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    Abstract     Researching professional learning within the paradigm of the integration 
of work and learning is interesting as it captures the complexity of workplace learning. 
However, it does require advanced statistical techniques that are able to model this 
complexity. Structural equation modelling (SEM) is one of the techniques that 
enable the examination of more complex relations. This book chapter aims at pro-
viding a basic introduction to SEM without using mathematical formulas and going 
into all the specifi c technicalities while at the same time staying true to the complex-
ity of the presented analysis. 

 The current book chapter starts with a general and conceptual presentation of 
SEM, including the advantages and disadvantages of the technique. The goal of this 
introduction is to address the questions of why and when SEM should be used and 
which conditions need to be fulfi lled for a valid application of this technique. After 
a discussion of the fi t indices that are used to evaluate the models, the analyses of 
different types of models are presented by means of an authentic dataset. More 
 specifi cally, data regarding employees’ approaches to learning at work were used to 
illustrate confi rmatory factor analysis (including measurement invariance across 
groups), path analysis, and the analysis of a full SEM model. The chapter concludes 
by discussing several possible extensions of SEM and their relevance for research-
ing professional learning.  
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14.1         Introduction 

 Throughout this book, the integration of learning and working takes a central role. 
Research into the learning potential of the workplace and the characteristics that 
promote or impede learning has already offered interesting insights (e.g. Hurtz & 
Williams,  2009 ; Kyndt & Baert,  2013 ; Lohman,  2000 ). Billett ( 2001 ) states that the 
workplace has to be designed in a way that people are invited and stimulated to 
learn. In addition, Tynjälä ( 2008 ) rightly pointed out that learning results from the 
interaction between the workplace and the individual: ‘While the organisation of 
work sets the context and conditions for learning, it continues to be the reciprocal 
interaction between the individual and the workplace that determines learning’ 
(Tynjälä,  2008 , p. 141). When investigating professional learning, it is therefore 
important to pay attention to possible interactions and reciprocal and mediating 
relationships. Researching professional learning within the paradigm of the integra-
tion of work and learning is interesting as it captures the complexity of workplace 
learning. However, it does require more advanced statistical techniques that are able 
to model this complexity. Structural equation modelling (SEM) is one of the tech-
niques that enable the examination of more complex relations. This book chapter 
aims at providing a basic introduction to SEM without using mathematical formulas 
and going into all the specifi c technicalities while at the same time staying true to 
the complexity of the presented analysis. 

 The current book chapter will start with presenting SEM at a conceptual 
level. We will present why and when SEM could be used, what the advantages 
and disadvantages are in comparison with regression analysis and which differ-
ent types of models can be analysed with SEM. Subsequently, the analyses will 
be illustrated on a dataset that was collected to investigate the approaches to 
learning of employees in relation with their work motivation, perceived work-
load and choice independence. Furthermore, several applications of SEM within 
the research of professional learning will be discussed. Finally, the main con-
clusions will be summarised.  

14.2     Structural Equation Modelling (SEM) 

 Structural equation modelling denotes a family of multivariate techniques including 
and combining factor analysis and path analysis in which the focus lies on theoreti-
cal constructs represented by latent factors (Hox & Bechger,  1998 ). Latent factors 
are unobserved constructs that are refl ected by a set of observed variables. Within 
this section we will fi rst focus on why and when SEM could be used. The different 
models within SEM will be introduced, and the assumptions of the analysis along 
with the conditions for conducting SEM will be discussed. Following, the fi t indices 
used to evaluate the models are presented, and the use of modifi cation indices for 
model improvement is considered. 
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 The core of the SEM analysis involves specifying a theoretical model and 
 subsequently testing whether this model is plausible given the sample data. This 
comparison is based on the comparison of the variance-covariance matrix of the 
theoretical model to the variance-covariance matrix that is observed in the sample 
data (Crockett,  2012 ). Therefore, SEM is sometimes also known as covariance 
structure analysis. SEM thus examines a model that represents the linear relation-
ships among variables. Because SEM is based on the analysis of covariances, a 
SEM model in itself cannot establish causal effects (see Sect.  14.5 ). 

14.2.1     Why and When Should We Use SEM? 

 The main reason for applying SEM instead of traditional regression analysis is the 
fl exibility and ability to model more complex relationships between constructs. 
With SEM it is possible to specify ‘path models with intervening variables 
between the independent and dependent variables, and latent factor as well’ (Hox 
& Bechger,  1998 , p. 6). Although the method of Baron and Kenny ( 1986 ) offers 
an alternative for assessing whether or not a variable mediates the relationship 
between two other variables, from a statistical point of view, analysing the differ-
ent paths simultaneously will yield better results (Iacobucci,  2009 ). The estimates 
of the strength of the relationships are more precise, and there is less bias as each 
effect is estimated together with the other effects (Iacobucci,  2009 ). In other 
words, the same variance cannot be estimated twice, as it is the case when sepa-
rate regression analyses are applied. 

 Chin ( 1998 ) states that for any given SEM model, alternative models that fi t the 
data as well as the proposed model can be found that potentially provide substan-
tially different explanations of the data. Therefore, it is important to note that SEM 
is traditionally not recommended for exploratory purposes. Clear hypotheses about 
the structure of the data both in terms of factors as in terms of paths between 
constructs are needed for sound and replicable applications (Hox & Bechger,  1998 ). 
The paths included in the model should be theoretically justifi ed (Chin,  1998 ). 
Additionally, the more complex the specifi ed model is, the higher the requirements 
in terms of sample size become. This issue will be discussed within the section 
focusing on the conditions that need to be fulfi lled for the analysis. 

 SEM models comprise a measurement model and structural model. The mea-
surement model relates the observed or manifest variables to the latent constructs 
while the structural or path model denotes the paths/relationships between the 
constructs. Fitting a measurement model is also known as confi rmatory factor 
analysis (Hox & Bechger,  1998 ; Iacobucci,  2009 ). Full SEM models combine the 
two into one model. When performing SEM analyses, it is always convenient to 
start by drawing a path diagram; it can guide the analysis. Within this chapter, the 
generally accepted notation for representing SEM models will be used (Tacq,  1997 ). 
Within this notation, boxes represent the observed variables (e.g. the items in your 
questionnaire) and circles depict the latent constructs (e.g. the underlying construct 
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you are trying to measure using different items). Within the measurement model, 
the arrows originate from the latent construct and point to the observed variables. 
The underlying idea is that the latent construct gives rise to or is refl ected in the 
observed variables (Chin,  1998 ; Hox & Bechger,  1998 ; Iacobucci,  2009 ). Within the 
path model the single-headed arrows refl ect the directional relationship between 
two constructs; double-headed arrows depict covariances. 

 Figure  14.1  represents a measurement model with three latent constructs and 
eight observed variables. The arrows on the left side of the observed variables 
indicate the residual error term originating from the fact that the observed variation 
is not completely explained by the latent construct.

   Figure  14.2  depicts a conceptual model for a path analysis. The illustration shows 
a simple mediation model in which one variable mediates the relation between two 
other variables. Within a full SEM model (see below), the paths would connect 
latent constructs. A path analysis refl ects the directional relations between observed 
variables (Cohen, Manion, & Morrison,  2011 ).

   Figure  14.3  shows a full SEM model in which the measurement and the structural 
model are combined into one analysis.

  Fig. 14.1    Conceptual model 
for a confi rmatory factor 
analysis       

  Fig. 14.2    Conceptual model for a path analysis with single mediation between two observed 
variables       
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14.2.2        Which Conditions Should Be Fulfi lled? 

 When applying SEM and making inferences based on the analysis, it is important 
to consider the underlying assumptions of the analysis. First, SEM imposes the 
same statistical assumptions on the data as traditional regression analysis. In addi-
tion,  multivariate normality  is assumed. Secondly, SEM assumes that the correct 
model has been specifi ed, meaning that no relevant variables are missing and that 
the directional relationships are specifi ed correctly. A correct  model specifi cation  
foremost depends on the theoretical grounds of the research at hand. Moreover, 
the observed variables in SEM are assumed to refl ect the latent construct and not 
to cause it (Kline,  2012 ). This also explains why the arrows in Figs.   14.1  and  14.3  
point from the latent construct towards the observed variables and not vice versa. 
Changes in the latent construct should be refl ected in all observed variables as 
they are conceptually related to each other. The observed variables in the SEM 
model cannot be indicators that compensate each other to form an artifi cial index 
or composite score (Kline,  2012 ). In the latter case of  formative indicators,  a 
change in one observed variable could cause a change in the construct but does 
not necessarily result in a change in the other observed variables. An example of 
a formative measure is when the success of an organisation is measured through 
the combination of an organisation’s annual profi ts, the increase in number of 
staff members and an indication of the popularity of the company. It could be that 
the company grows more popular and at the same time a decrease in number of 
staff members occurs. The profi ts, number of staff members and popularity of the 
company might be good indicators, but they do not refl ect a latent construct, as 
they are conceptually unrelated. 

  Fig. 14.3    Conceptual model for a full SEM model       
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 After the model has been specifi ed, it is important to check whether the model 
can be identifi ed, that is, ‘whether a unique solutions to the model can be generated’ 
(Crockett,  2012 , p. 36).  Model identifi cation  can be executed by following two 
guidelines developed by Bollen (1989 in Crockett,  2012 ). First, the structural model 
should be recursive; this means that all relationships within the structural model are 
unidirectional and no feedback loops are included. In other words, the dependent 
variables in the model cannot be a cause and an effect at the same time (Crockett, 
 2012 ; Kline,  2012 ). In addition, the observed variance-covariance matrix must con-
tain more unique elements than the number of parameters that need to be estimated 
(i.e. factor loadings, latent constructs, paths between latent constructs, etc.). The 
number of unique elements in the variance-covariance matrix can be calculated 
using  p ( p  + 1)/2, where  p  equals the number of observed variables. The latter guideline 
is also known as the  t  rule (Crockett,  2012 ). 

 The invalidating effect of violating the statistical assumptions that SEM makes 
can be reduced by fulfi lling conditions regarding sample size and missing values. 

  Sample size . The debate about the appropriate  sample sizes  for SEM is ongoing. For 
every ‘rule of thumb’ that exists, another occurs. In general, the rule is that the more 
complex the model, the more parameters that need to be estimated, the larger the sam-
ple size needs to be and, of course, larger is better (Iacobucci,  2010 ). The most correct 
and accurate method to assess the sample size is to assess the power of the analysis, as 
sample size depends on the specifi cations of the SEM model at hand (Chin,  1998 ). 
More information on power analysis can be found in MacCallum, Browne and 
Sugawara ( 1996 ). Iacobucci ( 2010 ) argues that the vague rule of thumb that the sample 
needs to be larger than 200, which was commonly accepted a while ago, is conservative 
and oversimplistic. In her article, she therefore argues that small samples of 50–100 
could suffi ce. However, we would like to emphasise that this is only the case when you 
are testing a simple model with strong effects. One could wonder whether these simple 
models depict the true effects in an accurate way. The literature does offer some inter-
esting rules of thumb that give an indication of an appropriate  sample size  in which the 
number of constructs or estimated parameters are taken into account. For the measure-
ment model, the ratio of the sample size to the number of observed variables should at 
least be 10:1 (Hair, Black, Babin, Anderson, & Tatham,  2006 ). Bentler and Chou 
( 1987 ) recommend that the ratio between the sample size and the number of parame-
ters that need to be estimated should also be 10:1 or higher. More information on con-
ducting SEM with small samples can be found in the article of Bentler and Yuan ( 1999 ). 
In addition, alternative estimation methods such as partial least squares (PLS) exist that 
are appropriate for small samples (see Sect.  14.4 ). 

  Missing values . By default, SEM only uses the data of participants without 
missing values. This approach assumes that if the dataset contains  missing values , 
these values are missing completely at random. If this is not the case, one could 
adopt more advanced methods for handling missing values. For more information 
on this topic, the reader is referred to Allison ( 2003 ). 

 There is some evidence that SEM is robust to violations of the statistical assumptions 
if the sample size is large (more than 200 independent observations) and there are no 
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missing values (Hsu, Chen, & Hsieh,  2006 ; Hu, Bentler, & Kano,  1992 ; Yuan & Bentler, 
 1999 ; Yuan & Zhong,  2013 ). However, with highly discrete and/or skewed data, espe-
cially if sample size is small or moderate, it is recommended to apply more robust 
estimation techniques and alternative statistics (for more information on these alterna-
tives, see Bentler & Yuan,  1999 ; Jung,  2013 ; Kline,  2012 ; Satorra,  1990 ).  

14.2.3     Fit Indices 

 A wide variety of  fi t indices  have been proposed to evaluate the proposed model in 
terms of goodness of fi t and simplicity of the model. Some fi t indices emphasise the fi t 
of the model to the data, while others take into account whether the model is parsimoni-
ous (Hox & Bechger,  1998 ; Iacobucci,  2010 ). In general, there is some agreement on 
which fi t indices should be reported. First, there is the chi-square test, which is the only 
inferential measure. The null hypothesis of the chi-square test is that the model fi ts the 
data, meaning that to conclude that your model fi ts the data the chi-square test should 
not be signifi cant. However, the chi-square test is very sensitive to sample size (Hox & 
Bechger,  1998 ). As a consequence, when working with large samples, the statistical 
test will be signifi cant in almost all real data applications (Hox & Bechger,  1998 ; 
Iacobucci,  2010 ). One might think that it would be advisable not to work with large 
samples; however, this is not a valid advice, as a suffi ciently large sample size is neces-
sary to support the precision of the parameter estimation (Iacobucci,  2010 ). Alternatively, 
it has been suggested that fi t is acceptable when the  ratio of the chi-square test statistic 
to the degrees of freedom  is not larger than 3:  χ  2 /df ≤ 3 (Iacobucci,  2010 ). 

 Due to the sensitivity of the chi-square test, the fi t of the model is always evaluated 
based on  multiple alternative indices . Because all goodness-of-fi t indices are some 
function of the chi-square test, the majority of these indices are also subjected to the 
sample size but to a much smaller degree than the chi-square test (Hox & Bechger, 
 1998 ). As the following indices are not inferential, no statistical hypothesis testing 
is involved, only guidelines or ‘rules of thumb’ can be offered (Hu & Bentler,  1999 ; 
Iacobucci,  2010 ). Table  14.1  summarises the different guidelines that are offered in 
the standard methodological literature. Below we will describe the most commonly 
used cut-off values. In general, authors are advised to report the  comparative fi t 
index  ( CFI ) that captures the relative goodness of fi t in comparison to a simpler 
model. In a sense it indicates whether making your model more complex actually 
pays off. Preferably, the CFI is close to or higher than .95 (Hu & Bentler,  1999 ; 
Iacobucci,  2010 ), but values starting from .90 are considered acceptable (Iacobucci, 
 2010 ). Some authors also report the Tucker-Lewis Index (TLI) also known as the 
Non-normed Fit Index (NNFI), which follows the same rules of thumb as the CFI. 
Next to the chi-square test and CFI, the  SRMR  or  Standardised Root Mean square 
Residual  is usually reported. The SRMR actually indicates to what extent your 
model does not fi t the data. The higher the value, the worse the model fi t. This 
SRMR largely depends on the factor loadings in the measurement model and is less 
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prone to violations of the distributional assumption. The maximum value of this 
index equals 1 and (very) low values are preferred. Values below .08 indicate an 
acceptable model. Finally, most researchers also report the  Root Mean Square Error 
of Approximation  ( RMSEA ) and its 90 % confi dence interval. The RMSEA was 
developed to provide an indication of the extent to which the model does not match 
the true model. Small values indicate a good match. An RMSEA smaller than .06 is 
advised, although a value lower than .08 can also be considered acceptable (Browne 
& Cudeck,  1993 ; MacCallum et al.,  1996 ).

14.2.4        Modifi cation Indices 

 When the model fi t is not satisfactory, a researcher could choose to modify his 
model. This modifi cation can be based on the parameter estimates (e.g. remov-
ing nonsignifi cant paths or observed variables with low loadings) or on the  mod-
ifi cation indices  that indicate which parameter(s) should be added to the model 
to improve the model fi t and how much the chi-square statistic is expected to 
minimally decrease when that parameter would be added (Hox & Bechger, 
 1998 ; Iacobucci,  2009 ). There is some debate on the use or misuse of  modifi ca-
tion indices  (Hox & Bechger,  1998 ; Iacobucci,  2009 ). At fi rst glance, these 
modifi cation indices appear to be very helpful. Often these modifi cation indices 

   Table 14.1    Cut-off values for fi t indices   

 Type fi t index  Fit index  Adequate fi t index 

  Absolute fi t indexes   Standardised Root Mean 
Square Residual 
(SRMR) 

 SRMR ≤ .08 (Hu & Bentler,  1999 ; 
MacCallum et al.,  1996 ) 

 SRMR ≤ .05 = good (Byrne,  2001 ; 
Jaccard & Wan,  1996 ) 

 Jöreskog-Sörbom 
Goodness-of- Fit 
Index (GFI) 

 CFI ≥ .95 (Browne & Cudeck, 
 1993 ; Hu & Bentler,  1999 ) 

 Adjusted Goodness-of-Fit 
Index (AGFI) 

 AGFI ≥ .95 (Hu & Bentler,  1999 ) 

  Incremental fi t indexes/
comparative fi t indexes/
relative fi t indices  

 Bentler Comparative Fit 
Index (CFI) 

 CFI ≥ .95 (Hu & Bentler,  1999 ) 
 CFI ≥ .90 (Bentler,  1992 ; Byrne, 

 2001 ) 
 Normed Fit Index (NFI)  NFI ≥ .95 (Hu & Bentler,  1999 ) 
 Tucker-Lewis index 

(TLI) = NNFI: 
Non- normed Fit Index 

 TLI ≥ .95 (Hu & Bentler,  1999 ) 

  Parsimony-adjusted fi t indexes   Root Mean Square Error 
of Approximation 
(RMSEA) 

 RMSEA ≤ .06 (Hu & Bentler, 
 1999 ) 

 RMSEA .06 → .08 = reasonable 
error (Browne & Cudeck,  1993 ) 

 RMSEA .08 → 1 = reasonable error 
(MacCallum et al.,  1996 ) 
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are used to improve the model fi t sequentially, up till the point that the model 
meets the requirements. A strong advice regarding the use of the modifi cation 
indices for improving the model fi t is that alterations to the hypothesised model 
based on the data should only be done when there are theoretical grounds that 
support these alterations (Chin,  1998 ; Hox & Bechger,  1998 ). However, some 
researchers seem to be very creative in evaluating the theoretical justifi cation 
post hoc, leading to potentially incorrect models or models that are diffi cult to 
cross-validate because they rely too much on the data of the sample at hand 
(Hox & Bechger,  1998 ; Iacobucci,  2009 ). It is therefore proposed to use modi-
fi cation indices prudently and to compare different a priori constructed models 
(Hox & Bechger,  1998 ).   

14.3     Analysing and Interpreting Data 

 Within this section the goal is to offer some guidelines for making decision about 
the data and the steps that could be followed within the analysis, as well as the 
interpretation of the results. However, bear in mind that how the model is built and 
the decisions taken within this process need to be theory driven. Crockett ( 2012 ) 
describes fi ve sequential steps within SEM. The fi rst two steps were discussed 
above: model specifi cation and model identifi cation. Subsequently, the model is 
estimated. Different estimation procedures can be used for the estimation of the 
variance- covariance matrix of the model, within this chapter the maximum likeli-
hood estimation will be used. For an introduction into the different estimation 
methods, we refer the reader to Crockett ( 2012 ). Below, we will foremost focus on 
the fourth and fi fth step: model testing and model modifi cation. Model testing 
involves the evaluation of the plausibility of the theoretical model given the sam-
ple data (Crockett,  2012 ). This evaluation is based on multiple fi t indices (cf. infra). 
The fi nal step of model modifi cation was already shortly introduced above and 
will also be illustrated below. 

14.3.1     Illustration: Concept and Sample 

 The analyses will be illustrated with a data set that was collected to investigate the 
relationship between employees’ approaches to learning at work and their work 
motivation, perceived workload and choice independence. 

14.3.1.1     Concepts and Measurement Instruments 

 Within the literature three approaches to learning at work are distinguished: a deep 
approach, a surface-rational approach and a surface-disorganised approach. A deep 
approach to learning refers to the combination of an eagerness to learn and the use 
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of integrative strategies that contribute to personal understanding. The surface- 
rational approach refl ects a preference for orderly, accurate and detailed work 
achieved by using surface learning strategies such as memorisation and a step-by- 
step approach. Finally, the surface-disorganised approach is considered a nonaca-
demic orientation in combination with surface motives. It is associated with feeling 
overwhelmed and a sense of incompetence when executing task. These approaches 
to learning at work were measured by means of the  Approaches to learning at Work 
Questionnaire  (Kirby, Knapper, Evans, Carty, & Gadula,  2003 ). 

 Work motivation was conceptualised from the perspective of the self- determination 
theory. Within this study the focus lied on the reasons why someone does a particular 
job and a distinction between autonomous and controlled motivation is made. Work 
motivation was measured with the  Motivation at Work Scale  (Gagné et al.,  2010 ). 
Perceived workload and choice independence were measured with the  Workplace 
Climate Questionnaire  (Kirby et al.,  2003 ). The complete theoretical background, 
the rationale and the results of the actual study can be found in the article of Kyndt, 
Raes, Dochy and Janssens ( 2013 ).  

14.3.1.2     Sample 

 The  sample  consisted of 358 employees from diverse companies (59 % female). 
The majority of the participants were employed in profi t organisations (52 %), and 
38 % were employed in nonprofi t or social profi t organisations (e.g. healthcare). 
The remaining 10 % of the participants were employed within the public sector. 
Participants were between 20 and 64 years old ( M  = 37.85, SD = 10.64); on average 
they had 11.22 years of seniority (SD = 10.16). Most respondents had a permanent 
full-time contract (83 %); others worked part time (14 %) or had a temporary con-
tract (3 %). Finally, participants’ initial level of education was diverse: ‘1 % did not 
obtain a diploma or fi nished elementary school, 25 % obtained a secondary degree, 
40 % obtained a bachelor’s degree (professional or academic), and 34 % obtained 
a master’s degree’ (Kyndt et al.,  2013 , p. 278).  

14.3.1.3     Software and Output 

 For this illustration the analyses were performed with the  lavaan  package of R 
(Rosseel,  2012 ).  R  is a free software for statistical computing that can be down-
loaded from   www.R-project.org     (R Development Core Team,  2012 ). Figure  14.4  
was plotted by means of the  qgraph  package (Epskamp, Cramer, Waldorp, 
Schmittmann, & Borsboom,  2012 ). The R code of this example can be found in 
the appendix. SEM analysis can also be performed with the AMOS package 
(Extension of SPSS; Arbuckle,  2011 ), SAS Calis procedure (SAS Institute Inc, 
 2008 ), Mplus (Muthén & Muthén,  1998–2010 ), EQS (Bentler,  2004 ) or Lisrel 
(Jöreskog & Sörbom,  1997 ). For this illustration, we chose to present the output 
as given by R so that the reader would recognise these output when undertaken 
the analysis themselves. This output presents more information than discussed 
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within this introductory chapter; therefore, we have marked the values on which 
the interpretations are based. When performing the analysis in R, the fi rst steps 
that need to be undertaken are setting a working directory, loading the data and 
installing the necessary packages.

14.3.2         Measurement Model: Confi rmatory Factor Analysis 

 We will illustrate the  confi rmatory factor analysis  with the simplest measurement 
that was included within the study, that is, the measurement of perceived workload 
and perceived choice independence of the employee (Kirby et al.,  2003 ). Both con-
structs were measured by fi ve items (i.e. observed variables) that were scored on a 
fi ve-point Likert scale (see Table  14.2 ).

14.3.2.1       Confi rming the Model 

 The results of the CFA show that the hypothesised measurement model fi ts the data 
reasonably well (Output 1). Although the chi-square test is statistically signifi cant 
( χ  2  = 98.223, df = 34,  p  < .001), the ratio between the test statistic and degrees of freedom 
(98.223/34 = 2.89) is below 3. In addition, the  CFI  and  TLI,  respectively, equal .94 and 
.92, which is above the proposed cut-off of .90. The  SRMR  and  RMSEA  are rather high 
(SRMR = .075, RMSEA = .073, CI 90 % [.056, .09]), but both are acceptable, although 
it is not a good sign that the values within the confi dence interval exceed .08.

0.88 0.49 0.62 0.86 0.74 0.62 0.68 0.68 0.67

0.22 0.76 0.62 0.27 0.45 0.62 0.54 0.54 0.55

1 1−0.29

WL1 WL2 WL4 WL5 CI1 CI2 CI3 CI4 CI5

Workload
Choice

.independence

  Fig. 14.4    Measurement model with standardised coeffi cients       
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lavaan (0.5-12) converged normally after  31 iterations

Used       Total
Number of observations 354         359

Estimator                                         ML
Minimum Function Test Statistic               98.223
Degrees of freedom                                34
P-value (Chi-square)                           0.000

Model test baseline model:

Minimum Function Test Statistic             1176.569
Degrees of freedom                                45
P-value                                        0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.943
Tucker-Lewis Index (TLI)                       0.925

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -4804.185
Loglikelihood unrestricted model (H1) -4755.074

Number of free parameters                         21
Akaike (AIC)                                9650.371
Bayesian (BIC)                              9731.626
Sample-size adjusted Bayesian (BIC)         9665.005

Root Mean Square Error of Approximation:

RMSEA                                          0.073
90 Percent Confidence Interval          0.056  0.090
P-value RMSEA <= 0.05                          0.013

Standardized Root Mean Square Residual:

SRMR                                           0.075

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv Std.all
Latent variables:
Workload =~
WL1               1.000                               1.006    0.875
WL2               0.611    0.063    9.686    0.000    0.615    0.512
WL3               0.197    0.061    3.218    0.001    0.199    0.181
WL4               0.769    0.062   12.432    0.000    0.774    0.633
WL5               0.961    0.057   16.854    0.000    0.967    0.859

Choice.independence =~
CI1               1.000                               0.809    0.743
CI2               0.815    0.079   10.353    0.000    0.659    0.619
CI3               0.892    0.079   11.263    0.000    0.721    0.680
CI4               0.808    0.072   11.240    0.000    0.653    0.678
CI5               0.836    0.075 11.173    0.000    0.676    0.674

Covariances:
Workload ~~
Choic.ndpndnc -0.231    0.054 -4.259    0.000 -0.284 -0.284

Variances:
WL1               0.310    0.050                      0.310    0.234
WL2               1.061    0.084                      1.061    0.737
WL3               1.166    0.088                      1.166    0.967
WL4               0.896    0.075                      0.896    0.600
WL5               0.332    0.048 0.332    0.262
CI1               0.529    0.056                      0.529    0.447
CI2               0.698    0.061                      0.698    0.616
CI3               0.605    0.057                      0.605    0.538
CI4               0.500    0.047                      0.500    0.540
CI5               0.549    0.051                      0.549    0.546
Workload          1.013    0.106                      1.000    1.000
Choic.ndpndnc 0.654    0.089                      1.000    1.000   

   Output 1  CFA all items  
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    In sum, the measurement model shows an acceptable fi t, but there is room for 
improvement. Because the SRMR is rather high, it could be interesting to exam-
ine the factor loadings of the different items and delete item(s) with low factor 
loadings. Ideally the standardised values of the factor loadings (see std.all in 
output) are around or above .50 (Hair et al.,  2006 ; Maruyama,  1998 ). Within this 
solution, only item WL3 has a factor loading below .50. If we look at the 
 questions in Table  14.2 , we can observe that WL3 focuses on a different aspect 
in comparison with the other four items. WL3 is the only item that considers 
learning. Therefore, we decided to test a second measurement model in which 
item WL3 was excluded. The results show an improved fi t (Table  14.3  and 
Output 2).

    Table 14.2    Items measurement model   

 Scale  Item nr.  Question 

 Workload  WL1  The workload here is too heavy 
 WL2  It sometimes seems to me that my job requires me to do too 

many different things 
 WL3  In this organisation you’re expected to spend a lot of time 

learning things on your own 
 WL4  There seems to be too much work to get through here 
 WL5  There’s a lot of pressure on you as an employee here 

 Choice independence  CI1  There is a real opportunity in this organisation for people to 
choose the particular tasks they work on 

 CI2  The organisation really seems to encourage us to develop our 
own work-related interests as far as possible 

 CI3  We seem to be given a lot of choice here in the work we have 
to do 

 CI4  This organisation gives you a chance to go about your work 
in ways which suit your own way of learning 

 CI5  Employees here have a great deal of choice over how they 
learn new tasks 

   Table 14.3    Model fi t without item WL3   

 Instrument   χ  2 /df  CFI  TLI  RMSEA 90 % CI  SRMR 

 Workload and choice independence  2.40  .97  .95  .063 [.043; .083]  .052 
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lavaan (0.5-12) converged normally after  31 iterations

Used       Total
Number of observations                           355         359

Estimator                                         ML
Minimum Function Test Statistic               62.391
Degrees of freedom                                26
P-value (Chi-square)                           0.000

Model test baseline model:

Minimum Function Test Statistic             1128.760
Degrees of freedom                                36
P-value                                        0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.967
Tucker-Lewis Index (TLI)                       0.954

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)              -4286.378
Loglikelihood unrestricted model (H1)      -4255.182

Number of free parameters                         19
Akaike (AIC)                                8610.755
Bayesian (BIC)                              8684.326
Sample-size adjusted Bayesian (BIC)         8624.049

Root Mean Square Error of Approximation:

RMSEA                                          0.063
90 Percent Confidence Interval       0.043  0.083
P-value RMSEA <= 0.05                          0.136

Standardized Root Mean Square Residual:

SRMR                                           0.052

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Latent variables:

Workload =~
WL1               1.000                               1.009    0.878
WL2              0.604    0.063    9.590    0.000    0.609    0.508
WL4               0.765    0.062   12.403    0.000    0.771    0.632
WL5               0.954    0.057   16.700    0.000    0.962    0.855

Choice.independence =~
CI1               1.000    0.806    0.742
CI2               0.815    0.079   10.315    0.000    0.658    0.617
CI3               0.893    0.079   11.242    0.000    0.720    0.679
CI4               0.809    0.072   11.230    0.000    0.653    0.678
CI5               0.837    0.075   11.155    0.000    0.675    0.673

   Output 2  CFA without WL3  
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    Because both models show an acceptable fi t, both could be accepted. The decision 
for the most appropriate measurement model should foremost be guided by theory. 
In this case, one could consider whether or not investing time in learning is an impor-
tant aspect of the construct of perceived workload. In addition, you could also test 
which model is superior in a statistical sense. Because the fi rst model can be consid-
ered an extension of the second model (i.e. the models are nested), the  chi- square test 
for model comparison  can be applied. By using a  simple formula in Excel 
(=CHIDIST(Δ chi-statistics  1 ; Δ degrees of freedom )), you can  calculate whether the 
difference between the chi-square statistics of both models is statistically signifi cant. 
In this example, the difference between the chi-square statistics equals 
98.223−62.391 = 35.832, and the difference between the degrees of freedom equals 
34−36 = 8. The signifi cance test reveals that this difference is statistically signifi cant 
( p  < .001) indicating the second model is statistically superior to the fi rst (a smaller 
chi-square value indicates a better fi t). From a theoretical point of view, the conclu-
sion is also supported because the emphasis within perceived workload lies on gen-
eral workplace conditions, regardless of the fact that the effort had to be undertaken 
for learning specifi cally. Figure  14.4  depicts the measurement model.  

1   Δ = difference. 

Covariances:
Workload ~~
Choic.ndpndnc    -0.237    0.054 -4.357    0.000 -0.291 -0.291

Variances:
WL1               0.302    0.051                      0.302    0.229
WL2               1.068    0.084                      1.068    0.742
WL4               0.895    0.074                      0.895    0.601
WL5               0.340    0.049 0.340    0.268
CI1               0.531    0.056                      0.531    0.450
CI2               0.702    0.061                      0.702    0.619
CI3               0.605    0.057                      0.605    0.539
CI4               0.499    0.047                      0.499    0.540
CI5               0.549    0.051                      0.549    0.547
Workload          1.017    0.107                      1.000    1.000
Choic.ndpndnc     0.650    0.088  1.000    1.000

  

Output 2 (continued)

    Table 14.4    Measurement invariance for males and females   

 Model  Model comparison 

  χ  2  (df)  CFI  RMSEA  BIC  Δ χ  2  (Δdf)   p -value  Δ CFI 

 Model 1  88.810** (52)  .966  .063  8833.54 

 Model 2 (equal 
loadings) 

 100.039** (59)  .962  .063  8803.69  Model 1 vs. 
2 

 11.228 (7)  .129  .004 

 Model 3 (+equal 
intercepts) 

 103.398** (66)  .965  .057  8765.96  Model 2 vs. 
3 

 3.359 (7)  .850  −.003 

 Model 4 (+equal 
errors) 

 113.432*** (68)  .958  .061  8764.25  Model 3 vs. 
4 

 10.034 (2)  <.01  .007 

  * p  < .05; ** p  < .01; *** p  < .001  
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14.3.2.2     The Stability of the Model: Measurement Invariance 

 Recently, more and more attention has been given to the stability of the measurement 
model (Boeve-de Pauw, Jacobs, & Van Petegem,  2012 ; Coertjens, Donche, De Maeyer, 
Vanthournout, & Van Petegem,  2013 ). If the goal is to compare the constructs across 
groups and/or over time – which is often the case – it is important to determine whether 
a questionnaire measures the same constructs with the same structure across groups 
and/or over time. When  measurement invariance  is established, it can be accepted that 
different groups of participants (e.g. males and females) or the same participants across 
different measurement moments (longitudinal measurement invariance) interpret the 
individual questions and underlying constructs in a similar way. 

 Different levels (less to more demanding) of measurement invariance are 
described: confi gural, metric, scalar, and strict invariance. Confi gural invariance 
(Model 1) refers to the fact that the basic model structure is invariant across groups 
(Boeve-de Pauw et al.,  2012 ). It shows that the participants conceptualise the con-
structs similarly. It basically shows that the same structure – the same items belong 
to the same construct – holds for both groups or both measurement moments. 
Confi gural invariance, however, does not ensure that the separate items are inter-
preted similarly because the factor loadings of the items can be different across 
groups or measurement moments. 

 To test whether metric invariance is achieved, one can compare the confi gural 
model to a model in which the factor loadings are constrained (Model 2) to be equal 
for each group or at each measurement moment. If constraining the factor loadings 
does not result in a signifi cantly less good fi t of the model, metric invariance can 
be claimed. A model is considered as good as the previous model if the difference 
between the  CFI s of both models is smaller than .01. Ideally the difference in the 
chi-square test is also not signifi cant; however, it is known that the chi-square 
 statistic is sensitive to the size of the sample (Iacobucci,  2010 ). 

 Metric invariance indicates that the items are interpreted in a similar way across 
groups or measurement moments. When the aim is to compare means of the latent 
constructs across groups, it is necessary to achieve scalar invariance. Scalar invari-
ance indicates that differences in means of the observed items are a consequence of 
the differences in means of the latent constructs. To identify  scalar invariance, the 
model in which both the loadings and the intercepts of the items are constrained to 
be equal across groups or measurement moments (model 3) is compared to the 
model in which only the loadings (model 2) are constrained. When the model with 
constrained loadings and intercepts results into a too large decrease of the CFI, one 
could explore the option of freeing some of the intercepts and achieving partial 
intercept invariance. Advanced statistical models such as multiple-indicator growth 
analysis in case of longitudinal analysis can take these intercept variances into 
account (e.g. Coertjens et al.,  2013 ). Finally, one can also check for invariance in 
error variances (strict invariance). However, in practice full measurement invariance 
is rarely achieved nor necessary (Boeve-de Pauw et al.,  2012 ). 

 Measurement invariance  across groups  can be tested relatively easy in R with the 
 semTools  package (Pornprasertmanit, Miller, Schoemann, & Rosseel,  2013 ). The 
specifi c commands can be found in the Appendix.
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Measurement invariance tests:

Model 1: configural invariance:
chisq       df   pvalue      cfi    rmsea      bic

88.810   52.000    0.001    0.966    0.063 8833.541

Model 2: weak invariance (equal loadings):
chisq       df   pvalue      cfi    rmsea      bic

100.039   59.000    0.001    0.962    0.063 8803.685

[Model 1 versus model 2]
delta.chisq      delta.df delta.p.value     delta.cfi

11.228         7.000         0.129         0.004 

Model 3: strong invariance (equal loadings + intercepts):
chisq       df   pvalue      cfi    rmsea      bic

103.398   66.000    0.002    0.965    0.057 8765.959

[Model 1 versus model 3]
delta.chisq      delta.df delta.p.value     delta.cfi

14.588        14.000         0.407         0.001

[Model 2 versus model 3]
delta.chisq      delta.df delta.p.value     delta.cfi

3.359         7.000         0.850        -0.003 

Model 4: equal loadings + intercepts + means:
chisq       df   pvalue      cfi    rmsea      bic

113.432   68.000    0.000    0.958    0.061 8764.254

[Model 1 versus model 4]
delta.chisq      delta.df delta.p.value     delta.cfi

24.622        16.000         0.077         0.008

[Model 3 versus model 4]
delta.chisq      delta.df delta.p.value     delta.cfi

10.034         2.000         0.007    0.007

    Output 3  Measurement invariance       

   Within our illustration, we checked whether males and females interpreted the items 
and constructs in a similar way. In other words the measurement invariance across males 
and females was tested. The results can be found in Output 3 and are preferably reported 
by means of a table (see Table  14.4 ). The results in Table  14.4  show that the measure-
ment of perceived workload and choice independence reaches scalar invariance. The 
differences between the  CFI s are below .01 and the chi- square test for model compari-
son show that the different models do not differ signifi cantly from each other.

   Establishing  longitudinal measurement invariance  follows the same procedure 
as establishing measurement invariance over groups:

•    Testing confi gural invariance  
•   Constraining factor loadings to be equal and comparing this to the confi gural 

invariance model (metric invariance)  
•   Constraining factor loadings and intercepts to be equal and comparing this to the 

metric invariance model (scalar invariance)    

 However, the difference with establishing measurement invariance across groups 
is that longitudinal measurement invariance is assessed for each scale separately and 
not the instrument as a whole (Coertjens, Donche, De Maeyer, Vanthournout & Van 
Petegem,  2012 ). Currently, longitudinal measurement invariance cannot be assessed 
by means of an R-package. This type of analysis is foremost executed with the Mplus 
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software (Muthén & Muthén,  1998–2010 ). In our article on the  development of a 
self-assessment instrument for the generic competences of vocational education stu-
dents, an example of longitudinal measurement invariance testing relevant for the 
fi eld of professional learning can be found (Kyndt et al.,  accepted ).   

14.3.3     Structural Model: Path Analysis 

 An illustration of a model including the two motivational scales as mediating vari-
ables is provided below. Figure  14.5  represent the path diagram of the model under 
examination.

   The  path analysis  including the two mediating variables shows a fi t that is not opti-
mal. Moreover, because the model includes almost every possible relationship, the model 
cannot be considered parsimonious. The poor model fi t is evident from a ratio between 
the chi-square and degrees of freedom that is too large ( χ  2 /df = 5.92) and an  RSMEA  of 
.12 which is also too large. Simplifying the model by excluding nonsignifi cant paths 
could be a solution to this problem. Based on the output (Output 4), we decided to 
exclude the path between controlled motivation and a deep approach to learning, and the 
path between workload and autonomous motivation. Because the interest lies in predict-
ing employees’ deep approach to learning and controlled motivation was inserted as a 
mediator between the perception of workload and choice independence, the paths from 
workload and choice independence to controlled motivation were also removed (Output 
5). The new model that will be tested is represented by a path diagram in Fig.   14.6 .

WL

CI

Auto.

Contr.

DA

  Fig. 14.5    Path diagram illustration path analysis ( Note :  WL  workload,  CI  choice independence, 
 Auto.  autonomous motivation,  Contr.  controlled motivation,  DA  deep approach)       

WL

CI

Auto.

DA

  Fig. 14.6    Path diagram illustration path analysis without nonsignifi cant paths       
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lavaan (0.5-12) converged normally after  19 iterations

Number of observations                           359

Estimator                                         ML
Minimum Function Test Statistic                5.923
Degrees of freedom                                 1
P-value (Chi-square)                           0.015

Model test baseline model:

Minimum Function Test Statistic              249.403
Degrees of freedom                                 9
P-value                                        0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.980
Tucker-Lewis Index (TLI)                       0.816

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -5099.399
Loglikelihood unrestricted model (H1) -5096.438

Number of free parameters                         11
Akaike (AIC)                               10220.798
Bayesian (BIC)                             10263.515
Sample-size adjusted Bayesian (BIC)        10228.617

Root Mean Square Error of Approximation:

RMSEA                                          0.117
90 Percent Confidence Interval          0.041  0.215
P-value RMSEA <= 0.05                          0.069

Standardized Root Mean Square Residual:

SRMR                                           0.029

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Regressions:

DA ~
Autonomous        0.266    0.062    4.313    0.000    0.266    0.219
Controlled        0.085    0.056    1.535    0.125    0.085    0.071

Autonomous ~
WL                0.067    0.049    1.349    0.177    0.067    0.063
CI                0.529    0.051   10.400    0.000    0.529    0.485

Controlled ~
WL                0.242    0.055    4.410    0.000    0.242    0.227
CI                0.181    0.056    3.208    0.001    0.181    0.165

DA ~
WL                0.199    0.059    3.347    0.001    0.199    0.155
CI        0.488    0.069    7.115    0.000    0.488    0.369

Variances:
DA               20.246    1.511                     20.246    0.711
Autonomous       14.805    1.105                     14.805    0.768
Controlled       18.208    1.359 18.208    0.931

  

  Output 4  Path analysis with mediating variables 
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    This more parsimonious model shows a good fi t ( χ  2 /df = 1.82, CFI = .99, TLI = .98, 
RMSEA = 0.048, CI 90 % [0; .058], SRMR = .02). All included paths are signifi cant, 
indicating that perceived workload and choice independence predict employee’s 
deep approaches to learning signifi cantly. In addition, autonomous motivation was 
found to mediate this relationship.

   

lavaan (0.5-12) converged normally after  16 iterations

Number of observations                           359

Estimator                                         ML
Minimum Function Test Statistic                1.815
Degrees of freedom                                 1
P-value (Chi-square)                           0.178

Model test baseline model:

Minimum Function Test Statistic              215.652
Degrees of freedom                                 5
P-value                                        0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.996
Tucker-Lewis Index (TLI)                       0.981

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -4071.179
Loglikelihood unrestricted model (H1) -4070.271

Number of free parameters                          6
Akaike (AIC)                                8154.358
Bayesian (BIC)                              8177.658

Sample-size adjusted Bayesian (BIC)         8158.623

Root Mean Square Error of Approximation:

RMSEA                                          0.048
90 Percent Confidence Interval          0.000  0.158
P-value RMSEA <= 0.05                          0.355

Standardized Root Mean Square Residual:

SRMR                                           0.020

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Regressions:

DA ~
Autonomous        0.278    0.062    4.506    0.000    0.278    0.229

Autonomous ~
CI                0.520    0.051   10.287    0.000    0.520    0.477

DA ~
WL                0.219    0.058    3.776    0.000    0.219    0.170
CI                0.497    0.068    7.336    0.000    0.497    0.376

Variances:
DA               20.376    1.521                     20.376    0.717
Autonomous       14.881    1.111                     14.881    0.772    

   Output 5  Path analysis mediating variables without nonsignifi cant paths  
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WL

CI

Auto.

DA

  Fig. 14.7    Path diagram full SEM model       

       Full SEM Model 

 Finally, a  full SEM model  combines a measurement model and structural model that 
were presented above. As an illustration, the full SEM model of fi nal path analysis 
will be examined (see Fig.   14.7 ).

   The results show that this model does not adequately fi t the data ( χ  2 /df = 2.47, 
CFI = .85, TLI = .84, RMSEA = 0.065, CI 90 % [.059; .071], SRMR = .075). The 
modifi cation indices were checked to examine whether the model could be improved 
(Output 6).
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lavaan (0.5-12) converged normally after  41 iterations

Used       Total
Number of observations                           346         359

Estimator                                         ML
Minimum Function Test Statistic              665.646
Degrees of freedom                               270
P-value (Chi-square)                           0.000

Model test baseline model:

Minimum Function Test Statistic             3011.588
Degrees of freedom 300
P-value                                        0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.854
Tucker-Lewis Index (TLI)                       0.838

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -11147.345
Loglikelihood unrestricted model (H1) -10814.522

Number of free parameters                         55
Akaike (AIC)                               22404.690
Bayesian (BIC)                             22616.244
Sample-size adjusted Bayesian (BIC)        22441.768

Root Mean Square Error of Approximation:

RMSEA                                          0.065
90 Percent Confidence Interval          0.059  0.071
P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

SRMR                                           0.075

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Latent variables:

Workload =~
WL1               1.000                               1.004    0.873
WL2 0.613    0.064    9.593    0.000    0.615    0.515
WL4               0.762    0.063   12.171    0.000    0.765    0.631
WL5               0.962    0.059   16.390    0.000    0.966    0.856

Choice.independence =~
CI1               1.000 0.796    0.735
CI2               0.839    0.080   10.543    0.000    0.667    0.628
CI3               0.897    0.079   11.363    0.000    0.714    0.680
CI4               0.804    0.072   11.200    0.000    0.640    0.669
CI5               0.815    0.075   10.908    0.000    0.649    0.651

Deep.approach =~
ALWD1             1.000                               0.521    0.446
ALWD2 0.559    0.132    4.243    0.000    0.292    0.292
ALWD3             0.463    0.104    4.461    0.000    0.241    0.312
ALWD4             0.350    0.107    3.260    0.001    0.182    0.213
ALWD5             0.778    0.132    5.873    0.000    0.405    0.471
ALWD6             1.065    0.162    6.588    0.000    0.555    0.590
ALWD7             0.773    0.134    5.785    0.000    0.403    0.459

   Output 6  Full SEM model  
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   The modifi cation indices (Output 7) showed that the model could be improved 
by adding covariances between several observed variables. Only combinations of 
observed variables that refl ected the same latent constructs were included because 
they can be considered in accordance with our theoretical model. For presentation 
purposes, only an excerpt of the output was included.

ALWD8             1.160    0.181 6.417    0.000    0.605    0.557
ALWD9             0.691    0.126    5.498    0.000    0.360    0.422
ALWD10            1.046    0.170    6.153    0.000    0.545    0.513

Autonomous.motivation =~
Intrins1          1.000 0.883    0.903
Intrins2          0.970    0.042   23.369    0.000    0.857    0.916
Intrins3          0.631    0.051   12.330    0.000    0.557    0.597
Ident1            0.426    0.063    6.771    0.000    0.376    0.361
Ident2 0.342    0.070    4.900    0.000    0.301    0.267
Ident3            0.716    0.052   13.800    0.000    0.632    0.648

Regressions:
Deep.approach ~
Workload          0.093    0.032    2.901    0.004    0.180    0.180
Choic.ndpndnc     0.387    0.069    5.573    0.000    0.591    0.591
Autonms.mtvtn     0.163    0.044    3.706    0.000    0.276    0.276

Autonomous.motivation ~
Choic.ndpndnc     0.579    0.071    8.208    0.000    0.522    0.522

Covariances:
Workload ~~
Choic.ndpndnc    -0.211    0.053   -3.948    0.000 -0.264 -0.264

Variances:
WL1               0.316    0.052                      0.316    0.239
WL2               1.048    0.084                      1.048    0.735
WL4               0.886    0.075                      0.886    0.602
WL5               0.339    0.050                      0.339    0.266
CI1               0.540    0.054                      0.540    0.460
CI2               0.685    0.060                      0.685    0.606
CI3               0.593    0.055                      0.593    0.538
CI4               0.505    0.046                      0.505    0.552
CI5               0.573    0.051                      0.573    0.577
ALWD1             1.093    0.089                      1.093    0.801
ALWD2             0.909    0.071                      0.909    0.914
ALWD3             0.540    0.042                      0.540    0.903
ALWD4             0.703    0.054                      0.703    0.955
ALWD5             0.576    0.048                      0.576    0.778
ALWD6             0.577    0.052                      0.577    0.652
ALWD7             0.608    0.050                      0.608    0.789
ALWD8             0.811    0.071                      0.811    0.689
ALWD9             0.599    0.048                      0.599    0.822
ALWD10            0.833    0.071                      0.833    0.737
Intrins1          0.176    0.025                      0.176 0.184
Intrins2          0.141    0.023                      0.141    0.161
Intrins3          0.560    0.045                      0.560    0.643
Ident1            0.944    0.073                      0.944    0.869
Ident2            1.180 0.090                      1.180    0.928
Ident3            0.552    0.045                      0.552    0.580
Workload          1.007    0.108                      1.000    1.000
Choic.ndpndnc     0.633    0.086                      1.000 1.000
Deep.approach     0.120    0.034                      0.442    0.442
Autonms.mtvtn     0.567    0.059                      0.728    0.728

   

Output 6 (continued)
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> modindices(FitSEMFull)
lhs op                   rhs     mi    epc sepc.lv sepc.all sepc.nox

1                Workload =~                   WL1     NA     NA      NA       NA       NA
2                Workload =~                   WL2  0.000  0.000   0.000    0.000    0.000
3                Workload =~                   WL4  0.000  0.000   0.000    0.000    0.000
4                Workload =~                   WL5  0.000  0.000   0.000  0.000    0.000
5                Workload =~                   CI1  4.339  0.107   0.107    0.099    0.099
6                Workload =~                   CI2  2.029  0.077   0.077    0.072    0.072
7                Workload =~                   CI3  0.245 -0.025 -0.026 -0.024 -0.024
8                Workload =~                   CI4 13.180 -0.171 -0.172 -0.180 -0.180
9                Workload =~                   CI5  0.009  0.005   0.005    0.005    0.005
10               Workload =~            ALWD1  0.563 -0.047 -0.047 -0.041 -0.041

----------

100 Autonomous.motivation =~                Ident3  0.000  0.000   0.000    0.000    0.000
101                   WL1 ~~                   WL1  0.000  0.000   0.000    0.000    0.000
102 WL1 ~~                   WL2  1.644 -0.066 -0.066 -0.048 -0.048
103                   WL1 ~~                   WL4  0.000  0.001   0.001    0.001    0.001
104                   WL1 ~~                   WL5  5.857 0.248   0.248    0.191    0.191
105                   WL1 ~~                   CI1  0.025 -0.005 -0.005 -0.004 -0.004
106                   WL1 ~~                   CI2  0.079  0.010   0.010    0.008    0.008
107                   WL1 ~~            CI3  0.111 -0.011 -0.011 -0.009 -0.009
108                   WL1 ~~                   CI4  2.462  0.047   0.047    0.043    0.043
109                   WL1 ~~                   CI5  0.410 -0.020 -0.020 -0.018 -0.018

110                   WL1 ~~                 ALWD1  0.299  0.023   0.023    0.017    0.017
111                   WL1 ~~                 ALWD2  2.124 -0.055 -0.055 -0.048 -0.048
112                   WL1 ~~                 ALWD3  0.040 -0.006 -0.006 -0.006   -0.006
113 WL1 ~~                 ALWD4  0.018  0.004   0.004    0.004    0.004
114                   WL1 ~~                 ALWD5  1.139  0.033   0.033    0.033    0.033
115                   WL1 ~~                 ALWD6  0.238 -0.015 -0.015 -0.014 -0.014
116                   WL1 ~~                 ALWD7  2.483 -0.049 -0.049 -0.049 -0.049
117                   WL1 ~~                 ALWD8  0.061  0.009   0.009    0.007    0.007
118                   WL1 ~~                 ALWD9  4.256 -0.064 -0.064 -0.065 -0.065
119                   WL1 ~~                ALWD10  0.649 -0.030 -0.030 -0.024 -0.024
120                   WL1 ~~              Intrins1  3.911  0.040   0.040    0.036    0.036

----------

320                 ALWD2 ~~     Ident3  4.251 -0.082  -0.082   -0.084   -0.084
321                 ALWD3 ~~                 ALWD3  0.000  0.000   0.000    0.000    0.000
322                 ALWD3 ~~                 ALWD4  6.804  0.088   0.088    0.133    0.133
323                 ALWD3 ~~                 ALWD5  0.026  0.005   0.005    0.008    0.008
324                 ALWD3 ~~                 ALWD6  0.618 -0.026  -0.026   -0.036   -0.036
325                 ALWD3 ~~                 ALWD7  0.134  0.012   0.012  0.018    0.018
326                 ALWD3 ~~                 ALWD8  2.855 -0.066  -0.066   -0.079   -0.079
327                 ALWD3 ~~                 ALWD9 25.463  0.162   0.162    0.246    0.246
328                 ALWD3 ~~                ALWD10  2.638  0.063   0.063    0.077    0.077
329                 ALWD3 ~~              Intrins1  1.622 -0.027  -0.027   -0.035   -0.035
330                 ALWD3 ~~              Intrins2  1.203 -0.022  -0.022   -0.030   -0.030
331                 ALWD3 ~~       Intrins3  6.572  0.078   0.078    0.109    0.109
332                 ALWD3 ~~                Ident1  0.054  0.009   0.009    0.011    0.011
333                 ALWD3 ~~                Ident2  0.138 -0.016  -0.016   -0.019   -0.019
334 ALWD3 ~~                Ident3  2.674  0.050   0.050    0.066    0.066
335                 ALWD4 ~~                 ALWD4  0.000  0.000   0.000    0.000    0.000
336                 ALWD4 ~~                 ALWD5  4.119 -0.073  -0.073   -0.099   -0.099
337                 ALWD4 ~~                 ALWD6  1.033 -0.038  -0.038   -0.047   -0.047
338                 ALWD4 ~~                 ALWD7  8.945  0.110   0.110    0.146    0.146
339                 ALWD4 ~~                 ALWD8  0.409 -0.028  -0.028   -0.030   -0.030
340                 ALWD4 ~~                 ALWD9  4.627  0.078   0.078    0.107    0.107
341                 ALWD4 ~~                ALWD10  5.275  0.101   0.101    0.110    0.110
342                 ALWD4 ~~              Intrins1  1.608 -0.030  -0.030   -0.036   -0.036
343                 ALWD4 ~~              Intrins2  0.140 -0.008  -0.008   -0.010   -0.010
344                 ALWD4 ~~              Intrins3  2.865  0.059   0.059    0.073    0.073
345                 ALWD4 ~~                Ident1  0.913  0.042   0.042    0.047    0.047
346                 ALWD4 ~~                Ident2  5.746 -0.118  -0.118   -0.122   -0.122
347                 ALWD4 ~~                Ident3  0.311 -0.019  -0.019  -0.023   -0.023
348                 ALWD5 ~~                 ALWD5  0.000  0.000   0.000    0.000    0.000
349                 ALWD5 ~~                 ALWD6  0.702 -0.030  -0.030   -0.037   -0.037
350                 ALWD5 ~~                 ALWD7  4.588 -0.075  -0.075   -0.099   -0.099
351                 ALWD5 ~~                 ALWD8  2.701 -0.069  -0.069   -0.074   -0.074
352                 ALWD5 ~~                 ALWD9  0.207  0.016   0.016    0.021    0.021
353                 ALWD5 ~~            ALWD10  0.215  0.019   0.019    0.021    0.021
354                 ALWD5 ~~              Intrins1  1.153 -0.024  -0.024   -0.028   -0.028
355                 ALWD5 ~~              Intrins2  0.744  0.018   0.018    0.022    0.022
356                 ALWD5 ~~              Intrins3  0.001 -0.001  -0.001   -0.001   -0.001
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    These modifi cations (Output 8) result in an acceptable model fi t ( χ  2 /df = 1.94, 
CFI = .91, TLI = .90, RMSEA = 0.052, CI 90 % [.045; .059], SRMR = .064). When 
reporting on SEM analysis, it is not necessary to provide all coeffi cients of every model 
that was tested. It is however important that the reader gets an overview (with fi t indi-
ces) of the different models that were tested. Only the coeffi cients of the fi nal model 
should be reported. A table containing the coeffi cients, standardised coeffi cients, criti-
cal ratio and signifi cance (level) is usually included. Table  14.5  provides an example of 
how the results of the fi nal full SEM model could be presented.

357                 ALWD5 ~~                Ident1  0.382  0.025   0.025    0.028    0.028
358                 ALWD5 ~~                Ident2  0.805  0.041   0.041    0.042    0.042
359 ALWD5 ~~                Ident3  0.013 -0.004 -0.004 -0.004 -0.004
360                 ALWD6 ~~                 ALWD6  0.000  0.000   0.000    0.000    0.000
361                 ALWD6 ~~                 ALWD7 10.839  0.121   0.121    0.147    0.147
362                 ALWD6 ~~                 ALWD8  0.050  0.010   0.010    0.010    0.010
363                 ALWD6 ~~                 ALWD9  0.667 -0.029 -0.029 -0.037 -0.037
364                 ALWD6 ~~                ALWD10  0.750 -0.038 -0.038 -0.038 -0.038
365                 ALWD6 ~~              Intrins1  0.196 -0.010 -0.010 -0.011 -0.011

-----------

400                ALWD10 ~~              Intrins2  0.357  0.015   0.015    0.015    0.015
401                ALWD10 ~~              Intrins3  2.201  0.058   0.058    0.059    0.059
402                ALWD10 ~~                Ident1  3.023  0.087   0.087    0.078    0.078
403                ALWD10 ~~                Ident2  2.416  0.087   0.087 0.072    0.072
404                ALWD10 ~~                Ident3  1.036 -0.040 -0.040 -0.038 -0.038
405              Intrins1 ~~              Intrins1  0.000  0.000   0.000    0.000    0.000
406              Intrins1 ~~              Intrins2 22.639  0.195   0.195    0.213    0.213
407              Intrins1 ~~              Intrins3  3.710 -0.049 -0.049 -0.053 -0.053
408              Intrins1 ~~                Ident1  2.662 -0.047 -0.047 -0.046 -0.046
409              Intrins1 ~~           Ident2  0.006  0.003   0.003    0.002    0.002
410              Intrins1 ~~                Ident3  1.611  0.034   0.034    0.036    0.036
411              Intrins2 ~~              Intrins2  0.000  0.000   0.000    0.000    0.000
412              Intrins2 ~~              Intrins3  2.425  0.038   0.038    0.043    0.043

413              Intrins2 ~~                Ident1 12.902 -0.099 -0.099 -0.102 -0.102
414              Intrins2 ~~                Ident2 10.067 -0.096 -0.096 -0.091 -0.091
415 Intrins2 ~~                Ident3  6.506 -0.066 -0.066 -0.072   -0.072
416              Intrins3 ~~              Intrins3  0.000  0.000   0.000    0.000    0.000
417              Intrins3 ~~                Ident1  4.778  0.088   0.088    0.091    0.091
418              Intrins3 ~~                Ident2  1.755 -0.060 -0.060 -0.057 -0.057
419              Intrins3 ~~                Ident3  0.078 -0.009 -0.009 -0.010 -0.010
420                Ident1 ~~                Ident1  0.000  0.000   0.000    0.000    0.000
421                Ident1 ~~                Ident2 46.922  0.392   0.392    0.334    0.334
422                Ident1 ~~                Ident3  7.649  0.112   0.112    0.110    0.110
423                Ident2 ~~             Ident2  0.000  0.000   0.000    0.000    0.000
424                Ident2 ~~                Ident3  0.000 -0.001 -0.001 -0.001 -0.001
425                Ident3 ~~                Ident3  0.000  0.000   0.000    0.000    0.000
426              Workload ~~              Workload  0.000  0.000   0.000    0.000    0.000
427              Workload ~~   Choice.independence  0.000  0.000   0.000    0.000    0.000
428              Workload ~~         Deep.approach     NA     NA      NA       NA       NA
429    Workload ~~ Autonomous.motivation  0.285  0.025   0.028    0.028    0.028
430   Choice.independence ~~   Choice.independence  0.000  0.000   0.000    0.000    0.000
431   Choice.independence ~~         Deep.approach     NA     NA      NA       NA NA
432   Choice.independence ~~ Autonomous.motivation  0.285  0.075   0.107    0.107    0.107
433         Deep.approach ~~         Deep.approach  0.000  0.000   0.000    0.000    0.000
434         Deep.approach ~~ Autonomous.motivation     NA     NA NA       NA       NA
435 Autonomous.motivation ~~ Autonomous.motivation  0.000  0.000   0.000    0.000    0.000
436         Deep.approach  ~ Autonomous.motivation  0.000  0.000   0.000    0.000    0.000
437         Deep.approach  ~              Workload  0.000  0.000   0.000    0.000    0.000
438         Deep.approach  ~   Choice.independence  0.000  0.000   0.000    0.000    0.000
439 Autonomous.motivation  ~         Deep.approach  0.285  0.285   0.168    0.168    0.168
440 Autonomous.motivation  ~  Workload  0.284  0.027   0.030    0.030    0.030
441 Autonomous.motivation  ~   Choice.independence  0.000  0.000   0.000    0.000    0.000
442              Workload  ~         Deep.approach  0.285  0.270   0.140    0.140    0.140
443 Workload  ~ Autonomous.motivation  0.285  0.044   0.039    0.039    0.039
444              Workload  ~   Choice.independence     NA     NA      NA       NA       NA
445   Choice.independence  ~         Deep.approach  0.284  0.811   0.531    0.531    0.531
446   Choice.independence  ~ Autonomous.motivation  0.285  0.132   0.147    0.147    0.147
447   Choice.independence  ~              Workload     NA     NA      NA       NA       NA
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Minimum Function Test Statistic             3011.588
Degrees of freedom                               300
P-value 0.000

Full model versus baseline model:

Comparative Fit Index (CFI)                    0.910
Tucker-Lewis Index (TLI)                       0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -11067.206
Loglikelihood unrestricted model (H1) -10814.522

Number of free parameters                         65
Akaike (AIC)                               22264.411
Bayesian (BIC)                             22514.430
Sample-size adjusted Bayesian (BIC)        22308.231

Root Mean Square Error of Approximation:

RMSEA                                          0.052
90 Percent Confidence Interval          0.045  0.059
P-value RMSEA <= 0.05 0.288

Standardized Root Mean Square Residual:

SRMR                                           0.064

Parameter estimates:

Information                                 Expected
Standard Errors                             Standard

Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Latent variables:

Workload =~
WL1               1.000                               1.011    0.879
WL2               0.583    0.064    9.040    0.000    0.589    0.493
WL4               0.738    0.063   11.694    0.000    0.746    0.615
WL5               0.957    0.061   15.706    0.000    0.968    0.858

Choice.independence =~
CI1               1.000                               0.790    0.729
CI2 0.854    0.080   10.623    0.000    0.674    0.634
CI3               0.904    0.080   11.333    0.000    0.714    0.680
CI4               0.810    0.073   11.171    0.000    0.640    0.669
CI5               0.821    0.075   10.883    0.000 0.649    0.651

lavaan (0.5-12) converged normally after  46 iterations

Used       Total
Number of observations                           346         359

Estimator                                         ML
Minimum Function Test Statistic              505.367
Degrees of freedom                               260
P-value (Chi-square)                           0.000

Model test baseline model:
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Intrins3          0.736    0.074   10.006 0.000    0.567    0.608
Ident1            0.739    0.094    7.858    0.000    0.569    0.547
Ident2            0.500    0.092    5.467    0.000    0.385    0.342
Ident3            0.802    0.072   11.170    0.000    0.618    0.634

Regressions:
Deep.approach ~

Workload          0.092    0.032    2.866    0.004    0.174    0.174
Choic.ndpndnc     0.394    0.071    5.520    0.000    0.585    0.585
Autonms.mtvtn     0.244    0.058    4.190    0.000    0.354    0.354

Autonomous.motivation ~
Choic.ndpndnc     0.546    0.067    8.095    0.000    0.559    0.559

Covariances:
ALWD3 ~~

ALWD9             0.168    0.034    4.888    0.000    0.168    0.285
ALWD6 ~~

ALWD7             0.140    0.038    3.648    0.000    0.140    0.220
ALWD4 ~~

ALWD7             0.126    0.037    3.389    0.001    0.126    0.184
WL2 ~~

WL4               0.195    0.059    3.276    0.001    0.195    0.196
Intrins1 ~~

Intrins2          0.121    0.043    2.843    0.004    0.121    0.472
Ident1 ~~

Ident2            0.271    0.060    4.500    0.000    0.271    0.294
Intrins2 ~~

Ident1           -0.198    0.039 -5.023    0.000 -0.198 -0.535
Ident2    -0.105    0.030 -3.470    0.001 -0.105 -0.233

Intrins1 ~~
Ident1           -0.126    0.039 -3.256    0.001 -0.126 -0.241
Ident3            0.095    0.027    3.460    0.001    0.095    0.209

Workload ~~
Choic.ndpndnc    -0.214    0.053 -3.998    0.000   -0.268 -0.268

Variances:
WL1               0.302    0.056                      0.302    0.228
WL2               1.080    0.086                      1.080    0.757
WL4               0.915    0.077                      0.915    0.622
WL5               0.335    0.053                      0.335    0.264
CI1               0.549    0.054                      0.549    0.468
CI2               0.675    0.059 0.675    0.598
CI3               0.593    0.054                      0.593    0.538
CI4               0.505    0.046                      0.505    0.552
CI5               0.573    0.051                      0.573    0.577
ALWD1             1.082    0.089                      1.082    0.793
ALWD2             0.903    0.071                      0.903    0.909
ALWD3             0.557    0.043                      0.557    0.932

ALWD1             1.000                               0.531    0.455
ALWD2             0.566    0.129    4.385    0.000    0.301    0.302
ALWD3             0.381    0.098    3.896    0.000    0.202    0.262
ALWD4             0.274    0.103    2.670    0.008    0.146    0.170
ALWD5             0.793    0.130    6.094    0.000    0.422    0.490
ALWD6             0.981    0.151    6.501    0.000    0.521    0.554
ALWD7             0.633    0.122    5.178    0.000    0.336    0.383
ALWD8             1.156    0.176    6.580    0.000    0.615    0.567
ALWD9             0.612    0.118    5.201    0.000    0.325    0.381
ALWD10            1.018    0.164 6.225    0.000    0.541    0.509

Autonomous.motivation =~
Intrins1          1.000                               0.770    0.788
Intrins2          1.080    0.055   19.701    0.000    0.832    0.890

Deep.approach =~
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14 The Integration of Work and Learning: Tackling the Complexity with Structural…



282

   Table 14.5    Coeffi cients fi nal full SEM model   

 Regression 
weight  Standard error 

 Standardised 
regression weight 

 Critical 
ratio a  

  Measurement model  
 Workload = ~ 

 WL1  1   b   .88   b  
 WL2  .58  .06  .49  9.04 
 WL4  .74  .06  .62  11.69 
 WL5  .96  .06  .86  15.71 

 Choice independence = ~ 
 CI1  1   b   .73   b  
 CI2  .85  .08  .63  10.62 
 CI3  .90  .08  .68  11.33 
 CI4  .81  .07  .67  11.17 
 CI5  .82  .08  .65  10.88 

 Deep approach = ~ 
 ALWD1  1   b   .46   b  
 ALWD2  .57  .13  .30  4.39 
 ALWD3  .38  .10  .26  3.90 
 ALWD4  .27  .10  .17  2.67 
 ALWD5  .79  .13  .49  6.09 
 ALWD6  .98  .15  .55  6.50 
 ALWD7  .63  .12  .38  5.18 
 ALWD8  1.16  .18  .57  6.58 
 ALWD9  .61  .12  .38  5.20 
 ALWD10  1.02  .16  .51  6.23 

 Autonomous = ~ 
 Intrins1  1   b   .79   b  
 Intrins2  1.08  .06  .89  19.70 

(continued)

 

Workload          1.022    0.110                      1.000    1.000
Choic.ndpndnc     0.624    0.086 1.000    1.000
Deep.approach     0.097    0.030                      0.344    0.344
Autonms.mtvtn     0.408    0.062                      0.687    0.687

ALWD4             0.715    0.055 0.715    0.971
ALWD5             0.563    0.047                      0.563    0.760
ALWD6             0.613    0.054                      0.613    0.693
ALWD7             0.658    0.053                      0.658    0.853
ALWD8             0.798    0.070                      0.798    0.679
ALWD9             0.623    0.050                      0.623    0.855
ALWD10            0.837    0.071                      0.837    0.741
Intrins1          0.361    0.053 0.361    0.378
Intrins2          0.181    0.047                      0.181    0.208
Intrins3          0.548    0.046                      0.548    0.630
Ident1            0.758    0.072                      0.758    0.701
Ident2            1.122    0.089                      1.122    0.883
Ident3            0.569    0.049                      0.569    0.598
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 Regression 
weight  Standard error 

 Standardised 
regression weight 

 Critical 
ratio a  

 Intrins3  .74  .07  .61  10.01 
 Ident1  .74  .09  .55  7.86 
 Ident2  .50  .09  .34  5.47 
 Ident3  .80  .07  .63  11.17 

  Structural model  
 Deep approach ~ 

 Workload  .09  .03  .17  2.87 c  
 Choice independence  .39  .07  .59  5.52 
 Autonomous  .24  .06  .35  4.19 

 Autonomous ~ 
 Choice independence  .55  .07  .56  8.10 

  Covariances  
 ALWD3 ~ ~ALWD9  .17  .03  .29  4.88 
 ALWD6 ~ ~ALWD7  .14  .04  .22  3.65 
 ALWD4 ~ ~ALWD7  .13  .04  .18  3.39 
 WL2 ~ ~WL4  .20  .06  .20  3.28 
 Intrins1 ~ ~Intrins2  .12  .04  .47  2.84 
 Ident1 ~ ~Ident2  .27  .06  .29  4.50 
 Intrins2 ~ ~Ident1  −.20  .04  −.54  −5.02 
 Intrins2 ~ ~Ident2  −.11  .03  −.23  −3.47 
 Intrins1 ~ ~Ident1  −.13  .04  −.24  −3.26 
 Intrins1 ~ ~Ident3  .10  .03  .21  3.46 
 Workload ~ ~ Choice 

independence 
 −.21  .05  −.27  −4.00 

   Note : Estimation Method: Maximum Likelihood 
  a All critical ratios except b:  p  < .001 
  b Value fi xed at 1.00 for model identifi cation purpose; hence, no standard error was computed 
  c Critical ratio:  p  < .01  

Table 14.5 (continued)

14.4           Extensions of SEM and Their Application 
in Research on Professional Learning 

 Confi rmatory factor analysis, path analysis and structural equation modelling have 
been commonly applied by researchers in various fi elds, including the fi eld on pro-
fessional learning. ‘Basic’ SEM models already offer a variety of possibilities 
because different types of relationships can be modelled based on the theoretical 
foundations of the study. In addition various extensions or specifi c forms of SEM 
offer a wide range of possibilities. Within this section, these extensions will be pre-
sented accompanied by examples of how these analyses can be applied within the 
fi eld of professional learning. 
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 Within the section on confi rmatory factor analysis, we discussed the measurement 
invariance across groups. If this measurement invariance across groups is estab-
lished, you could also investigate whether the SEM model is equal or different for 
different groups of participants. Establishing measurement invariance is important 
in this regard, as you would want to make sure that the differences that you fi nd in 
the model refl ect differences in the true constructs and relationships and not mere 
differences in measurement. With  multiple-group SEM , it is possible to establish 
whether models are different for different groups of participants. The study of Hurtz 
and Williams ( 2009 ), for example, applied a multiple-group path analysis. This 
study examined attitudinal and motivational antecedents of employees’ participa-
tion in development activities based on data collected within four organisations. A 
multiple-group path analysis was used to investigate whether the model differed for 
the four different organisations that were included in their study. They concluded 
that although the strengths of the different paths differed across organisations, the 
patterns were the same as the full SEM model that was based on the data from all 
four organisations (Hurtz & Williams,  2009 ). Within their study, they also examined 
whether their measurement was invariant across the groups and concluded that this 
was not the case. However, because the focus lied on identifying a general model 
looking at the relationship of the antecedents with participation and not on explain-
ing organisational differences, Hurtz and Williams ( 2009 ) applied group-mean cen-
tring to remove organisational mean differences: they computed the difference 
between the employee score and the organisational mean of the scores and took this 
difference as their primary outcome variable. After applying this group-mean cen-
tring, measurement invariance was reached. However, it must be noted that no con-
clusions can be drawn regarding possible organisational differences. Alternatively 
to this approach, on the condition that metric invariance is achieved and the sample 
size is large enough, one could also adopt a full SEM model, sometimes also called 
multiple-indicator SEM model, because this allows the modelling of intercept vari-
ances. Multiple-group SEM analysis can also be applied to compare the models of 
males and females, high- and low-qualifi ed employees, etc. In contrast, to multi-
level SEM analysis (see below), multiple-group analysis does not require that the 
different groups are sampled at random. Multiple- group SEM can be conducted 
with the lavaan package (Rosseel,  2012 ). 

  Multilevel SEM  requires a random sampling of groups because it assumes that 
the differences between organisations in terms of the intercept and slope are nor-
mally distributed around the average intercept or slope that holds for the population. 
For a basic introduction into multilevel analysis within professional learning, the 
reader is referred to Kyndt and Onghena ( 2014 ). In short, multilevel SEM combines 
multilevel analysis and SEM analysis. SEM analysis is not able to take the nested 
structure of the data into account (i.e. employees nested within organisations), while 
multilevel analysis is not able to examine more complex models. Multilevel analy-
sis is comparable to regression analysis with regard to the type of relationships they 
investigate. In addition, multilevel analysis does not provide goodness-of-fi t indices 
such as CFI, SRMR or RMSEA. One can only conclude that one model fi ts the data 
better in comparison with another model (Kyndt & Onghena,  2014 ). Within a 
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 multilevel SEM, the model is estimated while the organisational clustering is taken 
into account. Taking the organisational clustering into account is important because 
‘if the nested structure of the data is ignored, it is more likely that statistical rela-
tions are observed in the sample that are in fact not true (type-1 error), in addition it 
might be that it is concluded that a relationships holds for individuals when they are 
actually true for groups (ecological fallacy)’ (Kyndt & Onghena,  2014 , p. 339). 
Moreover, within multilevel SEM, predictors on the level of the organisation can be 
combined with predictors at the individual level. A fi nal difference between multi-
level SEM and multilevel analysis is that multilevel SEM can also predict outcomes 
at the organisational level, whereas in traditional multilevel analysis, the outcomes 
or dependent variables need to be situated at the lowest level, that is, the individual 
level. Sometimes this latter issue is resolved by aggregating the individual scores to 
the organisational level (after the within-group agreement has been checked); how-
ever, by doing this a lot of statistical power is lost as well as potentially interesting 
individual differences within organisations. To our knowledge it is not possible to 
conduct multilevel SEM with the R software, it is possible with Mplus (Muthén & 
Muthén,  1998–2010 ). More information on multilevel SEM can be found in the 
article of Kaplan and Elliott ( 1997 ). Within educational sciences and labour 
psychology, different examples of empirical studies using multilevel SEM can be 
found (e.g. Johnsrud, Heck, & Rosser,  2000 ; Mauno, Kiuru, & Kinnunen,  2011 ; 
Sebastian & Allensworth,  2012 ). However, we were not able to detect a specifi c 
example within the fi eld of professional learning. 

 The two above-presented extensions of SEM have something in common that 
they add to the complexity of the model; as a consequence, both techniques usu-
ally require very large samples (many organisations and many employees within 
the organisations). However,  partial least squares  ( PLS ) might be an interesting 
alternative to SEM if the sample size requirements cannot be met. Where SEM 
combines factor analysis and path models, PLS combines principal component 
analysis and path models (Garthwaite,  1994 ; Goutis,  1996 ; Hoyle,  1999 ; 
Iacobucci,  2010 ). Principal component analysis does not aim at refl ecting latent 
constructs; rather, it tries to predict the component as good as possible. Factor 
analysis most commonly uses the maximum likelihood estimation, which 
considers the variance the different observed variables have in common, while 
principal component analysis takes all variance into account when estimating the 
component (Garthwaite,  1994 ; Hoyle,  1999 ). Because the focus lies on maximis-
ing the prediction and capturing as much variance as possible from the dependent 
variable, PLS is better suitable for exploratory rather than confi rmatory purposes 
(Hoyle,  1999 ; Iacobucci,  2010 ). The loadings tend to be overestimated and path 
coeffi cients underestimated (Goutis,  1996 ; Iacobucci,  2010 ). In addition, no 
goodness-of-fi t indices are provided. Similarly to multilevel analysis, it can only 
be judged which model is more suitable in comparison with another model. 
However, it is an interesting approach when you want to explore complex models 
with a limited number of observations. Gegenfurtner ( 2013 ) illustrates the use of 
PLS in his study on the relationship between motivation to transfer, retention, 
transfer and attitudes.  
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14.5      Discussion 

 Throughout this chapter we have tried to introduce the reader to SEM by means of an 
illustration within the fi eld of professional learning. The models that are tested within 
this chapter are solely for the purpose of illustrating the method and should not be 
used for interpreting the relationships between the constructs. These results and inter-
pretations can be found in the publication of the empirical study in which the relation-
ships including control variables were examined (Kyndt et al.,  2013 ). SEM offers 
researchers a lot of possibilities to investigate complex models. Within the paradigm 
of the integration of work and learning, advanced techniques such as multiple-group 
and multilevel SEM might be especially relevant, because these techniques allow the 
simultaneous examination of individual and organisational differences. These tech-
niques are interesting if the goal is to investigate professional learning conceptualised 
as a reciprocal interaction between individual and organisation (Tynjälä,  2008 ). 

 However, despite all the possibilities SEM offers, it also has its limitations and 
possible pitfalls. The two most evident limitations are the necessity for a strong 
theoretical basis and the large samples that are needed especially when comprehen-
sive models with many variables need to be estimated. Although simple models can 
be estimated with moderate to small samples, the added value of SEM foremost lies 
in estimating complex models (Hox & Bechger,  1998 ). 

 One of the most common pitfalls of SEM is that many researchers are tempted to 
interpret SEM models as causal models due to the impression the direction of the 
paths give. However, merely applying SEM to your data does not provide proof for 
the causality of the relationship (Bollen & Pearl,  2013 ). A SEM model can however 
raise doubts about a causal theory; when the SEM model is correctly specifi ed and 
the covariance structure does not support the theoretical causal structure, it seems 
less plausible that the causal relationships exists. One can say that establishing 
covariance or correlations between the variables is a necessary but not suffi cient 
condition for establishing causality. To be able to prove the causality of the relation-
ships empirically, data that allow this type of conclusions need to be collected (e.g. 
longitudinal or experimental data). If SEM is applied to correlational data, the SEM 
model cannot be interpreted as a causal model (Iacobucci,  2009 ). 

 The aim of the current book chapter was to introduce the reader with the possi-
bilities that SEM can offer within the fi eld of research on professional learning. 
Within the paradigm of the integration of work and learning, the possibility to anal-
yse more complex models can contribute to the theory development and further 
understanding of how learning and working are intertwined.      

    Appendix: R Code Illustration 

 ##    Setting up working directory and loading data 
 setwd(“/Users/evakyndt/Book chapter SEM”) 
 data<-read.table(“chapter SEM.csv”,header=TRUE,sep=“;”)     
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  ## Loading packages  
 install.packages(“lavaan”) 
 library(“lavaan”) 
 install.packages(“qgraph”) 
 library(“qgraph”) 
 install.packages(“semTools”) 
 library(“semTools”)     

  ## Measurement model: Confi rmatory factor analysis (Output 1)  
 CFAModel1 <- ‘Workload=~WL1+WL2+WL3+WL4+WL5 
 Choice.independence=~CI1+CI2+CI3+CI4+CI5’   

 Fit1 <- cfa(CFAModel1, data=data) 
 summary(Fit1, fi t.measures=TRUE, standardized=TRUE) 
 modindices(Fit1)     

  ## CFA without WL3 (Output 2)  
 CFAModel2 <- ‘Workload=~WL1+WL2+WL4+WL5 
 Choice.independence=~CI1+CI2+CI3+CI4+CI5’   

 Fit2 <- cfa(CFAModel2, data=data) 
 summary(Fit2, fi t.measures=TRUE, standardized=TRUE)     

  ## Plot CFA model (Figure 4)  
 qgraph.lavaan(Fit1,layout=“tree”, vsize.man=5, vsize.
lat=12, include=4, curve=-0.4, edge.label.cex=0.6, 
titles=F)   

 ## Testing measurement invariance across groups (Output 3) 
 measurementInvariance(CFAModel1, data=data, group=“Sex”)     

  ## Path analysis mediation (Output 4)  
 SEMModel2 <- ‘DA ~ Autonomous + Controlled 
 Autonomous ~ WL + CI 
 Controlled ~ WL + CI 
 DA ~ WL + CI’   

 FitSEM2 <- sem(SEMModel2, data=data) 
 summary(FitSEM2, fi t.measures=TRUE, standardized=TRUE)     

  ## Path analysis mediation without non-signifi cant paths 
(Output 5)  
 SEMModel3 <- ‘DA~Autonomous 
 Autonomous ~ CI 
 DA ~ WL + CI’   

 FitSEM3 <- sem(SEMModel3, data=data) 
 summary(FitSEM3, fi t.measures=TRUE, standardized=TRUE)     

  ## Full SEM model (Output 6)  
 FullModel <- ‘Workload=~WL1+WL2+WL4+WL5 
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 Choice.independence=~CI1+CI2+CI3+CI4+CI5 
 Deep.approach=~ALWD1+ALWD2+ALWD3+ALWD4+ALWD5+ALWD6+ALWD
7+ALWD8+ALWD9+ALWD10 

 Autonomous.motivation=~ Intrins1+Intrins2+Intrins3+Iden
t1+Ident2+Ident3 

 Deep.approach~Workload+Choice.independence 
 Deep.approach~Autonomous.motivation 
 Autonomous.motivation~Choice.independence’   

 FitSEMFull <- sem(FullModel, data=data) 
 summary(FitSEMFull, fi t.measures=TRUE, standardized=TRUE)   

  ## Modifi cation indices (Output 7)  
 modindices(FitSEMFull)   

  ## Full SEM model after modifi cation (Output 8)  
 FullModel2 <- ‘Workload=~WL1+WL2+WL4+WL5 
 Choice.independence=~CI1+CI2+CI3+CI4+CI5 
 Deep.approach=~ALWD1+ALWD2+ALWD3+ALWD4+ALWD5+ALWD6+ALWD
7+ALWD8+ALWD9+ALWD10 
 Autonomous.motivation=~ Intrins1+Intrins2+Intrins3+Iden
t1+Ident2+Ident3 

 Deep.approach~Workload+Choice.independence 
 Deep.approach~Autonomous.motivation 
 Autonomous.motivation~Choice.independence 
 ALWD3~~ALWD9 
 ALWD6~~ALWD7 
 ALWD4~~ALWD7 
 WL2~~WL4 
 Intrins1~~Intrins2 
 Ident1~~Ident2 
 Intrins2~~Ident1 
 Intrins2~~Ident2 
 Intrins1~~Ident1 
 Intrins1~~Ident3’   

 FitSEMFull2 <- sem(FullModel2, data=data) 
 summary(FitSEMFull2, fi t.measures=TRUE, standardized=TRUE) 
 ## references 
 citation(“lavaan”) 
 citation(“qgraph”) 
 citation(“semTools”)   
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