpopulations (Kerdelhué et al.  2009 ). 

 In montane ecosystems, range expansions frequently become fi rst apparent in 
altitudinal changes rather than latitudinal changes. Simulation studies have shown 
that the mountain pine beetle,  Dendroctonus ponderosae  Hopkins, which is native 
to North America, responds to increases in temperature fi rst by increasing its altitu-
dinal range before becoming more apparent at more northern locations in western 
Canada (Sambaraju et al.  2012 ). In the Greater Yellowstone Ecosystem of the west-
ern United States,  D .  ponderosae  has had a long association with lodgepole pine 
forests with infrequent outbreaks at climatically-inhospitable high elevations. 
Recently, however, it has exhibited behavior outside of its observed range of natural 
variability, and threatens to decimate high-elevation fi ve needle pines (Logan et al. 
 2010 ; Logan and Powell  2001 ), a host species that does not appear to have a co- 
evolved relationship with this insect. These pronounced shifts in elevation are not 
restricted to bark beetles. In recent years, for example, the winter moth,  Operophtera 
brumata  (L.), has defoliated stands of mountain birch at elevations up to the tree 
line in coastal areas of northern Norway (Hagen et al.  2007 ). Historically,  O .  bru-
mata  outbreaks have occurred at lower elevations due to bioclimatic and/or com-
petitive effects with a sympatric species, the autumn moth  Epirrita autumnata  
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(Borkhausen) (Ammunet et al.  2010 ). The gypsy moth,  Lymantria dispar  (L.), also 
a defoliator, is expected to continue a progression into regions of higher eleva-
tions in Europe as it doubles its range compared to 50 years ago (Hlasny and 
Turcani  2009 ). 

 Latitudinal range shifts are perhaps more dramatic than altitudinal shifts, as 
humans may notice defoliated or killed trees more quickly in regions where such 
activity was historically unapparent. There exist a number of examples of lepi-
dopteran defoliators in Europe where this phenomenon has occurred over the past 
decade. While  O .  brumata  has expanded into higher elevations and moved northeast 
across Norway, the more cold-hardy  E .  autumnata  has exhibited a concomitant 
increase into colder, continental areas (Jepsen et al.  2008 ). Recent phenological 
changes in budburst have facilitated a rapid northward range expansion of another 
geometrid, the scarce umber moth,  Agriopis aurantiaria  Hübner, in the same region 
(Jepsen et al.  2011 ). In France and Portugal, higher elevation and northward latitu-
dinal incursions have been documented for the pine processionary moth, 
 Thaumetopoea pityocampa  (Denis and Schiffermüller), a frequent defoliator of pine 
and cedar (Arnaldo et al.  2011 ; Battisti et al.  2005 ). In North America, a warming 
climate could facilitate the expansion of  L .  dispar  into areas where current overwin-
tering temperatures are too cold to permit survival (Régnière et al.  2009 ). However, 
a constraint in the southern geographic range of  L .  dispar  is the lack of suffi cient 
cooling periods to terminate diapause (Gray  2004 ); thus, although warming tem-
peratures could allow for northern expansion of  L .  dispar , there could a concomitant 
restriction in its potential and realized southern range. 

 Latitudinal range expansion has not been limited to Coleoptera and Lepidoptera. 
For example, damage from the poplar woolly adelgid,  Phloemyzus passerinii  
(Signoret), was recently recorded for the fi rst time in northern France (Rouault et al. 
 2006 ). The European pine sawfl y,  Neodiprion sertifer  (Geoffroy), is currently lim-
ited in its range by the degree of freeze tolerance of its eggs, is also expected to 
move northwards over the next decades (Veteli et al.  2005 ). Lethal mortality to 
overwintering life stages is frequently cited as a key delimiter for range margins 
(Bale and Hayward  2010 ), which, once ameliorated, could permit rapid expansion 
in a number of species. 

 A notable example of climatic release permitting range expansion has been the 
recent outbreak of  D .  ponderosae  in western Canada (Aukema et al.  2006 ). Mountain 
pine beetle has been historically limited in range by a −40 °C thermal isocline, 
restricting its Canadian range to a line primarily west of the Rocky Mountains 
(Safranyik et al.  1975 ). Recently, this insect breached the historic geoclimatic divide 
and is now reproducing in lodgepole pine forests of northwestern Alberta (de la 
Giroday et al.  2011 ,  2012 ; Robertson et al.  2009 ). This is of grave concern because 
range expansions of this magnitude could permit access to new hosts and new habi-
tat corridors. For example,  D .  ponderosae  is now reproducing in an area where 
lodgepole pine hybridizes with jack pine (Cerezke  1995 ; Cullingham et al.  2011 ), 
which could permit further range expansion eastward through the boreal forest of 
North America. This insect seems well adapted to jack pine, and exhibits elevated 
reproductive rates in evolutionarily naïve hosts (Cudmore et al.  2010 ). 
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 Of course, climatic suitability across the extent of a new range is never assured, 
and different models could have contradicting outcomes. Projections of habitat 
 suitability for  D .  ponderosae  across the boreal forest of Canada through global sim-
ulation models show a wide range of projections, from high to low climatic suit-
ability, depending upon the scenario applied (Safranyik et al.  2010 ). Projections of 
climatic suitability for the same insect in the Rocky Mountain region of the western 
United States, however, are more uniform, predicting decreases in suitable habitat 
by up to 50 % by the year 2050. In contrast, projections for the same regions for a 
different insect, the western pine beetle,  Dendroctonus brevicomis  LeConte, indi-
cate increases or decreases in suitable habitat, depending on the scenario (Evangelista 
et al.  2011 ). Potential range retractions are not restricted to bark beetles.  Lymantria 
dispar  and the nun moth,  Lymantria monacha  (L.), are projected to lose up to 
900 km from their southern European ranges as temperatures warm (Vanhanen 
et al.  2007 ). Many projections of climate warming demonstrate either rapidly 
altered ranges of the host trees (Refehldt et al.  2006 ) or maladaptive seasonal 
phenology that disrupts insect development and host procurement (Williams and 
Liebhold  1995a ). 

 Climatically-mediated range shifts could also lead to changes in physiological 
and morphological traits of insects. Indeed, latitudinal clines in physiological, 
reproductive, and morphological traits of insects are well known (Blanckenhorn and 
Demont  2004 ). For example, wing size tends to be larger at higher latitudes in 
 Drosophila subobscura  Collin (Gilchrist et al.  2001 ) and genetic change in this spe-
cies appears to be tracking climate change (Balanya et al.  2006 ). Furthermore, inva-
sive populations of this species formed a latitudinal gradient in wing size very 
similar to that in native populations in only 20 years, which suggests that some 
invasive species could evolve rapidly in response to elevated temperatures. A num-
ber of widespread native forest Lepidoptera exhibit similar adult size across their 
latitudinal range but express reductions in fecundity and (or) larger offspring with 
increasing latitude (Ayres and Scriber  1994 ; Harvey  1983 ; Parry et al.  2001 ). A lati-
tudinal shift in a number of fi tness parameters is evident in introduced populations 
of the fall webworm,  Hyphantrea cunea  (Drury), in Japan (Gomi  2007 ; see 
Sect.  4.3 ). Because such latitudinal clines appear to be common in many species, 
selection could be expected to form clines in invasive species as their distributional 
range expands.  

4.2     Changes in Outbreak Frequency and Intensity 

 The study of forest insect outbreaks has a long and storied history, and many of the 
species that have been the focal point of these studies have broadly served as model 
systems for studying the conceptual and mechanistic processes of insect population 
dynamics (e.g., Barbosa and Schultz  1987 ). Several forest insect species undergo 
regular cycles in population density, from innocuous to outbreak and back. Apart 
from being inherently fascinating, forest insect outbreaks often cause considerable 
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economic and ecological damage by affecting nutrient cycles, animal and plant 
populations (Frost and Hunter  2004 ; Payette et al.  2000 ; Work and McCullough 
 2000 ), and human uses of forests for timber and recreation (Coyle et al.  2005 ). 
Another aspect of many forest insect outbreaks is that they can often be spatially 
synchronized (Haynes et al.  2009 ; Johnson et al.  2005 ; Peltonen et al.  2002 ), in 
which the congruence in the temporal variation of abundance among geographically 
distinct populations results in outbreaks over a large spatial scale (Bjørnstad et al. 
 1999 ). Geographically widespread outbreaks can be particularly important for a 
number of reasons. First, spatially synchronous outbreaks could dilute regulating 
effects of natural enemies that could otherwise provide local control (Royama 
 1984 ). Second, they can reduce the ecological landscape’s ability for buffering 
because most areas within an ecosystem experience simultaneous disturbance 
(Lovett et al.  2002 ). Lastly, they can overwhelm the budgetary and logistical efforts 
available for protection of economic assets or ecological functions through suppres-
sion programs (Tobin et al.  2012 ). 

 Many non-native species are innocuous in their native ranges where they evolved 
in concert with host tree defensives and the regulatory effects of natural enemies, 
but can be problematic when introduced into naïve environment and/or to naïve host 
species (Liebhold et al.  1995 ; Hu et al.  2009 ). Such a contrast is apparent when 
comparing the insect borers  A .  planipennis  and  Agrilus anxius  Gory. The latter spe-
cies is native to North America where it is relatively innocuous to North American 
birch species unless coupled with severe stress such as drought. In contrast,  A .  anx-
ius  causes signifi cant mortality in non-native birch species planted in North America, 
whether trees were stressed or not (Nielsen  1989 ). Similarly,  A .  planipennis  rarely 
causes mortality in ash in its native range in Asia, while all North American ash 
species appear to be extremely susceptible (Poland and McCullough  2006 ). Non- 
native species often lack natural enemies in a new area, and consequently, the 
‘enemy release’ hypothesis has been suggested to play a role in the ability of species 
to invade novel habitats and reach outbreaking densities (Keane and Crawley  2002 ; 
Torchin et al.  2003 ). 

 The effect of climate change could result in changes to both the outbreak inten-
sity and the periodicity of forest insect outbreaks (Logan et al.  2003 ; Volney and 
Fleming  2000 ). Trends in climate warming are thought to have had direct effect on 
the development, intensity, and geographic extent of outbreaks of  D .  ponderosae  
Hopkins, in North America (Kurz et al.  2008 ). Although this species is native to 
western North America, it is now achieving outbreak densities in northern British 
Columbian forests where it had never previously been found, at least not over the 
last few centuries of direct observation (see Sect.  4.1 ). Similarly, outbreaks of other 
eruptive bark beetle species such as the southern pine beetle,  Dendroctonus frontalis  
Zimmermann, the Mexican pine beetle,  Dendroctonus mexicanus  (Hopkins), and 
the European spruce bark beetle,  Ips typographus  (L.), are expected to exhibit out-
breaks of increased magnitude as temperature and precipitation regimes change 
(Kausrud et al.  2012 ; Waring et al.  2009 ). 

 In Fennoscandia, climate warming is thought to have shifted the geographic 
distribution of outbreaks of  O .  brumata  (Hagen et al.  2007 ). Although this species 
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is native to Fennoscandia, it, like  D .  ponderosae  in North America, is believed to 
have crossed altitudinal barriers that were previously impassable due to climate that 
was historically unfavorable to its winter survival. In addition to the expanse of 
areas experiencing outbreaks, the duration of outbreaks is thought to have increased 
due to climate warming (Jepsen et al.  2008 ). Examples of the interplay between 
climate change and outbreaks by non-native species are less documented, likely due 
to the fact that invasions by non-native forest insects are a more recent phenomenon 
(Aukema et al.  2010 ), relative to the time scale that native species have existed in 
their native ranges. Indeed, many important invasive species are still in the active 
range expansion phase of their colonization, making it impossible to partition cli-
matic infl uences separately from other processes driving spread. However, the 
change in outbreak dynamics in native species is likely not unique and will likely 
result in related changes in the outbreak dynamics of non-native species. 

 Not all forest insects necessarily benefi t from recent trends in climate change, 
adding complexity to our efforts to understand expected patterns. For example, 
 regular outbreaks have been recorded for the larch budmoth,  Zeiraphera diniana  
Guénée, in the European Alps (Bjørnstad et al.  2002 ). A recent dendrological 
reconstruction of these outbreaks has suggested that this cyclical behavior had 
been occurring for at least 1,173 years and during previous climatic events, such 
as  periods of warming during the Middle Ages and cooling during the Little Ice 
Age (Esper et al.  2007 ). However, since 1981,  Z .  diniana  outbreaks have been con-
spicuously absent with the supposition that recent trends in climatic warming have 
upset the balance of a system that previously had exhibited remarkable stability 
(Esper et al.  2007 ). However, because the absence of  Z .  diniana  outbreaks is thought 
to be due to climate-mediated disruption of the stability of this system, non-native 
species, which are agents of disturbance in themselves, may or may not be less 
prone to collapse in forest ecosystems that are also experiencing disturbance due to 
changing climates.  

4.3       Changes in Seasonality and Voltinism 

 Increasing temperatures will have direct consequences for insects including altera-
tions to life cycle duration (developmental rate) and changes in voltinism (the num-
ber of generations per year). While most insects are capable of increased growth 
rates at elevated temperatures, a key factor is during which part of a particular 
insect’s life history that the temperature change occurs. Thus, generalizations con-
cerning the response of insect growth rate and development to global climate change 
must be tempered with knowledge that a species may behave idiosyncratically with 
respect to temperature. 

 At the level of individual insect species, a major determinant of the response to 
climatic shifts is the type of life-cycle and the developmental strategy employed. 
Danks ( 2006 ) suggested that insect development could be viewed as either an active 
default, where it proceeds until some reliable environmental cue signals it to stop, 
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or a passive default, where development stops at a preset point irrespective of current 
environmental conditions and does not resume again until an appropriate cue is 
received. A good example of this dichotomy would be a multivoltine species that 
produces additional generations as long as diapause-inducing cues are absent, while 
an univoltine species would develop faster in its single generation, but would still be 
constrained by an obligate diapause to one generation annually. Insects using an 
active developmental default will likely receive greater benefi ts from warming tem-
peratures than those with passive default development systems. Because many mul-
tivoltine insect species use photoperiodic cues to initiate diapause, which do not 
change in response to changing climates (Tauber and Tauber  1976 ), suffi cient 
increases in temperature prior to the onset of diapause-inducing photoperiods could 
be a key determinant to the number of generations possible per year under future 
climate scenarios (Chen et al.  2011 ; Tobin et al.  2008 ). 

 Many geographically widespread insects exhibit latitudinal gradients in volt-
inism (Wolda  1988 ); thus, shifting temperatures should slide the boundaries between 
voltinism states in predictable directions. Voltinism may be relatively plastic, and in 
some species governed by photoperiod, temperature, and host plants, whereas in 
others it is fi xed (Tauber and Tauber  1976 ). For those species with fl exible voltinism, 
warming may be advantageous, permitting faster growth and additional generations 
annually (Bale et al.  2002 ; Tobin et al.  2008 ). In Europe, extensive data sets encom-
passing hundreds or even thousands of species of Lepidoptera have allowed com-
parisons among different time periods. For butterfl ies and moths with the capacity 
for multivoltinism, there have been signifi cant increases in the frequency of species 
exhibiting bi- or multivoltine life cycles, with much of this increase occurring in the 
last two decades (Altermatt  2010 ; Pöyry et al.  2011 ). 

 Increased voltinism could promote faster population growth because more off-
spring are being produced per seasonal time period, thus increasing the likelihood 
of outbreaks of pest species or elevating non-pests or minor pests to a more eco-
nomically important stature (Steinbauer et al.  2004 ; van Asch and Visser  2007 ). In 
forested ecosystems, changes in the voltinism of Lepidoptera and of Coleoptera 
(particularly scolytid bark beetles), are of concern as these groups contain some of 
the most economically damaging forest pests. A number of native bark beetle spe-
cies in both Europe and North America have shifted lifecycles by adding annual 
generations, in an apparent response to moderating temperatures at higher latitudes 
or altitudes (Berg et al.  2006 ; Jonsson et al.  2009 ; Werner et al.  2006 ). With respect 
to the spruce beetle,  Dendroctonus rufi pennis  (Kirby), this change was associated 
with devastating outbreaks in Alaska’s Kenai Peninsula (Sherriff et al.  2011 ). 

 Despite the apparent high frequency of shifts in voltinism in native insects in 
many temperate zones globally, documentation of such shifts in invasive forest 
insects has thus far been rare. It is not known if the apparent rarity in forest insects 
is an artifact or represents real patterns. There are several possibilities for this 
absence. First, some invasive species could have a fi xed voltinism, such as  L .  dispar , 
which is exclusively univoltine. Another possibility is that simply too little is known 
about the biology of many invasive species. Additionally, invasive species could 
lack suffi cient genetic diversity or plasticity to respond to climate shifts, owing to 
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small founder population size and the relatively short interval of observation. 
Successful species could have also been introduced with, and indeed may owe their 
success to, the expression of an appropriate voltinism for a given region. 

 One well-known case of shifting voltinism concerns  H .  cunea , a relatively benign 
defoliating lepidopteran accidentally introduced from North America to Europe and 
Asia where it has become a major pest. In Japan, the founding population was 
bivoltine, but within 50 years of introduction and coupled with a southward spread, 
trivoltine populations became the norm in warmer areas (Gomi and Takeda  1996 ). 
The shift to a trivoltine life-cycle was associated with a subtle but biologically sig-
nifi cant change in sensitivity to photoperiod (Gomi  2007 ). 

 Multivoltinism appears to be rare in eruptive folivores, as most appear to be con-
strained to the nutritionally superior, but inherently risky (see Sect.  4.4 ) early season 
foliage of woody plants (Hunter  1991 ,  1995 ). For invasive folivorous species with 
obligate diapause, such as many univoltine spring-feeders, increasing temperatures 
could provide respite from natural enemies because development will accelerate 
through the vulnerable larval period, a function of escape from the trap of slow- growth 
and high mortality (Benrey and Denno  1997 ; Zalucki et al.  2002 ). This, however, 
makes the assumption that natural enemies will not respond similarly to elevated tem-
peratures, or that they will not quickly adapt to a seasonal shift in prey abundance. 
Some, but not all, studies have suggested that  L .  dispar  outbreaks are correlated with 
warmer spring temperatures in the year of, and the year prior to, defoliation (Elkinton 
and Liebhold  1990 ), although the mechanism underlying the pattern is not known. 
Communities of forest Lepidoptera irrespective of taxonomic affi nity, especially those 
that are spring-feeders, exhibit concordant population dynamics, suggesting common-
ality of either positive or negative responses to a signifi cant environmental driver like 
meteorological conditions (Raimondo et al.  2004 ; Stange et al.  2011 ). 

 A major concern from an invasive species perspective could be the response of 
wood borers. Unlike folivorous insects, many wood and cambium feeders have 
 considerable plasticity with respect to voltinism and are constrained mainly by the 
combination of wood as a nutritionally poor resource and the relatively low tem-
peratures in temperate and boreal forests. Increased voltinism observed in variety of 
native bark beetles (e.g., Faccoli  2009 ) could be a harbinger of what to expect in this 
particular guild. Voltinism in  A .  glabripennis  is a function of latitude in China with 
southern populations requiring only a single year to complete development (Hu et al. 
 2009 ), while populations introduced into North American are variable, with both 
semivoltine or univoltine emergence recorded. Another invasive cerambycid, the 
brown spruce long-horned beetle,  Tetropium fuscum  (Fabricius), currently has a uni-
voltine lifecycle but has been recorded as bivoltine in parts of its native range. In 
China,  D .  valens  has already devastated vast tracts of Chinese red pine. In its native 
range in the southern United States, this species has up to three generations per year, 
but only one and perhaps a partial second generation has been recorded in China 
(Sun et al.  2004 ), suggesting that this insect could become an even greater threat in 
its introduced range under warming temperatures. These examples highlight the 
fl exible voltinism apparent in many wood feeding insects and thus a high propensity 
to benefi t from climatic warming.  
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4.4      Decoupling Species Interactions 

 One of the fi rst and probably best-documented effects of anthropogenic driven 
climate change has been a phenological shift in the seasonal occurrence of a diverse 
array of organisms. Phenology, the seasonally infl uenced timing of developmental 
processes (e.g., Visser et al.  2010 ), is strongly correlated with temperature regime 
for many organisms including plants, insects, and vertebrates (Parmesan  2006 ; Root 
et al.  2003 ). In temperate regions, a large number of species have shifted seasonal 
biological activities such as onset of bud break, fl owering time, emergence, or 
migrating earlier or maintaining activity later in the season as a response to recent 
changes to the onset of spring and the increasing length of the growing seasons, 
respectively. For example, the spring phenology of European Lepidoptera has 
advanced signifi cantly over the past four decades (Altermatt  2010 ; Roy and Sparks 
 2000 ; Stefanescu et al.  2003 ) as it has or will for other insects (Hassall et al.  2007 ; 
Logan et al.  2003 ; Masters et al.  1998 ); these changes are apparently correlated with 
an increase in degree-day availability early in the season (Parmesan  2006 ). 

 Although changes in the phenology of individual species are well-described 
(Menzel et al.  2006 ; Robinet and Roques  2010 ), less attention has been paid to cli-
matically driven mismatches to the trophic relationships of interacting species, 
despite predictions about the important negative consequences of asynchrony and 
its resultant decoupling (Donnelly et al.  2011 ; Singer and Parmesan  2010 ). 
Climatically driven decoupling is expected when synchrony between species is dis-
rupted in time or space (Stenseth and Mysterud  2002 ). Decoupling can be viewed 
from either a temporal or spatial perspective. Spatially, rapid range expansion by a 
species could decouple relationships between predator and prey (Menendez et al. 
 2008 ; see Sect.  4.1 ), whereas temporally, differential response to shifting tempera-
tures could lead to a phenological decoupling of a species relationship, be it plant- 
herbivore, predator-prey, or tritrophic interactions. 

 Whether or not a system will become phenologically decoupled depends on the 
response of the participant species to climatic drivers. For example, no net change 
could occur if the interacting species respond similarly to the same environmental 
cues or to different environmental cues in a way that is highly correlated. However, 
decoupling might be expected where species are responding to specifi c cues that 
become less correlated as temperatures and/or seasonality change. For example, a 
photoperiodic response by one species could lead to a divergent phenology if an 
interacting species responds primarily to degree-day accumulations. In tri-trophic 
relationships, elucidating the effects of climatic shift will be diffi cult and the rela-
tive changes in responses by an herbivorous insect, its host plant, and its natural 
enemies could be neutral, negative, or positive depending on the degree of decou-
pling and the nature of the decoupled mechanism(s). 

 The potential for climatically driven phenological decoupling of herbivorous 
insects and their host plants has long been recognized (Buse and Good  1996 ; Dewar 
and Watt  1992 ; Harrington et al.  1999 ), but has been investigated extensively in only 
a few systems. The importance of phenological synchrony of insect herbivores with 
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host plants varies between and among species, functional feeding guild, and the 
seasonal activity period of a species with effects likely to be neutral or negative, as 
a positive effect seems implausible. The same mechanisms that drive asynchrony 
and decoupling, however, could allow insects to utilize hosts that were previously 
outside of their phenological range as climatic change differentially alters seasonal 
timing of tree and herbivore (e.g., Jepsen et al.  2011 ). 

 Sensitivity to phenological change is likely to be greatest for spring feeding spe-
cies (Forkner et al.  2008 ), but could also affect other seasonal guilds depending on 
the nature and magnitude of change. Increased voltinism (see Sect.  4.3 ) may push 
some phenologically insensitive species into more vulnerable early or late season 
envelopes. Species whose activity (i.e., egg hatch, larval emergence) is timed to bud 
burst of host trees may be susceptible to even relatively small alterations to syn-
chrony. These species often have a narrow window of opportunity to maximize 
growth because they are constrained by starvation if they emerge too early, and by 
declining nutritional value and increasing secondary phytochemical concentration 
of maturing leaves should development be delayed until later in spring (Ayres and 
MacLean  1987 ; Feeny  1970 ; Hunter  1993 ; Jones and Despland  2006 ; Martel and 
Kause  2002 ; Parry et al.  1998 ). While the effects of phenological asynchrony are 
best known for Lepidoptera, negative consequences have been shown in many other 
insect herbivores including Homoptera, Diptera, Coleoptera, and Hymenoptera 
(Dixon  1976 ; Fox et al.  1997 ; Martel et al.  2001 ; Yukawa and Akimoto  2006 ). 

 We know of no study that has specifi cally addressed phenological decoupling of 
an insect-plant interaction in the context of biological invasions, but it seems 
unlikely that introduced species would differ substantially from native species. 
Although direct research is lacking, extrapolation is possible from a few well- 
studied native insect-plant interactions. One exemplar insect,  O .  brumata , could be 
particularly instructive in elucidating consequences of climate change on pheno-
logical decoupling as it is well-studied in its native range, and is currently invading 
North America. 

 The winter moth is a univoltine spring feeder native to Great Britain and Europe, 
but was accidentally introduced to Nova Scotia (1940s), British Columbia (1960s), 
and more recently Massachusetts (2000s) and other New England states (Elkinton 
et al.  2010 ; Roland and Embree  1995 ). Flightless females ascend host trees such as 
oaks in the fall, and oviposit on branches and twigs in the canopy. Eggs hatch in the 
following spring in close proximity to bud break. The fi tness consequences of syn-
chrony with bud break are signifi cant (van Asch and Visser  2007 ) as the newly 
hatched larvae have a limited ability to survive starvation if emergence is early but 
suffer from the declining value of maturing foliage if emergence is late. 

 Winter moth has been extensively studied, especially in Great Britain (e.g., Varley 
et al.  1973 ) and the existence of several long term data sets allows insight to the 
effects of climatic change on  O .  brumata  with pendunculate oak. In the Netherlands, 
the onset of winter moth egg hatch and bud break of this oak species have advanced 
considerably over a quarter century (Visser and Holleman  2001 ). Egg hatch, how-
ever, has advanced more than bud break, decreasing synchrony by 2–14 days depend-
ing on the year. While late hatch decreases fi tness through reductions in fecundity, a 
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shift of 5 days too early can result in mortality of 90 % or more, suggesting that an 
increasingly premature hatch relative to bud break is non-trivial. Winter moth has 
suffi cient genetic variability that selection should act to push hatch time closer to bud 
break (van Asch et al.  2010 ), although this does not appear to have happened natu-
rally thus far. Although the effects of climatic change on  O .  brumata  phenology and 
synchronicity with host plants have not been studied in North America where it is 
invasive, its extensive use of multiple tree genera in the northeastern United States 
could buffer it from any deleterious consequences of climatic change. 

 Considerably less is known about the effects of climate change on phenology in 
other invasive forest insects, even for those that have been extensively studied. For 
example, while various models (Régnière et al.  2009 ; Williams and Liebhold  1995b ; 
see Sect.  4.1 ) have suggested that the geographic range of  L .  dispar  in North 
America will expand northward under various warming projections, the potential 
for asynchrony with host tree species has not been explored. The responses of trees 
to warming at higher latitudes may differ from the temperature response of  L .  dispar  
egg hatch, thus increasing the risk of phenological mismatch. Although  L .  dispar  is 
sensitive to tree phenology (Hunter  1993 ; Hunter and Elkinton  2000 ; Stoyenoff 
et al.  1994 ), it has life-history attributes that could mitigate many of the most delete-
rious effects of asynchrony. Similar to  O .  brumata ,  L .  dispar  larvae feed on a wide- 
variety of woody plants, which ensures that at least spatially, some hosts will be 
available to neonates. Furthermore, the temporal distribution of egg hatch, both 
within a single egg mass and among egg masses in a population, spans extended 
periods (Gray et al.  2007 ; Hunter  1993 ), which also increases the likelihood that the 
highly mobile larvae will encounter phenologically suitable hosts. 

 The phenological relationship between insects and plants do not occur in a vac-
uum; rather, it is a template upon which other environmental factors also enhance or 
attenuate the effects of asynchrony. Temperature and climatic shifts also occur in 
concert with rising levels of CO 2 , which could increase or decrease quality of plant 
tissue for herbivores depending on species and functional feeding guild (Cornellisen 
 2011 ; Stiling and Cornelissen  2007 ). Other environmental feedbacks and covariates 
associated with climate change could further confound any analysis. Based on lim-
ited studies to date, it seems unlikely that phenological asynchrony will be of sig-
nifi cant long-term consequence for many native insect herbivores. Even less 
confi dence can be attached to predictions about non-native species. As many forest 
insect invasions are initiated from genetically-limited founder populations from 
only portions of their native range, it is unclear if responses to climatic shifts will 
differ from that seen in populations of native species. However, many successful 
invasive species are habitat or host generalists and may express considerable pheno-
typic plasticity while other species, despite apparently limited genetic diversity, 
have nonetheless rapidly adapted to climatic variability in recipient regions (Gomi 
et al.  2009 ). 

 The potential for climatic disruption or alteration of coupled species relation-
ships also applies to higher trophic levels, which often exert considerable top-down 
regulation on herbivore populations. The relative synchrony between natural ene-
mies and their prey could be maintained under climatic change if the organisms 
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respond similarly to the same variable or to variables that remain highly correlated. 
The decoupling of such relationships could occur as divergent responses to the same 
or to correlated variables, although few predator-prey interactions and even fewer 
multi-trophic systems have been examined in detail. A recent study documented 
considerable species turnover in samples of subarctic parasitoid communities when 
compared to historical data sets from the same localities, with patterns suggesting a 
link to climate warming (Fernández-Triana et al.  2011 ). In a different study, a meta- 
analytical approach suggested that an amplifi cation of climatic variability was nega-
tively correlated with parasitism of tree-feeding Lepidoptera, particularly for 
specialist hymenopteran parasitoids, which were disproportionately affected rela-
tive to tachinid parasitoids with broader host ranges (Stireman et al.  2005 ). Thus, at 
least in the short-term, the infl uence of parasitoids on the population dynamics of 
their prey could be reduced, which has important ramifi cations for outbreak species 
whether native or introduced. However, selection has favored herbivore life-history 
strategies that maximize temporal enemy-free or enemy-reduced space, and differ-
ential responses to climate variables could also force greater overlap between some 
herbivores and their natural enemies (Hance et al.  2007 ). 

 There is evidence of decoupled predator-prey relationships due to climatic shifts 
in a number of insectivorous birds in Europe. The fi tness of these birds is greatest 
when the timing of reproduction corresponds with a peak in biomass of primarily 
lepidopteran caterpillars (Both et al.  2006 ; Visser et al.  1998 ,  2006 ). Warmer springs 
have shifted this peak earlier, and higher temperatures have compressed the period 
of abundance as larvae complete their development more rapidly. Although repro-
ductive activity of birds has also advanced, it has not done so at the same rate as 
caterpillar biomass peak, and this relationship appears to becoming increasingly 
asynchronous. The implications for invasive forest insects are unclear, but since 
birds are important predators of many herbivorous insects, especially in low-density 
insect populations (Holmes et al.  1979 ; Marquis and Whelan  1994 ; Parry et al. 
 1997 ), a diminution of their capacities would likely benefi t both native and non- 
native insects alike. However, there remains much uncertainty in the degree and 
importance of divergence of bird and insect prey phenology due to climate change; 
for example, a long time series data set in England suggests that the great tit, an 
important predator of  O .  brumata  larvae, has been able to track the shift in spring 
phenology of its prey item over time (Charmantier et al.  2008 ). 

 The success of many invasive insects in forests owes at least in part to an incom-
plete or missing natural enemy component, and thus the potential effects of climate 
change on this trophic level could be largely moot for some species. However, for 
invasive species held in check by classical biological control introductions, climatic 
shifts potentially could alter these important interactions, leading to a resurgence of 
previously suppressed populations or hamper efforts to develop new biological con-
trol programs. Indeed, it has long been recognized that classic biological control 
could be vulnerable to climate change (Cannon  1998 ) because the interactions 
between introduced enemies and their non-native prey could be inherently more 
susceptible to decoupling than those interactions involving native species. Many 
introductions of control agents are initiated with relatively low genetic diversity, 
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which potentially limits the adaptive response to changing climate. Second, specifi c 
biotypes of natural enemies, particularly parasitoids, are often selected to match 
current climatic conditions in a given region (   Robertson et al.  2009 ); these may or 
may not be suitable for future climatic envelopes. Conversely, some biological con-
trol organisms that are currently climatically limited in parts of an invader’s range 
may become more effective under warming scenarios (Siegert et al.  2009 ; Zalucki 
and van Klinken  2006 ). 

 Many of the predictions concerning the decoupling of insect herbivore-host or 
predator-prey interactions are overly general or simplistic because we lack the nec-
essary knowledge to make these predictions in all but a few systems. The effects of 
climate change on decoupling interactions involving non-native species are even 
more diffi cult to generalize as the relationships are often novel and are occurring in 
environments different from those where the species evolved. For example, in North 
America, the non-native tachinid  Cyzenis albicans  (Fallén) is regarded as the most 
effective regulator of invasive  O .  brumata  populations, but this parasitoid is a trivial 
source of mortality in native populations (Roland and Embree  1995 ; Varley et al. 
 1973 ). Thus, it may be diffi cult to generalize the effects of climate from donor to 
recipient regions, even for well-studied systems.   

5     Economic Ramifi cations of Invasions in the Face 
of Climate Change 

 Despite the challenges associated with predicting the ecological consequences of 
climate-mediated effects on biological invasions, it is arguably even more diffi cult 
to quantify the economic costs due to all of these interacting forces. After all, reli-
able estimates of the economic costs due to specifi cally non-native forest insects 
alone are largely lacking (Aukema et al.  2011 ). Even though these costs are chal-
lenging to estimate, they are not always diffi cult to envision. For example, increases 
in the availability of suitable habitat due to changing climates facilitating invasions 
into new areas could in turn increase the costs associated with its management 
(Cannon  1998 ; Kiritani  2006 ). Similarly, increases in abundance, and outbreak 
intensity and frequency due to climate warming is likely to lead to increased 
 management costs (Hellmann et al.  2008 ; Rosenzweig et al.  2001 ; Waring et al. 
 2009 ). Costs could also include the increase in the energy footprint of food and fi ber 
production systems due to this increased need for pest control measures (Gandhi 
and Herms  2010 ; Pimentel  2002 ). 

 Other potential consequences, however, can be complex and involve a cascading 
array of effects across one or more trophic levels. One such effect of climate change, 
and specifi cally the role of increased concentrations of carbon dioxide and ozone in 
the atmosphere, is the potential change in host plant nutritional quality. For exam-
ple, plants grown under high levels of carbon dioxide can cause changes in the 
carbon-to-nitrogen ratio of plant tissues (Hamilton et al.  2005 ); consequently, 
herbivores feeding on such plants could eat more leaf matter to compensate for the 

P.C. Tobin et al.



283

reduced nutritional quality of their host plants (Coviella and Trumble  1999 ; 
Dermody et al.  2008 ; but see Kopper and Lindroth  2003 ). Increases in herbivory due 
to changes in concentrations of atmospheric gases, coupled with increases in herbi-
vore abundance, insect developmental rates, and voltinism owing to increases in 
surface temperatures (Bale et al.  2002 ; Chen et al.  2011 ; Tobin et al.  2008 ; Yamamura 
and Kiritani  1998 ), could have dramatic implications to pest management practices 
and the costs required to achieve pest control. Furthermore, a need to increase pest 
control tactics, specifi cally the use of chemical insecticides, could also intensify the 
inimical effects to non-target species (Pimentel et al.  1980 ) as well as select for 
resistance in the target species (Roush and McKenzie  1987 ). 

 Because of the potential for climate change to decouple interactions between 
natural enemies and their prey (Simon et al.  2002 ; Stireman et al.  2005 ), the use of 
biological control as a management tactic against non-native forest pests could be 
rendered less effective. In particular, classical biological control has received 
renewed interest in combating non-native insect pests (Hajek et al.  2007 ; Hajek and 
Tobin  2010 ; Hoddle  2004 ), and increased scrutiny is given to the specifi city of intro-
duced agents to avoid the historical blunders from the import of generalist natural 
enemies (Elkinton et al.  2006 ; Simberloff and Stiling  1996 ; Strong and Pemberton 
 2000 ). Because of the need for specifi city in selecting a natural enemy for introduc-
tion, changes in climate – even if subtle – could infl uence aspects of these interspe-
cifi c interactions, and the suitable range of one species could be affected by climate 
differently than the other. For example, the parasitic nematode  Deladenus siricidi-
cola  is an effective biological control agent of the wood wasp  S .  noctilio  in Argentina 
(Corley et al.  2007 ) and Australia (Neumann and Minko  1981 ). As a nematode, it is 
likely more sensitive to changes in moisture conditions, which are predicted to be 
affected by changes in climate (Rosenzweig et al.  2001 ), than its insect host. Indeed, 
the observed geographic variation in the effectiveness of  D .  siricidicola  as a biologi-
cal control agent of  S .  noctilio  could be due to variation in climate among regions 
(Slippers et al.  2012b ). Although additional and specifi c forest insect examples are 
still rare, climate and projections in climate will likely need to be considered when 
evaluating the short- and long-term effi cacy of an introduced natural enemy (Zalucki 
and van Klinken  2006 ).  

6     Conclusions 

 In addition to many of the “known unknowns” described above, a fi nal consider-
ation in the context of climate change and its effect on forest insect invasions is the 
proverbial “unknown unknowns”. The dynamics of forest insects and their interac-
tions with associated pathogens and natural enemies, together with interactions with 
host species, can be diffi cult to predict when species are introduced to a new area. 
Indeed, although many biological and ecological aspects are often highlighted as 
important when considering the invasion potential of a species and in formulating 
risk assessments (Liebhold and Tobin  2008 ; Lockwood et al.  2007 ; Worner and 
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Gevrey  2006 ), developing a general paradigm of species invasiveness with broad 
application has proved challenging (Hulme  2003 ; Lonsdale  1999 ; Rejmánek and 
Richardson  1996 ). Coupling the uncertainty of biological invasions with the com-
plexity of climate change and its variable effect on individual species and to those 
communities in which they interact complicates this challenge even further. 
Innocuous species today could quite possibly become quite invasive under future 
climatic conditions, whether in their native range, an introduced habitat, or both. 
Greater attention should be given to this complexity through examinations of 
landscape- level climatic changes and its combined effect on ecosystem inhabitants.     
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