
Three Traditions in the Logic of Action:
Bringing them Together

Andreas Herzig, Tiago de Lima, Emiliano Lorini and Nicolas Troquard

Abstract We propose a Dynamic Logic of Propositional Control (DL-PC) that is
equipped with two dynamic modal operators: one of ability and one of action. We
integrate into DL-PC the concept of ‘seeing to it that’ (abbreviated by stit) as studied
by Belnap, Horty and others. We prove decidability of DL-PC satisfiability and
establish the relation with the logic of the Chellas stit opertor.

1 Introduction

Krister Segerberg’s favourite logic of action is clearly dynamic logic [1–3]. However,
there is another important tradition focusing on ‘rival’ modal logics, such as Pörn’s
logic of bringing-it-about [4–7] and Belnap et col.’s logic of seeing-to-it-that [8–10].
The latter logics should be called more precisely logics of agency: they allow to rea-
son about whether an agent is agentive for a proposition.Beyond dynamic logic and
logics of agency, other quite different logical approaches to action were developed in
artificial intelligence (AI). There, the aim is to design practically usable formalisms
that allow knowledge representation e.g. for automated planning. In Thomason’s
words, “to formalize realistic planning domains, to provide knowledge representa-
tion support for automated planning systems […] requires an axiomatization of what
Segerberg called the change function, which tells us what to expect when an action
is performed” [11]. AI formalisms such as the situation calculus [12] focus on the

A. Herzig (B) · E. Lorini
IRIT, University of Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
e-mail: Andreas.Herzig@irit.fr

T. de Lima
University of Artois and CNRS, Rue Jean Souvraz SP 18,
62307 Lens Cedex, France

N. Troquard
LOA-ISTC, Trento, Italy

R. Trypuz (ed.), Krister Segerberg on Logic of Actions, 61
Outstanding Contributions to Logic 1, DOI: 10.1007/978-94-007-7046-1_4,
© Springer Science+Business Media Dordrecht 2014

62 A. Herzig et al.

problem of defining such change functions, which became known under the denom-
ination ‘frame problem’ and was considered to be one of the major challenges of AI.
By far the most popular solution is in terms of Reiter’s basic action theories which
axiomatise the change function in terms of so-called successor state axioms [13, 14].
The definition of such axioms requires quantification over actions, which is a feature
distinguishing these formalisms from dynamic logic and logics of agency that do not
provide such a facility.

It is the aim of the present chapter to bring together the above three traditions in
logics of action: dynamic logic, seeing-to-it-that (stit) logic, and situation calculus.
We start from dynamic logic, into which we embed the situation calculus à la Reiter
and integrate a stit operator of agency. More precisely, we are going to resort to a
variant of dynamic logic that we call dynamic logic of propositional control (DL-PC).

As far as the embedding of situation calculus is concerned we build on the pre-
vious work of van Ditmarsch et al. [15]. There, basic action theories were mapped
to a dynamic logic of propositional assignments. Let us call that logic DL-PA. It
is a version of dynamic logic whose atomic programs are sets of assignments of
propositional variables each of which is of the form p←ϕ where p is a proposi-
tional variable and ϕ is a formula. Such an assignment is always executable. DL-PA
does not have quantification over actions, thus demonstrating that Reiter’s solution
to the frame problem actually does not require quantification over actions (contrarily
to what Reiter had claimed). While agents play no particular role in DL-PA —that
may actually be said to be rather about events than about actions—our logic DL-PC
has ‘true’ actions: assignments performed by agents. An agent can only perform an
assignment if he controls that assignment, in other words, if it is in his repertoire.1

Things are more involved if we want to embed logics of agency into our logic.
The difficulties are threefold.

• Just as the above DL-PA, dynamic logic is about events rather than actions: agents
do not play a role in dynamic logic. As we have said above, this can be overcome
by associating repertoires of assignments to agents.
• In stit logic the agents act simultaneously, while (at least in the basic version of)

dynamic logic actions are performed in sequence. We therefore need a version
of dynamic logic with parallel actions. The above DL-PA actually already pro-
vides for sets of assignments; in DL-PC these are generalised to sets of authored
assignments.
• The dynamic logic operator 〈α〉 talks about the possibility of the occurrence of

program α and not about the occurrence of α itself: instead of actual performance
of an action, dynamic logic is rather about the opportunity to perform an action.

In order to overcome the third difficulty we are going to add to dynamic logic a
second kind of dynamic operator, noted 〈〈α〉〉: while 〈α〉 talks about the opportunity
of performance of α, the new dynamic operator 〈〈α〉〉 is about the performance of

1 Our syntax is actually a bit more restrictive: instead of p←ϕ it only allows for assignments
to either true or false, written +p and −p. The more general assignment p←ϕ can however be
simulated by the dynamic logic program (ϕ?;+p)∪ (¬ϕ?;−p), where ‘?’ is test, ‘;’ is sequential
composition, and ‘; ∪’ is nondeterministic composition.

Three Traditions in the Logic of Action: Bringing them Together 63

α. In the semantics we add a successor function modelling the next actions that are
going to take place.

To sum it up: the language of our dynamic logic of propositional control DL-
PC has a language in terms of two kinds of dynamic operators; the arguments of the
dynamic operators are group actions; group actions are sets of assignments performed
by agents. The semantics of DL-PC has a repertoire function and a successor function
that both associate sets of assignments to agents. An obvious requirement is that if
a group action α takes place according to the successor function then each of the
individual actions in α must be executable, i.e. each individual assignment must be
in the repertoire of the agent performing it.

The chapter is organised as follows. Section 2 we introduce dynamic logic of
propositional control DL-PC and establish a decidability result. In Sect. 3 we study
the fragment without stit operators and give a decision procedure in NP. In Sect. 4
we give reduction axioms for the fragment without the ‘next’ operator. In Sect. 5 we
relate DL-PC to a discrete version of the Chellas stit logic.

2 Dynamic Logic of Propositional Control DL-PC

We now introduce the dynamic logic of propositional control by defining its syntax
and semantics.

2.1 Syntax

The vocabulary of the Dynamic Logic of Propositional Control (DL-PC) contains a
set P of propositional variables and a finite non-empty set Ag of agent names.

Given a propositional variable p ∈ P, +p denotes the positive assignment of
p, i.e., the event of setting the value of p to true, and −p denotes the negative
assignment of p, i.e., the event of setting the value of p to false. Given a set of
propositional variables P ⊆ P, the set of all positive assignments of elements of P is
+P = {+p : p ∈ P} and the set of all negative assignments is−P = {−p : p ∈ P}.
The set of all assignments of variables in P is ±P = +P ∪ −P . The set of all
assignments is therefore ±P = +P ∪ −P. We use e for elements of ±P.

An individual action is a couple made up of an agent name and the assignment of
a propositional variable. The set of all individual actions is Act = Ag×±P. A group
action is a finite set of actions from Act. The set of all group actions is GAct = 2Act.
The set of sequences of group actions is noted GAct∗. The empty sequence is noted
nil, and the typical elements of GAct∗ are noted σ, σ1, etc. For a group action α and
a group of agents G ⊆ Ag we define G’s part in α as follows:

αG = α ∩ (G ×±P) = {(i, e):(i, e) ∈ α and i ∈ G}

64 A. Herzig et al.

In particular, α∅ = ∅ and αAg = α. Clearly, every αG is also a group action from
GAct.

The language of DL-PC is the set of formulas ϕ defined by the following BNF:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | 〈〈α〉〉ϕ | 〈α〉ϕ | StitGϕ | Xϕ

where p ranges over P, G ranges over 2Ag, and α ranges over GAct.
The modal operators 〈α〉 and 〈〈α〉〉 are both dynamic operators. The former is

about opportunity while the latter is about agency: 〈〈α〉〉ϕ reads “α is going to be
performed and ϕ will be true after updating by α”, while 〈αG〉ϕ reads “αG can be
performed and ϕ will be true after updating by α”. The modal operator Stit stands
for “seeing-to-it-that”: the formula StitGϕ reads “group G sees to it that ϕ is true”.
X is a temporal ‘next’ operator: the formula Xϕ is read “next ϕ”.

We use the common abbreviations for ∨,→,↔ and ⊥. When α is a singleton
{(i, e)} we write the more convenient 〈〈i, e〉〉ϕ instead of 〈〈{(i, e)}〉〉ϕ. The set of
propositional variables occurring in a formula ϕ is noted Pϕ and the set of agents
occurring in ϕ is noted Agϕ. For example, P〈i,−p〉q = {p, q} and Ag〈i,−p〉q = {i}.

2.2 Models

While the semantics of PDL is in terms of Kripke models the semantics of DL-PC
is not (cf. [16]). Models for DL-PC are simply valuations of propositional logic
that are augmented by two further ingredients: first, every agent has a repertoire of
assignments that is available to him; second, there is a successor function which for
every sequence of group actions tells us which group action is going to take place
next. Such models consist therefore of tuples 〈R,S,V〉, where:

• R ⊆ Ag×±P
• S : GAct∗ −→ GAct such that S(σ) ⊆ R for every σ ∈ GAct∗
• V ⊆ P

The valuation V provides the set of propositional variables from P that are true. The
repertoire R is a set of group actions: when (i, e) ∈ R then agent i is able to perform
e. S associates to every finite sequence of group actions σ ∈ GAct the group action
S(σ) ∈ GAct that will occur after σ. So S(nil) is the group action that is going
to be performed now. Our constraint on S ensures that every S(σ) respects R: for
example, when (i, e) ∈ S(nil) then according to S agent i performs e next; we then
expect e to be in i’s repertoire, i.e., we expect (i, e) ∈ R. Note that the group action
∅ is consistent with every repertoire. According to our definitions (S(nil))G is group
G’s part of the next action, i.e., it is the group action that G will execute now.

Three Traditions in the Logic of Action: Bringing them Together 65

2.3 Updating Valuations

Just as in dynamic epistemic logic with assignments [17], the dynamic operators are
interpreted as model updates.

The language of DL-PC allows for group actions with conflicting assignments,
like α = {(i,+p), (j,−p)}, where two agents disagree on the new value of the
variable p; actually these two agents might even be identical. We might stipulate that
such a group action cannot be performed. We take a different route: the new value
of a variable p changes only if the agents trying to assign p agree on the new value.
The other way round, if the agents disagree on the new value of a variable then this
variable keeps its old truth value.

The update of the model M = 〈R,S,V〉 by the group action α ∈ GAct is the
new model Mα = 〈Rα,Sα,Vα〉, where:

Rα = R
Sα(σ) = S(α · σ) (where the symbol · stands for concatenation of lists)

Vα = (V \ {p : there is (i,−p) ∈ α and there is no (j,+p) ∈ α}) ∪
{p : there is (i,+p) ∈ α and there is no (j,−p) ∈ α}

Hence Sα(nil) (the group action that will be executed now in Mα) is the group action
that will be executed after α in M; and Vα (the set of variables that are true in Mα)
is V without those variables that have been set to false by α, plus the new variables
that have been set to true by α.

Clearly, the update Mα of a DL-PC model M is also a DL-PC model; in particular,
the successor function Sα respects R.

2.4 Varying the Successor Function

The stit operator will be evaluated by varying the successor function.
Given two successor functions S and S ′, we say that Succ and S ′ agree on G’s

strategy, noted S ∼G S ′, if and only if (S ′(σ))G = (S(σ))G for every sequence of
group actions σ. We also say that S ′ is a G-variant of S.

This extends to models:two models M = 〈R,S,V〉 and M′ = 〈R′,S ′,V ′〉
agree on G’s strategy, noted M ∼ GM′, if and only if R = R′, V = V ′, and
S ∼G S ′. Clearly, when M is a DL-PC model and M ∼G M′ then M′ is also a
DL-PC model; in particular, its successor function S ′ respects R.

66 A. Herzig et al.

2.5 Truth Conditions

Let M = 〈R,S,V〉 be a DL-PC model. The satisfaction relation |= between DL-PC
models and formulas is defined as usual for the Boolean operators, plus:

M |= p iff p ∈ V
M |= 〈〈α〉〉ϕ iff α ⊆ S(nil) and Mα |= ϕ
M |= 〈α〉ϕ iff α ⊆ R and Mα |= ϕ
M |= StitGϕ iff M′ |= ϕ for every M′ such that M′ ∼G M
M |= Xϕ iff MS(nil) |= ϕ

In words, in model M, group G sees to it that ϕ if and only if ϕ is true in every
DL-PC model that agrees with G’s strategy in M. In other words, G sees to it that ϕ
if and only if ϕ obtains due to the actions selected by G, whatever the other agents
choose to do.

Let us consider the two cases when G is empty and when it is the set of all agents
Ag. First, Stit∅ϕmeans “ϕ is true whatever the agents choose to do”. This is a modal
operator of historic necessity just as in stit logics. Second, StitAgϕ means “ϕ is
true given the current strategies of all agents”. This is a modal operator of historic
possibility.

As usual, a formula ϕ is valid in DL-PC (notation: |= ϕ) if and only if every
DL-PC model satisfies ϕ. A formula ϕ is satisfiable in DL-PC if and only if �|= ¬ϕ.
For example, the schema |= 〈〈αG〉〉� → 〈αG〉� is valid (because S(nil) ⊆ R). This
is a ‘do implies can’ principle: ifα is going to be performed thenα can be performed.
Moreover, 〈∅〉� and 〈〈∅〉〉� are both DL-PC valid. If ϕ is a Boolean formula then
〈{(i,+p), (j,−p)}〉ϕ → ϕ is valid. It is not valid in general; to see this take e.g.
〈〈(i,+q)〉〉� forϕ. Moreover, the converse is invalid, e.g. because+p might not be in
i’s repertoire. Observe that both 〈〈α〉〉 and 〈α〉 are normal modal diamond operators;
in particular the schemas

〈〈α〉〉(ϕ ∧ ψ)→ (〈〈α〉〉ϕ ∧ 〈〈α〉〉ψ)

〈α〉(ϕ ∧ ψ)→ (〈α〉ϕ ∧ 〈α〉ψ)

are valid. Observe also that the modal operators StitG are normal modal box operators;
in particular, the schemas StitG� and StitG(ϕ∧ ψ)↔ (StitGϕ∧ StitGψ) are valid.
A DL-PC validity that we are going to discuss later is Stiti (p∨q)→ (Stiti p∨Stiti q).
Note that 〈〈α〉〉ϕ→ Xϕ is invalid. (To see this, note that ϕ→ 〈〈∅〉〉ϕ is valid and that
ϕ should not imply Xϕ.)

Three Traditions in the Logic of Action: Bringing them Together 67

2.6 Replacement of Equivalents

The rule of replacement of valid equivalents will be useful in Sects. 3 and 4. It is
based on the following proposition.

Proposition 1 (Rules of equivalents for 〈α〉, 〈〈α〉〉, and StitG)

1. If |= ϕ1 ↔ ϕ2 then |= 〈α〉ϕ1 ↔ 〈α〉ψϕ2 (rule of equivalents for 〈α〉)
2. If |= ϕ↔ ψ then |= 〈〈α〉〉ϕ1 ↔ 〈〈α〉〉ϕ2 (rule of equivalents for 〈〈α〉〉)
3. If |= ϕ1 ↔ ϕ2 then |= StitGϕ1 ↔ StitGϕ2 (rule of equivalents for StitG)

Proposition 1 (plus the rules of equivalents for the Boolean connectives) allows to
prove that the rule of replacement of equivalents preserves validity. Let ϕ[p/ψ]
denote the formula ϕ where all occurrences of the propositional variable p are
replaced by ψ.

Proposition 2 (Rule of replacement of valid equivalents) If |= ϕ1 ↔ ϕ2 then
|= ψ[p/ϕ1] ↔ ψ[p/ϕ2].

2.7 Decidability

We now prove that satisfiability is decidable.
Here are some definitions that we need for our results. The length of a formula is

the number of symbols we need to write it down, including parentheses, ‘〈’, ‘+’, etc.
We denote the length of a formulaϕ by |ϕ|. For example, |〈i,−p〉q| = 2+4+1 = 7.
Moreover, we define the length |σ| of a sequence of group actions σ as follows:

|nil| = 0

|α · σ| = card(α)+ |σ|

where card(α) is the cardinality of the set α.
The dynamic depth of a formula is the maximal number of nested dynamic oper-

ators and ‘next’ operators, defined inductively as:

δ(�) = δ(p) = 0

δ(¬ϕ) = δ(StitGϕ) = δ(ϕ)

δ(ϕ ∧ ψ) = max(δ(ϕ), δ(ψ))

δ(〈α〉ϕ) = δ(〈〈α〉〉ϕ) = δ(Xϕ) = 1+ δ(ϕ)

We are now going to define the size of a finite DL-PC model. At first glance there
are no such models because each model is infinite: the function S is an infinite set
of couples 〈σ,S(σ)〉, one per sequence σ ∈ GAct∗. A way out is to consider that
a model is finite when R and V are finite and the value of the successor function

68 A. Herzig et al.

S is ∅ almost everywhere. Such functions can be represented in a finite way if we
drop those couples 〈σ,S(σ)〉where S(σ) = ∅ and view S as a partial function. Then
the size of the finite DL-PC model M = 〈R,S,V〉 can be defined as the sum of the
cardinalities of each of its elements, i.e.

size(M) = card(R)+�{σ:S is defined on σ}|σ · S(σ)| + card(V)

Proposition 3 (Strong fmp) For every DL-PC formula ϕ, if ϕ is DL-PC satisfiable
then ϕ is satisfiable in a model of size O((|ϕ|)2|ϕ|).

Proof Let M = 〈R,S,V〉, let ϕ be a formula, and let n ∈ N0 be an integer with
n ≥ 0. We do two things in order to turn M into a finite model: we restrict the
vocabulary that is interpreted in M to that of ϕ, and we restrict the depth of the
successor function by setting S(σ) to the empty set when the length of σ is greater
than n. So let us define the model Mϕ,n = 〈Rϕ,Sϕ,n,Vϕ〉 by:

Rϕ = R ∩ (Agϕ ×±Pϕ)

Sϕ,n(σ) =
{

S(σ) if |σ| < n

∅ if |σ| ≥ n

Vϕ = V ∩ Pϕ

Each of R, S, and V is finite (where finiteness of S is understood as having value
∅ almost everywhere), and therefore Mϕ,n is finite. Observe that (Mα)ϕ,n =
(Mϕ,n+1)

α (∗); moreover, observe that for every n and ϕ, the set of models Nϕ,n

such that N ∼G M equals the set of models Nϕ,n such that N ∼G Mϕ,n (∗∗).
Basically, the last property says that ‘a G-variant of S cut at heigth n and restricted
to the vocabulary of ϕ’ is the same thing as ‘a G-variant of Sϕ,n cut at heigth n and
restricted to the vocabulary of ϕ’.

We prove that we have M |= χ if and only if Mϕ,δ(χ) |= χ for every formula χ
whose language is included in that of ϕ, i.e. such that Agχ ⊆ Agϕ and Pχ ⊆ Pϕ.
The proof is by induction on the structure of χ. The only delicate cases are those of
the modal operators. We only give those of 〈α〉 and StitG , the others are similar. For
the former we prove:

M |= 〈α〉χ iff α ⊆ R and Mα |= χ
iff α ⊆ Rϕ and (Mα)ϕ,δ(χ) |= χ (by I.H.)

iff α ⊆ Rϕ and (Mϕ,δ(χ)+1)
α |= χ (by (∗))

iff α ⊆ Rϕ and (Mϕ,δ(〈α〉χ))
α |= χ

iff Mϕ,δ(〈α〉χ) |= 〈α〉χ

For the stit operators we have to apply the induction hypothesis twice:

Three Traditions in the Logic of Action: Bringing them Together 69

M |= StitGχ iff N |= χ for every N such that N ∼G M
iff Nϕ,δ(χ) |= χ for every N such that N ∼G M (by I.H.)

iff Nϕ,δ(χ) |= χ for every N such that N ∼G Mϕ,δ(χ) (by (∗∗))
iff N |= χ for every N such that N ∼G Mϕ,δ(χ) (by I.H.)

iff Mϕ,δ(χ) |= StitGχ

This ends the proof. �

Proposition 4 (Decidability of satisfiability) The DL-PC satisfiability problem is
decidable.

Proof This follows by [18, Theorem 6.7] from the above strong fmp (Proposition 3)
and the fact that the set of DL-PC models of a given size is recursive (plus the fact
that model checking is decidable). �

We can prove that the satisfiability problem is PSPACE hard by encoding the
QBF satisfiability problem: this is already the case for the fragment of the DL-PC
language without the next operator, as we will establish in Sect. 4.3. We conjecture
that it is also PSPACE complete, but leave a formal proof to future work.

3 The Fragment Without Stit Operators

We now investigate the fragment of DL-PC without stit operators. We provide a
decision procedure in terms of reduction axioms.

3.1 Simplifying 〈〈α〉〉, 〈α〉, and X

The first step is to simplify formulas of the form 〈〈α〉〉ϕ.

Proposition 5 (Simplification of 〈〈α〉〉)
1. |= 〈〈α〉〉ϕ↔ (〈α〉ϕ ∧ 〈〈α〉〉�)

2. |= 〈〈∅〉〉� ↔ �
3. |= 〈〈α ∪ β〉〉� ↔ (〈〈α〉〉� ∧ 〈〈β〉〉�)

Proof

1. First, 〈〈α〉〉ϕ→ 〈α〉ϕ is valid because S(nil) ⊆ R. Second, (〈α〉ϕ∧ 〈〈α〉〉�)→
〈〈α〉〉ϕ is valid because updates are functional.

2. This follows from the observation that for every model M, M |= 〈〈∅〉〉�.
3. This follows from the observation that for every model M, M |= 〈〈α〉〉� iff

α ⊆ S(nil). �

70 A. Herzig et al.

According to the preceding proposition we can suppose w.l.o.g. that every occur-
rence of 〈〈α〉〉 is followed by � and that α is a singleton.

The second step is to put formulas of the form 〈α〉ϕ without Stit operators in ϕ
in a particular normal form.

Proposition 6 (Simplification of 〈α〉)

1. |= 〈α〉p↔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈α〉� if there is i s.th. (i,+p) ∈ α and there is no j s.th. (j,−p) ∈ α
⊥ if there is i s.th. (i,−p) ∈ α and there is no j s.th. (j,+p) ∈ α
〈α〉� ∧ p either if there are i, j such that (i,+p), (j,−p) ∈ α

or if there are no i, j such that (i,+p), (j,−p) ∈ α
2. |= 〈α〉¬ϕ↔ (〈α〉� ∧ ¬〈α〉ϕ)

3. |= 〈α〉(ϕ ∧ ψ)↔ (〈α〉ϕ ∧ 〈α〉ψ)

4. |= 〈α〉〈β〉� ↔ (〈α〉� ∧ 〈β〉�)

5. |= 〈∅〉� ↔ �
6. |= 〈α ∪ β〉� ↔ (〈α〉� ∧ 〈β〉�)

Proof

1. This is clear from the definition of valuation update.
2. From the left to the right, 〈α〉¬ϕ → ¬〈α〉ϕ because updates are functions (as

opposed to relations). From the right to the left, suppose M |= 〈α〉� ∧ ¬〈α〉ϕ;
then α ⊆ R and Mα �|= ϕ, i.e. M |= 〈α〉¬ϕ.

3. From the left to the right, 〈α〉(ϕ∧ψ)→ (〈α〉ϕ∧〈α〉ψ) is valid because 〈α〉 is a
normal diamond operator. From the right to the left, (〈α〉ϕ∧〈α〉ψ)→ 〈α〉(ϕ∧ψ)

is valid because updates are functions.
4. 〈α〉〈β〉� ↔ (〈α〉� ∧ 〈β〉�) is valid because the repertoire is not modified by

the update. �

For example, the formula 〈(i,+p), (j,−q)〉〈(i,−r)〉p can be rewritten as follows:

〈(i,+p), (j,−q)〉〈i,−r〉p↔ 〈(i,+p), (j,−q)〉(〈i,−r〉� ∧ p)

↔ 〈(i,+p), (j,−q)〉〈i,−r〉� ∧ 〈(i,+p), (j,−q)〉p
↔ 〈(i,+p), (j,−q)〉� ∧ 〈i,−r〉� ∧ 〈(i,+p), (j,−q)〉�
↔ 〈i,+p〉� ∧ 〈 j,−q〉� ∧ 〈i,−r〉�

The third step deals with the ‘next’ operator and relies on finiteness of the set of
agents Ag.

Proposition 7 (Simplification of X)

1. |= X p↔
(
((

∨
i∈Ag 〈〈i,+p〉〉�) ∧ ¬(

∨
j∈Ag 〈〈 j,−p〉〉�)) ∨ (p ∧ ¬(

∨
j∈Ag 〈〈 j,−p〉〉�))

)
2. |= X¬ϕ↔ ¬Xϕ
3. |= X(ϕ ∧ ψ)↔ (Xϕ ∧ Xψ)

4. |= X〈α〉� ↔ 〈α〉�

Three Traditions in the Logic of Action: Bringing them Together 71

Proof The first equivalence is clear from the definition of valuation update. The
second and third are familiar from linear-time temporal logic. The last equivalence
is valid because the repertoire is not modified by the update. �

3.2 Modal Atoms and Successor Function Atoms

Rewriting a formula without stit operators by applying the equivalences of
propositions 5, 6, and 7 we obtain a Boolean combination of modal atoms. A modal
atom is either a propositional variable from P, or a repertoire atom 〈i, e〉�, or a
successor atom 〈〈i, e〉〉� that is preceded by a sequence of operators either 〈α〉 or X.
We call the latter kind of modal atoms successor function atoms, abbreviated SFA,
and write μ〈〈i, e〉〉� for such successor atoms. The sequence μ of operators 〈α〉 and
X is called a modality. The grammar of modal atoms π is therefore:

π ::= p | 〈i, e〉� | μ〈〈i, e〉〉�

For a given SFAμ〈〈i, e〉〉�, the formulaμ〈i, e〉� denotes the result of the replacement
of 〈〈i, e〉〉 by 〈i, e〉.

For a given Boolean combination of modal atoms ϕ, the set SFAϕ denotes the set
of successor function atoms of ϕ. For example, for

ϕ = ¬(p ∧ (〈i,+p〉� → ¬X〈〈 j,+q〉〉�))

we have
SFAϕ = {X〈〈 j,+q〉〉�}.

Proposition 8 Let ϕ be a formula without stit operators. Then ϕ is equivalent to a
Boolean combination of modal atoms of length quadratic in the length of ϕ.

Proof Every formula ϕwithout stit operators can be transformed into an equivalent
formula by applying the equivalences of propositions 5, 6, and 7 from the left to the
right.

All the resulting formulas are equivalent to the original formula due to the rule of
replacement of valid equivalents (Proposition 2).

The resulting formula is of length quadratic in the length of ϕ because the proce-
dure basically consists in shifting the modal operators 〈.〉, 〈〈.〉〉, and X in front of the
atomic formulas: in the worst case every atom gets prefixed by a sequence of modal
operators whose length is in the order of the length of ϕ. �

72 A. Herzig et al.

3.3 Decision Procedure

We now translate formulas that are Boolean combinations of modal atoms into for-
mulas of classical propositional logic as follows:

τ (�) = �
τ (p) = νp

τ (〈i, e〉�) = ν〈i,e〉�
τ (μ〈〈i, e〉〉�) = νμ〈〈i,e〉〉�

τ (¬ϕ) = ¬τ (ϕ)

τ (ϕ ∧ ψ) = τ (ϕ) ∧ τ (ψ)

where νp ,ν〈i,e〉� and νμ〈〈i,e〉〉� are fresh propositional variables that do not occur in
the formula to be translated. Our translation therefore just identifies modal atoms
with distinct propositional variables.

Proposition 9 Let ϕ be a DL-PC formula that is a Boolean combination of modal
atoms. ϕ is DL-PC satisfiable if and only if τ (ϕ)∧ (

∧
�ϕ) is satisfiable in classical

propositional logic, where

�ϕ = {νμ〈〈i,e〉〉� → ν〈i,e〉� : μ〈〈i, e〉〉� ∈ SFAϕ}

Proof Let ϕ be a DL-PC formula that is a Boolean combination of modal atoms.
From the left to the right, suppose M |= ϕ. We transform M into an interpretation

IM of classical propositional logic by associating the ‘right’ truth values to the
propositional variables that stand for modal atoms: we set

IM(νπ) = 1 if and only if M |= π

where π is a modal atom. It is then straightforward to prove by induction on the form
ofψ that M |= ψ if and only if I(τ (ψ)) = 1, for every DL-PC formulaψ. Moreover,
I(

∧
�ϕ) = 1 because the successor function S respects the repertoire function R:

whenever M |= μ〈〈i, e〉〉� for some SFA μ〈〈i, e〉〉� then we have M |= 〈i, e〉�.
From the right to the left, suppose I(τ (ϕ) ∧ (

∧
�ϕ)) = 1. We may suppose

w.l.o.g. that I(νμ〈〈i,e〉〉�) = 0 for all those νμ〈〈i,e〉〉� such that the SFA μ〈〈i, e〉〉� does
not belong to SFAϕ. We build a DL-PC model MI = 〈RI ,SI ,VI〉 by setting
RI = {(i, e) : I(ν〈i,e〉�) = 1}, VI = {p ∈ P : I(νp) = 1}, and by inductively
defining SI as follows:

SI(nil) = {(i, e) : I(ν〈〈i,e〉〉�) = 1}

SI(α · σ) =
{

SIα(σ) if α �= SI(nil)

SIX(σ) ∪ {(i0,+ν)} if α = SI(nil)

Three Traditions in the Logic of Action: Bringing them Together 73

for somei0 and some fresh ν, where updates of the SFA part of interpretation I (more
precisely, updates of the fresh variables νμ〈〈i,e〉〉� associated to the SFAs of ϕ) are
defined in the obvious way:

Iα = {νμ〈〈i,e〉〉� : ν〈α〉μ〈〈i,e〉〉� ∈ I}
IX = {νμ〈〈i,e〉〉� : νXμ〈〈i,e〉〉� ∈ I}

Note that SIα = (SI)α and SIX = (SI)SI (nil). Note also that in the inductive
definition of SI , when α = SI(nil) then the ‘fresh action’ (i0,+ν) makes that SI is
well-defined: it avoids a conflict between e.g. SI(SI(nil)) and SI(α) for some SFA
〈α〉μ ∈ SFAϕ because SI(nil) differs from any group action α coming from ϕ.2 The
triple M that we have constructed in this way is indeed a DL-PC model: it satisfies
the constraint that every S(σ) is included in R because (1) I(

∧
�ϕ) = 1 and because

(2) I(νμ〈〈i,e〉〉�) = 0 for all those μ〈〈i, e〉〉� not in SFAϕ. Now we prove, first, that for
every modal atom π occurring in ϕ we have M |= π if and only if I(π) = 1. The
case of successor function atoms μ〈〈i, e〉〉� is proved by induction on its length. In
the induction step we use that (1) Iα(νμ〈〈i,e〉〉�) = 1 iff I(ν〈α〉μ〈〈i,e〉〉�) = 1 and that
(2) IX(νμ〈〈i,e〉〉�) = 1 iff I(νXμ〈〈i,e〉〉�) = 1. Second, the formula ϕ being a Boolean
combination of modal atoms it clearly follows that M |= ϕ. �

3.4 Complexity

We have just defined a decision procedure for DL-PC formulas without stit operators.
We are now going to show that that procedure works in nondeterministic polynomial
time.

Proposition 10 The problem of satisfiability of DL-PC formulas without the stit
operator is NP complete.

Proof The problem is clearly NP hard, given that DL-PC is a conservative extension
of propositional logic.

In what concerns membership, by Proposition 8 we know that every DL-PC for-
mula ϕwithout stit operators is equivalent to a Boolean combination of modal atoms
ϕ′ whose length is quadratic in that of ϕ. According to Proposition we may check
satisfiability of ϕ′ by checking satisfiability of τ (ϕ′)∧ (

∧
�ϕ′). The length of τ (ϕ′)

is linear in the length ofϕ′, and the length of �ϕ′ is linear in the length ofϕ′; together,
they make up a linear transformation. Overall, the length of the propositional for-
mula τ (ϕ′)∧ (

∧
�ϕ′) is quadratic in the length of the original ϕ. Therefore DL-PC

satisfiability is in NP.

2 To see this, suppose that 〈〈i,+p〉〉� is the only SFA of ϕ such that I(ν〈〈i,+p〉〉�) = 1. Then
SI(nil) = {(i,+p)}. Now suppose I is such that I(νX〈〈i,+p〉〉�) = 1 and I(ν〈i,+p〉〈〈i,+p〉〉�) = 0:
then SI would be ill-defined if we hadn’t we introduced the fresh action (i0,+ν).

74 A. Herzig et al.

4 The Fragment Without the ‘next’ Operator

We now give a decision procedure for the fragment of the language of DL-PC without
the temporal ‘next’. The procedure amounts to the elimination of stit operators and
uses some of the results of the preceding section.

4.1 G-Determinate Formulas

A formula ϕ is G-determinate if and only if for all DL-PC models M and M′ such
that M ∼G M′ we have M |= ϕ iff M′ |= ϕ. Note that propositional variables
are G-determinate, for every group G. The same is the case for formulas of the form
〈α〉�. Moreover, 〈〈(i, e)〉〉� is G-determinate if i ∈ G. Note also that when a formula
ϕ is G-determinate then the equivalence StitGϕ↔ ϕ is valid.

The next two propositions generalise these observations.

Proposition 11 (Some G-determinate formulas) Let G be a group of agents.

1. Every propositional variable is G-determinate.
2. Every formula 〈α〉� is G-determinate.
3. If i ∈ G then 〈〈(i, e)〉〉� is G-determinate.
4. If ϕ is G-determinate then ¬ϕ, 〈α〉ϕ, and Xϕ are G-determinate.

Proposition 12 (Properties of G-determinate formulas) Let ϕ be G-determinate.
Then StitG(ϕ ∨ ψ)↔ (ϕ ∨ StitGψ) is valid.

Here are some examples of formulas that are not G-determinate. First, when G
is the set of all agents Ag then every formula is G-determinate. Second, the formula
X p is G-determinate only when G is the set of all agents Ag. Third, 〈〈α〉〉� is not
G-determinate when αi is non-empty for some i �∈ G.

4.2 Eliminating the Stit Operators

Consider any subformula StitGψ of a formulaϕ such thatψ is a Boolean combination
of modal atoms. We may suppose w.l.o.g. that ψ is in conjunctive normal form, i.e.
that ψ is a conjunction of clauses, where clauses are disjunctions of modal atoms or
negations thereof. For example, a conjunctive normal form of the above

¬(p ∧ (〈i,+p〉� → ¬〈i,−p〉〈〈 j,+q〉〉�))

is
(¬p ∨ 〈i,+p〉�) ∧ (¬p ∨ 〈i,−p〉〈〈 j,+q〉〉�)

Three Traditions in the Logic of Action: Bringing them Together 75

Given a StitG operator followed by a formula in conjunctive normal form, we may
apply the following reduction axioms.

Proposition 13 (Reduction axioms for StitG)

1. |= StitG� ↔ �
2. |= StitG(ϕ1 ∧ ϕ2)↔ (StitGϕ1 ∧ StitGϕ2)

3. |= StitG(p ∨ ϕ)↔ (p ∨ StitGϕ)

4. |= StitG(¬p ∨ ϕ)↔ (¬p ∨ StitGϕ)

5. |= StitG(〈α〉� ∨ ϕ)↔ (〈α〉� ∨ StitGϕ)

6. |= StitG(¬〈α〉� ∨ ϕ)↔ (¬〈α〉� ∨ StitGϕ)

7. Let i ∈ G. Then

|= StitG(μ〈〈i, e〉〉� ∨ ϕ)↔ μ〈〈i, e〉〉� ∨ StitGϕ

|= StitG(¬μ〈〈i, e〉〉� ∨ ϕ)↔ ¬μ〈〈i, e〉〉� ∨ StitGϕ

8. Let P and Q be two finite sets of successor function atoms that are all of the
form μ〈〈i, e〉〉� with i �∈ G and that do not contain X. Then

|= StitG

(
(
∨

P) ∨ ¬(
∧

Q)
)
↔

{
� if P ∩ Q �= ∅
¬∧

μ〈〈i,e〉〉�∈Q μ〈i, e〉� if P ∩ Q = ∅

Proof As to Item 1, |= StitG� ↔ � is valid because StitG� is valid (StitG being
a normal modal box).

As to Item 2, |= StitG(ϕ1 ∧ϕ2)↔ (StitGϕ1 ∧ StitGϕ2) is valid because StitG is
a normal modal box.

Items 3–6 are valid because Boolean formulas and formulas of the form 〈α〉� and
¬〈α〉� are G-determinate (Proposition 11, items 1 and 2) and therefore Proposition
12 applies.

For Item 7, let i ∈ G. Then according to Proposition 11, both μ〈〈i, e〉〉� and
¬μ〈〈i, e〉〉� are G-determinate. Therefore the following schemas are both valid:

StitG (μ〈〈i, e〉〉� ∨ ϕ)↔ (μ〈〈i, e〉〉� ∨ StitGϕ)

StitG (¬μ〈〈i, e〉〉� ∨ ϕ)↔ (¬μ〈〈i, e〉〉� ∨ StitGϕ)

For Item 8 we examine the two cases. First, let P ∩ Q �= ∅. As P collects the
SFAs of the positive literals and Q collects the SFAs of the negative literals, the
formula (

∨
P) ∨ ¬(

∧
Q) is valid in classical propositional logic; and as StitG is a

normal modal box, StitG
(
(
∨

P) ∨ ¬(
∧

Q)
)

is DL-PC valid. For the second case
where P ∩ Q = ∅ we prove the two directions of the equivalence separately.

• For the left-to-right direction, let M = 〈R,S,V〉 be a DL-PC model such that
M �|= ¬∧

μ〈〈i,e〉〉�∈Q μ〈i, e〉�, i.e. M |= μ〈i, e〉� for every μ〈〈i, e〉〉� ∈ Q. Let
us define a successor function SQ by:

76 A. Herzig et al.

SQ(nil) = (S(nil))G ∪ {(i, e) : 〈〈i, e〉〉� ∈ Q}
SQ(α · σ) = (S(α · σ))G ∪ SQ〈α〉(σ)

where the set Q〈α〉 is defined as follows:

Q〈α〉 = {μ〈〈i, e〉〉� : 〈α〉μ〈〈i, e〉〉� ∈ Q}

The function SQ respects R: clearly, (S(nil))G respects R, and we can prove by
induction on the length of σ that SQμ(σ) respects R for every modality μ, where
the set of modal atoms Qμ generalises the set Q〈α〉 in the obvious way.
Let MQ = 〈R,SQ,V〉. First, we have M ∼G MQ because (S(nil))G =
(SQ(nil))G . Second, we can prove that MQ |= μ〈〈i, e〉〉� iff μ〈〈i, e〉〉� ∈ Q,
for every successor function atom μ〈〈i, e〉〉� such that i �∈ G. It follows that
MQ |= μ〈〈i, e〉〉� for every μ〈〈i, e〉〉� ∈ Q, and as P ∩ Q = ∅ we also have
MQ �|= μ〈〈i, e〉〉� for every μ〈〈i, e〉〉� ∈ P . Therefore MQ |= (

∧
Q)∧¬(

∨
P),

i.e. MQ �|= (
∨

P) ∨ ¬(
∧

Q). According to the truth condition for StitG this
means that M �|= StitG

(
(
∨

P) ∨ ¬(
∧

Q)
)
.

• For the right-to-left direction, suppose M |= ¬∧
μ〈〈i,e〉〉�∈Q μ〈i, e〉�, i.e. M �|=

μ〈i, e〉� for some μ〈〈i, e〉〉� ∈ Q. So either (i, e) �∈ R, or α �⊆ R for some
dynamic operator 〈α〉 of the sequence μ. In the first case M �|= μ〈〈i, e〉〉� because
the successor function respects the repertoire; and in the second case M �|= μ�
because of the truth condition for 〈α〉, and therefore M �|= μ〈〈i, e〉〉�, too. The
formula μ〈〈i, e〉〉� is actually false in every model M′ such that M ∼G M′ (in the
first case because every S ′ respects R; in the second case because when interpreting
μ the truth condition for 〈α〉 checks whether α ⊆ R). It follows that M′ �|=∧

Q
for every model M′ such that M ∼G M′. Hence M′ |= (

∨
P) ∨ ¬(

∧
Q)

for every model M′ such that M ∼G M′, from which it follows that M |=
StitG

(
(
∨

P) ∨ ¬(
∧

Q)
)
.

This concludes the proof of Item 8. �

For example, the formula Stiti (¬p ∨ 〈i,+p〉� ∨ 〈i,+p〉〈〈 j,+q〉〉�) can be
rewritten as follows:

Stiti (¬p ∨ 〈i,+p〉� ∨ 〈i,+p〉〈〈 j,+q〉〉�)↔ ¬p ∨ 〈i,+p〉� ∨ Stiti 〈i,+p〉〈〈 j,+q〉〉�
↔ ¬p ∨ 〈i,+p〉� ∨ ⊥

Anticipating a bit, we observe that the first two items of Proposition 13 are also
valid in the logic of the Chellas stit, while the third and the fourth item are only
valid if the values of the propositional variables are moment-determinate. (Validity
in the logic of the Chellas stit and moment-determinateness are going to be defined
in Sect. 5.)

Three Traditions in the Logic of Action: Bringing them Together 77

Applying the above equivalences from the left to the right allows to entirely
eliminate the stit operators. It follows that we can transform every formula without
the ‘next’ operator into an equivalent Boolean combination of modal atoms.

Theorem 14 Every DL-PC formula without X is equivalent to a Boolean combina-
tion of modal atoms.

Note that Item 7 of Proposition 13 also holds for the more general case where
μ contains the temporal X. Item 8 does not: let P = {〈i, e〉〈〈i, e〉〉�} and let Q =
{〈〈i, e〉〉�, X〈〈i, e〉〉�}. Then the formula Stit∅

(
(
∨

P) ∨ ¬(
∧

Q)
)

is not equivalent
to ¬(〈i, e〉�∧X〈i, e〉�), i.e., to ¬〈i, e〉�. To see this consider any model M where
R = S(nil) = S((i, e) ·nil) = {(i, e)}: while Stit∅

(
(
∨

P) ∨ ¬(
∧

Q)
)

is true in M,
¬〈i, e〉� is not. We were not able to find reduction axioms for the whole language
of DL-PC.

4.3 Complexity Of Satisfiability: A Lower Bound

Proposition 15 (Complexity, lower bound) The DL-PC satisfiability problem is
PSPACE hard even for formulas without the X operator.

Proof We establish the proof by encoding the quantified Boolean formula (QBF)
satisfiability problem into the fragment of DL-PC without the next operator. We
view an interpretation of classical propositional logic as a mapping I from the set of
propositional variables into {0, 1} (that is extended to evaluate any Boolean formula
in the standard way).

Let ϕ0 be a QBF to be translated. Define a translation t from the language of
QBFs to the language of DL-PC as follows:

t (p) = 〈〈p,+p〉〉�
t (∀pϕ) = StitPϕ0\{p}t (ϕ)

and homomorphic for the other connectives. (We therefore translate propositional
variables into agent names, supposing therefore that there are at least as many agent
names in Ag as there are propositional variables in P.)

Define the set �ϕ0 as:

�ϕ0 = {〈p,+p〉� : p ∈ Pϕ0} ∪ {〈p,−p〉� : p ∈ Pϕ0}

We prove that the QBF ϕ0 is satisfiable if and only if t (ϕ0)∧ (
∧

�ϕ0) is satisfiable.
From the left to the right, suppose I is an interpretation of classical propositional

logic such that I (ϕ0) = 1. We define a DL-PC model MI = 〈RI ,SI ,VI 〉 such that

RI = {(p,+p) : p ∈ Pϕ0} ∪ {(p,−p) : p ∈ Pϕ0}

78 A. Herzig et al.

SI (σ) =
{
{(p,+p) : p ∈ Pϕ0 and I (p) = 1} if σ = nil

SI (σ) = ∅ if σ �= nil

V = ∅

Clearly MI |= ∧
�ϕ0 . It then suffices to prove by induction that I (ϕ) = 1 iff

MI |= t (ϕ), for every subformula ϕ of ϕ0.
From the right to the left, suppose M is a DL-PC model such that M |= t (ϕ0)∧

(
∧

�ϕ0). We define an interpretation IM of the propositional variables p occurring in
ϕ0 by: IM(p) = 1 iff (p,+p) ∈ S(nil). We then prove by induction that M |= t (ϕ)

iff IM(ϕ) = 1, for every subformula ϕ of ϕ0. �

5 Relation with Chellas Stit

We now investigate the relationship between our Stit operator and the Chellas stit
logic [8–10]. The language of that logic has a stit operator just as DL-PC. It moreover
has temporal operators that are not part of DL-PC. We therefore extend the language
of DL-PC by the simplest temporal operator, viz. the temporal ‘next’ operator, and
compare that extension with a discrete version of the Chellas stit logic as introduced
in [19].

5.1 Chellas Stit Logic

The language of the discrete Chellas stit logic is nothing but the fragment LStit,X
of the language of DL-PC without the dynamic operators. The set of formulas ϕ is
defined by the following BNF:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | StitGϕ | Xϕ

The reading of StitGϕ and Xϕ is the same as before.
The formulas are interpreted in discrete Branching Time models with Agent Choice

functions (discrete BT+AC models). These models are defined in two steps.
First, a discrete branching time structure (BT) is a pair 〈Mom,<〉, where:

• Mom is a non-empty set of moments.
• < is a tree-like partial ordering that is irreflexive and discrete. We recall that an

ordering < is discrete if and only if for every m ∈ Mom there is a set of closest
moments succ(m) such that for every m′ ∈ succ(m), m < m′ and there is no
m′′ ∈ Mom with m < m′′ < m′.

Then a history is a maximally <-ordered set of moments. We use H to denote the set
of all histories and Hm to denote the set of histories passing through the moment m,

Three Traditions in the Logic of Action: Bringing them Together 79

i.e., the set of histories h such that m ∈ h. The successor function can be extended to
moment-history pairs: succ(m, h) is the moment m′ such that succ(m) ∩ h = {m′}.
Two histories h1, h2 ∈ Hm are undivided at m if and only if both histories have the
same successor to m, i.e., if and only if succ(m, h1) = succ(m, h2).3

Second, a discrete BT+AC model is a quadruple of the form

M = 〈Mom,<, C, Val〉

where 〈Mom,<〉 is a discrete branching time structure and where C and Val are as
follows.

• C is function from Ag×Mom to H×H such that each C(i, m) is an equivalence
relation on Hm .4 It is assumed that C satisfies the following constraints:

1. Independence of agents: for every moment m and for every mapping H :
Ag −→ Hm there is a history h ∈ Hm such that (H(i), h) ∈ C(i, m) for
every i ∈ Ag.5

2. No choice between undivided histories: if two histories h1 and h2 are undivided
at m then (h1, h2) ∈ C(i, m) for every agent i .

• Val is a valuation function from Mom×H to 2P.

The constraint of independence of agents says that any individual choice is com-
patible with the other choices. The constraint of no choice between undivided his-
tories says that if two histories are undivided at m, then no possible choice for any
agent at m distinguishes between the two histories: for every agent i , both h1 and h2
belong to the same choice cell at m.

Choice functions are extended from agents to groups of agents by stipulating:

C(G, m) =
⋂
i∈G

C(i, m)

Note that with this definition the above ‘no choice between undivided histories’
constraint can be formulated as: if m ∈ h1 ∩ h2 and m0 < m then (h1, h2) ∈
C(Ag, m0).

The values of the propositional variables are said to be moment-determinate if
Val(m, h) = Val(m, h′) for every h, h′ ∈ Hm .

Let M = 〈Mom,<, C, Val〉 be a BT+AC model as defined above. A pointed
BT+AC model is a pair (M, m/h) such that where m ∈ h and h ∈ H. The satisfaction
relation |= is defined between the formulas and pointed BT+AC models as follows:

3 The original definition is equivalent to ours in the case of discrete BT structures: it stipulates that
there is some m′ such that m < m′ and m′ belongs to both h1 and h2.
4 The original definition is equivalent: C is function from Ag×Mom to 22H

mapping each agent
and each moment into a partition of Hm .
5 The original definition is: for every moment m, if Hi is some set in C(i, m) for every i ∈ Ag then⋂

i∈Ag Hi �= ∅.

80 A. Herzig et al.

M, m/h |= p iff p ∈ Val(m, h)

M, m/h |= StitGϕ iff for all h′ such that (h, h′) ∈ C(G, m), M, m/h′ |= ϕ
M, m/h |= Xϕ iff M, succ(m, h)/h |= ϕ

and as usual for the Boolean operators.
A formula ϕ is valid if and only if M, m/h |= ϕ for every BT+AC model M,

every history h of M, and every moment m ∈ h.
For example, the schema Stit∅ϕ→ StitGϕ is valid, and the schema StitG1 StitG2ϕ

→ Stit∅ϕ is valid if G1∩G2 = ∅. Each of the modal operators StitG is an S5 operator:
the schemas StitGϕ → ϕ, StitGϕ → StitGStitGϕ, and ¬StitGϕ → StitG¬StitGϕ
are all valid, and the rule of necessitation preserves validity.

5.2 DL-PC Models as Particular BT+AC Models

We are now going to relate the discrete Chellas stit logic to DL-PC: we show that DL-
PC models can be viewed as particular discrete BT+AC models. A similar technique
has been used in [20].

Let M = 〈R,S,V〉 be a DL-PC model. The translation of M into a discrete
BT+AC model is the structure tr(M) = 〈Mom,<, C, Val〉, where:

• Mom = (2R)∗ (the set of sequences of group actions respecting R)
• σ < σ′ if and only if there is σ′′ �= nil such that σ′ = σ · σ′′ (prefix relation)
• for every agent i ∈ Ag and every moment σ ∈ Mom,

C(i,σ) = {(h, h′) : there are α,α′ such that σ ·α ∈ h,σ ·α′ ∈ h′, and αi = α′i }

• Val is recursively defined by:

Val(nil, h) = V (for every h)

Val(σ · α, h) = (Val(σ, h))α (for every h)

In the last line, (Val(σ, h))α is the update of the valuation Val(σ, h) by α as defined
in Sect. 2.3.

Note that the successor function of M does not play any role in the definition.
We therefore have the following.

Proposition 16 Let 〈R,S,V〉 and 〈R,S ′,V〉 be two DL-PC models. Then
tr(〈R,S,V〉) = tr(〈R,S ′,V〉).

Note further that succ(σ) = {σ · α : α ∈ R}.
Proposition 17 If M is a DL-PC model then tr(M) is a discrete BT+AC model.

Three Traditions in the Logic of Action: Bringing them Together 81

Proof First, (Mom,<) is a discrete BT structure because the prefix relation is a
tree-like partial ordering. Let us show that tr(M) = 〈Mom,<, C, Val〉 satisfies
the two constraints for choice functions: ‘independence of agents’ and ‘no choice
between undivided histories’.

Let σ ∈ Mom be some moment and let H : Ag −→ Hσ be some mapping.
For every i , let α(i) be such that succ(σ, H(i)) = σ · α(i). Let α = ⋃

i∈Ag(α(i))i .
α is composed of the agents’ choices at ‘their’ history H(i). Clearly α ⊆ R, and
therefore σ · α ∈ Mom. Let h ∈ Hσ be any history such that σ · α ∈ h. (Such a
history exists; take for example the history where none of the agents acts after σ ·α.)
Then (h, H(i)) ∈ C(i,σ). for every agent i . Therefore, tr(M) satisfies the constraint
of independence of agents.

In order to see that the ‘no choice between undivided histories’ constraint is
satisfied suppose that the moment σ is both on h1 and on h2, i.e. σ ∈ h1 ∩ h2, and
suppose that σ0 < σ, i.e. σ = σ0 · σ′ for some σ′ �= nil. Due to the latter there
must be a group action α ∈ GAct such that σ = σ0 · α · σ′′ for some σ′′ ∈ GAct∗.
Therefore σ0 · α ∈ h1 ∩ h2. It then follows from the definition of C that for every
agent i , both h1 and h2 belong to the choice cell of i in C(i,σ0) that is defined by αi

(which is i’s part of α). In other words, (h1, h2) ∈ C(i,σ0). �
Let M = 〈R,S,V〉 be a DL-PC model. We recursively define the history asso-

ciated to its successor function S as follows:

h≤0
M = {nil}

h≤n+1
M = h≤n

M ∪ {S(σ) : σ ∈ h≤n
M}

hM =
⋃

n∈N0

h≤n
M

The set hM is a history from Hnil. Observe that succ(nil, hM) = S(nil).

Proposition 18 Let M = 〈R,S,V〉 be a DL-PC model. Then for every LStit,X
formula ϕ we have

M |= ϕ if and only if tr(M), nil/hM |= ϕ

Proof We prove by induction on the structure of ϕ that for every model M and for
every sequence σ we have

Mσ |= ϕ if and only if tr(Mσ), nil/hMσ |= ϕ

where Mσ is defined recursively as expected:

Mnil =M
Mα·σ = (Mα)σ

Observe that succ(σ, hMσ) = σ · Sσ(nil).

82 A. Herzig et al.

The only interesting cases are the operators StitG and the operator X. For the
‘next’ operator we have:

Mσ |= Xψ iff (Mσ)Sσ(nil) |= ψ
iff Mσ·Sσ(nil) |= ψ
iff tr(Mσ·Sσ(nil)), nil/hMσ·Sσ (nil) |= ψ (by I.H.)

iff tr(Mσ),Sσ(nil)/hMσ |= ψ (∗)

iff tr(Mσ), succ(nil, hMσ)/hMσ |= ψ
iff tr(Mσ), nil/hMσ |= Xψ

The step (∗) is correct because for every model M and formulaψ, tr(M),S(nil)/hM
|= ψ if and only if tr(Mα), nil/hMα |= ψ.

For the agency operator we have:

Mσ |= StitGψ

iff (Mσ)′ |= ψ for every (Mσ)′ such that (Mσ)′ ∼G Mσ

iff tr((Mσ)′), nil/h(Mσ)′ |= ψ for every (Mσ)′ such that (Mσ)′ ∼G Mσ

(by I.H.)

iff tr(Mσ), nil/h(Mσ)′ |= ψ for every (Mσ)′ such that (Mσ)′ ∼G Mσ

(Prop.16)

iff tr(Mσ), nil/h′ |= ψ for every h′ such that (hMσ , h′) ∈ Cσ(G, nil)

(∗ ∗)
iff tr(Mσ), nil/hMσ |= StitGψ

The step (∗∗) is correct because there is a history h′ such that (hMσ , h′) ∈ Cσ(G, nil)
if and only if there is a successor function (Sσ)′ such that for every sequence of group
actions σ1 we have (Sσ)′(σ1) ⊆ R and ((Sσ)′(σ1))G = ((Sσ)′(σ1))G .

Corollary 19 For every formula ϕ ∈ LStit,X, if ϕ is valid in the discrete Chellas stit
logic then ϕ is valid in DL-PC.

We note that there exist LStit,X formulas that are DL-PC valid but invalid in the
Chellas stit logic. An example is Stiti (p∨q)→ (Stiti p∨Stiti q). Among the LStit,X
formulas, those that are valid in BT+AC are therefore a strict subset of those that
are valid in DL-PC models. We leave it as an open question whether there is a set of
schematic validities distinguishing DL-PC from discrete BT+ AC models.

Three Traditions in the Logic of Action: Bringing them Together 83

6 Conclusion

We have introduced a Dynamic Logic of Propositional Control DL-PC having a
stit operator. We have axiomatised DL-PC and have shown that the problem of
satisfiability in models of propositional control is decidable. Our result is interesting
because we know that in the set of BT+AC models, satisfiability of ‘pure stit’ formulas
(formulas from LStit,X without X) is already undecidable [21]. This makes DL-PC
an interesting alternative to stit logics.

As the reader may have noticed, our logic is not a dynamic logic in the strict
sense because it lacks sequential and nondeterministic composition, iteration and
test. Their integration remains to be done.

Our logic is related to Segerberg’s logic of bringing it about [22]. There, an
operator μ is introduced whose argument is a formula. The expression μϕ denotes
an action leading to states where ϕ holds, and the formula [μϕ]ψ reads “after an
agent brings it about that ϕ it is the case that ψ”. In Segerberg’s logic the recursive
structure of actions can be easily captured. For example, Jack’s action of killing Joe
by shooting him can be described by the formula [μJoeShot]JoeDead. The interesting
aspect of Segerberg’s logic—distinguishing it from other logics of agency such as
the logic of seeing-to-it-that or the logic of bringing-it-about-that— is that it provides
a clear separation between the result of the action and the means for achieving the
result. This perspective is similar in spirit both to our logic, which also includes in
the object language action labels making reference to the means leading to the result
of the (individual or group) action: in the case of a single agent, our group actions α
may be viewed as the bringing about of a conjunctions of literals. For example the
group action {(i,+p), (i,−q)} may be identified with μ(p ∧ ¬q).

7 Perspectives: Bringing Them All Together

The title of the present chapter is inspired from Krister Segerberg’s chapter “Two
traditions in the logic of belief: bringing them together” [3]. The aim of that work was
to reconcile two different logical approaches to belief: epistemic logics à la Hintikka
[23] and belief revision theory à la Alchourrón, Gärdenfors and Makinson [24]. His
strategy was to couch the latter in the former by extending epistemic logic with
modal operators from dynamic logic, where the programs of the latter are nothing
but operations of belief revision. Obviously, a continuation of the present chapter
would be to bring together DL-PC and Segerberg’s approach. We leave this to future
work.

Acknowledgments The first and third author acknowledge the support of the EU coordinated
action SINTELNET. The fourth author acknowledges the support of the program Marie Curie
People Action Trentino (project LASTS).

84 A. Herzig et al.

References

1. Segerberg, K. (1992). Getting started: Beginnings in the logic of action. Studia Logica, 51,
347–378.

2. Segerberg, K. (2000) Outline of a logic of action. In F. Wolter, H. Wansing, M. de Rijke, & M.
Zakharyaschev (Eds.), Advances in modal logic (pp. 365–387). New Jersey: World Scientific.

3. Segerberg, K. (1999). Two traditions in the logic of belief: Bringing them together. In H. Jürgen
Ohlbach, & U. Reyle (Eds.), Logic, language and reasoning: Essays in honour of Dov Gabbay,
volume 5 of Trends in Logic (pp. 135–147). Dordrecht: Kluwer Academic Publishers.

4. Pörn, I. (1977). Action theory and social science: Some formal models. Synthese library 120.
D. Reidel: Dordrecht.

5. Elgesem, D. (1993). Action theory and modal logic (Ph.D. thesis, Institut for filosofi, Det
historiskfilosofiske fakultetet, Universitetet i Oslo, 1993).

6. Elgesem, D. (1997). The modal logic of agency. Nordic Journal of Philosophy and Logic, 2(2),
1–46.

7. Governatori, Guido, & Rotolo, Antonino. (2005). On the axiomatization of elgesem logic of
agency and ability. Journal of Philosophical Logic, 34, 403–431.

8. Horty, John, & Belnap, Nuel. (1995). The deliberative stit: A study of action, omission, ability
and obligation. Journal of Philosophical Logic, 24(6), 583–644.

9. Horty, J. F. (2001). Agency and deontic logic. Oxford: Oxford University Press.
10. Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our

indeterminist world. Oxford: Oxford University Press.
11. Thomason, R. H. (2012). Krister Segerberg’s philosophy of action. In this volume.
12. McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of

artificial intelligence. In B. Meltzer, & D. Mitchie (Eds.), Machine intelligence (Vol. 4, pp.
463–502). Edinburgh: Edinburgh University Press.

13. Reiter, Raymond. (1991). The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In Vladimir Lifschitz (Ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy
(pp. 359–380). San Diego: Academic Press.

14. Reiter, R. (2001). Knowledge in action: Logical foundations for specifying and implementing
dynamical systems. Cambridge: The MIT Press.

15. van Ditmarsch, Hans, Herzig, Andreas, & de Lima, Tiago. (2011). From situation calculus to
dynamic logic. Journal of Logic and Computation, 21(2), 179–204.

16. van Eijck, Jan. (2000). Making things happen. Studia Logica, 66(1), 41–58.
17. Hans P., van Ditmarsch, Wiebe van der Hoek, & Barteld, P. Kooi. (2005). Dynamic epistemic

logic with assignment. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, & M.
Wooldridge (Eds.), Proceedings of the 4th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS) (25–29 July 2005 , pp. 141–148). Utrecht, The Netherlands:
ACM.

18. Blackburn, Patrick, de Rijke, Maarten, & Venema, Yde. (2001). Modal logic. Cambridge tracts
in theoretical computer science. Cambridge: University Press.

19. Broersen, Jan, Herzig, Andreas, & Troquard, Nicolas. (2006). Embedding alternating-time
temporal logic in strategic STIT logic of agency. Journal of Logic and Computation, 16(5),
559–578.

20. Herzig, Andreas, & Lorini, Emiliano. (2010). A dynamic logic of agency I: STIT, abilities and
powers. Journal of Logic, Language and Information, 19(1), 89–121.

21. Herzig, A., & Schwarzentruber, F. (2008). Properties of logics of individual and group agency.
In C. Areces, & R. Goldblatt (Eds.), Advances in modal logic (AiML) (pp. 133–149), Nancy:
College Publications.

22. Segerberg, Krister. (1989). Bringing it about. Journal of Philosophical Logic, 18(4), 327–347.
23. Hintikka, Jaakko. (1962). Knowledge and belief. Ithaca: Cornell University Press.
24. Alchourrón, Carlos, Gärdenfors, Peter, & Makinson, David. (1985). On the logic of theory

change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–
530.

	4 Three Traditions in the Logic of Action: Bringing them Together
	1 Introduction
	2 Dynamic Logic of Propositional Control DL-PC
	2.1 Syntax
	2.2 Models
	2.3 Updating Valuations
	2.4 Varying the Successor Function
	2.5 Truth Conditions
	2.6 Replacement of Equivalents
	2.7 Decidability

	3 The Fragment Without Stit Operators
	3.1 Simplifying xxx, and xxx
	3.2 Modal Atoms and Successor Function Atoms
	3.3 Decision Procedure
	3.4 Complexity

	4 The Fragment Without the `next' Operator
	4.1 G-Determinate Formulas
	4.2 Eliminating the Stit Operators
	4.3 Complexity Of Satisfiability: A Lower Bound

	5 Relation with Chellas Stit
	5.1 Chellas Stit Logic
	5.2 DL-PC Models as Particular BT+AC Models

	6 Conclusion
	7 Perspectives: Bringing Them All Together
	References

