
Chapter 18
Distributed MPC of Interconnected Nonlinear
Systems by Dynamic Dual Decomposition

A. Grancharova and T. A. Johansen

Abstract A suboptimal approach to distributed Nonlinear Model Predictive Control
(NMPC) for systems consisting of nonlinear subsystems with nonlinearly coupled
dynamics subject to both state and input constraints is proposed. The approach applies
a dynamic dual decomposition method to reformulate the original centralized NMPC
problem into a distributed quasi-NMPC problem by linearization of the nonlinear
system dynamics and taking into account the couplings between the subsystems. The
developed approach is based entirely on distributed on-line optimization (by gradient
iterations) and can be applied to large-scale nonlinear systems. The theoretical results
related to the application of the distributed MPC approach to both linear and nonlinear
systems are outlined and some simulation results are provided.

18.1 Introduction

Nonlinear Model Predictive Control (NMPC) involves the solution at each sampling
instant of a finite horizon optimal control problem subject to the system dynamics, and
state and input constraints. However, solving in a centralized way NMPC problems
for large-scale systems may be impractical due to the complexity of the Nonlinear
Programming (NLP) problem, the topology of the plant and data communication,
and the large number of decision variables. Therefore, there is a strong motivation for
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development of methods for distributed solution of NMPC problems. At the same
time, the multi-core computer architectures available nowadays would encourage
parallel and distributed NMPC computations [4]. Recently, several approaches for
decentralized implementation of MPC algorithms have been developed [18]. As it
is pointed out in [14], the possibility to use MPC in a decentralized fashion has the
advantage to reduce the original, large size, optimization problem into a number of
smaller and more tractable ones. In [7, 12, 19, 20], approaches for distributed MPC
for systems consisting of linear interconnected subsystems have been developed.

Approaches for distributed MPC for systems composed of several nonlinear sub-
systems have been proposed in [6, 9, 11, 14, 15]. In [14], a stabilizing decentralized
MPC algorithm for nonlinear systems consisting of several interconnected local sub-
systems is developed. It is derived under the main assumptions that no information
can be exchanged between local control laws. In [6], it is supposed that the dynamics
and constraints of the nonlinear subsystems are decoupled, but their state vectors
are coupled in a single cost function of a finite horizon optimal control problem. In
[11], an optimal control problem for a set of dynamically decoupled nonlinear sys-
tems, where the cost function and constraints couple the dynamical behavior of the
systems, is solved. In [15], novel control techniques for the control of transportation
networks are proposed, which are based on a combination of ideas from the fields of
multi-agent systems and MPC.

The distributed MPC approach in [7] is based on the dual decomposition methods
[3, 5], whose rationale is to reformulate the large-scale optimization problems by
using Lagrange multipliers for relaxing the couplings between the sub-problems.
It is applied to systems composed by a set of linear subsystems, subject to both
state and input constraints. Since the approach applies to the complex case when
the subsystems are coupled through their dynamics, it is referred to as dynamic dual
decomposition [7, 17]. The fact that it takes into account the dynamic couplings
between the subsystems when optimizing the overall system behavior and at the
same time allows for decentralized MPC solution makes it very attractive. In [9], the
suboptimal approach from [7] is extended to an approach to distributed NMPC for
a more general class of systems consisting of nonlinear subsystems with linearly
coupled dynamics subject to both state and input constraints. Thus, the approach
in [9] applies the dynamic dual decomposition method [3, 7, 17] and reformulates
the original centralized NMPC problem into a distributed quasi-NMPC problem by
linearization of the nonlinear system dynamics. It is based entirely on distributed
on-line optimization (by gradient iterations) and can be applied to large-scale non-
linear systems. In [10], the suboptimal quasi-NMPC approach from [9] where linear
couplings between the subsystems have been assumed, is further extended to solve
distributed NMPC problems for interconnected nonlinear systems with separable
nonlinearly coupled dynamics.

The purpose of this chapter is to summarize the main ideas of the distributed quasi-
NMPC approach in [9] with the extensions in [10], as well as to review the theoretical
and the simulation results associated to both linear and nonlinear interconnected
systems.
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18.2 Boundary Conditions on the System, Control Objectives,
and Constraints

Consider a system composed by the interconnection of a set of subsystems N =
{S1, S2, . . . , S|N |} (Fig. 18.1), which is described by the following nonlinear discrete-
time models [14]:

xi (k + 1) = f i (xi (k), ui (k)) + gi (x(k)), i = 1, 2, . . . , |N | (18.1)

where xi (k) ∈ R
nxi and ui (k) ∈ R

nui are the state and control input vectors, related to
the i th subsystem, and f i : R

nxi ×R
nui → R

nxi and gi : R
nx → R

nxi are nonlinear
functions. In (18.1), the mutual influence of the |N | subsystems is described by the
functions gi , which depend on the overall state:

x(k) = [x1(k), x2(k), . . . , x|N |(k)] ∈ R
nx , nx =

|N |∑

i=1

nxi (18.2)

Similarly, the overall control input is denoted:

u(k) = [u1(k), u2(k), . . . , u|N |(k)] ∈ R
nu , nu =

|N |∑

i=1

nui (18.3)

The following control input and state constraints are imposed on the subsystems:

umin,i ≤ ui (k) ≤ umax,i , xmin,i ≤ xi (k) ≤ xmax,i , i = 1, . . . , |N | (18.4)

and the following assumptions are made:

A1. The functions f i and gi , i = 1, . . . , |N | are C1 functions with f i (0, 0) = 0,
gi (0) = 0.

A2. xmin,i < 0 < xmax,i , umin,i < 0 < umax,i , i = 1, . . . , |N |.

Fig. 18.1 System composed by the interconnection of |N | subsystems
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A3. The nonlinear functions gi (x(k)) of the couplings are separable, i.e., they have
the form:

gi (x(k)) =
|N |∑

j=1, j �=i

hi j (x j (k)), i = 1, . . . , |N | (18.5)

where hi j : R
nx j → R

nxi are nonlinear functions with hi j (0) = 0.
It is also assumed that the distributed NMPC controllers for the interconnected

subsystems can communicate to each other the computed optimal state trajectories
of the subsystems and the trajectories of the Lagrange multipliers, associated to the
application of the dual decomposition method. A detailed communication scheme
corresponding to the proposed distributed NMPC method is given in Sect. 18.3.

It is supposed that a full measurement x̄ = [x̄1, x̄2, . . . , x̄|N |] of the overall initial
state is available, i.e., x(0) = x̄. The optimal regulation problem is considered where
the goal is to steer the overall state of the system (18.1) to the origin. This leads to
the infinite horizon optimal control problem:

Problem P0 (Infinite Horizon Optimization):

J∞(x̄) = min
u

∞∑

k=0

|N |∑

i=1

si (xi (k), ui (k)) (18.6)

subject to (18.1) and:

xi (k) ∈ Xi , i = 1, . . . , |N | for all k (18.7)

ui (k) ∈ Ui , i = 1, . . . , |N | for all k (18.8)

Here si (xi (k), ui (k)) = ‖xi (k)‖2
Qi

+ ‖ui (k)‖2
Ri

is the stage cost for the i th sub-
system with weighting matrices Qi , Ri � 0, and the sets Xi and Ui are defined
by:

Xi = {
λλλi ∈ R

nxi | xmin,i ≤ λλλi ≤ xmax,i
}

(18.9)

Ui = {
ηηηi ∈ R

nui | umin,i ≤ ηηηi ≤ umax,i
}

(18.10)

It follows from (18.9)–(18.10) that Xi and Ui are convex (polyhedral) sets, which
include the origin in their interior (due to assumption A2).

Similar to [7], the infinite horizon optimal control problem P0 is approximated
with an NMPC problem without a terminal cost and terminal constraint, where the
objective function is obtained by truncating the infinite horizon objective. Let the
measured state at time k be x = [x1, x2, . . . , x|N |]. For the current x, the regulation
NMPC solves the problem:
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Problem P1 (Centralized NMPC):

J opt(x) = min
u(k:k+Np)

J (u(k : k + Np), x) (18.11)

subject to x(k) = x and:

xi (k + l) ∈ Xi , i = 1, . . . , |N |, l = 1, . . . , Np (18.12)

ui (k + l) ∈ Ui , i = 1, . . . , |N |, l = 0, 1, . . . , Np − 1 (18.13)

xi (k + l + 1) = f i (xi (k + l), ui (k + l)) + gi (x(k + l))

i = 1, . . . , |N |, l = 0, 1, . . . , Np − 1 (18.14)

x(k + l) = [x1(k + l), . . . , x|N |(k + l)], l = 0, 1, . . . , Np (18.15)

u(k + l) = [u1(k + l), . . . , u|N |(k + l)], l = 0, 1, . . . , Np − 1 (18.16)

where the cost function is given by:

J (u(k : k + Np), x) =
Np∑

l= 0

|N |∑

i=1

si (xi (k + l), ui (k + l)) (18.17)

Here, Np is a finite horizon.

18.3 Description of the Distributed NMPC Approach

18.3.1 Distributed NMPC by Dynamic Dual Decomposition

Problem P1 can be decomposed by using the dynamic dual decomposition approach
[3, 17]. The following decoupled state equations can be formulated:

xi (k + 1) = f i (xi (k), ui (k)) + vi (k), i = 1, . . . , |N | (18.18)

with the additional constraints that:

vi (k) =
|N |∑

j=1, j �=i

hi j (x j (k)) , i = 1, . . . , |N | for all k (18.19)

The variable vi ∈ R
nxi can be interpreted as the influence of the other subsystems

in the update of xi .
Then, the constraints (18.19) are relaxed by introducing the corresponding

Lagrange multipliers pi ∈ R
nxi in the cost function (18.17) and the following

distributed NMPC problem is formulated:
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Problem P2 (Distributed NMPC):

J̃ opt(x) = max
p(k:k+Np)

min
u(k:k+Np)

x(k:k+Np)

v(k:k+Np)

Np∑

l=0

|N |∑

i=1

⎡

⎣si (xi (k + l), ui (k + l))

+ pi (k + l)T(vi (k + l) −
|N |∑

j=1, j �=i

hi j (x j (k + l)))

⎤

⎦

= max
p(k:k+Np)

|N |∑

i=1

⎛

⎜⎜⎜⎜⎝
min

ui (k:k+Np)

xi (k:k+Np)

vi (k:k+Np)

Np∑

l=0

⎡

⎣si (xi (k + l), ui (k + l))

+ pi (k + l)Tvi (k + l) −
|N |∑

j=1, j �=i

hT
j i (xi (k + l))p j (k + l)

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(18.20)

subject to x(k) = x, constraints (18.12)–(18.13) and:

xi (k + l + 1) = f i (xi (k + l), ui (k + l)) + vi (k + l)

i = 1, . . . , |N |, l = 0, 1, . . . , Np − 1 (18.21)

p(k + Np) = 0 (18.22)

The requirement (18.22) follows from the optimality conditions of Pontryagin’s
principle for discrete-time systems [2] and the fact that the state is not specified at
the terminal time k + Np. Here the following notation is used: p(k + l) = [p1(k +
l), . . . , p|N |(k + l)], v(k + l) = [v1(k + l), . . . , v|N |(k + l)], l = 0, 1, . . . , Np.

The stage cost in the second equality in (18.20) is denoted:

s p
i (xi (k + l), ui (k + l), vi (k + l), p(k : k + Np))

= si (xi (k + l), ui (k + l)) + pi (k + l)Tvi (k + l) −
|N |∑

j=1, j �=i

hT
j i (xi (k + l))p j (k + l)

(18.23)
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The Lagrange multipliers p are also referred to as prices [17]. In the special case
when the problem P1 is convex and the Slater’s condition holds for the inequality
constraints (18.12)–(18.13), then J opt(x) = J̃ opt(x) (there will be no duality gap [1]).

The inner decoupled optimization problems in problem P2 are Nonlinear Pro-
gramming (NLP) sub-problems, since the constraints (18.21) and the stage cost
function s p

i (xi (k + l), ui (k + l), vi (k + l), p(k : k + Np)) are nonlinear:

Problem P3i (ith NLP Sub-problem):

J̃i
opt

(p(k : k + Np), xi ) = min
ui (k:k+Np)

xi (k:k+Np)

vi (k:k+Np)

Np∑

l=0

s p
i (xi (k + l), ui (k + l), vi (k + l), p(k : k + Np))

(18.24)
subject to xi (k) = xi and:

xi (k + l) ∈ Xi , l = 1, . . . , Np (18.25)

ui (k + l) ∈ Ui , l = 0, 1, . . . , Np − 1 (18.26)

xi (k + l + 1) = f i (xi (k + l), ui (k + l)) + vi (k + l), l = 0, 1, . . . , Np − 1

(18.27)

Denote with uopt
i (k : k + Np), xopt

i (k : k + Np) and vopt
i (k : k + Np) the optimal

solution of problem P3i . Note that the optimizers depend on the prices p.

18.3.2 Local Quadratic Programming Approximations

The constraints (18.27) in the problems P3i , i = 1, 2, . . . , |N | may be non-convex
in the general case (due to the nonlinearity of the functions h j i (·) and f i (·, ·)). Below,
the functions h j i (·) and f i (·, ·) are locally approximated by linear functions, leading
to a convex quasi-nonlinear approach. An advantage of this approach is that strong
duality can be easily claimed, i.e., there will be no duality gap between the solution
obtained by solving the centralized quasi-NMPC and the solution corresponding to
the distributed quasi-NMPC (see Proposition 1 later in this section). Let xi (k) = x̄i ∈
Xi be arbitrary and denote the corresponding optimal solution to the sub-problem
P3i with:

u0
i = uopt

i (x̄i , k : k + Np), x0
i = xopt

i (x̄i , k : k + Np), v0
i = vopt

i (x̄i , k : K + Np)

(18.28)
The optimal solution (18.28) depends on the values of the prices p. Therefore,

it would be necessary for p and the solution (18.28) to be updated iteratively. In
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order to simplify the computations while iterating, the system model (18.1) with the
coupling functions given by (18.5) is linearized around the point (u0

i , x0
i , v0

i , x̄i )
and the predicted states are obtained with the linearized model:

xi (k + l + 1) = Sxi (k + l)xi (k + l) + Sui (k + l)ui (k + l)

+
∑|N |

j = 1
j �= i

Ai j (k + l)x j (k + l) + e0i (k + l), i = 1, . . . , |N |, l = 0, 1, . . . , Np − 1

(18.29)

where the matrices Sxi (k + l), Sui (k + l), Ai j (k + l), and the vector e0i (k + l) are
given by:

Sxi (k + l) = ∇xi f i (x
0
i (k + l), u0

i (k + l)) (18.30)

Sui (k + l) = ∇ui f i (x
0
i (k + l), u0

i (k + l)) (18.31)

Ai j (k + l) = ∇x j hi j (x
0
j (k + l)), j = 1, 2, . . . , |N |, j �= i (18.32)

e0i (k + l) = f i (x
0
i (k + l), u0

i (k + l)) +
|N |∑

j=1, j �=i

hi j (x
0
j (k + l)) − Sxi (k + l)x0

i (k + l)

− Sui (k + l)u0
i (k + l) −

|N |∑

j=1, j �=i

Ai j (k + l)x0
j (k + l) (18.33)

Then similar to (18.18), the following decoupled linear state equations are for-
mulated:

xi (k + l + 1) = Sxi (k + l)xi (k + l) + Sui (k + l)ui (k + l) + wi (k + l) + e0i (k + l)

i = 1, . . . , |N |, l = 0, 1, . . . , Np − 1 (18.34)

with the additional constraints that:

wi (k + l) =
|N |∑

j=1, j �=i

Ai j (k + l)x j (k + l), i = 1, . . . , |N | (18.35)

Then, the NLP sub-problems P3i are approximated with the QP sub-problems:
Problem P4i (ith QP Sub-problem):

J ∗
i (p(k : k + Np), xi ) = min

ui (k : k + Np)

xi (k : k + Np)

wi (k : k + Np)

Np∑

l=0

s p
QP,i (xi (k + l), ui (k + l), wi (k + l), p(k : k + Np))

(18.36)
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subject to xi (k) = xi , (18.25), (18.26), and:

xi (k + l + 1) = Sxi (k + l)xi (k + l) + Sui (k + l)ui (k + l) + wi (k + l) + e0i (k + l)

l = 0, 1, . . . , Np − 1 (18.37)

In (18.36), the function s p
QP,i is given by:

s p
QP,i (xi (k + l), ui (k + l), wi (k + l), p(k : k + Np)) = si (xi (k + l), ui (k + l))

+ pi (k + l)Twi (k + l) − xi (k + l)T
|N |∑

j=1, j �=i

A j i (k + l)Tp j (k + l) (18.38)

Denote with u∗
i (k : k + Np), x∗

i (k : k + Np) and w∗
i (k : k + Np) the optimal

solution of P4i . The following centralized quasi-NMPC problem with quadratic cost
and linear constraints is formulated:

Problem P5 (Centralized Quasi-NMPC):

J ∗(x) = min
u(k:k+Np)

J (u(k : k + Np), x) (18.39)

subject to x(k) = x, constraints (18.12), (18.13), and (18.29).
The cost function J (u(k : k + Np), x) is given by (18.17).
Then, the distributed quasi-NMPC problem is as follows:

Problem P6 (Distributed Quasi-NMPC):

max
p(k:k+Np)

|N |∑

i=1

J ∗
i (p(k : k + Np), xi ) = (18.40)

max
p(k:k+Np)

|N |∑

i=1

min
ui (k:k+Np)

xi (k:k+Np)

wi (k:k+Np)

Np∑

l=0

s p
QP,i (xi (k + l), ui (k + l), wi (k + l), p(k : k + Np))

(18.41)
subject to x(k) = x, constraints (18.12), (18.13), (18.34), and:

p(k + Np) = 0 (18.42)

Then, the decomposition of the optimization problem P5 is given by the following
proposition:

Proposition 18.1 Suppose that x = [x1, x2, . . . , x|N |] is a feasible point for prob-
lem P5. Then:
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J ∗(x) = max
p(k:k+Np)

|N |∑

i=1

J ∗
i (p(k : k + Np), xi ) (18.43)

where maximization is subject to p(k + Np) = 0.

The proof follows similar arguments as in [7, 9] and the fact that the Slater’s
condition always holds for a feasible convex QP [1, pp. 226–227].

Proposition 18.1 shows that the computation of u∗
i (k : k + Np), x∗

i (k : k + Np)

and w∗
i (k : k + Np) for given prices p(k : k + Np) is completely decentralized.

However, finding the optimal prices requires coordination [7]. Given a price predic-
tion sequence pr

i (k : k + Np) for the r -th iteration, the corresponding sequences
u∗r

i (k : k + Np), x∗r
i (k : k + Np) and w∗r

i (k : k + Np) are computed locally by
solving P4i . Then, the prices are updated distributedly by a gradient step:

pr+1
i (k + l) = pr

i (k + l) + γ r
i [w∗r

i (k + l) −
|N |∑

j=1, j �=i

Ai j (k + l)x∗r
j (k + l)]

l = 0, 1, . . . , Np − 1 with pr+1
i (k + Np) = pr

i (k + Np) = 0 (18.44)

where γ r
i is the step size. In a neighborhood of the solution u0

i , x0
i , v0

i to the NLP
sub-problems P3i , i = 1, . . . , |N |, the linearized model (18.29) can sufficiently
accurately approximate the nonlinear model (18.1). Therefore, to approximate the
NMPC solution it would be necessary to periodically update the linearized model
(18.29) and to apply formula (18.44) for a number of steps. This is done by a slight
modification of the suboptimal algorithm for distributed quasi-NMPC in [9].

18.3.3 An Algorithm for Distributed Quasi-NMPC

In [7], an approach to distributed MPC for linear systems has been suggested, where
the prices are updated according to (18.44). In [9], a suboptimal algorithm for dis-
tributed quasi-NMPC for nonlinear systems with linear couplings has been pro-
posed. Here, the algorithm in [9] is slightly modified to consider a more general
class of systems consisting of nonlinear subsystems with separable nonlinear cou-
plings (see Sect. 18.2). The algorithm includes two loops. In the outer loop, the NLP
sub-problems P3i , i = 1, 2, . . . , |N |, are solved and the matrices of the linearized
model are computed, which are used in the approximating QP sub-problems P4i ,
i = 1, 2, . . . , |N |. Then, in the inner loop, the price sequences and solution are
updated based on Proposition 18.1 and applying formula (18.44) for a given number
of steps. The algorithm is presented as Algorithm 18.1.

The steps 4 to 11 in Algorithm 18.1 include an iterative solution of the NLP sub-
problems P3i , approximating them with the QP sub-problems P4i , and then updating
the prices by utilizing Proposition 18.1.
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Algorithm 18.1 Distributed quasi-NMPC by on-line optimization

1: Given integer numbers Q and L , step sizes γi , i = 1, 2, . . . , |N | and arbitrary guesses p0
i (k :

k + Np), i = 1, 2, . . . , |N | for the price sequences. Let k = 0.
2: Let the state at time k be x(k) = x = [x1, . . . , x|N |].
3: for q = 1, 2, . . . , Q do
4: For xi (k) = xi compute distributedly the optimal solutions u0

i = uopt
i (xi , k : k + Np), x0

i =
xopt

i (xi , k : k + Np), v0
i = vopt

i (xi , k : k + Np) to the NLP sub-problems P3i , i = 1, 2, . . . , |N |,
corresponding to the price sequences p0

i (k : k+Np). Compute the matrices Sxi (k+l), Sui (k+l),
Ai j (k + l), j = 1, . . . , |N |, j �= i , and e0i (k + l), l = 0, 1, . . . , Np − 1, associated to the
approximating QP sub-problems P4i , i = 1, 2, . . . , |N |.

5: for r = 0, 1, . . . , L − 1 do
6: For i-th subsystem, i = 1, 2, . . . , |N |, communicate the price sequences pr

j (k : k + Np),
j = 1, . . . , |N |, j �= i of the interconnected subsystems.

7: Compute the sequences u∗r
i (k : k + Np), x∗r

i (k : k + Np) and w∗r
i (k : k + Np) corresponding

to the price sequence pr (k : k + Np) by solving distributedly the QP sub-problems P4i , i =
1, 2, ... , |N |.

8: For i-th subsystem, i = 1, 2, . . . , |N |, communicate the state trajectories x∗r
j (k : k + Np),

j = 1, . . . , |N |, j �= i of the interconnected subsystems.
9: Compute distributedly the updates pr+1

i (k : k + Np), i = 1, 2, . . . , |N | of the price sequences
by applying (18.44) for γ r

i = γi , i = 1, 2, . . . , |N |.
10: end
11: Let p0

i (k : k + Np) = pL
i (k : k + Np), i = 1, 2, . . . , |N |.

12: end
13: Apply to the overall system the control inputs ui (k) = ui (k)∗L−1, i = 1, 2, . . . , |N |.
14: Let k = k + 1 and go to step 2.

It should be noted that alternatively, an approach similar to [13, 16] can be applied,
where the idea would be to avoid solving the NLP sub-problems P3i in step 4 and to
formulate the approximating QP sub-problems P4i by using the optimal sequences
u∗

i (k : k + Np), x∗
i (k : k + Np) and w∗

i (k : k + Np), computed in the previous time
instant.

The communication between the distributed MPC controllers is illustrated in
Fig. 18.2 for three subsystems (only the inner loop in Algorithm 18.1 is depicted).
The solution of the QP sub-problems P4i and the update of prices is distributed, but
requires for the neighboring subsystems to communicate their price sequences and
optimal state trajectories.

18.4 Theoretical Results

The dynamic dual decomposition approach is applied for the first time to distributed
MPC in [7], where a system composed by the interconnection of a set of linear
subsystems N = {S1, S2, . . . , S|N |} is considered. The interconnected subsystems
are described by the following linear discrete-time models:



304 A. Grancharova and T. A. Johansen

Fig. 18.2 The communication between the distributed MPC controllers

xi (k + 1) =
|N |∑

j=1

Ai j x j (k) + Bi ui (k), i = 1, 2, . . . , |N | (18.45)

where xi (k) ∈ R
nxi and ui (k) ∈ R

nui are the state and control input vectors, related
to the i th subsystem, and Ai j ∈ R

nxi ×nx j and Bi ∈ R
nxi ×nui are constant matrices.

For the system (18.45), the infinite horizon optimal control problem P0 is con-
sidered, where the nonlinear equality constraints (18.1) are replaced by the linear
equality constraints (18.45). The problem P0 is approximated with a linear central-
ized MPC problem P1, where the nonlinear constraints (18.14) are replaced by linear
ones, associated to the model (18.45).

In [7], a suboptimal algorithm for distributed linear MPC is developed, which
includes an iterative solution of the QP sub-problems for the linear subsystems and
updating the price sequences (illustrated in Fig. 18.2). Further in [7], a stopping
criterion for the iterative distributed MPC scheme is proposed that can be locally
verified at each subsystem and that guarantees closed loop suboptimality above a
pre-specified level α ∈ (0, 1) and asymptotic stability of the overall linear system.
With this criterion, at each time instant the minimal number of iterations is obtained
such that the following holds (cf. Theorem 4 in [7]):
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α J∞
MPC(x̄) ≤ J∞(x̄) and ‖x(k)‖2 → 0 as k → ∞ (18.46)

where x̄ is the initial state of the overall system (18.45), x(k) is the response of the
system (18.45) in closed-loop with the distributed MPC law, J∞

MPC(x̄) is the cost
associated to infinite horizon performance of the distributed MPC law, and J∞(x̄) is
the cost obtained by solving the infinite horizon optimal control problem P0 for the
system (18.45).

It is shown in [10] that under certain assumptions the infinite horizon cost, associ-
ated with the suboptimal distributed quasi-NMPC control (designed by applying the
approach in Sect. 18.3) in closed-loop with the nonlinear system (18.1), is bounded
and an estimate of the degree of suboptimality is derived.

The relation of the distributed quasi-NMPC approach [9, 10] to other distributed
MPC approaches and their comparison is a subject of a future research.

18.5 Application Results

In [7], the performance of the developed distributed MPC approach for linear inter-
connected systems is evaluated by applying it to a simulation example with equally
sized water containers, connected in series.

In [8], the distributed linear MPC approach is applied to the MPC-based path
planning for a UAV (Unmanned Aerial Vehicles) communication chain under radio
path loss constraints. The centralized path planning optimization problem with lin-
ear model of the UAVs and coupled inequality constraints is reformulated into an
equivalent distributed path planning optimization problem, where the resulting QP
sub-problems are completely decoupled. The MPC-based optimization sub-problems
are computed autonomously within each UAV, using convex quadratic programming
and gradient iterations, with the requirement that each UAV communicates its current
measured position and the computed optimal velocity trajectory to its neighboring
UAVs.

In [9], the distributed quasi-NMPC approach is applied to a system composed by
two nonlinear subsystems with linear couplings in the presence of state and input
constraints and bounded disturbances.

Here, the distributed quasi-NMPC approach described in Sect. 18.3 is applied to
a system consisting of two nonlinear subsystems with nonlinear couplings. The two
subsystems S1 and S2 are described by:

S1 : x1(k + 1) =
√

3x1(k)2 + 1 + u1(k) − 1 + μ1x3
2(k) (18.47)

S2 : x2(k + 1) = e− sin(x2(k)) + u2(k) − 1 + μ2x3
1(k) (18.48)

The functions f1, f2, h12, h21 in the description (18.1) with the assumption A3
are:
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f1(x1(k), u1(k)) =
√

3x1(k)2 + 1 + u1(k) − 1 (18.49)

f2(x2(k), u2(k)) = e− sin(x2(k)) + u2(k) − 1 (18.50)

h12(x2(k)) = μ1x3
2(k) , h21(x1(k)) = μ2x3

1(k) (18.51)

The functions h12 and h21 describe the mutual influence of the two subsystems.
The following constraints are imposed on the system (18.47)–(18.48):

− 0.3 ≤ ui (k) ≤ 0.5 , i = 1, 2 (18.52)

− 2 ≤ x1(k) ≤ 2 , −1.5 ≤ x2(k) ≤ 1.5 (18.53)

The coefficients related to the couplings between the two subsystems are μ1 =
μ2 = 0.2. The prediction horizon in the centralized NMPC problem P1 is Np = 10
and the weighting matrices are Qi = Ri = 1, i = 1, 2.

The centralized NMPC problem is represented as a distributed NMPC problem
(problem P6) by applying the dual decomposition approach. Then, Algorithm 18.1
with parameters Q = 5, L = 3, γi = 0.3, i = 1, 2 is used to generate the two
control inputs for an initial state x(0) = [1.2 1.2]. The corresponding trajectories
of the control inputs u1, u2 and the states x1, x2, associated to the two subsystems
are depicted in Figs. 18.3 and 18.4. The trajectories obtained with the following
approaches are compared:

• The suboptimal distributed quasi-NMPC approach with linearization (described
in Sect. 18.3);

• A suboptimal distributed NMPC approach without linearization. In this case, a
modification of Algorithm 18.1 is used for the on-line computation of the control
inputs. It has only one loop, where the optimal solutions of the NLP sub-problems
P3i , i = 1, 2, . . . , |N | are computed distributedly, and then the price sequences
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Fig. 18.3 The control inputs u1 and u2 for subsystems S1 and S2
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Fig. 18.4 The states x1 and x2 of subsystems S1 and S2

are updated by applying (18.44) by using the computed optimal solutions. The
loop is repeated Q = 5 times and the step size in (18.44) is γi = 0.3, i = 1, 2.

• The centralized NMPC approach, which solves problem P1 at each time instant.

18.6 Conclusions

In this chapter, the distributed quasi-NMPC approach is described in details and
an algorithm based on on-line optimization is presented. The theoretical and the
application results associated to both linear and nonlinear interconnected systems
are reviewed. The relation of the suggested distributed NMPC approach to other
distributed approaches is a subject of a future research.
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