
Chapter 6
Distributed MPC Under Coupled Constraints
Based on Dantzig-Wolfe Decomposition

R. Bourdais, J. Buisson, D. Dumur, H. Guéguen and P-D. Moroşan

Abstract In this chapter, we propose a distributed model predictive control scheme
based on the Dantzig-Wolfe decomposition to control a collection of linear dynamical
systems coupled by linear global constraints. The resulting structure is composed of
one optimization agent for each system, and another one that has to ensure that the
global constraints are fulfilled. The global solution of the problem is found in a finite
number of iterations.

6.1 Short Introduction

This chapter deals with large-scale systems, composed with independent subsystems
that share common resources. A typical example of that kind of system is the problem
of energy management system for a residential house: heating systems, refrigerant
systems, hot-water tank, washing-machine are independent equipments but the global
available power is limited by a subscripted contract. A global objective is to minimize
the total consumption of the building, while fulfilling the local objectives such as a
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good ambient air temperature, … Other examples of such a system could be a local
residential area in which each house has its own behavior, or systems connected by
smart grid.

The treatment of the optimization problem could be too complex with a global
approach. Moreover, each time another subsystem is added, the whole controller
synthesis has to be done again. For these reasons, a distributed structure is interesting.
It leads to define smaller and less complex optimization problems as well as to ensure
a modularity of the structure.

In the following, the whole optimization problem is linear: the local models and
their constraints as well as the global objective and the global constraints. The special
structure of all the constraints and the linear aspect of the problem allow to use the
Dantzig-Wolfe decomposition. In a few words, the Dantzig-Wolfe decomposition is
an algorithm which is well-known to simplify the complexity of a linear optimization
problem when the matrix of constraints is block-angular. The initial problem is
decomposed into several smaller linear problems, and an coordination mechanism is
used such that the solution of the initial problem is found. In this chapter, as it will
be explained, the distributed control structure will be based on this decomposition,
which will be used not only to reduce the complexity of the global problem, but also
to ensure the modularity.

6.2 Boundary Conditions

6.2.1 System Description

We suppose in this chapter that the studied system is composed of a collection
of q independent discrete-time dynamical systems (Si ) that are interconnected by
different input constraints. Their dynamical equation can be described as follows:

{
xi (k + 1) = Ai xi (k)+ Bi ui (k),

yi (k) = Ci xi (k).
(6.1)

In this equation, the local state xi is in R
nxi , the local control input ui is in

U i ⊂ R
nui and the local output yi is in R

nyi . We suppose that the local input constraint
set is defined by nci linear constraints:

Ui :=
{
ui ∈ R

nui \ ∀n ∈ {1, . . . , nci }, eTin
ui ≤ din

}
(6.2)

This set can be also described by the aggregated notation:

Ui :=
{
ui ∈ R

nui \ Ei ui ≤ di
}
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Though all these systems are dynamically independent, we suppose that they are
connected by nG global linear input constraints. The global constraint set is defined
as follows:

UG :=
{

(ui )i=1,q ∈ R
nu1+···+nuq \ ∀n ∈ {1, . . . , nG},

q∑
i=1

hTin
ui ≤ gn

}
.

(6.3)
For the different inputs, we suppose that they fulfill the conditions given in

Assumption 6.1, which are not restrictive as soon as we consider engineering sys-
tems. Besides, we suppose that there exists at least a collection of local inputs that
satisfies the global constraints, this point is given in Assumption 6.1:

Assumption 6.1 Boundedness and existence of a global solution. We suppose
that:

• all the sets Ui are nonempty bounded convex sets.
• there exists v = (vi )i=1,q such that v ∈ UG and for all i ∈ {1, . . . , q}, vi ∈ Ui .

The objective in this paper is to implement a model predictive control for each sys-
tems, while taking in consideration the global constraints. This problem is formalized
in the next section.

6.2.2 Control Objective

In predictive control, most of the results are provided for a quadratic cost which is
interesting for different reasons such as the explicit solution or stability analysis.
Here, the problem is tackled with the l1-norm which is more representative of real
costs (price, power consumption, …).

For a given prediction horizon Np, we denote by ui (k : k + Np − 1) the vector
of all the control inputs over the prediction horizon. yi (k + 1 : k + Np) is the
predicted output, constructed from the state xi (k) and according to the input vector
ui (k : k + Np − 1). yi (k + 1 : k + Np) can be defined recursively by:

yi (k + l) = Ci xi (k + l)

= Ci

(
A(l)

i xi (k)+
l∑

j=1
A(l− j)

i Bi ui (k + j − 1)

)
(6.4)

Then, this equation can be aggregated as follows:

yi (k + 1 : k + Np) = Mi xi (k)+ Ni ui (k : k + Np − 1) (6.5)

The expressions of the matrices Mi and Ni are directly derived from equation
(6.4). Let us denote with yref,i(k + 1 : k + Np) the vector of the future reference.
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The objective function for each system (Si ) can be stated as follows:

Ji (xi (k), ui (k : k + Np − 1)) = ∥∥yref,i(k + 1 : k + Np)− yi (k + 1 : k + Np)
∥∥

1

+ αi
∥∥ui (k : k + Np − 1)

∥∥
1 . (6.6)

αi is a positive weight factor. From these local objective functions, the global
problem can be derived, integrating the global constraints. This leads to:

Problem 6.1 Centralized Problem. Given all the current states and the future refer-
ences

(
xi (k), yref,i(k + 1 : k + Np)

)
i=1,q

min
(ui (k:k+Np−1))i=1,q

q∑
i=1

Ji (xi (k), ui (k : k + Np − 1)), (6.7)

subject to:

• the local dynamical equations (6.1),
• the local constraints, ∀i ∈ {1, . . . , q}:

∀l ∈ {1, . . . , Np}, ui (k + l − 1) ∈ Ui ,

• and the global constraints,

∀l ∈ {1, . . . , Np}, (ui (k + l − 1))i=1,q ∈ UG .

6.2.3 Control Structure

Because of the very particular structure of the global system (all the local systems are
independent), the distribution of the optimization problem can be very interesting.
The resulting control structure is based on q + 1 optimization agents. One will be
dedicated to each system (Si ), and one which will be in charge of the fulfillment of
the global constraints, called the coordinator agent. Concerning the communication
protocols, the coordinator agent will exchange data with all the other agents, but the
other agents will not communicate with each other. The control structure is presented
in Fig. 6.1. All the interactions will be formalized in the next section.

In this chapter, we suppose that all the exchanges are perfect between the agents,
this leads to the following assumption:

Assumption 6.2 Communication and data exchange. For the communication pro-
tocol, we suppose that:
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Fig. 6.1 Distributed structure
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• there is no delay induced by the communications.
• there is no loss of information during the exchanges.

Now that the global problem and the control structure are presented, the different
steps of the resolution will be specified in the following section.

6.3 Description of the Approach

The principle of the decomposition is to use an iterative procedure at each time step
(k). Then, for each iterative step, three actions are sequentially achieved:

• A first one is done by the coordinator agent which has to solve its own optimization
problem. Its solution is then sent to each other agent.
• A second action in which all the local agents solve, in parallel, their optimization

problem. Their solution is sent to the coordinator agent.
• A last step, in which a decision is taken by the coordinator agent. Two cases

can occur: either the convergence is reached and the procedure is stopped, or the
convergence is not reached, and then a new iteration has to be done.

In the first two steps, different optimizations have to be solved. The distribution of
the initial problem relies on linear decomposition technique, and all the agents solve
their problem using a linear solver. As it can be noticed, the local cost function (6.6)
is the sum of l1-norm functions. It has to be rewritten into a linear form. This point
is developed in the next paragraph, before the formalization of all the optimization
problems and the interactions between the agents.
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6.3.1 Exact Linearization of the Local Problem

As the function (6.6) is a sum of l1-norm functions, it is also a sum of absolute values.
To linearize the problem, the idea is to introduce two auxiliary variables for each
absolute value.

For a better understanding, let us consider the case where nui = nyi = 1 and the
prediction horizon Np = 1.

The local minimization problem is the following one:

min
ui (k)
|yre f,i (k + 1)− yi (k + 1)| + αi |ui (k)|, (6.8)

subject to
ui (k) ∈ Ui . (6.9)

Then by introducing 4 positive auxiliary variables μi (k),μi (k), ηi (k), ηi (k), the
previous problem is equivalent to:

min
ui (k),μi (k),μi (k),ηi (k),ηi (k)

(
ηi (k)+ ηi (k)

)
+ αi

(
μi (k)+ μi (k)

)
, (6.10)

subject to

Ei ui (k) ≤ di (6.11)

yi (k + 1)+ ηi (k)− ηi (k) = yre f,i (k + 1) (6.12)

ui (k)+ μi (k)− μi (k) = 0 (6.13)

μi (k),μi (k), ηi (k), ηi (k) ≥ 0 (6.14)

Sketches of proof can be found in [3], in which another formulation is proposed
to linearize a l1-norm predictive control.

6.3.2 Local Agent Optimization Problem

This transformation is exactly the same in the general case. Just to have an estimation
of the number of variables involved for each subsystem optimization, the initial
problem has nui · Np variables and nci · Np constraints with a nonlinear cost function
whereas the rewritten problem has

(
3nui + 2nyi

)·Np variables and
(
nci + nui + nyi

)·
Np constraints but with a linear cost function.

Then, let us denote with wi (k : k + Np − 1) the vector of all the variables of the
rewritten local optimization problem, with
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wi (k : k + Np − 1) =

⎛
⎜⎜⎜⎜⎝

ui (k : k + Np − 1)

μi (k : k + Np − 1)

μi (k : k + Np − 1)

ηi (k : k + Np − 1)

ηi (k : k + Np − 1)

⎞
⎟⎟⎟⎟⎠

As we will see in the following, from an iteration to the next one during the
distribution process, all the constraints of the local problem remain the same, but the

linear cost function can change. At an iteration p, let us denote with k(p)
i

T
wi (k :

k + Np − 1) this cost function.
Then, the local problem can be stated as follows:

Problem 6.2 Rewritten Local Optimization Problem. For a time step k, and at an
iteration p, the local optimization problem is:

min
wi (k:k+Np−1)

k(p)
i

T
wi (k : k + Np − 1), (6.15)

subject to
Ei wi (k : k + l − 1) ≤ di (k). (6.16)

It is important to notice that in this local problem, the matrix Ei is independent
of the time contrary to the vector di (k), which has to be calculated at each time step
and depends on the future target yref,i(k + 1 : k + Np) and the current state xi (k).
Their expressions are the following:

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(Ei ) 0 0 0 0

Ni 0 0 I −I
−Ni 0 0 −I I

I I −I 0 0
−I −I I 0 0
0 −I 0 0 0
0 0 −I 0 0
0 0 0 −I 0
0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, di (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

di
...

di
yref,i(k + 1 : k + Np)−Mi xi (k)

−yref,i(k + 1 : k + Np)+Mi xi (k)

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.17)

During the iteration process, the cost function k(p)
i

T
wi (k : k+Np−1) will change

from an iteration to another one. This is the way that the global constraints are going
to be taken into account. When there is no global constraint, the cost function of the
rewritten local optimization problem would be ki,0

Twi (k : k + Np − 1), with:

kTi,0 =
[

0T αi 1T αi 1T 1T 1T
]

(6.18)
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As it will be explained in the following, this vector will be used during the
exchanges from the local agents to the coordinator agent.

6.3.3 The Coordinator Agent Problem

The main objective of the coordinator agent is to guarantee that the global constraints
are fulfilled. This is ensured by different optimizations that will be done iteratively.
From an iteration to the next one, a new optimization variable is added. The way this
new optimization variable is integrated, on the cost function and on the constraints,
only depends on the solutions of the local optimizations that have been done at
the previous iteration. But before starting, the initialization requires N0 different
admissible points for the local agents. More precision on the initialization will be
given in a next paragraph.

Then, at iteration p, the coordinator agent will have υ(p) optimization variables,
with υ(p) = N0+ p−1. For s = {1, . . . , υ(p)}, let us denote with w(s)

i (k : k+Np−1)

the s-th admissible point of the local agent.1

Then, we define the following variables, ∀s ∈ {1, . . . , υ(p)},

z(s)(k) =
q∑

i=1

kTi,0w(s)
i (k : k + Np − 1) (6.19)

r (s)
n,l (k) =

q∑
i=1

hTin
u(s)

i (k + l − 1), ∀n ∈ {1, . . . , nG},∀l ∈ {1, . . . , Np}

(6.20)

From this, the coordinator agent has to solve its own problem, which can be stated
as follows:

Problem 6.3 Coordinator Optimization Problem. At an iteration p, given the vari-
ables z(s)(k) and r (s)

n,l (k), with s ∈ {1, . . . , υ(p)}, the optimization problem is:

min
(vs )s=1,υ(p)

υ(p)∑
s=1

z(s)(k)vs (6.21)

with respect to

1 For s ∈ {1, . . . , N0}, this point is given by the initialization, and for s ∈ {N0+1, . . . , N0+ p−1}
the point is the result of a local optimization problem.
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∀n ∈ {1, . . . , nG},∀l ∈ {1, . . . , Np},
υ(p)∑
s=1

r (s)
n,l (k)vs ≤ gn : λn,l (6.22)

υ(p)∑
s=1

vs = 1 : σ (6.23)

∀s ∈ {1, . . . , υ(p)}, vs ≥ 0 (6.24)

The coordinator agent has to find not only the solution vs but also the dual variable
values λn,l , associated to the linear constraints.2 (6.22) and the dual variable value
σ associated to the linear constraint (6.23).

6.3.4 Iterative Mechanism

Each iteration consists in the following three steps:

1. The coordination agent optimization. At iteration p, it has to solve its problem
6.3. Let us denote with (v(p)

s )s=1,υ(p) the solution of this problem, and λ(p)
n,l and

σ(p) the associated optimal dual variable values.
The values of the dual variables λ(p)

n,l are then sent to each local agent, and will be

used to define a new cost function k(p)
i

T
wi (k : k + Np− 1), which is calculated

using:

k(p)
i = ki,0 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
( nG∑

n=1
λ

(p)
n,1hin

)

...

−
( nG∑

n=1
λ

(p)
n,Np

hin

)

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.25)

The important point is that the second term of this sum can be calculated by
coordinator agent and given numerically to the local agent. This term is a penal-
ization cost vector whose objective is to take into account the global constraints
in the local optimization.

2 ∀n ∈ {1, . . . , nG},∀l ∈ {1, . . . , Np}.
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2. In parallel, each optimization agent has to solve its own problem 6.2 with

the new cost function k(p)
i

T
wi (k : k + Np − 1) to find its solution w(υ(p)+1)

i (k :
k + Np − 1), which has to be sent to the coordinator agent.

3. The convergence checking is done after these two steps by comparing two values:

• the value of the dual variable σ(p)

• the value of the sum of all the local optimization values, calculated as follows:

ψ(p) =
q∑

i=1

k(p)
i

T
w(υ(p)+1)

i (k : k + Np − 1) (6.26)

The value ψ(p) obtained by Eq. (6.26) can be seen as the cost function resulting
from a relaxed optimization problem with less constraint than the initial one.
Two cases can occur:

3a. If ψ(p) < σ(p), a new iteration has to be done.The coordinator agent will use

the local solutions w(υ(p)+1)
i (k : k + Np − 1) to calculate new variable values

z(υ(p)+1)(k) and r (υ(p)+1)
n,l (k), according to Eqs. (6.19) and (6.20).

3b. In the other case, (i.e. ψ(p) ≥ σ(p)), the optimal solution of the initial problem
has been achieved. More precisely, the local optimal solution can be computed
as follows:

w�
i (k : k + Np − 1) =

υ(p)∑
s=1

v(p)
s w(s)

i (k : k + Np − 1), (6.27)

which is a convex combination of all the previous solutions done for the different
cost function.
As usual in model predictive control, only the first input of the control sequence
is brought to the system, which is u�

i (k).

6.3.5 Initialization

This point is maybe the main difficulty and drawback of the method. To initialize
the algorithm, it is necessary to provide enough different solutions to the master
problem such that it can be feasible. From a theoretical point of view, only two
different solutions are enough, but only if they are good ones …they cannot be chosen
randomly, but such that the resulting master problem is feasible. From a practical
point of view, they can be provided using engineering considerations, but also could
be the results of different local optimization done with arbitrary cost functions. But
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anyway, there exist different techniques such as the one proposed in [5] to develop
an always feasible coordinator agent problem.

6.3.6 Overview of the Procedure

From all the previous considerations, the iterative procedure of the distributed MPC
based on the Dantzig-Wolfe decomposition can be recapitulated as in Algorithm 6.1.
This algorithm will be called at each time step k.

6.3.7 A Remark on Modularity

Among the mechanisms used during the distribution procedure, it is important to
notice that each local agent only interacts with the coordinator agent but not with
other local agents. Then, adding a new subsystem implies a new local agent which
is integrated in the structure, but it only communicates with the coordinator agent
without any modification on the other agents. Moreover the complexity of the coor-
dinator optimization problem is not increasing, because it only changes the way the

coefficients z(s)(k) and r (υ(s))
n,l (k) are calculated. All these considerations ensure the

modularity of the approach.

6.4 Theoretical Results Availability

The two major advantages of this method are that:

• The global solution will be found
• It requires a finite number of iterations.

The presented methodology is very close to the Dantzig-Wolfe decomposition
procedure, which has been firstly proposed in [6]. The conditions of the convergence
is linked to the fact that at each step, all the solutions of the optimization problems
are finite, and there is no unfeasible problem.

For all the local agent, as from an optimization to the next one, only the cost
function changes, it is always possible to solve the problem and the solution is finite.
This point is ensured by the Assumption 6.1. For the coordinator agent problem, as
soon as the initialization is well tuned, the problem cannot be unfeasible anymore.
Because of Assumption 6.2, in which all the communications are supposed to be
perfect, the iterative process is then ensured to converge to the optimal solution.

All the mathematical concepts that are used to prove the convergence of the
decomposition can be found in the different following references [1, 2, 4], in which
many different analyzes have been provided.
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Algorithm 6.1 dMPC Algorithm
1: Initialization:

Step 1a: Local agent, in parallel:

• Acquisition of xi (k), yref,i(k)

• Calculation of di (k)

• Determination of N0 admissible points w(s)
i (k : k + Np − 1)

• Transmission of the data to the coordinator agent.

Step 1b: Coordination agent:

• p = 1, υ(p) = N0.

• Calculation of z(s)(k) and r (υ(s)

n,l (k) for s ∈ {1, . . . , υ(p)}
2: Iteration process: Coordinator Agent Optimization

• Solving the coordinator agent problem, to get (v(p)
s )s=1,υ(p) the solution of this problem, and

λ
(p)
n,l and σ(p) the associated optimal dual variable values.

• Calculation of the cost penalization vector for each agent, using the λ(p)
n,l values, and trans-

mission of this vector.

3: Iteration process: Local Agent Optimizations, in parallel

• Solving the local optimization problem, to get the solution w(υ(p)+1)
i (k : k + Np − 1).

• Transmission of the solution to the coordinator agent.

4: Iteration process: Coordinator agent, Convergence checking

• Calculation of ψ(p).
• Test ψ(p) < σ(p)

Case 1: YES. Then:

– Calculation of z(υ(p)+1)(k) and r (υ(p)+1)
n,l (k)

– p← p + 1, υ(p) ← υ(p) + 1
– GO BACK to Step 2.

Case 2: NO. Then:

– Send (v(p)
s )s=1,υ(p) to all the agent.

– GO TO Step 5.

5: Local Agent, Execution, in parallel

• Calculation of w�
i (k : k + Np − 1)

• Applying the first control input u�
i (k)

• END OF Procedure
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6.5 Application Results Availability

In this chapter, we propose a distributed structure to control different systems when
they are connected by global input constraints. This is the easiest case to use the
Dantzig-Wolfe decomposition. This can be extended to a more general class of sys-
tems, when there exist global constraints on the outputs or on the states. In this case,
the main difficulty is linked to the feasibility of the problem, which is not ensured
anymore if the constraints are hard one. Different methods can be used to soften
these constraints and then to use the decomposition.

In this chapter, all the systems are dynamically independent. In a more general
case, if the systems are connected by the inputs, states or outputs, the methodology
can be adapted to take into account these interactions. This can be done using nested
iterations and a communication-based algorithm, such the one proposed in [9]. The
major drawback of these nested iterations is the fact that the algorithm converges
but not to the optimal solution of the problem. Anyway, this method has been used
with success on building temperature regulation, where it has been shown that the
suboptimality is not really significant.

In a case where all the systems are connected by common input variables, the
problem can also be distributed using the dual of the Dantzig-Wolfe decomposition,
the Benders’ decomposition. This has been used to regulation temperature in building
in the multi-source case [10].

If the first applications of the method dealt with temperature regulation in buildings
[8], it also has been extended to energy management system in residential house to
develop an adjustable structure to optimize the energy bill [7].

6.6 Conclusions

In this chapter, a distributed structure has been proposed to control a collection
of linear dynamical systems coupled by linear global constraints. The particular
structure of the constraints set allows the use of the Dantzig-Wolfe decomposition to
define the control architecture. The two major advantages of this method are first the
fact that the solution found during the iteration process is the global solution. The
second one is link to the modularity induced by the control structure which allow
adding or removing subsystems in the structure without any modification for the
other local controllers. The methodology is proposed for a collection of independent
subsystems, a current direction for future works is how to generalize this method to
interconnected subsystems.
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