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Abstract In this chapter we re-evaluate Segerberg’s “full DDL” (Dynamic Doxas-
tic Logic) from the perspective of Dynamic Epistemic Logic (DEL), in its belief-
revision-friendly incarnation. We argue that a correct version of full DDL must give
up the Success Postulate for dynamic revision. Next, we present (an appropriately
generalized and simplified version of) full DDL, showing that it is a generalization of
the so-called Topo-logic of Moss and Parikh. We construct AGM-friendly versions
of full DDL, corresponding to various revising/contracting operations considered in
the Belief Revision literature. We show that DDL can internalize inside one model
the “external” doxastic dynamics of DEL, as well as the evidential dynamics inves-
tigated by van Benthem and Pacuit. In our Conclusions section, we compare three
styles of modeling doxastic dynamics: DDL, DEL and PDL/ETL (the Propositional
Dynamic Logic approach, with its Epistemic Temporal Logic variant).

1 Introduction

Following the seminal work of Hintikka [11], the field of epistemic/doxastic logic
generated a series of interesting logical systems which have sparkled the interest
of several groups of researchers: the philosophers interested in using logical for-
malism to address the questions raised in the traditional study of epistemology, the
researchers in AI studying agency, attitudes, non-monotonic reasoning and knowl-
edge representation, and the computer scientists investigating distributed systems.
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The interaction with these other areas of research gave a boost to the further develop-
ment of epistemic/doxastic logic and raised the interest in the logical study of belief
change and knowledge update.

It is at this point of time in the development of modal doxastic logic that we place
the important contributions of Krister Segerberg: his idea was to enhance traditional
epistemic and doxastic logics with specific dynamic-modal operators for “belief
revision”, thus linking modal logic with Belief Revision Theory (BRT). Looking the
other way around, Segerberg’s work provided BRT with a new syntax and formal
semantics. Note that traditionally, the work on belief revision [1] focuses on the way
in which a given theory (or belief base, consisting of sentences in a given object
language) gets revised, but it does not treat “belief revision” itself as an ingredient in
the object language under study. Segerberg’s work opened up a new perspective by
taking the very act of belief revision itself and placing it on an equal (formal) footing
with the doxastic attitudes such as “knowledge” and “belief”.

Dynamic doxastic logic (DDL) has been introduced and developed by Krister
Segerberg in [19–26]. The system’s main syntactic construct is the use of a dynamic
modal operator [∗ϕ]ψ whose intended meaning is that “ψ holds after (the agent
performs a) revision with ϕ ”. As explained in [26], the main added value of treating
belief revision in this way (in contrast with the AGM approach [1]) is that we gain
all the well-known advantages provided by working in a modal logic setting. Modal
logics have turned into a rich area of investigation with applications to several other
domains, hence casting Belief Revision Theory into a modal framework holds a great
promise for its future development.

Segerberg distinguished between “basic DDL” and “full DDL”: while basic DDL
is about the way an agent revises her beliefs about the world, full DDL deals with
the way in which an agent revises her beliefs about the world and about her own
beliefs. Syntactically, this distinction is captured by restricting all the operators of
the basic DDL language to Boolean formulas (while full DDL is not subject to this
restriction).

In this chapter we take a fresh look at full DDL from the new perspective of “soft
DEL” (the belief-revision-friendly version of Dynamic Epistemic Logic [2–7]), as
a modern semantic embodiment of the AGM paradigm. DEL shares with DDL the
modal logic approach to belief and belief-revision. However, DEL treats dynamic
revision as an “external” operation (representing actions as changes of the current
model), while in DDL the dynamics is “internal” to the model (i.e., actions are
represented as changes of doxastic structure within the same model). One of our
goals in this chaper is to show that the DDL approach is at least as powerful as the
DEL approach: it can internalize all the recent DEL developments.

We start, in Sect. 2, by borrowing from DEL the distinction between static and
dynamic revision, in order to correct an old conceptual error that plagued all attempts
to develop a full DDL: the assumption that the AGM Success Postulate is tenable
(and desirable) for dynamic revision. We show that (due to Moore-type paradoxes)
a correct version of full DDL must give up the unrestricted dynamic version of the
Success Postulate (keeping it only for static revision, or for the restriction of dynamic
revision to non-doxastic sentences).
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Next, in Sect. 3, we present an appropriately generalized and simplified version
of full DDL. In Sect. 4 we show that DDL can be considered to be a generalization of
the so-called Topo-logic of Moss and Parikh [15, 17]. In Sect. 5, we deal with static
revision in DDL, by adopting the conditional belief logic CDL from [3].

Further, in Sect. 6, we develop and axiomatize (in “constructive”, DEL-style) three
versions of DDL, that internalize three of the revision operations considered in the
Belief Revision literature. In Sect. 7, we analyze Segerberg’s constructive treatment of
expansion and contraction in DDL, and comment on their non-AGM nature. Next, we
introduce and axiomatize three AGM-friendly versions of contraction and expansion
in DDL. Based on this work, we argue that (if appropriately generalized), the DDL
approach is at least as powerful as the DEL approach. In Sect. 8, we exemplify this
point further by showing that Segerberg’s generalized “hypertheory” version of DDL
can internalize, not only belief dynamics, but also the evidential dynamics of van
Benthem and Pacuit [8].

Finally, in Sect. 9, we compare three ways of doing dynamic belief revision: DDL,
DEL, and PDL/ETL (i.e. the Propositional Dynamic Logic style of modeling belief
changes, and its Epistemic Temporal Logic variant). Both PDL/ETL and DDL are
ways to “internalize” the doxastic dynamics inside one model, but we argue that the
DDL style is the most natural, most elegant and most “economical” way to do this
internalization.

2 Static Versus Dynamic Belief Revision

Before developing full DDL, we first need to correct what we think to be a conceptual
mistake of its founder, concerning the validity of the so-called Success Axiom in a
dynamic setting. To address this, we follow the DEL literature in distinguishing
between “static” and “dynamic” belief revision. Though it is often explained in
syntactic terms (as referring to two different kinds of behaviour under revision with
higher-level doxastic sentences), from a semantic point of view this distinction is
in fact related to (though distinct from) the traditional dichotomy between one-step
revision and iterated revision.

To model one-step revision, it is enough to specify, for every proposition P,
the result of doxastic revision with P, either syntactically (as a set of sentences) or
semantically (as a set of states, the ones that are most plausible after revising with P).
Semantically, this can be uniformly done in three different ways: by giving a selection
function, in Stalnaker’s style; by giving a family of spheres (in Lewis-Grove style),
i.e. an “onion” in the sense of Segerberg (or a “hypertheory”, in his generalized
semantics); or by giving a plausibility relation (or equivalently, an entrenchment
relation). As far as modal (dynamic doxastic) logic can tell, these three semantic
styles are equivalent, if considered at an appropriate level of generality.

Syntactically, one can capture static revision by specifying, in AGM-style, a set
T ∗ P of revised beliefs, for each original set T of beliefs and each proposition P; or
alternatively, on can enconde static revision using conditional belief operators BPQ
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(or B(Q|P)), whose meaning is that “after revision with P, the agent will come to
believe that Q was the case (before the revision)”.

The “static” character of this revision is reflected in the fact that, after the revision,
Q is still evaluated according to the original state of affairs; in terms of Grove spheres,
this is reflected in the fact that the same onion is used for evaluating Q (though not the
same sphere): BPQ holds iff the smallest sphere in the current onion that intersects
P is included in Q.

In contrast, dynamic revision involves a change of onion, or a change of plausibility
relation (or a change of model). Semantically, it requires a binary relation between
onions (in DDL-style), or between states with different plausibility (in PDL/ETL
style), or between models (in DEL-style). Again, these three styles of doing doxastic
dynamics are equivalent, if considered at an appropriate level of generality. Syntac-
tically, dynamic revision can be captured by the use of dynamic modalities [∗P]Q.
More precisely, [∗P]B Q captures the fact that Q is believed to hold after revision
with P. The “dynamic” character is reflected in the fact that, after the revision, B Q
is evaluated using the new onion (to which the old onion is related by the dynamic
binary relation R∗P).

The “static” character of conditional belief operators BPQ can be made more
explicit by expressing them in terms of dynamic operators (“weakest preconditions”)
[∗φ]ψ and their Galois adjoints, i.e. the “reversed” dynamic operators 〈∗−1φ〉ψ (also
known as “strongest postconditions”). While dynamic operators [∗φ]ψ are (in the
Segerberg’s onion semantics) the universal (Box) modalities for some binary revi-
sion relation R∗φ between onions, the reversed dynamic operators 〈∗−1φ〉ψ are the
existential (Diamond) modalities for the converse relation (R∗φ)−1 (going backwards
in time from of the revised doxastic state to the initial, unrevised doxastic state). It
is easy to see that we have the following equivalence:

Bφψ ⇔ [∗φ]B〈∗−1φ〉ψ.

This equivalence fully captures our above explanation of static revision Bφψ, as
reflecting the revised beliefs (after a revision with φ) about a sentence ψ’s truth value
before the revision.

Nevertheless, in our logics we chose not to reduce static revision to dynamic
revision (and its converse); instead, we take static revision as basic, in the shape of
primitive conditional belief operators Bφψ, interpreted as belief-revision plans: “if in
the future I ever would have to revise with φ, I would then come to believe that ψ was
true now”. And we follow the DEL tradition by recursively reducing any instance of
dynamic revision to the static revision statements (via so-called Reduction laws, or
Recursion laws). We choose this option because we think that, from a semantic point
of view, static belief revision is a simpler concept than the dynamic one. Indeed,
recall that to specify static revision one only needs to give one onion (together with
a specific way to move between its spheres). While dynamic belief revision is given
by a specific type of onion change (i.e. a specific way of moving between onions):
a relation between onions! So in fact, dynamic belief revision does not involve only
a simple revision of beliefs, but rather a revision of (static) belief revision plans!
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Indeed, to syntactically describe in full a given type of dynamic belief revision, we
do not need only statements of the form [∗P]B Q (describing dynamic revision of
beliefs), but rather sentences of the form [∗P]BRQ (describing dynamic revision of
static belief-revision plans).

Luckily, this distinction does not need to be iterated: since (to use van Ben-
them’s expression) static belief revision BRQ “pre-encodes” dynamic belief revision
[∗R]BQ, it is enough to know the behaviour [∗P]BRQ of static revision plans under
dynamic revision in order to be able to calculate the result of iterated dynamic revision
[∗P][∗R]B Q. More generally, for each specific type of doxastic dynamic revision ∗,
the statement [∗P]Q can be recursively reduced to a statement involving only static
revision operators BRQ: these are the well-known Reduction (or Recursion) Laws,
from Dynamic Epistemic Logic.

Thus, dynamic revision, by its very semantic modelling, can be straightforwardly
iterated; while static belief revision is just a one-step revision of (simple) beliefs.

But the distinction of static versus dynamic revision is not the same as the dis-
tinction between one-step and iterated revision! Dynamic revision fully “keeps up”
with the doxastic change, while static revision looks back at the old doxastic state
from the perspective of the new one.

To see this, note that dynamic revision with higher-level doxastic sentences
behaves differently than static revision. Take a Moore sentence, of the form φ :=
p∧¬Bp. An introspective agent will obviously not come to believe φ after she learns
φ; indeed, believing φ would amount to a lack of introspection, since it would mean
to believe both p and the fact that one doesn’t believe p. So, after learning φ, an
introspective agent will clearly come to believe p, but not φ itself. This is correctly
reflected by dynamic revision: as we will see, for any reasonable dynamic interpre-
tation of the revision operation ∗ as a binary relation on doxastic states (onions),
the formula [∗φ]Bφ is false for any Moore sentence φ: indeed, even if φ was true in
the old doxastic state, after revision with φ the sentence Bφ is evaluated according
to the new doxastic state, in which φ is false, and (known to be false, hence) dis-
believed. In contrast, static revision with any sentence φ will always produce belief
in that sentence, since after static revision, the sentence is still evaluated according
to the original doxastic state: this is reflected by the conditional-belief validity Bφφ,
which is a version of the AGM “Success” Postulate φ ∈ T ∗ φ.

This distinction is an important one, that DDL needs to learn from DEL, in order to
deal correctly with higher-level doxastic sentences. Ignoring this distinction leads to
what we think to be a conceptual “mistake”, made by Lindstrom and Rabinowicz in
their papers [13, 14] on DDL for introspective agents, as well as by Segerberg himself
in [24]. Namely, these authors assume (mistakenly, in our view) that a dynamic
version of the Success postulate (in the form of the axiom [∗φ]Bφ) is desirable, or
even tenable, in full DDL (i.e. when φ is itself a doxastic sentence). As we argue
below (and as was already argued before in the DEL literature), this assumption is
wrong,

We should stress that this conceptual problem affects only the first solution to the
Moore “paradox” proposed by Lindstrom and Rabinowicz (in the first part of their
paper [13]). There, they define a semantics for revision, which together with their
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(standard PDL-like) semantics for dynamic modalities, can be shown to immediately
lead to a semantic failure of the Success Postulate for any (positively) introspective
agent. Indeed, in a Lindstrom-Rabinowicz model, formulas are evaluated at “total
states” x, each coming with an ontic state (“world”) w(x) and a doxastic state d(x).
In their turn, doxastic states d(x) are Segerberg “onions” (or more generally hyper-
theories): these are families of “spheres” (i.e., of closed sets of total states). If we put
b(x) := ⋂

d(x) for the “smallest sphere” of the onion d(x), then belief is defined
as usually in Grove models: x |= Bφ iff b(x) ⊆ ‖φ‖. Take now any Lindstrom-
Rabinowicz model M in which the following two conditions are satisfied: (a) the
agent is positively introspective with respect to some specific fact p (at all the states
of the model); and (b) there exists some total state x in which the agent doesn’t
believe p and she doesn’t believe ¬p. It seems clear that, no matter what additional
restrictions one might want to impose on Lindstrom-Rabinowicz models, situations
satisfying (a) and (b) should still be allowed.1 So, even if we add further conditions,
a model M of the above kind should still be in the intended class of models. As
a consequence of (b), the smallest sphere b(x) := ⋂

d(x) (at total state x) con-
tains both p and ¬p worlds. In this situation, the Moore sentence φ := p ∧ ¬Bp is
semantically consistent with the agent’s (semantic) beliefs; indeed, φ is true at all the
p-worlds belonging to the smallest sphere: b(x) ∩ ‖φ‖ ⊆ ‖p‖. Hence, this smallest
sphere b(x) has a non-empty intersection b(x) ∩ ‖φ‖ = b(x) ∩ ‖p‖ �= ∅ with the
extension ‖φ‖ of φ in this model. The Lindstrom-Rabinowicz semantic conditions
(or more precisely, their postulates on semantic contraction and their Levi-style def-
inition of revision) ensure that in this situation a revision with φ is the same as an
expansion with φ (as is also prescribed by the AGM theory): so, the total state y
obtained after revision (i.e. such that xR∗ψy) is the same as the state obtained by
expansion, i.e. we have xR+φy. But unlike revision (or contraction), the expansion
operation is completely determined by the AGM axioms, which are accepted by
Lindstrom and Rabinowicz, who in fact explicitly assume that the expanded state
y is the unique total state satisfying the conditions w(y) = w(x) (stability of ontic
state) and d(y) = d(x) + ‖φ‖ =: d(x) ∪ {X ∩ ‖φ‖ : X ∈ d(x)}. This means that the
smallest sphere of the new “onion” d(y) must be b(y) = ⋂

d(y) = ⋂
d(x) ∩ ‖φ‖ =

b(x)∩‖φ‖ = b(x)∩‖p‖ ⊆ ‖p‖. As a consequence, in the new total state y, the agent
believes p: y |= Bp. Since Positive Introspection with respect to p holds in this model,
we also have y |= BBp. If the Success Postulate would also hold, in its dynamic form
x |= [∗φ]Bφ, then by the standard PDL semantics for dynamic operators (accepted
by Lindstrom and Rabinowicz in this part of their paper), we would have y |= Bφ.
Using the normality of the operator B (which is another immediate consequence of the
Lindstrom-Rabinowicz semantic definition of belief) and the fact that φ := p∧¬Bp,
it follows that y |= B¬Bp. So we have that y |= (BBp ∧ B¬Bp), and by normality
again, we conclude that y |= B(p ∧ ¬Bp), which by the semantic definition of B,
entails that b(y) ⊆ ‖Bp ∧ ¬Bp‖ = ∅. But this contradicts the above-mentioned fact
that b(y) = ⋂

d(y) = ⋂
d(x) ∩ ‖φ‖ = b(x) ∩ ‖φ‖ = b(x) ∩ ‖p‖ �= ∅.

1 Even if one doesn’t accept Positive Introspection as a general axiom, one certainly shouldn’t
exclude situations in which the agent is introspective, at least with respect to some particular fact p.
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Observe that this contradiction is obtained only using the Lindstrom-Rabinowicz
semantics for belief and revision, the Success Postulate, and the natural and innocu-
ous assumptions (a) and (b) (i.e. that there occasionally may exist some agent who
is introspective with respect to some fact p, while the fact p itself is currently neither
believed nor disbelieved by the agent). Since the title of one of the papers present-
ing their setting is Belief Change for Introspective Agents [14], it seems to us that
Lindstrom and Rabinowicz do not aim to give up even the mere possibility of Positive
Introspection (with respect to even just one factual statement). So it follows that they
must give up the Success Postulate.

However, Lindstrom and Rabinowicz resist this conclusion. They do prove
a “Moore paradox” (namely, that the agent’s beliefs are inconsistent), but only
syntactically (axiomatically), using an additional (unnecessary) assumption (the so-
called Preservation Principle). Their conclusion is that this last-mentioned assump-
tion (rather than the Success axiom) is to be blamed for the paradox. So they propose
giving up Preservation, without apparently noticing that the above clear-cut semantic
argument shows already (without any use of Preservation, but using only the local
assumptions (a) and (b)) that the Success postulate is conceptually incompatible with
their dynamic semantics.

It is true that, in the second part of their paper [13], Lindstrom and Rabinowicz
propose a second solution to the Moore paradox, their so-called bidimensional seman-
tics, which is in fact very close to our (i.e. the DEL) solution. Indeed, their rendering
in English of their proposal is essentially the same as our solution: they point out that
the Success Postulate makes sense for doxastic sentences φ only if it is interpreted in
terms of the revised beliefs about φ’s truth value before the revision. However, they
formally package this solution in a different way, in order to maintain the appearance
(at a purely syntactic level!) that the Success Postulate is maintained. Namely, they do
this by adopting a bidimensional semantics in terms of pairs of states (x, y), in order
to refer to both doxastic states (before and after the revision), and they radically
change the PDL semantics of dynamic operators to a non-standard one: roughly
speaking, their new semantics amounts to evaluating any doxastic expression Bψ
that comes in the scope of a dynamic operator [∗φ] as capturing the revised beliefs
(after revision with φ) about ψ’s truth value before the revision.

We fully agree with the conceptual analysis underlying the second solution of
Lindstrom and Rabinowicz, but we disagree with their non-standard, and completely
ad-hoc, modification of the semantics of dynamic operators. We think dynamic
modalities should be left to express what they always did: a one-way move in time,
from the state before the (revision) action to the state after the action. Instead of
twisting the meaning of dynamic operators, we think one should simply recognize
the plain, inescapable truth: the Success Postulate does not (and should not) hold for
dynamic revision with doxastic sentences.

In most of his papers on DDL, Segerberg himself is cautious not to fall into
the above mentioned conceptual mistake, by almost always limiting himself to
“basic DDL”: no revision with doxastic sentences. However, in [24] he proposes
an axiomatic system for full DDL. Unfortunately, this converts a conceptual mistake
into a logical error: the proposed system is not sound with respect to the proposed
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semantics. The reason is that the proposed Success Axiom [∗φ]Bφ is not a validity
in this semantics: essentially, the above model provides a counterexample to this.
The semantic setting in [24] differs slightly from the version of DDL presented in
our paper (since we follow [21, 26]), in that it is actually closer to the Lindstrom-
Rabinowicz setting: formulas are evaluated at states (called “points”), not at pairs of
a state and an onion, and so the dynamics is given via binary relations between states
(similarly to the standard PDL semantics), rather than via relations between onions.
The resulting relational frame is called a revision space. However, in this setting
(from [24]), each state is assigned an onion, via an “onion determiner”, which paired
with a revision space gives an “onion frame”. Completeness (for an axiomatic sys-
tem that includes the dynamic version of the Success Axiom) is claimed with respect
to the class of “AGM onion frames” (i.e. onion frames satisfying some additional
AGM-like semantic conditions). Introspection is not assumed by Segerberg in this
setting, neither as a semantic condition nor as an axiomatic one. But it is easy to see
that (Positive) Introspection is consistent with this setting: there exist AGM onion
frames that are positively introspective. More precisely, the above counterexample
(an introspective onion model in which neither p nor ¬p are believed) can be easily
repackaged as an AGM onion model in the sense of [24]. The dynamic version of
the Success Axiom, when instantiated to the Moore sentence p ∧ ¬Bp, fails in this
model. So this axiom is simply not sound.2

The lesson is that in DDL (as in DEL) we can really make sense of dynamic
revision with doxastic sentences by an introspective agent only if we drop (the unre-
stricted, dynamic version of) the Success Postulate. A weakened version of this
postulate can be retained either by (a) restricting it to (dynamic revision with) sim-
ple, Boolean, non-doxastic sentences (as in the AGM literature, as well as in many
of Segerberg’s papers), or by (b) interpreting it in terms of static revision (i.e. as a
conditional-belief statement Bφφ).

3 General DDL Semantics

We present here a generalized (and simplified) version of the “General Model The-
ory” for DDL introduced by Segerberg in Sect. 3 of [21]. The semantics is based
on Segerberg’s “hypertheories” (i.e. families of sets of states, called “fallbacks”),
which are generalizations of Segerberg’s “onions” (which are families of nested
sets of states, called “spheres”, in accordance to the Lewis-Grove tradition). As
a formal language to describe these models, we use the slightly extended syntax
for DDL introduced in [26], having (in addition to belief operators B and dynamic
modalities) operators K for what Leitgeb and Segerberg call “nonrevisable belief”
or “knowledge”. We call this “irrevocable knowledge”, to distinguish it from other,

2 While soundness of the given axiomatic system is not explicitly claimed in [24], its completeness
is claimed. But from a conceptual point of view, a completeness result (with respect to a class of
frames) is of course of no use if the axioms are not sound (with respect to that same class of frames).
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“softer” notions of knowledge considered in the philosophical literature (e.g. defea-
sible knowledge). To ensure that the K operator is factive (as it is expected from
“knowlewdge”), we make a slight change to the definition of validity, inspired from
the Moss-Parikh semantics of Topo-logic: validity is obtained by quantifying only
over pairs (s, H) of ontic states and hypertheories such that s ∈ H. We further
simplify Segerberg’s setting from [21], by dropping all the topological assumptions
(Stone spaces, compactness assumptions), as well as all the closure assumptions on
hypertheories (e.g. Lewis’ famous Limit Assumption, or the assumption from [26]
of closure under nonempty intersections). The price for this generality is that the
definition of belief is more complicated: we adopt the definition of B introduced by
van Benthem and Pacuit [8]. But we show that, whenever hypertheories do satisfy
closure under intersection, this definition boils down to Segerberg’s notion of belief
(which is the same as Grove’s definition: belief equals truth in all the states of the
smallest sphere). Moreover, we show that in the special case of onions, this definition
amounts to a natural generalization of Grove’s definition (belief equals truth in all
the states of all the spheres that are “small enough”), that was already proposed in the
Belief Revision literature (and which validates the same modal formulas as Grove’s
standard definition). Finally, it is easy to see that, in case of onions satisfying Lewis’
Limit assumption, this definition boils down again to the standard (Grove-Segerberg)
notion of belief.

Let U be a set of states (a universe). A hypertheory in U is a nonempty family
H ⊆ P(U) of nonempty subsets of U, called fallbacks. An onion (or “sphere
system”) in U is a hypertheory O ⊆ P(U), that is “nested”, i.e. linearly ordered by
set-inclusion: X, Y ∈ O implies that either X ⊆ Y or Y ⊆ X. The elements of an
onion (its fallbacks) are sometimes called “spheres”.

We think of each s ∈ U as an “ontic state”: a possible description of all the ontic
(i.e. non-doxastic) facts of the world. We think of a hypertheory H as representing
the agent’s “doxastic state”. In particular, as we will see in the next section, an
onion O will represent a doxastic state that satisfies the AGM postulates (when these
postulates are appropriately stated, as axioms about static revision).

An onion O is standard (or “well-founded”) if there is no infinite descending
chain of spheres in O; i.e. there is no infinite sequence X1 ⊃ X2 ⊃ X3 ⊃ . . ., with
all Xi ∈ O.

Given a hypertheory H ⊆ P(U), a family F ⊆ H of fallbacks has the finite
intersection property (f.i.p.) if every finite subfamily F ′ ⊆ F has a non-empty
intersection

⋂
F ′ �= ∅. We say that a family F ⊆ H of fallbacks has the maximal

f.i.p. if F has the f.i.p. but no proper extension F ⊂ G ⊆ H does. Observe that, if O
is an onion,such that P∩ (∪0) �= ∅ then O has itself the maximal f.i.p.; and moreover
O is the only family F ⊆ O having the maximal f.i.p.

An A-doxology is a structure (U, D, R), where U is a universe, D is a set of
hypertheories in U and R = {Rα}α is a set of binary relations Rα ⊆ D × D on
D, labeled with names α ∈ A coming from a given set A of action terms. The
elements Rα ∈ R are called doxastic actions, and R itself a repertoire. Observe that
each Rα is a binary relation between hypertheories (or onions), not between states.
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Intuitively, each Rα describes a specific type of change which may affect the agent’s
epistemic/doxastic state (but which does not change the “ontic state”).

Assume now given any object language L containing propositional letters com-
ing from a set Φ, Boolean connectives, a belief operator B, an irrevocable knowledge
operator K , a set A of action terms, as well as and the dynamic modalities [α] (“after
action α”) of Propositional Dynamic Logic (one for each action term α ∈ A). Any
such language L is called a DDL-language. The minimal language of (“full”) DDL
has only the above operators. (But later we will add conditional belief operators, to
describe static revision.)

A DDL model M = (U, D, R, V) for any DDL language L (with propositional
letters in Φ and action terms in A) consists of an A-doxology (U, D, R) together with
a valuation V , mapping every propositional letter p ∈ Φ to a set V(p) ⊆ U of states.
An onion model is a DDL model (U, D, R, V) in which D consists only of onions.
A static (DDL) model is a DDL model with R = ∅.

A semantics for L is a map that, for each DDL model M = (U, D, R, V) and each
hypertheory H ∈ D, assigns to each formula φ ∈ L some set of states ‖φ‖M,H ⊆⋃

H, and assigns to each action term α ∈ A some doxastic action ‖α‖M,H ∈ R,
in such a way that a number of conditions (to be given below) are satisfied. Our
restriction to

⋃
H is motivated by the intuition that the states s �∈ ⋃

H represent
“impossible states”: ontic states that are excluded by the doxastic state H. In other
words,

⋃
H encompasses the agent’s “hard information” about the world. As a

consequence, the operator K (given by quantifying over
⋃

H) is factive (unlike in the
usual setting of DDL): we can think of K as representing the agent’s “knowledge”,
in the absolute sense of infallible, absolutely certain, and absolutely unrevisable
knowledge. We use the notation

s, H |=M φ

whenever we have s ∈ ‖φ‖M,H , and we delete the subscript(s) whenever it is possible
to do this without ambiguity, writing e.g. ‖φ‖H and s, H |= φ when M is fixed, or
even ‖φ‖ when both M and H are fixed. (Note that s, H |= φ can only hold for
s ∈ H.) A semantics for L is required to satisfy the following constraints:

s, H |= p iff s ∈ V(p)

s, H |= ¬φ iff s, H �|= φ
s, H |= φ ∧ ψ iff (s, H |= φ) ∧ (s, H |= ψ)

s, H |= Bφ iff ∀ maximal f.i.p.F ⊆ H ∃F ′ finite ⊆ F ∀t ∈ ⋂
F ′ (t, H |= φ)

s, H |= Kφ iff ∀t ∈ ⋃
H (t, H |= φ)

s, H |= [α]φ iff ∀H ′ ∈ D
(
(H, H ′) ∈ ‖α‖H ∧ s ∈ ⋃

H ′ =⇒ s, H ′ |= φ
)

For a class C of (DDL) models, we write C |= φ and we say that φ is valid
on C , if ‖φ‖M,H = U for every model M = (U, D, R, V) ∈ C and every H ∈
D; equivalently, iff s, H |=M φ holds for all models M = (U, D, R, V) ∈ C , all
hypertheories H ∈ D and all states s ∈ ⋃

H.
An onion model (U, D, R, V) is standard if all the onions O ∈ D are stan-

dard. A weakening of the standardness condition, which has the disadvantage of
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being language-dependent is the so-called Lewis Limit Assumption: an onion model
(U, D, R, V), together with a semantics ‖ • ‖ is said to satisfy the Limit Assumption
if, for every formula φ ∈ L and every onion O ∈ D, we have that: ‖φ‖ ∩ ⋃

O �= ∅
implies

⋂{X ∈ O : ‖φ‖ ∩ X �= ∅} ∈ O.
It is easy to see that standard onion models always satisfy the Limit Assumption (for

every language L ); but the converse is false. In fact, standard onion models satisfy
a stronger condition, that we call the Strong Limit Assumption: for every set P ⊆ U
of states and every onion O ∈ D, P ∩⋃

O �= ∅ implies
⋂{X ∈ O : P ∩X �= ∅} ∈ O.

This means that, in a standard model, every onion intersecting a given set P contains
a unique smallest sphere intersecting P.

Any fallback H in a DDL model induces a corresponding relation of plaubility
between states. We say that state s is at least as plausible as state t according to H ,
and we write s ≤H t, if s belongs to all the fallbacks in H that contain t:

s ≤H t iff ∀X ∈ H(t ∈ X ⇒ s ∈ X).

Obviously, the plausibility relation ≤H is a preorder (reflexive and transitive
relation) on the set

⋃
H. Moreover, if O is an onion, then ≤O is a total (i.e. connected)

preorder on
⋃

O: for all s, t ∈ ⋃
O, we have either s ≤O t or t ≤O s (or both).

Our definition of irrevocable knowledge K is essentially the same as in [26],
except that our modified definition of validity entails the factivity of K , making it to
behave indeed like a notion of “knowledge” (in contrast to [26]). Our definition of
belief B is a generalization of the Grove-Segerberg definition, due to van Benthem
and Pacuit [8]. But it can be simplified in onion models (where it boils down to a
widely used generalization of Grove’s), and it can be simplified further when we
have either the Limit Condition or closure under intersection (where it boils down to
the Grove-Segerberg definition):

Proposition In DDL models in which the set D of hypertheories is closed under
non-empty intersections, φ is believed iff it is true in all the “most plausible states”
(i.e. the states of the smallest fallback):

s, H |= Bφ iff ∀t ∈
⋂

H (t, O |= φ).

In onion models, φ is believed iff φ is true in all the states that are “plausible enough”
(i.e. throughout all the spheres that are “small enough”):

s, O |= Bφ iff ∃X ∈ O∀t ∈ X (t, O |= φ).

Moreover, in onion models satisfying the Limit Condition, this boils down to the
usual Grove definition:

s, O |= Bφ iff ∀t ∈
⋂

O (t, O |= φ).

(And, as a consequence, this equivalence holds in standard onion models.)
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4 DDL as a Generalization of Topo-logic

The language of Topo-logic, proposed by Moss and Parikh [15, 17], is a modal logic
with two modalities: K (for “knowledge”), and � (for “effort”). The box modality
stands for stability under information increase: the sentence �ϕmeans thatϕ (is true
and) stays true no matter what the agent increases her information with. Using its De
Morgan dual ♦, one can define “learnability” as ♦Kϕ (i.e. ϕmight come to be known
after learning some further information). Topo-logic frames (U,T , V) consists of a
universe (set of points, or “states”) U, a family T ⊆ P(U) of sets of states (called
“opens”)3 and a valuation V for the atomic sentences of the above language. While
the points s ∈ U represent possible ontic states, the opens V ∈ T represent possible
information states: when the agent’s information state is V , this means that the only
thing that she knows about the state of the world is that it belongs to V . Sentences are
evaluated at pairs (s, V) of an ontic state s ∈ U and and information state V ∈ T ,
with the restriction that s ∈ V (so that “knowledge” is factual: indeed, these are
information states, rather than doxastic states!). The semantics is given by putting

s, V |= Kφ iff t, V |= φ for every t ∈ V ,

s, V |= �φ iff t, V ′ |= φ for every V ′ ∈ T such that V ′ ⊆ V .

If we think of V , V ′ ∈ T as possible information states, then V ′ ⊆ V means that
V ′ is a refinement of V : it contains at least as much information (about the real state
s ∈ V ′) as V does. So we can think of the move from V to V ′ ⊆ V as an increase of
information: a form of (correct, accurate, infallible) “learning”.

It is easy to see that Topo-logic is a special case of Generalized DDL: we can
reinterpret a topo-logic model as a special kind of onion model M = (U, D, R) in
which all the onions are singletons (D = {{V} : V ∈ T }), each consisting of only
one fallback V ∈ T , and in which the repertoire is a singeton R = {R�}, where the
relation R� is given by:

{V}R�{V ′} iff V ⊇ V ′ (for all V , V ′ ∈ T ).

We can similarly reinterpret the language of topo-logic as simply the minimal
DDL language for the above kind of (topo-logic) DDL models. The distinction
between the belief and knowledge operators B and K vanishes in this case (so that
we can follow Moss and Parikh and denote them both by the same letter K), and the
(only) dynamic modality is denoted by �.

3 Although the family T of all opens is not in general required to be a topology in the mathematical
sense, Moss and Parikh do consider and axiomatize various possible closure conditions on T ,
including the ones defining a topology.
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5 Complete Axiomatization of Static Revision: The Logic CDL

To capture static revision, we follow the DEL tradition, by borrowing from condi-
tional logic a conditional belief operator Bφψ. Our semantic clauses can be naturally
extended to this enlarged language.

But first, following Segerberg [21], we introduce the notation

H∩· P := {X ∈ H : X ∩ P �= ∅}

for all hypertheories H ∈ D and sets P ⊆ U of states, and moreover we generalize
to any families F ⊆ H of fallbacks (of a hypertheory H):

F∩· P := {X ∈ F : X ∩ P �= ∅}.

The relativization of a family F ⊆ H of fallbacks (of a hypertheory H) to a set P ⊆ U
of states is the family

FP := {X ∩ P : X ∈ F∩· P} = {P ∩ X : X ∈ F, P ∩ X �= ∅}.

Of course, this operation can be applied in particular to an hypertheory H or onion O,
producing a relativized hypertheory HP or relativized onion OP. A family F ⊆ H of
fallbacks has the finite intersection property relative to P (P-f.i.p.) if every finite
subfamily (of its relativization to P) F ′ ⊆ FP has non-empty intersection

⋂
F ′ �= ∅.

We say that a family F ⊆ H of fallbacks has the maximal P-f.i.p. if F has the P-f.i.p.
but no proper extension F ⊂ G ⊆ H has the P-f.i.p. Observe that, if O is an onion
such that P ∩ (∪O) �= ∅, then O has itself the maximal P-f.i.p.; and moreover O is
the only family F ⊆ O having the maximal P-f.i.p.

When P = ‖φ‖H for some formula φ, we write “maximal φ-f.i.p.” for “maximal
‖φ‖H -f.i.p.” and so on. Now we define conditional belief by putting:

s, H |= Bθφ iff ∀ maximal θ − f.i.p.F ⊆ H ∃F′ finite ⊆ F‖θ‖H ∀t ∈
⋂

F′ (t, H |= φ)

Proposition In onion models, φ is believed conditional on θ iff φ is true in all the
most plausible states satisfying θ:

s, O |= Bθφ iff ∃X ∈ O‖θ‖O ∀t ∈ X (t, O |= φ).

Moreover, in onion models satisfying the Limit Condition, this boils down to the
usual Grove semantics for static revision:

s, O |= Bθφ iff ∀t ∈
⋂

O‖θ‖O (t, O |= φ).
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The language of conditional doxastic logic CDL is the smallest set of formulas
containing the atomic sentences p ∈ Φ, the tautological formula � and is closed
under conditional belief operators Bθφ. It can be considered as a variant of the DDL
language, in which we take R = ∅ (so there are no dynamic modalities), while B and
K are defined as abbreviations: indeed, by putting

Bφ := B�φ,

Kφ =: B¬φ⊥

(where ⊥ := ¬�), we can easily see that these abbreviations are semantically equiv-
alent to the belief and knowledge operators, as defined in the previous section.

Theorem The following proof system CDL for conditional doxastic logic is sound
and complete w.r.t. the class of all onion models, the class of standard onion models,
and the class of finite onion models:

Necessitation Rule: From � ϕ infer � Bψϕ
Normality: � Bθ(ϕ → ψ) → (Bθϕ → Bθψ)

Truthfulness of Knowledge: � Kϕ → ϕ
Persistence of Knowledge: � Kϕ → Bψϕ
Full Introspection: � Bψϕ → KBψϕ

� ¬Bψϕ → K¬Bψϕ
Hypotheses are (hypothetically) accepted: � Bϕϕ
Superexpansion:
Subexpansion (=Rational Monotonicity) � Bϕ∧ψθ → Bϕ(ψ → θ)

� ¬(Bϕ¬ψ ∧ Bϕ(ψ → θ)) → Bϕ∧ψθ

(where in all the above axioms, K is just the abbreviation Kϕ := B¬ϕ⊥).

As a consequence, it is easy to see that onion models satisfy all the AGM postulates
for “static” belief revision, except for the Vacuity Postulate (T ∗ ϕ = ⊥ iff � ¬ϕ),
which is valid only modulo a natural epistemic restriction: T ∗ϕ = ⊥ iff T � K¬ϕ.
This restriction is unavoidable in the presence of any “unrevisable belief” operator
K : it seems to us to be the natural epistemic version of the Vacuity principle. Hence,
the resulting theory was called “epistemic AGM” in [3].

Corollary If we take the initial AGM theory T to be the set T = {ψ : s, O |=M Bψ}
of all beliefs held in (a given ontic state s and a given onion O of) an onion model M,
and interpret the statically-revised theory T ∗φ as the set T ∗φ = {ψ : s, O |= Bφψ}
of all conditional beliefs held (conditional on φ) in (the same state s and same onion
O of the same model) M, then all the postulates of the “epistemic AGM” theory are
satisfied.

In contrast, static revision in general DDL models does not satisfy the (epistemic)
AGM postulates (since the Subexpansion principle fails in general DDL models). In
conclusion, general DDL does not support an AGM-type theory of belief revision;
but onion models are the natural AGM-friendly version of DDL.
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6 Dynamic Revision in DDL: Internalizing Doxastic Upgrades

It is sometimes said that the main difference between Dynamic Epistemic Logic
and the traditional Epistemic Temporal Logic approach to information change is that
DEL is constructive, while ETL is purely descriptive: in DEL, one actually defines in
a constructive way the new doxastic/epistemic relation after a given doxastic action.
But this constructive approach can be internalized in DDL models, and in fact [21]
anticipated this! As we will see in the next section, in that paper Segerberg used a
constructive DDL approach to expansion and contraction.

In this section we will use such a constructive DDL approach to belief revision.
We give constructive definitions of binary relations between onions, that internalize
three different revision operations considered in the literature. We adopt from DEL
the method of using Reduction/Recursion laws to give complete axiomatizations of
the dynamic logics of these three kinds of revision. Indeed, our laws are identical
to the ones considered in the DEL literature: in effect, this section is a concrete
example of how the DEL-style of modeling and axiomatizing belief revision can be
“internalized” in DDL.

One can think of many ways to change the beliefs of an agent according to the
information she receives. She can receive hard information (unrevisable and irrevo-
cable, since received from an infallible source), or she can receive soft information
(fallible and potentially revisable).

Receiving “hard” informationϕ corresponds to what in the DEL literature [2, 7, 9]
is called an update4 !ϕ, and in Belief Revision literature is known as a “radical
revision” (or irrevocable revision), with ϕ. This operation changes the model by
eliminating all the ¬ϕ-worlds. The result of this elimination is a submodel only
consisting of ϕ-worlds.

A second, softer kind of revision is given by the DEL operation of lexicographic
upgrade ⇑ ϕ [6, 5], known in Belief Revision literature as “moderate revision” (or
lexicographic revision). It changes the model by making all ϕ-worlds become more
plausible than all ¬ϕ-worlds:

Finally, the DEL operation of conservative upgrade ↑ ϕ [6, 5] is known as “con-
servative revision” (or natural revision) in the Belief Revision literature. It changes
the model by making the most plausible ϕ-worlds become the most plausible overall
(while leaving everything else unchanged) (Figs. 4, 5 and 6).

Dynamic Epistemic Logic DEL (in its single-agent version) for the above-
mentioned three types of upgrades can now be obtained as a special case of Gener-
alized DDL. For this, we reuse the “relativized onion” notation

OP := {P ∩ X : X ∈ O, P ∩ X �= ∅}

introduced in Sect. 5, to define binary relations R!P (for update), R⇑P (for lexico-
graphic upgrade) and R↑P (for conservative upgrade) between onions O ∈ D (of

4 Unfortunately, this terminology diverges from the one in Belief Revision literature, where “update”
refers to a completely different type of operation, namely to the Katsuno-Mendelson revision.
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some onion model (U, D, R)) and sets of sets of states O′ ⊆ P(U), as follows:

(O, O′) ∈ R!P iff O′ = OP �= ∅
(O, O′) ∈ R⇑P iff O′ = OP ∪

{
X ∪

⋃
OP : X ∈ O

}

(O, O′) ∈ R↑P iff O′ =
{⋂

OP :
⋂

OP �= ∅
}

∪
{

X ∪
⋂

OP : X ∈ O
}

To visualize these doxastic actions, see Figs. 1, 2 and 3 in the Appendix.
Next, we define a DEL onion model to be a standard onion model M = (U, D, R)

such that
R = {R!P : P ⊆ U} ∪ {R⇑P : P ⊆ U} ∪ {R↑P : P ⊆ U}

and such that D is closed under all the relations in R.
The language of (this version of) DEL is obtained by adding to CDL dynamic

modalities for all the above types of upgrades. The semantics is obtained by defining
the interpretation maps ‖ϕ‖ and ‖α‖ by double recursion: the static propositional
clauses are as in CDL, the semantics of dynamic modalities is as in the generalized
DDL, while the clauses for ‖α‖ are given by

‖!ϕ‖ =R!‖ϕ‖

‖ ⇑ ϕ‖ =R⇑‖ϕ‖

‖ ↑ ϕ‖ =R↑‖ϕ‖

Theorem A sound and complete proof system for DEL onion models can be
obtained by adding to the above proof system of CDL the van Benthem Reduc-
tion/Recursion laws [6]. We give here only the reduction laws for conditional belief:

[!ϕ]Bψ ⇐⇒ ϕ ⇒ Bϕ∧[!ϕ]ψ[!ϕ]θ,
[⇑ϕ]Bψθ ⇐⇒ Bϕ∧[⇑ϕ]ψ[⇑ϕ]θ ∧

(
Kϕ[⇑ϕ]¬ψ ⇒ B[⇑ϕ]ψ[⇑ ϕ]θ

)
,

[↑ϕ]Bψθ ⇐⇒ Bϕ([↑ϕ]ψ ⇒ [↑ ϕ]θ) ∧
(

Bϕ[↑ ϕ]¬ψ ⇒ B[↑ϕ]ψ[↑ ϕ]θ
)

,

where we used the abbreviation Kϕψ := K(ϕ ⇒ ψ).

Strongest Postcondition Modalities The standard dynamic modalities [α]ϕ are
known in Computer Science as weakest preconditions: indeed, they capture the weak-
est condition that can be imposed on an input information state (s, H) to ensure that,
after performing action α in that state, ϕ will become true in the output-state. The
dual modalities (in the sense of Galois duality, rather than De Morgan duality) are
the strongest postcondition modalities 〈α−1〉ϕ, capturing the weakest condition that
is ensured to hold in an output-state after performing action α on an input state
satisfying ϕ.
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While standard DEL cannot represent strongest postconditions,5 DDL models
contain enough information to define them, as existential (Diamond) modalities for
the converse relations R−1

α : equivalently, just put

s, H |= 〈α−1〉ϕ iff ∃H ′ ((H ′, H) ∈ ‖α‖H ∧ s, H ′ |= ϕ
)

It is obvious that these operators are indeed the Galois duals of the standard
dynamic modalities, and that the same holds for their corresponding de Morgan
duals: i.e. we have the validities

ϕ ⇒ [α]〈α−1〉ϕ,

ϕ ⇒ [α−1]〈α〉ϕ.

Finally, using the strongest postcondition modality for lexicographic upgrade, we
can check the semantic equivalence:

Bϕψ ⇐⇒ [⇑ ϕ]B〈(⇑ ϕ)−1〉ψ.

This equivalence confirms our interpretation of conditional beliefs Bϕψ as embod-
iments of “static revision”: the agent’s revised beliefs (after revision with ϕ) about
ψ’s truth value before the revision.

7 Expansion and Contraction in Full DDL

In [21], Krister Segerberg used a constructive approach (similar to the one we used
above for revision) for modeling expansion and contraction in DDL. Assuming some
additional conditions on the hypertheories (namely that they are closed under non-
empty intersections and satisfy the Strong Limit Assumption,6 Segerberg puts, for
hypertheories H and sets P ⊆ U, X ∈ H:

H/P :=H ∪ {X ∩ P : X ∈ H, X ∩ P �= ∅},
H|P :={Y ∈ H : X ⊆ Y},

and requires the doxology D to be closed under these operations. Using these nota-
tions, Segerberg says that a fallback Z ∈ H is a contraction with P ⊆ U in H iff Z
is a minimal fallback (with respect to inclusion) in the family H∩· (U − P) (where
recall that H∩· (U −P) := {X ∈ H : X ∩ (U −P) �= ∅}). Note that such a contraction

5 But extensions of DEL which can define strongest postconditions have been proposed by G. Aucher
and H. van Ditmarsch.
6 Segerberg calls LR hypertheories (from Lindstrom and Rabinowicz) the hypertheories that satisfy
these two conditions.
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with P in H might not exist,7 and even if it exists it might not be unique! Segerberg
then explicitly defines an expansion action +P and a contraction action −P (for any
given set P ⊆ U of states), given by the following relation on hypertheories in D:

(H, H ′) ∈ R+P iff H ′ = H/P,

(H, H ′) ∈ R−P iff H ′ = H|Z for some contraction Z with P in H.

Now, these two operations, as defined by Segerberg, do not fit the AGM framework.
This was a conscious decision by Segerberg, since his aim in [21] was to give a
semantics to the Lindstrom-Rabinowicz theory of contraction (in which contraction
is not unique), rather than the AGM theory. In order to try to accommodate AGM, first
we have of course to restrict the above definitions to onion models: as we saw, these
are the AGM-friendly models for DDL. On onion models, contractions with P (as
defined above) might still not exist; but, if they do, then they are unique (as required by
AGM). To ensure existence, we have to further restrict to onion models satisfying the
Limit condition; or (for simplicity) to the even more restricted case of standard onion
models. As we’ll see, this restriction does ensure that Segerberg’s contraction satisfies
the AGM principles. But, even in this case, we still have problems with Segerberg’s
definition of expansion: this operation does not preserve the “nestedness” property,
so it does not map (standard) onions into onions! Moreover, there is no reasonable
additional condition that would ensure that the expansion (in the sense of Segerberg)
of an onion O with a set P is an onion whenever P ∩ ⋃

O �= ∅. Since “onionhood”
(i.e. nestedness of the hypertheories) is essential for satisfying AGM postulates, this
means that one should look for a different definition for AGM expansion.
AGM-type Expansion Operations on Standard Onion Models

In fact, any of the known semantic proposals for expansion (as an operation on
Grove sphere models) considered in the Belief Revision literature can be internalized
in DDL. In particular, for each of the three types of revision defined above there is a
corresponding expansion action on standard onion models:

(O, O′) ∈ R+!P iff (O, O′) ∈ R!P and X ∩ P �= ∅ for all X ∈ O,

(O, O′) ∈ R+⇑P iff (O, O′) ∈ R⇑P and X ∩ P �= ∅ for all X ∈ O,

(O, O′) ∈ R+↑P iff (O, O′) ∈ R↑P and X ∩ P �= ∅ for all X ∈ O.

See the Appendix (Figs. 4, 5 and 6) for visualizations of these operations. Since
expansion is a special case of revision (namely the case in which the new information
does not contradict any prior beliefs), the corresponding expansion modalities can
be reduced to the revision ones, e.g.

[+!ϕ]θ ⇐⇒ (¬B¬ϕ ⇒ [!ϕ]θ) .

7 Though the additional closure assumptions made by Segerberg in [21] do ensure the existence of
contractions.
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Segerberg Contraction on Standard Onion Models: “Severe Withdrawal”
It is easy to see that, on standard onion models, contractions with P exist and are

unique whenever P is not irrevocably known (i.e. whenever (
⋃

O) ∩ (U − P) �= ∅).
Moreover, on standard onion models, Segerberg’s definition is equivalent to putting:

(O, O′) ∈ R−P iff O′ = O∩· (U − P) := {X ∈ O : X ∩ (U − P) �= ∅}.

This semantic contraction operation was called “mild contraction” by Levi [12],
“severe withdrawal” by Pagnuco and Rott [16] and “Rott contraction” by Ferme and
Rodriguez [10]. See the Appendix (Fig. 7) for a picture of severe withdrawal.

Static Withdrawal To axiomatize the dynamic logic of contraction, we need to intro-
duce a “static” contraction modality B−PQ that pre-encodes Segerberg’s dynamic
contraction in the same way in which conditional belief BPQ pre-encodes dynamic
revision. We call this operator “withdrawn belief” and we read B−PQ as saying that
Q is believed conditionally on the withdrawal of P. We do this by putting:

s, O |= B−θφ iff ∀ maximal ¬θ−f.i.p.F ⊆ O ∃F′ finite ⊆ F∩· ‖¬θ‖O ∀t ∈
⋂

F′ (t, O |= φ)

Proposition In onion models, withdrawn belief (after withdrawing P) is the same
as truth in all the states of some sphere not included in P:

s, O |= B−θφ iff ∃X ∈ O (X �⊆ ‖θ‖O and ∀t ∈ X (t, O |= φ)) .

Moreover, in onion models satisfying the Limit Condition (and in particular, in
standard onion models), withdrawn belief (after withdrawing P) is the same as
truth in all the states of the smallest sphere not included in P:

s, O |= B−θφ iff ∀t ∈
⋂

(O∩· ‖¬θ‖O) (t, O |= φ).

Observation (“Static” Levi Identity) It is easy to see that standard conditional belief
can in fact be defined in terms of the withdrawn belief operator, via the following
semantic equivalence:

Bθϕ ⇐⇒ B−¬θ(θ ⇒ ϕ).

The converse is false: one cannot define withdrawn belief only in terms of conditional
belief.
Open Question Finding a complete axiomatization for (static) withdrawn belief is
still an open problem.
Reducing Segerberg’s Dynamic Contraction to Static Withdrawal However, if
given such a complete axiomatization for static withdrawal, then we could immedi-
ately obtain a complete axiomatization for Segerberg’s dynamic contraction logic,
by adding a number of Recursion laws, the most important being:
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[−ϕ]B−ψθ ⇐⇒ Kϕ ∨ Bϕ∨[−ϕ]ψ[−ϕ]ψ

However, many authors consider severe withdrawal to be a bad candidate for mod-
eling contraction. In addition to not satisfying the Recovery principle, it does satisfy
a highly implausible property, called Expulsiveness: for ontic facts p, q, we have that
¬Bp∧¬Bq implies [−p]Bq∨[−q]Bp. This property does not allow unrelated beliefs
to be undisturbed by each other’s contraction!

To this objection, we can add another one, based on dynamic logic. Namely,
although severe withdrawal satisfies a dynamic version of the so-called Levi identity
with respect to irrevocable revision (DEL update)

R−¬P; R+!P = R!P

(where R; R′ is relational composition and P ⊆ U is an arbitrary set of states), the
corresponding Levi identies for lexicographic revision or minimal revision are not
satisfied:

R−¬P; R+⇑P �= R⇑P,

R−¬P; R+↑P �= R↑P.

Since update (irrevocable revision) is a rather implausible operation when dealing
to belief change in daily life, this throws more doubt on the appropriateness of
Segerberg’s definition of contraction.
Other AGM-type Contractions

But severe withdrawal is not the only AGM-friendly semantic contraction opera-
tion in the literature. Other options include conservative contraction −cP and mod-
erate contraction −mP (see the pictures). We give below the formal definition over
onion models in DDL (but see the pictures for a better intuitive explanation): if we
put O−P := ⋂

OU−P (for the smallest non-empty intersection of an O-sphere with
U − P) whenever OU−P �= ∅ (i.e. whenever

⋃
O �⊆ P), and O−P := ∅ otherwise,

then for any two standard onions O, O′ ∈ D we define

(O, O′) ∈ R−cP iff O′ = {X ∪ O−P : X ∈ O},
(O, O′) ∈ R−mP iff O′ = {Y ∪

⋂
O : Y ∈ OU−P} ∪ {X ∪

⋃
OU−P : X ∈ O}.

See the Appendix for visualizations of these operations (Figs. 8 and 9). They are
much better behaved than severe withdrawal. They satisfy the Recovery postulate,
and moreover they satisfy the dynamic versions of Levi identity for all the above-
mentioned revision operators: e.g. for all sets P ⊆ U of states, we have
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R−c¬P; R+!P = R!P, R−m¬P; R+!P = R!P,

R−c¬P; R+⇑P = R⇑P, R−m¬P; R+⇑P = R⇑P,

R−c¬P; R+↑P = R↑P, R−m¬P; R+↑P = R↑P.

Even better, there is no need to introduce the “static” counterparts of these oper-
ators as new primitive operators: their static versions are definable in terms of con-
ditional beliefs. This means that the logic of conditional beliefs, conservative con-
traction and moderate contraction can be directly axiomatized, in a similar way that
the logic of (various types of) dynamic revision was axiomatized:

Theorem There exists a sound and complete proof system for conservative con-
traction and moderate contraction over the class of DDL onion models that are closed
under these operations. The system consists of the axioms of conditional doxastic
logic CDL, together with the following Recursion laws:

[−cϕ]p ⇐⇒ p, [−mϕ]p ⇐⇒ p,

[−cϕ]¬θ ⇐⇒ ¬[−cϕ]θ, [−mϕ]¬θ ⇐⇒ ¬[−mϕ]θ,
[−cϕ](θ ∧ ψ) ⇐⇒ [−cϕ]θ ∧ [−cϕ]ψ, [−mϕ](θ ∧ ψ) ⇐⇒ [−mϕ]θ ∧ [−mϕ]ψ,

[−cϕ]Bψθ ⇐⇒ B([−cϕ]ψ ⇒ [−cϕ]θ) ∧ B¬ϕ([−cϕ]ψ ⇒ [−cϕ]θ) ∧
(

B¬ϕ[−cϕ]¬ψ ⇒ B[−cϕ]ψ[−cϕ]θ
)

,

[−mϕ]Bψθ ⇐⇒ B([−mϕ]ψ ⇒ [−mϕ]θ) ∧ B¬ϕ∧[−mϕ]ψ[−mϕ]θ ∧
(

K¬ϕ[−mϕ]¬ψ ⇒ Bϕ∧[−mϕ]ψ[−mϕ]θ
)

8 Evidential Dynamics in DDL

In the Chapter [8], van Benthem and Pacuit develop a very interesting extension of
DEL aimed to deal with evidential dynamics. Their evidence models are based on
the well-known neighbourhood semantics for modal logic, in which the neighbour-
hoods are interpreted as “evidence sets”: pieces of evidence (possibly false, possibly
mutually inconsistent) possesed by the agent. In this section we briefly sketch how
their setting can be internalized in DDL.
Belief modality, revisited (in general DDL models) We revert here to general DDL
models, based on hypertheories H whose fallbacks are not necessarily nested. But
now the fallbacks X ∈ H is interpreted as “evidence sets”, and each hypertheory
H is interpreted as a possible “evidential state” (rather than just a doxastic state):
one in which the agent possesses a piece of evidence X iff X ∈ H. Our general
definition of belief operators B (and their conditional-belief generalizations) in terms
of maximal f.i.p. families is in fact taken from [8]. But now this definition has a
clearer justification: when confronted with mutually inconsistent pieces of evidence,
a rational agent believes the sentences that are implied by all the maximally consistent
bodies of available evidence. So belief Bϕ is defined as “truth in all the states that
are contained in any maximally consistent family of evidence sets”.
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Evidence Modality In addition, van Benthem and Pacuit introduce a � operator,
such that �ϕmeans that the agent has evidence for ϕ. We adopt this notion in general
DDL models, except that we denote it by � (to distinguish from the “effort” modality
� from Topo-logic):

s, H |= �ϕ iff ∃X ∈ H∀t ∈ X (t, H |= ϕ).

Note that, by a previous Proposition, �ϕ and Bϕ are equivalent in onion models.
This is natural: onion models represent situations in which all the available pieces of
evidence are mutually consistent; hence, in an onion model belief in ϕ is the same
as “having evidence for ϕ”, while in general these two notions are distinct.

Conditional Evidence Again, we can follow van Benthem and Pacuit and gen-
eralize � to a conditional evidence modality �θϕ, expressing the fact that the agent
has some evidence for φ that is compatible with θ:

s, H |= �θϕ iff ∃X ∈ H‖θ‖H ∀t ∈ X (t, H |= ϕ).

Evidence Management Actions Further, Van Benthem and Pacuit proceed to for-
malize a number of “evidence management” actions: they denote evidence addition
by +ϕ, evidence removal by −ϕ, evidence upgrade by ⇑ϕ and evidence combination
by #. We briefly sketch here how can these be defined in DDL models. To distin-
guish the first three of these evidential operations from the doxastic operations that
we previously considered, we add a subscript e (from “evidence”).

(H, H ′) ∈ R+eP iff H ′ = H ∪ {P},
(H, H ′) ∈ R−eP iff H ′ = H − {X ∈ H : X ⊆ P},
(H, H ′) ∈ R⇑eP iff H ′ = {X ∪ P : X ∈ H} ∪ {P},

(H, H ′) ∈ R# iff H ′ is the closure of H under non-empty intersections.

An evidential DDL model is one whose doxology is closed under these relations.
As before, we introduce universal modalities [+eϕ], [−eϕ], [⇑e ϕ], [#] for the
binary relations R+e‖ϕ‖ etc. Essentially, evidence addition +eϕ is the action by
whichϕ comes to be accepted as an addmissible piece of evidence; evidence removal
−eϕ is the action by which all evidence entailing ϕ is removed; evidence upgrade
⇑e ϕ incorporates ϕ into each piece of available evidence (thus making ϕ the most
important piece of evidence); finally, evidence combination # is the action by which
the agent combines all the mutually consistent pieces of evidence.

Proposition All the Recursion laws for evidence management actions presented in
[8] are valid on evidential DDL models.
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9 Conclusions: Comparing DDL, DEL and PDL/ETL

Three Styles of Doing Static Belief Revision As already mentioned, in the literature
we encounter three styles of modelling “static” belief revision: Stalnker’s selection
functions, plausibility relations, and the Grove-Lewis sphere models. When consid-
ered at an appropriate level of generality, these settings are equivalent. In this paper,
we followed Segerberg in considering only sphere models. At a syntactic level, we
followed the DEL approach (inspired from the Conditional Logic tradition) of using
conditional belief operators to express static revision.
Three Styles of Doing Doxastic Dynamics As also mentioned, we are aware of
three different styles of modeling doxastic changes. The first is the DEL approach,
in which the dynamics is external to the models: doxastic actions are seen as model-
changing actions, and represented as relations between models. The second style is
the (doxastic version of the) old PDL (Propositional Dynamic Logic) approach: the
dynamics is internalized simply by adding enough states to the model to represent
the results of all the possible doxastic actions, which are thus represented inter-
nally, as binary relations between states. A variant is the ETL style (of Epistemic
Temporal Logic), obtained by unravelling PDL models into trees, and by lumping
together all the dynamic relations into one single temporal relation (going from a
state to the possible next states). Finally, the third style is given by Segerberg’s DDL:
this approach keeps the actual states unchanges (as “ontic states”) and internalizes
the dynamics by representing doxastic actions as binary relations between doxastic
structures (“onions”, “hypertheories”, “doxastic states”) living in a fixed space of
possible such structures (the “doxology”).

Again, if considered at an appropriate level of generality, these three approaches
are equivalent. However, there are some conceptual (and practical) differences. The
DEL approach is the most “open-ended”, well-suited for open systems, in which there
are innumerable doxastic actions that might happen. It is also the most “economical”,
as only the states and the doxastic structures that are currently epistemically possible
are “given”: only they are represented in a given model; hence, the DEL models
can be easily visualized and drawn. It is also a “constructive” approach: the doxastic
dynamics is not given in this approach, but is to be constructed (in the form of various
model transformers, or “upgrades”).

The PDL/ETL approach has the advantage that it internalizes all the possible
dynamics, in a clear way, using an almost flat structure (with only two levels: states,
and relations between them). But the price, especially in the ETL version, is that
the models are typically huge and quickly risk becoming unamanagable. This is the
most un-economical of the three dynamic styles: we cannot actually draw PDL/ETL
models for almost any realistic scenario involving iterated belief change.

The DDL style is somewhere in between. It is much more economical than the ETL
approach, since it keeps the states fixed and only multiplies the doxastic structure.
It also brings conceptual clarity: doxastic changes are after all only changes of
belief, so they shouldn’t multiply the states of the world. It is an elegant and natural
way to internalize doxastic changes. As shown in this paper, it is potentially at
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least as expressive and powerful as the (single-agent version of the) DEL approach:
everything that was ever done in DEL style can be done in DDL style.

However, there is still a price to pay. DDL models are very high-level, involving
fourth-order entities (not only states, but also fallbacks as sets of states, and hyper-
theories as sets of fallbacks, and doxologies as sets of hypertheories..., as well as
doxastic actions as binary relations between hypertheories!). As a result, these mod-
els are hard to visualize. Their economy of resources is also relative: in complex
dynamic-doxastic scenarios, the number of needed hypertheories explodes. Finally,
it seems to us that, although in the end equivalent to the DEL style, the DDL approach
lacks some of the heuristic value of DEL. As we saw, all the conceptual clarifications
and settings that were developed in (single-agent) DEL style (such as the distinction
between static and dynamic revision, the use of static conditional-belief modalities to
“pre-encode” the dynamics, the axiomatization of various types of belief upgrades,
the development of evidential dynamics) can be done in DDL style. We are confident
that other such developments (such as the doxastic dynamics of questions studied in
Interrogative DEL) can also be done in DDL style. But there might be a reason for
which these developments were first done in DEL style: the inherent complexity of
DDL models, their higher-order nature and the difficulty of visualizing them may
reduce their heuristic value and may risk becoming obstacles to the intuitive pursuit
of new developments in the field. An open-ended approach such as DEL, which keeps
to a minimum the number of entities (and the number of higher-order concepts) in
a given model and keeps the dynamics outside the models, may be easier to use
when pursuing new developments. But this is just the context of discovery. At a later
stage, in the context of presentation and justification, it may again become impor-
tant, at least for the sake of conceptual clarity, to re-internalize these new dynamic
developments, using the elegant DDL style. As indeed we attempted here, in this
paper.
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Appendix: Pictures of the Main Operations on Onions

The pictures drawn here are following Hans Rott’s presentation [18]. The spheres
of the initial onion are drawn as usual, as nested circles. The numbers represent the
spheres of the new onion, after the revision/expansion/contraction: e.g. all regions
labeled with one form the first sphere of the new onion, the regions labeled with two
form the second sphere etc. Finally, the regions labeled with ω contain the states that
are outside the union of all the spheres of the onion (the “impossible states”).
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Fig. 1 Radical revision (!ϕ)

ωωωωω 1 2 ω

ϕ

Fig. 2 Conservative revision
(↑ ϕ)

2345ω 1 5 ω

ϕ

Fig. 3 Moderate revision
(⇑ ϕ)

4567ω 1 2 3

ϕ

Fig. 4 Conservative expan-
sion (+↑ϕ)

2345ω 1

ϕ
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Fig. 5 Moderate expansion
(+⇑ϕ)

6789ω 1 2 3 4 5

ϕ

Fig. 6 Radical expansion
(+!ϕ)

ωωωωω 1 2 3 4 ω

ϕ

Fig. 7 Severe withdrawal
(−ϕ)

1112ω 1 2 ω

¬ϕ

Fig. 8 Conservative contrac-
tion (−cϕ)

1234ω 1 4 ω

¬ϕ
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Fig. 9 Moderate contraction
(−mϕ)

1456ω 1 2 3

¬ϕ
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