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Abstract The aim of the chapter is to provide a critical assessment of Krister
Segerberg’s solution to the problems of introspective belief change. We present three
alternative ways in which the paradoxes may be avoided. The first is a solution due
to Lindström and Rabinowicz, using a two-dimensional semantics for DDL. The
second is found in a logic for belief change suggested by Bonanno, in which the
operator for belief is replaced by a class of operators for belief, each supplied with
a temporal index. The third solution consists in a logic for belief change due to
van Benthem, founded on the method of Dynamic Epistemic Logic in which the
dynamics is modelled by operations on entire models, rather than on some structure
within the models. We argue that, while there are some differences between these
approaches, there is a strong structural similarity between them, and they avoid the
paradoxes of DDL in essentially the same way. Furthermore, this way of avoiding
the paradoxes is both different from and, we think, more natural than Segerberg’s
own solution.

1 Introduction

Theories of rational belief change [1, 4, 5] are traditionally presented in a semi-
formalized manner. While a formalized language is used to speak about the content
of a state of belief, the theory of belief revision is, like most mathematical theories,
presented in mathematical English rather than a formal language in the strict sense.

It is possible to formulate axioms of belief change, like the well-known AGM
postulates [1], in a fully formalized language. This is the purpose of the socalled
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Dynamic Doxastic Logic (henceforth DDL, or “full” DDL) developed by Krister
Segerberg [10, 12], in which epistemic states are modelled using modal operators
of belief in the style of Jaakko Hintikka’s classic [7], and belief changes are mod-
elled using dynamic operators reminiscent of those studied in propositional dynamic
logic [6].

Reasoning about belief in a formal language has the advantage of added expressive
strength. Rather than just speaking about beliefs about the external world, we can now
also reason about introspective beliefs, i.e. beliefs that an agent has about her own
state of belief. For instance, I can believe that the world is round, which presumably
means that I don’t believe it is flat. Suppose now that someone asks me whether I
believe the Earth is round; I answer that I do believe it. In these circumstances I am
apparently aware that I believe the Earth is round, that is, I believe that I believe
that the world is round. In the same manner, I might be asked whether I believe the
Earth is flat, and I answer that I do not believe that. In this case, I have revealed that
I believe that I do not believe that the Earth is flat. If r stands for “the Earth is round”
and f for “the Earth is flat”, we can formalize these beliefs as

BBr

and
B¬Bf

respectively.
In the case of DDL, where we have the capacity to speak about not only beliefs

but also belief change, it turns out that this added expressive power comes with a
price: given that we adopt the AGM postulate known as Vacuity, we arrive at some
disturbing paradoxes of introspective belief change. These paradoxes are discussed
at length by Sten Lindström and Wlodek Rabinowicz in [8], where a modification of
the semantics of DDL is presented as a solution to the problem.

In this chapter, we present and criticize Krister Segerberg’s own solution to this
problem. We present three alternative ways that the paradoxes of introspective belief
change may be avoided: the first is a solution due to Sten Lindström and Wlodek
Rabinowicz, using a two-dimensional semantics for DDL. The second solution is
found in a logic for belief change suggested by Giacomo Bonanno, in which the
operator for belief is replaced by a class of operators for belief, each supplied with a
temporal index [3]. The third solution we present is a logic for belief change due to
Johan van Benthem [14], founded on the method of Dynamic Epistemic Logic where
dynamics is modelled by operations on entire models, rather than some structure
within the models. We shall argue that, while there are some differences between
these approaches, there is a strong structural similarity between them, and the they
avoid the paradoxes of DDL in essentially the same way. Furthermore, the way that
these logics avoid the paradoxes is both different from and, we think, more natural
than Segerberg’s own solution.

Throughout the discussion we presuppose familiarity with the AGM model of
belief revision, as well as the basics of modal logic.
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2 DDL and the Paradoxes

We begin by introducing the system DDL and the paradoxes it gives rise to.
Throughout the chapter, we work with a fixed, countably infinite supply of proposi-
tional variables Prop. The language of DDL is then defined in Backus-Naur form as
follows, where p ∈ Prop:

LDDL : p | ¬α | α ∨ α | Bα | [∗α]α

Classical connectives ∧,→,↔ are defined as usual. Informally, Bα means “the
agent believes α”, and [∗α]β means “after revision by α, it will be the case that β”.

We now provide semantics for this language. Throughout the chapter, given a
binary relation R over a set W and given an element u ∈ W , we use the notation

R(u) =df . {v ∈ W : uRv}

The logic of revision inherent in the semantics will be rather minimal, since the
details of belief revision are irrelevant to the problem we address and its solutions.
All we shall require of revision in this semantics, and in the other semantics presented
in the chapter, are the following conditions:

• after revision by α, the agent believes α
• revision by any consistent sentence results in a consistent belief state and
• Some semantic version of the Vacuity postulate holds.

We recall that, in the standard AGM framework for belief revision, the Vacuity
postulate is:

¬α /∈ K =⇒ K ∗ α = Cn(K ∪ {α})

where Cn is the logical closure operator of the propositional logic underlying the
epistemic states. This postulate says that if some input proposition is consistent with
the agent’s beliefs, then revision by that proposition amounts to simply adding the
proposition to the initial stock of beliefs and forming the logical closure of the results;
in other words, no information is lost in consistent revision.

Semantics for LDDL is given as follows.

Definition 1 A revision model is a structure

〈W , B, R∗, V〉

defined as follows: B is a binary relation over W , and R∗ : 2W → 2W×W is a function
from subsets of W (sometimes called propositions) to relations over W . Furthermore
we require that for each X ⊆ W , if vR∗(X)w then

1. B(w) ⊆ X
2. if X = ∅ then B(w) = ∅
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3. if B(v) ∩ X = ∅ then B(w) = B(v) ∩ X

Finally, V : Prop → 2W is an evaluation function in the usual sense. A pointed
revision model is a pair (A, u) where A is a revision model and u ∈ W .

The reader should note that the last item on the list in this definition is the obvious
way to formulate the Vacuity postulate in the present framework. The truth definition
for formulas of LDDL in a pointed revision model is given as follows:

• (A, u) � p iff u ∈ V(p)

• standard clauses for Boolean connectives
• (A, u) � Bα iff (A, v) � α for each v such that uBv

• (A, u) � [∗α]β iff (A, v) � β for each v such that uR∗(‖α‖)v
Here, ‖α‖ denotes the set

{w ∈ W : (A, w) � α}

From this semantics we define the consequence relation �DDL over LDDL by setting,
for all sets of formulas � ∪ {α}, � �DDL α iff

(A, u) � � =⇒ (A, u) � α

for any pointed revision model (A, u). Here, (A, u) � � means that (A, u) � β for
each β ∈ �.

We will need to be precise about what we mean by a logical system in this chapter.
Formally, a logic will here be taken to be a pair (L,�) where L is a set containing
the set of variables Prop and �⊆ 2L × L. Thus, (LDDL,�DDL) is a logical system,
which we denote by SDDL .

To see why SDDL is paradoxical, we ask the reader to verify that the following
validity holds:

�DDL ¬B¬α ∧ Bβ → [∗α]Bβ

and, furthermore, that we have the following validity:

�DDL [∗α]Bα

The former validity is called Preservation by Lindström and Rabinowicz, and the
latter validity is called Success. The validity of Preservation is a direct consequence
of the fact that the Vacuity postulate is built into the semantics. From Preservation,
in turn, we derive the paradoxes: let α,β be any formulas. Then as an instance of
Preservation we have

�DDL ¬B¬α ∧ B¬Bα → [∗α]B¬Bα

On the other hand, from Success follows trivially by classical logic that:

�DDL ¬B¬α ∧ B¬Bα → [∗α]Bα
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But clearly the operator [∗α] is normal, so that we have

[∗α]Bα ∧ [∗α]B¬Bα �DDL [∗α](Bα ∧ B¬Bα)

By classical logic we can now derive:

�DDL ¬B¬α ∧ B¬Bα → [∗α](Bα ∧ B¬Bα)

This is the formula deemed paradoxical by Lindström and Rabinowicz, and it would
be hard to deny that it is quite bizarre. To see why, toss a coin, without looking at
it when it lands. Presumably, given that the coin is fair, you now have no opinion at
all on whether the coin landed heads or tails. Let α stand for the proposition that the
coin landed heads. Since you have no opinion on whether the toss came out heads or
tails, you do not believe that the coin did not land heads. That is, your current belief
state satisfies the condition ¬B¬α. But you do not believe that the coin did land
heads, and we think that you have the required powers of introspection to be aware
of this fact. Thus, your current belief state also satisfies the condition B¬Bα. But
then, according to DDL, the condition [∗α](Bα ∧ B¬Bα) should also be true. This
means that if you were to take a look at the coin and learn that it did in fact land heads,
as a result you should believe that the coin landed heads, but at the same time you
should believe that you do not believe it. Under perfectly ordinary circumstances,
revision of beliefs has lead to a curious, or even incoherent, state of belief.

If we simply dropped the Vacuity postulate, then the problem would disappear. But
for those who are strongly convinced of the validity of Vacuity, the more attractive
route would be to try and retain some semantic version of the Vacuity postulate,
while employing some strategy to avoid the paradoxes. In the following section, we
present Segerberg’s own strategy for doing so.

3 Segerberg’s Solution

Segerberg treats the paradoxes of introspective belief change, which he refers to as
“Moore problems”, in a paper from 2006 [11]. In this paper, he proposes a solution
based on Sorensen’s notion of a blindspot from his 1988 book [13].

In Segerberg’s terminology, an agent has a Moore problem (of rank 0) if B(φ ∧
¬Bφ) or B(φ∧ B¬φ) is true (in a certain situation and with respect to his beliefs). In
the former case, the problem is said to be acute, in the latter grave. More generally,
the agent has a Moore problem of rank n, where n is a nonnegative integer, if, for
some formula φ, either Bn(φ ∧ ¬Bφ) or Bn(φ ∧ B¬φ), where Bn abbreviates

B . . . B
︸ ︷︷ ︸

n times

Segerberg is very clear on the desirability of avoiding Moore problems:
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It is probably impossible to compile a complete list of all the ways in which a doxastic agent
may be incoherent or exhibit some degree of inconsistency, but certainly an agent with a
Moore problem of any rank is not perfect. Doxastically ambitious agents will stay clear of
Moore problems as far as possible! ([11], p.96)

Segerberg’s solution seems radical on first sight: he proposes to reject the assump-
tion that the star operator correctly formalizes revision. Revision by φ is not to be
formalized as ∗φ but rather as

Rφ =df . ∗(φ ∧ Bφ)

As Segerberg points out, the Preservation and Success conditions are not affected by
this definition, meaning that the derivations of the Moorean sentences are still valid
inferences. Yet, the conclusions are no longer “an embarrassment”:

[...] for the fact that in a certain possible situation, a star change leads to a Moore problem is
not embarrassing, however plausible the situation – why would one want to perform a star
change anyway? ([11], p. 101).

What would be troublesome is if the corresponding sentences could be derived for
revision, i.e. if we could derive

(¬B¬φ ∧ B¬Bφ) → [Rφ]B(φ ∧ ¬Bφ)

and
(¬B¬φ ∧ BB¬φ) → [Rφ]B(φ ∧ B¬φ)

But these sentences are not derivable. Hence his new definition of revision avoids the
Moore problems of rank 0. However, as Segerberg shows, some new problems crop
up in their stead. Suppose φ is such that before revision by φ, ¬B¬(φ ∧ Bφ) is true,
and that, before revision, either B¬BBφ or BB¬Bφ or BBB¬φ is true. Then it follows,
using Preservation and Success, that after revision by φ, on the new understanding
of revision, at least one of B(Bφ ∧ ¬BBφ) or BB(φ ∧ ¬Bφ) or BB(φ ∧ B¬φ) is true.
Thus the agent is confronted with a Moore problem of rank 1.

How can this situation be avoided? Segerberg’s main idea is that the predica-
ment can be avoided by making the problematic sets of sentences inconsistent, “for
inconsistent sets describe (what according to the logic) are impossible situations,
and it is of no concern that Moore problems arise in impossible situations” ([11], p.
100). In the present case, this strategy translates into finding a plausible underlying
logic that makes each of the following sets inconsistent: {¬B¬(φ ∧ Bφ), B¬BBφ},
{¬B¬(φ ∧ Bφ), BB¬Bφ} and {¬B¬(φ ∧ Bφ), BBB¬φ}. Segerberg notes that the
weakest normal logic satisfying this condition is the normal extension of K by the
following schemata:

(1A) B¬BBφ → B¬(φ ∧ Bφ)

(1B) BB¬Bφ → B¬(φ ∧ Bφ)

(1C) BBB¬φ → B¬(φ ∧ Bφ)
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Segerberg shows that all three are derivable, for instance, in KD4 which “is a favorite
with many doxastic logicians” ([11], p. 102). He then goes on to generalize this
approach to Moore problems at rank n and of rank ω, showing that the problematic
situations can be excluded by a reasonable choice of underlying doxastic logic.
Finally, Segerberg connects his approach to Sorensen’s concept of a blindspot by
defining a blindspot as a sentence φ such that either φ is not entertainable or revision
by it leads to an inconsistent state and showing that the following principle comes out
as valid on his approach: revision by an entertainable proposition leads to a consistent
doxastic state if and only if the sentence in question is not a blindspot. Since

[R(φ ∧ ¬Bφ)]B ⊥

and
[R(φ ∧ B¬φ)]B ⊥

are theorems in all logics recommended by Segerberg, in those logics the original
Moore sentences φ ∧ ¬Bφ and φ ∧ B¬φ are blindspots.

This is certainly an impressive treatment of the Moore problems, especially con-
sidering the proposal, which we will grant, that the Moore problems arise in impos-
sible situations where what is impossible or not is defined in a principled manner
relative to logical frameworks that have an independent standing in the literature.
Segerberg can hardly be accused of adhockery in that respect. However, Segerberg’s
strategy may still be ad hoc in another regard. Consider again Segerberg’s new defin-
ition of revision by φ, i.e. Rφ =df . ∗(φ∧ Bφ). First of all, it surely is less simple and
striking than the old one. But second and more important, Segerberg does not give any
independent motivation for his new definition of revision. Certainly, defining revision
in this way does the job of providing a framework within which Moore problems
can be avoided, but apart from this fact little speaks in favor of the new definition.
And, one might ask, why should every revision by φ be, as it were, accompanied by
a revision by Bφ? Suppose φ is an object level sentence such as “it is raining”. Why
should updating by “it is raining” involve updating by “I believe that it is raining”? Of
course, it may often be the case that these two propositions are accommodated in one
swoop, but it is less clear that it has to be that way. For certain kinds of introspective
agents the new definition of revision may be fine. But what about agents that adopt
beliefs routinely without reflecting on those beliefs at the time of adoption? So there
is still a sense in which Segerberg’s approach is, at least to some extent, ad hoc.

Another way of putting it is that Segerberg gives but a partial solution to the Moore
problems, a solution that takes care of those problems for reflective agents (by which
we mean agents for which an update by φ is always accompanied by an update by
Bφ), but that he has little to say about the prospects of dealing with those problems
from the perspective of unreflective agents.

In the light of these remarks, it is natural to ask whether there is some other way to
treat the paradoxes of full DDL. In the next section, we present three different logics
for belief revision that can be found in the literature, each of which can be shown



160 S. Enqvist and E. J. Olsson

to avoid the paradoxes of introspective belief change. We shall begin by introducing
each variant formally, and then discuss what we believe is the common structure
behind each approach.

4 Three Alternative Solutions

4.1 First Solution: Two-dimensional DDL

The first solution we consider is due to Sten Lindström and Wlodek Rabinowicz.
The approach suggested by Lindström and Rabinowicz is to adopt a modified, two-
dimensional semantics for DDL in which formulas are no longer evaluated at single
worlds, but rather at pairs of worlds. Here, the idea is that in an evaluation point (u, v),
the left component u serves as a point of reference, while v functions as a point of
evaluation. In addition, rather than an accessibility relation B over the universe of
a model, a class of accessibility relations is used, one relative to each world in the
universe. Each accessibility relation Bv , where v ∈ W , represents the agent’s beliefs
about the point of reference v.

Formally, the definition of a model from the system SDDL is modified as follows:
Definition 2 A two-dimensional revision model is a structure

〈W , {Bu}u∈W , {R∗
u}u∈W , V〉

defined as follows: for each u ∈ W , Bu is a binary relation over W . For each u ∈ W
R∗

u : 2W → 2W×W is a function from propositions to relations between possible
worlds, such that for each X ⊆ W , if vR∗

u(X)w then

1. Bu(w) ⊆ X
2. if X = ∅ then Bu(w) = ∅
3. if Bu(v) ∩ X = ∅ then Bu(w) = Bu(v) ∩ X

A pointed two-dimensional revision model is a triple (A, u, v) where A is a two-
dimensional revision model and u, v ∈ W .

To speak about these models, we use an extension of the language LDDL . Formally,
the language L2D is given by the following definition where, again, p ∈ Prop:

L2D : p | ¬α | α ∨ α | Bα | [∗α]α | † α

The truth definition for formulas is given as follows:

• (A, u, v) � p iff v ∈ V(p)

• standard Boolean clauses
• (A, u, v) � Bα iff (A, u, w) � α for each w such that vBuw
• (A, u, v) � [∗α]β iff (A, u, w) � β for each w such that vR∗

u(‖α‖u)w
• (A, u, v) � † α iff (A, v, v) � α
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The consequence relation �2D is defined from this semantics as before, and we let
S2D denote the logical system (L2D,�2D). The new component of the language of
this logic is the †-operator, although the meanings of the modal operators present
in LDDL have changed. This operator has the effect of making the current point of
evaluation the current point of reference as well. The formula † α can informally be
interpreted as saying that α is true about the present point of evaluation.

How does this avoid the paradoxes of DDL? As noted by Lindström and Rabi-
nowicz, for each formula α the paradoxical formula of SDDL which we recall was:

¬B¬α ∧ B¬Bα → [∗α](Bα ∧ B¬Bα)

is still valid in this semantics. But, as we said, the meaning of the connectives has
changed. Consider an evaluation point (u, u) in a model A (here, the point of reference
and the point of evaluation is the same). Suppose that

(A, u, u) � ¬B¬α ∧ B¬Bα

so that the agent does not disbelieve α at (u, u) and she believes that she does not
believe α. According to the validity of the previously deemed paradoxical formula,
we must have

(A, u, u) � [∗α](Bα ∧ B¬Bα)

This means that
(A, u, v) � Bα ∧ B¬Bα

But this is not incoherent, since the righthand conjunct here means that at the present
point of evaluation (v), the agent believes that the condition ¬Bα holds for the point
of evaluation prior to revision by α (u). By contrast, the formula

¬B¬α ∧ B¬Bα → [∗α] † (Bα ∧ B¬Bα)

is paradoxical, since the beliefs described as resulting after revision by α are now
beliefs about the point of evaluation after revision, not the one prior to it. But this
formula is not valid in S2D. Thus, the system S2D is free of this paradoxical feature
of SDDL .

4.2 Second Solution: Temporally Indexed Beliefs

The second solution, present in Giacomo Bonanno’s “simple” modal logic for belief
revision, consists in letting a model represent an ω-ordered discrete time-line and use
belief operators supplied with indexes representing points in the succession of time.
Each move forward in time corresponds to an act of revision by some new piece of
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information. The expression Bnα, where n ∈ ω, says that the agent believes α at the
nth point in the succession of time.

Formally, the language LTemp for Bonanno’s system is defined as follows, where
n is any natural number:

LTemp : p | ¬α | α ∨ α | Bnα | Inα

The new operator In is interpreted so that Inα means, informally, that α is the last
piece of information received at the nth point in time, or that α it is the input of the
revision that results in the belief state at time n.

Semantics for LTemp is given by the following definitions:

Definition 3 A temporal belief model is a structure

〈W , {Bn}n∈ω, {In}n∈ω, V〉

such that:

1. Bn(u) ⊆ In(u)

2. if In(u) = ∅ then Bn(u) = ∅
3. if Bn(u) ∩ In+1(u) = ∅ then Bn+1(u) = Bn(u) ∩ In+1(u)

A pointed temporal belief model is a pair (A, u) where A is a temporal belief model
and u ∈ W .

Truth definitions of formulas in a pointed temporal belief model are:

• (A, u) � p iff u ∈ V(p)

• standard clauses for Boolean connectives
• (A, u) � Bnα iff (A, v) � α for each v such that uBnv

• (A, u) � Inα iff In(u) = ‖α‖
Here, as before, ‖α‖ = {v ∈ W : (A, v) � α}. From this semantics we define the
consequence relation �Temp as before, and we define STemp to be the logical system
(LTemp,�Temp). To get a grasp of how the language works, consider the syntactic
form of the Success postulate in this system; this is captured by the validity

�Temp Inα → Bnα

This says that if the belief state at time n is the result of the revision of a prior belief
state by α, then α is believed at time n.

The way that the paradoxes of DDL are avoided in this system is simple. We do
have a form of the Preservation formula valid in STemp, namely:

�Temp ¬Bn¬α ∧ Bnβ → (In+1α → Bn+1β)

That is, if α is consistent with the agent’s beliefs at time n, and the next revision at
time n + 1 has the input formula α, then everything the agent believes at time n she
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believes at time n + 1 also. But we cannot derive any paradoxes from this formula,
since belief operators come with temporal indexes. To see this, let’s try to derive a
paradox in the same manner as before. Consider any formula α. As an instance of
the previous validity we get

�Temp ¬Bn¬α ∧ Bn¬Bnα → (In+1α → Bn+1¬Bnα)

From this, using the STemp-version of Success above together with classical logic, we
can derive

�Temp ¬Bn¬α ∧ Bn¬Bnα → (In+1α → Bn+1α ∧ Bn+1¬Bnα)

The informal content of this formula looks a lot like that of the paradoxical formula
we derived in SDDL . But of course, it is not paradoxical. It says that if α is consistent
with the agents beliefs at time n, and the agent is aware that she does not believe α
at time n, then after revision by α at time n + 1, she believes α and believes that she
did not believe it at time n. By contrast, the formula

�Temp ¬Bn¬α ∧ Bn¬Bnα → (In+1α → Bn+1α ∧ Bn+1¬Bn+1α)

is paradoxical but not valid.

4.3 Third Solution: The DEL Method

The third alternative way of getting out of the paradoxes of DDL we consider in
this chapter is found in Johan van Benthem’s dynamic logic for belief revision. The
system is built on a method used in Dynamic Epistemic Logic (DEL), a framework
for studying dynamics of multi-agent epistemic scenarios. The relevant aspect of
DEL here is not the multi-agent feature, but rather the way in which dynamics is
modelled semantically and reasoned about syntactically.

The method can be described in this way: to model changes of some type of
states, one should first develop a static base language for reasoning about the states
and provide it with a semantics, i.e. define models for it. Then, changes of states are
modelled as operations on models for the static base language, which is extended
with dynamic operators to reason about these operations. If the static base logic is
rich enough in expressive strength, then it is often possible to translate any dynamic
formula into a semantically equivalent formula of the static base logic via socalled
reduction axioms.

For brevity we will present the static and the dynamic part of van Benthem’s
system all in one swoop. For a gentler presentation of the system we refer to [14].
For an introduction to DEL, see [15].

We begin by defining the models for the static part of the logic:
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Definition 4 A conditional belief model is a structure

〈W , {σu}u∈W , V〉

defined as follows. For each u ∈ W , σu : 2W → 2W is called a selection function
and satisfies the following properties:

1. σu(X) ⊆ X
2. X = ∅ implies σu(X) = ∅
3. if σu(X) ∩ Y = ∅ then σu(X ∩ Y) = σu(X) ∩ Y

V is a valuation function as before, and pointed conditional belief models are defined
as before.

The central component of these models is the set of selection functions, which
can be thought of as encoding the conditional beliefs of the agent. The intuitive
explanation is that, for each proposition X ⊆ W , the set σu(X) consists of the “most
plausible” worlds from the agent’s point of view at the world u. Actual beliefs of the
agent are defined as beliefs conditional on the trivial proposition. That is, the set of
possible worlds compatible with the agent’s actual beliefs at the world u is the set
σu(W). The semantics presented in [14] is a bit different from the presentation here
and uses orders of plausibility rather than selection functions, but this is irrelevant
to the current issue.

To model dynamics of the models, we will use an operation that van Benthem
calls lexicographic upgrade. Or, rather, we use a version of this operation, adapted to
the semantics here based on selection functions which is slightly more general than
van Benthem’s semantics. Consider a proposition X ⊆ W in a model A; we want
a way to revise the selection function u at a world u by X. This is provided by the
following definition:

Definition 5

σ⇑X
u (Y) =

{

σu(Y) ∩ X if σu(Y) ∩ X = ∅
σu(X) if σu(Y) ∩ X = ∅

Given a conditional belief model A = 〈W , {σu}u∈W , V〉 and X ⊆ W , we define the
revised model A ⇑ X by

A ⇑ X =df . 〈W , {σ⇑X
u }u∈W , V〉

We leave it to the reader to check that this is always a well defined conditional belief
model. Notice that we have

σu(W) ∩ X = ∅ =⇒ σ⇑X
u (W) = σu(W) ∩ X

With the definition of actual beliefs as beliefs conditional on the trivial proposition,
this property can be seen as a semantic formulation of the Vacuity postulate.
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Turning to the syntactic side of the system, we define the language LDEL:

LDEL : p | ¬α | α ∨ α | B(α | α) | Aα | [⇑ α]α

Here, B(α | β) says that α is believed conditionally on β, and [⇑ α]β says that
the condition β will hold after revision by α. The operator A is the global necessity
operator (see [2]). Aα means that α holds in all possible worlds of a model; it can
be thought of as expressing logical necessity. A static formula of LDEL is a formula
without any occurrences of the dynamic operators. We define an operator for actual
beliefs by Bα =df . B(α | p ∨ ¬p), where p is a propositional variable.

Truth definitions for formulas in a pointed model are:

• (A, u) � p iff u ∈ V(p)

• standard clauses for Boolean connectives
• (A, u) � B(α | β) iff σu(‖β‖) ⊆ ‖α‖
• (A, u) � Aα iff (A, v) � α for each v ∈ W
• (A, u) � [⇑ α]β iff (A ⇑ ‖α‖ , u) � β

The consequence relation �DEL and the system SDEL are now defined as before.
It is instructive to look at the reduction axioms for SDEL . These are as follows (we

follow van Benthem’s axiomatization almost without any modification):

⇑1: [⇑γ] q ↔ q, q a propositional atom
⇑2: [⇑ γ]¬α ↔ ¬[⇑ γ]α
⇑3: [⇑ γ](α ∨ β) ↔ ([⇑ γ]α ∨ [⇑ γ]β)

⇑4: [⇑ γ]Aα ↔ A[⇑ γ]α
⇑5: [⇑ γ]B(α | β) ↔

↔ (E(γ ∧ [⇑ γ]β) ∧ B([⇑ γ]β → [⇑ γ]α | γ)∨
∨(¬E(γ ∧ [⇑ γ]β) ∧ B([⇑ γ]α | [⇑ γ]β))

The reader can check that these axioms are sound in the semantics for SDEL . These
axioms can be thought of as providing recursive definitions of the truth conditions of
dynamic formulas in terms of static formulas. Together with a suitable set of complete
axioms for the static fragment of SDEL and a rule for substitution of equivalents, they
provide a complete axiomatization of SDEL . To prove this result, one exploits the
soundness of the reduction axioms to prove the following proposition as a lemma.
The proof is excluded here.

Proposition 1 There exists a function ρ : LDEL → LDEL such that for each formula
α ∈ LDEL, the formula ρ(α) is a static formula and, furthermore, for each pointed
conditional belief model (A, u),

(A, u) � α ⇐⇒ (A, u) � ρ(α)

To get a feel for the system, let us look at some validities. Here, p, q are two propo-
sitional variables and ⊥ is any tautological contradiction. First, revision by p leads
the agent to believe p:
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�DEL [⇑ p]Bp

Second, revision by a consistent sentence results in a consistent belief state:

�DEL ¬A¬p → [⇑ p]¬B ⊥

What about Preservation? We do indeed have a form of the Preservation principle
valid in this system:

(i) �DEL ¬B¬p ∧ Bq → [⇑ p]Bq

Now, if validity in SDEL were closed under substitutions for propositional variables
(as is the case in most logics), then obviously we could derive a paradox in the same
manner as in SDDL . However, this is not the case, and it is in fact this feature of SDEL

that makes it non-paradoxical. In particular, the following substition instance of (i):

(ii) ¬B¬α ∧ B¬Bα → [⇑ α]B¬Bα

is invalid. This is exactly the formula that would be required to derive a paradox in
SDEL . By contrast, the following formula is valid:

(iii) ¬B¬α ∧ B¬Bα → B(¬Bα | α)

Now, what does this formula say? it says that, if ¬B¬α and B¬Bα are true at some
world in a model, than from the point of view of the agent in that world, ¬Bα will
be true in the most plausible worlds where α is true. Now, the most plausible worlds
where α is true, prior to revision by α, are exactly those worlds that are compatible
with the agent’s actual beliefs after revision. But since the truth values of formulas
involving beliefs will change at every world in a model through the act of revision by
α, it does not follow from this that ¬Bα will be true at all worlds that are compatible
with the agent’s beliefs after the revision. This is why (ii) fails to be valid.

5 Comparison of the Solutions

5.1 What the Three Approaches Have in Common

The three solutions we have just presented are, we think, essentially one and the
same. All three of them are based on making a distinction between two different
perspectives, the state of affairs prior to revision and the one after revision. This
is perhaps clearest in Lindström and Rabinowicz’s system; it is embodied quite
explicitly in the distinction between the point of reference (typically being the state
prior to revision) and the point of evaluation (typically the state after revision).
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But we see the same distinction very clearly in Bonanno’s temporal system of
belief revision, although in a different form. Here, it turns up through the temporally
indexed belief operators. In particular, in the formula

¬Bn¬α ∧ Bn¬Bnα → (In+1α → Bn+1α ∧ Bn+1¬Bnα)

which is provable in STemp, the state prior to revision corresponds to the time-point
represented by the number n, and the state after revision corresponds to n + 1.

It is perhaps a bit less obvious how van Benthem’s system SDEL fits into this
picture, but we think it does. We postpone the task of explaining this to Sect. 5.3,
where we will be better prepared to do so. The fact that the same solution to the
paradoxes can be found in three seemingly rather different frameworks for belief
revision counts, we think, as evidence in favor of this approach as a particularly
natural way to resolve the paradoxes. Think of it in analogy with the case of various
definitions of computable functions, for example in terms of recursive functions or
in terms of Turing machines. The wellknown fact that these definitions turn out to
be equivalent speaks strongly in favor of the idea that they all capture the pre-formal
notion of computability in a natural way. The present situation, where three different
formalisms can be seen to resolve the paradoxes of DDL in the same way, is similar.

To strengthen these claims, we shall establish a formal correspondence between
the three logical systems S2D, STemp and SDEL . More specifically, we shall show that
the system S2D can in a precise sense be interpreted in STemp, and in turn, SDEL can be
interpreted in S2D. From this will follow that SDEL can be interpreted in STemp also.
These interpretation results will help to clarify the deeper connection that we think
exists between the different systems, particularly with respect to how they handle the
paradoxes of DDL. In order to formally prove these claims, we need to make precise
what it means that a logical system can be interpreted in another. This is captured by
the following definition.

Definition 6 Given logical systems S1 = (L1,�1) and S2 = (L2,�2), an inter-
pretation of S1 in S2 is any function F : L1 → L2 such that F(p) = p for any
p ∈ Prop. The interpretation F is said to be a sound interpretation of S1 if, for all
sets of formulas � ∪ {α} ⊆ L1, we have

� �1 α =⇒ F(�) �2 F(α)

So a sound interpretation of a logical system S1 in S2 is a translation that maps sen-
tences of S1 to sentences of S2 in a way that preserves logically valid consequences.
Just like when we interpret a logical system in a semantics, we might consider the
question of whether an interpretation is complete in addition to being sound. We could
say that an interpretation F of S1 in S2 is sound and complete if, for all �∪{α} ⊆ L1,
we have

� �1 α ⇐⇒ F(�) �2 F(α)
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The issue of completeness will not concern us in this chapter. Rather, we will focus
on soundness. Completeness is a welcome property of any interpretation of a logical
system, but soundness is absolutely crucial. If an interpretation is not sound, it is
doubtful whether it can be called a proper interpretation at all. Also, as we shall
see in the next section, the soundness property of the interpretations we provide is
enough to make the correspondence quite enlightening.

5.2 Interpreting S2D in STemp

Our first result is that, in the sense of Definition 6, there exists a sound interpretation
F of S2D in STemp. First, by induction over the complexity of formulas, we define the
class of functions

τn,m : L2D → LTemp

where n, m ∈ ω as follows:

1. τn,m(p) = p
2. τn,m(¬α) = ¬τn,m(α)

3. τn,m(α ∨ β) = τn,m(α) ∨ τn,m(β)

4. τn,m(Bα) = Bmτn,n(α)

5. τn,m([∗α]β) = Im+1τn,n(α) → τn,m+1(β)

6. τn,m(† α) = τm,m(α)

We then set F =df . τ0,0. For this mapping F we have the following result, proved in
Appendix A.1:

Theorem 1 The translation F constitutes a sound interpretation of the system S2D

in the system STemp.

To see how this interpretation relates the two systems to each other, let us consider
the interpretation of the formula

¬B¬p ∧ B¬Bp → [∗p](Bp ∧ B¬Bp)

given by F. This formula is an instance of the paradoxical schema we derived in SDDL .
As we mentioned earlier, the formula is valid in S2D also, and therefore by soundness
its interpretation under F is valid in STemp. Now, Lindström and Rabinowicz claim that
this formula is not paradoxical under the interpretation given to it in two-dimensional
semantics. Then, its interpretation under F had better not be paradoxical either!

Indeed it is not. For the formula

(1) F(¬B¬p ∧ B¬Bp → [∗p](Bp ∧ B¬Bp))

is identical to
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(2) (¬B0¬p ∧ ¬B0¬B0p) → (I1p → B1p ∧ B1¬B0p)

which is perfectly fine. We can derive this as follows: first, recalling that F = τ0,0
and using translation clauses for Boolean connectives, atomic formulas and B, the
formula (1) becomes

¬B0p ∧ B0¬B0p → τ0,0([∗p](Bp ∧ B¬Bp))

Carrying out the translation further, we get

¬B0p ∧ B0¬B0p → (I1p → τ0,1(Bp) ∧ τ0,1(B¬Bp))

Applying the function τ0,1 to its arguments here, we get

¬B0p ∧ B0¬B0p → (I1p → B1p ∧ B1τ0,0(¬Bp))

But τ0,0(¬Bp) = ¬B0p, so now we arrive at (2) as desired.
By contrast, let’s look at the translation of the formula

¬B¬p ∧ B¬Bp → [∗p] † (Bp ∧ B¬Bp)

which is paradoxical. Applying the translation F to this formula, instead of (2) we
will get the formula

(3) (¬B0¬p ∧ ¬B0¬B0p) → (I1p → B1p ∧ B1¬B1p)

which is indeed paradoxical, and not valid in STemp. To see what happens here, we
can carry out the translation step by step and check that we eventually arrive at the
formula

¬B0p ∧ B0¬B0p → (I1p → τ0,1(†(Bp ∧ B¬Bp))

Applying the translation clause for †, this becomes

¬B0p ∧ B0¬B0p → (I1p → τ1,1(Bp ∧ B¬Bp)

But
τ1,1(Bp ∧ B¬Bp) = B1p ∧ B1τ1,1(¬Bp) = B1p ∧ B1¬B1p

and so we arrive at (3).
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5.3 Interpreting SDEL in S2D

We now show how to interpret SDEL in S2D. The central observation here is that, since
we know that there is a translation ρ that sends every formula α to an equivalent static
formula ρ(α), it suffices to interpret the static formulas of SDEL in order to get a full
interpretation of SDEL in S2D.

Formally, we define the mapping τ as follows:

1. τ (p) = p
2. τ (¬α) = ¬τ (α)

3. τ (α ∨ β) = τ (α) ∨ τ (β)

4. τ (Aα) = [∗¬τ (α)]B ⊥
5. τ (B(α | β)) = [∗τ (β)]Bτ (α)

Clearly, every static formula of LDEL receives an interpretation by this mapping.
Letting ρ be any translation function as specified in Proposition 1, we define an
interpretation F : LDEL → L2D by setting

F(α) = τ (ρ(α))

for each α ∈ LDEL . As before, we have the following soundness result for this
interpretation:

Theorem 2 The translation F constitutes a sound interpretation of the system SDEL

in the system S2D.

The proof of this result is in Appendix A.2 Furthermore, the composition of two
sound interpretations (whenever it is well defined) is obviously a sound interpretation.
So by the existence of a sound interpretation of SDEL in S2D and a sound interpretation
of S2D in STemp, we get:

Corollary 1 There exists a sound interpretation of SDEL in STemp.

An interesting aspect of the translation F presented in this section is that, clearly,
for any LDEL-formula α, the corresponding L2D-formula F(α) will never contain
any occurrence of the operator †. Our analysis of this state of affairs is this: consider
a formula

(A) B(α | β)

contrasted with
(B) [⇑ β]Bα

What is the difference in meaning between these two formulas? We think it can be
understood in terms of Lindström and Rabinowicz’s distinction between point of
evaluation and point of reference. Both (A) and (B) can be thought of as expressing
that the formula α is believed after revision by β, but the formula α has different
meaning in the two cases. In (A), the point of reference is held fixed, while in (B), the
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formula α is evaluated against a different point of reference than β. However, since
the interpretation F takes a detour through the static fragment of the system SDEL ,
in which no formulas of the form (B) occur, it makes sense that the operator † does
not occur in the interpretation of any formulas: it has exactly the effect of changing
the point of reference.

Thus, by extracting this insight from our interpretation of SDEL in S2D, we have
managed to show how SDEL also fits into the picture we described earlier. The dis-
tinction between a perspective corresponding to the states of affairs before and after
revision, respectively, is mirrored in SDEL by the distinction between expressions of
the form (A) and (B). Expressions of the first kind describe our revised beliefs about
the state prior to revision, and expressions of the second kind describe our revised
beliefs about the state of affairs after revision. Really, we do not have three different
solutions; we have three different logical systems, each of which solves the problem
with full DDL in one and the same way.

6 Discussion

We have argued that the systems S2D, STemp and SDEL all solve the problems of full
DDL by distinguishing between two perspectives, expressed most explicitly in Lind-
ström and Rabinowicz’s two-dimensional approach. Given this, it is striking to find
that Segerberg himself has suggested a two-dimensional approach to resolve another
well-known paradox, namely Fitch’s paradox (in a paper from 1994 with Rabinowicz
[9]). Given the obvious similarities between Fitch’s paradox and the paradoxes of full
DDL, and given that Segerberg argued for a two-dimensional approach to the former,
one would have expected him to embrace a two-dimensional approach to the latter
as well. Thus it is surprising that Segerberg instead bases his solution on Sorensen’s
notion of a blindspot, which is essentially unrelated to the two-dimensional approach.

In fact it is not only surprising but, we think, it is questionable from a method-
ological point of view. Given the affinities between these paradoxes it would be
desirable to treat them in a uniform fashion. Thus, for Segerberg, who is associated
with two-dimensional semantics and the blindspot approach, the following uniform
approaches suggests themselves:

(1) Treating both paradoxes as involving blindspots
(2) Treating both paradoxes in a two-dimensional semantics

By contrast, the following would seem less attractive from a systematic perspective:

(3) Treating Fitch’s paradox in a two-dimensional semantics and Moore’s paradox
as involving blindspots

(4) Treating Fitch’s paradox as involving blindspots and Moore’s paradox in a two-
dimensional semantics

And yet, as we saw, Segerberg’s published responses to the paradoxes correspond to
option (3), a suboptimal strategy from a systematic perspective. Finally, the result of
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the present article suggests that option (2) is, in a sense, considerably more plausible
than meets the eye. More precisely, (2) is but a specific variant of a more general
approach:

(2′) Treating both paradoxes as arising from failure to distinguish between different
perspectives

As we have argued, two-dimensional DDL, Bonanno’s temporal system and van
Benthem’s DEL-style system are all instances of (2′). They all resolve the para-
doxes by distinguishing between two different perspectives, in the two-dimensional
case the point of reference and the point of evaluation, in Bonanno’s case the time
before and after revision, and in van Benthem’s logic between conditional beliefs and
beliefs after revision. Thus, the main competitor to the blindspot approach, as things
must look from Segerberg’s point of view, is more widely adopted, and thus has a
stronger standing in the research community, than the apparent diversity could lead
one to believe. Perhaps even more important is the fact that the main competitor—
the perspectival strategy—is a very natural way of dealing with the problems, or
else researchers with widely different starting points would not have converged on
it. Furthermore, to reconnect with our discussion of Segerberg’s own solution, the
perspectival strategy is perfectly compatible with the traditional view that we often
revise simply by α rather than by α ∧ Bα, and are quite rational in doing so. Not
only does this accord better with our pre-theoretical conceptions of things (at least
those of the present authors), but it means that this strategy works for reflective
agents and unreflective agents alike. Unlike the perspectival strategy, Segerberg’s
solution is dependent on the assumption that the agent in question is reflective. Thus,
unless an independent motivation is provided for not taking unreflective agents into
consideration, the perspectival strategy stands out as the more general solution.

Appendix: Proofs of Main Results

A.1 Proof of Theorem 1

The proof is based on constructing models for S2D out of models for STemp, in the
following manner:

Definition 7 Given a temporal belief model A = 〈W , {Bn}n∈ω, {In}n∈ω, V〉, we
define the two-dimensional revision model

A2D = 〈W∗, {Bu}u∈W , {R∗
u}u∈W , V∗〉

as follows. We set
W∗ = {(u, n) : u ∈ W & n ∈ ω}
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For all (u, n), (v, m), (w, k) ∈ W∗, we set (u, n)B(v,m)(w, k) iff uBnw and k = m.
We set (u, n)R∗

(v,m)(X)(w, k) iff

• u = w,
• k = n + 1 and
• Z = Ik(u), where Z = {t ∈ W : (t, m) ∈ X}
Finally, we set (u, n) ∈ V∗(p) iff u ∈ V(p).

The construction is sound by the following proposition:

Proposition 2 A2D is a two-dimensional revision model, for any temporal belief
model A.

Proof We need to check that, for each X ⊆ W∗, if (u, m)R∗
(v,n)(X)(w, k) then

1. B(v,n)(w, k) ⊆ X
2. if X = ∅ then B(v,n)(w, k) = ∅
3. if B(v,n)(u, m) ∩ X = ∅ then B(v,n)(w, k) = B(v,n)(u, m) ∩ X

So suppose (u, m)R∗
(v,n)(X)(w, k). Then u = w, k = m + 1 and

Im+1(u) = {t ∈ W : (t, n) ∈ X}

Now, since
Bm+1(u) ⊆ Im+1(u)

item (1) follows easily by definition of the relation B(v,n): for if
(u, m + 1)Bv,n(w′, k′), then k′ = n and uBm+1w′, so w′ ∈ Im+1(u), so (w′, n) =
(w′, k′) ∈ X.

For (2), note that X = ∅ implies Im+1(u) = ∅, so Bm+1(u) = ∅. Pick w′ such that
uBm+1w′. Then (u, m + 1)Bv,n(w′, n) so B(v,n)(u, m + 1) = ∅.

Lastly, for (3), suppose B(v,n)(u, m)∩X = ∅. Let (w′, k′) ∈ B(v,n)(u, m)∩X = ∅;
then k′ = n and uBmw′. Since (w′, n) ∈ X, w′ ∈ Im+1(u). So

Bm(u) ∩ Im+1(u) = ∅

and hence
Bm+1(u) = Bm(u) ∩ Im+1(u)

This means that
B(v,n)(u, m + 1) = B(v,n)(u, m) ∩ X

To see this, suppose (u, m + 1)B(v,n)(s, i). Then i = n, and uBm+1s. But then uBms
and s ∈ Im+1(u). So (u, m)B(v,n)(s, n) and (s, n) ∈ X.

Conversely, suppose (u, m + 1)B(v,n)(s, i) and (s, i) ∈ X. By definition of Bv,n,
i = n. So (s, n) ∈ X and therefore s ∈ Im+1(u). Furthermore, uBm+1s. So s ∈ Bm(u)∩
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Im+1(u), hence s ∈ Bm+1(u). By definition this means that (u, m +1)B(v,n)(s, n), i.e.
(u, m + 1)B(v,n)(s, i) as required.

We now define a mapping G from pointed temporal belief models to pointed
two-dimensional revision models by setting

G(A, u) =df . (A2D, (u, 0), (u, 0))

for each pointed temporal revision model (A, u). We then have the following result,
which gives the key to the soundness result for F:

Lemma 1 For any pointed temporal model (A, u) and any L2D-formula α, we have

(A, u) � F(α) ⇐⇒ G(A, u) � α

Proof We show, for any formula α, that for each world u in the universe of A, we
have both

(1) (A, u) � τn,m(α) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � α

and
(2) (A, u) � τn,m(α) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � α

for all v ∈ W . From (1) and (2) together it follows that

(A, u) � τ0,0(α) ⇐⇒ (A2D, (u, 0), (u, 0)) � α

i.e.
(A, u) � F(α) ⇐⇒ G(A, u) � α

as desired.
The proof goes by induction on the length of α. For propositional variables, both

clauses are immediate, and the steps for Boolean connectives are easy.
Step for B: Suppose (A, u) � τn,m(Bα), i.e. (A, u) � Bmτn,n(α). Letv ∈ W and let

(w, k) be such that (u, m)Bv,n(w, k). Then by definition uBmw and k = n, so we must
have (A, w) � τn,n(α) and by clause (1) of the IH we get (A2D, (v, n), (w, n)) � α.
So we must have (A2D, (v, n), (u, m)) � Bα. This shows that

(1) (A, u) � τn,m(Bα) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � Bα

Suppose that (A, u) � τn,m(Bα), i.e. (A, u) � Bmτn,n(α). Then there exists w ∈ W
such that uBmw and (A, v) � τn,nα. Let v ∈ W ; then we have (u, m)B(v,n)(w, n) and
by clause (2) of IH we have (A2D, (v, n), (w, n)) � α, hence (A2D, (v, n), (u, m)) �

Bα. We have shown that
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(2) (A, u) � τn,m(Bα) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � Bα

as required.
Step for ∗: Suppose (A, u) � τn,m([∗α]β), i.e.

(A, u) � Im+1τn,n(α) → τn,m+1(β)

We note that by the IH we have, for each v ∈ W ,

(‡)
∥

∥τn,n(α)
∥

∥

A = {t ∈ W : (t, n) ∈ ‖α‖(v,n)}

Suppose for v ∈ W that (u, m)R∗
(v,n)(‖α‖(v,n))(w, k). Then k = m +1. Furthermore,

by definition and by (‡) we get

Im+1(u) = {t ∈ W : (t, n) ∈ ‖α‖(v,n)} = ∥

∥τn,n(α)
∥

∥

A

So (A, u) � Im+1(τn,n(α)). Thus, we get (A, u) � τn,m+1(β). By clause (1) of
the IH, this gives (A2D, (v, n), (w, m + 1)) � β, i.e. (A2D, (v, n), (w, k)) � β. So
(A2D, (v, n), (u, m)) � [∗α]β. We have thus shown

(1) (A, u) � τn,m([∗α]β) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � [∗α]β

Suppose (A, u) � τn,m([∗α]β), i.e. (A, u) � Im+1τn,n(α) but (A, u) � τn,m+1(β).
Pick v ∈ W . Using (‡) we obtain

Im+1(u) = ∥

∥τn,n(α)
∥

∥

A = {t ∈ W : (t, n) ∈ ‖α‖(v,n)}

From this we can conclude that (u, m)R∗
(v,n)(‖α‖(v,n))(u, m + 1). Furthermore, by

clause (2) of the IH we have (A2D, (v, n), (u, m + 1) � β), so (A2D, (v, n), (u, m) �

[∗α]β). We have thus shown

(2) (A, u) � τn,m([∗α]β) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � [∗α]β

as required.
Step for †: Given that the IH holds for α, suppose first that we have (A, u) �

τn,m(† α), i.e. (A, u) � τm,m(α). Then we have by clause (1) of IH: for all v ∈ W ,
(A2D, (v, m), (u, m)) � α. In particular, (A2D, (u, m), (u, m)) � α. This means that,
for all v ∈ W , (A2D, (v, n), (u, m)) � † α. We have established:

(1) (A, u) � τn,m(† α) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � † α

On the other hand, suppose (A, u) � τn,m † α, i.e. (A, u) � τm,m(α). Then we
have by clause (2) of IH: for all v ∈ W , (A2D, (v, m), (u, m)) � α. In particular,
(A2D, (u, m), (u, m)) � α. This means that, for all v ∈ W , (A2D, (v, n), (u, m)) �

† α. We have established:
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(2) (A, u) � τn,m(† α) =⇒ ∀v ∈ W : (A2D, (v, n), (u, m)) � † α

This ends the proof.

We now prove Theorem 1 as follows: suppose F(�) �Temp F(α). Then there is
a pointed temporal belief model (A, u) such that (A, u) � F(�) but (A, u) � F(α).
By the previous theorem, G(A, u) � � but G(A, u) � α. Hence � �2D α. This ends
the proof of the theorem.

A.2 Proof of Theorem 2

We use the same strategy as in the previous section:

Definition 8 Given a two-dimensional model A and a world v in the universe of A,
we define the conditional belief model

ADEL[v] = 〈W∗, {σu}u∈W∗, V∗〉

as follows: we set W∗ = W and V∗ = V . For each u ∈ W and X ⊆ W , we set

σu(X) = {w ∈ W : ∃p ∈ W [uR∗
v(X)p and pBvw]}

It is easily checked that ADEL[v] is a conditional belief model. We define the
mapping G from pointed two-dimensional revision models to pointed conditional
belief models by setting G(A, v, u) = (ADEL[v], u) for a pointed two-dimensional
revision model (A, v, u). We have the following result:

Lemma 2 For any pointed two-dimensional model (A, u, v) and any static LDEL-
formula α we have

(A, u, v) � τ (α) ⇐⇒ G(A, u, v) � α

Proof By induction over the length of static formulas we show that, for all v ∈ W
we have

(A, u, v) � τ (α) ⇐⇒ (ADEL[u], v) � α

The steps for atomic formulas and Boolean connectives are trivial.
Step for A: suppose (A, u, v) � τ (Aα), i.e. (A, u, v) � [∗¬τ (α)]B⊥. By seriality

of R∗
u(‖¬τ (α)‖A

u ) there must be some w such that vR∗
u(‖¬τ (α)‖A

u )w. Furthermore,
clearly we have Bu(w) = ∅, and this means that ‖¬τ (α)‖A

u = ∅. Hence ‖τ (α)‖A
u =

W = W∗. By the IH, ‖α‖ADEL[u] = W∗, and so we have (ADEL[u], v) � Aα as
required.

Conversely, suppose (A, u, v) � τ (Aα), i.e. (A, u, v) � [∗¬τ (α)]B ⊥. Then
there is some w such that vR∗

u(‖¬τ (α)‖A
u )w and Bu(w) = ∅. Hence there is some

s such that wBus. By the definition of a two-dimensional model, s ∈ ‖¬τ (α)‖ i.e.
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(A, u, s) � ¬τ (α). Hence (A, u, s) � τ (α), and by the IH (ADEL[u], s) � α. Hence
(ADEL[u], v) � Aα as required.

Step for B: suppose (A, u, v) � τ (B(α | β)), i.e.

(A, u, v) � [∗τ (β)]Bτ (α)

Suppose w ∈ σv(‖β‖ADEL[u]). By the IH this means that w ∈ σv(‖τ (β)‖A
u ), so there

is some s such that vR∗
u(‖α‖A

u )s and sBuw. Since (A, u, v) � [∗τ (β)]Bτ (α) we have
(A, u, s) � Bτ (α) so (A, u, w) � τ (α). By IH we get (ADEL[u], w) � α. We have
thus shown that (A, u, v) � B(α | β) as required.

Conversely, suppose that (A, u, v) � τ (B(α | β)), i.e.

(A, u, v) � [∗τ (β)]Bτ (α)

Then there is some s such that vR∗
u(‖τ (β)‖A

u )s and (A, u, s) � Bτ (α). This means that
for some w we have sBuw and (A, u, w) � τ (α). By the IH we have vR∗

u(‖β‖ADEL[u])s,
and thus we have w ∈ σv(‖β‖ADEL[u]). Furthermore, by the IH again, we have
(ADEL[u], w) � α. Thus (ADEL[u], v) � B(α | β) as required.

Using the fundamental property of the translation ρ used in the construction of F,
this lemma immediately entails:

Corollary 2 For any pointed two-dimensional model (A, u, v) and any LDEL-
formula α we have

(A, u, v) � F(α) ⇐⇒ G(A, u, v) � α

From this result, we can prove Theorem 2 just like we proved Theorem 1.

References

1. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.

2. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge Uni-
versity Press.

3. Bonanno, G. (2005). A simple modal logic for belief revision. Synthese, 147, 193–228.
4. Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states. Cam-

bridge, MA: MIT Press.
5. Hansson, S.-O. (1999). A textbook of belief dynamics: Theory change and database updating.

Dordrecht: Kluwer Academic.
6. Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge: MIT Press.
7. Hintikka, J. (1962). Knowledge and belief: An introduction to the logic of the two notions.

Ithaca: Cornell University Press.
8. Lindström, S., & Rabinowicz, W. (1999). DDL unlimited: Dynamic doxastic logic for intro-

spective agents. Erkenntnis, 50, 353–385.
9. Rabinowicz, W., & Segerberg, K. (1994). Actual truth, possible knowledge. Topoi, 13, 101–115.



178 S. Enqvist and E. J. Olsson

10. Segerberg, K. (1998). Irrevocable belief revision in dynamic doxastic logic. Notre Dame Jour-
nal of Formal Logic, 39, 287–306.

11. Segerberg, K. (2006). Moore problems in full dynamic doxastic logic. In J. Malinowski, &
A. Pietruszczak (Eds.), Poznan studies in the philosophy of the sciences and the humanities,
Essays in logic and ontology (pp. 95–110). Amsterdam: Rodopi.

12. Segerberg, K., & Leitgeb, H. (2007). Dynamic doxastic logic—why, how and where to? Syn-
these, 155, 167–190.

13. Sorensen, R. A. (1988). Blindspots. Oxford: Clarendon Press.
14. van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical

Logics, 17, 129–155.
15. van Ditmarsch, H. P., van der Hoek, P., & Kooi, B. P. (2005). Dynamic epistemic logic. Dor-

drecht: Springer.


	154 Segerberg on the Paradoxes of Introspective Belief Change
	1 Introduction
	2 DDL and the Paradoxes
	3 Segerberg's Solution
	4 Three Alternative Solutions
	4.1 First Solution: Two-dimensional DDL
	4.2 Second Solution: Temporally Indexed Beliefs
	4.3 Third Solution: The DEL Method

	5 Comparison of the Solutions
	5.1 What the Three Approaches Have in Common
	5.2 Interpreting S2D in STemp
	5.3 Interpreting SDEL in S2D

	6 Discussion
	Appendix: Proofs of Main Results
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

	References


