
Chapter 4
Price-driven Coordination for Distributed
NMPC Using a Feedback Control Law

R. Martí, D. Sarabia and C. de Prada

Abstract This chapter presents a distributed coordinated control algorithm based
on a hierarchical scheme for systems consisting of nonlinear subsystems coupled
by input constraints: the bottom layer is composed of several non-linear model pre-
dictive controllers (NMPC) working in parallel, and in a top layer, a price-driven
coordination technique is used to coordinate these controllers. The price coordina-
tion problem is formulated as a feedback control law to fulfill the global constraints
that affect all NMPC controllers. To illustrate this approach, the price-driven coor-
dination method is used to control a four-tank process in a distributed manner and is
compared with centralized and fully decentralized approaches.

4.1 Introduction

The main goal of the distributed MPC is to overcome computational and com-
munication limitations of centralized architectures. There are many approaches to
this problem, following the lines of hierarchical, distributed and price coordination:
acting on the setpoints, interchanging information or modifying the cost functions as
different ways of coordinating the actions of the distributed controllers, an excellent
review of these techniques can be seen in [9]. In particular, in price coordination,
several MPC controllers, each one acting on a subset of the process, reach a global
optimum using a market-like mechanism for coordination: each controller modifies
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the cost function that defines its control or optimization aims according to a set of
prices assigned from an upper layer, as in [5] and [4]. The advantages of this approach
are the ease of application, because it is only necessary to implement a simple coordi-
nator and to add just one extra term on the objective function. Therefore, the existing
local industrial model predictive controllers can still be used without any problem.
Several approaches based on price coordination methods have been proposed for
large-scale and networked systems, some of them being based on price coordination
methods [3, 7] and [10].

The purpose of this chapter is to show the principal ideas of the price-driven
coordination approach in the coordination of coupled dynamic subsystems and its
application in a simulation benchmark. Sections 4.2 and 4.3 show how to solve
dynamic shared resource allocation where several consumer units are fed by a com-
mon resource, implying inequality global constraints. This approach has been suc-
cessfully implemented in [8] and it will be described in the first part of Sect. 4.4. In the
second part of Sect. 4.4, the method is particularized to solve subsystems which are
coupled by interprocess streams which imply equality global constraints.

4.2 Boundary Conditions

In this section, the generic formulation of the NMPC problem for large-scale systems,
where there are some shared resources, is explained. Consider a system composed by
a set of interconnected subsystems N = {S1, S2, . . . , S|N |} where |N | corresponds
to the total number of subsystems. The associated optimization problem (4.1) implies
minimizing an objective function which can include both control and economic aims
subject to nonlinear models hi(.) and gi(.) and i ∈ N corresponding to the dynamics
and local constraints of each subsystem. On the other hand, the optimization problem
(4.1) has some global constraints related to common shared resources (see constraint
type 1 for a specific resource on Fig. 4.1).

min{u,v} J =
|N |∑

i=1

Ji (vi, ui, xi) (4.1)

s.t.

hi (ẋi, xi, vi, ui) = 0 ∀i ∈ N
gi (ẋi, xi, vi, ui) ≤ 0 ∀i ∈ N

|N |∑

i=1

r ji (u ji ) ≤ rTj ∀ j ∈ K

In this expression, K = {1, 2, 3, . . .} represents the set of shared resources and |K| is
the number of shared resources, rTj is the availability of the shared resource j , and
r ji (u ji ) represents the consumption of the shared resource j in each subsystem i ,
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Fig. 4.1 Hierarchical scheme for using price-driven coordination and subsystem interconnections.
Type 1: Shared resource constraint and type 2: interprocess stream constraints

being a function of the corresponding manipulated variable u ji . So, u ji is the use
of resource j in the plant i , and these variables can be written in a compact form
ui = [u1i , u2i , . . . , u|K|i ]. In addition, each subsystem can have its own independent
manipulated variables vi = [v1i , v2i , . . . , vnvi i ] and states xi = [x1i , x2i , . . . , xnxi i ],
where nvi and nxi are the corresponding dimension of the vectors in each subsystem i .

Now we consider (4.1) under the relaxed assumption that the objective functions
Ji (vi, ui) are not strictly increasing, then the associated Lagrangian is:

L =
|N |∑

i=1

Ji (vi, ui, xi)+
|N |∑

i=1

λi
T hi+

|N |∑

i=1

μT
i gi+

|K|∑

j=1

p j

⎛

⎝
|N |∑

i=1

r ji (u ji ) − rTj

⎞

⎠ (4.2)

For simplicity, and without loss of generality, in (4.1), we are going to consider only
the manipulated variables related to shared resources, then the Lagrangian of the
optimization problem is:

L =
|N |∑

i=1

Ji (ui, xi)+
|N |∑

i=1

λi
T hi +

|N |∑

i=1

μi
T gi +

|K|∑

j=1

p j

⎛

⎝
|N |∑

i=1

r ji (u ji ) − rTj

⎞

⎠ (4.3)

The conditions for optimality for (4.3) (which are necessary for the existence of an
optimum) are:
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∇ui Ji (ui, xi) + ∇ui h
T
i λ∗

i + ∇ui gi
Tμ∗

i +
|K|∑

j=1

drji(uji)

duji
p∗

j = 0 ∀i ∈ N (4.4)

hi(ẋi, xi, ui) = 0 ∀i ∈ N
gi(ẋi, xi, ui) ≤ 0 ∀i ∈ N

gi(ẋi, xi, ui)
T μ∗

i = 0 ∀i ∈ N
μ∗

i ≥ 0 ∀i ∈ N
|N |∑

i=1

r ji (u ji ) − rTj ≤ 0 ∀ j ∈ K

p∗
j

⎛

⎝
|N |∑

i=1

r ji (u ji ) − rTj

⎞

⎠ ≤ 0 ∀ j ∈ K

p∗
j ≥ 0 ∀ j ∈ K

Notice that, KKT conditions (4.4) are equivalent to the ones that result from solving
|N | independent optimization problems (4.5) for given Lagrangian multipliers p j ,
plus a coordinator level to fulfill the global conditions (4.6).

min{ui}
J = Ji (ui, xi) +

|K|∑

j=1

(
p j r ji (u ji )

)
(4.5)

s.t.

hi (ẋi, xi, ui) = 0

gi (ẋi, xi, ui) ≤ 0

|N |∑

i=1

r ji (u ji ) − rTj ≤ 0 ∀ j ∈ K (4.6)

p∗
j

⎛

⎝
|N |∑

i=1

r ji (u ji ) − rTj

⎞

⎠ = 0 ∀ j ∈ K

p∗
j ≥ 0∀ j ∈ K

Therefore, the principle of the price coordination method is based on assigning a
price p j to the resource j consumed in each individual subsystem i , in such a way
that each subsystem tries to optimize its objective function by accepting an amount
of the resources at a certain price such that the global constraint is satisfied. When
the price meets (4.6), then the individual optimal solutions of (4.5) are equal to the
centralized optimal solution of problem (4.1) and the sum of the local cost function
is equal to the global cost function. An extended demonstration can be seen in [5].

The mechanisms for updating the price p until it satisfies Eq. (4.6) can be consid-
ered as the coordinator (see Fig. 4.1) in price-driven approaches [3]. Different policies
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to fix p have given rise to different price-coordination methods, for instance, in [3],
the authors use a price-adjustment algorithm based on Newton’s method, in which
sensitivity analysis and active set change identification techniques are employed. In
addition, [10] uses the same technique, but in this case, Broyden’s algorithm [6],
which does not require the calculation of the Jacobian matrix, is implemented. All
these techniques use the Eq. (4.7) for updating the price, which is evaluated iteratively
each sampling time. On the other hand, in [2], the authors try to overcome the prob-
lematic of the interaction balance. For this reason, they show three algorithms based
on the theoretical aspects of the interaction balance theorem and their application to
the optimum allocation problem.

p j (k + 1) = p j (k) −
(∑|N |

i=1 dr ji (u ji )

d p j

)−1
⎛

⎝
|N |∑

i=1

r ji (u ji ) − rTj

⎞

⎠ (4.7)

Finally, the distributed coordinated control algorithm to solve (4.1) will be
explained in the next sections and is based on the following main assumptions:

1. The objective function is separable and strictly convex.
2. The nonlinear internal model is separable in several subsystems i ∈ N .
3. The global constraints are formulated in terms of manipulated variables ui and

they are written as inequality constraints (see the lower part of Fig. 4.1). This
means that the subsystems are only coupled by the inputs.

4. The local NMPC controllers solve all these dynamic optimization problems
using an SQP algorithm based on a sequential approach, where each manipu-
lated variable ui and vi is discretized using a constant parameterization. On the
other hand, the NMPC controllers are well-tunned to achieve their objectives,
obtaining a stable solution.

5. The data exchange is done once per sampling time between each NMPC con-
troller and the coordinator or coordinators following the topology shown in
Fig. 4.1. The NMPC controllers communicate the computed optimal manipu-
lated variable to an upper layer and they receive the Lagrangian multipliers or
prices.

Of particular interest are those kinds of subsystem interconnections common in
chemical processes, electric power distribution networks, water supply networks,
etc., that represent global equality constraints (see Fig. 4.1). This kind of constraints
are related to interprocess streams. For instance, one way to decompose these global
equality constraints is to apply a standard Lagrangian decomposition, but as it is
argued in [5], this technique has convergence problems because the pricing inter-
process streams are not well-defined. To overcome this problem, it is possible
to rewrite the equality constraints into shared resource constraints or inequality
constraints, and then subsystems coupled by equality constraints can be addressed
first using shared resource decomposition. How to deal with these problems and
what kind of mechanism is used for updating the price in the coordinator layer will
be explained in the next section.
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Algorithm 4.1 Price adjustment
1: Initialization: An arbitrary price p j for each shared resource is established and sends that

information to every subsystem.
2: Optimization performance: Each sampling time, based on the price provided by the coordi-

nator, each subsystem i solves its own optimization problem (4.5) using an NMPCi controller
and calculates the consumed resources r ji . This information is communicated back to the coor-
dinator.

3: Implementation of control action: The first predicted values are applied in the process.
4: Price update: The coordinators gather the information from each subsystem; it calculates∑|N |

i=1

(
r ji

)
. Then, the coordinators update the prices p j using a non-linear controller imple-

menting (4.6). In this case a PID controller (4.8) is used and the new prices are sent to each
subsystem. In the next sampling time the algorithm starts in step 2.

paux, j (s) = Kc

(
1 + 1

Ti s
+ Td s

β fd s + 1

)
E(s) wi th E(s) =

|N |∑

i=1

(
r ji (u ji ) − rTj

)
(4.8)

Ifpaux, j ≥ 0 → p j = paux, j

Ifpaux, j < 0 → p j = 0

4.3 Description of the Approach

The price-Driven Coodination NMPC scheme (PCNMPC) uses an upper layer where
the coordinator is seen as a control problem (see Fig. 4.2). A non-linear SISO
controller is defined for each common resource and gathers the value of the total
demanded resource as the sum of all r ji and compares it with the maximum rTj . If it
is below this total, the price is assigned to zero, otherwise, a control law is enforced
to maintain the total resource consumed as less than or equal to rTj using the price
p j of each shared resource as the manipulated variable.

The implementation of the PCNMPC scheme is carried out according to Algo-
rithm 4.1. The coordinator (4.8) is executed continuously along the time of the
process, but the values of u ji and p j are exchanged at each sampling time.

On the other hand, to deal with interprocess streams and use the decomposition
(4.5) it is necessary to rewrite the equality constraints in a form of a resource constraint

Fig. 4.2 Structure of price-driven resource allocation for solving shared resource constraints



4 Price-Driven Coordination for Distributed NMPC Using a Feedback Control Law 79

(4.1). For instance in Fig. 4.1, an interprocess streams u21 = u22 is equivalent to:

u21 = u22 ⇔ u21 − u22 = 0 ⇔ |u21 − u22| ≤ 0 ⇔ (u21 − u22)
2 ≤ 0 (4.9)

(u21 − u22)
2 ≤ 0 ⇔ (u21 − u22)

2
︸ ︷︷ ︸

r21()

+ (u22 − u22)
2

︸ ︷︷ ︸
r22()

≤ 0︸︷︷︸
rT2

In the last inequality of (4.9), the lefthand side can be interpreted as an aggregate
demand for common resource, and the righthand side can be interpreted as an avail-
able resource rT2 . Notice, the first term of the left hand side in this inequality depends
on a variable u21 of subsystem 1, but also on a variable u22 of subsystem 2. However,
the second term depends only on a variable of the subsystem 2. This particular way
of rewriting the interprocess stream has been chosen because it is easy to transfer to
the standard MPC controller’s cost function in order to solve the problem (4.5).

4.4 Application Results

In this section, two applications of price-driven coordination are presented. The
first one is a dynamic resource allocation problem corresponding to the problem
denominated as 1 in Fig. 4.1. Meanwhile, the second one corresponds to the problem
denominated as 2, where subsystems are coupled by interprocess streams. In addition,
the last one is compared to centralized and decentralized schemes.

4.4.1 Oxygen Supply Network. Preliminary Results

In [8], the approach showed in Algorithm 4.2 was directly applied in a simulation
of an oxygen distribution network (Fig. 4.3) which includes two oxygen generators
(P1 and P2): each of them produces oxygen, which are the shared resources rT1 and
rT2 , at different purities, capacities and production costs (rT1 is cheaper than rT2 ).
There are also two different collectors in charge of driving the oxygen from each
generator to each consumer unit (C1, C2 and C3). Every consumer unit is a chemical
reactor where a reaction that consumes oxygen takes place, where the manipulated
variables are the feed flows from both collectors and the controlled variable is the
concentration of dissolved oxygen. In addition, each one has a NMPC controller to
maintain a certain level of dissolved oxygen minimizing, at the same time, operational
costs. This implies that each NMPC tries to use only the cheapest resource. On the
other hand, three kinds of laws for updating prices have been implemented: market
policy, PI and PID controllers.

The solid line in the upper picture of Fig. 4.4 shows the availability of the resource,
which is the total production of resource rT1 . In the same picture, each dashed line
corresponds to the needed oxygen demand (

∑3
i=1 r1i (u1i )) by all NMPC controllers



80 R. Martí et al.

Algorithm 4.2 Price-driven coordination approach
1: Initialization: An initial price p j for each interprocess stream is established and sends that

information to every subsystem.
2: Optimization performance: Every sampling time, NMPC1 and NMPC2 gather the measured

variables and solve independently the following optimization problems, based on the prices p1
and p2 provided by the coordinators:

min{
qA1(0), . . . , qA1(Nc − 1)
qB1(0), . . . , qB1(Nc − 1)

} J1 =
Np l∫

t=0

(h1(t) − h1ref (t))
2 dt (4.10)

+
Nc−1∑

k=0

(
p1 (�qA1(k))2

)
+

Nc−1∑

k=0

(
p2 (�qB1(k))2

)

s.t.

Equations (4.10, 4.12) model subsystem 1

h j min ≤ h j (t) ≤ h j max ∀ j ∈ {1, 3} t ∈ [0, Np]
qmin ≤ qi,1(k) ≤ qi,max ∀i ∈ {A, B} k = 0, . . . , Nc − 1

qi1(k) = qi1(Nc − 1) ∀i ∈ {A, B} k = Nc, . . . , Np − 1

�qi1(k) = qi1(k) − qi1(k − 1) ∀i ∈ {A, B} k = 0, . . . , Nc − 1

qA1(−1) = q∗
A2, qB1(−1) = q∗

B1

min{
qA2(0), . . . , qA2(Nc − 1)
qB2(0), . . . , qB2(Nc − 1)

} J2 =
Np l∫

t=0

(h2(t) − h2ref (t))
2 dt (4.11)

+
Nc−1∑

k=0

(
p1 (�qA2(k))2

)
+

Nc−1∑

k=0

(
p2 (�qB2(k))2

)

s.t.

Equations (4.11, 4.13) model subsystem 2

h j min ≤ h j (t) ≤ h j max ∀ j ∈ {1, 3} t ∈ [0, Np]
qmin ≤ qi,2(k) ≤ qi,max ∀i ∈ {A, B} k = 0, . . . , Nc − 1

qi2(k) = qi2(Nc − 1) ∀i ∈ {A, B} k = Nc, . . . , Np − 1

�qi2(k) = qi2(k) − qi2(k − 1) ∀i ∈ {A, B} k = 0, . . . , Nc − 1

qA2(−1) = q∗
A2, qB2(−1) = q∗

B1

3: Solution implementation:The first predicted value qA2(0) and qB1(0) are applied in the process.
4: Price update: The excess or lack of the resources is used for updating price (p1 and p2), using

a PID controller law (4.8). In the next sampling time the algorithm starts in step 2.

for the same resource using different price-adjustment policies. The optimal solution,
from the point of view of the centralized approach, is to use as much cheap resource as
possible. This solution is addressed in a distributed price-coordination scheme when
the optimal price is achieved (see lower picture of Fig. 4.4). Therefore, an affective
coordination of all NMPC controllers has been obtained. In [8] it can be seen how this
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Fig. 4.3 The oxygen benchmark process diagram

Fig. 4.4 Dynamic resource allocation results and price evolution

optimal solution cannot be achieved with a fully decentralized architecture. Notice,
during the transition of the prices, the resource constraints are not fulfilled, but when
the steady state is achieved, then the optimal allocation of the resource is equal to
the allocation achieved using the centralized scheme.



82 R. Martí et al.

Fig. 4.5 The four-tank
process diagram

4.4.2 Four-Tank Benchmark

The plant chosen (Fig. 4.5) is based on the one used by Alvarado et al. in [1]. It
consists of four tanks interconnected in such a way that the flow qA fills tanks 1 and
4, whereas flow qB fills tanks 2 and 3. On the other hand, tank 3 empties its content
into tank 1, and tank 4 does the same into tank 2. So, two manipulated variables
qA and qB are available to control two variables h1 and h2. In order to compare the
price-driven coordination approach with other schemes such as the distributed MPC
ones presented in [1], the same conditions, the same tracking experiment (references
change in the levels of tank 1 and 2) and the same performance index Jper has been
used. The model is given by the following differential equations:

Sdh1/dt = −a1
√

2gh1 + a3
√

2gh3 + γaqA (4.12)

Sdh2/dt = −a2
√

2gh2 + a4
√

2gh4 + γaqB (4.13)

Sdh3/dt = −a3
√

2gh3 + (1 − γb)qB (4.14)

Sdh4/dt = −a4
√

2gh4 + (1 − γa)qA (4.15)

where hi and ai are the water level and the constant discharge of tank i ∈ {1, 2, 3, 4},
S is the cross section of the tanks, q j and γ j denote the flow and the ratio of the
three-way valve of pump j ∈ {A, B}, and g is the gravitational acceleration.
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4.4.3 Price Coordination Non-Linear Model Predictive Control

The plant is split into two subsystems: subsystem 1 includes tank 1 and tank 3, while
subsystem 2 comprises tanks 2 and 4, as indicated in Fig. 4.5. One NMPC controller
is assigned to each subsystem, but both of them are able to manipulate flows qA and
qB , denoting as qA1, qB1 or qA2, qB2 the ones seen by each controller. This means
that two global constraints related to interprocessing streams have to be satisfied;
qA1 = qA2 and qB1 = qB2. So, it is necessary to rewrite these equality constraints
in the form of a resource constraint (4.1) as follows:

qA1 = qA2 ⇔ qA1 − qA2 = 0 ⇔ |qA1 − qA2| ≤ 0 ⇔ (qA1 − qA2)
2 ≤ 0 (4.16)

(qA1 − qA2)
2 ≤ 0 ⇔ (qA1 − qA2)

2
︸ ︷︷ ︸

r11()

+ (qA2 − qA2)
2

︸ ︷︷ ︸
r12()

≤ 0︸︷︷︸
rT1

qB1 = qB2 ⇔ qB1 − qB2 = 0 ⇔ |qB1 − qB2| ≤ 0 ⇔ (qB1 − qB2)
2 ≤ 0 (4.17)

(qB1 − qB2)
2 ≤ 0 ⇔ (qB1 − qB1)

2
︸ ︷︷ ︸

r21()

+ (qB1 − qB2)
2

︸ ︷︷ ︸
r22()

≤ 0︸︷︷︸
rT2

The price coordinated optimization problem is then composed of two layers: In the
lower one, two separate NMPC; NMPC1 (4.17) and NMPC2 (4.18), perform the
control level of the corresponding subsystem. The first one, NMPC1, manipulates
the variables qA1 and qB1, and the second one, NMPC2, manipulates qA2 and qB2. In
the upper coordinating layer, two controllers assign prices p1 and p2 to the NMPCs,
as in Fig. 4.6. Then, the term p1r11 is added to NMPC1’s cost function, while the term
p1r12 is added to NMPC2’s cost function. Similar terms are added for the second
resource.

Two SISO PID controllers are used for updating the prices, selecting one of the
equivalent statements in equations (4.16) and (4.17). The controlled variable is the
absolute difference between the flows demanded, which are the solutions obtained by
each NMPC controller in the previous sampling time

∣∣q∗
A1 − q∗

A2

∣∣ or
∣∣q∗

B1 − q∗
B2

∣∣.
The setpoints correspond to the total shared resource available (which is equal to
zero because it is an interprocess stream), and the manipulated variables are the
prices that are communicated to every NMPC controller in order to modify their
cost functions. This means that, when the optimal prices are found, then the global
equality constraints qA1 = qA2 and qB1 = qB2 are satisfied.

Notice that the first NMPC computes qA1 and qB1, and the second one computes
qA2 and qB2, but only a single qA and qB can be applied physically to the process.
The coordination layer changes the prices p1 and p2 to equate them, but perfect
equality cannot be guaranteed at every sampling time. So, an implementation policy
must be designed. For this purpose, the relative gain array (RGA) of the process can
be computed as in [1]. The RGA, calculated from the linearized process modelat
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Fig. 4.6 Coordination feedback control scheme using a SISO controller for each interprocess
stream

steady state, is the following one:

RG A =
⎛

⎝
qA qB

−0.4 1.38 h1
1.38 −0.4 h2

⎞

⎠ (4.18)

This matrix indicates that, for subsystem 1 (tanks 1 and 3) level h1 should be con-
trolled with qB , and for subsystem 2 (tanks 2 and 4), h2 should be controlled with
qB . Then, the implemented flow qA is the solution obtained by NMPC2 (q∗

A2) and
the implemented flow qB is the solution obtained by NMPC1 (q∗

B1).
For both NMPC controllers, the cost function in (4.17) and (4.18) includes penalty

terms in manipulated variables in order to penalize excessive control changes, i.e.
�qA1(k) = qA1(k) − qA1(k − 1), the first term of this sequence being (k = 0)
�qA1(0) = qA1(0) − qA1(−1). However, qA1(k − 1) is the implemented solution
in the process for the flow qA, that is, the solution obtained by NMPC2 (q∗

A2). In
this way, the first term of the sequence is �qA1(0) = qA1(0) − q∗

A2, corresponding
just with the term r11 in (4.16), qA1 is a decision variable of the controller NMPC1,
but q∗

A2 is data read from the process. A similar penalty term is included in the
cost function of the NMPC2: �qA2(k) = qA2(k) − qA2(k − 1) and for k = 0,
�qA2(0) = qA2(0) − qA2(−1) = qA2(0) − q∗

A2, where qA2 is a decision variable of
the controller NMPC2, and q∗

A2 is the solution obtained before for this same controller,
being equivalent to the term r12 of Eq. (4.16). In this way, and during the process
time, the individual different flow solutions for the same stream are penalized.

The results which have been obtained using the PCNMPC are shown in Fig. 4.7 and
they illustrate the fact that the scheme can fulfill all the global constraints and achieve
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Fig. 4.7 Manipulated and controlled variables using a price-driven coordination method

Fig. 4.8 Evolution of the interprocess stream flow and prices

a good tracking of the different setpoints, the performance index being Jper = 32.4.
The lower picture in Fig. 4.8 shows the evolution of the prices, i.e. when the price of
qA achieves an optimal steady value, because Eq. 4.6 is met, (4.6), then both flows,
qA1 calculated by NMPC1 and qA2 calculated by NMPC2, are equal,which means
that an effective coordination of both controllers has been achieved (see also the
upper pictures in Fig. 4.8). Local solutions of each NMPC controller are the optimal
solution of the optimization of the entire process, but of course, during the transient
equality constraints are not satisfied.
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4.4.4 Comparative Test with Centralized and Decentralized
Schemes

The centralized NMPC architecture implies solving a global optimization problem
by taking into account the complete nonlinear model of the process, qA and qB being
the manipulated variables. The results are shown in Fig. 4.9 and the performance
index was Jper = 23.83.

The decentralized non-linear model predictive architecture involves using two
independent NMPC controllers. Subsystem 1 is controlled by NMPC controller 1,
where qB is the manipulated variable and qA is treated as a measured disturbance.
On the other hand, subsystem 2 is controlled by NMPC controller 2, where qA is
the manipulated variable and qB is treated as a measured disturbance. The pairing
between manipulated and controlled variables has been done using RGA analysis
(4.16). In this architecture, there is no kind of communication between controllers
and the results are shown in Fig. 4.10. The performance index Jper = 34.63 was
the worst of all approaches, the value of the offset between setpoint and controlled
variable in subsystem 2 being significantly.

The results show that this technique achieves the same steady state solution which
has been obtained using the centralized approach. They also match the optimal ana-
lytic steady state (see Table 4.1), so a correct decomposition of the global dynamical
problem has been achieved. In addition, all control objectives are satisfied, but the
response is slower than the centralized architecture compare the controlled variables
in Fig. 4.7 with the controlled ones in Fig. 4.9. This effect can seen in the performance
indexes which are different (see Table 4.1).

Fig. 4.9 Manipulated and controlled variables using a centralized NMPC scheme
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Fig. 4.10 Manipulated and controlled variables using a decentralized NMPC scheme

Table 4.1 Steady state achieved by the different approaches

Time(h) Steady state Centralized scheme Decentralized scheme Price-driven coordination
qs

A qs
B qA qB qA qB qA qB

[0 − 0.84] 1.55 1.93 1.55 1.93 1.63 1.89 1.55 1.93
[0.84 − 1.67] 1.09 1.36 1.09 1.36 1.12 1.34 1.09 1.36
[1.67 − 2.5] 1.74 1.60 1.74 1.60 1.65 1.65 1.74 1.60
[2.5 − 3.34] 1.06 2.78 1.06 2.78 1.12 2.75 1.06 2.78

Jper 23.83 34.63 32.40

4.5 Conclusions

In this chapter, a method has been developed to coordinate several NMPC controllers
working in parallel in a price-driven scheme. Each NMPC controls a subsystem
being all subsystems coupled by the manipulated variables and the coordinator is
formulated as a control problem, that uses the prices as manipulated variables and
try to fulfill (4.6) as target. This method presents several advantages. It is easy to
implement in existing MPC industrial controllers and less data interchange is needed
to coordinate the NMPC controllers. Moreover, if a PID controller is used inside the
non-linear controller, to find the optimal price, it is possible to determine, in a well
known way, the behavior of the fulfillment of the global constraints in terms of the
tuning parameters of that PID.
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