
Chapter 25
Distributed MPC Based on a Team Game

J. M. Maestre, F. J. Muros, F. Fele, D. Muñoz de la Peña and E. F. Camacho

Abstract In this chapter we present a distributed scheme based on a team game
for the particular case in which the system is controlled by two agents. The main
features of the proposed scheme are the limited amount of global information that the
agents share and the low communication burden that it requires. For this reason, this
scheme is a good candidate to be implemented in systems with reduced capabilities,
for example in wireless sensor and actuator networks.

25.1 Introduction

In this chapter, a distributed model predictive control (DMPC) scheme based on
a team game, originally proposed in [8] and formalized in [7], is presented. In this
scheme two different agents communicate in order to find a solution to the problem of
controlling two constrained linear systems coupled through the inputs; see Fig. 25.1.
The assumptions about the amount of global information that the agents have are
very restrictive in this scheme. In particular, we assume that each agent only has
local model and state information. The only global information that an agent has is
how the neighbor’s input affects him. Notice that although this assumption can be
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Fig. 25.1 Proposed distributed MPC scheme for two agents

restrictive, it is realistic in the sense that global information about the models and the
objectives is not always available. We also assume that the available communication
capabilities only allow two communications at each time interval. For this reason,
the coordination between the agents is based on a team game that is built in two
communication cycles.

25.2 Statement of the Problem and Main Assumptions

Consider the class of distributed linear systems composed by a set of N = {1, 2}
interconnected subsystems coupled by the inputs whose dynamics can be described
mathematically as:

x1(k + 1) = A1x1(k) + B12u1(k) + B12u2(k),

x2(k + 1) = A2x2(k) + B21u1(k) + B22u2(k),
(25.1)

where xi (k) ∈ R
nxi , i ∈ N are the states of subsystem i , and ui (k) ∈ R

nui , i ∈ N
are their respective inputs. For simplicity we will show the definitions and equations
for agent i . In the remaining of the chapter, the neighboring agent will be denoted as
ni ; for example: uni = u2 if i = 1 and uni = u1 if i = 2.

States and inputs are constrained into two independent sets defined by a set of
linear inequalities

xi (k) ∈ Xi , ui (k) ∈ Ui , i = 1, 2. (25.2)
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The agent responsible of subsystem i has complete knowledge of its local model
and state xi (k), and is able to manipulate the control action ui (k). Hence, no agent
has full model or state information and communication is required in order to obtain
a cooperative solution.

Without loss of generality, we assume that the control objective is to regulate
the system to the origin while satisfying the constraints. To this end, we define the
following performance index for each agent, which depends on the future evolution
of its state and input along a prediction horizon of length Np:

Ji
(
xi (k), ui (k : k + Np − 1), uni (k : k + Np − 1)

) =
Np−1∑

k=0

Li (xi (k), ui (k))

+ Fi
(
xi (Np)

)
, (25.3)

where Li (·) and Fi (·) with i ∈ N are the stage cost and the terminal cost functions
respectively, defined as:

Li (x, u) = xT
i Qi xi + uT

i Ri ui , (25.4)

Fi (x) = xT
i Pi xi , (25.5)

with Qi , Pi > 0, Ri ≥ 0, and the vector ui (k : k + Np − 1) stands for the future
input sequence of agent i :

ui (k : k + Np − 1) =
[
ui (k)T, ui (k + 1)T, . . . , ui (k + Np − 1)T

]T
, i ∈ N .

(25.6)
The agents solve a sequence of optimization problems during each sampling

interval. These problems are built using local information and assuming a fixed
input trajectory for its neighbor. In particular, an agent assumes that its neighbor
will behave as in the previous agreed input trajectory, which we will denote with the
superscript d, i.e., ud

i (k − 1 : k + Np − 2) is the input trajectory that agent i agreed
to implement at time k − 1 for the time interval [k − 1, k + Np − 2].

At this point it is important to remark that the trajectory that agent i assumes for
its neighbor must cover the time interval [k, k + Np −1]. As the last agreed trajectory
only provides a trajectory between [k − 1, k + Np − 2] and the first component of
that trajectory is already implemented in the system, it is necessary to calculate a
new component for the time k + Np − 1. If stability is not an issue in the system, it
is possible to complete the sequence simply by adding a 0 vector of the proper size
or copying the value of the last known element of the trajectory. In this chapter we
assume that each agent updates his decided input trajectory using a feedback gain Ki
and the Np-1 steps ahead prediction of the state assuming. These feedbacks allow
us to define the shifted input sequence of agent i at time k as:

us
i (k : k + Np − 1) =

[
ud

i (k)T, ud
i (k + 1)T, . . . , ud

i (k + Np − 2), (Ki xi (k + Np − 1))T
]T

,

(25.7)
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where xi (k + Np − 1) is the state of the subsystem i(Np − 1)-steps ahead in the
future, which is obtained applying the agreed input trajectories.

25.3 Description of the Approach

Algorithm 25.1 describes the DMPC scheme proposed in this chapter.
From a game theory point of view, at each time step both agents are playing a team

game. This game can be synthesized in strategic form by the three by three matrix of
Table 25.1. At each time step, the controllers decide among three different options.
The shifted optimal input trajectory us

i (·) keeps applying the latest optimal trajectory,
so it can be seen like a stable decision. The selfish option u∗

i (·) provides the best
improvement in Ji if the rest of the systems manipulated variables stay unchanged.
The altruist option uw

i (·) provides the best improvement for the neighbor agent cost
function Jni in case it applies its selfish option; i.e., the agent i sacrifices its own
welfare in order to improve the overall performance. The cells of the matrix contain
the sum of the cost functions of both agents for a particular choice of future inputs,
resulting nine possibilities. At each time step, the first option that provides the lowest
global cost is chosen. Note that both agents share this information, so they both choose
the same option. Some important facts must be remarked about the algorithm:

• The computational burden of the proposed algorithm is in general lower than the
one corresponding to the centralized scheme. In particular, the quadratic program-
ming problems solved have less optimization variables.

• Agents operate in parallel in steps 2 and 3, which speeds up the calculation of the
input trajectories.

• The minimun number of communication steps that are necessary to obtain a coop-
erative control scheme is two: in the first one each agent broadcasts its proposals
to its neighbors and during the second one feedback about them is received.

• The proposed scheme is cooperative from a game theory point of view because
each agent chooses the solution that minimizes a value that depends on the cost
of both subsystems. If there were no cooperation between the agents, the solution

Table 25.1 Cost function table used for the decision making

us
2(κ) u∗

2(κ) uw
2 (κ)

us
1(κ)

J1(x1(k), us
1(κ), us

2(κ))

+ J2(x2(k), us
2(κ), us

1(κ))

J1(x1(k), us
1(κ), u∗

2(κ))

+ J2(x2(k), u∗
2(κ), us

1(κ))

J1(x1(k), us
1(κ), uw

2 (κ))

+ J2(x2(k), uw
2 (κ), us

1(κ))

u∗
1(κ)

J1(x1(k), u∗
1(κ), us

2(κ))

+ J2(x2(k), us
2(κ), u∗

1(κ))

J1(x1(k), u∗
1(κ), u∗

2(κ))

+ J2(x2(k), u∗
2(κ), u∗

1(κ))

J1(x1(k), u∗
1(κ), uw

2 (κ))

+ J2(x2(k), uw
2 (κ), u∗

1(κ))

uw
1 (κ)

J1(x1(k), uw
1 (κ), us

2(κ))

+ J2(x2(k), us
2(κ), uw

1 (κ))

J1(x1(k), uw
1 (κ), u∗

2(κ))

+ J2(x2(k), u∗
2(κ), uw

1 (κ))

J1(x1(k), uw
1 (κ), uw

2 (κ))

+ J2(x2(k), uw
2 (κ), uw

1 (κ))

κ stands for the time interval [k : k + Np − 1]
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Algorithm 25.1 DMPC based on a team game
1: At time step k, each agent i measures its state xi (k).
2: Each agent i minimizes Ji assuming that the neighbor applies the shifted control sequence

calculated during the previous time step and solves the following optimization problem, i ∈ N

u∗
i (k : k + Np − 1) =

arg min
ui (k:k+Np−1)

Ji
(
xi (k), ui (k : k + Np − 1), us

ni (k : k + Np − 1)
)

s.t. xi (k + 1) = Ai xi (k) + Bi i ui (k) + Bi,ni uni (k),

xi (l) ∈ Xi , l = k + 1, . . . , k + Np,

ui (l) ∈ Ui , l = k, . . . , k + Np − 1,

xi (k + Np) ∈ �i .

(25.8)

The sets �i , i ∈ N define the terminal region constraints necessary to prove closed-loop
practical stability following a terminal region/terminal cost approach. If stability is not an issue
these constraints can be removed.

3: Each agent i minimizes Ji optimizing the neighbor input sequence uni (·) while applying to its
own subsystem the input trajectory u∗

i (·) computed in step 2. This means for agent i solving the
following optimization problem, i ∈ N

uw
ni (k : k + Np − 1) =

arg min
uni (k:k+Np−1)

Ji
(
xi (k), u∗

i (k : k + Np − 1), uni (k : k + Np − 1)
)

s.t. xi (k + 1) = Ai xi (k) + Bi i u1(k) + Bi,ni uni (k),

xi (l) ∈ Xi , l = k + 1, . . . , Np,

uni (l) ∈ Uni , l = k, . . . , k + Np − 1,

xi (k + Np) ∈ �i .

(25.9)

The solution of this optimization problem, uw
ni (k : k + Np − 1), is a proposal for the neighbor (a

wished behaviour), i.e., an input trajectory that the neighbor ni can implement to minimize the
cost of agent i . Again, the constraint involving �i can be removed if stability is not an issue.

4: Both agents communicate, sending both u∗
i (k : k + Np − 1) and uw

ni (k : k + Np − 1) to the other
agent, and receiving u∗

ni (k : k + Np − 1) and uw
i (k : k + Np − 1).

5: Each agent evaluates its local cost function Ji for each of the nine possible combinations of the
input trajectories obtained: ui ∈ {

us
i (·), uw

i (·), u∗
i (·)} , i ∈ N (see Table 25.1).

6: Both agents communicate and share the information of the value of local cost function for each
possible combination of input trajectories. In this step, both agents receive enough information
to take a cooperative decision. In addition, this communication cycle can be used as well to
transmit the information regarding the extra component that is necessary to complete the shifted
input trajectory vector.

7: Each agent applies the input trajectory that minimizes J = J1 + J2. Because both agents have
access to the same information after the second communication cycle, both agents choose the
same optimal input trajectories, i.e., ud

i (·), i ∈ N .
8: The first input of each optimal sequence is applied and the procedure is repeated at the next time

step.

attained would converge after several iterations towards the Nash equilibrium of the
multi-objective optimization problem defined by the cost functions of the agents.

• Although the outcome chosen by the algorithm is a Pareto optimal of the game that
both agents are playing, in general it is not a Pareto optimal of the multi-objective
optimization problem defined by the cost functions J1 and J2.



412 J. M. Maestre et al.

• The proposed scheme can be extended to deal with a greater number of agents,
i.e., |N | = M . However, the complexity of building the corresponding team
game matrix grows exponentially with the number of agents. In order to reduce
the complexity, the structure of the system may be exploited taking into account
that an input may no affect all the outputs. Also, in general not all the possible
cooperation options are employed with the same frequency, so it is possible to
reduce further the complexity by not taking into account the less frequent options.
In [7], the reader can find a modified distributed scheme which deal with this topic
in depth.

25.4 Theoretical Results Availability

In this section we introduce the main theoretical propierties of the proposed DMPC
scheme. Please, notice that many theoretical details have been omitted for the sake of
clarity. The interested reader is recommended to see [5] for a more rigorous treatment
of the topics discussed in this section.

25.4.1 Stability Properties

Controlling a system between two independient agents may lead to an unstable
closed-loop system. The resulting closed-loop system is a multiprocess system and
studying the stability of this class of systems is in general a difficult task. Following a
terminal region/terminal constraint approach, in [5] we provided sufficient conditions
that guarantee practical stability of the closed-loop system as well as an optimization
based procedure to design the controller so that these conditions are satisfied.

In [5] it is proved that if there exist linear feedbacks ui = Ki xi , terminal cost
functions defined by matrices Pi , and regions �i that satisfy the following conditions
for all i ∈ N , then the system in closed-loop with the proposed controller is ultimately
bounded in a region that contains the origin:

Fi
(
(Ai + Bi i Ki ) xi + Bi,ni Kni xni

) − Fi (xi ) + Li (xi , Ki xi ) − di ≤ 0,∀xni ∈ �ni ,

(25.10)

xi ∈ �i → (Ai + Bi i Ki ) xi + Bi,ni Kni xni ∈ �i , ∀xni ∈ �ni , (25.11)

Ki xi ∈ Ui , ∀xi ∈ �i , (25.12)

�i ∈ Xi . (25.13)

If the aforementioned conditions are satisfied, then it is possible to prove that if
xi (0) and us

i (0) for all i ∈ N are given such that the optimization problem (25.8)
is feasible, then the proposed algorithm is feasible for all time steps k ≥ 0 and



25 Distributed MPC Based on a Team Game 413

system (25.1) in closed-loop with the proposed DMPC controller is ultimately
bounded in a region that contains the origin in its interior. Likewise, it is possi-
ble to guarantee that the closed-loop system is ultimately bounded in a closed region
that contains the origin. Moreover, it is possible to prove that the proposed controller
provides asympthotic stability if (25.10) is modified. Specific details about this topic
can be found in [5, 7].

25.4.2 Design Procedure

In [5, 7] an optimization based procedure is given to find, for i ∈ N , local controllers
Ki , matrices Pi and regions �i such that (25.10)–(25.13) holds for a given system.
The procedure determines first matrices Ki and Pi such that (25.10)–(25.13) hold
for any given sets �i solving a linear matrix inequality (LMI) optimization problem.
Once the local feedbacks Ki are fixed, the invariant sets �i are obtained.

The linear feedbacks must guarantee that each system is stable and must provide
a certain degree of robustness with respect to the neighbor control input. To certain
degree, each local controller assumes that the neighbor input is a bounded disturbance
that has to be rejected. This allows us to use well known tools from control of linear
uncertain systems in order to determine a local controller such that a given degree
of robustness is guaranteed. Constraint (25.10) can be transformed into an LMI and
solved using standard techniques. In particular, the following LMI provides a mean
for the calculation of Ki and Pi :

⎡

⎢⎢
⎢⎢⎢
⎣

γi I 0 BT
i,ni 0 0

∗ Wi Wi AT
i i + YT

i BT
i i Wi Q

1
2
i YT

i R
1
2
i∗ ∗ Wi 0 0

∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I

⎤

⎥⎥
⎥⎥⎥
⎦

> 0. (25.14)

where Pi = W−1
i , Ki = Yi W

−1
i , and γi is a constant related with the size of

the maximum admissible disturbance for system i : di = γi maxx∈�ni (Kni x)TKni x.
Notice that the size of the disturbance, given by di , depends at the same time on the
size of the sets �i . Likewise, note that the conditions presented assume that each
input ui only depends on the state xi . This structure can be generalized for local
controllers that take into account the full state space.

Once the local controllers and the terminal cost functions are fixed, it is necessary
to find sets �i such that (25.10)–(25.13) hold. In general this is a difficult problem
because each of the sets depends on the other. The size of the terminal region for
agent i is determined by the magnitude of the disturbances induced by its neighbor
agent ni and viceversa. The main idea behind the calculation of the invariant sets
of both agents is a scalation of their respective input constraints sets by a factor
λi ≤ 1 with the goal of finding a fair trade off between the disturbances induced
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to the neighbor and the manipulating capabilities of each agent. There exist several
methods to find a set �i that satisfies all the local constraints Xi and λiUi while
coping with the disturbances induced by the neighbor, which depend on λniUni ;
e.g.: in [12] a procedure to find an approximation of the minimal robust positive
invariant is given, and in [11] a similar class of invariant systems was studied within
the polytopic games framework.

At this point, it is important to stress that the set �1 × �2 is an invariant set for
the system in closed loop with the linear feedbacks K1, K2; however, the opposite
does not hold necessarily, i.e., not all invariant sets satisfy the stability conditions.
Note that each set is defined in their corresponding subspace xi . We denote these sets
jointly invariant sets. Note as well that there may exist an infinite number of possible
values of λ j i such that these sets exist. In order to choose one, we propose to solve
an optimization problem to maximizes the feasibility region of the distributed MPC
controller. In [11] it was proved that the feasibility region of this problem is convex.
In [9] we prove that the jointly invariant sets �i are polyhedra defined by a set of
inequalities whose right hand side can be expressed as an affine combination of the
constants γi j . Using this result, the optimization problem can be cast into a convex
optimization problem if the objective function is chosen appropriately, for instance,
if the criterium to compare the invariant sets is the radium of a Chebyshev ball inside
the invariant region.

Once matrices Ki , Pi , and the sets �i , i ∈ N are determined, constants di , i ∈ N
can be calculated in order to obtain an estimation of the set in which the closed-loop
system is ultimately bounded.

25.5 Applications of the DMPC Scheme

The algorithm that we propose in this chapter has been tested with simulated and
real systems. The applications and the results that are described in this section are
explained in detail in [2, 5–8, 10].

25.5.1 Supply Chain Problem

In [5, 6], the proposed controller is applied to a reduced version of the MIT beer
game and compared with other distributed control schemes. The MIT beer game is
based on the concept of a supply chain, i.e., the set of structures and processes used
by an organization to provide a service or a good to a costumer. The original MIT
beer game is composed of four agents: retailer, wholesaler, distributor and factory.
In our case, a reduced version of the problem with only two agents is considered: the
retailer and the supplier, see Fig. 25.2. Notice that there is no loss of generality since
the structure of the game is regular: there is a cascade of firms, each maintaining and
controlling its stock.
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Fig. 25.2 Reduced beer game

The control objective is to regulate the number of stocked beers to a given reference
and the manipulated variable is the number of beers that are ordered at each node.
The retailer must satisfy the demand of beers and orders new beers to the supplier,
which at the same time asks the factory for beers.

The performance comparison between the different schemes considered is based
on simulations that are carried out in four different scenarios. Each scenario is defined
by a different initial state, a different retailer demand, and a different demand forecast.
In general, the proposed algorithm provides a performance in the same order of
magnitude than the centralized MPC which, as expected, obtains the best results. The
simulations show that the proposed distributed scheme outperforms a noncooperative
iterative DMPC scheme with a greater number of communication cycles.

25.5.2 Continuosly Stirred Tank Reactor

In [8, 10] the proposed scheme is applied to a system described by a transfer function:
a continuosly stirred tank reactor (CSTR) (taken from [3]). The manipulated variables
are respectively the flow rate and the flow of coolant in the jacket. The controlled
variables are respectively the effluent concentration and the reactor temperature,

Fig. 25.3 Continuously
stirred tank reactor (CSTR)
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see Fig. 25.3. The control objective is to track a given constant reference from a
random initial state. Our results show that the proposed scheme is able to stabilize
the closed-loop system while other decentralized schemes fail. On top of that, the
rise time and the convergence rate of the overall cost function are determined as
a function of the average number of data losses in the communication channel.
Hence, this system is used to test the robustness of the algorithm against data losses.
Notice that as the reliability of the communication channel decreases, so does the
amount of information shared by the agents, and the controller tends to operate in
a decentralized manner. In particular, when there are data losses, the agents do not
receive uw

i , which is needed to build the global cost table (Table 25.1). In this case,
each agent must decide whether to keep applying the last optimal input trajectory
us

i , or behave selfishly and try to minimize its local cost function choosing u∗
i . In

Fig. 25.4 The four tank process: the real plant diagram
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order to test the robustness of the proposed approach on the worst possible case, we
assume that when communication errors occur each controller applies u∗

i . A set of
simulations with different average values of data losses can be found in [10]. The
simulation results show that the algorithm is able to stabilize the closed-loop system
whenever the number of data losses is lower than the 50 %.

25.5.3 The Four Tank Process

In [2, 5] the proposed scheme and other DMPC policies are compared in an real
benchmark: a four tank process (see Fig. 25.4), which is one of the benchmarks of the
european project HD-MPC. The physical plant is located in facilities of the University
of Seville and is described in [1]. It is an educational plant designed to test control
techniques with real industrial instrumentation and control devices. The plant is a
hydraulic process of four inteconnected tanks inspired by the educational quadruple
tank process proposed by Johansson [4]. The main characteristic of this process is
that is a simple multivariable system with highly coupled nonlinear dynamics that
can exhibit transmission zeros dynamics. The four tank process has proven to be a
very interesting system for control education and research.

The objective of the benchmark is to test and compare centralized, decentralized
and distributed predictive controllers under similar operation conditions. To this end
an experiment is defined in [2, 5], in which the controllers must regulate the levels
of tanks 1 and 2 to follow a set of reference changes by manipulating the inlet flows
based of the measured levels of the four tanks.
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Fig. 25.5 Experimental results on the four tank process
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Our results with this plant show a performance index relatively close to the cen-
tralized MPC and, moreover, our DMPC scheme outperforms other more complex
schemes that have higher communication burdens. Nevertheless our results also show
a possible implementation issue for other applications: the resulting input trajectories
are not smooth (see Fig. 25.5), which is natural since the controller chooses among
nine different modes of operation. Depending on the application, this switching may
not be acceptable. Figure 25.5 also shows the cooperative nature of the proposed
scheme in the sense that the inputs switch constantly between the two possible tra-
jectories that suit best with the local objectives of each agent.

25.6 Conclusions

We have presented a DMPC scheme based on game theory for a class of systems
controlled by two agents. The proposed controller only needs two communication
steps in order to provide a cooperative solution for the centralized optimization prob-
lem. Each agent solves an optimization problem that depends only on its local model
and state information. After sharing information about the cost of the control actions
considered, the agents choose the solution that provides the best global performance
among a set of possible suboptimal choices (the options are suboptimal because each
agent has an incomplete view of the system and they propose the best solutions from
a local perspective).

The proposed algorithm guarantees feasibility and stability of the closed-loop
system if the feedback laws are designed according to the proposed procedure. On
top of that, our results show a good behavior of the control scheme, which is specially
remarkable when its low communication and informational requirements are taken
into account. Likewise, the robustness of the proposed scheme against failures in the
communication channel has been tested in simulation as well.

Finally, it is worthwhile to mention that although it is possible to extend the
proposed scheme to control problems with more than 2 agents, the size of the team
game that must be built grows exponentially with the number of agents. Therefore it
is necessary to reduce the number of options that are proposed and evaluated by the
agents such as it is done in [9], where an evolution of this scheme is presented
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