
Chapter 3
Cooperative Tube-based Distributed MPC
for Linear Uncertain Systems Coupled Via
Constraints

P. A. Trodden and A. G. Richards

Abstract This chapter presents a robust form of distributed model predictive con-
trol for multiple, dynamically decoupled subsystems subject to bounded, persistent
disturbances. Control agents make decisions locally and exchange plans; satisfaction
of coupling constraints is ensured by permitting only non-coupled subsystems to up-
date simultaneously. Robustness to disturbances is achieved by use of the tube MPC
concept, in which a local control agent designs a tube, rather than a trajectory, for its
subsystem to follow. Cooperation between agents is promoted by a local agent, in
its optimization, designing hypothetical tubes for other subsystems, and trading lo-
cal performance for global. Uniquely, robust feasibility and stability are maintained
without the need for negotiation or bargaining between agents.

3.1 Introduction

This chapter presents a distributed form of MPC for systems defined by the fol-
lowing characteristics: the overall system is composed of, or may be decomposed
to, a number of dynamically decoupled subsystems. Each has linear, time-invariant
dynamics, and is subject to local constraints and persistent, bounded disturbances.
The subsystems are coupled via constraints, and should coordinate decision-making
to satisfy these constraints robustly and also to minimize some system-wide cost.

In the described approach, the distributed control agents exchange plans to achieve
constraint satisfaction. Key features are that (i) coupled subsystems may not update

P. A. Trodden (B)

Department of Automatic Control and Systems Engineering, University of Sheffield,
Sheffield, UK
e-mail: p.trodden@sheffield.ac.uk

A. G. Richards
Department of Aerospace Engineering, University of Bristol, Bristol, UK
e-mail: arthur.richards@bris.ac.uk

J. M. Maestre and R. R. Negenborn (eds.), Distributed Model Predictive Control 57
Made Easy, Intelligent Systems, Control and Automation: Science and Engineering 69,
DOI: 10.1007/978-94-007-7006-5_3, © Springer Science+Business Media Dordrecht 2014



58 P. A. Trodden and A. G. Richards

their plans simultaneously; (ii) robust stability is guaranteed for any choice of update
sequence; (iii) an agent communicates only when strictly necessary, and (iv) cooper-
ation between agents is promoted by a local agent considering the objectives of, and
designing hypothetical plans for, other subsystems. The resulting algorithm offers
flexibility in communication and computation, and requires no inter-agent negotia-
tion, iteration or bargaining.

The approach, which first appeared in its non-cooperative form [10], uses the
concept of tube MPC [6], a form of robust MPC that guarantees feasibility and
stability despite the action of an unknown but bounded disturbance. The approach
shares similarities with the ‘sequential’ DMPC method of Richards and How [7], in
that robust feasibility and stability of the overall system is guaranteed by local agents
updating plans one at a time, without negotiation. However, tube DMPC permits a
flexible order of updating, in contrast to a fixed, pre-determined sequence. Thus, this
approach combines guaranteed robust feasibility and convergence, in the presence
of a persistent disturbance, with flexible communication.

In the cooperative form of the algorithm [11], a local agent designs not only its own
tube, but also hypothetical tubes for other subsystems in the problem. The idea is that
an agent may now consider the objectives and intentions of others in order to arrive at
a more cooperative solution. Here, cooperation is taken to mean the improvement of
system-wide performance through the avoidance of greedy behaviour by individual
agents. Coupled constraint satisfaction is, however, maintained without the need
for inter-agent negotiation or bargaining. In comparison, approaches to cooperation
based on inter-agent iteration or bargaining [4, 8, 15], require multiple and repeated
information exchanges at each time step in order to achieve constraint satisfaction
and stability. Thus, the approach combines robust satisfaction of coupled constraints
with cooperation. Overall, cooperation offers performance close to that of centralized
MPC but with less computation and communication.

The chapter begins with a formal statement of the problem. In Sect. 3.3, the distrib-
uted MPC approach is described, including local optimization problems, algorithms
and communication requirements. Theoretical results are summarized in Sect. 3.4.
Finally, Sect. 3.5 discusses applications of the approach.

3.2 Problem Statement

The system under consideration consists of a set N of dynamically decoupled sub-
systems. Subsystem dynamics are linear and time invariant (LTI):

xi (k + 1) = Ai xi (k) + Bi ui (k) + di (k), ∀i ∈ N , k ∈ N.

For a subsystem i , xi ∈ R
nxi , ui ∈ R

nui and di ∈ R
nxi are, respectively, the state,

control input and disturbance. The latter is unknown a priori, but is assumed to lie in
a known independent, bounded, compact set that contains the origin in its interior:
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di (k) ∈ Di ⊂ R
nxi , ∀i ∈ N , k ∈ N.

Each subsystem i ∈ N is subject to local constraints on an output yi ∈ R
nyi :

yi (k) = Ci xi (k) + Di ui (k) ∈ Yi ,

where Yi ⊂ R
nyi is closed and contains the origin in its interior. The subsystems are

coupled via constraints, constructed as follows. Define a coupling output zci ∈ R
nzc

for a constraint c ∈ C and a subsystem i ∈ N . The sum of coupling outputs for a
constraint c must lie in a closed set Zc that contains the origin:

zci (k) = Eci xi (k) + Fci ui (k), and
∑

i∈N
zci (k) ∈ Zc.

The following definitions identify structure in these coupling constraints, and are
used later in the requirements for communication. Let Nc be the set of subsystems
involved in constraint c, and Ci the set of constraints involving subsystem i :

Nc �
{
i ∈ N : [Eci Fci ] �= 0}, (3.1)

Ci �
{
c ∈ C : [Eci Fci ] �= 0}. (3.2)

Then the set of all other subsystems coupled to a subsystem i is

Qi =
(⋃

c∈Ci

Nc

)
\ {i}. (3.3)

The control objective is, without loss of generality, to steer each subsystem state
xi to the origin, while satisfying constraints. To this end, assume that each (Ai , Bi )

is controllable, and that the state xi is available to the control agent for subsystem i
at each sampling instant. Define Ki ∈ R

nui ×nxi as a stabilizing controller for each
i ∈ N , let Ri be a disturbance-invariant set [3] for the resulting controlled system.
That is, (Ai + Bi Ki )xi + di ∈ Ri for all xi ∈ Ri and di ∈ Di ; equivalently, (Ai +
Bi Ki )Ri ⊕Di ⊆ Ri . It is assumed that the disturbance sets Di are sufficiently small
such that (Ci + Di Ki )Ri ⊂ interior(Yi ),∀i ∈ N , and

⊕
i∈N (Eci + Fci Kci )Ri ⊂

interior(Zc),∀c ∈ C. This latter assumption is not unusual and represents a mild
condition for many practical constraints and disturbances.

3.3 Distributed MPC Using Tubes

Tube MPC was introduced by Mayne et al. in [6]. Instead of optimizing a sequence of
states, i.e. points in the state space, it optimizes for a tube, or a sequence of sets, within
the state space. Drawing on invariance concepts, one can prove that once in the tube,
the system state can stay in the tube despite the disturbance. A consequence of this is
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that the initial centre of the tube is variable. One can envisage this as the problem of
catching a speck of dust with a vacuum cleaner: the centre of the hose can be placed
anywhere, provided the speck is within the hose opening. The internal dynamics of
the hose will then get the dust to the bag, without having to move the hose further.
It is this invariance that makes the tube approach so attractive for DMPC: if each
subsystem has a tube that is invariant under local control, the tube does not need to be
updated to accommodate the disturbance. Hence, communication is necessary only
when an agent chooses to change the tube. Coupling can be captured by ensuring
that the tubes are consistent across the system.

This section begins with a review of centralized tube MPC, also serving to intro-
duce the relevant notation. Then two different forms of the distributed approach are
described: one that leads to a non-cooperative form of DMPC, and a second that uses
a conceptual extension to promote cooperation between agents.

3.3.1 Review of Centralized Tube MPC

The tube MPC approach [6] uses the nominal system dynamics to design a sequence
of disturbance-invariant state sets. The decision variable includes not only the control
sequence for each subsystem i , ūi (k : k + Np −1) �

[
ūT

i (k), ūT
i (k +1), . . . , ūT

i (k +
N − 1)

]T, but also the initial state predictions, x̄i (k) for all i , which correspond to
the tube centres. As the optimization involves only nominal terms, complexity is
comparable to standard MPC. Robustness to disturbances is guaranteed by use of a
feedback law to keep the state of each subsystem around its tube centre.

For the system state
{
xi (k)

}
i∈N , the centralized optimal control problem is

min{x̄i (k),ūi (k:k+Np−1)}i∈N

∑

i∈N
Ji

(
x̄i (k), ūi (k : k + Np − 1)

)
(3.4)

subject to, ∀l ∈ {1, . . . , Np − 1}, i ∈ N ,

x̄i (k + l + 1) = Ai x̄i (k + l) + Bi ūi (k + l), (3.5a)

ȳi (k + l) = Ci x̄i (k + l) + Di ūi (k + l), (3.5b)

z̄ci (k + l) = Eci x̄i (k + l) + Fci ūi (k + l),∀c ∈ C, (3.5c)

xi (k) − x̄i (k) ∈ Ri , (3.5d)

x̄i (k + Np) ∈ X f
i , (3.5e)

ȳi (k + l) ∈ Ỹi , (3.5f)
∑

i∈N
z̄ci (k + l) ∈ Z̃c,∀c ∈ C. (3.5g)

Here, the local cost function for each subsystem is
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Ji
(
x̄i (k), ūi (k : k+Np−1)

) = Fi
(
x̄i (k+N )

)+
Np−1∑

l=0

Li
(
x̄i (k+l), ūi (k+l)

)
, (3.6)

where the stage cost Li : R
nxi × R

nui �→ R0+, and Fi : R
nx p �→ R0+ is a terminal

cost.
The constraint sets in the problem, Ỹi , Z̃c are tightened versions of the original

sets, in order to provide a margin for uncertainty:

Ỹi = Yi ∼ (Ci + Di Ki )Ri ,∀i ∈ N , (3.7a)

Z̃c = Zi ∼
⊕

i∈N
(Eci + Fci Ki )Ri ,∀c ∈ C. (3.7b)

The sets Ri are the cross-sections of the tubes, and satisfy the assumptions in the
previous section; the tube itself is given by

{
x̄i (k)⊕Ri , . . . , x̄i (k + Np)⊕Ri

}
for a

subsystem i . The tightening is necessary to accommodate the tube approach: instead
of dealing with the exact output values, the constraints act upon the centres of the
tubes, and the actual outputs could be anywhere within the cross-section.

The sets X f
i for all i ∈ N are terminal constraint sets, and each is assumed to be

an admissible control invariant set [3]. That is, there is assumed to exist a control
law ui = κ f

i (xi ) such that, for all xi ∈ X f
i ,

Ai xi + Biκ
f
i (xi ) ∈ X f

i , (3.8a)

Ci xi + Diκ
f
i (xi ) ∈ Ỹi , (3.8b)

∑

i∈N
Eci xi + Fciκ

f
i (xi ) ∈ Z̃c, ∀c ∈ C. (3.8c)

It is often assumed that κ f
i (xi ) = Ki xi , but this is not necessary, and an alternative

choice of κ f
i may simplify the determination of the sets X f

i . Here, we leave the
problem in its most flexible form, and the reader is referred to the examples cited in
Sect. 3.5 for further options.

Assuming that a feasible solution,
{
x̄∗

i (k), ū∗
i (k : k + Np − 1)

}
i∈N , is available

to this problem at time k, the following control is applied to each subsystem

ui (k) = ū∗
i (k) + Ki

(
xi (k) − x̄∗

i (k)
)
. (3.9)

The resulting controlled system, under the assumptions described, is recursively
feasible, despite the actions of the persistent disturbances [6]. This is because, given
a feasible solution

{
x̄∗

i (k), ū∗
i (k : k + Np −1)

}
i∈N for time k, the candidate or “tail”

solution
{
x̄∗

i (k + 1), ū∗
i (k + 1 : k + Np)

}
i∈N , where
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x̄∗
i (k + 1) = Ai x̄∗

i (k) + Bi ū∗
i (k), (3.10a)

ū∗
i (k + 1 : k + Np) =

[
ū∗T

i (k + 1), . . . , ū∗T
i (k + Np − 1), κ f

i (x̄
∗
i (k + Np))

T
]T

,

(3.10b)

is a feasible solution to the centralized problem at k + 1. Furthermore, with stan-
dard assumptions [5] on the stage and terminal costs, asymptotic or exponential
convergence of the states of the system to the sets Ri is guaranteed [6].

In the sequel, let Ui (k) = {
x̄i (k), ūi (k : k + Np −1)

}
. U∗

i (k) is a feasible solution
for step k, and Ũi (k+1) denotes the candidate solution for k+1, as formed by (3.10).

3.3.2 Distributed Tube MPC

In the distributed MPC approach described in the remainder of this section, the cen-
tralized problem is distributed among the subsystem control agents as local optimiza-
tion problems. In order to maintain coupled constraint satisfaction, only a subset of
agents solve their optimizations for a new plan. Meanwhile, the other agents ‘freeze’
their plans by adopting the tail solution (3.10) unchanged.

In the non-cooperative form, a control agent for subsystem i minimizes only its
local share of the system-wide cost (3.4), which is Ji , as defined by (3.6). The local
optimization problem, Pdmpc

i

(
xi (k), Z∗

i (k)
)
, for i is

min
Ui (k)

Ji
(
Ui (k)

)
(3.11)

subject to local constraints (3.5a)–(3.5f) for i , and the coupling constraint

z̄ci (k + l) +
∑

j∈Nc\{i}
z̄∗

cj (k + l) ∈ Z̃c,∀l ∈ {1, . . . , Np − 1}, c ∈ Ci . (3.12)

where ∗ denotes a fixed, previously published output of a coupled subsystem. Z∗
i (k)

denotes the aggregate information required by i to evaluate the coupling constraints.
The optimization is employed in Algorithm 3.1, to be executed by all agents in

parallel.
Though the algorithm is executed by all agents in parallel, only agents in a set

Nk ⊆ N are permitted to update by optimization at a step k. All other agents j /∈ Nk

renew their current plans, as per (3.10), each by shifting in time the tail of its previous,
feasible plan and augmenting with a step of terminal control.

Having obtained a plan U∗(k) at step k, by either optimization or renewal, each
agent unilaterally applies the first control of the planned sequence. No negotiation
or iterative refinement of solutions takes place during a time step.

The order in which the subsystems’ plans are optimized is determined by the
update sequence, {N1, . . . ,Nk,Nk+1, . . .}. This is to be chosen by the designer,
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Algorithm 3.1 Distributed MPC for a subsystem i

1: Wait for an initial feasible plan U∗
i (0) = {

x̄∗
i (0), ū∗

i (0 : Np − 1)
}

and information, including
Z∗

i (0). Set k = 0.
2: Apply control ui (k) = ū∗

i (k) + Ki
(
xi (k) − x̄∗

i (k)
)
. Wait one time step, increment k.

3: Measure state xi (k).
4: Update plan. If i ∈ Nk ,

1. Propagate intentions of other agents, z̄∗
cj (·), to the current planning horizon.

2. Obtain new plan Uopt
i (k) by solving the local problem Pdmpc

i (k).

3. Set U∗
i (k) = Uopt

i (k).
4. If necessary, transmit new information to other agents.

Else, renew existing plan: form Ũi (k) according to (3.10) and set U∗
i (k) = Ũi (k).

5: Go to step 2.

and may be a static (i.e., pre-determined) or dynamic sequence. For a particular time
step k, the only criterion for the selection of the updating set of agents, Nk , is that
no two optimizing subsystems may share coupled constraints. That is, (i, j) ∈ Nk

only if j /∈ Qi . In the limiting case of coupling between all pairs of subsystems, this
reduces the maximum size of Nk to a single agent. Note, in addition, that the empty
set is always a valid choice for Nk , such that no optimization is solved at a time k.

3.3.2.1 Initialization of DMPC

It is assumed that all of the local subsystem information required to formulate the
local problem is made available off-line to agent i .

Requirement 3.1 [Local subsystem information] The matrices Ai , Bi , Ci , Di , Eci ,
Fci ,∀c ∈ Ci , stabilizing controllers Ki and κ f

i , sets Ri , X f
i , Ỹi , Z̃c,∀c ∈ Ci , and

cost function Ji shall be available to the control agent for subsystem i.

The computation of Ki , κ f
i , Ri and X f

i —as well as the tightening of sets according
to (3.7)—need be done only once, off-line, at initialization. It is assumed that this is
done centrally, with the results communicated to agents.

Also, since each agent needs to be able to deduce its neighbors’ current intentions
based on their last published plans, information is required on the dynamics and
constraints of those neighbours:

Requirement 3.2 [Coupled subsystem information] The matrices A j , B j , Ecj , Fcj ,

∀c ∈ Ci and terminal controller κ f
i shall be available to the control agent for sub-

system i for each coupled subsystem j ∈ Qi .

Finally, it is required that a feasible initial plan is available to each control agent.

Requirement 3.3 [Initial plan] A feasible local plan U∗
i (0) shall be available to

the control agent for subsystem i at time k = 0.
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This is a common assumption of many DMPC approaches (e.g. [1, 7]). Note that
this does not imply that the centralized problem must be solved to optimality; often
a simple feasible solution is available, such as all subsystems remaining stationary.
No further centralized processing is required after this initialization step.

3.3.2.2 Inter-agent Communication

An updating agent i ∈ Nk must have received sufficient information from each
coupled agent j ∈ Qi so as to enforce constraints (3.12). Specifically, this requires
the construction of signals z̄∗

cj (k + l) ∀l ∈ {1, . . . , Np − 1},∀ j ∈ Nc, c ∈ Ci .
It is not necessary to obtain the whole plan U∗

j (k) from some coupled j ∈ Qi .
Instead, define a message vector for subsystem i regarding constraint c at time k as

mci (k) �
[
z̄∗T

ci (k) . . . z̄∗T
ci (k + Np − 1) x̄∗T

i (k + Np)
]T

, (3.13)

which includes the terminal state, and where ∗ denotes a feasible solution.
Put simply, each updating agent must have the latest information available about

every other coupled agent. More formally:

Requirement 3.4 [Information exchange] Consider any two coupled agents i and
j ∈ Qi and any two time steps ki and k j > ki such that i ∈ Nki and j ∈ Nk j ,
i.e. agents i and j updated at times ki and k j respectively. Then message mci (k) for
every coupling constraint c ∈ Ci

⋂ C j must have been sent from i to j at least once
during time steps k ∈ [ki , k j ].

A sufficient means of achieving this is for an agent i ∈ Nk , following update, to
transmit mci (k) regarding constraints c ∈ Ci

⋂ C j to each agent j ∈ Q j .
Note that information in mcj (k) may be “out of date” if sent at an earlier time, in

the sense that it may not include outputs for all times in the current planning horizon.
However, since it is required that coupled agents must adopt their tail plans unless
publishing otherwise, plans for others can be brought up to date by the propagation
step 4.1 in Algorithm 3.1. The knowledge of others’ dynamics from Requirement 3.2
and the inclusion of the terminal state x̄∗

i (k + Np) in the message mcj (k) ensures
that this can be done.

Minimal communication strategies vary significantly with different update
sequences. The reader is referred to [14] for a full formal coverage of both com-
munication and propagation mathematics.

3.3.3 Cooperative DMPC

A shortcoming of the method described in the previous section, and of many DMPC
methods, is that ‘greedy’ local decision making can lead to poor system-wide
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performance [15]. Even if the dynamics and objectives are decoupled, the closed-loop
performance of subsystems coupled via the constraints is coupled. Consequently,
the solutions applied by agents can be severely sub-optimal—even with inter-agent
iteration—and hence cooperation is required to obtain good performance.

A logical approach to promoting cooperation is for distributed control agents to
consider, in addition to their own objectives, the objectives or intentions of other
agents in the system. To help illustrate this meaning of cooperation, consider an
analogy of driving in a long congested stream of traffic. From our car, we observe
another car waiting to turn on to our road. Considering only our local objective, we
wish to get to our destination as quickly as possible, and we are not constrained to
give way to the waiting car, so we continue. However, we could consider the objective
of the waiting car as well as our own. A small sacrifice of our objective—the time
to let the waiting car pull out—saves a long wait for the other car, and hence an
improvement of the global objective. We don’t need to instruct the other car to pull
out though: merely by slowing to create the opportunity, it is natural for them to take
it. This is the key to cooperation: considering the objectives of others can improve
global performance without increasing communication requirements. Cooperative
control could also be thought of as “considerate control”.

This approach to cooperation has been shown to work well for subsystems coupled
only via dynamics or objectives. However, it is generally incompatible with maintain-
ing coupled constraint satisfaction. For example, in the method of [2] a local control
agent designs, in addition to its own plan, hypothetical plans for directly-coupled
subsystems. That is, the local problem for subsystem i is

min
Ui (k),Ûi

j (k), j∈Qi

Ji
(
Ui (k)

) +
∑

j∈Qi

J j
(
Ûi

j (k)
)

subject to (3.5a)–(3.5f) on Ui (k), similar local constraints on each Ûi
j (k), j ∈ Qi ,

and the coupling constraints

z̄ci (k + l) +
∑

j∈Nc\{i}
ẑi

cj (k + l), ∀c ∈ Ci , l ∈ {1, . . . , Np − 1},

where {·}i
j denotes a variable for an agent j that has been computed by agent i .

A crucial detail is that various representations of a plan for a subsystem i might
exist at any instance. Firstly, a subsystem j ∈ N has the plan U∗

j (k) for time k, which
it is currently following. In addition, an i ∈ Q j has, as part of its own decision-
making process, designed a hypothetical plan Ûi

j (k) for j that is not necessarily
equal to U∗

j (k). In doing so, it has ensured satisfaction of the coupling constraints by

its optimized, local plan Uopt
i (k) when taken together with the plans Ûi

j (k), j ∈ Qi .

However, satisfaction of the constraints by Uopt
i (k) together with the actual plans

U∗
j (k), j ∈ Qi —and therefore feasibility of the overall, closed-loop system—is not

assured, even if only a single agent updates at a time step.
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In the approach described in this section, a local agent i designs hypothetical plans
for others, yet now this set of other subsystems is an arbitrary cooperating set Si (k).
The local problem is to minimize a weighted sum of local costs by designing a local
plan Ui (k) and a hypothetical plan Ûi

j (k) for each j ∈ Si (k). The problem is solved

subject to local constraints on Ui (k) and each Ûi
j (k), and coupling constraints on

Ui (k) together with (i) fixed U∗
j (k) for all coupled j ∈ Qi and (ii) the hypothetical

plans Ûi
j (k) for all j ∈ Si and the fixed plans U∗

m(k) for all coupled m ∈ Qi \ Si .

The additional decision variables
{
Ûi

j (k)
}

are internal to agent i’s decision making
and will not be communicated to other agents. Following the optimization, i com-
municates information about only its own plan, Uopt

i (k), as before. Moreover, there
is no obligation for a cooperating subsystem j ∈ Si to itself optimize at the next
step or indeed ever adopt the plan Ûi

j (k). The main point is that the an agent i , in
determining its own plan, considers what others may be able to achieve.

The presence of two sets of coupling constraints in the optimization is crucial in
the development here. Effectively, two different representations of a plan for a coop-
erating subsystem j ∈ Si appear in the local optimization for i : firstly, a previously
published plan, U∗

j (k), originating from the last time step at which j optimized,
and the plan that subsystem is currently following; secondly, a hypothetical plan,
Ûi

j (k), designed locally by agent i . This leads to a key feature of the method; that
of promoting inter-agent cooperation yet maintaining robust feasibility of all local
decisions.

The local optimization problem, Pcdmpc
i

(
xi (k), Z̆∗

i (k)
)
, where Z̆∗

i (k) denotes the
extended information required, for subsystem i is formally defined as

min
Ui (k),Ûi

j (k), j∈Si

Ji
(
Ui (k)

) +
∑

j∈Si (k)

αi
j J j

(
Ûi

j (k)
)

(3.14)

subject to local constraints (3.5a)–(3.5f) on Ui (k), (3.5a)–(3.5c), (3.5e), (3.5f) on
Ûi

j (k),∀ j ∈ Si (k), the initial constraints

x̂i
j (k) = x̄∗

j (k), (3.15a)

ûi
j (k) = ū∗

j (k), (3.15b)

for all j ∈ Si , and, for prediction steps l ∈ {1, . . . , Np −1}, the coupling constraints

z̄ci (k + l) +
∑

j∈Nc\{i}
z̄∗

cj (k + l) ∈ Z̃c,∀c ∈ Ci , (3.15c)

z̄ci (k + l)+
∑

j∈Si (k)

ẑi
cj (k + l)+

∑

m∈Nc\{i,Si (k)}
z̄∗

cm(k + l) ∈ Z̃c, ∀c ∈ CSi (k) �
⋃

j∈Si (k)

C j ,

(3.15d)
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Algorithm 3.2 Cooperative distributed MPC for a subsystem i

1: Wait for an initial feasible plan U∗
i (0) = {

x̄∗
i (0), ū∗

i (0 : Np − 1)
}

and information, including

Z̆∗
i (0). Set k = 0.

2: Apply control ui (k) = ū∗
i (k) + Ki

(
xi (k) − x̄∗

i (k)
)
. Wait one time step, increment k.

3: Measure state xi (k).
4: Update plan. If i ∈ Nk ,

1. Choose cooperating set Si (k) and weights αi
j for each j ∈ Si (k).

2. Obtain new plan Uopt
i (k) by solving the local problem Pcdmpc

i

(
xi (k), Z̆∗

i (k)
)
.

3. Set U∗
i (k) = Uopt

i (k).
4. Transmit new information to other agents.

Else, renew existing plan: form Ũi (k) according to (3.10) and set U∗
i (k) = Ũi (k).

5: Go to step 2.

The initial constraints (3.15a) and (3.15b), which replace (3.15d), provide the start-
ing point of the hypothetical trajectory Ûi

j (k) for each j ∈ Si (k). These constraints
act on the assumption that any j ∈ Si (k) can not optimize its own plan until, at the
earliest, the next step k + 1. Hence, these predicted trajectories may begin to diverge
from the previously published trajectories, U∗

j (k), only at the k + 1 prediction time.
The cooperative problem is solved in the Algorithm 3.2.
The cooperating set Si (k) and the scalar weightings αi

j are essentially tuning

parameters for the level of cooperation. The parameter αi
j ≥ 0 is the weighting

applied to the local subsystem cost J j for j ∈ Si (k); smaller values (αi
j < 1)

place more emphasis on i’s own objective and self interest, while larger values
(αi

j > 1) have the opposite effect. The size of the cooperating set maps to what
portion of the system-wide cost is considered in the local optimization. If Si (k) is
empty, the problem reverts simply to the non-cooperative problem Pdmpc

i . Conversely,
as Si (k) → N \ {i}, the local optimization attempts to solve a problem more closely
resembling the system-wide, centralized problem, but with modified constraints.

As before, having obtained a plan U∗(k) at step k, by either optimization or
renewal, each agent unilaterally applies the first control of the planned sequence. No
negotiation or iterative refinement of solutions takes place during a time step, and
hypothetical plans are never exchanged or compared.

3.3.3.1 Initialization of Cooperative DMPC

As before, it is assumed that each agent has the information required to formulate
its local optimization problem (Requirements 3.1 and 3.2). It is also assumed that
initial plans are available for each subsystem (Requirement 3.3).
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3.3.3.2 Inter-agent Communication

The additional coupling constraints (3.15d) and initial intention constraints (3.15a)
and (3.15b) both demand information beyond that required for non-cooperative
DMPC.

Considering first the coupling constraints, constraint (3.15c) matches the non-
cooperative counterpart (3.12), and hence Requirement 3.4 still applies. For the new
constraint (3.15d), an updating agent further requires coupling information from any
agents coupled to those in its cooperating set Si (k). Formally:

Requirement 3.5 [Additional coupling information exchange] Consider any three
agents i , j and h such that i ∈ Qh and h ∈ S j and any two time steps ki and k j > ki

such that i ∈ Nki and j ∈ Nk j , i.e. agents i and j updated at times ki and k j

respectively. Then message mci (k) for every coupling constraint c ∈ Ci
⋂ Ch must

have been sent from i to j at least once during time steps k ∈ [ki , k j ].
For the initial intent constraints (3.15a) and (3.15b), full state and control outputs

are required but might not be included in the coupling messages. Thus the requirement
is for the latest complete plan information from any agents in the cooperating set:

Requirement 3.6 [Cooperating plan exchange] Consider an updating agent j and
another agent i ∈ S j , (i.e. agent j wants to cooperate with i) and any two time steps
ki and k j > ki such that i ∈ Nki and j ∈ Nk j , i.e. agent i updated at time ki and
agent j updated at k j . Then the plan U∗

i (k) must have been sent from i to j at least
once during time steps k ∈ [ki , k j ].

A sufficient, yet conservative, means of meeting these requirements is for the
communication step in Algorithm 3.2 to specify transmission of the full plan to all
other subsystems following update. While this may seem significant, it should be
noted that to meet the requirement it is sufficient for one agent to transmit its plan to
others only after that plan has changed, i.e., as a result of optimization. Moreover, it is
not necessary for an agent to update at every time step, and robust coupled constraint
satisfaction and stability are guaranteed for any choices of update sequence and
cooperating sets. Thus, data exchanges need not occur at every time step, and the
cooperating set and update sequence may be tailored to exploit this flexibility, as has
been shown in [14] for the non-cooperative form.

3.4 Theoretical Results

3.4.1 Robust Constraint Satisfaction and Feasibility

With no assumptions extra to those already stated, the system controlled according to
Algorithm 3.1 or 3.2 attains the properties of guaranteed robust constraint satisfaction
and robust feasibility. This result, established in [14], relies on the observation that,
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given a feasible solution at time k0, the candidate solution for each subsystem at the
next time step k0 + 1—as defined by (3.10)—is feasible for all possible realizations
of the disturbances, di ∈ Di , and any choice of update sequence.

In [11], this result is extended to the cooperative form of the algorithm by noting
that, at k0, an updating local agent i has available both a feasible local plan Ũi (k0) (i.e.,
the candidate plan) and feasible hypothetical plans Ûi

j (k0) = Ũ j (k0) for j ∈ Si (k0),
and for any choice of cooperating set Si (k0). Viewed differently, the cooperative
form of DMPC is equivalent to the non-cooperative form with only a modified cost,
which happens to include the evaluation of options for other agents. Since constraint
satisfaction and feasibility depend only on the constraints of each optimization and
not on its cost, it is logical that cooperative DMPC inherits the feasibility properties
of its non-cooperative counterpart.

3.4.2 Robust Convergence and Stability

Under further assumptions, asymptotic convergence of the states of the system to a
neighbourhood of the origin is guaranteed.

(A1) The stage cost Li (xi , ui ) ≥ c
∥∥(xi , ui )

∥∥, for c > 0, and Li (0, 0) = 0, ∀i ∈ N .
(A2) The terminal cost is a local Lyapunov function: for all xi ∈ X f

i and i ∈ N ,
Fi

(
Ai xi + Biκ

f
i (xi )

) − Fi
(
xi

) ≤ −Li
(
xi , κ

f
i (xi )

)
.

(A3) The local cost of an adopted plan U∗
i (k) for any i ∈ Nk updating at k satisfies

Ji
(
U∗

i (k)
) ≤ Ji

(
Ũi (k)

)+∑
j∈N ε j L j

(
x̄∗

j (k −1), ū∗
j (k −1)

)
for some chosen

0 ≤ ε j < 1, ∀ j ∈ N , where Ũi (k) is the candidate plan (3.10).

Together with the assumptions on Ki , κ f
i , Ri , and X f

i , Assumptions (A1) and (A2)
represent a specific case of the standard assumptions (A1)–(A4) in [5].

The non-cooperative approach requires only Assumptions (A1) and (A2) [14]. It
may be established that each xi (k) → Ri and ui → Ki ui as k → ∞. This holds for
all realizations of the disturbances di ∈ Di , and for any choice of update sequence.

Robust convergence and stability of the cooperative form is established with the
help of Assumption (A3). This limits the amount by which the local cost Ji of an
agent’s solution is permitted to increase over that of the candidate plan in order to
benefit other agents. Intuitively, an unbounded increase may lead to instability if
repeated by many agents over time. However, if (A3) holds, monotonic descent of
the global cost,

∑
i∈N Ji

(
U∗

i (k)
)

is assured, and each xi (k) → Ri and ui → Ki ui

as k → ∞. This holds regardless of disturbances, choice of update sequence, and
choices of cooperating sets. Although difficult to prove, (A3) often holds anyway.
Since it can be shown that it is always possible to satisfy (A3), it may be enforced
by a direct constraint, though resulting in a more complex and constrained problem.
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3.4.3 The Benefit of Cooperation

The problem of how the cooperating sets Si are chosen to obtain the maximal benefit
to system-wide performance is studied in [13]. It is proven that, depending on the
coupling structure, it is not necessary to cooperate with all others in the problem,
yet not sufficient to cooperative only with directly-coupled subsystems. An adaptive
form of cooperation between agents is proposed, in which agents cooperate with
others connected by paths in a graph of active coupling constraints

In [9], the DMPC approach is studied in a game-theoretical framework. Under
assumptions milder than those required for asymptotic convergence of the states to a
neighbourhood of the origin, (i.e., (A1) and (A2)), the states of the controlled system
converge to some limit set. The system is in such a limit set if and only if the control
agents are continually playing Nash solutions. Relating the Nash solutions to the
cooperation set choices, it may be proven that increasing inter-agent cooperation
does not enlarge the set of Nash solutions. Thence, it follows that increasing the size
of cooperating sets does not enlarge the set of state limit sets for the system.

3.5 Applications of the Approach

Figure 3.1 shows results from an example, taken from [10], concerning the control
of a group of point masses, coupled by the requirement to stay close together. The
trade between communication and computation is shown for both centralized and
tube DMPC. Centralized cannot reduce communication without lowering its update
rate. Tube DMPC can manipulate the update sequence to change communication,
and hence can out-perform centralized at low communication levels.

Figure 3.2 illustrates the benefits of cooperation when applied to a system of five
point masses. The objective is for the masses to reach the origin, yet the coupled
constraint on positions,

∑
i∈N xi,1 ≥ 1, means that this cannot be achieved by all

masses simultaneously. Cooperative DMPC clearly delivers a fairer outcome.
In [13], the coupling structure is exploited, with the cooperating set for the point-

mass system being chosen on-line, according to the active coupling constraints.
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Fig. 3.1 Cost versus number of data exchanges for (i) DMPC (◦) and (ii) CMPC (∗). Each mass is
required to remain within �x of the others, with (l to r) �x = 1, 3, and 10. Reproduced from [10]
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Fig. 3.2 Convergence of a five-mass system when controlled by (left to right) non-cooperative
DMPC; cooperative DMPC with one other agent in the cooperating set Si ; firstly non-cooperative
DMPC, and then cooperative DMPC. Reproduced from [13]

(a) (b) (c)

Fig. 3.3 Three vehicles traversing a circle when controlled by a centralized MPC, b non-cooperative
DMPC and c cooperative DMPC with the next-to-plan vehicle in the cooperating set for vehicle i .
Reproduced from [11]

Simulations show that it is beneficial for an agent to cooperate with non-directly
coupled agents, but not necessary to include all other masses in the cooperating set.

The distributed MPC algorithms described in this chapter are applicable to those
systems comprising dynamically decoupled, LTI subsystems that share coupling
constraints. A natural application is guidance and control of multiple vehicles, for
which collision avoidance can be enforced via coupled constraints. In [11], a problem
similar to air traffic control is simulated, and it is demonstrated that the cooperative
approach leads to a more equitable arrangement of flight paths (Fig. 3.3). In [12],
multiple vehicles are given the shared objective of achieving complete coverage or
search of an area in minimum time.
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